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Chapter 1

Introduction

Physics is a natural science that studies fundamental phenomena of nature and tries
to explain their properties and behavior on the basis of quantitative models and laws.
One of the most successful and most verified theories in physics is the Standard Model
of particle physics. It incorporates three of the four fundamental interactions of nature
through the framework of quantum field theory (QFT): The Electromagnetic, strong,
and weak interactions. The strong interaction, which we deal with in this thesis, is
described by quantum chromodynamics (QCD). It covers the dynamics of quarks and
gluons, which are the constituents of hadrons such as the proton, neutron, or pion.

Quarks are fermions which carry spin and color charge. Today six different quark
species are known which are referred to as flavors. Gluons on the other hand are gauge
bosons which mediate strong interactions of QCD and carry themselves superpositions
of color states. The gauge group of QCD is the non-abelian group SU(3), which implies
that gauge fields do not compute. Hence, these fields interact with each other, leading
to strong interactions between quarks. In fact, the interaction strength even increases
with increasing distances. Consequently, if two quarks have been separated enough,
it becomes energetically favored to create a quark-antiquark pair. This explains why
under normal conditions no free quarks have been observed. They are always bound
into color-neutral hadrons such as baryons or mesons. This phenomenon of QCD is
called confinement. On the other hand, at high energies, quarks and gluons interact
very weakly and are no longer bound inside hadrons. Hence, they behave like free
particles leading to a quark gluon plasma (QGP). This phenomenon is called asymptotic
freedom.

In this work we will investigate different topological aspects of QCD. Topology is a
field of mathematics that has many important implications in modern physics. It deals
with properties of mathematical structures which are preserved under continuous
invertible deformations. Such continuous mappings are called homeomorphisms. A
very popular example of a homeomorphism is the mapping between a mug and a
donut (torus). The mug can be continuously reshaped to the form of a donut and vice
versa, without losing the hole in the handle. Such structures carry a specific integer
number called the winding number, which characterizes their topological properties.

In QCD, field configurations of different winding numbers exist which are separated
by topological barriers. Between these configurations, tunneling effects occur. These
effects are called instantons and carry a topological charge of Q = 1. An observable
which is sensitive to the fluctuations of instantons is the topological susceptibility. At
high temperatures, the topological susceptibility is expected to be proportional to χt =
mumdms/T

3 [1], while at low temperatures below the phase transition, the topological
susceptibility is expected to be proportional to χt ∝ (1/mu + 1/md + 1/ms)

−1 [2, 3].
Hence the expectation would be that in both regimes the susceptibility should vanish
as the quark masses are driven to zero.



8 Chapter 1. Introduction

Instantons are more and more suppressed with increasing temperature. A dilute
instanton gas approximation (DIGA) has shown that at high temperatures the sus-
ceptibility follows a power law dependence on temperature [1, 4]. However, at high
temperatures topological transitions occur more often by jumping over the topological
barrier due to thermal fluctuations. These transitions are called sphalerons and induce
chiral imbalances in the quark gluon plasma. This for example may influence the
chiral magnetic effect [5, 6]. Non-perturbative studies at finite temperatures on the
SU(3) sphaleron rate are rather limited. A recent study can be found in [7].

Topology is related to the restoration and breaking of the chiral and axial symmetry.
The behavior of topological observables is dictated by chiral symmetry breaking at
low temperatures and dilute-instanton models at very high temperatures [8–10]. In
general, the QCD Lagrangian has a UL(2)×UR(2) chiral symmetry for two massless
flavors of quarks. However, the SUV (2)× SUA(2)×UV (1) subgroup is spontaneously
broken to SUV (2)×UV (1) in the hadronic phase, which leads to pions much lighter
than nucleons. The subgroup UA(1) is somewhat special. Classically it is a symmetry
of the Lagrangian, but in a quantized theory it is broken by the measure of the path
integral. This so-called axial anomaly [11–13] is believed to affect the nature of the
chiral phase transition in QCD. The divergence of the Noether current of the axial
symmetry in full quantum theory turns out to be equal to the topological charge density.
It follows that any instanton field with topological charge Q must be accompanied by a
corresponding change in axial charge as well as fermion zero modes in the background
of these fields. Hence, there is a non-trivial connection between the axial anomaly
and topology. Whether or not the anomalous UA(1) is effectively restored in the chiral
limit is subject of current research [14–28].

At very high energies QCD can be treated perturbatively in an expansion in terms
of the gauge coupling constant. At low energies, however, the coupling is strong and
perturbation theory is not applicable. Instead, non-perturbative methods are required.
A very successful non-perturbative approach which is used extensively in this work
is lattice QCD. In this approach spacetime is discretized on a Euclidean hypercubic
lattice with a finite lattice spacing. The quark fields are located on the sites of the
lattice while the gauge fields are defined on the links connecting neighboring sites.
Expectation values are then calculated using observables which are formulated in
terms of lattice dimensions. Ultimately, a continuum extrapolation can be performed,
which extrapolates the results to zero lattice spacing. Such a discretized theory can be
computed numerically on a computer.

This is however a highly non-trivial task, since a typical lattice QCD calculation
requires a lot of computational power. To get the best possible performance, these
calculations must be implemented in such a way that they utilize all available capacities
of the underlying hardware. Usually, lattice QCD calculations are carried out on large
supercomputers. These machines are optimized for parallel computations on CPUs,
GPUs or even both. One of the world’s most powerful GPU based supercomputer
at the time of writing this thesis is Summit at Oak Ridge National Laboratory, USA
(see TOP500, November 2020 [29]). In this work, most of the calculations were
performed on the Bielefeld GPU cluster [30]. Lattice QCD is very well suited for
parallel computations, since the lattice can be domain decomposed and distributed
across different processors. The computations on each sub-lattice are then performed
on each processor in parallel. However, implementing parallel algorithms is quite
challenging. Apart from the usual challenges which appear in sequential programming,
one additionally has to deal with concepts such as inter-process communication,
asynchronous computation or coalesced memory access. Moreover, CPUs and GPUs
are being controlled through different programming languages. Also, processors from
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different vendors use different interfaces to communicate with each other. Hence, if
algorithms share similar patterns (as e.g. in lattice QCD) it is highly recommended to
implement algorithms in a clean and structured fashion, such that basic functionalities
can be used across different algorithms.

The outline of this thesis is as follows: In chapter 2 we will recap some basics
of QCD and give an introduction to some important symmetries in QCD. Chapter 3
will introduce the concept of topology and draw the connection to QCD and the axial
anomaly. An overview of the general formalism of lattice QCD is given in chapter 4.
There we will also introduce some important lattice QCD discretizations such as the
Zeuthen flow, the topological charge and the overlap Dirac operator, which will be
needed in later chapters.

Chapter 5 is dedicated to the technical implementation of the ParallelGPUCode. It
is a highly parallelized multi-GPU framework for lattice QCD calculations, which has
mainly been developed within this work. We will discuss the general structure and de-
sign of this framework and give an introduction on how to implement custom routines.
Additionally, we show results of some benchmarks which have been performed on the
Bielefeld GPU cluster and at the GPU supercomputer Summit at Oak Ridge National
Laboratory.

In chapter 6 we will measure the topological susceptibility on 2+1 highly improved
staggered quark (HISQ) [31, 32] ensembles around the pseudo-critical temperature Tc,
which have a fixed physical strange quark mass but equal or lower-than-physical light
quark masses. The gradient flow [33–36] will be used to smooth out UV fluctuations
before measuring the topological charge. We will investigate the mass dependence as
well as the volume and cut-off effects of the topological susceptibility on these configu-
rations. Additionally, we will check the temperature dependence of the susceptibility
in that temperature range.

In chapter 7 we will study the overlap Dirac eigenvalue spectrum [37, 38] on
a subset of the same HISQ ensemble as in the previous chapter. The eigenvalue
measurements in this chapter have been accelerated by using gradient flow as a
noise reduction method. The results of the topological charge of the previous chapter
have been used to predict the chiralities of the zero modes in the measurements.
We will study the light quark mass dependence of the eigenvalue spectrum near
Tc as it is reduced towards the chiral limit and show results for the renormalized
observable m2

l (χπ − χδ)/T
4, which is sensitive to UA(1). Additionally, we perform a

chiral extrapolation of this observable to see whether it survives in the chiral limit,
which would indicate whether or not the UA(1) is effectively restored at the chiral
phase transition.

Chapter 8 will be dedicated to the topological charge density correlation function
and the sphaleron rate [7, 39–41]. We measure the topological charge density
correlation function on large, fine, pure gauge configurations at 1.5Tc. We use the
gradient flow as a noise reduction method to improve the signal of the correlation
function. The sphaleron rate is then determined by analytical continuation of the
Euclidean topological charge density two-point function. We perform a continuum
extrapolation at fixed physical flow-time and then extrapolate the continuum results
to zero flow-time. We use the extrapolated correlators to study the sphaleron rate by
spectral reconstruction based on perturbatively motivated models.

Finally, in chapter 9 we conclude this thesis by summarizing all results that have
been obtained throughout this work.
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Chapter 2

QCD and its Symmetries

The Standard Model of particle physics describes particle physics as it stands today. It
summarizes all known elementary particles and the important interactions between
them through the framework of quantum field theory (QFT). The part of the model
this thesis deals with is quantum chromodynamics (QCD). It is a non-abelian SU(3)
gauge theory which describes the strong interactions between quarks and gluons,
which are the fundamental building blocks of atomic nuclei. An important concept
not only in QCD but in modern physics are symmetries. By Noether’s Theorem,
each continuous symmetry of the Lagrangian corresponds to a conserved current; by
Goldstone’s Theorem, each spontaneously broken generator of a continuous symmetry
corresponds to a Goldstone boson. From this property it is possible to extract physical
laws. In this chapter, we therefore introduce a few important symmetries as well as
their special implications for QCD. Most of the topics in this chapter can also be found
in textbooks [42–47].

2.1 The QCD Lagrangian and the path integral formulation

In lattice QCD we use importance sampling to select the gauge configurations in the
Monte Carlo simulation (more on that in section 4.1). This requires the Boltzmann
weight of the path integral to be purely real, which is only possible in Euclidean
spacetime. Hence, throughout this thesis we are dealing with the Euclidean metric, if
not stated otherwise, i.e. an analytic continuation to imaginary (Euclidean) time is
performed via Wick rotation t→ −iτ .

The Euclidean Lagrange density of QCD is given by [45]

LQCD =
∑
f

ψ̄f (γµDµ +mf )ψf −
1

4g2
FµνFµν , (2.1)

where ψf are the fermionic fields, mf the corresponding masses and Fµν the field
strength tensor. In general, the sum over f goes over all six presently known flavors
u, d, s, c, b, t. Additionally, the quark fields hold a color- and spinor-index which are
suppressed for simplicity. The covariant derivative Dµ is given by

Dµ = ∂µ − iAµ, (2.2)

with gluon fields Aµ which are 3×3 matrices living in the adjoint representation of the
SU(3) gauge group. In this work we follow the notation that the coupling constant g
is absorbed by the gauge fields, i.e. gAµ → Aµ. The field strength tensor Fµν can be
expressed as

Fµν(x) = ∂µAν − ∂νAµ − i[AµAν ] ≡ F aµνt
a, ta =

λa

2
. (2.3)
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Now, as the QCD Lagrangian is set, it is natural to search for a solution of its
equations of motion. Unfortunately, an analytical solution has not been discovered yet.
Therefore, other methods are required to gain more information from the theory. The
path integral formalism turns out to be a great tool for estimating expectation values.
The Euclidean path integral for evaluating expectation values is defined as

〈O〉 = 1

Z

∫
DψDψ̄DA e−SQCD

[
ψ,ψ̄,A

]
O
[
ψ, ψ̄,Aµ

]
, (2.4)

where Z is the partition function

Z =

∫
DψDψ̄DA e−SQCD

[
ψ,ψ̄,A

]
. (2.5)

A Euclidean correlator is constructed in a similar manner,

〈O1(t)O2(0)〉 =
1

Z

∫
DψDψ̄DA e−SQCD

[
ψ,ψ̄,A

]
O1

[
ψ, ψ̄,Aµ

]
O2

[
ψ, ψ̄,Aµ

]
. (2.6)

The action is obtained by

SQCD
[
ψ, ψ̄,Aµ

]
=

∫
d4x LQCD

(
ψ, ψ̄,Aµ

)
. (2.7)

It can be shown, using the partition function from statistical mechanics [45], that
the above expression corresponds to a system with zero temperature. Non-zero
temperature is achieved by setting the integration interval of the temporal direction to
be finite,

SQCD
[
ψ, ψ̄,Aµ

]
=

1/T∫
0

dt

∫
d3x LQCD

(
ψ, ψ̄,Aµ

)
, (2.8)

where the inverse temporal extent equals the temperature.

2.2 Gauge symmetry

The most important symmetry in QCD is the local gauge symmetry. The fermion fields
ψ and ψ̄ transform under gauge transformation as

ψ′(x) = U(x)ψ(x), ψ̄′(x) = ψ̄(x)U †(x), (2.9)

where U(x) is a 3×3 special unitary matrix which mixes the different color components.
The gauge fields Aµ, on the other hand, transform as

A′
µ(x) = U(x)Aµ(x)U

†(x) + i (∂µU(x))U †(x). (2.10)

From this it follows that the transformation of the covariant derivative is given by

D′
µ(x) = U(x)Dµ(x)U

†(x). (2.11)

Making use of (2.10) and (2.11), we see that the fermionic term in the Lagrangian
(2.1) is invariant under gauge transformation. The transformation of the field strength
tensor in the second term of (2.1) can easily be derived by using (2.11). Similar to
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the transformations above it changes as

F ′
µν(x) = U(x)Fµν(x)U

†(x). (2.12)

It follows that also the gluonic part of the Lagrangian does not change under gauge
transformations. Any physical result obtained from QCD should not depend on the
gauge, in which it was calculated. Therefore, calculations can make use of the freedom
of choosing a gauge to simplify the algebraic manipulations.

2.3 Chiral symmetry

The chiral symmetry is an approximate symmetry of the QCD Lagrangian. It is
approximate because it is a symmetry only at zero quark masses, i.e. in the chiral limit.
We know, however, that the masses of the u-quark, mu = 2.3(7)MeV, and d-quark,
md = 4.8(5)MeV (in MS-scheme, µ = 2GeV) are much smaller than the typical scale
of QCD ∼ 1GeV. Thus, they can be treated as small perturbations. In order to discuss
this symmetry, we decompose the Dirac fermions into left-handed and right-handed
parts,

ψL = PLψ, ψR = PRψ, (2.13)

with the projection operators,

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) , (2.14)

which satisfy the necessary conditions P 2
L/R = PL/R, PLPR = 0 and PL +PR = 1. The

Lagrange density can therefore be written in terms of these fields,

LQCD = ψ̄LγµDµψL + ψ̄RγµDµψR + ψ̄RmψL + ψ̄LmψR − 1

4g2
FµνFµν , (2.15)

where the sum over the flavors is suppressed for simplicity. In the chiral limit it now
follows that the left- and right-handed quarks completely decouple and behave as
independent degrees of freedom,

LQCD = ψ̄LγµDµψL + ψ̄RγµDµψR − 1

4g2
FµνFµν . (2.16)

Moreover, it is observed that the Lagrangian (2.16) has a global symmetry,

ψ′
L = ULψL, UL ∈ SU (Nf )L ,

ψ′
R = URψR, UR ∈ SU (Nf )R ,

(2.17)

where UL/R are special unitary Nf ×Nf matrices which act in flavor space. Further-
more, the symmetries (2.17) contain two special symmetries: The isospin symmetry
U(1)V and the axial vector symmetry U(1)A. U(1)V enters, when UL and UR are
diagonal and equal. This symmetry even holds for degenerate masses and represents
the quark number conservation in strong interactions. For the U(1)A symmetry UL and
UR are diagonal as well but represent rotations in the opposite directions. Altogether,
the massless Lagrangian (2.16) is invariant under

SU(Nf )L × SU(Nf )R ×U(1)V ×U(1)A. (2.18)
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This is equal to the more compact form UL(Nf ) × UR(Nf ), which is also used in
this thesis. However, it turns out, if a full quantized theory is considered, the U(1)A
symmetry breaks in the measure of the path integral. This is the so called axial
anomaly, which we discuss in the next section. Therefore, the true symmetry in the
chiral limit is given by

SU(Nf )L × SU(Nf )R ×U(1)V . (2.19)

This group is sometimes written in the basis of the vector and axial flavor sub-group
SU(Nf )V × SU(Nf )A ×U(1)V .

2.4 The axial anomaly

As described in section 2.3 the QCD Lagrange density obeys a property called chiral
symmetry when including massless fermions. It collectively describes several sym-
metries among rotations of multiple quark flavor. One such symmetry is the axial
symmetry U(1)A which not only mixes the flavors but also the Dirac components. Its
transformation can be represented as

ψ′ = eiαγ5ψ, ψ̄′ = ψ̄eiγ5α with α ∈ R. (2.20)

However, as already stated previously in section 2.3, this symmetry is broken in the
quantized theory, because as one computes expectation values the measure of the
path integral changes upon axial rotations. In particular under infinitesimal axial
transformation, the measure of the path integral reads

D[ψ, ψ̄] = D
[
ψ′, ψ̄′] (1− 2iεNfQ+O

(
ε2
))
, (2.21)

whereQ denotes the topological charge which we will discuss in more detail in the next
chapter. Hence, expectation values are not invariant under this symmetry. Another
way to view this is by computing the axial current. The axial current of the fermionic
part in the Lagrangian reads [4, 48–50]

J5
µ = ψ̄γµγ5ψ, (2.22)

which is classically conserved ∂µJ5 = 0. Due to Noether’s theorem it implies that the
classical theory is invariant under U(1)A transformations. However, at the quantum
level, the four-divergence of the current eq. (2.22) becomes non-zero [4, 51],

∂µJ
5
µ =

NF

16π2
F aµνF̃

a
µν . (2.23)

We will see in the next chapter that the right-hand side of this equation is the topologi-
cal charge density.

To summarize, QCD is not invariant under axial rotation, even though the La-
grangian for massless quarks obeys the UA(1) symmetry. The symmetry breaking
comes from the measure of the path integral and is connected to the topology of
the gauge field configurations. Physically, the axial anomaly implies that the chiral
flavor singlet symmetry cannot be broken spontaneously. That explains why the η′

meson cannot be considered a Goldstone boson and has almost twice the mass of the
η meson.
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FIGURE 2.1: Two possible scenarios of the QCD phase diagram in the
plane of the light quark masses mud and the strange quark mass ms.
Left: Phase diagram where the universality class of the phase transition
in the chiral limit depends on the strange quark mass. For strange quark
mass below the tricritical point the transition is of first order. Above
the tricritical point it is of second order belonging either to the O(4)
or the UL(2)×UR(2)/UV (2) universality class. Right: Phase diagram
where the transition in the chiral limit is of first order. The first order
region and the crossover region in both scenarios is separated by a line
of second order transitions belonging to the Z(2) universality class.

2.5 QCD phase diagram in the chiral limit

In a chirally symmetric world the proton mass would be degenerate. However, the
chiral symmetry is spontaneously broken at low temperatures, which leads to non-
degenerate masses between a nucleon (≈ 940 MeV) and its negative parity partner, N∗

(≈ 1535 MeV). Spontaneously broken symmetries are related to phase transitions. The
chiral symmetry is of main interest when studying the phase diagram as a function
of chemical potential and temperature. The order parameter of the chiral symmetry
breaking is the chiral condensate, defined as

〈
ψ̄lψl

〉
=
T

V

∂ lnZ

∂ml
, (2.24)

where ml is the mass of the light quarks. This term is not invariant under chiral
rotations and transforms like a mass term. Hence, chiral symmetry is broken when the
chiral condensate is non-zero.

Of particular interest is the order of the transition in the chiral limit, i.e. at
vanishing light quark masses. In case it is of second order, observables close to
the transition temperature can be described using universal scaling [52]. Universal
scaling groups phase transitions into universality classes. The phase transitions of
superficially different physical phenomena can fall into the same universality class,
which means that certain divergent quantities will also diverge with the same critical
exponents as one approaches the transition point. For example if the chiral transition
in the continuum limit belongs to the O(4) universality class, that would be the same
universality class as that of an O(4) spin system. Currently, the universality class of
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the chiral phase transition is however unclear, which prevents us in doing any further
scaling analysis. Figure 2.1 shows two possible scenarios on the plane of the strange
quark mass and the light quark mass. In both scenarios the phase transition at infinite
mass limit as well as the 3-flavor chiral limit is of first order [53, 54]. For the two-flavor
chiral limit with an additional strange quark the situation is unclear. In scenario A,
the region of first order transition at low strange quark masses end in a tricritical
point. In scenario B it continues to two-flavor QCD. In both cases the physical point is
located within the crossover region. The region above the tricritical point in scenario
A belongs to the O(4) or UL(2) × UR(2)/UV (2) universality class which leads to a
second order chiral phase transition. The position of the tricritical point in scenario A
determines which universality class is more relevant for the physical point. In case
it is lying below the physical point, the relevant universality class is either O(4) or
UL(2) × UR(2)/UV (2). If it is lying above the physical point, remnants of the Z(2)
symmetry become more important.

Due to a finite light quark mass ml, the singular part of the free energy which
carries information about the universal critical behavior gets overwhelmed by the
regular part which is an analytic function in m2

l [55]. Thus there is no phase transition
characterizing chiral symmetry restoration in QCD with physical light quark masses
but a smooth crossover [56–62] which should go over to an exact phase transition
only in the chiral limit. However, recent lattice studies have revealed signatures of
O(4) scaling in chiral observables as one lowers the light quark masses towards the
chiral limit along the line of constant physical strange quark mass [63]. Within the
current precision, it is possible to rule out Z(2) scaling [63] (although to establish
these results one ultimately needs to perform a continuum extrapolation).

In order to figure out which scenario is taking place, the restoration of the anoma-
lous UA(1) symmetry provides a useful tool. The UA(1), though not an exact symmetry,
is believed to affect the nature of the phase transition of QCD with two degenerate
light quark favours. From the renormalization group studies of model quantum field
theories with same symmetries as QCD with two degenerate massless quark flavors,
it is known that the existence of a critical point at vanishingly small baryon density
depends crucially on the magnitude of the UA(1) anomaly breaking near the chiral
symmetry restoration temperature [54]. If the magnitude of the UA(1) breaking term
is comparable to its zero temperature value even at Tc, then the phase transition is of
second order with O(4) critical exponents [54, 64–66]. If on the other hand the UA(1)
is approximately restored as the chiral symmetry restoration occurs, then the phase
transition from the hadron phase to the quark-gluon plasma phase is expected to be
either of first order [54, 64] or second order of UL(2) × UR(2)/UV (2) universality
class [65, 67].

In such model quantum field theories however, the coefficient of the UA(1) breaking
term is a parameter whose magnitude can only be estimated from nonperturbative
studies of QCD. Currently, lattice regularization is the most practical method which
can provide a reliable answer to such a question.

In the limit of two massless flavors, it is not possible to use a local expectation value
such as the chiral condensate to investigate the anomalous UA(1) symmetry. Therefore,
whether or not the anomalous UA(1) is broken or not has to be estimated from other
quantities. It turns out that the difference of two meson states indicates whether a
certain symmetry is broken or not. Some examples of scalar and pseudo-scalar mesons
which are related by symmetry transformations are illustrated in figure 2.2. Thus, to
study the restoration of the UA(1) symmetry one may look at the susceptibilities of
the pion and delta meson. These mesons are built from up and down quarks. They
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FIGURE 2.2: Illustration of scalar and pseudo-scalar mesons which are
related by symmetry transformations. If a symmetry is restored then the
corresponding states connected with arrows will become degenerate.

are described by the (local) operators [45, 68]

δi(x) =
1√
2
ψ̄(x)σiψ(x), (2.25)

πi(x) =
i√
2
ψ̄(x)σiγ5ψ(x), (2.26)

where σi is a Pauli matrix (see eq. (A.5)). It acts on the up and down flavor components
of ψ, for example, δ3(x) = (ū(x)u(x) − d̄(x)d(x))/

√
2. Using a UA(1) rotation with

α = π/4 the pion can be transformed into a delta meson [68]

δi(x) =
1√
2
ψ̄(x)σiψ(x) → 1√

2
ψ̄(x)eiαγ5σieiαγ5ψ(x)

=
1

2
√
2
ψ̄(x) (1 + iγ5)σ

i (1 + iγ5)ψ(x)

=
i√
2
ψ̄(x)σiγ5ψ(x) = πi(x). (2.27)

Hence, if the UA(1) symmetry is restored the corresponding correlators should be
degenerate. By integrating the correlation function of these operators we obtain the
susceptibilities. The difference of the isospin-triplet pion (ψ̄σ2γ5ψ) and delta (ψ̄σ2ψ)
meson susceptibilities is then given by [69]

χπ − χδ =

∫
d4x

[
〈iπ+(x)iπ−(0)〉 − 〈δ+(x)δ−(0)〉

]
. (2.28)

This can be written in terms of the density ρ(λ,mf ) of the Dirac operator [70]

χπ − χδ
V→∞−→

∫ ∞

0
dλ

4m2
fρ(λ,mf )

(λ2 +m2
f )

2
. (2.29)

In this work we will compute the Dirac density ρ(λ,mf ) using lattice QCD methods.
From eq. (2.29) it is clear that whether or not the anomalous UA(1) is effectively

restored or broken depends also on Dirac eigenvalue density. There are many possible
scenarios how ρ(λ,mf ) affects the correlation functions. For instance if the eigenvalue
spectrum approaches the trivial limit limmf→0 ρ(0,mf ) → 0, the UA(1) would be
effectively restored. From studies of up to six-point correlation functions in the
scalar and pseudo-scalar channels [71], another sufficient condition for the effective
restoration of UA(1) in Nf = 2 QCD is that the eigenvalue spectrum behaves as
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limmf→0 ρ(λ,mf ) ∼ λ3. However, it has been shown in studies of up to 2-point
correlation functions [15, 16] that when chiral symmetry is restored, the UA(1) can still
be broken if the infrared part of eigenvalue density goes as limλ→0 ρ(λ,mf ) = δ(λ)mα

f

with 1 < α < 2
In previous studies the Dirac density has been investigated at almost physical quark

masses [68, 72]. The infrared part of ρ(λ,mf ) had both a non-analytic contribution
which forms a near-zero peak and an analytic contributions in λ which forms the bulk
eigenvalue spectrum. Also, it was shown that ρ(λ,mf ) ∼ λ2 at T = 1.2Tc. Following
the above statements this lead to UA(1) still being broken above Tc. In this work, we
want to see if this analytic dependence survives in the chiral limit. Also we want to
check if the non-analytic part survives in the chiral limit.
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Chapter 3

Topology

Topology studies the general properties of mathematical objects or spaces, which are
invariant under continuous transformations. We call two topological objects equivalent
if they are homeomorphic, i.e. there exists a continuous, invertible mapping between
them. In this work we are working on Euclidean spaces. In general, any metric space
such as the Euclidean space is a topological space which allows defining continuous
deformation of subspaces. Hence, in what follows we introduce the concept of topology
in the context of QCD in addition to some useful observables which are connected
to topology. Most of the topics in this chapter can also be found for example in the
literature [4, 51, 73–77].

