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Abstract
Equilibration of observables in closed quantum systems that are described by a unitary time
evolution is a meanwhile well-established phenomenon apart from a few equally well-established
exceptions. Here we report the surprising theoretical observation that integrable as well as
non-integrable spin rings with nearest-neighbor or long-range isotropic Heisenberg interaction
not only equilibrate but moreover also synchronize the directions of the expectation values of the
individual spins. We highlight that this differs from spontaneous synchronization in quantum
dissipative systems. Here, we observe mutual synchronization of local spin directions in closed
systems under unitary time evolution. In our numerical simulations, we investigate the free
induction decay of an ensemble of up to N = 25 quantum spins with s = 1/2 each by solving the
time-dependent Schrödinger equation numerically exactly. Our findings are related to, but not
fully explained by conservation laws of the system. Even if we cannot provide a full understanding
of the phenomenon, it is very robust against for instance random fluctuations of the Heisenberg
couplings and inhomogeneous magnetic fields. The observed synchronization is independent of
whether the interaction is ferro- or antiferromagnetic. Synchronization is not observed with strong
enough symmetry-breaking interactions such as the dipolar interaction. We also compare our
results to closed-system classical spin dynamics which does not exhibit phase synchronization due
to the lack of entanglement and since the fixed magnitude of individual classical spins effectively
acts like additional N conservation laws.

1. Introduction

Decoherence, equilibration as well as thermalization in closed quantum systems under unitary time
evolution are well-studied and by now well-established concepts which root in seminal papers by Deutsch,
Srednicki and many others [1–12]. For numerical studies, spin systems are the models of choice both since
they are numerically feasible due to the finite size of their Hilbert spaces as well as they are experimentally
accessible for instance in standard investigations by means of electron parametric resonance, free induction
decay (FID), or in atomic traps, see e.g. [13–17]. In such systems, observables assume expectation values
that are practically indistinguishable from the prediction of the diagonal ensemble for the vast majority of
all times of their time evolution [6, 18].
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In this paper we provide a first discussion of an observation that rests both on decoherence and
equilibration. We study the FID of quantum spins that are arranged on a ring-like geometry with
nearest-neighbor as well as long-range isotropic Heisenberg interactions. For the overwhelming majority of
investigated cases the initial product state of single-spin states entangles, i.e. turns into a superposition of
product states, and thereby equilibrates at the level of single-spin observables. Our most striking
observation is that expectation values of all individual spin vectors synchronize with respect to their
orientation. In an FID setting this means that their various individual rotations about the common field
axis synchronize and align in the course of time. In a co-rotating frame they simply align. Experimentally,
such collective effects may e.g. be imprinted in the temporal line shapes of the optical response under
ultrashort pulse excitation and thus eventually be observed [19].

We would like to contrast our findings with the longer-known observation of (spontaneous)
synchronization in dissipative systems [20–24]. It was controversially discussed whether quantum two-level
systems are able to synchronize at all [25], with later conclusions that this is indeed the case [22, 26]. Stable
limit cycles of the participating oscillators play an important role in several systems, but there are also other
mechanisms at work. Since such a discussion is applicable only to dissipative systems, which can emit or
absorb energy to return to their stable oscillation after a perturbation, it probably cannot serve as an
explanation in our case.

A related and already investigated topic is transient synchronization in open quantum systems [27], in
which the system finally equilibrates to a non-synchronized state, but synchronizes temporarily on the way.
We show that we observe a comparable behavior in closed quantum spin systems in the form of a
pre-equilibration phenomenon, if we weakly reduce the symmetry of the Hamiltonian. Similar to the
known cases of transient synchronization, the weaker the perturbation (in our case symmetry breaking
interactions) the longer this pre-equilibration regime lasts.

The observed synchronization is stable against random fluctuations of the Heisenberg couplings and we
observe it for almost all initial conditions. We therefore conjecture that it is tightly connected to the
symmetries and conserved quantities of the isotropic Heisenberg model which is SU(2) invariant [28], see
also [29]. This hypothesis is corroborated by the observation that strongly anisotropic interactions such as
the dipolar interaction spoil the synchronization. Also in classical spin dynamics the phenomenon cannot
be observed as will be discussed in detail later. Inhomogeneous or randomly fluctuating local fields at the
sites of the individual spins on the other hand do not prevent the spins from synchronizing although several
conservation laws are broken. The same applies for weakly anisotropic interactions that are close to the
isotropic Heisenberg case; here we observe a transient synchronization.

The paper is organized as follows. In section 2 we introduce the theoretical model and the applied
methods. Section 3 deals with exemplary numerical quantum simulations under isotropic Heisenberg
interactions and we compare to classical simulations. Section 4 introduces symmetry breaking anisotropic
interactions and demonstrates the transient behavior of the synchronization phenomenon. Section 5
provides a summary of our main results. In the appendix some aspects are discussed in more detail,
especially the behavior under symmetry breaking interactions. Video clips of our simulations are provided
on the website of the paper [30].

2. Theoretical model and methods

The Hamiltonian of our spin model reads

H
˜
= −

N∑
j=1

Jj�s
˜

j ·�s
˜

j+1 −
N∑

j=1

hjs
˜

z
j , (1)

where the first sum corresponds to the isotropic Heisenberg model and the second sum denotes the Zeeman
term. Operators are marked by a tilde, the Heisenberg interactions are denoted by Jj, local magnetic fields
are given by hj, and periodic boundary conditions�s

˜
N+1 =�s

˜
1 are applied. Thus, the Hamiltonian describes

spins which are arranged as a ring; it could for instance be a ring molecule [31, 32]. We define the total spin
operator

�S
˜

:=
N∑

k=1

�s
˜

k, (2)

which commutes with the Heisenberg part of the Hamiltonian, and so does �S
˜

2, even if the coupling

constants Jj are all different. This is true for any spin arrangement, not just for rings [28, 33]. The
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conservation of �S
˜

2 is broken either by anisotropic interactions or by varying local magnetic fields hj

[
�S
∼

2,
N∑

i=1

his
˜

z
i

]
∝

[
�s
˜

i ·�s
˜

j, his
˜

z
i + hjs

˜

z
j

]
= 0 only if hi=hj

. (3)

Furthermore, we define the transverse magnetization

Mtrans: =
√
〈 S
∼

x 〉2 + 〈 S
∼

y 〉2

=

√√√√√
⎛
⎝∑

j

〈 s
˜

x
j 〉

⎞
⎠

2

+

⎛
⎝∑

j

〈 s
˜

y
j 〉

⎞
⎠

2

. (4)

Here 〈 S
∼

x 〉 denotes the expectation value with respect to a specified many-body state. We interpret (4) as the

net magnetization precessing in the xy-plane. In case of Hamiltonian (1) this is also a conserved quantity if
the local magnetic fields are all the same hj ≡ h ∀j. This can be seen by looking at the time evolution
(� := 1)

d

dt
〈ψ(t)|�S

∼
|ψ(t)〉 = 1

i
〈ψ(t)|[�S

∼
, H
∼

]|ψ(t)〉

= ih〈ψ(t)|[�S
∼

, S
∼

z]|ψ(t)〉 . (5)

Remember, h denotes the magnetic field. The solution of equation (5) is of the form

〈ψ(t)|�S
∼
|ψ(t)〉 =

⎛
⎝ a cos ht + b sin ht
−b cos ht + a sin ht

c

⎞
⎠ , (6)

compatible with the conserved quantities. The coefficients a, b and c are determined by the initial state of
the system. We observe a collective rotation with frequency h in all cases the spins synchronize (sections 3.1,
3.2 and 3.4). Appendix B.1 provides an exception where the spins collectively precess around a mean field h̃.

As initial many-body states we choose product states of the form

|ψ(t = 0)〉 =
N⊗

j=1

1√
2

(
|↑〉+ eiθj |↓〉

)
, (7)

for which the expectation values of individual spins

〈�s
˜

j 〉 := 〈ψ|�s
˜

j|ψ〉 (8)

are oriented in the xy-plane and point in a direction that depends on θj. In the following we are going to
investigate the time evolution of the four states shown in figure 1 where (a) all spins point in the same
direction, (b) are regularly fanned out by 180 degrees, (c) are regularly fanned out by 360 degrees, and (d)
point in random directions. We will refer to these states as |ψA〉, |ψB〉, |ψC〉, and |ψD〉 (or A, B, C, and D in
the classical case, section 3.5).