3.1 Compactifying spacetime

In order to understand the topological properties of the QCD vacuum, we need to find
those classical fields which minimize the Euclidean Yang-Mills action. In the literature
such fields are often referred to as classical vacua. The Euclidean Yang-Mills action
reads

S =
1

4g2

∫
d4xF aµνF

a
µν (3.1)

where the gluon field strength tensor F aµν is defined in eq. (2.3) and g is the coupling
constant. Contrary to the Minkowskian Yang-Mills action the Euclidean action eq.
(3.1) is non-negative. Therefore, to obtain its absolute minima we need to find the
gluon fields which yield zero action. These can be obtained by requiring the gluon
field strength tensor to be

Fµν = 0. (3.2)

One way to achieve that is by setting the gauge potential configuration

Aµ = 0. (3.3)

However, this does not capture all possibilities which lead to zero action. The transfor-
mation law for SU(3) gauge theories is given by:

Aµ → A′
µ = UAµU

† − iU∂µU
†. (3.4)

with U ∈ SU(3). Setting Aµ = 0 in (3.4) leads to:

Apgµ = −iU∂µU †. (3.5)

These fields are the pure gauges. It can be shown explicitly that using that definition
of the gauge potential (3.5) the field strength tensor vanishes (see appendix A.2). At
first glance, it seems that these fields Apgµ form a unique QCD ground state. However,
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by taking a closer look, we find that these fields consist of an enumerable infinity
of topological equivalence classes. This requires a careful investigation of the gauge
transformations.

In order to see this, let us start by choosing the temporal gauge

A0 = 0. (3.6)

The gauge transformation should conserve this condition, so that they are also time-
independent (such transformations are also called residual gauge transformations).
Moreover, for the purpose of the following topological (homotopy) classification it
is sufficient to only consider those gauge transformations that become a constant
(chosen to be unity) at spatial infinity [4, 51, 74], i.e.

U(~x) → 1 for |~x| → ∞. (3.7)

This restriction guarantees that the gauge fields satisfy definite boundary conditions at
the surface of a large box (which should not affect the local physics inside).

This condition effectively means that the range where ~x is defined is now R3∪{∞}.
With the inclusion of the point at infinity we can treat that range as an element of S3.
The reason for this is that U(~x) evaluated at boundary points ~x with |~x| → ∞ can not
be distinguished, and thus can be identified. This can be easier understood in one
dimension [78]. The x-axis defines R and as x→ ±∞, a map f(x) becomes constant.
Therefore, these points x which give the same f(x) in that boundary region can be
treated as one point at infinity. The x-axis can thus be deformed into a circle S1 which
includes a point at infinity. Figure 3.1 illustrates that concept.

∞ ∞

S1

R1
−∞ +∞

FIGURE 3.1: Illustration of compactifying R1 ∪ {∞} on S1

Consequently, the residual gauge transformations U(~x) define a map

S3 → SU(3). (3.8)

According to a theorem by Raoul Bott [79] the topologically active part of a Lie group
which contains SU(2) as a subgroup is only that of the SU(2) subgroup. Thus, it is
sufficient to only consider the transformations

S3 → SU(2). (3.9)

In SU(2) any element can be represented by the exponential

U = exp(iαr̂~σ), (3.10)

with an angle α ∈ R, the Pauli matrices ~σ = (σ1, σ2, σ3) (see equation (A.5) for an
explicit representation), and a unit vector r̂. Rewriting that in terms of sin and cos
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yields
U = cos(α)1 + ir̂~σ sin(α). (3.11)

From this equation we can read off the quaternion representation of any U ∈ SU(2)
by defining u0 ≡ cos(α) and ~u ≡ sin(α)r̂:

U = u01 + i~u~σ with u20 + ~u2 = 1. (3.12)

This shows that also the group SU(2) can be mapped onto the 3-sphere S3. Therefore,
in the sense of homotopy theory, the map (3.7) is topologically equivalent to

S3
spatial → S3

group. (3.13)

i.e. the residual gauge transformations can be viewed as maps from a spatial 3-sphere
into a group 3-sphere.

3.2 Classification of topological sectors

A crucial point now is that in general two such transformations U ∈ SU(2) can not
be continuously deformed into each other. This can be seen by making the angle in
equation (3.11) x-dependent:

U (n)(x) = cos(αn(x))1 + ir̂~σ sin(αn(x)). (3.14)

where n is an integer. The condition that U(x) → 1 at infinity (see eq. (3.7)) requires
αn(x) to reach a value which is periodic in n (since sin(2πn) = 0 and cos(2πn) = 1).
Therefore, at |x| → ∞, the angle has to become αn(x) → 2πn. A smooth deformation
between two transformations U (n) and U (m), i.e. with different parameter n 6= m,
is only possible if their angles αn(x) and αm(x) deform smoothly at all x. However,
that can not be fulfilled at |x| → ∞, since there the restriction αn(x) → 2πn allows
only discrete deformations. This is illustrated in figure 3.2. Hence, elements of SU(2)

∞0

x

α1(x)
2π

α0(x)
0

FIGURE 3.2: Illustration of two transformations. The endpoints have
to fulfill limx→∞ αn(x) = 2πn. Therefore no smooth deformation
between α0(x) and α1(x) possible.

with the restriction of equation (3.7) are topologically distinguishable and can be
classified by the integer number n. This number also states how many elements from
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the domain space x ∈ SU(2) are mapped to the same element in the target space
U(x) ∈ SU(2). In order to get a visual understanding of that [80], let us simplify the
problem by just considering the mapping

S1 → S1, eiα → eiφ(α) (3.15)

i.e. maps between two circles with the angle α ∈ [0, 2π]. Note, that these phase fields
can as well be divided into various topological sectors labeled by an integer n. Thus,
that mapping can be represented by

U (n)(α) = einα ∈ U(1). (3.16)

Now consider the topological sector n = 2:

U (2)(α) = ei2α. (3.17)

This yields for two different angles of the domain space the same element in the target
space:

U (2)(π/2) = eiπ = U (2)(3π/2) = ei2πei1π = −1 (3.18)

Similar results can be observed for any integer n. In that sense, if we walk around the
domain circle, the integer n counts how often we spot an angle that leads to the same
target element U ∈ U(1). This integer is called the winding number. An illustration of
that is shown in figure 3.3.

Re

Im

U (4)(α) ∈ S1

i

−i

1−1

α ∈ [0, 2π]

α = 0α = π

α = 3π
2

α = π
2

FIGURE 3.3: Illustration of a one dimensional mapping with winding
number n = 4.

We have made it clear that maps of that kind (3.15) can be characterized by their
topological properties. To be more specific, the maps (3.15) fall into an enumerable
infinity of disjoint classes classified by an integer winding number n ∈ Z. In that
context it is useful to consider the notion of homotopy. Homotopy classifies maps be-
tween topological spaces. It builds up an equivalence class, while different equivalence
classes form the so-called homotopy group πd(Sd) = Z. d denotes the dimension of the
domain sphere, while the argument indicates the target space. Thus, the mapping
(3.15) is in the homotopy group

π1(S
1) = Z (3.19)
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Since elements of SU(2) can be as well compactified into maps between spheres (3.13),
we conclude that these elements are in the homotopy group

π3(S
3) = Z. (3.20)

For a gauge theory in 4 dimensions with d = 3 such as SU(2), we can also define a
winding number. It is the so-called Cartan-Maurer integral invariant [81, 82]

nw ≡ 1

24π2

∫
d3x εijk tr

[
(U ∂iU

†)(U ∂jU
†)(U ∂kU

†)
]
. (3.21)

Rewriting that equation in terms of the gauge field we obtain the 3-d Chern-Simons
number

nCS =

∫
d3xJCS0 =

1

16π2

∫
d3x εijk

(
Aai ∂jA

a
k +

1

3
fabcAaiA

b
jA

c
k

)
(3.22)

where JCSµ is the Chern-Simons current

JCSµ =
1

16π2
εµαβγ

(
Aaα∂βA

a
γ +

1

3
εabcAaαA

b
βA

c
γ

)
. (3.23)

Let us briefly summarize what we have shown so far: Pure gauge fields (3.5)
form the QCD vacuum. They are constructed from gauge transformations U(x) which
satisfy the boundary conditions (3.7). The transformations fall into disjoint homotopy
classes characterized by an integer winding number n, and thus the pure gauge field
configurations inherit that property.

3.3 Instantons

So far we have shown that it is not possible to perform a continuous deformation
between two transformations U(x) ∈ SU(2) of different winding number. However,
if we consider the gauge fields Aµ(x) that is not the case. It is actually possible to
transform a pure-gauge field with winding number n by continuous deformation into
one of winding number m 6= n. However, it is only possible if the shape of the fields
change as well. In other words, a continuous deformation between the fields A(n) and
A(m) can only be realized by leaving pure gauge, i.e. the fields can not stay always in
the form of eq. (3.5). Consequently, we encounter fields with non-zero action while
transforming (recall that only pure gauge field configurations yield zero action).

To make that more clear, consider a pure-gauge classical vacuum in the n = 1

topological sector, i.e. A(1)
i . As in the previous section, let us work in the gauge A0 = 0.

A continuous deformation of that vacuum into one of winding number n = 0 can be
described by [75]

A
(β)
i (x) = βA

(1)
i (x) (3.24)

where β is a real parameter 0 ≤ β ≤ 1. For β = 0 we get the pure gauge field Ai = 0

with winding number n = 0, while for β = 1, we get the pure gauge field Ai = A
(1)
i

with winding number n = 1. In both cases, the classical energy vanishes, since the
field strength tensor of these fields is zero. However, in the transition region, i.e. for
0 < β < 1, the fields A(β)

i (x) are not in pure gauge. The electric part of the field
strength tensor (i.e. F 0i) is still zero, because Ȧ(β)

0 = 0 and A(β)
i is time-independent.

The magnetic part (i.e. Bi = 1
2εijkFjk) on the other hand does not vanish. This can be
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seen by calculating the field strength tensor from eq. (3.24):

F
(β)
jk = β(∂jA

(1)
k − ∂kA

(1)
j )− iβ2[A

(1)
j , A

(1)
k ] (3.25)

= i(β − β2)[A
(1)
j , A

(1)
k ] (3.26)

6= 0, for 0 < β < 1, (3.27)

where in the first line we make use of the fact that F (1)
µν = 0. This shows, that the

energy which is proportional to
∫
tr(FjkFjk)d

3x is non-zero. Moreover, it is not only
non-zero but also finite, since A(β)

i vanishes sufficiently fast at the boundaries. The
fields A(β)

i can now be viewed as a curve in field space as β varies from 0 to 1. This
curve connects two topological sectors which correspond to absolute minima of the
action. In between these minima the curve exbibits non-zero but finite action barriers:
the so-called sphaleron barrier. This example can trivially be extended to any two
topological sectors.

Since we are dealing with quantum theory, we might expect that quantum tun-
neling occurs through that barrier. A tunneling path in gauge theory which connects
different classical vacua can be found by looking at classical solutions of the Euclidean
equation of motion. The best path is the solution with minimal Euclidean action
connecting vacua with different Chern-Simons Number. Such a solution can be found
by writing the action in terms of the dual field strength tensor F̃µν = 1/2ερσµνFρσ.
Note that FµνFµν = F̃µνF̃µν . Thus, we get the identity [4]

1

2
tr
(
F̃µν ∓ Fµν

)2
= trFµνFµν ± tr F̃µνFµν . (3.28)

Since the left hand side is always non-negative it follows that∫
d4x trFµνFµν ≥

∣∣∣∣∫ d4x tr F̃µνFµν

∣∣∣∣ . (3.29)

Making use of this relation in the action (3.1) we then obtain the so called Bogomolny
bound

S =
1

4g2

∫
d4xF aµνF

a
µν ≥ 1

4g2

∣∣∣∣∫ d4x tr F̃µνFµν

∣∣∣∣ = 8π2|Q|
g2

, (3.30)

where the topological charge Q is defined as the integral over the topological charge
density q(x)

Q =

∫
d4x q(x), q(x) =

1

16π2
tr F̃µνFµν . (3.31)

It is now clear that the action is minimal if the field strength tensor is (anti-) self-dual

F aµν = ±F̃ aµν . (3.32)

Note that this self-duality condition implies the Euclidean equation of motion (the
reverse is not true)

δS

δAν
= DµFµν = 0. (3.33)

However, using the self-duality equation (3.32) is more convenient, since in contrast
to the equation of motion it is a first order differential equation.
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By solving the self-duality equation (3.32) or the Yang-Mills equation (3.33) we
can find the QCD instantons. An example for a solution is the BPST instanton [83]

Aaµ(x) =
2ηaµν(x− z)ν

(x− z)2 + ρ2
(3.34)

with the ’t Hooft symbol ηaµν [84, 85]. This is a solution where an instanton is localized
at the center zµ with size ρ.

3.4 Properties of the topological charge

From equation (3.30) we know that the action of a self-dual field (i.e. the instanton
solution) is determined by the topological charge Q, (see eq. (3.31)). A crucial
point now is that the topological charge is an integer and classifies the topology of
gauge fields. To see that, we first need to specify the boundary of the Euclidean
spacetime. For finite action configurations, the field strength tensor Fµν needs to be
square integrable (

∫
F 2
µν <∞), i.e it must vanish towards the boundary of Euclidean

spacetime. We have seen previously that the action has its absolute minimum when
the gauge potentials are pure gauge. Thus, at infinity we require [51]

lim
x2→∞

Aµ = −iU (n)(x)∂µU
(n)†(x), (3.35)

where the gauge group element U (n) ∈ G has the winding number n. Equation (3.35)
is showing us that all finite-action gauge fields can be classified topologically. This
classification is similar to the topology discussion we did in the last section. However,
the physical setting is different. Previously we were looking at a winding number n
which classifies maps U (n) ∈ SU(2) from a compactified space into the gauge group.
Now, equation (3.35) defines a map from the boundary of S3 of Euclidean spacetime
into the gauge group. The salient point now is that such maps fall into disjoint
homotopy classes according to the third homotopy group π3(G). For G = SU(N) with
N = 3, we have π3(SU(N)) = Z as in the previous section. By rewriting eq. (3.31) as
a total derivative we get

Q =
1

16π2

∫
d4x tr F̃µνFµν =

∫
d4x ∂µJ

CS
µ =

∫
S3

dσµ J
CS
µ (3.36)

where Jµ is the topological current defined in eq. (3.23). If we insert eq. (3.35) in eq.
(3.36) we find that Q = n, and thus the topological charge is an integer. Consequently,
the winding number which correspond to finite-action gauge fields (see eq. (3.35)) is
the topological charge Q.

Since the last term in equation (3.36) is a surface integral over the 3-sphere,
it follows that the topological charge is completely determined by the asymptotic
behavior of the gauge fields. Additionally, the topological charge turns out to be
invariant under small variations δAµ of the gauge fields [73], since

δQ =
1

32π2

∫
S3

dσµδJµ =
1

8π2

∫
S3

dσµF̃
a
µνδA

a
v = 0, (3.37)

where we made use of the fact that F̃ aµν vanishes at spatial infinity. Hence, it does not
depend on the local behavior of the gauge fields. Different topological sectors are thus
truly disparate.
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Another property can be observed by writing the topological charge in terms of
the Chern-Simons number [4, 51, 74]

Q =

∫
d4x ∂µJ

CS
µ =

∫
d4x (∂0J

CS
0 + ∂iJ

CS
i ) =

∫
d3x dτ ∂0J

CS
0

=

∫
d3xJcs0

∣∣∣∣τ=+∞

τ=−∞
= nCS(τ = ∞)− nCS(τ = −∞), (3.38)

where in the first line we make use of the fact that the integral over the spatial part of
the Chern-Simons current vanishes in the temporal gauge A0 = 0. Equation (3.38)
shows that field configurations with Q 6= 0 connect different topological vacua. Thus,
a gauge field configuration of that kind starts out at τ → −∞ as pure gauge field with
a winding number n, and ends up at τ → ∞ as a pure gauge field with a winding
number of m. The crucial point now is that these configurations start in a vacuum
state (i.e. zero field energy) and still manage to pass through a barrier to reach the
other vacuum state. Classically, that would require energy which is not available in
the vacuum. However, since we are dealing with quantum theory, such processes are
allowed. Hence, instantons are tunneling phenomena which mediate through the
sphaleron barrier.

As one probably already noticed, the axial anomaly in eq. (2.23) is proportional to
the topological charge density in eq. (3.31). Hence, computing the change in axial
charge ∆Q5, i.e. integrating this anomaly over spacetime leads to the topological
charge Q multiplied by 2NF ,

∆Q5 =

∫
d4x∂µj

5
µ =

∫
d4x

NF

16π2
F aµνF̃

a
µν = 2NFQ. (3.39)

Furthermore, the left-hand side in (2.23) can be integrated in terms of (2.22). Making
use of (3.39), it can be shown that [4, 48–50]

Q = nL − nR, (3.40)

where nL/R is the number of left/right-handed zero modes of localized fermion states.
This relates the topological charge Q of the gauge field to the number of unpaired
quark zero modes of the Dirac operator in its background. It is also referred to a
special case of the Atiyah-Singer index theorem [86] for the Dirac operator. Hence,
any instanton field with topological charge Q must come along with a corresponding
change in axial charge ∆Q5 = 2NFQ which involves the existence of fermion zero
modes in the background of these fields.

3.5 The sphaleron rate

In the previous section we have introduced instantons which turned out to be tunneling
processes which mediate through the sphaleron barrier. The height of that barrier is
of order the QCD scale ΛQCD over the strong coupling constant αs [87]. Thus, since
that potential barrier is relatively high, these transitions are highly suppressed at low
temperatures [84, 88]. However, at high temperatures it is possible to jump over that
barrier, which is not suppressed anymore. These transitions are called sphalerons [40,
41] and the quark gluon plasma is the best place to find direct experimental evidence
of such configurations with non-zero winding number. Mathematically speaking, these
objects are static, unstable, finite-energy solutions of the classical field equations in
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Minkowski time (In contrast, instantons are localized, finite-action solutions of the
classical field equations in Euclidean time).

The sphaleron rate is defined in Minkowski time by the correlation function

Γsphal = lim
t→∞

(nCS(t)− nCS(0))
2

V t

=

∫
d4x

〈
1

32π2
F aµνF̃

µν
b (x)

1

32π2
F aαβF̃

αβ
b (0)

〉
. (3.41)

However, in lattice QCD we can only compute Euclidean correlators. Fortunately, the
Minkowski correlator can be related to the Euclidean correlator. The zero-momentum
Euclidean correlation function that can be calculated on the lattice is defined by

G (τ) =

∫
d3x 〈q (0, 0) q (~x, τ)〉 , (3.42)

where τ is the temporal distance between the two charge-density operators. The
spectral density ρq of this integral can be extracted using

G (τ) = −
∫ ∞

0

dω

π
ρq (ω)

cosh
[
ω
(

1
2T − τ

)]
sinh ω

2T

, (3.43)

where T is the temperature and the unusual minus sign arises because q is a time
reversal odd operator. A so-called Kubo formula [89] can be derived, which returns
the sphaleron rate in terms of the low-frequency part of this spectral function at zero
spatial momentum,

Γsphal = lim
ω→0

2Tρq (ω)

ω
. (3.44)

Extracting ρq (ω) from the Euclidean correlator is not straightforward. The problem
is, that we can only get the correlator G in our lattice simulations, which is defined
as an integral over the desired spectral function. Thus, it is an ill-posed inversion
problem. The same problem arises as well in determining other transport coefficients
of the quark gluon plasma, e.g. the shear viscosity. Hence, there exist methods which
offer possibilities to extract this quantity [90–92].

The sphaleron rate was first studied in the context of electroweak baryogenesis
[39, 93, 94]. It has been well understood for electroweak interacting matter and
determined using Bödeker’s effective theory [95–98] in the weak-coupling regime.
This progress cleared the path for a non-perturbative semiclassical real-time evaluation
on a Minkowski lattice [99, 100].

Due to its success in electroweak baryogenesis, the sphaleron rate also received
attention within QCD [93, 101, 102]. More recently it has raised interest because
magnetic phenomena in heavy ion collisions might give axial charge density an
important role to play in, for example, the chiral magnetic effect [5, 6]. At high
temperatures, where the QCD coupling is weak, there are semiclassical approaches to
determine the sphaleron rate, but for the physically interesting coupling regime a direct
evaluation in Minkowski space is impossible [39]. Also results of non-perturbative
lattice studies are rather limited. A recent lattice QCD study on the SU(3) sphaleron
rate can be found in [7].
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Chapter 4

Lattice QCD

Computing the solution of the equation of motion from the Yang-Mills Lagrangian
requires too much computational power. Therefore, computing the time evolution of
observables at high temperatures is currently not feasible. However, it is possible to
compute expectation values of observables in statistical physics according to the path
integral formulation in Euclidean spacetime. The theory behind that is called lattice
QCD. In this formulation spacetime is discretized in a finite volume by introducing a
finite lattice spacing a such that the path integral has finite dimensions. This allows
us to compute observables numerically on computers using statistical Monte-Carlo
techniques. Computing observables this way results in some uncertainties. To control
these discretization effects, a continuum extrapolation a→ 0 is done in a final step.
In what follows we only give a brief explanation of the above mentioned steps. More
detailed explanations can be found in the literature e.g. [45–47, 76, 77].

4.1 Discretizing QCD

The discrete spacetime is given by an isotropic 4D lattice,

Λ = {x = {x0, x1, x2, x3} | xi ∈ N;x0 ≤ Nτ − 1;x1, x2, x3 ≤ Nσ − 1} , (4.1)

whereNτ is the temporal andNσ the spatial extent of the lattice. All sites are separated
by the lattice spacing a. Then, each spacetime point x is connected to a spacetime
point in the continuum via x = an. All resulting lattice quantities are then expressed
in units of a. Spinors are placed only at sites, which means that the fermionic degrees
of freedom are represented as

ψ(x), ψ̄(x), x ∈ Λ. (4.2)

They carry the same color, Dirac, and flavor indices as in the continuum. Local gauge
invariance of the action is achieved by introducing SU(3)-valued matrices, the so-called
link variables Uµ(x). They are gauge transporters and are related to gauge fields by

Uµ(x) = exp (iaAµ(x)) , (4.3)

where Aµ(x) are the Lie algebra-valued gauge fields. On the lattice these quantities
(4.3) are links between two adjacent sites x and x + µ̂. Moreover, they own an
orientation, i.e. the link U−µ(x), which points from x to x − µ̂ is related to the
positively oriented link variable Uµ(x− µ̂) via

U−µ(x) = U †
µ(x− µ̂). (4.4)
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Under local gauge transformations a link transforms as

Uµ(x) → Uµ(x)
′ = Ω(x)Uµ(x)Ω

†(x+ µ̂), (4.5)

where Ω(x) denotes a SU(3) matrix at each site x. This allows terms of the form
ψ̄(x)Uµ(x)ψ(x+ µ̂) to be gauge invariant, since the fermion fields transform as

ψ(x) → ψ(x)′ = Ωψ(x), ψ̄(x) → ψ̄(x)′ = ψ̄(x)Ω†. (4.6)

The lattice version of the gauge action can be constructed in terms of a gauge
invariant product of link variables. Gauge invariance is achieved by arranging the
link variables into a closed loop. After taking the trace of that structure, gauge
transformations vanish under cyclic permutation. The shortest, nontrivial closed loop
on the lattice is called the plaquette. It is constructed as

P (1×1)
µν (x) = Uµ(x)Uν(x+ µ̂)U †

µ(x+ ν̂)U †
ν (x). (4.7)

From this definition we create the gauge action by summing up all plaquette variables
on the lattice. To be more precise,

SWilson
G [U ] =

2

g2

∑
x∈Λ

∑
µ<ν

Re tr
[
1 − P (1×1)

µν

]
, (4.8)

whose error is of order O
(
a2
)
. This is the so-called Wilson gauge action. A more

sophisticated discretization of the action is the so called Symanzik gauge action [103,
104]

S
Symanzik
G =

2

g2

∑
x∈Λ

∑
µ<ν

{
5

3
Re tr

(
1 − P (1×1)

µν

)
− 1

12
Re tr

[
2 · 1 −

(
P (1×2)
µν + P (2×1)

µν

)]}
,

(4.9)
where we additionally introduced rectangle link structures

P (1×2)
µν (x) = Uµ(x)Uν(x+ µ̂)Uν(x+ µ̂+ ν̂)U †

µ(x+ 2ν̂)U †
ν (x+ ν̂)U †

ν (x), (4.10)

P (2×1)
µν (x) = Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †

µ(x+ µ̂+ ν̂)U †
µ(x+ ν̂)U †

ν (x). (4.11)

Contrary to the Wilson gauge action, the Symanzik gauge action eliminates errors of
order O

(
a2
)
.