In a product state, the spins are not entangled by definition, however they entangle during the unitary
time evolution

|ψ(t)〉 = e
−iH

∼
t |ψ(0)〉, (9)

that we calculate numerically exactly using a Suzuki Trotter decomposition [34].
In order to measure the entanglement of an individual spin at site j with the others, we define the

reduced density matrix
ρ
˜

j = Tr⊗
k�=j

H k

(
|ψ〉〈ψ|

)
. (10)

Here H j denotes the Hilbert subspace of spin j, and H =
⊗N

j=1 H j is the total Hilbert space. The

purity is given as Tr(ρ
˜

2
j ). Tr(ρ

˜

2
j ) = 1 holds, if spin j is not entangled with other spins, and Tr(ρ

˜

2
j ) = 0.5 if it

is maximally entangled with other spins. The purity is thus also a measure of decoherence for an observer of

3
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Figure 1. Visualization of the four initial product states studied in this work. The arrows correspond to the single-spin
expectation values, see text and equation (7). We will refer to these states as |ψA〉, |ψB〉, |ψC〉, and |ψD〉.

Figure 2. Time evolution of initial state |ψA〉 regarding Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj ∈ [1.6, 2.4], hj = −1 ∀j, N = 25. Left panel: single-spin expectation values in x-direction. Right panel: purity of the individual
reduced density matrices.

a single spin [35, 36]. An alternative way of quantifying the decoherence would be the von Neumann
entropy S(ρ

˜
j) = −Tr (ρ

˜
j log2 ρ

˜
j) [37].

3. Calculations and results

In this section we present our numerical findings of the special behavior of initial states in figure 1 under
time evolution with Hamiltonian equation (1) and equal magnetic fields hj = −1 ∀j. As discussed, Mtrans

and �S
˜

2 are conserved quantities. We show that, with one exception, the spin expectation values synchronize.

3.1. Initial state |ψA〉
In figure 2 we start with initial state |ψA〉 and random Heisenberg interactions Jj. In this case, every spin is
precessing as if independent without entangling to other spins, no matter how the Jj are chosen. Since all

spins point in the same direction, Mtrans and �S
˜

2 assume their maximum values. Because they are conserved

quantities the spins are bound to remain in a perfect product state, otherwise it would not be possible to
conserve these values over time.
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Figure 3. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj ∈ [1.6, 2.4], hj = −1 ∀j, N = 25. The video for (a) (https://stacks.iop.org/NJP/23/083038/mmedia) are provided in the
supplementary data.

Figure 4. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj = 2 ∀j without (a) and with magnetic field (b).

3.2. Initial state |ψB〉
Figure 3 shows almost the same as figure 2, but this time for initial state |ψB〉. Initially the individual spin
expectation values are spread out by 180 degrees, but during time evolution they align. This astonishing
phenomenon can be nicely observed in the video provided on the web page of the published article [30].

During time evolution and synchronization the spins entangle as much as the conservation of �S
∼

2 and

Mtrans allows. Interestingly, the spins stay entangled and do not fan out again (apart from finite size effects
such as revivals at very late times). This statement becomes stronger with increasing system size, which is
further addressed in appendix A. We interpret this phenomenon as quantum mechanical equilibration
process under the restricting influence of conserved quantities [29].

The synchronization can be rationalized for spin systems where all spins are equivalent, i.e. ring systems
with translational invariance (Jj = J, hj = h ∀j) since then equilibration should result in the same
single-spin expectation value at every site. This concerns magnitude and direction of the spin vector. The
somewhat unexpected result of our investigation is that the direction of all spins continues to synchronize
also for settings where spins are no longer equivalent, i.e. if the Heisenberg interactions are drawn at
random from a distribution.

Figure 3(c) shows the purity of the individual reduced density operators ρ
˜

j (equation (10)). Since the

couplings Jj are different for different j, not all spins are equal. This does not prevent the spins from
synchronizing their directions, but they do not all entangle to the same extent.

5
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Figure 5. Time evolution of initial state |ψC〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj ∈ [1.6, 2.4], hj = 0 ∀j for different system sizes. The video of (c) is provided in the supplementary data.

Figure 6. Time evolution of initial state |ψD〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj ∈ [1.6, 2.4], N = 24 without (a) and (b) and with magnetic field (c) and (d). Video (c) is provided in the supplementary data.