A simple discretization of the free fermion action is given by

Sfree
F = a4

∑
n∈Λ

ψ̄(an)

 3∑
µ=0

γµ
ψ(an+ aµ̂)− ψ(an− aµ̂)

2a
+mψ(an)

 , (4.12)

with the unit vector µ̂ pointing in the direction µ. This definition is not gauge invariant.
Rescaling the fields a3/2ψ(an) → ψ(n) and the mass am → m and using the gauge
transformation property (4.5), we get the gauge invariant fermionic action

SF =
∑
n∈Λ

ψ̄(n)

 3∑
µ=0

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2
+mψ(n)

 , (4.13)

where we use the abbreviation U−µ(x) = U †
µ(x − µ̂). Using the Taylor expansion of

the gauge transporter, we receive the continuum expression up to order O (a).
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With equation (4.8) and (4.13) we have discretized the QCD action in terms of
the link variables Uµ and the Grassmann-valued fields ψ̂ and ψ. We can now define
the path integral measure∫

Dψ̄Dψ
∫

DU :=

∫ ∏
n∈Λ

dψ̄(n)dψ(n)

∫ ∏
n∈Λ

3∏
µ=0

dUµ(n) (4.14)

with the Grassmann-valued integration measure dψ(n) and the Haar measure dUµ
for SU(3) matrices. Since the Grassmann-valued fermionic part can be integrated out,
the partition function can be written entirely in terms of the link variables and the
fermion determinant

Z =

∫ ∏
f

Dψ̄fDψfDUeSF [U,ψ̄f ,ψf ,mf ]e−SG[U ]

=

∫
DU

∏
f

detD[U,mf ]e−SG[U ],

where D[U,mf ] is the Dirac matrix. It is represented on the discrete spacetime as

Dnm[U ] =

3∑
µ=0

γµ
Uµ(n)δn,m−µ − U †

µ(n− µ̂)δn,m+µ

2
+mδn,m. (4.15)

The Dirac operator is a normal operator, which means it is γ5-Hermitian,

γ5Dγ5 = D†. (4.16)

This ensures that eigenvectors of the Dirac operator form an orthogonal basis. Addi-
tionally, it also leads to the fermion determinant to be real,

det[D]∗ = det
[
D†
]
= det[γ5Dγ5] = det[D]. (4.17)

The partition function is a key ingredient in statistical physics, and thus important
in lattice QCD. However, the direct computation of the partition function on current
supercomputer is not feasible. A better way is to calculate the partition function in the
path integral formalism in terms of finite number of fields on the lattice. This method
is called importance sampling. Consider the expectation values of observables in the
path integral representation according to

〈O〉 = 1

Z

∫ ∏
f

Dψ̄fDψfDUO[U, ψ̄f , ψf ]e−SF [U,ψ̄f ,ψf ,mf ]e−SG[U ]. (4.18)

Using Wick’s theorem the Grassmann-valued fermionic integrals can be computed
analytically for most observables [45], which results in

〈O〉 = 1

Z

∫
DUOF [U ]e−SG[U ]

∏
f

detD[U,mf ], (4.19)

with OF given by

OF = 〈O〉F =
1

ZF [U ]

∫ ∏
f

Dψ̄fDψfO[U, ψ̄f , ψf ]e−SF [U,ψ̄f ,ψf ,mf ], (4.20)
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where ZF is defined as

ZF [U ] =

∫ ∏
f

Dψ̄fDψfe−SF [U,ψ̄f ,ψf ,mf ]. (4.21)

The expectation value in equation (4.19) can now be calculated by performing im-
portance sampling. This is achieved by using so-called gauge configurations Ci, which
are one possible realization of the gauge field in the path integral. By distributing the
gauge configurations Ci according to the probability distribution

dP [C] =

∏
f detD[C,mf ]

Z
e−SG[C]dC, (4.22)

we may approximate the expectation value of an operator in the continuum as

〈O〉 ≈ 1

Nconf

Nconf∑
i=1

O[Ci] (4.23)

with Nconf the total number of gauge configurations sampled on the lattice. In the
limit of large Nconf it matches the continuum value.

The Dirac matrix has the dimension |Λ| × |Λ|, which makes the computation of its
determinant not feasible. Fortunately, methods have been developed in the past that
avoid the calculation of the determinant. The so-called Hybrid Monte Carlo [105] is
widely used to generate gauge configurations according to the probability distribution
in equation (4.22) for QCD with dynamical fermions. Although computers became
a lot more powerful in the past few decades, it is still not feasible to perform lattice
QCD computations including fermions with physical masses on lattices of sizes larger
than |Λ| ∼ 1004. Hence, for qualitative understanding of QCD we sometimes compute
observables in the so called quenched approximation [53]. In that approximation the
determinant of the Dirac matrix is set to unity detD[U,mf ] = 1, which also implies
an infinite quark mass limit mf → ∞. In particular, this is equivalent to neglecting
all kinds of quark loops. Even in this limit the pure gauge theory has a first order
phase transition [45]. Another advantage is that setting the determinant to one
accelerates the calculations dramatically. Therefore, the quenched approximation is a
good starting point to test and develop new lattice QCD methods. In the quenched
approximation, a combination of overrelaxation [106, 107] and heat bath updates
[108, 109] turns out to be most efficient to generate gauge configurations according
to the probability distribution in equation (4.22).

The way we approximate the path integral to compute observables on the lattice
does not come without uncertainties. The approximation in equation (4.23) shows
already that the expectation value will necessary come with a statistical error, since
we can only use a finite set of configurations. Additionally, observables and correlation
functions suffer from systematic errors due to the finite lattice spacing. This error is
usually of order O(a) or O(a2) depending on the discretization scheme and may be
controlled by performing a continuum extrapolation. Performing the limit a→ 0 one
needs to keep physical quantities fixed. Therefore, it is important to increase Nσ and
Nτ so that β = Nτa and Lσ = Nσa remain constant.

Furthermore, it is necessary to make sure that uncertainties introduced by finite
volume effects are controlled when choosing the size of the lattices. We find that for
most thermodynamic quantities an aspect ratio of Nσ/Nτ ≥ 4 is sufficient.
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4.2 Fermion doublers and the Wilson discretization

Discretizing the fermion action on the lattice as in the previous section has the problem
that we end up having unphysical fermion doublers which change the underlying
physics. In order to see this, let us have a look at the Fourier transform of the lattice
Dirac operator for free lattice fermions:

D̃(p|q) = 1

|Λ|
∑
n,m∈Λ

e−ipnaD(n|m)eipma

= δ(p− q)D̃(p), (4.24)

from which it follows

D̃(p) = m1 +
i

a

4∑
µ=1

γµ sin(pµa). (4.25)

The quark propagator is related to the inverse of eq. (4.25), which reads

D̃(p)−1 =
m1 − ia−1

∑
µ γµ sin(pµa)

m2 + a−2
∑

µ sin(pµa)
2 . (4.26)

In the limit a→ 0, this propagator has a pole at p = 0. This means in the continuum
theory the propagator corresponds to a physical particle, satisfying the Dirac equa-
tion. However, for finite a with massless fermions, eq. (4.26) shows multiple poles
everywhere where pµa = π. In particular, 15 so called fermion doublers arise that
correspond to extra particles. In the free theory they do not matter, since they only
increase the effective degrees of freedom, but in the interacting theory there may be
gluons of momentum π/a, which will mediate interactions among the doublers. A way
to remove these doublers is by introducing an extra term in our discretized theory. At
finite lattice spacing it makes the doublers heavy, but in the continuum limit it still
leads to the correct physics. Such an extra term was proposed by Wilson [110] and it
reads

δDn,m[U ] = −
3∑
µ

Uµ(n)δn+µ̂,m − 21δn,m + U−µ(n)δn−µ̂,m
2

. (4.27)

This so called Wilson term leads to an additional term in the lattice momentum space
Dirac operator

D̃(p) = m1 +
i

a

∑
µ

γµ sin(pµa) +
1

a

∑
µ

1
(
1− cos(pµa)

)
. (4.28)

It can be shown by calculating the corresponding momentum space propagator D̃−1

that the unwanted doublers become infinitely massive, and hence decouple in the
continuum limit. The complete Dirac operator using this formulation becomes [45]

D(x|y)fαβc1c2 =

(
mf +

4

a

)
δαβδc1c2δxy −

1

2a

±4∑
µ=±1

(1 − γµ)αβUµ(x)c1c2δx+aµ̂,y, (4.29)

where
γ−µ ≡ −γµ. (4.30)

This formulation of fermions is called Wilson fermions. A drawback of this term is
that it breaks the chiral symmetry, which was given in the naive discretization in the
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previous section. This can be seen by rewriting the additional term in eq. (4.28),

1

a

∑
µ

1
(
1− cos(pµa)

)
(4.31)

in terms of exponentials and doing the inverse Fourier transformation,

a
4∑

µ=1

1

2a2
(2δx,y − δx,y−aµ̂ − δx,y+aµ̂) . (4.32)

This term does not anti-commute with γ5 (see appendix A.1), and hence breaks the
chiral symmetry.

4.3 The staggered discretization

Instead of eliminating doublers, another approach would be to interpret them as
additional flavors. However, such a 16-flavor QCD is not physical, so we need to
reduce the number of flavors. The staggered action is one possibility to do so. It reduces
the number of degrees of freedom to 4 flavors by introducing a lattice structure which
mixes spinor and spacetime indices. The remaining 4 flavors are then getting removed
by taking the root of the staggered fermion determinant in a final step. The basic idea
is to use the following transformation to replace quark fields:

ψ(n) = γn1
1 γn2

2 γn3
3 γn4

4 ψ′(n), ψ̄(n) = ψ̄′(n)γn4
4 γn3

3 γn2
2 γn1

1 . (4.33)

with ni being the coordinates of the lattice points. Since these transformed fields come
with power of gamma matrices and since the square of gamma matrices yields unity
(see section A.1), the naive action will be diagonalized in Dirac space. In particular,
when inserting that transformation in the naive discretization of the fermion action eq.
(4.13) one eventually interchanges gamma matrices. Each interchange of the gamma
matrices results in a phase factor of (−1). Hence, we find relations of that form

ψ̄(n)γµψ(n± µ̂) = ηµψ̄(n)
′1ψ(n± µ̂)′, (4.34)

where the staggered phases ηµ are products of the (−1) factors

ηµ = (−1)
∑

ν<µ nν . (4.35)

In that step the gammas disappear, and thus the action becomes diagonal in Dirac
space. The diagonal of the Dirac matrix carries four copies of the same equation. Since
these copies carry no additional information, we can drop three of them and keep
only one copy χ(n), and the number of doublers is reduced. The staggered fermionic
action is then given by

SF =
∑
n∈Λ

χ̄(n)

 3∑
µ=0

ηµ(n)
Uµ(n)χ(n+ µ̂)− U−µ(n)χ(n− µ̂)

2
+mχ(n)

 (4.36)

By removing three of the four spinor components one may argue that the information
of the original Dirac structure must be hidden in the staggered phases. However,
that is not possible, since these phases are just scalar values, and thus can not carry
the information of the γ-matrices at each site. This information is actually spread
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over the lattice within hypercubes of size 24. This can be seen by projecting the one
dimensional quark fields back to the spinor entries using

ψtα(N) =
1

8

∑
ρ

Ωαt,ρχ(N + ρ), (4.37)

where we label the coordinates of each hypercube by N = ( ~N,Nτ̂ ). Ω is defined as

Ωαt,ρ = (γρ11 γ
ρ2
2 γ

ρ3
3 γ

ρ4
4 )αt, (4.38)

where the sub-vector ρi is pointing to one of the corners of the hypercube. The
hypercubes have 16 sites, but the spinor structure has only four dimensions. Therefore,
we had to introduce that additional index t into the spinor. This additional structure is
called taste (in analogy to flavor). With that back-transformation, we finally get for
the total QCD action [45]

SF =b4
∑
N

 3∑
t=0

mψ̄t(N)ψt(N) +
3∑

µ=0

ψ̄t(N)γµ∇µψ
t(N)

 (4.39)

− b

2

3∑
t,t′=0

3∑
µ=0

ψ̄t(N)γ5(τ5τµ)t,t′(∇)2µψ
t′(N)

 , (4.40)

where τµ = γTµ ,∇µ is the discretized derivative on the lattice of hypercubes and b is
the lattice spacing on the lattice of hypercubes. The third term is called the taste-
breaking term. Similar to the Wilson term from the previous section, it removes
the unwanted fermion doublers and vanishes in the continuum limit. However, it
allows for interactions between fermions of different taste, which is unphysical. This
taste mixing term reduces the symmetry of the kinetic term and is only invariant
under a remaining U(1)× U(1) symmetry. In particular this term is invariant under
transformations

ψ′ = eiωψ, ψ̄′ = ψ̄e−iω (4.41)

and
ψ′ = eiωγ5⊗τ5ψ, ψ̄′ = ψ̄eiωγ5⊗τ5 . (4.42)

These transformations correspond to a subgroup of the symmetry group SU(Nt),
where Nt is the number of tastes. Another drawback of that taste structure is that the
staggered discretization comes with three extra unphysical flavors. To eliminate them
we have to take the root of the fermion determinant. For example in 2 + 1 flavor QCD
the path integral may be defined as

〈O〉 = 1

Z

∫
DUO[U ](detD[U,mu/d])

1/2(detD[U,ms])
1/4e−SG[U ]. (4.43)

This rooting of the fermion determinant, however, is controversial. It is not yet clear
whether the staggered action converges to the true continuum limit, even though the
additional term in eq. (4.39) vanishes and the tastes decouple in the continuum [111,
112]. So far, however, reasonable results have been obtained with the staggered action
and no evidence has been found that the continuum limit is not yielding true physics. A
way to reduce the effect of the taste mixing may be realized by introducing extra terms
into the staggered action. The Highly Improved Staggered Quark (HISQ) action is one
way of doing that [31]. Apart from suppressing taste-changing interactions it reduces
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also the order of the discretization error to O(a2). The details of the implementation
of the HISQ action can be found in [32].

4.4 The Ginsparg-Wilson relation and the overlap Dirac op-
erator

Implementing fermions with exact chiral symmetry on the lattice used to be a big
problem. Nielsen and Ninomiya formulated a no-go theorem [113] which states that
chiral symmetry can not be established on the lattice without violating either of these
properties like translational invariance, ultra-locality or the absence of doublers. Only
later it has been shown [114], that there exists a corresponding exact symmetry on
the lattice if the Dirac operator satisfies the so called Ginsparg-Wilson (GW) relation
[115], which becomes the standard chiral symmetry in the continuum limit. The GW
relation is defined as

Dγ5 + γ5D =
1

r
Dγ5D, (4.44)

where D is some Dirac operator and r is a parameter to fix the scale of the Dirac
operator. If a Dirac operator which obeys the GW equation is multiplied by a factor α,
then that new operator is a solution of the GW equation where r is replaced by αr.
The Ginsparg-Wilson relation eq. (4.44) guarantees that any Dirac operator which
satisfies that relation is chirally symmetric. A property that the Wilson and staggered
fermions share is that they are γ5-Hermitian (D† = γ5Dγ5). The solution of the GW
equation, which we are going to derive later, will share that property too. Thus, let us
make use of the γ5-hermiticity and multiply eq. (4.44) with γ5 from either side

D +D† =
1

r
D†D =

1

r
DD†. (4.45)

It follows that [D,D†] = 0 if D is γ5-Hermitian. Operators which are of that kind
are called normal, which means that they have an orthonormal set of eigenvectors
that form a basis for the vector space. D can be diagonalized in such a way that
eigenvectors of D with eigenvalue λ = x + iy are also eigenvectors of D† with
eigenvalue λ† = x− iy [45]. Multiplying eq. (4.45) with a normalized eigenvector vλ
from the right and with v†λ from the left, we get

2rx = x2 + y2

⇔ (x− r)2 + y2 = r2, (4.46)

which shows that the eigenvalues lie on a circle in the complex plane with radius r
and the center r + i0. This Ginsparg-Wilson circle can be parametrized as

λ = r
(
1− e−iφ

)
with φ ∈ (−π, π]. (4.47)

The eigenvalues can therefore become purely real at φ = 0 and φ = π, i.e λ = 0 and
λ = 2r respectively. Another consequence of the γ5-hermiticity can be seen in the
eigensystem. Calculating the characteristic polynomial P (λ) of D, we find,

P (λ) = det
[
D − λ1

]
= det

[
γ25(D − λ1)

]
= det

[
γ5(D − λ1)γ5

]
(4.48)

= det
[
D† − λ1

]
= det

[
D − λ∗1

]∗
= P (λ∗)∗, (4.49)
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where 1 = γ25 has been used. Since the eigenvalues λ are obtained by solving P (λ) = 0,
eq. (4.48) implies that if λ is a zero, then λ∗ is also a zero. Therefore, the eigenvalues
for a γ5-hermitian Dirac operator are either real, or come in complex conjugate pairs.
A further interesting consequence of the γ5-hermiticity can be obtained from the γ5
matrix element of the eigenvectors. Defining the dot product u†v ≡ (u, v), we get for
the γ5 matrix element,

λ(vλ, γ5vλ) = (vλ, γ5Dvλ) = (vλ, D
†γ5vλ) = (Dvλ, γ5vλ) = λ∗(vλ, γ5vλ), (4.50)

and therefore it follows

(vλ, γ5vλ) = 0, unless λ ∈ R. (4.51)

An eigenvector is chiral if this matrix element is nonzero, i.e. (vλ, γ5vλ) 6= 0. Hence,
from eq. (4.50) it follows that an eigenvector can have non-vanishing chirality only
when its eigenvalues are real. We have seen that the only possible real values are
λ = 0 and λ = 2r. λ = 0 are the exact zero modes. λ = 2r on the other hand are the
doubler partner of the zero modes [45].

A general solution of the Ginsparg-Wilson relation, eq. (4.44) can be written as,

D = r(1 + V ) with V †V = 1, (4.52)

where the unitary operator V can be written in terms of a sign function of some normal
operator W ,

V = sgn(W ) =
W√
W †W

(4.53)

This solution was first discussed by Neuberger which he named as the overlap-Dirac
operatorDov [37, 38]. To fulfill the requirement that the Dirac operator is γ5-Hermitian,
it is sufficient to choose W to be γ5-Hermitian. Thus, we can define K = γ5W to be
Hermitian and the Dirac operator takes the form,

Dov = r(1 + γ5σ) = r

(
1 + γ5

K√
K

)
(4.54)

This also fulfills the Ginsparg-Wilson equation,

{γ5, Dov} −
1

r
Dovγ5Dov = r (2γ5 + σ + γ5σγ5 − (1 + γ5σ)γ5(1 + γ5σ)) = 0, (4.55)

where σ2 = 1 and γ25 = 1 have been used. Another important property is that the Dirac
operator is local in order to respect causality in QFT. This means that the interaction
length should be fixed in lattice units and infinitesimal in physical units when the
continuum limit is performed, i.e. |Dov(n|m)| should fall exponentially with the
distance |n−m|. However, due to the square root in the denominator, Dov will involve
more than just a few lattice points in the intermediate neighborhood, i.e. Dov will not
be ultra-local. Fortunately, the sign function is defined by its polynomial expansion.
Thus, a way to tackle that issue is to demand that the kernel W is ultra-local. The
overlap Dirac operator is the solution of the GW equation where the Kernel is chosen
to be the Wilson Dirac operator with negative mass, i.e. W = DW

−M . The Wilson Dirac
operator satisfies the locality property, which has been shown in [116].

Furthermore, Dov should have no doubler and reproduce continuum physics in
the continuum limit. For the overlap Dirac operator one can show that easily in
the non-interacting case. To see that, let us start with the Wilson Dirac operator in
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momentum space,

W ∝
∑
µ

(1− cos(apµ) + iγµ sin(apµ))− aM. (4.56)

In the vicinity of a pole of the naive Dirac propagator, the momentum can be expressed
as apµ = πnµ + εµ where nµ = {0, 1} and n =

∑
µ = nµ [68]. An expansion in ε then

gives

cos(apµ) = 1− 2δ1nµ +O(ε2),

sin(apµ) = (1− 2δ1nµ)εµ +O(ε3).

In order to check whether there are no doublers, only terms independent of ε are
important. Using that in the overlap Dirac operator yields

Dov = r

(
1 +

2n− aM

|2n− aM |

)
=

{
0 2n < aM

2r 2n > aM
. (4.57)

Therefore, aM has to be within [0, 2) such that the Dirac operator vanishes at the
proper pole n = 0, but not at doublers n ≥ 1. Moreover, in order for the doublers to
decouple in the continuum limit, r should be of order 1/a. To compare it with the
continuum Dirac operator we keep the linear terms and restrict our calculation to the
proper pole. This gives

W ∝ −M + iγµpµ +O(p2), (4.58)

where we omit the summation sign. Plugging that into the overlap Dirac operator
gives

Dov = r

(
1 +

−M + iγµpµ√
M2

)
+O(p2)

=
r

M
iγµpµ +O(p2). (4.59)

Setting r = M will then give us the correct continuum limit iγµpµ. The best result
is obtained by selecting aM close to 2, as the mass of the doublers is given by 2r.
However, the exact border where the doublers become massless again may get excited
due to interactions. Hence, aM should not be too close to 2. In non-perturbative
simulations values in the range aM = [1.4, 1.8] have proven to give good results [68].
In this work, we have chosen aM = 1.8 most of the time. Unless the Dirac operator
is non-analytic, a continuous deformation of the gauge field does not change the
topological charge. If M is chosen in such a way that K2 has zero modes, Dov becomes
non-analytic. However, in that case the sign function becomes ill-defined. In particular,
if M is changing continuously such that the lowest eigenvalue of K2 first reaches
zero and then rises again to some non-zero value, the topological charge will have
changed. The numerical approximation of the sign function becomes difficult when
an eigenvalue of K2 is close to zero and eigenmodes of K2 with low precision result
in a badly satisfied Ginsparg-Wilson equation. Therefore, a way to tackle this issue
is to compute the lowest eigenvalues of K2 before computing the actual eigenvalue
spectrum of the overlap operator. If the lowest eigenvalue in that measurement was
exceptionally small, then the Wilson spectrum should be recomputed with a lower
value of aM , e.g. 1.7.

As mentioned before, r and M have to be equal, such that the overlap Dirac
operator eq. (4.54) matches the normalization of the continuum Dirac operator.
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However, while calculating expectation values of fermion observables, the choice of
r is irrelevant. Eigenvectors and eigenvalues computed by different choices of r are
trivially related, and therefore we simply used r = 1 in the implementation.

The overlap operator eq. (4.54) and its Hermitian conjugate can be written as

Dov = 1 +WI(K2) (4.60)

D†
ov = 1 + I(K2)W †, (4.61)

where I(K2) = 1/
√
K2. The function I(K2) can be approximated as [68]

I(K2) ≈
n∑
i=1

1
√
κi
kik

†
i +Q(K2)

(
1−

n∑
i=1

kik
†
i

)
(4.62)

with Q(t) =

m∑
i=1

ci
di + t

, (4.63)

where ki are the eigenvectors and κi the eigenvalues of K2. The first n eigenvectors
of the operator I(K2) are calculated exactly and the remaining higher eigenvectors
are approximated through the Zolotarev rational function Q of order [m− 1,m] [117,
118]. The coefficients ci and di are functions of λmin/λmax, where λmax is obtained by
the lowest eigenvalue of −K2 (which is the highest eigenvalue of K2) and λmin is the
smallest eigenvalue of the first n explicitly computed eigenvalues of K2. Therefore, all
eigenvalues of K2 which are not explicitly treated should be between λmin and λmax
[68]. The most computationally expensive part is finding the solution of the set of
linear equations

(K2 + di)yi = xi, (4.64)

such that Q(K2)x =
∑m

i=1 ciyi. The operator K2 is hermitian, and thus a conjugate
gradient (CG) solver can be used. In fact, a multi-shift CG [119] can be used, because
the operators differ only by their shifts di, and therefore belong to the same Krylov
space. This way the CG basically only solves the smallest shift, while the other solutions
can be obtained by performing some linear algebra, which reduces the amount of CG
iterations dramatically.

The code used in this work to compute the overlap eigenvalues is part of a
framework which has been developed by the Bielefeld lattice QCD group, called
Bielefeld ParallelLatticeCode. The code computes the eigenvalue spectrum using the
Kalkreuter-Simma Ritz algorithm [120] and the QUDA library [121] in the back-end to
accelerate the computations on the GPU. The numerical details of the implementation
can be found in [68].

4.5 The discretized field strength tensor

Later in this work we need to compute the topological charge density on the lattice.
Since the charge is constructed by the field strength tensor as in eq. (3.31), we need
to use a discretized version of the tensor for our lattice calculations. By expanding the
plaquette eq. (4.7), one can derive a simple lattice representation of the field strength
tensor

F plaq
µν (x) =

1

2a2

(
P (1×1)
µν (x)− P (1×1)†

µν (x)
)
AH

+O
(
a2
)
, (4.65)

where AH is the projection on the traceless antihermitian part. This is required, since
the field strength tensor is an element of the Lie Algebra su(3). However, F plaq

µν (x)
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has the drawback, that it is centered in the middle of the µ− ν plaquette. This leads
to O(a) errors in the definition of the topological charge density. In this work we
use a Symanzik O(a2)-improver field strength tensor following ref. [122–124]. This
definition is based on a clover leaf shaped arrangement of plaquettes and rectangles
around a lattice site x. We define two different clover shaped discretizations, where
one is based on plaquettes eq. (4.7) and the other one is based on rectangles (4.10)

C(1,1)
µν (x) =

1

4

(
P (1×1)
µν (x) + P

(1×1)
ν−µ (x) + P

(1×1)
−µ−ν(x) + P

(1×1)
−νµ (x)

)
, (4.66)

C(1,2)
µν (x) =

1

8

(
P (2×1)
µν (x) + P

(2×1)
ν−µ (x) + P

(2×1)
−µ−ν(x) + P

(2×1)
−νµ (x)

+P (1×2)
µν (x) + P

(1×2)
ν−µ (x) + P

(1×2)
−µ−ν(x) + P

(1×2)
−νµ (x)

)
. (4.67)

Additionally, we define the combinations

Ω(1,1)
µν (x) =

1

2a2

(
C(1,1)
µν (x)− C(1,1)†

µν (x)
)
AH

, (4.68)

Ω(1,2)
µν (x) =

1

2a2

(
C(1,2)
µν (x)− C(1,2)†

µν (x)
)
AH

, (4.69)

where AH is again the projection on the traceless antihermitian part. Expanding those
expressions for small a yields

Ω(1,1)
µν (x) =Fµν(x) +

1

6
a2
(
∂2µ + ∂2ν

)
Fµν(x) +

1

120
a4
(
∂4µ + ∂4ν

)
Fµν(x)

+
1

36
a4
(
∂2µ∂

2
ν

)
Fµν(x) +O

(
a6
)
, (4.70)

Ω(1,2)
µν (x) =2Fµν(x) +

5

6
a2
(
∂2µ + ∂2ν

)
Fµν(x) +

17

120
a4
(
∂4µ + ∂4ν

)
Fµν(x)

+
2

9
a4
(
∂2µ∂

2
ν

)
Fµν(x) +O

(
a6
)
. (4.71)

The O(a2) contributions can now be removed by a proper linear combination of
Ω
(1,1)
µν (x) and Ω

(1,2)
µν (x)

F Imp
µν (x) =

5

3
Ω(1,1)
µν (x)− 1

3
Ω(1,2)
µν (x)

= Fµν(x)−
1

30
a4
(
∂4µ + ∂4ν

)
Fµν(x)−

1

36
a4
(
∂2µ∂

2
ν

)
Fµν(x) +O

(
a6
)
, (4.72)

which is the final O(a2)-improved field strength tensor.