Another main result of this paper is that the time needed for the spins to synchronize is almost
independent of the width Δ of the distribution of the Jj ∈ [2 −Δ, 2 +Δ]. This is also demonstrated
numerically in appendix A.

Figure 4 shows the variance of the expectation values of individual spin operators, defined as

Var(〈s
˜

x
j 〉)(t) :=

1

N

N∑
j=1

(
〈s
˜

x
j 〉 −

〈Sx〉
N

)2

(11)

for different system sizes N. That the variance decays to zero, compare figure 4, expresses precisely that
the spins align until they point in the same direction. This process takes the longer the larger the system is.
The synchronisation, i.e. the alignment of directions, also takes place in the absence of a magnetic field, as
can be seen in figure 4(a). The reason is that the homogeneous magnetic field, which is a one-body

6
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Figure 7. Classical time evolution for various initial states w.r.t. Hamiltonian equation (12) with N = 24, Jj ∈ [1.6, 2.4]. Videos
for all cases are provided in the supplementary data.

operator, does not causes any many-body entanglement between the spins; entanglement and equilibration
are driven by the Heisenberg term which is a two-body operator. As a result, the field-free curves in
figure 4(a) are the envelopes of the curves taken with homogeneous field and shown in figure 4(b).

3.3. Initial state |ψC〉
Figure 5 shows the time evolution for initial state |ψC〉 and different system sizes. This is a very special and
atypical case with a particular symmetry in the spin orientations which results in a very stable state even if
there are different couplings Jj between the spins, see video [30]. This is the only initial state we find where
the spins do not align, but entangle and decay to zero, with wild echos at later times. The larger the system,
the longer the echos take to occur and the longer it takes for the spins to entangle.

These numerical results for finite system sizes suggest that |ψC〉 is an energy eigenstate in the
thermodynamic limit which appears plausible, because the angle between neighboring spins is given by
2π/N, therefore for N →∞ all neighbors are parallel in the initial state. We emphasize that this state would
also be an energy eigenstate in the non-integrable case [38, 39] where the Jj are all different. Because all
single-spin observables are strongly different we conjecture that this state is not thermal; its relation to
quantum scars needs to be explored, see [40, 41] and references therein.

3.4. Initial state |ψD〉
Figure 6 shows a time evolution for initial state |ψD〉 (random orientations) without magnetic field
(figure 6(a)) and with magnetic field (figure 6(b)). The conserved net magnetization is small (would be zero
in the thermodynamic limit or as a mean of many random realizations according to the central limit
theorem). Nevertheless, the spins synchronize which shows that this phenomenon is very robust with
respect to the initial state, see also video [30].

3.5. Classical spin dynamics
Although not at the heart of our investigations, we like to compare our results to classical spin dynamics
with identical Heisenberg couplings and initial states. It turns out that a classical spin dynamics does not
exhibit phase synchronization, see videos [30]. The reason in this context is that classical spin dynamics
lacks entanglement which is necessary for synchronization. Contrary to the expectation values of the
quantum spins, the classical spins are bound to maintain their length, which effectively acts like additional
N conservation laws. This results in an oscillatory dynamics of most investigated initial conditions, compare
figure 7 for initial states equivalent to figures 2(b)–(d). Initial state C is again special. In the quantum case
the spins maintain their directions for a long time while slowly entangling. In the classical case the spins
also keep their directions for a long time. This is because of the high symmetry in the initial state with zero
net magnetization and no preferred direction in the xy-plane.

7
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Figure 8. Damped classical time evolution for initial state B w.r.t. Hamiltonian equation (13), α = 0.1, N = 24, hj = −1 ∀j and
different intervals of the ferromagnetic coupling strength. The video of (c) is provided in the supplementary data.

The classical spin dynamics has been evaluated according to

d

dt
�sj =

∂H

∂�sj
×�sj, (12)

where H denotes the classical Hamiltonian analogous to equation (1).
In the literature one finds well-studied classical examples of synchronization of e.g. Van der Pol

oscillators [42]. These are dissipative systems with stable limit cycles, which means that after a perturbation
they return to their ordinary oscillation. This would not be the case for our classical spins even if we would
couple them to a heat bath.