4.6 Topological charge

The topological charge can be measured on the lattice in various ways. A very
precise approach would be to make use of the index theorem and measure the
topological charge according to equation (3.40), i.e. via the difference of the number
of left- and right-handed zero modes of the Dirac operator. However, this approach is
computationally very expensive, since the precise determination of chiral zero modes
of the Dirac operator requires a lattice discretization of the Dirac operator which obeys
chiral symmetry. One such discretization of the Dirac operator is the overlap Dirac
operator which we have discussed in section 4.4.
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Another way to measure the topological charge on the lattice is by using the field
theoretical definition eq. (3.31). Its lattice version is given by

Q = a4
∑
x

q(x) (4.73)

where q(x) is the topological charge density and a the lattice spacing. The density q(x)
is defined as in equation (3.31), but we replace the continuum field strength tensor
with the discretized version as in eq. (4.72). After applying the rules of the epsilon
tensor, the topological charge density reads

q(x) =− 1

32π2
εµνρσ tr

(
F̂µν(x)F̂ρσ(x)

)
=

1

8π2

(
F̂ a01(x)F̂

a
23(x) + F̂ a02(x)F̂

a
31(x) + F̂ a03(x)F̂

a
12(x)

)
. (4.74)

The topological susceptibility is the variance of Q divided by the four-volume V ,

χtop =

〈
Q2
〉
− 〈Q〉2

V
. (4.75)

This gluonic definition of the topological charge, however, is highly contaminated by
ultra-violet fluctuations which can lead to entirely wrong results for the charge. To
eliminate these fluctuations one should apply a smoothing method on the gauge fields
before measuring q(x). A very robust smoothing method, called the gradient flow, will
be discussed in section 4.7.

Contrary to the fermionic approach to determine the topological charge, the gluonic
definition on the lattice does not give truly integer values, due to discretization effects.
In this work, however, we suppress these effects by using an O(a2)-improved lattice
discretization of the field strength tensor (see section 4.5) instead of the standard
plaquette discretization in the definition of the topological charge density.

In the continuum configurations with different topological charge are fully dis-
parate and only connected via configurations with infinite action (see eq. (3.37)).
Such configurations can not be deformed into each other by continuous transforma-
tions. Hence, configurations generated in Monte Carlo simulations should get trapped
in a specific topological sector. However, on the lattice these infinite action barriers
become just configurations with large values of the action. Therefore, instantons can
tunnel through such non-continuum like configurations in Monte Carlo simulations.
Unfortunately, with decreasing lattice spacings these finite action barriers get more
and more strongly suppressed. As a consequence, also lattice field configurations
evolve slowly in Q, as the lattice spacing decreases. This effect is called “topological
freezing” and leads to large autocorrelation times which deteriorate the statistical
power of the final results. There are some methods to reduce autocorrelations of
the topological charge [125]. For example in [126] the authors propose to use open
boundary conditions on the lattice instead of periodic boundaries. Open boundaries
lift the topological barrier, and hence allow for a better topological sampling. This
approach, however, introduces a boundary zone which need to be considered in any
measurements. In ref. [127] we have analyzed the influence of the temperature on
the boundary effects and observed a noticeable temperature dependence. Another
method was proposed in ref. [128, 129], where the authors propose to suppress the
topological freezing by applying a reweighting technique in terms of the topological
charge.
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4.7 The gradient flow

Due to high-frequency fluctuations of the gauge fields on the lattice, the quantities
considered in this work are noisy. Therefore, some noise reduction method is required.
The gradient flow [33–36] is a method which has a valid definition in terms of the
continuum field theory. Additionally, we have a good analytical understanding of how
it affects the gauge fields. This makes it more preferable to traditional approaches such
as cooling [130, 131], or APE [132], stout [133], or HYP [134] smearing. Since its
introduction, the gradient flow has proven to be useful for a variety of issues in lattice
QCD [135–139]. For example it is useful for investigating how instantons emerge in
the continuum limit of lattice QCD [7, 140–142]. The field smearing nature of the
gradient flow enables the creation of smooth gauge configurations on the lattice, from
which a well-defined topological charge can be obtained [35, 143]. Additionally, it also
accelerates the convergence of the conjugate gradient, which we use for calculating
eigenvalues.

By introducing an extra coordinate τF, called the flow-time, the flow fields Bµ(x, τF)
are defined by

Ḃµ(x, τF) = DνGνµ(x, τF), Bµ(x, τF)|τF=0 = Aµ(x),

Dµ = ∂µ + [Bµ(x, τF), · ] , (4.76)

where the dot denotes a derivative as a function of the flow-time τF. Gνµ(x, τF) is the
field strength tensor on the field Bµ(x, τF),

Gµν(x, τF) = ∂µBν(x, τF)− ∂νBµ(x, τF) + [Bµ(x, τF), Bν(x, τF)] . (4.77)

It has been shown that the transformations are invertible, which means that the
flow equation can be integrated backwards from τF → 0 [35]. Gradient flow can be
understood as a modification of the operators used in the measurement, replacing
the elementary links with unitarized averages over many paths, an extreme form of
the use of “fat links”. The smearing radius can be obtained by considering leading
order perturbation theory in the bare coupling g. The linear term of the smeared field
Bµ(x, τF) can be expressed in terms of the initial field Bµ(x, 0) = Aµ(x) by [35]

Bµ,1 (τF, x) = g

∫
d4xKτF (x− y)Aµ (y) , (4.78)

where KτF is given by the Gaussian distribution,

KτF (z) =
e−z

2/4τF

(4πτF)
2 . (4.79)

From this distribution we can read off the mean-square of the variance σ2 = 2τF in
four dimensions. At lowest perturbative order the radius is therefore equivalent to
replacing the gauge fields with their averages over a Gaussian with width 2σ =

√
8τF.

Correlation functions constructed from these smoothed fields turn out to have a
well-defined continuum limit [35]. Furthermore, the flow suppresses the ultra-violet
contributions of correlation functions at distances τ .

√
8τF, e.g. by reducing the

spectral weight in the spectral representation of the correlator. On the other hand,
the flow leaves its infrared contributions at distances τ �

√
8τF almost unchanged

[144], which corresponds to an invariant spectral function in that regime. Thus, it
also becomes a great tool for investigating the transport properties of the QGP, such as
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for example the sphaleron rate.
The lattice formulation of the flow equation (4.76) in terms of the gradient flow

link variables Vµ(x, τF) of the lattice gauge may be defined by the so called Zeuthen
flow [145]. It is a specific, a2-improved lattice discretization of the gradient flow and
defined by

a2 (∂τFVµ(x, τF))V
†
µ (x, τF) = −g2

(
1 +

a2

12
∇∗
µ∇µ

)
∂x,µS

Symanzik
G [V ], (4.80)

where SSymanzik
G is the Symanzik gauge action as in eq. (4.9). ∂x,µ is a su(3)-valued

differential operator defined as

∂ax,µf (Uν(y)) =
d

dε
f (U εν(y))

∣∣∣∣
ε=0

, U εν(y) =

{
eεT

a
Uµ(x), (ν, y) = (µ, x)

Uν(y), otherwise
,

(4.81)
and ∇µ, ∇∗

µ are the lattice forward and backward covariant derivatives

a∇µf(x) =Uµ(x)f(x+ µ̂)U †
µ(x)− f(x), (4.82)

a∇∗
µf(x) =f(x)− U †

µ(x− µ̂)f(x− µ̂)Uµ(x− µ̂). (4.83)

In order to implement the Zeuthen flow in our lattice framework, we need to compute
the explicit form of the differential operator [122, 145]

FS
µ(x) ≡ −g2T a∂ax,µS

Symanzik
G [U ], (4.84)

which is also known as the gauge force. The Symanzik action can be divided into two
parts

SSymanzik
G =

2

g2

∑
x∈Λ

∑
µ<ν

{
5

3
Re tr

(
1 − P (1×1)

µν

)
− 1

12
Re tr

[
2 · 1 −

(
P (1×2)
µν + P (2×1)

µν

)]}
=

5

3
SWilson

G − 1

12
Srect. (4.85)

We first carry out the force of the Wilson gauge action. The derivative yields

∂ax,µS
Wilson
G =

d

dε
SWilson

G [U ε]

=− 2

g2

∑
n

∑
σ<ν

Re tr

{
d

dε

[
U εσ(n)U

ε
ν(n+ σ̂)U ε†σ (n+ ν̂)U ε†ν (n)

]}
ε=0

=− 2

g2
Re tr

{
T a

[∑
µ<ν

(
P (1×1)
µν (x) + P

(1×1)
µ−ν (x)

)
+
∑
ν<µ

(
P (1×1)
µν (x) + P

(1×1)
µ−ν (x)

)]}

=− 2

g2
Re tr

T a∑
ν 6=µ

(
P (1×1)
µν (x) + P

(1×1)
µ−ν (x)

) ,

(4.86)
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where we applied the su(3)-valued differential operator (4.81) and the chain rule. For
our convenience we re-express the sum of the two plaquettes by

∂ax,µS
Wilson
G = − 2

g2
Re tr {T aΩµ(x)} , (4.87)

where Ωµ(x) ≡
∑
ν 6=µ

(
P (1×1)
µν (x) + P

(1×1)
µ−ν (x)

)
. (4.88)

Furthermore, the real trace of ∂ax,µS
Wilson
G yields

Re tr {T aΩµ} =
1

2

(
tr {T aΩµ}+ tr {T aΩµ}†

)
=

1

2

(
tr {T aΩµ}+ tr

{
Ω†
µT

a†
})

=
1

2
tr
{
T a
(
Ωµ − Ω†

µ

)}
. (4.89)

The force of the Wilson gauge action thus reads

FW
µ (x) = −g2T a∂ax,µSWilson

G = T atr
{
T a
(
Ωµ(x)− Ω†

µ(x)
)}

=
1

2

(
Ωµ(x)− Ω†

µ(x)
)
− 1

6
tr
(
Ωµ(x)− Ω†

µ(x)
)

1. (4.90)

Carrying out the derivative of the rectangular part of the action is analogue to the
Wilson part [122, 145]

∂ax,µSrect = − 2

g2
Re tr

T a∑
ν 6=µ

(
P (1×2)
µν (x) + P (2×1)

µν (x) + P
(1×2)
µ−ν (x) + P

(2×1)
µ−ν (x)

+P̃ (1,2)
µν (x) + P̃

(1,2)
µ−ν (x)

)}
, (4.91)

where we introduced another type of rectangle

P̃ (1,2)
µν (x) = Uµ(x)Uν(x+ µ̂)U †

µ(x+ ν̂)U †
µ(x+ ν̂ − µ̂)U †

ν (x− µ̂)Uµ(x− µ̂). (4.92)

By re-expressing the sum of rectangles as

Θµ(x) ≡
∑(

P (1×2)
µν (x) + P (2×1)

µν (x) + P
(1×2)
µ−ν (x) + P

(2×1)
µ−ν (x) + P̃ (1,2)

µν (x) + P̃
(1,2)
µ−ν (x)

)
,

(4.93)
and eliminating the real part in the same way as in the derivative of the Wilson action,
the rectangular force reads

F rect
µ (x) =

1

2

(
Θµ(x)−Θ†

µ(x)
)
− 1

6
tr
(
Θµ(x)−Θ†

µ(x)
)

1 (4.94)

Putting all together, we get for the Symanzik force

FS
µ(x) =

1

2

[
c0

(
Ωµ(x)− Ω†

µ(x)
)
+ c1

(
Θµ(x)−Θ†

µ(x)
)]

− 1

6
tr
[
c0

(
Ωµ(x)− Ω†

µ(x)
)
+ c1

(
Θµ(x)−Θ†

µ(x)
)]

(4.95)
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However, we still need to apply the covariant derivatives from the Zeuthen flow
equation

F̃S
µ(x) =

(
1 +

a2

12
∇∗
µ∇µ

)
FS
µ(x). (4.96)

Using the definition of the covariant derivatives (4.82), we obtain

a∇µFS
µ(x) = Uµ(x)FS

µ(x+ µ̂)U †
µ(x)−FS

µ(x)

a2∇∗
µ∇µFS

µ(x) = Uµ(x)FS
µ(x+ µ̂)U †

µ(x)− 2FS
µ(x) + U †

µ(x− µ̂)FS
µ(x− µ̂)Uµ(x− µ̂).

(4.97)
Finally, the total force of the Zeuthen flow reads

F̃S
µ(x) =

5

6
FS
µ(x) +

1

12

[
Uµ(x)FS

µ(x+ µ̂)U †
µ(x) + U †

µ(x− µ̂)FS
µ(x− µ̂)Uµ(x− µ̂)

]
.

(4.98)
In the numerical integration the flow-time τF can be increased in infinitesimally

small steps, which ensures that the length scale over which the gauge fields are smeared
can be appropriately adjusted as we vary the lattice spacing and/or temperature.
At zero temperature, the flow-time has to be sufficiently large to get rid of ultra-
violet noise but typically has to be smaller than 1/Λ2

QCD. For non-zero temperature,
additionally, one has to choose the flow-time such that

√
8τF is smaller than 1/T [87].

The Zeuthen flow has been implemented in a multi-GPU framework called Parallel-
GPUCode. The development of that framework was also part of this work and will be
discussed in the next chapter. The integration of the Zeuthen flow equation is done
with a 3rd order Runge-Kutta algorithm for Lie groups [35, 146, 147] and an adaptive
step-size method [148, 149].
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Chapter 5

The ParallelGPUCode

The main task in lattice QCD is to compute very large dimensional integrals numerically
on computers. In order to perform these calculations, code has to be developed which
implements the desired lattice QCD equations. Therefore, a substantial amount of
work in this field is dedicated to programming. A major task in this work was to
develop a new code base for carrying out lattice QCD calculations. It is called the
ParallelGPUCode.

The name lattice QCD comes from the fact that the space over which these inte-
grals are performed is a n-dimensional lattice. With the increasing demand for better
precision, the size of these lattices has become quite large. Currently, we are at a
stage where the required sizes are so large that the time needed for a naive sequential
calculation on these lattices is not feasible anymore. Thus, methods from high perfor-
mance computing (HPC) have been utilized to increase performance. The computations
have been parallelized by domain-decomposing the lattices into sub-lattices equal to
the number of available processes. The computations are then performed on each
sub-lattice in parallel.

Nowadays, there are many different programming languages, and each language
has its advantages and disadvantages. The ParallelGPUCode has been developed in
C++. In that programming language, developers have the advantage to write code
which is closely tied to hardware level. Direct access to hardware facilities enables
many different possibilities to optimize code. Therefore, it is very well suited for HPC,
and thus also for lattice QCD applications.

The underlying hardware which is used for these calculations plays an important
role. The two important processor types on which these calculations can be made are
CPUs and GPUs. Even though CPUs nowadays can have up to 64 cores on which these
computations can be performed in parallel, their main strength is that they perform
sequential calculations very fast. GPUs on the other hand are compared to CPUs rather
slow in sequential calculations. However, they have thousands of processing cores,
which allows for a lot more parallelization. In general, CPUs are optimized for latency,
while GPUs are optimized for throughput. Code which is written for CPUs is highly
different from code which written for GPUs. Moreover, GPUs of different vendors use
different programming languages. There are some libraries (e.g. OpenCL) which can
be used to produce hardware independent code, but these come along with a loss of
performance if one does not implements cumbersome vendor-specific extensions.

The ParallelGPUCode has been chosen to run mainly on multiple NVIDIA GPUs.
Therefore, GPU kernel have been written in the CUDA programming language. The
code is also able to run parallel calculations on CPUs, but that has not yet been
optimized with respect to memory layout and CPU vectorization at the time of this
thesis.

During the development of that code, several technical issues had to be tackled:
Solutions for different indexing problems had to be found; communication interfaces
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which work with different hardware implementations needed to be programmed;
data synchronization had to be guaranteed at any time and many more concepts had
to be developed to establish a stable multi-GPU interface. Consequently, all these
implementations came along with a dramatic increase of source code. A very common
problem with large growing source code is that it may become quite unreadable if
no clear structure is given from the beginning. Since unreadable code is usually very
error prone and makes it hard to extend the existing feature set, a concept had to be
found that provides ways to structure code, such that complex algorithms are more
readable.

This is another reason why C++ has been chosen to develop this framework. C++
is a object-oriented programming (OOP) language, which enables the programmer to
write source code in a more human-readable fashion. The idea is to structure the code
by encapsulating algorithms into meaningful objects. These objects can carry attributes
and methods, which can also be inherited by other objects. The ParallelGPUCode relies
heavily on these features, which means that developers need to understand C++ at
least on an intermediate level.

The goal was to establish a multi-GPU interface, which makes it easy for devel-
opers to implement lattice QCD calculations, while still providing the best possible
performance.

5.1 Memory management

Data used to perform calculations are usually loaded into computer memory (the
random-access memory). The CPU as well as the GPU have their own memory. The
maximum amount of data which can be stored inside the memory is finite. Therefore,
any program which processes large amounts of data needs to keep track of its memory
usage in order to not exceed the hardware capabilities. Lattice QCD applications
belong to that category. Computations in lattice QCD can rapidly reach these hardware
limits, since the memory which is needed basically scales with the size of the lattice.
Thus, the goal of this section is to introduce the concept and the advantages of having
a centralized memory management unit.

The ParallelGPUCode so far consists of more than 100 different classes. The
majority of these classes operate at the back-end, which is not visible in the main
program. Many of these classes, including the main, need to allocate and deallocate
memory for different purposes. Some classes, like for example the Gaugefield class,
need to allocate memory for the entire runtime of the program. In these cases the
memory just needs to be allocated at initialization of the program and cleaned up when
the program finishes. Other routines like the reduction or communication methods,
however, need to allocate a lot of memory only temporarily every time when these
methods are called.

The MemoryManagement class has been developed to manage dynamically allocated
memory in the code. If dynamic memory is needed, the way to get it is to ask the
MemoryManagement class to allocate memory. For a memory request, one needs to
pass a string which is used to identify that allocation. Optionally, one can add the
prefix “SHARED_” to the name, which states whether this memory allocation can be
shared among several routines or not. This is especially useful when large amounts
of temporary memory are needed very frequently in different objects. Internally
the MemoryManagement class will count how many objects are still using this shared
allocation. After requesting memory, the MemoryManagement class will return a copy of
a gMemoryPtr object. The gMemoryPtr is a smart pointer which owns all information
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of a memory allocation, i.e. the actual pointer, the size and whether it is located
on the CPU or GPU memory. If this smart pointer gets destroyed, for example by
leaving a scope or if the sharing counter has reached zero, the allocated memory will
automatically be freed. This way, routines which need memory become less error
prone, since memory leaks are effectively impossible. Also redundant clean up code
does not need to be implemented which otherwise would deteriorate code quality for
example in highly nested algorithms. The MemoryManagement class has been made
static and globally accessible, such that only one instance of it can exist at any time.
This has the advantage that this class always knows where and how much memory is
currently allocated. To obtain an overview of all allocations, the MemoryManagement
class offers a method that prints a summary of all names which have been used to
allocate memory as well as their sizes.

5.2 Indexing

In lattice QCD, we want to discretize the (gauge / spinor) fields on a Cartesian
isometric 4-dimensional lattice. However, since computer memory usually can only be
addressed linearly (there is an exception in CUDA, but we will not address it here), we
need an indexing method that translates 4-dimensional coordinates into 1-dimensional
coordinates. A simple approach would be the lexical index:

indexlex = x+ y ·Nσ + z ·N2
σ + t ·N3

σ , (5.1)

where 0 ≤ x, y, z ≤ Nσ − 1 and 0 ≤ t ≤ Nτ − 1. In many numerical tasks (like for
example for Krylov solvers) it is useful to split the indices such that all even coordinates
are located in the first half of the memory and odd indices are located in the second
half. This can be achieved by rewriting equation (5.1) using modular arithmetic:

indexe/o =(x+ y ·Nσ + z ·N2
σ + t ·N3

σ)/2

+N3
σ ·Nτ/2 · (x+ y + z + t) mod 2.

(5.2)

For gauge fields it makes sense to index the links instead of the sites. This can for
example be achieved by adding an additional dimension µ:

indexe/o =(x+ y ·Nσ + z ·N2
σ + t ·N3

σ)/2

+N3
σ ·Nτ/2 · (x+ y + z + t) mod 2 + µ ·N3

σ ·Nτ .
(5.3)

This structure ensures that all links which point in the same direction are next to each
other in memory, which is advantageous for many calculations on the gauge field.

These indexing methods on their own would be enough to address all sites of the
lattice that are located in the memory of a single process. However, the ParallelGPU-
Code should utilize multiple processors by distributing the lattice across them. Hence,
when the lattice is distributed across N processes, also N different arrays located in the
memory of each process need to be indexed.

Another issue is that most computations are stencil based operations, which means
that a calculation on a certain lattice site needs to have information about neighboring
sites. At the boundaries of the sub-lattices this is problematic because some information
of the neighboring sides are stored in the memory of other processors. A solution to
that problem is to communicate the information between these sub-lattices. One way
to do that is to introduce so-called inner and outer halos (see figure 5.1).
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Inner halos are referred to the sites which are located at the border of a sub-lattice.
Outer halos on the other hand are artificial extensions of the sub-lattices beyond their
borders. They hold copies of the inner halos of neighboring sub-lattices, which are
communicated before (or while) computations are made. The depth of these halos
depends on the “radius” of the stencil computation. In the ParallelGPUCode the inner
and outer halos have been made part of the sub-lattice. This means that the sites of a
sub-lattice are indexed by:

indexe/o =(x+ y ·Nx + z ·NxNy + t ·NxNyNz)/2

+NxNyNzNt/2 · (x+ y + z + t) mod 2,
(5.4)

or for indexing link variables:

indexe/o =(x+ y ·Nx + z ·NxNy + t ·NxNyNz)/2

+NxNyNzNt/2 · (x+ y + z + t) mod 2 + µ ·NxNyNzNt,
(5.5)

with
Ni =Nσ +Hi, i ∈ x, y, z,

Nt =Nτ +Ht,

where Hi, Ht are the halo depths in different directions. Note that depending on how
the lattice is split, lattice fields do not necessarily have halos in all directions, such
that halo depths in some directions may be zero.

By using the index computation (5.4) due to the additional halo offset, the maxi-
mum amount of sub-lattice indices change as well. This in turn affects all loops which
iterate through the sub-lattices. Every loop will depend on the halo size and splitting
of the lattice field, since all physics-related calculations should only iterate over the
non-halo part of the lattice (i.e. loops have to skip the additional halo sites). In the
ParallelGPUCode these iterations have been automated and hidden behind the functor
syntax, which will be discussed in section 5.3.

Another problem arises when different lattice fields require different halo sizes. If
two fields have different halo sizes, their indices computed by equation (5.4) will not
correspond to the same 4-dimensional coordinate. This would be an issue for example
in the computation of the plaquette action. The gauge field on which the plaquette is
computed needs halos, but the field in which the intermediate results (the summands)
are stored does not require halos. Thus, the index of the gauge field can not be reused
for the intermediate field, such that additional code is required for translating indices
and coordinates of the two fields. This can deteriorate the code quality dramatically.
In order to keep the lattice QCD algorithms as readable as possible, this additional
code has been automated and encapsulated inside the different accessor classes.
With these accessors one can set or get elements at the desired sites or links of the
various lattice fields (Gaugefield, Spinorfield, LatticeContainer, ...). Every field
type has its own custom accessor type. Due to the previously described problems
these accessors do not accept an integer index computed by (5.4) as a parameter.
Instead they need gSite objects. These objects carry more information that is required
by the accessors, such as the bulkindex (index computed with halo size zero) or
the fullindex (index computed with non-zero halo size) of the site/link as well as
the actual 4-dimensional coordinates. gSite objects are provided in each iteration
through the lattice field, due to the functor syntax (see section 5.3). Also all site/link
arithmetic methods that are provided by the GIndexer class return gSite objects. In
the ParallelGPUCode it is mandatory to work only with gSite objects instead of bare
integers. Otherwise, the entire multi process functionality could break.
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In addition to the gSite object, also gSiteMu and gSiteStack objects exist, which
inherit from gSite. gSiteMu additionally holds the mu-direction of a gauge field, while
gSiteStack holds the stack number of a spinorfield.

How data that should be communicated is stored in memory has an effect on
performance. The best performance can be achieved when the data is contiguously
stored inside a single buffer. If the data is distributed in N different locations in memory,
also N different send/receive calls would be required to perform the communication.
Clearly, the performance would suffer if that is the case. Unfortunately, with the
indexing structure above, the relevant sites/links inside the halo area which should
be communicated are not lying contiguously in memory. Thus, the halos have to be
copied into single separate buffers, before communication takes place. Also after
the communication, the transferred halos have to be copied back into the field. In a
Cartesian grid, a 4-dimensional cube has 80 different halo segments with different
sizes which can be sent in different directions. Table 5.1 lists all the different halo
shapes that encapsulate a 4-dimensional cube. All these different halo shapes require
a custom indexer in order to identify the sites/links in the halo buffers. The HIndexer
class offers that possibility. It indexes the sites/links according to equation (5.1)
using the dimensions given in table 5.1. Additionally, in order to be able to copy the
sites/links back and forth between halo buffer and lattice field, routines are required
which translate the halo buffer indices into lattice field indices. These routines have
been implemented by the methods ExtractInnerHaloSeg and InjectOuterHaloSeg.
ExtractInnerHaloSeg copies a single halo segment from the inner halo of the lattice
field into the halo buffer, while InjectOuterHaloSeg copies a single halo segment
from the halo buffer into the outer halo of the lattice field.

Type No. Name Direction Count Dimension

1 Hyperplane X 2 Ny ×Nz ×Nt ×Hx

2 Hyperplane Y 2 Nx ×Nz ×Nt ×Hy

3 Hyperplane Z 2 Nx ×Ny ×Nt ×Hz

4 Hyperplane T 2 Nx ×Ny ×Nz ×Ht

5 Plane XY 4 Nz ×Nt ×Hx ×Hy

6 Plane XZ 4 Ny ×Nt ×Hx ×Hz

7 Plane XT 4 Ny ×Nz ×Hx ×Ht

8 Plane Y Z 4 Nx ×Nt ×Hy ×Hz

9 Plane Y T 4 Nx ×Nz ×Hy ×Ht

10 Plane ZT 4 Nx ×Ny ×Hz ×Ht

11 Stripe XY Z 8 Nt ×Hx ×Hy ×Hz

12 Stripe XY T 8 Nz ×Hx ×Hy ×Ht

13 Stripe XZT 8 Ny ×Hx ×Hz ×Ht

14 Stripe Y ZT 8 Nx ×Hy ×Hz ×Ht

15 Corner XY ZT 16 Hx ×Hy ×Hz ×Ht

TABLE 5.1: Different types of halo segments on a 4-dimensional cube.
Nx, Ny, Nz and Nt are the lattice dimensions. Hx, Hy, Hz and Ht are
the halo depths.
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Sketch of a two dimensional lattice
which should be parallelized on 4
processes.

Splitting up the previous lattice into
4 sub-lattices across 4 processes. The
boundary area are called inner halos
in the ParallelGPUCode. This area is
necessary for stencil operations on
the lattice.

In order to make these inner halos
available for the neighboring pro-
cesses the sub-lattices have to be en-
larged. In that enlarged area (the
white surfaces) the inner halos from
the neighboring sub-lattices should
be copied. This enlarged area is re-
ferred to as the outer halo in the Par-
allelGPUCode.

Communication between all pro-
cesses has to be established. The
green arrows show which inner halo
elements are copied into the outer
halo elements of the neighboring
processes. The green dotted arrows
represent the communication due to
periodic boundary conditions.

FIGURE 5.1: Halo pattern of a 2-dimensional lattice field.
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5.3 Parallelizing using functor syntax

The way that computations are done on the lattice follows most of the time the same
rules:

• Iterate through all lattice sites/links.

• Compute a quantity on each site/link.

• Eventually sum up results of all sites/links.

These steps can be implemented in different ways. The easiest way would be to just
iterate sequentially in a loop over all sites and perform the required computation
on each site in each iteration. However, on modern computer this way would be
quite inefficient. A better way would be to parallelize that iteration. Depending on
the processor (CPU or GPU) different options are available. Nowadays, a single CPU
can have up to 64 cores. Additionally, HPC centers usually have multiple compute-
nodes connected to each other, such that CPUs on different nodes are also able to
communicate with each other. In principle each of these cores can be dedicated
to iterate over a certain sub-lattice. Depending on the task, that can speed up the
computation significantly. If the total amount of cores would be N, then in an ideal
situation a speed up of factor N could be realized. In fact, due to hardware limitations
and communication overhead, this speed up is never exactly N. The goal is to bring the
speedup as close to N as possible. If each core would also have access to a GPU, then
the computation could be further parallelized, since GPUs have thousands of cores.

To ensure that a parallelized routine works on any possible combination of lattice
splitting, number of processors and whether or not a GPU is used, the implementation
can become quite complex. As a consequence the actual lattice calculation can easily
get lost inside highly nested parallelization routines. This makes the code barely
readable and highly error prone. For that reason the concept of functors has been
introduced. With that concept the entire iteration and parallelization procedure
is hidden inside an abstract base class from which all fields inherit. To perform a
lattice calculation which changes the values on each site, the lattice equation just
needs to be wrapped inside a struct and then be passed to the field. The field then
automatically figures out how to parallelize the lattice and performs the computation.
Alternatively, standalone iteration functions exist that can be used for field independent
tasks. The classes which are passed to the fields are referred to as functors. Every
field supports a variety of iteration methods. The simplest iterator available iterates
over the full sub-lattice, i.e all sites/links including the halo sites/links. This iterator
should only be used if no information about neighboring sites/links is needed. An
example would be if a field just needs to be set to a particular value. This way, no halo
communication is required afterwards, which would otherwise affect the performance.
Another available iterator is iterating only over the bulk part of the sub-lattices, i.e all
sites/links excluding the halo sites/links. In all stencil-based calculations this is the
preferred iterator, since in such calculations the halo region needs to be communicated
in the next step anyway, i.e. the halo region will be overwritten. Depending on the
underlying field many more iterators exist for different tasks. The implementation of
these iterators are comparably easy, such that additional iterators can be implemented
with minimal effort.
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5.4 Communication techniques

As has been mentioned in the previous sections, some kind of communication is
necessary in order to perform a parallelized lattice computation. There are different
ways how communication can be achieved. Among them there is:

1) One-sided communication,

2) Two-sided communication.

With one-sided communication the sending process has access to an assigned part of
the memory of the receiving process. Communication is then achieved by copying
some data of the memory of the sending process into the memory of the receiving
process. In that procedure only one of the processes is actively participating (the
sending process), such that the communication is performed from one side only.

In two-sided communication both processes have to participate. This means that
every time before some information should be exchanged, the sending process has to
send a communication request while the receiving process has to actively wait for an
incoming communication request. As long as this handshake procedure has not been
finished, no information can be exchanged.

This is also the biggest disadvantage of two-sided communication compared to
one-sided communication, since that handshake procedure is effectively slowing down
the communication. On the other hand since both processes are participating in
two-sided communication, it is easier to synchronize both processes. With the direct
access to the memory of the receiving process in case of one-sided communication,
the receiving end is not notified when the copy process is finished as long as the
notification has not been performed manually.

A library which supports both communication types is for example the Message
Passing Interface (MPI). The ParallelGPUCode is only taking advantage of the two-sided
communication feature of MPI, since current MPI implementations are not very well
optimized for one-sided communication. However, another technique is used for
peer-to-peer communication between GPUs: Cuda GPUDirect P2P. This is an one-sided
communication interface, which allows a GPU to have read and write access to the
memory of another GPU.

FIGURE 5.2: Illustration showing different communication channel.
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The ParallelGPUCode is supposed to run on different systems with different hard-
ware specifications (e.g. number of nodes, GPUs per node, connection between
GPUs etc.), such that it adapts its communication system to the hardware capabili-
ties. The logic for that is implemented in the CommunicationBase class. Figure 5.2
illustrates the topology of an fictitious system which consists of two nodes with two
GPUs per node. The arrows represent all possible communication channels. The
CommunicationBase always automatically figures out the fastest path between the
different processors (as long as this feature is not turned off manually during compila-
tion). If an application is purely running on the GPU, then the fastest path is GPUDirect
P2P for intranode communication and cuda-aware MPI for internode communication.
If GPUDirect P2P and cuda-aware MPI is not available or turned off, then the entire
communication is performed over the CPUs. This means that the data is first copied
from the GPU to the CPU, then communicated over MPI to another CPU and then
copied from the receiving CPU to the desired GPU. Consequently, this slows down the
application, since the communication overhead is much higher.

In case of halo communication, the method used affects the memory usage on
the GPU and CPU. If GPUDirect P2P or cuda-aware MPI communication (or both) is
turned on, then 2 halo buffers are required on the GPU. One buffer acts as a sending
buffer and the other one as a receiving buffer. If the two communication methods
are turned off, then only one halo buffer is required on the GPU, since the sending
and receiving buffer are outsourced to the CPU memory. Therefore, in case memory
on the GPU is not enough memory and performance is not so important, turning off
GPUDirect P2P or cuda-aware MPI communication might be a good compromise.

5.5 SiteComm and derived classes

With the memory management class, the indexing classes, the halo injection/extraction
methods, the communication classes, the functors and the accessors, we have enough
to be able to communicate halo segments of any field which can be represented by a
Cartesian grid. In lattice QCD, we work with different kind of fields. While a spinor
field can hold multiple 3-vectors on each site (thus it is also called stacked spinor field
in the ParallelGPUCode), a gauge field connects each site with neighboring sites by
SU(3) matrices.

The construction of the halo communication of these two fields would be basically
the same. Only the types and sizes of the field elements change. To simplify that
construction, the class SiteComm has been introduced. It is an abstract class which ba-
sically combines all previously mentioned classes and methods into a single updateAll
method. This method performs the entire halo communication process. During in-
stantiation the SiteComm sets up the halo logic and allocates the required halo buffer.
Depending on which kind of connections (MPI, cuda-aware MPI or GPUDirectP2P) to
the neighboring processes are available, the SiteComm automatically chooses the best
between them. Additionally, it also overlaps communication with the extraction/injec-
tion procedure when possible to accelerate the halo update even further. Classes like
the Gaugefield or the Spinorfield inherit from SiteComm, such that they own the
updateAll method by construction.

Another optimization can be achieved when calling updateAll. By passing a
COMM parameter to that method, it is possible to overlap halo communication with
computation outside of the siteComm. The idea is to call updateAll twice. The
first time just to trigger the communication and the second time to synchronize the
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communication. In between these calls some different computation can be performed,
which does not alter the halo data that is currently communicated (see listing 5.1).

// This call will start communication and immediately return.
// Communication is still ongoing after this call!
gaugeFieldObj.updateAll(COMM_START);

// Perform computation which is unrelated
// to the currently communicated halos.
int result = a * x + 100;

// Wait until communication is done with this call.
gaugeFieldObj.updateAll(COMM_FINISH);

LISTING 5.1: Asynchronous halo communication

The SiteComm is able to communicate the entire surface of a 4-dimensional cube.
The halos on that surface can be split into four major shapes: Hyperplane, plane, stripe
and corner (see table 5.1). However, sometimes it is not necessary to communicate
everything. For example, if a stencil based lattice operator just needs its nearest
neighbors that are just connected via one link, only Hyperplanes would need to
be communicated. This would save 72 communication calls and therefore increase
performance. The updateAll method also offers that possibility. In the above case one
just needs to pass the parameter hyperplane to the updateAll method. A combination
with COMM_START/COMM_FINISH flags can be achieved as well:

gaugeFieldObj.updateAll(COMM_START | Hyperplane);
// ... Perform independent computations ...
gaugeFieldObj.updateAll(COMM_FINISH | Hyperplane);

More surfaces (Plane, Stripe, Corner) can be included in the same way with the
bitwise OR operator |. If no surfaces are specified, all surfaces are communicated.

The reason why the SiteComm has its name is that it actually communicates only
data located at sites. Consequently, the Gaugefield has to bundle 4 links per site in
order to perform a halo update, since it inherits from SiteComm. An illustration of that
is shown in figure 5.3. Obviously, this could be further optimized by implementing a
LinkComm class that would communicate links instead of sites. However, in the current
version of the code this class is not available.

5.6 Lattice container

When observables are computed in lattice QCD, usually some intermediate results per
lattice site need to be computed as well. Followed by that, these intermediate results
are then in some way reduced over the whole lattice (for example by a sum over the
whole lattice). On a lattice which is split up on multiple processes, the procedure
would be a bit more complicated:

1) Compute intermediate results on all sites of all sub-lattices in parallel.

2) Perform a reduction on each process into a single quantity per process.

3) Perform a final reduction across all processes into a single quantity and distribute
that quantity over all processes if required.
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FIGURE 5.3: Illustration showing which data is communicated on a
2D lattice. The outer rectangle represents the inner halo region which
is communicated. The green circles represent the sites of the lattice
and the arrows represent the links between the sites. A spinor field
would just communicate the green circles within the halo region, while
a gauge field would communicate the arrows within the halo region.

Since this is a very common task, this procedure has been merged together inside
a single reduction call in the LatticeContainer class. This class is as the name
suggests a container class which can hold any element type and is spread over the
processes in a similar way as the Gaugefield or Spinorfield. This means that the
LatticeContainer also allocates memory, where intermediate results can be stored.
This memory allocation is per default shared with the memory of the halo buffer of the
other lattice fields, since in most cases the intermediate results have to be recalculated
after a halo update has been performed. Apart from a standard sum over all elements,
the LatticeContainer class also offers the possibility to reduce only time slices of
the lattice, such that the result would be a vector of length Nτ . This is especially
useful, if correlation functions in time direction need to be computed. Additionally,
there is also the stacked reduction, which can be used to reduce the intermediate
results of a stacked spinor. With the current version this class does not support the
exchange of halos. However, if it is needed, it could be made available by letting the
LatticeContainer inherit from SiteComm.

5.7 Coalesced memory access

The way the Spinorfield or Gaugefield class structures the fields in memory has
significant performance implications. The Gaugefield for example could allocate
its array of matrices by using an “array of structures” layout. In this layout each
element in the array corresponds to a matrix which is contiguously stored in memory.
However, this is inefficient on the GPU because the memory accessed by multiple
threads is not contiguous. This results in much more memory access instructions on
the GPU. Another way is to allocate an array by using a “structure of arrays” layout.
In this layout, the elements of all matrices are stored contiguously in memory, not
the matrices themselves. In other words, the first part of the array contains the first
elements of all matrices, followed by the next part, which contains the second elements
of all matrices, and so on. This layout is much better for coalesced memory access,
i.e. simultaneously running threads access memory that is nearby, resulting in much
fewer memory access instructions. Therefore, in the ParallelGPUCode the lattice fields
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are allocated in the “structure of arrays” layout. The logic behind this is hidden in the
stackedArray and accessor classes.

5.8 Getting started

In order to get started with the ParallelGPUCode, it is very helpful to have a look at
the examples in the repository. Also the testing applications can help to understand
many concepts of the framework (e.g. the GeneralFunctorTest).

Nevertheless, in this section we describe how a very simple application can be
programmed. As described in section 5.3, the way how to perform a computation
on the lattice is by wrapping the lattice equation inside a struct and then passing
the struct to an iterator of a field. Listing 5.2 shows an example of a struct that
computes the plaquette action. This kernel should iterate over a LatticeContainer
object which can be ether located on the CPU or on the GPU memory. The template
parameter onDevice is a boolean which need to be set accordingly. This means that if
the field is on the GPU then onDevice should be true, otherwise it should be set to
false.

In order to compute the plaquette, it is necessary to access the link variables
of a gauge field. Therefore the constructor need a Gaugefield object to initialize
the gaugeAccessor member of that struct. The lattice equation is implemented in
the operator() method. The function type qualifiers __device__ specifies that this
method is going to be compiled for the GPU. Similar the function type qualifiers
__host__ specifies that this method will be compiled for the CPU. If both qualifier are
given, then the kernel will be compiled for both processors. As runtime arguments the
operator() provides a gSite object which represents the lattice site of the current
iteration.

Inside the loop over all directions this site is getting passed to the getLinkPath
method of the gaugeAccessor together with the directions which shape a plaquette.
The getLinkPath method is accessing the gauge link variables on the given site in the
specified directions and multiplying them in the same order as the directions given in
the arguments (the amount of direction variables which can be passed to this function
is variable). The result is a SU(3) matrix (precisely a GSU3<floatT> object) which is
then passed to the tr_d function. This function computes the real part of the trace of
this matrix. Apart from these runtime arguments, it also takes two template parameter.
The first template parameter indicates whether we are indexing a field which holds
only even, only odd or all sites. The gauge field in this example holds all sites, thus the
argument All has been passed. The second argument specifies the halo width which
is used by the gauge field. This is required because the getLinkPath method is calling
the indexer internally to access gauge link variables on the gauge field. The reason
why the indexer needs to know the halo width has been explained in section 5.2.

After the loop over all directions the result will then just get returned. The iterator
of the LatticeContainer object is then storing the result automatically inside its array
at the same coordinate where the gauge link variables were located in the gauge field.

To perform the iteration from the main, the iterator of the LatticeContainer
object should be called as follows:

gauge.updateAll();
latticeContainerObj.template iterateOverBulk<All, HaloDepth>(

CalcPlaq<floatT, true, HaloDepth>(gauge));
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Since this iteration runs only on the bulk part of the sub-lattices, a halo update should
be performed before the iteration starts, in order to make sure that the link variables
on the halos are valid. In this example, the LatticeContainer object
(latticeContainerObj) and the Gaugefield object (gauge) have been created on
the GPU. Thus, the template parameter onDevice of the kernel have been set to true
as well.

So far we have only computed the summands of the plaquette action and stored
them into the LatticeContainer. A final sum can be obtained by calling the reduce
method of the latticeContainerObj, followed by a proper normalization. The full
example of that program is available in the example folder of the ParallelGPUCode.

template<class floatT, bool onDevice, size_t HaloDepth>
struct CalcPlaq{

gaugeAccessor<floatT> gaugeAccessor;

CalcPlaq(Gaugefield<floatT,onDevice,HaloDepth> &gauge)
: gaugeAccessor(gauge.getAccessor()){
}

__device__ __host__ floatT operator()(gSite site) {

floatT result = 0;
for (int nu = 1; nu < 4; nu++) {

for (int mu = 0; mu < nu; mu++) {
result += tr_d(

gaugeAccessor.template getLinkPath<All, HaloDepth>(site,
mu,
nu,
Back(mu),
Back(nu)));

}
}

return result;
}

};

LISTING 5.2: A simple plaquette kernel

5.9 Status summary and benchmarks

At the time of writing this thesis, the ParallelGPUCode is in active use and development
by various users in different projects. Therefore this status summary only provides a
snapshot of the state of development.

The first fully working and tested program was the gradient flow [35]. It supports
the Wilson and Zeuthen flow [145] discretization. The integration is done with a 3rd

order Runge-Kutta algorithm for Lie group methods [35, 146, 147] and an adaptive
step-size method [149]. Observables or correlation functions can be measured at
any flow-time on the fly or later by saving the smoothed configurations. A heat bath
[108, 109] and overrelaxation [106, 107] code has been implemented to generate
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pure gauge configurations. For configurations with dynamic fermions in the Highly
Improved Staggered Quarks discretization (HISQ) [31] a rational hybrid Monte Carlo
algorithm (RHMC) [150] has been implemented.

To analyze the scaling behavior of the ParallelGPUCode we need to measure the
speedup. The speedup of parallel programs is defined by

speedup = T0/TN , (5.6)

where T0 is the runtime of the program with the minimal required amount of proces-
sors and TN is the runtime of the program with N processors. In high performance
computing there are two common notions of scalability, i.e. strong and weak scaling.
With strong scaling, the runtime of a program is measured for a total problem size
which is fixed while the number of processors increases. A perfect strong scaling
parallel program would for example be twice as fast if the number of used processors
is doubled. In weak scaling, on the other hand, the problem size grows with the
number of processors, such that the problem size per processor is fixed. The speedup
of a perfect weak scaling program would stay constant with increasing number of
processors and problem size. In general, due to communication overhead and hard-
ware limitations, perfect scaling can never be reached in strong and weak scaling
benchmarks.

We have checked the strong scaling behavior of the gradient flow and the RHMC
on the Bielefeld GPU cluster. The previously mentioned problem size in lattice QCD
is the size of the lattice. The gradient flow has been applied on a random 643 × 16
configuration up to a flow-time radius of

√
8τFT = 0.3 using a fixed step size. At each

flow-time step the plaquette and the color electric and magnetic correlation function
has been measured. In the RHMC benchmark a single trajectory has been computed
on a 643 × 16 lattice (starting from a random configuration) with physical strange
and light quarks masses. In figure 5.4 we show the results of these strong scaling
benchmarks. The gradient flow and the RHMC show very good strong scaling behavior
with up to 4 GPUs. We observe a speedup of ∼ 3.4 with 4 GPUs in both benchmarks.
However, going from 4 to 8 GPUs the speedup is rather low. One reason is the total
lattice size of 643 × 16 in both cases. With 8 GPUs, the sub-lattice size is so small that
the communication overhead becomes much more significant. Another reason is the
NVLink topology of the nodes at the Bielefeld GPU cluster. On each node, groups of
four GPUs are fully interconnected with at least one NVLink link. However, these two
groups are only connected by four NVLink connections. Hence, with 8 GPUs some
pairs of GPUs can only communicate over PCIe express, which is slower.

Similar benchmarks have been performed on Summit in Oak Ridge National
Laboratory, USA. There we have checked the multi-node scaling behavior. This time
the gradient flow has been applied on a random 963× 24 configuration which required
at least one full node of six GPUs. In the case of the RHMC, a single trajectory on a 964

lattice has been computed. This required in total 36 GPUs which are given by 6 nodes.
Since communication between nodes traverses over Infiniband instead of NVLink, we
do not expect the same scaling behavior as in the single node benchmarks. In figure
5.5 we show the results of these benchmarks. We see that with 4 nodes the gradient
flow still achieves a speedup of ∼ 3. With 36 nodes the speedup drops to ∼ 15. In case
of the RHMC, if we double the nodes from 6 to 12 nodes, we get a speedup of ∼ 1.6.
If we increase the number of nodes to 36 we just get a speedup of about ∼ 2.8. Also
here the argument applies that the communication overhead overwhelms the actual
lattice computations with too many nodes, due to the small local lattice sizes.

We have also performed a weak scaling test of the gradient flow on the Bielefeld
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FIGURE 5.4: Single-Node strong scaling plots. These benchmarks have
been performed on the Bielefeld GPU cluster. Left: Performance of the
gradient flow program for a 643 × 16 lattice. Right: Performance of the
HISQ gauge field generation program based on a rational hybrid Monte
Carlo algorithm (RHMC) for a 643 × 16 lattice.
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FIGURE 5.5: Multi-Node strong scaling plots. These benchmarks have
been performed on Summit in Oak Ridge National Laboratory, USA.
Left: Performance of the gradient flow program for a 963 × 24 lattice.
Right: Performance of the HISQ gauge field generation program based
on a rational hybrid Monte Carlo algorithm (RHMC) for a 964 lattice.

cluster. The results are shown in the left plot in figure 5.6. The size of the local lattice
on a single GPU has been fixed to 643 × 16. The weak scaling behavior of the gradient
flow turns out to be very good. With 2 and 4 GPUs the speedup is at around ∼ 0.9.
The speedup drops with 8 GPUs to ∼ 0.8. This is also due to the already mentioned
NVLink topology of the nodes in Bielefeld.

The RHMC is not suitable to perform weak scaling benchmarks, since the number
of CG iterations changes with the size of the lattice. Therefore, instead of the full
RHMC we have benchmarked 500 iterations of the DSlash, which is the most expensive
part of the CG in the RHMC. The runs have been performed also on the Bielefeld GPU
cluster. On the right hand side in figure 5.6 we show the results of this benchmark.
The speedup of the DSlash is with almost ∼ 0.8 for 2,4 and 8 GPUs a bit lower than
for the gradient flow, but still in an acceptable region.

Overall, we are convinced that no more significant performance increase can
be achieved by further optimizations, so that we are ready to perform multi-GPU
production runs with this code.
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FIGURE 5.6: Single-Node weak scaling plots. These benchmarks have
been performed on the Bielefeld GPU cluster. Left: Performance of the
gradient flow. The local lattice size on a single GPU has been fixed to
643 × 16. Right: Performance of the DSlash. The local lattice size on a
single GPU has been fixed to 803 × 20.
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Chapter 6

Topological Susceptibility at
Varying Light Quark Masses

As introduced in chapter 3, topology has many interesting implications in QCD. It
is closely related to the chiral anomaly and the explicit breaking of UA(1). The
topological susceptibility measures the fluctuations of the topological charge. In this
chapter we take a first look at the topological susceptibility measured on 2 + 1 HISQ
configurations around the critical temperature Tc.

6.1 Lattice setup

In order to calculate the topological susceptibility, we first need to compute the
topological charge. Measuring the topological charge using the gluonic definition,
eq. (3.31), is not straightforward. In general, the topological information is hidden
behind non-topological noise on the gauge fields. Therefore, a smoothing technique
has to be applied to dampen this noise before measuring the topological charge. In
this work we choose the gradient flow for this procedure as introduced in section
4.7. It is implemented in the Zeuthen flow discretization using a 3rd order Runge-
Kutta with an adaptive step-size algorithm as an integration method and is part of
the ParallelGPUCode. As sea quarks we use 2 + 1 HISQ configurations of different
masses generated by the HotQCD collaboration [62, 63]. The strange quark mass of
these configurations is fixed to its physical value ms, while the light quark masses
are varied such that ms/ml = 27, 40, 80, 160 corresponding to pion masses of mπ =
135, 110, 80, 55 MeV respectively. The different configurations as well as the statistics
are listed in table 6.1. The lattice implementation of the gluonic definition of the
topological charge density q(x) is based on an a2-improved implementation of the
field strength tensor, see eq. (4.74). In contrast to the standard “clover” leaf definition,
which involves just a sum of four square plaquettes, we use a combination of square
and 1 × 2 rectangular plaquettes (see section 4.5). By integrating q(x) over the
spacetime volume we get the topological charge Q. In eq. (4.75) we then defined the
topological susceptibility χt as

χt =
〈Q2〉 − 〈Q〉2

V
, (6.1)

where V is the four-volume and Q is the topological charge (see eq (4.73)).
The topological charge is known to evolve slowly on finer lattices, i.e. the topologi-

cal charge freezes in Monte Carlo time. This leads to large autocorrelation times and
the requirement for large statistics to sample fluctuations between different topological
sectors. To check whether our configurations are affected by this freezing, we plot the
trajectory of Q of our finest lattices in figure 6.1. The charges have been extracted
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FIGURE 6.1: Trajectory of the topological charge at temperature
T ≈ 166MeV. The x-axis shows the configuration number. Subsequent
configurations are separated by 50 hybrid Monte Carlo time steps. Dif-
ferent streams have been concatenated. The topological charge is not
always close to integer values.
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FIGURE 6.2: Autocorrelation times of the topological charge at tem-
perature T ≈ 166MeV. Subsequent configurations are separated by 50
hybrid Monte Carlo time steps. Different streams have been concate-
nated.

at a flow-time at which the topological susceptibility settles into a plateau. More
details about this plateau criterion will be discussed in the next section. Figure 6.1
shows a large amount of fluctuations, and hence our configurations do not suffer from
topological freezing. In figure 6.2 we show the autocorrelation time of the topological
charge Q of two lattices. The autocorrelation time of the Nτ = 8 lattice is smaller
than 50 Monte Carlo steps. The Nτ = 16 lattice on the other hand shows a very small
autocorrelation. However, it should not be a problem, since in our error calculations
we choose the block sizes in our Jackknife routine to be at least 40.