One trivial (and much different) way of how classical spins would synchronize (at least in a transient
way) is by choosing e.g. ferromagnetic (or antiferromagnetic) Heisenberg couplings Jj and a dissipative
dynamics so that the ferromagnetic (or antiferromagnetic) ground state is approached, which is aligned
trivially.

Figure 8 shows such an example for different intervals of the Heisenberg coupling strength. The
damping is realized by

d

dt
�sj =

∂H

∂�sj
×�sj − α

(
∂H

∂�sj
×�sj

)
×�sj. (13)

Because of the damping, the system looses energy until it arrives in the lowest possible energy state. For
a ferromagnetic coupling the spins synchronize in a parallel fashion, for a bipartite antiferromagnetic
system the spins synchronize in an antiparallel fashion. In figure 8 there is also a magnetic field applied in
z-direction with which the spins also align. Therefore, at late times all spins point in z-direction. If the
ferromagnetic coupling is much larger than the magnetic field |Jj| � |h|, then also the x- and y-components
of the spins synchronize in a transient way.

We note that such kind of synchronization is fundamentally different from the synchronization we
observe in closed quantum spin systems. In the quantum case, it does not matter if the Heisenberg
interaction is ferro- or antiferromagnetic, the single-spin vector observables always synchronize in a parallel
fashion. The synchronization is just based on equilibration, entanglement, and conservation laws.

4. Breaking the symmetry

In this section we investigate whether synchronization still occurs if Mtrans and �S
∼

2 are not conserved

anymore. We can break the symmetry in different ways, either by means of inhomogeneous magnetic fields

8
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Figure 9. Time evolutions of initial state |ψB〉 w.r.t. Hamiltonian equation (14) for two values of δ, and N = 24, J = 2, h = −1.
Videos of (a) and (c) are provided in the supplementary data.

Figure 10. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (15) with parameters N = 24, J = 0.1 and h = −1.
The video of (a) is provided in the supplementary data.

or by interactions between the spins that are not of isotropic Heisenberg type. In section 4.1 we choose XYZ
interactions and in section 4.2 XX interactions as two examples with different outcomes. In appendix B we
show the effect of inhomogeneous magnetic fields (appendix B.1) and of dipolar interactions between all
spins (appendix B.2).

4.1. XYZ interaction
We begin with the XYZ interaction which is close to the isotropic Heisenberg case if the interaction in the
three spatial directions is not too different. In this case, the synchronization between the spins still occurs.
The Hamiltonian in this subsection is defined as

H
∼ XYZ

=− J
N∑

j=1

s
˜

x
j s
˜

x
j+1 − (J − δ)

N∑
j=1

s
˜

y
j s
˜

y
j+1 − (J − 2δ)

N∑
j=1

s
˜

z
j s
˜

z
j+1 − h

N∑
j=1

s
˜

z
j . (14)

We use the parameter δ to tune the difference of the interaction in the three spatial directions.
Figure 9 shows time evolutions for initial state |ψB〉 and two different values of δ. The magnetization is

not a conserved quantity anymore and will therefore decay toward its equilibrium value, which is zero in
the xy-plane for a magnetic field in z-direction. Our investigations reveal that the larger δ the faster the
spins decay. However, we clearly observe that while decaying the spins still synchronize, see especially
figure 9(a). One could say, that the synchronization is a transient phenomenon in such cases since the time
scale of synchronization is shorter than that of the unavoidable decay.

9



New J. Phys. 23 (2021) 083038 P Vorndamme et al

Figures 9(b) and (d) show the purity of the reduced density operators ρ
˜

j introduced in equation (10).
We see that all spins maximally entangle (Tr(ρ

˜

2
j ) = 0.5) which is equivalent with all individual spin

expectation values decaying to zero.
Another example of broken symmetry where the spins still synchronize is shown in appendix B.1 with

an inhomogeneous magnetic field.

4.2. XX interaction
As comparison we now show a case with XX interaction where the spins do not synchronize. The
Hamiltonian is defined as

H
∼ XX

= −J
N∑

j=1

(
s
˜

x
j s
˜

x
j+1 + s

˜

y
j s
˜

y
j+1

)
− h

N∑
j=1

s
˜

z
j . (15)

Figure 10 shows a time evolution for initial state |ψB〉. The decay of the transverse magnetization is
much faster than in the previous subsection, because we are further away from isotropic Heisenberg
interactions and the symmetry regarding the conservation of the transverse magnetization is broken much
more strongly, compare also [17]. In order to see if the spins still synchronize while decaying to zero, we
choose a much smaller coupling constant J = 0.1 instead of J = 2. But we clearly see that the spins do not
synchronize while decaying or equivalently the timescale of the decay is much shorter than the timescale of
synchronization.