In the trajectories in figure 6.2 we noticed that the topological charge is not always
close to integer values. This might indicate that the topological charge suffers from
strong lattice artifacts.
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ms/ml = 27

Nσ Nτ T [MeV] χt/T #conf

32 8 156 0.89(1) 1196
32 8 166 0.81(1) 1329
32 8 175 0.735(7) 1784
64 16 146 0.69(3) 244
64 16 152 0.624(5) 3928
64 16 158 0.58(2) 207
64 16 163 0.54(2) 597
64 16 167 0.50(2) 831

ms/ml = 80

Nσ Nτ T [MeV] χt/T #conf

32 8 137 1.05(2) 1200
32 8 140 1.01(2) 1221
32 8 143 0.988(9) 1758
32 8 145 0.97(2) 2341
32 8 147 0.97(2) 2951
32 8 151 0.933(9) 3807
32 8 154 0.89(2) 1200
32 8 162 0.829(9) 1200
32 8 166 0.809(8) 1200
40 8 140 1.03(2) 1200
40 8 143 1.01(2) 1200
40 8 145 1.01(2) 1200
40 8 147 0.94(2) 1200
40 8 151 0.94(2) 1200
40 8 154 0.895(9) 1200
40 8 156 0.88(1) 1200
40 8 162 0.83(2) 1200
40 8 166 0.80(2) 1199
56 8 140 1.05(2) 1199
56 8 143 1.02(2) 1200
56 8 145 1.00(2) 1200
56 8 147 0.97(2) 1199
56 8 151 0.91(2) 1200
56 8 154 0.89(2) 1200
56 8 156 0.86(1) 1200
56 8 162 0.83(1) 1199
56 8 166 0.80(1) 1200
48 12 129 1.00(1) 1200
48 12 135 0.93(2) 1200
48 12 140 0.861(9) 1200
48 12 145 0.813(7) 1200
48 12 148 0.79(1) 1200
48 12 151 0.75(1) 1200
60 12 129 1.03(2) 1200
60 12 135 0.93(2) 1200
60 12 140 0.87(1) 1200
60 12 145 0.82(1) 1200
60 12 151 0.762(8) 1199
60 12 157 0.712(7) 1199
60 12 162 0.647(6) 1199
60 12 166 0.632(9) 1200

ms/ml = 40

Nσ Nτ T [MeV] χt/T #conf

24 8 137 1.06(2) 2220
24 8 140 1.04(2) 2220
24 8 143 1.01(1) 2219
24 8 145 0.99(1) 2219
24 8 147 0.97(2) 3220
24 8 151 0.932(8) 3219
24 8 152 0.93(1) 3218
24 8 156 0.887(8) 4220
24 8 162 0.832(7) 4220
32 8 137 1.06(2) 3445
32 8 140 1.03(2) 3449
32 8 143 1.00(2) 3458
32 8 145 0.98(2) 3449
32 8 147 0.97(2) 3589
32 8 151 0.94(1) 3593
32 8 152 0.92(1) 3592
32 8 156 0.877(9) 3607
32 8 162 0.841(8) 2825
32 8 166 0.801(7) 2900
40 8 137 1.07(2) 1200
40 8 140 1.04(2) 1200
40 8 143 1.01(2) 1200
40 8 145 0.99(2) 1200
40 8 147 0.97(2) 1200
40 8 151 0.946(9) 1200
40 8 152 0.92(1) 1200
40 8 156 0.88(1) 1200
40 8 162 0.84(1) 1199
40 8 166 0.81(2) 1200
42 12 129 0.99(1) 1199
42 12 135 0.94(2) 1200
42 12 140 0.87(2) 1200
42 12 145 0.82(2) 1200
42 12 151 0.748(9) 1200
42 12 157 0.701(8) 1200
42 12 162 0.664(9) 1200
42 12 166 0.626(8) 1200
60 12 129 1.01(2) 1199
60 12 135 0.95(2) 1200
60 12 140 0.869(8) 1200
60 12 145 0.828(8) 1200
60 12 151 0.77(2) 1200
60 12 157 0.713(7) 1200
60 12 162 0.669(9) 1199
60 12 166 0.625(5) 1200

ms/ml = 160

Nσ Nτ T [MeV] χt/T #conf

56 8 143 1.00(2) 1200
56 8 145 0.98(2) 1200
56 8 147 0.95(2) 1200
56 8 151 0.92(2) 1200
56 8 154 0.91(2) 1124
56 8 156 0.87(2) 1199
56 8 162 0.85(2) 1200
56 8 166 0.800(9) 1199

TABLE 6.1: Results of the extracted topological susceptibility. The
temperatures have been determined using the fk-scale [59] with data
from [61].
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6.2 Extracting the topological susceptibility

The gradient flow smoothes the gauge field by integrating the flow equation eq. (4.80)
in the direction of the flow-time τF up to a particular value of τF. Thus, all observables
we measure on these gauge fields will in principle depend on the flow-time τF. To get
physically meaningful quantities, the usual procedure is to first perform a continuum
extrapolation of observables at τF > 0, and then a flow-time extrapolation τF → 0.
The topological susceptibility, however, is somewhat special. In the continuum it has
been shown that cumulants of the topological charge, as for example the topological
susceptibility, are flow-time independent [140]. On the lattice it has been observed that
after some initial flow-time steps, i.e. when the UV-fluctuations have been smoothed
out, the topological susceptibility also settles in a plateau [87, 122, 151].

This behavior can also be seen in our measurements. Figure 6.3 shows the
topological susceptibility as a function of the flow-time of some selected lattices and
each of our mass ratios ms/ml. Each plot shows the susceptibility curve of the lowest
and highest temperature in this setup. We notice a first peak at τF = 0 across all
lattices, which is larger on finer lattices than on coarser lattices. This is not surprising
since at zero flow-time the gauge fields are affected by high frequency fluctuations
and finer lattices should capture more UV-fluctuations than coarser lattices. Beyond
this peak all our lattices, except the lattices which have a temporal extent of Nτ = 8
and a low temperature, show a clear plateau which starts around τF = 1.15a2. In what
follows we will use this value of the flow-time as the lower limit for the plateau region
in the determination of the topological susceptibility.

We choose as an upper limit in flow-time the maximum smoothing radius to be
half of the temporal extent of the lattice, i.e.

√
8τFT = 0.5, in order to avoid any

potential disturbing effects from the periodic boundaries of the gauge fields. We see
a clear plateau region on all lattices except on the lattices with a temporal extent of
Nτ = 8 at low temperatures. This indicates that these lattices might be still too coarse
to measure the topological susceptibility correctly. The same observation has also
been made in [122]. However, the lower flow-time limit τF = 1.15a2, which we have
chosen based on the other lattices, is very close to the upper maximum flow-time of
the Nτ = 8 lattices, as it can be seen in figure 6.3. Since this interval is so narrow, it
might explain why we do not see a clear plateau on these lattices. Thus, although the
flow-time interval on the Nτ = 8 lattice is rather tight, the correct susceptibility might
still lie within this range. Therefore, we use this interval also on the Nτ = 8 lattices at
low temperatures to extract the topological susceptibility.

In most studies the susceptibility is arbitrarily chosen at one flow-time on the
plateau. However, we still observe some small visible changes of the susceptibility
in this region. In order to account for this, we decided to extract it from the entire
plateau. This is achieved by drawing Gaussian noise around each of the data points on
the plateau. The resulting distributions are then added to an overall final distribution.
The median of this distribution is the final topological susceptibility with the error
from a 68% percentile around the median of the distribution. The results are shown
as a horizontal green band in each plot in figure 6.3. The extracted values are listed in
table 6.1.

6.3 Volume dependence

As we perform computations on finite lattices, we have to make sure that uncertainties
introduced by finite volume effects are under control. To suppress finite volume
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FIGURE 6.3: Topological susceptibility as a function of the flow-time.
The green linear error bands show the plateau region which we use to
extract the topological susceptibility.
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FIGURE 6.4: Topological susceptibilities as a function of the temper-
ature to show whether some volume dependence is visible. Different
plots show different temporal extent Nτ and different light quark
masses. All curves overlap within two errorbars. Hence, we do not see
clear finite volume effects.

effects in our setup the lattice dimensions are chosen such that mπNσa ? 2. In figure
6.4 we show plots of the topological susceptibility as a function of the temperature
for different spatial volumes. It can be seen that no clear volume dependence is
discernible within our statistics. Independent of the given masses and temporal extent,
the curves agree within two error bars. Hence, the aspect ratios which we are using
are acceptable.

6.4 Mass dependence

An interesting question is how the topological susceptibility changes towards the chiral
limit. At low temperatures below the phase transition, the topological susceptibility is
expected to be proportional to χt ∝ (1/mu + 1/md + 1/ms)

−1 [2, 3], i.e. it vanishes
as the quark masses are taken to zero. At high temperatures, arguments based on
a dilute-instanton model show that the topological susceptibility is proportional to
χt = mumdms/T

3 [1], i.e. it should as well vanish in the chiral limit. Figure 6.5
compares the susceptibility of configurations with different light quark masses but
fixed strange quark mass. In order to focus only on the mass dependence and not on
the a-dependence, the left plot shows the results of the Nτ = 8 lattices while the right
plot shows the results of the Nτ = 12 lattices. In both cases the results at different
masses overlap within two error bars. Hence, the susceptibility does not show any
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FIGURE 6.5: Comparison of the topological susceptibility as a function
of the temperature at different light quark masses but fixed physical
strange quark mass. Within two error bars, the curves overlap. Hence,
no clear mass dependence visible within our statistics.
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FIGURE 6.6: Topological susceptibility as a function of the temperature
of 2 + 1 HISQ configurations at physical quark masses. The error band
of the fit has been computed using gaussian bootstrap samples.

mass dependence within our statistics, which is in contrast to the previously mentioned
expectations.

6.5 Temperature dependence

Chiral perturbation theory predicts that the topological susceptibility should be χ1/4
t =

77.8(4)MeV at zero temperature in QCD with two degenerate flavours [2, 3, 152]. In
figure 6.6 we show the topological susceptibility as a function of the temperature of the
finest lattices at physical quark masses, i.e. 643 × 16, ms/ml = 27. The susceptibility
at our lowest temperature is at χ1/4

t = 101(4)MeV, which is quite far away from the
chiral perturbation prediction. An explanation for that might be that our values are not
continuum extrapolated and the topological susceptibility suffers from large cut-off
effects.

Overall the topological susceptibility shows a falling trend in temperature. This
behavior has also been observed in previous studies [87, 153]. This is expected, since
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with increasing temperature the amount of instantons decreases. We see that behavior
not only on configurations with physical masses, i.e. figure 6.6, but also on configura-
tions with non-physical light quark masses as can be seen in various plots within this
chapter. At high temperatures, the dilute instanton gas approximation (DIGA) [1, 4]
suggests that the topological susceptibility might have a power law dependence on
temperature that is characterized by an exponent γ, such that χ1/4

t ∝ T−γ . From DIGA
calculations the exponent is expected to be γ = 8. Similar calculations as in this work
with 2 + 1 HISQ configurations but in the temperature range 165MeV< T < 240MeV
gave an exponent of γ = 1.96(22) [87]. If we apply this fitting ansatz on our Nτ = 16
data (see figure 6.6), we obtain an exponent of γ = 1.1(2). However, in that tempera-
ture region that fitting ansatz might not be suitable anymore. Also the fact that we
have not continuum extrapolated values might be problematic.

6.6 Discretization effects

Physical observables which are computed on the lattice are affected by discretization
errors. In other words, these observables come with systematic errors which shift
them away from the true physical value. How strongly they are affected by these
cut-off effects depends on the underlying discretization scheme, such as the action
and the observable itself. In order to check how strong the susceptibility is affected
by cut-off effects, we show in figure 6.7 the topological susceptibility as a function
of the temperature for different lattice spacings. It can be seen that the curve of the
finer lattices Nτ = 12, 16 lie considerably lower than the curve of the coarser lattices
Nτ = 8. The differences are about ∆χt/T ≈ 0.17. Hence, the topological susceptibility
suffers from strong cut-off effects. The same observation has also been made in [87],
where 2 + 1 HISQ configurations with a mass ratio of ms/ml = 20 have been used.
To account for these systematic errors, one has to perform the thermodynamic and
continuum limit. This is achieved by taking the infinite limit of the lattice dimensions,
i.e. Nσ → ∞ and Nτ → ∞, while sending the lattice spacing to zero, i.e. a → 0.
However, in this study we do not have enough lattices at our disposal to perform this
task.

6.7 Conclusion

We have measured the topological susceptibility using the gradient flow on 2+ 1 HISQ
configurations with varying light quark masses and fixed physical strange quark mass.

Instead of choosing an arbitrary flow-time at which we extract the topological
susceptibility, we obtained it by averaging over a flow-time plateau. Unfortunately,
the Nτ = 8 lattices at low temperatures did not show a clear plateau. Since all our
Nτ > 8 lattices have shown a plateau from τF > 1.15a2, and since the upper flow-time
limit for a Nτ = 8 lattice is τF = 2a2 (which corresponds to a smoothing range of√
8τFT = 0.5), we suspect that these problematic lattices are not large enough to

show a straight susceptibility plateau on the flow-time axis. On the other hand, even
though no clear plateau is visible, the correct value might still be within that flow-time
interval. This motivated us to extract it from that region in the same way as we did
for all other lattices. We have checked whether the volumes we are using are large
enough to establish topology on these lattices and did not find any finite volume
effects within our statistics. Although we were not able to perform a continuum
extrapolation, the results provide us some initial indications on how the topological
susceptibility behaves towards the chiral limit. Contrary to our intuition and previous
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FIGURE 6.7: Comparison of topological susceptibility as a function of
the temperature at different lattice spacings. Strong cut-off effects are
visible.

studies, we did not see any mass dependence in the susceptibility around the pseudo-
critical temperature. However, we have seen that the susceptibility gives very large
discretization errors, and therefore a proper continuum extrapolation might reveal
a small mass dependence. Note, that the pseudo-critical temperature is different for
different light quark masses, which effectively shift the susceptibilities in T/Tpc, and
hence doing a continuum extrapolation at the right temperature is not trivial. Finally,
we found that the overall temperature trend of the susceptibility seems to agree with
previous studies and expectations, i.e. it decreases with increasing temperature.
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Chapter 7

The Overlap Dirac Eigenvalue
Spectrum

In chapter 2 we discussed the concept and importance of symmetries in QCD. For two
massless flavors of quarks, the QCD Lagrangian has a UL(2)×UR(2) chiral symmetry.
The subgroup SUV (2)× SUA(2)×UV (1) is spontaneously broken to SUV (2)×UV (1)
in the hadron phase giving rise to pions which are much lighter than the nucleons.
An essentially non-perturbative feature of QCD which arises due to strong color
interactions is the axial anomaly UA(1). It is not an exact symmetry in QCD but broken
due to quantum effects [11–13]. However, this anomaly is of special interest, since it
is believed to affect the nature of the chiral phase transition in QCD. In this chapter
we are therefore interested in whether or not an effective UA(1) restoration occurs at
the chiral phase transition. This question can only be answered non-perturbatively.
This chapter is based on the paper in ref. [154], which is at the time of writing this
thesis under peer review in the journal Physical Review D.

Since the up and down quark masses are light compared to the intrinsic scale of
QCD, the UL(2)×UR(2) symmetry is only mildly broken. Therefore, if we calculate ob-
servables that measure the UA(1) breaking in 2+1 flavor QCD with physical u, d quark
masses near the chiral crossover transition and reduce mu,d, we can smoothly reach
the chiral limit. If indeed UA(1) is broken, signatures of the O(4) second order line
could be observed by reducing mu,d. On the other hand if UA(1) is effectively restored
we should approach the Z(2) line or a second order line of the UL(2)×UR(2)/UV (2)
universality class [65]. To investigate this we study in detail the eigenvalue spectrum
of 2 + 1 QCD, where we keep the strange quark mass fixed to its physical value and
successively lower the light quark mass to effectively approach the two flavor chiral
limit of QCD. We then study its effects on UA(1) breaking observables as a function of
light quark mass near the chiral crossover transition.

In recent years lattice studies have provided some interesting initial insights about
the fate of the anomalous UA(1) subgroup of the chiral symmetry in 2 + 1 flavor QCD
with physical quark masses. A UA(1) breaking near and above the chiral crossover
region has been reported by studies on the eigenvalue spectra of 2+1 flavor QCD using
domain wall fermions [15, 16, 155], highly improved staggered quark discretization
[17, 18] and by using the twisted mass Wilson fermion discretization [21]. On the
other hand many recent studies for two flavor QCD, with physical and heavier than
physical light quarks and infinitely heavy strange quark, using overlap fermions [22],
re-weighted spectra of the domain wall fermions [23–26], improved domain wall
fermions [27] as well as from non-perturbatively O(a) improved Wilson fermions [28]
have reported effective restoration of the UA(1) near Tc. A detailed understanding of
the near-zero mode spectrum of the staggered fermion configurations was achieved
using overlap fermions [72] which show similarities to the pure staggered spectrum
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T/Tc ms/ml β Nσ Nτ #conf

0.97 27 6.390 32 8 45
1.05 27 6.445 32 8 108
1.09 27 6.500 32 8 69
0.99 40 6.390 32 8 28
1.03 40 6.423 32 8 52
1.05 40 6.445 32 8 154
1.05 80 6.423 56 8 60

TABLE 7.1: The details of the HISQ configurations analyzed in this
work.

on finer lattices, closer to the continuum [156]. The near-zero modes contribute
dominantly towards the UA(1) breaking [16, 72].

7.1 Numerical setup

The gauge configurations which we use in this chapter are taken from the same
2 + 1 flavor HISQ ensemble as in the previous chapter 6. The strange quark mass
is set to its physical value and the two light quark flavors are degenerate with their
mass varied such that ms/ml = 27, 40, 80. These choices of the light quark mass
correspond to Goldstone pion masses with ∼ 135, 110, 80 MeV, respectively. We focus
on a temperature range which is between Tc and 1.1 Tc, where Tc is the pseudo-critical
temperature (which is a function of the pion mass). The values of Tc are ∼ 158, 157, 154
MeV in the fK scale [61] for pion masses 135, 110, 80 MeV, respectively. We have
chosen the lattices with a temporal extent of Nτ = 8. The aspect ratios are chosen
such that Nσ/Nτ = 4 for the ms/ml = 27, 40 gauge configurations and Nσ/Nτ = 7
for the ms/ml = 80 gauge configurations. This ensures that the corresponding lattice
extent along the spatial directions are large enough mπL ∼ 2.7-3.5 to minimize the
finite volume effects. The details of the configurations used in this chapter are given in
Table 7.1. We use the overlap Dirac operator [37, 157] to measure the eigenvalues of
the HISQ sea configurations since it has an exact index theorem on the lattice [158],
and hence can resolve the small eigenvalues efficiently (see section 4.4 for more
details). Resolving the infrared eigenvalue spectrum of the HISQ configurations with
a HISQ operator on relatively coarser lattices may be difficult due to the breaking of
continuum flavor symmetries [18]. However, on finer lattices which are closer to the
continuum, a peak of ]near-zero modes is observed. This infrared peak can be very
efficiently resolved using the overlap operator on the HISQ sea configurations even on
coarser lattices [156]. We perform a proper tuning of the valence overlap quark mass
and the sea HISQ quark masses and then measure the appropriately renormalized
eigenvalue spectrum and observables sensitive to UA(1) breaking to ameliorate effects
of the mixed Dirac operator set-up used here.

The overlap operator Dov is defined as in equation (4.54). It was realized by
calculating the sign function exactly in terms of the first 50 eigenvectors of the square
of the Wilson-Dirac operator D†

WDW and then representing the contribution of the
higher eigenvalues through a Zolotarev Rational function with 25 terms. The resultant

norm of the sign function DW /
√
D†
WDW deviated from unity on average by about

10−9. The overlap operator satisfied the Ginsparg-Wilson relation up to a numerical
precision of 10−9 or even lower. The parameter M appearing in the overlap operator
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was chosen to be 1.8 since it gave the minimal violation of the Ginsparg-Wilson relation
and approximated the sign function to the best numerical precision on the majority of
the gauge configurations studied.

We then calculate the lowest eigenvalues of the overlap operator on the HISQ sea-
ensembles using the Kalkreuter-Simma Ritz algorithm [120]. For gauge ensembles with
pion masses 135, 110 MeV we have measured the first 100 eigenvalues but increased
the number of eigenvalues to 200 for configurations with pion mass of 80 MeV, due to
the increasing density of the low-lying eigenvalues. The diagonalization of the Dirac
operator becomes numerically quite expensive for the gauge ensembles with lighter
sea quark masses. This is due to the fact that the number of zero modes increases, and
they need to be calculated with very high precision. We have implemented a novel
procedure to circumvent this problem which we describe in the following section.

7.1.1 Accelerating the overlap Dirac eigenvalue measurements

The conjugate gradient algorithm which is used to calculate the eigenvectors only
works on Hermitian operators. The overlap Dirac matrix Dov, however, is a normal
matrix. To account for that, one usually diagonalizes instead the square of the overlap
Dirac matrix D†

ovDov, which is Hermitian. The eigenvalues of this Hermitian operator
come in degenerate pairs with opposite chiralities. The zero modes however are
non-degenerate with distinct chirality and their number and the chirality depends on
the topological charge of the gauge configurations. A significant amount of time of
the diagonalization routine is spent on measuring the zero modes with a reasonable
precision. We therefore projected our Dirac operator to measure only those eigenmodes
which have a chirality that is of opposite to those of the zero modes. The corresponding
eigenspace has no zero modes, and leaving them out accelerates the diagonalization
routine significantly. The zero-modes do not contribute to the physical observables
in the thermodynamic limit; thus measuring the eigenvalue spectrum without zero-
modes allows for a significant speedup of our calculations. This is especially true
for the gauge ensembles with sea-quark masses towards the chiral limit where the
probability of occurrence of zero modes increases. We have explicitly checked on a
few configurations that for the lattice volumes we have considered the contribution
from the zero modes to the renormalized observables is negligibly small.

Restricting the measurements to consider eigenvalues of only one chirality is
achieved by using appropriate projection operators

P± =
1

2
(1 ± γ5) , (7.1)

which project the overlap Dirac matrix onto a vector space of one chirality, i.e.
P±DovP±. This projected Dirac operator is Hermitian, since

(P±DovP±)
† = P±D

†
ovP± = P±γ5Dovγ5P± = (±P±)Dov (±P±) = P±DovP±. (7.2)

This property can further be used to accelerate our algorithm, since we can now use the
Hermitian operator P±DovP± instead of D†

ovDov in the conjugate gradient. However,
in order to project the overlap Dirac matrix onto a vector space which is devoid of
any zero modes, we need to know which chirality these modes have. Thanks to the
index theorem this prior knowledge can be extracted from the topological charge Q
using its field-theoretical definition. The sign of the topological charge corresponds
to the chirality of the zero-modes. For that we use the topological charges which
we have already extracted in chapter 6 using the Zeuthen flow and the improved
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discretization of the topological charge density. The chiralities have been extracted
from the topological charge at a flow-time of

√
8τFT = 0.45. We have also confirmed

already in the previous chapter that these configurations do not suffer from topological
freezing which assures that we have ergodically sampled a sufficient number of
independent configurations for this study.

In the measurements of the overlap eigenvalues for the ms/ml = 80 ensemble,
we have observed a significant slowing down of the algorithm to converge to the
desired precision. The reason for that was that these gauge configurations tend to
have significantly more small eigenvalues, some of which are localized on the scale of
the lattice spacing. In order to improve the convergence, we systematically removed
these ultra-violet defects by smoothing the configurations using the Zeuthen flow up to
a flow-time of τF = 0.32a2 before measuring the eigenvalue spectrum with the overlap
Dirac operator. The smoothing of the gauge fields has been used earlier in the context
of measuring the hadron spectrum using valence overlap fermions [159, 160].

7.2 Analyzing the overlap eigenvalue spectrum

In the section 2.5 we have shown some scenarios where one can also deduce from the
Dirac eigenvalue density itself whether the anomalous UA(1) is restored or broken.
Hence, in this section we cover the general features of the eigenvalue spectrum of
the QCD Dirac operator. In particular, we study the spectrum of our ensemble near
and above the chiral crossover transition. The eigenvalue distributions ρ(λ) can be
characterized by essentially three distinct features: a non-analytic dependence in λ
which forms a zero mode peak and a near-zero mode accumulation as well as a regular
analytic dependence in λ which forms the bulk eigenvalue spectrum [72]. Since we do
not measure exact zero modes our plots do not show the corresponding peak in ρ(λ).
The non-analytic near-zero region is denoted as the infrared peak. In figure 7.1 we
show the eigenvalue density ρ(λ) as a function of the imaginary part of the eigenvalues
λ of the overlap Dirac operator for temperatures near Tc and for physical quark masses.
We observe that the near-zero modes and the bulk modes overlap considerably. Also
the near-zero modes appear to develop a peak towards the infrared region. Similar
features have also been observed in ref. [72] for HISQ ensembles with heavier than
physical light quark masses ms/ml = 20. Figure 7.2 shows a plot of the eigenvalue
density for lower than physical quark masses ms/ml = 40, for different temperatures
above Tc. Qualitatively, these distributions show similar features of the eigenvalue
spectrum as for the physical or heavier than physical quark mass distributions. The
presence of the infrared region is easily distinguishable from the bulk modes in the
chiral crossover region. Remarkably this near-zero peak becomes more prominent as
the temperature is increased gradually from Tc. This is due to less contamination by
the bulk modes, whose density shifts further towards the larger eigenvalues.

At this point we want to remind the reader that the bare HISQ eigenvalue spectrum
computed without the overlap operator as a valence or probe operator, does not show
any peak in the infrared region [17, 18] on coarser Nτ = 8 lattices. However, such a
peak appears in bare HISQ eigenvalue spectrum when one goes towards more finer
Nτ = 16 lattices [156]. By using the overlap Dirac matrix as the valence operator on
the HISQ sea ensembles, this lack of an exact index theorem for the HISQ operator is
corrected, such that the infrared peak can be extracted even on the coarser Nτ = 8
lattices. Therefore, this non-analytic peak in the eigenvalue spectrum is not a lattice
artifact, which has been discussed earlier in the context of domain wall fermions on
comparably small lattice volumes [24, 25]. In fact the presence of such a peak just
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above Tc can be explained by an interacting ensemble of topological clusters [161].
In the high temperature phase a dilute gas of instantons [15, 72, 162, 163] may
contribute to this peak. It has been recently argued that the existence of such near-
zero modes in the chiral symmetry broken phase of QCD with massless quarks, can
lead to the disappearance of Goldstone excitations at finite temperature [164]. Hence,
we will study the sensitivity of the slope of the bulk region as well as the overlap
between the near-zero and the bulk modes to the change in temperature.
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FIGURE 7.1: The eigenvalue density of the massless valence overlap
Dirac operator measured on HISQ sea configurations with ms/ml = 27,
as a function of temperature, near and just above Tc.

Calculations based on chiral Ward identities of up to four-point correlation func-
tions in the pseudo-scalar and scalar meson channels have shown that if the eigenvalue
distribution for QCD with two light quark flavors is an analytic function in m2

l , the
analytic (bulk) part of the Dirac eigenvalue density in the chirally symmetric phase
should be proportional to [71]

lim
ml→0

ρ(λ,ml) ∼ λ3 +O(λ4). (7.3)

With this constraint it was further shown that all up to six-point correlation functions
that are related through the UA(1) symmetry will be degenerate. Consequently the
anomalous breaking of UA(1) would be invisible in these correlation functions [71].

We are therefore interested in the bulk region of the eigenvalue spectrum as a
function of the sea-quark mass at different lattice spacings to understand the fate
of UA(1) just above Tc. Motivated by ref. [72], we fit the eigenvalue distribution at
different temperatures to the ansatz,

ρ(λ) =
ρ0A

A2 + λ2
+ c(ml)Θ(λ− λ0)|λ|γ(ml) , (7.4)

where γ(ml) characterizes the leading order analytic dependence of the eigenvalue
density on λ and can be in general a function of ml. The exponent γ is extracted
by choosing a threshold λ0 in the eigenvalues that separates the non-analytic peak
from the analytic part. In equation (7.4) this is implemented through a Heaviside step
function Θ in the second term of the fit ansatz. Since we have measured only O(100)
eigenvalues per configuration, we can study only the leading analytic behavior for the
infrared part of the eigenvalue spectrum for λ > λ0. In table 7.2 we summarize the
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FIGURE 7.2: The eigenvalue density of the valence massless overlap
Dirac operator measured on the HISQ sea configurations with ms/ml =
40.

results of the fit, the exponent γ for different quark masses, including the values of
the cut-off λ0, temperatures and the goodness of the fits.

At Tc ≤ T ≤ 1.1 Tc we observe that γ is independent on the sea-quark mass, which
is consistent with the results obtained previously on HISQ fermions [72] with heavier
than physical quark masses. In fact, the exponent turned out to be γ ∼ 1 for the
temperature range we studied so far. This is consistent with predictions from chiral
perturbation theory [165, 166]. In ref. [71] it has been argued that the coefficient
c(ml) in equation (7.4) goes as m2

l in the chiral limit for two flavor QCD. This in turn
implies that the eigenvalue spectrum in the chiral symmetry restored phase would not
show any linear dependence on λ. In the context of the Columbia plot in figure 2.1,
the two flavor limit is approached along the ms = ∞ line. We check the prediction
from ref. [71] instead by approaching the two flavor chiral limit along the line of
constant physical value of ms. This is achieved by studying the dependence of c(ml)
as a function of the light quark mass ml. Since we are interested in the temperature
regime where the chiral symmetry is restored, we neglect the lowest two β values for
light sea-quark masses ms/27,ms/40 respectively. Considering the dimensionless ratio

ρ(λ)

T 3
=
c(ml)

T 2
· λ
T
, (7.5)

the idea is to perform a linear fit to c(ml)/T
2 as a function of m2

l /T
2. If c(ml) indeed

goes as m2
l to leading order in the light sea-quark mass ml, then this fit should have

a zero intercept along the vertical axis. Figure 7.3 shows the resulting c(ml)/T
2

extracted from the eigenvalue densities for T & Tc and different light quark masses.
The fit has a constant intercept with the vertical axis when a chiral extrapolation
has been performed which even dominates over the usual O(m2

l /T
2) term. As a

consequence, the eigenvalue density to leading order should go as O(λ) instead of
O(λ3) just above above Tc even in the chiral limit.

We also observe that no gap opens up in the infrared part of the eigenvalue
spectrum. Hence, we can conclude that even when we approach the chiral limit, the
UA(1) remains broken. This is in addition to the contribution to the UA(1) breaking
that comes due to the non-analytic peak in the eigenvalue spectrum.
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ms/ml β T/Tc λ0/T γ χ2/dof

40 6.390 0.99 0.45 1.09(22) 0.70
40 6.423 1.03 0.5 0.94(23) 0.99
40 6.445 1.05 0.5 1.08(15) 0.66
27 6.390 0.97 0.4 1.03(18) 0.66
27 6.445 1.03 0.5 1.09(11) 0.90
27 6.500 1.09 0.5 1.03(12) 0.94

TABLE 7.2: The temperature (T ), the exponent γ characterizing the
leading order λγ rise of the bulk eigenvalues λ and the goodness of
fits performed on eigenvalue densities for different choices of the light
sea-quarks and physical value of strange sea-quarks.
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7.3 Quantifying UA(1) breaking in the chiral limit

The low sensitivity of the exponent γ of the bulk modes to the sea-quark mass indicated
already that the UA(1) remains broken when we approach the chiral limit. In this
section we will provide a more quantitative estimate of the UA(1) breaking towards
the chiral limit. In particular, we want to compare the eigenvalue spectra at different
quark masses and also compare them with the earlier results obtained with the overlap
fermions on HISQ configurations [72] for heavier than physical quark masses. It is
however important to renormalize the eigenvalue spectra for such a comparison, since
the eigenvalue density is not a renormalization group invariant quantity. Here we
choose a renormalized eigenvalue density using the valence strange quark mass. The
valence overlap quark mass has been tuned to the HISQ sea quark masses by matching
the renormalized quantity ∆, which is defined as

∆ =
ms〈ψ̄ψ〉l −ml〈ψ̄ψ〉s

T 4
, (7.6)
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where
〈
ψ̄ψ
〉

is the chiral condensate (see eq. (2.24)), which can be re-expressed in
terms of the overlap Dirac operator Dm = Dov(1− am/2M) + am, i.e.

〈
ψ̄ψ
〉
(m) =

T

V

〈
tr
(
D−1
m

∂

∂Dm

)〉
(7.7)

with a (valence) quark mass m. By rewriting eq. (7.7) in terms of overlap eigenvalues
we obtain the formula,

a3〈ψ̄ψ〉(m) =
1

N3
σNτ

[
〈|Q|〉
am

+

〈∑
λ̃ 6=0

2am(4M2 − |λ̃|2)
|λ̃|2(4M2 − (am)2) + 4(am)2M2

〉 , (7.8)

where Q is the topological charge and λ̃ is the eigenvalue of Dov, which is scaled by
the defect height parameter M . The term which arises due to the zero modes on
the right hand side of this expression has been neglected, since it is a finite volume
artefact to the above observable. To make sure that the finite volume effects are under
control in our tuning procedure, we have checked explicitly that this neglected term
provides negligibly small corrections to ∆. When tuning ms using the observable ∆ we
keep the ratio ml/ms fixed for the valence and sea quark sectors. With that constraint
we calculate ∆ in the valence quark sector from the first O(100) eigenvalues of the
overlap Dirac operator measured on the HISQ ensembles. For the sea quark sector we
calculate the exact results for ∆ obtained by the inversion of the HISQ operator using
stochastic sources on the same ensemble. Then we match the values of ∆ obtained
from the valence quark sector with the values of ∆ obtained from the sea quark sector
to extract the tuned ms of the valence quarks that correspond to the HISQ sea quark
masses which have been tuned to the physical ones before. With these values we can
describe the physics of the underlying sea quarks using the valence overlap fermions.
Table 7.3 shows the results for the tuned strange quark masses for different ensembles.

ms/ml β ms
sea ms

val(∆)

80 6.423 0.0670 0.025
40 6.390 0.0694 0.090
40 6.423 0.0670 0.058
40 6.445 0.0652 0.038
27 6.390 0.0694 0.098
27 6.445 0.0652 0.051
27 6.500 0.0614 0.032

TABLE 7.3: The valence strange quark masses obtained by matching
the observable ∆ measured using the eigenvalue density of the valence
overlap to that measured by inversion of the sea HISQ Dirac operator.

Figure 7.4 shows a comparison of the renormalized eigenvalue density msρ(λ)/T
4

as a function of λ/ms. The number of bins of these renormalized densities were kept
fixed for different ensembles. The bulk part of the renormalized spectrum shows a
linear rise with increasing light quark mass, while the sensitivity of the near-zero peak
is very weak to that change in quark mass. The spectrum of the ml = ms/80 gauge
configurations is only shown up to λ/ms ∼ 2.5 with the first 200 eigenvalues we have
measured, since as mentioned earlier, these configurations have an increasing density
of these small eigenmodes.



7.3. Quantifying UA(1) breaking in the chiral limit 81

 0

 0.2

 0.4

 0.6

 0.8

 0  0.5  1  1.5  2  2.5  3  3.5  4

ρ
(λ

)m
s
/T

4

λ/ms

ml=ms/80
ml=ms/40
ml=ms/27

FIGURE 7.4: The renormalized eigenvalue density of the QCD ensem-
bles at T = 1.05 Tc generated using HISQ discretization and measured
using an appropriately mass-tuned valence overlap operator. These are
shown for three different choices of the light quarks.

Next we proceed to estimate the sensitivity of UA(1) to the light quark mass and
whether it is effectively restored above the crossover transition using the tuned ms.
However, UA(1) has no unique observable that is sensitive to its restoration, because
it is not an exact symmetry. One observable which we introduced in section 2.5
as a measure of UA(1) is the difference of the integrated two-point correlators of
isospin-triplet pion and delta mesons, χπ − χδ (see eq. (2.28)). In fact one needs to
further look at the degeneracy between higher point correlation functions for different
meson quantum number channels [71, 167, 168]. In this work as a first test, we focus
on this specific two-point correlation function. Through a chiral Ward identity χπ − χδ
can also be obtained by [72]

χπ − χδ =
〈ψ̄ψ〉
m

− χconn (7.9)

where 〈ψ̄ψ〉 is the chiral condensate as defined in eq. (7.7). The connected chiral
susceptibility χconn is defined as

χconn =
T

V

〈
∂m tr

(
D−1
m ∂mDm

)〉
, (7.10)

where Dm = Dov(1 − am/2M) + am is the Dirac operator for overlap quarks with
a (valence) quark mass m. Thus, ω ≡ χπ − χδ can be expressed in terms of the
eigenvalues of the overlap Dirac operator [72]

a2ω(m) =
1

N3
σNτ

[
〈|Q|〉
(am)2

+

〈∑
λ̃ 6=0

2(am)2(4M2 − |λ̃|2)2[
|λ̃|2(4M2 − (am)2) + 4(am)2M2

]2
〉 . (7.11)

We used the first O(100) eigenvalues of the overlap Dirac operator at the values of
the tuned valence quark masses to measure the quantity in eq. (7.11). Chiral Ward
identities ensure that χπ − χδ = χdisc, where χdisc is the disconnected part of the
integrated iso-singlet scalar meson correlator. This relation can be used to verify
the quality of our quark mass tuning by checking whether it is satisfied using our
data. For χdisc we use the previously measured data for physical quark masses from
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ref. [62]. This data has been obtained by the inversion of the HISQ Dirac operator
using stochastic sources on Nτ = 8, 12, 16 lattices. Using that data, we perform a
continuum extrapolation of m2

l χdisc/T
4 and compare it to the observable m2

l ω/T
4,

which we have calculated using the eigenvalues of the valence overlap Dirac operator
on the same HISQ ensembles using the tuned valence quark masses. The results are are
shown in figure 7.5. We observe a reasonably good agreement of these renormalized
quantities, which gave us further confidence on our quark mass tuning procedure.
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FIGURE 7.5: Comparison of χπ − χδ measured using the overlap eigen-
values to the continuum estimates of χdisc using data from ref. [62],
shown for physical quark masses.

With this confidence, we study now the quark mass dependence of the appropri-
ately renormalized UA(1) breaking observable m2

l ω/T
4 . The anomalous UA(1) is

effectively restored in the chiral limit if it has a trivial dependence on the light quark
mass (as also expected in the perturbative regime), i.e. if ω ∼ m2

l . On the other hand
if the UA(1) is broken, then the leading order behavior is ω ∼ O(m0

l ), which gives us
the effective magnitude or the strength of UA(1) breaking. We want to remind the
reader that we have calculated only the first O(100) of the O(106) of eigenvalues of
the QCD Dirac operator. However, these infrared eigenvalues contribute significantly
to the UA(1) breaking. When chiral symmetry is effectively restored, our data can be
fit to the ansätze,

m2
l (χπ − χδ)

T 4
=
m2
l ω

T 4
= a1

m2
l

T 2
+ a2

m4
l

T 4
, (7.12)

= b1
m4
l

T 4
+ b2

m6
l

T 6
. (7.13)

The first ansatz denotes UA(1) breaking whereas the second ansatz is valid on its
effective restoration. In figure 7.6 we show our calculated m2

l ω/T
4 at 1.05 Tc for three

different tuned light valence quark masses. The red band in this figure corresponds
to a fit using equation (7.12). The data fit quite well to that ansatz. The largest
contribution to the uncertainty comes from the value corresponding to the lowest
quark mass. On the other hand, our data disfavors the second fit ansatz in equation
(7.12), since the quality of the fit was χ2/d.o.f. ≈ 5, which is almost a factor 2.5 larger
than that corresponding to the first ansatz.

The extracted magnitude of (χπ − χδ)/T
2 in the chiral limit is a1 = 156± 13. This

value is clearly finite and non-zero within the current uncertainties, and therefore we
conclude that UA(1) is broken above the chiral crossover temperature for the Nτ = 8
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lattices we have studied so far. This is even the case when we approach the chiral limit
along the line of constant physical value of ms.
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FIGURE 7.6: The renormalized UA(1) breaking parameter shown as a
function of light quark mass at 1.05 Tc.

7.4 Conclusion

In this chapter we have calculated the eigenvalue spectrum in the chiral symmetry
restored phase of QCD and estimated the fate of anomalous UA(1) symmetry as we
approach the chiral limit along the line of constant physical strange quark mass. The
calculations have been carried out on selected Nτ = 8 lattices from the HISQ ensemble,
which have also been used in the previous chapter. Since the HISQ operator does
not realize all the continuum flavor and anomalous symmetries on a finite lattice, we
use the overlap Dirac matrix as the valence or probe operator to correctly measure
the number and density of the near-zero eigenmodes of these ensembles. In order to
accelerate the measurements, we project the overlap Dirac operator to a vector space
which is devoid of its zero modes using the chiralities extracted from the topological
charge. The valence quark masses have been tuned to the sea quark mass to obtain
physical and renormalized results even with different valence and sea quark actions.
From the appropriately renormalized eigenvalue density of the QCD Dirac operator
we have observed that the eigenvalue density can be represented as ρ(λ) ∼ λ in the
chiral limit at a temperature of 1.05 Tc. This is in contrast to the expectations of
ref. [71], where the leading order behavior of the eigenvalue spectrum of QCD was
derived to be ρ(λ) ∼ λ3 for Nf = 2 QCD in the chiral limit. We finally observe that the
renormalized observable m2

l (χπ − χδ)/T
4 results in a non-zero value. Therefore, we

conclude that UA(1) is broken when one approaches the chiral limit along the line of
constant physical ms.

So far we only studied a single lattice spacing, i.e. Nτ = 8. Although computation-
ally demanding, analyzing remaining cut-off effects due to the HISQ sea quark sector
or even continuum extrapolations remain for future studies.





85

Chapter 8

The qq Correlation Function and
the Sphaleron Rate

With increasing temperature, topological tunneling through the sphaleron barrier, i.e.
instantons, become more and more suppressed. On the other hand, the temperature
acts as a catalyst which allows transitions between two vacua by jumping over that
potential barrier instead of tunneling through it. Hence, these jumping phenomena,
which are called sphalerons become more present (see section 3.5). This induces chiral
imbalances in the quark gluon plasma through the axial anomaly which may affect
for example the chiral magnetic effect [5, 6]. There are semiclassical approaches to
determine the sphaleron rate at high temperatures [39], but they are not reliable in the
relevant coupling region. Since non-perturbative studies on the SU(3) sphaleron rate
at finite temperature are rather limited, it is therefore well-motivated to investigate
the sphaleron rate using lattice QCD methods. A recent study can be found in [7].

The sphaleron rate is defined as the mean-squared change of the Chern-Simons
number over the 4-volume in Minkowski time (see eq. (3.41)). For our purposes,
however, it is more useful to write the sphaleron rate in terms of the low-frequency
part of the spectral function of the two-point topological charge density correlation
function at zero spatial momentum

Γsphal = lim
ω→0

2Tρq (ω)

ω
, (8.1)

since it is related to the Euclidean topological charge density correlation function
through an integral relation (see eq. (3.42) and (3.43)). This allows us to compute
the sphaleron rate non-perturbatively via the Euclidean topological charge density
correlation function.

At first sight the above mentioned relations sound straightforward to implement.
However, a couple of obstacles need to be addressed. First of all the topological
charge density as well as its correlation function are highly affected by high frequency
fluctuations on the lattice. Therefore, a noise reduction technique, such as the gradient
flow, needs to be applied before measuring the correlation function. Next, a proper
continuum and flow-time extrapolations need to be performed to account for lattice
artifacts and smoothing effects. Finally, the extraction of the spectral function is a
challenging task, since it is hidden inside the integral which we measure.

In this chapter we address all these issues and develop a method to measure the
sphaleron rate non-perturbatively on the lattice based on continuum and flow-time
extrapolated correlation functions. A similar study has been done previously in the
context of color-electric two-point correlation function [169]. This chapter is based on
the paper in ref. [170], which is at the time of writing this thesis under peer review in
the journal Physical Review D.
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8.1 Numerical setup

The lattices which we use within this chapter are generated in the quenched approxi-
mation using the standard Wilson gauge action. Initially, we have performed 5000
heat bath sweeps to make sure that the configurations are sampled from thermal
equilibrium. The thermalized configurations are then used as initial configurations
to generate more configurations using a combined sweep of one heat bath and four
overrelaxation steps. We stored the configurations of only every 500 combined sweeps
to account for possible autocorrelation effects between configurations. In this way we
eliminated the autocorrelations of all our measured quantities except the topological
charge, which we will discuss later.

In order to perform a proper continuum extrapolation, we have chosen five different
isotropic lattices with the temperature chosen to be T = 1.5Tc, where the critical
temperature Tc is defined via the Sommer parameter r0Tc = 0.7457(45) [171]. We used
the Sommer parameter r0 [172] as the scale reference to determine the temperatures
with parameterization from [171] and updated coefficients from [173]. The generated
sample which we use in this chapter is the same as in our recent paper [169]. A
summary of the configurations is listed in table 8.1.

a (fm) a−1 (GeV) Nσ Nτ β T/Tc #conf.

0.0262 7.534 64 16 6.8736 1.51 10000
0.0215 9.187 80 20 7.0350 1.47 10000
0.0178 11.11 96 24 7.1920 1.48 10000
0.0140 14.14 120 30 7.3940 1.51 10000
0.0117 16.88 144 36 7.5440 1.50 10000

TABLE 8.1: Lattice spacings, lattice extents, β values and statistics of
configurations in this work. The lattice spacing a is determined by the
Sommer scale (see [172]).

For the topological charge density q(x) we use the discretization in eq. (4.74) and
a a2-improved implementation of the field strength tensor using a mixture of square
and 1× 2 rectangular plaquettes [124] (see section 4.5).

Just measuring the topological charge density q(x) as in eq. (4.74) on our gener-
ated configurations will however result in values which do not only capture topological
information. The topological charge density is in general always contaminated by
non-topological high-dimension operators, which are suppressed by powers of the
lattice spacing a. If fluctuations with wave number k ∼ 1/a are present, these opera-
tors contaminate our measurement with non-topological effects. Only smooth gauge
fields allow for a well-defined definition of q(x) that accurately captures topological
information. Therefore, a smoothing technique needs to be applied before measuring
q(x) to dampen the highest-frequency fluctuations.

In this work we use the gradient flow as a noise reduction method. As described
in section 4.7 a Symanzik improved discretization of the gradient flow is used. It
is called the Zeuthen flow [145] and introduces no new O(a2) discretization errors.
Integrating the discretized flow equation is achieved by a 3rd order Runge-Kutta
with an adaptive step-size algorithm. The same numerical implementation of the
gradient flow is also used in [169]. The observables are measured on flow-times√
8τFT ∈ {0, 0.001, . . . , 0.2, 0.205, . . . , 0.3}.

The gradient flow improves our operators in two ways. First, with increasing
flow-time UV fluctuations get eliminated and correlation functions become less noisy.
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Second, the gradient flow improves the topological behavior of q(x) by eliminating
such short-distance fluctuations. In the next sections we will see that there is a
lattice spacing dependent flow-time above which q(x) correctly captures topological
information. Values which are smaller than that can not be trusted, and hence must
be avoided. The correlation function, however, is τF-dependent and only the τF → 0
limit (after performing the continuum limit) gives the desired correlation function.
Therefore, a flow-time extrapolation has to be performed in order to obtain this limit.
However, with increasing flow-time, the correlation functions eventually differ so
much that the finite τF correlator is not useful anymore for the τF → 0 extrapolation,
since very coarse lattices lie outside the scaling region.

The gradient flow corrections of a correlation function measured over a separation
τ are expected to be dependent on τF/τ

2. Only sufficiently small τF/τ
2 values will be

in a useful scaling window where they help to determine the τF → 0 extrapolation. For
larger values physical information is lost. It has been shown that above a certain ratio
of τF/τ

2, the correlation function even has the wrong sign [174]. Hence there is also a
τ -dependent upper limit on available τF values. In [174] the authors conservatively
advise

√
8τF < 0.33τ based on a leading order perturbative calculation.

8.2 Determining the topological charge density

To compute the sphaleron rate we need to compute the topological charge density
q(x), eq. (3.31). Therefore, it is necessary to verify whether q(x) is actually measuring
the topological charge density correctly.

Since the gluonic definition of the topological charge density returns only useful
results on smooth configurations, we need to apply a smoothing procedure on the
gauge field before measuring q(x). The gradient flow, which we have chosen for this
task, smoothes the field with increasing flow-time τF. Therefore, the question arises:
What is the minimum flow-time we need to obtain reliable values of q(x) that capture
topological information of the gauge field? To tackle this question, we compute the
topological susceptibility χt

χt =
〈Q2〉 − 〈Q〉2

V
, (8.2)

where V is the four-volume and Q is the topological charge (see eq (4.73)). We
compute this quantity on each lattice as a function of the flow-time. The result can
be seen in figure 8.1. We find that the topological susceptibility stabilizes on all
lattices after the flow-time τF = 0.5a2. The susceptibility at smaller flow-times is
still contaminated by non-topological artifacts. Hence, we use only χt at flow-times
τF ≥ 0.5a2 to be sure that q(x) represents the topological charge density.

Another question is related to a general problem of topology on the lattice, i.e. how
does topological freezing affects our measurements? It is well known that the topolog-
ical charge Q evolves slowly on finer lattices, which results in large autocorrelation
times and poor statistics. Since the topological charge Q is obtained by integrating the
density q(x) over the spacetime volume, it makes sense to ask the question whether
the correlation function of q(x) might suffer on topological freezing as well. Figure 8.1
already shows that the susceptibility is much larger for the finest lattices which is an
indication of topological freezing. Indeed, as can be seen from the trajectory in figure
8.2, the topological charge Q of our configurations is affected by strong topological
freezing as we go to finer lattices. However, it is not obvious whether the correlation
function of q(x) should be sensitive to the Euclidean topological sector, especially
since the sphaleron rate is not related to the topological susceptibility at all. Also at
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FIGURE 8.1: Topological susceptibility measured at different flow-times.
The vertical line is the flow-time which we have chosen as a lower limit
to ensure that q properly captures topology.

weak coupling, Euclidean topology and instantons are completely unrelated to the
sphaleron rate [175].

In figure 8.2 we show the trajectory of Q of our configurations. We indeed see that
the topological charge freezes more and more as we go to finer lattices. Therefore,
we need to investigate the extent to which the topological charge density correlators
are affected by the topological sectors and, therefore, how much of a problem of
topological freezing may be. We do this by measuring the qq correlators separately
in different topological sectors, and then analyzing how much a misweighting or
exclusion of the Q 6= 0 sectors might affect our results. We choose the Nτ = 16 lattice
to analyze this, since the topological susceptibility is relatively well determined there
as it can be seen in figure 8.1. In order to improve our determination of the properties
of the Q 6= 0 sector, we perform a Markov chain simulation in which we prevent
the Q = 0 sector via an extra accept-reject step, to obtain a sample of only Q 6= 0
configurations. We then compare the Q = 1 correlation function with both the Q = 0
sector, and the proper mixture of Q = 0 and Q 6= 0, i.e.