Another example of broken symmetry where the spins do not synchronize is shown in appendix B.2
with dipolar interactions between the spins.

In a future investigation, we plan to study the relation of our findings for the translationally invariant
XXZ case with the suggestion of a generalized Gibbs ensemble as the long-time limit of the unitary
dynamics induced by dynamical symmetries according to references [43–45].

5. Summary

As a conclusion we can say first of all that the conservation of Mtrans and �S
∼

2 not just slows down the FID,

but prevents the free induction from decaying if the Hamiltonian only contains isotropic Heisenberg
interactions and the Zeeman terms of all spins are equal (see figure 2). This is in accord with reference [29].

Furthermore, we demonstrate in detail the interesting phenomenon that the single-spin vector
expectation values align in the course of time almost independent of how they are initialized in the xy-plane
(see figure 3). It does not matter if the initial state is a product state of the form equation (7) or if the spins
start in an entangled state (see appendix A.3). For the process of synchronization the magnetic field is not
necessary, it only induces a (collective) rotation of all spins about the field axis (see e.g. figures 4 and 11).
The Heisenberg interactions cause an equilibration process under the constraint of conserved quantities. In
the case of SU(2) symmetry combined with translational symmetry and under the assumption of
equilibration (of one-body observables) all single-spin expectation values must assume the same direction
and magnitude. Translational invariance requires that each single-spin observable is the same. We show that
after entanglement is maximised (under constraints of conserved quantities) and equilibration is completed
the spins stay synchronized and fluctuate the less the larger the system is (see e.g. figure 14, appendix A.1).
However, we demonstrate that synchronization also occurs without translational symmetry and that the
timescale of synchronization is independent of the width Δ of the distribution of Heisenberg couplings Jj

(see figure 15, appendix A.1).
We demonstrate that such a synchronization is not possible with classical spins in a closed system (see

figure 7). Moreover we give an example for dissipative classical spins which experience a transient
synchronization based on ferromagnetism (see figure 8). We highlight that this is very different from the
observed quantum mechanical synchronization where the system is closed and the sign of the Heisenberg
interaction does not matter—the single-spin vector observables always synchronize in a parallel fashion
along the direction of the total spin.

In addition, we discuss that the synchronization of spin expectation values is very robust. It happens
already for small systems (N = 10, see figure 13, appendix A) and for various initial states (see e.g. figure 6).
We find just one exception (initial state |ψC〉) which has a special symmetry and in the thermodynamic
limit becomes an energy eigenstate (see figure 5). Synchronization also occurs for long-range Heisenberg
interactions (see figure 21, appendix B.2). Synchronization is not limited to spins s = 1/2. In appendix A.2
we demonstrate that also spins with s = 1 synchronize under isotropic Heisenberg interactions.
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Further on, we provide examples of transient synchronization for systems where symmetries are broken,
because the time scale of synchronization is shorter than that of equilibration. Systems with anisotropic
XYZ interactions belong to this set if they are still close to the isotropic Heisenberg case (see figure 9), or if
the symmetry is broken by means of an inhomogeneous magnetic field (see figure 18 and appendix B.1,
respectively).

Finally, we show that spins do not synchronize for interactions that are strongly anisotropic such as
dipolar interactions (see figure 20, appendix B.2).

Our investigations might be helpful for interpreting observations in the context of FID. Even if we
cannot provide a complete analytical explanation and interpretation of the phenomenon, we think the wide
range of numerical results demonstrates that the phenomenon of synchronization is widespread and robust.
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Appendix A. Additions to section 3

A.1. More data regarding section 3.2
Here we present more detailed numerical calculations regarding section 3.2. In figure 11 the purity of
individual reduced density matrices is shown for different system sizes N. All Heisenberg couplings Jj are
chosen equal and therefore all spins entangle in an equal way during equilibration (in contrast to
figure 3(c)).