G(τ) =
ZQ=0GQ=0(τ) + ZQ=1GQ=1(τ)

ZQ=0 + ZQ=1
, (8.3)

where ZQ=0 and ZQ=1 are the numbers of configurations of the Q = 0 and Q = 1
sample, respectively. GQ=0(τ) is the correlator computed on the Q = 0 sample, while
GQ=1(τ) is computed on the Q = 1 sample. The results are shown in Figure 8.3.
The Q = 1 sector disagrees with the Q = 0 sector by more than their error bars,
but nevertheless the difference is so small that, given the small fraction of Q = 1
configurations in the full sample, the difference is smaller than our statistical errors
even for the largest flow time where the errors are the smallest. This implies that a
misweighting of the Q = 1 sector, even by a factor of 2 relative to its correct weighting,
will change the correlation functions of interest by less than their statistical errors and
can therefore be ignored. Since the finer lattices have a still less topological topological
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FIGURE 8.2: Trajectory of the topological charge at τF ≈ a2. The x-
axis shows the configuration number. Subsequent configurations are
separated by 500 sweeps. Different streams have been concatenated.

fluctuations, and therefore even less Q = 1 configurations, we expect that this result
holds for those lattices as well.

Furthermore, we check whether the correlation function is affected by autocor-
relations, due to the topological freezing as seen in figure 8.2. We have computed
the autocorrelation time of the correlation function at separation τT = 0.5 of the
finest lattice Nτ = 36. The result is seen in figure 8.4. We observe that the correlation
function does not suffer from autocorrelations at all.

In summary, from the comparison of the correlation function between different
topological sectors on coarser lattices as well as the autocorrelation times of the corre-
lation function on finer lattices we do not expect that topological freezing contaminates
our results. Hence, we will proceed without considering topological freezing further.

8.3 Continuum and flow-time extrapolation

When we compute quantities on the lattice we obtain values which are dependent
on the lattice spacing. However, physics only resides at zero lattice spacing. Hence,
we need to perform a continuum extrapolation of the lattice data. Similarly, also
correlation functions measured on gauge fields with non-zero flow-time need to be
extrapolated to τF → 0 to make them physically meaningful, especially since the
integral eq. (3.43) which we use to extract the spectral function only holds for the
correlation function at τF = 0. Therefore, we proceed as follows: First, we perform the
continuum extrapolation at each flow-time and then use these continuum extrapolated
values of GτF(τ) to extrapolate the flow-time to τF → 0.
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FIGURE 8.4: Autocorrelation time of the topological charge density
correlator at separation τT = 0.5 of the finest lattice Nτ = 36.

8.3.1 Interpolation

Before we can perform a continuum extrapolation, we have to make sure that the
correlation functions of all our lattices provide the same separations. This is however
not the case, since our lattices have different values of Nτ . Therefore, we first need to
interpolate the coarser lattices in order to obtain intermediate values at separations
which match with the separations of the finest lattice. The interpolation is performed
by using cubic splines, where we constrained the first derivative at τT = 0.5 to be zero.
This constraint should reflect the symmetry of the correlation function on the lattice
around the midpoint. The correlation function at separations smaller than τT = 0.166
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FIGURE 8.5: Topological charge density correlation function at flow-
time

√
8τFT = 0.15 for all lattice spacings. Cubic splines have been used

to perform these interpolations. The error bands have been calculated
during the interpolation procedure.

increases rapidly to values much higher than at larger separations. This makes the
cubic spline interpolations unstable at separations larger than τT = 0.166. However,
the shorter distances are not very helpful in extracting the low-frequency spectral
function. Also our scaling window of useful τF values closes up at small τT , which
makes any attempt to study smaller τT values useless. The interpolation range has
therefore been chosen to be τT ∈ [0.166, 0.5]. Examples of a set of interpolations at
one selected flow-time are shown in figure 8.5.

8.3.2 Continuum extrapolation

Using the interpolated values we performed the continuum extrapolation by linear fits
in 1/N2

τ at all available separations of the finest lattice (Nτ = 36) using the ansatz

Gτ,τF(Nτ )

T 5
= m ·N−2

τ + b, (8.4)

where b is the continuum correlator normalized by T 5.
In the next subsection, a minimum and maximum range for τF will be defined that

restricts the τF → 0 extrapolation to a correct scaling window. However, that window
can interfere in some cases with the condition τF > 0.5a2, which we obtained in the
previous section 8.2 in order to get a proper definition of q(x). To account for that, we
exclude all lattices where this conflict occurs from the continuum extrapolation. Or in
other words, for each τ value, we include only lattices in the continuum extrapolation
whose minimum from section 8.2 is smaller than the scaling window minimum which
will be introduced in the next subsection.

The statistical error is estimated using bootstrap resampling with 10000 samples,
where each sample consists of 10000 configurations. The interpolations and extrapola-
tions are performed within these samples.

In figure 8.5 we see that the relative cutoff effects of the lattices are small at√
8τFT = 0.15. The same is also visible in figure 8.6. There we show the correlator
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FIGURE 8.6: Continuum extrapolation of some selected separations at
flow-times halfway between the beginning and the end of each flow
range (8.5).

as a function of 1/N2
τ for some selected separations at flow times chosen from a flow

range which we will define in the next section (see Eq. (8.5)). The two smallest
separations exclude the coarsest lattice, which is a result of the minimum-flow-time-
condition conflict, which we discussed earlier. In all cases the continuum extrapolated
values agree with the lattice data within error bars. Since the gradient flow produces
renormalized operators that are insensitive to lattice-scale fluctuations, these findings
are not surprising.

8.3.3 Flow-time extrapolation

For the flow-time extrapolation τF → 0 we need to decide on a useful flow-time range.
A lower limit is required, since the correlation function at very low flow-times suffers
from UV fluctuations, which would then also deteriorate the flow-time extrapolation.
Values extracted at very large flow-times, on the other hand, are also unreliable,
since the gradient flow has most likely smoothed out relevant physical information
at these flow-times. Therefore, an upper limit for the flow-time extrapolation is also
required. According to the small flow-time expansion (SFtX) method [176], the
main modifications by gradient flow could be captured by an extrapolation linear in
flow-time. A separation-dependent criterion for the upper flow-time limit has been
proposed in [174] based on a leading order perturbation calculation. It has been
determined by allowing the leading-order term of 〈F aµνF̃ aµν(τ)F bαβF̃ bαβ(0)〉 to differ
from its non-flowed counterpart by at most 1%.

Unfortunately, this constraint turned out to be too strict for our non-perturbative
results. Using this upper limit in flow-time we do not observe that linear-in-flow-time
behavior at all. Hence, we decided to loosen that criterion to a 20% deviation. Values
below that upper limit in flow-time, namely

√
8τmax

F T = 0.5220τT , show the required
linear behavior for our flow-time extrapolation.
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which are used to perform the flow-time extrapolations, while the black
lines on top indicate the linear extrapolations. The gray regions are not
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For the lower limit in flow-time we chose it to be half of the upper limit. We thus
perform a linear τF → 0 extrapolation in the range

τF ∈ [0.5τmax
F , τmax

F ] (8.5)

A general analysis of continuum operators on gradient-flowed field configurations
shows that, in terms of unflowed operators, they can be expanded as an operator
product expansion, and correspond to the desired operator, possibly with a renormal-
ization factor, plus a series of high-dimension operators with compensating positive
powers of τF as determined by operator dimension, see for instance refs [136, 177].
In our case we know that the topological charge does not renormalize (as we easily
verify by seeing that it integrates to an integer) and that the high-dimension operators
must vanish on space integration, implying that they are of form, e.g., τFD

2q. Such a
contaminating high-dimension operator does not affect the determined total topology∫
qd4x, but it does affect the correlation functions, leading to corrections of order

τF/τ
2 based on dimensional reasoning. Therefore, an appropriate Ansatz for our

correlation function at small τF, incorporating the lowest-order corrections, is

Gτ (τF)

T 5
= c · τFT

2 + d, (8.6)

where d is the correlator at zero flow-time normalized by T 5.
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FIGURE 8.8: Continuum extrapolated topological charge density corre-
lator as well as the final flow-time extrapolated correlator.

In figure 8.7 we illustrate the extrapolation procedure. Each curve in this plot
represents the continuum-extrapolated GτF(τ) at a fixed separation τ as a function
of τF. The colored regions show the ranges which are used for the flow-time-to-zero
extrapolation according to eq. (8.5), while the gray regions are not used in the
extrapolation. The straight lines in black indicate the linear τF → 0 extrapolation,
where the final extrapolated values are the discrete points at τF = 0. We see that
the extrapolated value and the value at the largest-used τF differ by at most 20%,
indicating that a small-τF expansion should still be valid and that higher-order τ2F
terms should only give a few percent corrections and are not (yet) needed.

Our final continuum and flow-time extrapolated correlation function is shown in
figure 8.8. We observe that the correlator is negative in the range we are analyzing, that
is τT > 0. Since the topological charge density q(x) itself is odd under time reflections
and due to arguments based on reflection positivity [178, 179], the continuum
correlation function is expected to be negative for all nonzero separations τT 6= 0
[178, 180].

8.4 The sphaleron rate

As summarized in section 3.5, the sphaleron rate is determined by the small frequency
limit of spectral function, eq. (8.1). However, the high-frequency part of the spectral
function is expected to give large contributions to the Euclidean correlation function
at small separations. Therefore, in order to extract the sphaleron rate properly, it
is important to include as much information as possible about this high-frequency
region. To our advantage, perturbation theory can provide us information for the
high-frequency region of the spectral function. The spectral function has been com-
puted both at leading order (LO) and next-to-leading order (NLO) in the coupling in
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ref. [181]:

ρLO(ω) =
dAω

4g4

212π5
coth

( ω
4T

)
, (8.7)

ρNLO(ω) =ρLO(ω) +
dAω

4

212π5
coth

( ω
4T

)g6(µ̄)Nc

(4π)2

×
[
22

3
ln
µ̄2

ω2
+

97

3
+ 8φT (ω)

]
. (8.8)

Note that our definition of the spectral function differs from that in ref. [181] by a
relative minus sign. Here dA = N2

c − 1 = 8 is the dimension of the adjoint representa-
tion, which counts the number of gluon states. At leading order one does not obtain a
prescription on determining the value of the running coupling. We therefore make an
educated guess of the renormalization point by choosing the value from the 1-loop
order “EQCD” setup yielding (eq.(5.26) in [181])

ln
(
µ̄opt(T )

)
≡ ln (4πT )− γE − 1

22
. (8.9)

Using this relation the coupling is fixed to the value g2
(
µ̄opt(T )

)
= 2.2346 at T = 1.5Tc,

where we use an updated relation Tc = 1.24ΛMS [171]. In order to compensate for
the possibly bad choice of value of the coupling constant, we introduce an overall
scaling coefficient B in the LO models. At NLO, the optimization of the scale µ̄ and the
running of the strong coupling constant with ω is possible in the regime ω � πT , as
determined in [181]. In this regime the function φT (ω), defined in eq.(4.4) of [181],
is small which allows to define the optimized renormalization point as a function of ω
as (eq.(5.25) in [181])

ln
(
µ̄opt(ω)

)
≡ ln (ω)− 97

44
. (8.10)
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For values of ω outside this regime one again falls back to the renormalization point
given by (8.9). Following the prescription given in [181], one uses the larger value of
(8.9) and (8.10) for given ω. The switch between the two formulations happens at
ω/T = 19.456π.

In order to compensate for higher order corrections to the value of the renor-
malization point as well as other uncertainties in renormalization, we additionally
introduce the scaling parameter B in the NLO models. Since at this temperature the
perturbative series is not yet rapidly converging, we fit the lattice data to both the
leading and next-to-leading order spectral function and consider the difference as
an estimate of the uncertainties which arise due to our incomplete knowledge of the
spectral function’s high frequency functional form.

We have first performed a fit to the leading-order spectral function. This fit turned
out to be rather poor, with a sum of residuals squared χ2/d.o.f = 68.6. Slightly better,
but still not in agreement with our data, was the fit to the next-to-leading order
spectral function. Fitting eq. (8.8) with an additional multiplicative overall rescaling
factor B gave χ2/d.o.f. = 33.2. Thus, we had to add an additional structure to our
fitting models, which represents a low frequency contribution to the spectral function.
Note that the perturbative spectral functions are expected to not capture the low
frequency part correctly. Since our theoretical understanding of the behavior of this
particular spectral function is rather limited, we will consider three possibilities.

The first model is motivated by the appearance of a sharp structure in perturbative
calculations [182]. We implement this feature by using a simple δ-peak in ρ/ω where
we treat its overall coefficient A/T 4 as another fit parameter. We use that modification
in both leading- and next-to-leading order. The combination of that δ-peak with B
times eq. (8.7) is denoted as model M1, while the combination with B times eq. (8.8)
is called model M4. The later includes B as an overall normalization factor in the
high-frequency function.

Another candidate for the transport peak is a Breit-Wigner distribution, e.g.

ρpeak/ω = (A/T 4)CT 2/(C2T 2 + ω2). (8.11)

In contrast to the δ-peak, the Breit-Wigner distribution is much broader. Since the
actual coupling is rather large, a broader peak might be more reliable, and hence
that distribution is a good alternative. Similar to the δ peak models we combine the
Breit-Wigner distribution with eq. (8.7) and call this Model M2. The combination with
eq. (8.8) is called M5. In these two models, however, we consider a few distinct C
values, varying from a rather narrow to a quite wide structure. Additionally, we treat
A/T 4 as a fitting parameter. Model M3 and M6 differ from model M2 and M5 by the
large-width limit of the Breit-Wigner distribution, i.e. ρpeak/ω = A/T 4.
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To summarize, our models are:

M1 :
ρ(ω)

ωT 3
=
A

T 4
δ
(ω
T

)
+B

ρLO(ω)

ωT 3

M2 :
ρ(ω)

ωT 3
=
A

T 4

CT 2

C2T 2 + ω2
+B

ρLO(ω)

ωT 3

M3 :
ρ(ω)

ωT 3
=
A

T 4
+B

ρLO(ω)

ωT 3

M4 :
ρ(ω)

ωT 3
=
A

T 4
δ
(ω
T

)
+B

ρNLO(ω)

ωT 3

M5 :
ρ(ω)

ωT 3
=
A

T 4

CT 2

C2T 2 + ω2
+B

ρNLO(ω)

ωT 3

M6 :
ρ(ω)

ωT 3
=
A

T 4
+B

ρNLO(ω)

ωT 3
. (8.12)

The final sphaleron rate is then 2T 4 times the value of the right-hand side at ω = 0.
For M2 and M5 the sphaleron rate can be calculated as Γsphal/T

4 = 2A/CT 4 while for
M3 and M6 it is Γsphal/T

4 = 2A/T 4. For M1 and M4, the δ-peak leads to an infinite
sphaleron rate.

As a fitting procedure we use the Levenberg-Marquardt algorithm in the χ2-fitting,
where the iterations are stopped as soon as the relative tolerance 10−7 is reached for
the fit parameters or the χ2/d.o.f. The fits are only using data beyond τT = 0.25, since
the flow-time window over which we can perform the τF → 0 extrapolation closes up
as we go to shorter and shorter separations. Also, information about the transport
peak is mainly encoded in the correlator at large separations.

We summarize our fit results in table 8.2. It seems that the lattice data tightly
constrains the fit parameters in all our models. The quality of the fit (χ2/d.o.f.) is also
fairly good. The fits based on the next-to-leading order spectral function turned out to
be better than the ones with only the leading order spectral function. Looking at the
low-frequency behavior, however, no model is clearly preferred. The resulting spectral
functions are shown in figure 8.10. For comparison we also show the fitted correlators
divided by the lattice data in figure 8.9.
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FIGURE 8.11: The sphaleron rate from different models at 1.5Tc.

Finally, we extract the sphaleron rate for the different models according to eq.
(8.1). The results are shown in figure 8.11. Our analysis shows, that a linear-in-
frequency transport peak as well as a δ-like transport peak are just special cases of a
Breit-Wiger transport peak with zero and infinite width. Within the set of fit models
we have considered, we find that the sphaleron rate varies within the range at 1.5Tc

Γspha/T
4 ≥ 0.030(2), based on M1-M3,

Γspha/T
4 ≥ 0.024(2), based on M4-M6.

(8.13)

The higher bound in the first line uses the results of the models based on the LO
perturbative series, where the coupling constant is fixed. The results of the models
based on the NLO perturbative series are used in the second line. Here, the coupling
constant runs with scale.

We see in our results that fitting a spectral function with only a high-frequency
part is not sufficient. Hence, there must be a low-frequency structure in addition. Two
extreme forms have been considered in this section: An infinitely sharp peak (M1/M4)
and an infinitely broad peak (M3/M6). Therefore we consider them to span the range
of likely functional forms for a “peak”, and we propose that the lower value found
can be viewed as a lower limit on the sphaleron rate. We are aware that this claim
depends somewhat on the choice of fitting functions considered. However, we believe
our bound is reasonable, since we have considered many peak structures ranging from
sharp to perfectly wide.

8.5 Conclusion

We have computed the topological charge density correlation functions using the gradi-
ent flow on 5 different large and fine isotropic lattices in the quenched approximation.
The gradient flow eliminates the non-topological contributions in q(x) and reduces
short-distance fluctuations in the correlation functions. We developed a methodology
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Ansatz A/T 4 × 10 B C χ2/d.o.f Γsphal/T
4 × 10

M1 0.68(4) 2.27(7) 1.86 ∞
M2 0.49(3) 2.25(7) 0.5 2.07 1.94(10)

M2 0.54(3) 2.24(7) 1.0 2.02 1.08(6)

M2 0.65(4) 2.21(7) 2.0 1.93 0.65(4)

M2 1.01(5) 2.14(7) 5.0 1.76 0.40(2)

M3 0.15(1) 1.98(8) 1.36 0.30(2)

M4 0.53(4) 1.25(4) 1.35 ∞
M5 0.38(3) 1.25(4) 0.5 1.53 1.50(11)

M5 0.42(3) 1.24(4) 1.0 1.51 0.84(6)

M5 0.50(4) 1.23(4) 2.0 1.48 0.50(4)

M5 0.79(6) 1.20(4) 5.0 1.47 0.32(3)

M6 0.12(1) 1.12(5) 1.29 0.24(2)

TABLE 8.2: Fitted parameters and χ2/d.o.f for different ansätze. The
numbers in the parentheses are statistical uncertainties from a bootstrap
analysis. The sphaleron rate Γsphal/T

4 is calculated from the fitted
parameters A/T 4 and C. The meaning of each fit parameter and how
the sphaleron rate is determined in each ansatz can be found in (8.4).

to perform reliable continuum- and flow-time extrapolations for the topological charge
density correlation function. These double-extrapolated correlation functions are then
used in the spectral reconstruction, where we used models inspired by perturbation
theory to account for uncertainties from different sources.

Using either the LO or the NLO spectral function alone leads to a very poor fit;
the data demand the addition of a low-frequency structure. In our spectral analysis
we considered a range of spectral functions. The fits with the next-to-leading order
spectral function, for the case where the added structure is completely flat, gave us
a lower bound for the sphaleron rate of at least Γspha/T

4 ≥ 0.024 at 1.5Tc. Low-
frequency structures containing an actual peak give higher values for Γspha. The
leading-order results gave us also a slightly higher value of Γspha/T

4 ≥ 0.030.
To correctly capture the topological charge, it is essential to use the gradient flow.

However, the τF → 0 extrapolation can only be done on a limited flow-time range
to obtain proper extrapolated values. Coarse lattices have the problem that we can
not fulfill these constraints at small separations. Therefore, we are driven to volumes
with very fine lattice spacings and can only make use of larger separations. Even
though the continuum and flow-time extrapolations of the lattice data returned values
with only a few percent statistical error bars, the subsequent fitting of the spectral
function was lacking clear theoretical guidance, resulting in still rather large errors in
the final sphaleron rate. Although we have found a lower bound for the sphaleron
rate, we still need an upper bound. Therefore, a better theoretical understanding of
the expected form for the topological charge-density spectral function would be very
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useful, especially in the low-frequency region. Having such improvements may allow
for a reliable determination of the sphaleron rate.
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Chapter 9

Conclusion

In this final chapter we summarize and conclude the major results of this work. More
detailed conclusions can be found in the previous chapters.

A novel multi-GPU framework has been developed that is capable of performing
large scale lattice QCD computations in parallel on multiple GPUs. The framework en-
capsulates frequently used routines in classes and provides physicists with an interface
that allows them to implement their own lattice QCD calculations in a simple and per-
formant way. Base classes such as Gaugefield, Spinorfield, CommunicationBase,
GIndexer, LatticeContainer, MemoryManagement and many more have been highly
optimized for memory access, cache flow and peer-to-peer communication such that
the best performance on current HPC hardware can be achieved. The two biggest
modules which have been implemented within this framework are the RHMC and
the gradient flow. The later has extensively been used in this work to smooth out
fluctuation on already existing configurations, while the former will be used in the
near future to generate large HISQ configurations.

We have measured the topological susceptibility on 2+ 1 HISQ configurations with
varying light quark masses and fixed physical strange quark mass in the temperature
range 137− 167 MeV. In order to do this we have smeared the configurations using
the gradient flow and then extracted the topological susceptibility from a flow-time
plateau. Our results did not show any mass dependence. This is contrary to the
results which have been reported in ref. [183], where the topological susceptibility
has been measured in 2-flavor QCD using Möbius domain-wall fermions and the
gluonic definition of the topological charge via gradient flow as well as the fermionic
definition using the overlap Dirac operator in the temperature range 190− 220 MeV.
However, since our results have shown large cut-off effects, we would need to compute
the topological susceptibility in the future on special choices of lattice spacings and
then perform a continuum extrapolation to get a final conclusive evidence on the
mass dependence of the susceptibility. Considering the temperature behavior of the
topological susceptibility, we have observed that the susceptibility decreases with
increasing temperature. This is in agreement with previous studies and expectations.

We have additionally measured the Dirac eigenvalue spectrum on some selected
HISQ configurations with mass ratios ms/ml = 27, 40, 80 of the previously mentioned
ensemble. The results have been used to estimate the fate of anomalous UA(1)
symmetry as we approach the chiral limit along the line of constant physical strange
quark mass. Since we were using different valence and sea quark actions, we have
tuned the overlap valence quark masses to the HISQ sea quark mass and used these
tuned values to appropriately renormalize the eigenvalue density. It turned out
that the eigenvalue density can be represented as ρ(λ) ∼ λ in the chiral limit at a
temperature of 1.05 Tc, which is contrary to the expectations of ref. [71]. There, the
leading order behavior of the eigenvalue spectrum was derived to be ρ(λ) ∼ λ3 for
two flavor QCD in the chiral limit. Finally, the value of our renormalized observable
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m2
l (χπ − χδ)/T

4 is non-zero, and hence we conclude that UA(1) is broken when we
approach the chiral limit along the line of constant physical strange quark mass. For
final conclusive evidence it is necessary to perform a continuum extrapolation of our
observables. However, so far that was not possible within this work, since the required
configurations with smaller lattice spacings were not available. Nevertheless, this is
one of the first studies investigating the fate of the UA(1) anomalous symmetry, for
light quark masses as low as ms/ml = 80 (i.e. a pion mass of ∼ 80 MeV) just above the
chiral crossover temperature, which may suggest that we would eventually encounter
the O(4) second order line of the phase transitions.

The final study in this work was an exploratory work on the QCD sphaleron
rate. We have measured the topological charge density correlation functions on
fine isotropic lattices in the quenched approximation. We used the gradient flow to
eliminate non-topological contributions in q(x) as well as to reduce short-distance
fluctuations in the correlation functions. On this lattice data we have performed
a continuum extrapolation and a flow-time-to-zero extrapolation. After this double
extrapolation, we have extracted the spectral function using different models motivated
by perturbation theory and a transport peak. With these results we have obtained
lower bounds for the sphaleron rate. Using a next-to-leading order ansatz, we obtained
Γspha/T

4 ≥ 0.024 at 1.5Tc, while for the leading-order results we obtained Γspha/T
4 ≥

0.030. An upper bound is still missing. For a more robust determination of the
sphaleron rate we need a better theoretical understanding of the expected form for
the topological charge-density spectral function as well as a clear theoretical guidance
on how to fit the spectral function. So far this study was limited to the quenched
approximation, but provides a methodology that can be extended to full QCD, e.g.
based on gauge field configurations generated with the multi-GPU code developed in
this work.
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Appendix

This appendix includes some basic notes, which have not been written out earlier in
this thesis.

A.1 Gamma matrices

In Euclidean spacetime, the γµ matrices with µ = 1, 2, 3, 4 are defined by

{γµ, γv} = γµγv + γνγµ = 2δµv14×4. (A.1)

In addition to those we define a fifth matrix

γ5 = γ1γ2γ3γ4, (A.2)

which anti-commutes with all other gamma matrices γµ, µ = 1, 2, 3, 4. The Euclidean
gamma matrices are traceless and obey

γ2µ = 14×4, γ25 = 14×4, γ†µ = γµ, γ†5 = γ5. (A.3)

The chiral representation of the gamma matrices, where γ5 is diagonal, reads:

γ1,2,3 =

[
0 −iσ1,2,3

iσ1,2,3 0

]
, γ4 =

[
0 12×2

12×2 0

]
, γ5 =

[
12×2 0
0 −12×2

]
. (A.4)

where the σj are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.5)

In a more explicit form the Euclidean gamma matrices read

γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , γ3 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 ,

γ4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ5 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
(A.6)
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A.2 Pure gauge

The gluon field strength tensor reads:

Gµν(x) = ∂µAν − ∂νAµ + ig[Aµ, Aν ] (A.7)

Let us insert the pure gauge Ãµ = − i
gU∂µU

†. Note that using the product rule, ∂µÃν
becomes:

∂µÃν = − i

g
∂µU∂νU

† − i

g
U∂µ∂νU

†. (A.8)

Therefore for the first two terms we get:

∂µÃν − ∂νÃµ =
i

g
∂νU∂µU

† − i

g
∂µU∂νU

† (A.9)

The last term of equation (A.7) transforms to:

ig[Ãµ, Ãν ] =
i

g
U(∂νU

†)U∂µU
† − i

g
U(∂µU

†)U∂νU
† (A.10)

Note that U(∂µU
†)U = −∂µU , since

0 = ∂µ1 = ∂µUU
†

0 = (∂µU)U † + U(∂µU
†)

0 = (∂µU) + U(∂µU
†)U

⇒ U(∂µU
†)U = −∂µU (A.11)

Inserting (A.11) in (A.10) results in

ig[Ãµ, Ãν ] = − i

g
∂νU∂µU

† +
i

g
∂µU∂νU

†, (A.12)

and therefore the full gluon field strength tensor vanishes in pure gauge.
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