It can be clearly seen that the respective purities fluctuate less the larger the system is. Thus, in the
thermodynamic limit (N →∞) we expect them to keep the same order of magnitude without fluctuating
after equilibration. This figure is completely independent of the strength of the magnetic field h, because the
Zeeman term in Hamiltonian equation (1) does not cause any entanglement between spins.

Figure 12 shows the individual 〈sz
j 〉 expectation values for exactly the same time evolutions as figure 11.

Initially all these values are zero because the spins are oriented in the xy-plane (see figure 1). During time
evolution (especially at the beginning) the spins leave the xy-plane, but at later times these fluctuations in
z-direction become small for a larger system size N.

Figures 13 and 14 show individual spin expectation values for time evolutions without magnetic field for
different system sizes and for short and long time (also for initial state |ψB〉). It can be qualitatively seen that
such synchronization of spins can already be observed for a small system size of N = 10. For N = 6 the
spins fluctuate much and for N = 2 the spins permanently point in opposite directions.

We now want to focus on the question how the choice of couplings Jj influences the time needed for the
spins to align. This is addressed by figure 15. The couplings Jj are chosen randomly from intervals of
different width Δ and the magnetic field is zero. We see that Δ has a very small impact on the time
evolution and the behavior of the spins; the process of alignment and the time it takes is very robust. The
time to synchronization does only depend on the system size N and the mean Jj.

A.2. Spins ζ = 1
The question arises if the observed synchronization phenomenon also occurs with larger spins than
s = 1/2. To address this question at least partly, we simulate spin rings with spin quantum numbers ζ = 1.
To simplify our numerical calculation we form these spins by coupling two spins with s = 1/2 each
ferromagnetically. We define

�ζ
˜

j :=�s
˜

2j +�s
˜

2j−1. (A1)

Instead of N spins with s = 1/2 we have Ñ = N/2 spins with ζ = 1. The following Hamiltonian applies

H
∼
= −

Ñ∑
j=1

Jj
�ζ
˜

j · �ζ
˜

j+1 −
Ñ∑

j=1

hjζ
˜

z
j − Jf

Ñ∑
j=1

�s
˜

2j ·�s
˜

2j−1, (A2)
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Figure 11. Purities of the time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg
interactions and Jj = 2 ∀j, hj ≡ h ∀j. The value of h does not change this figure.

Figure 12. Single spin expectation values in z-direction regarding time evolution of initial state |ψB〉 w.r.t. Hamiltonian
equation (1) with isotropic Heisenberg interactions and Jj = 2 ∀j, hj ≡ −1 ∀j.

The last term in equation (A2) is the strong ferromagnetic coupling, Jf = 100 � |Jj|, between every two
fused spins. We initialize the state of the system such that those two coupled spins point in the same
direction and the Ñ spins are fanned out by 180 degrees. The time evolution is shown in figure 16, and
indeed the spins still synchronize.

We thus speculate that there is no obvious or simple classical limit by which synchronizations would
disappear when going from small spin quantum numbers to large spin quantum numbers. Also the time
scale on which synchronization happens does not seem to be very different between spins s = 1/2 and
ζ = 1, compare figures 16(a) and 13(d). This question certainly needs further investigations.

A.3. Starting in an entangled state
So far our initial state was always a product state equation (7). That might give the impression that this
could be relevant for the phenomenon of synchronization. But this is not the case, as we show with one
example in this subsection.

12
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Figure 13. Single spin expectation values in x-direction regarding time evolution of initial state |ψB〉 w.r.t. Hamiltonian
equation (1) with isotropic Heisenberg interactions and Jj = 2 ∀j, hj = 0 ∀j for various system sizes (short time).

Figure 14. Same as figure 13, but long time.

Consider the state

|φ〉 =
N∑

k=1

ck|k〉, (A3)

with Gaussian distributed random coefficients and an arbitrary basis |k〉 of the Hilbert space. Such a state
will be maximally entangled and all spin expectation values are close to zero. From this we construct our
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Figure 15. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions from
intervals of different widths Δ, Jj ∈ [2 −Δ, 2 +Δ] and different system sizes N, hj = 0 ∀j.

Figure 16. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with hj = −1 ∀j, Ñ = 10 spins with ζ = 1
(technically realized as fused pairs of spins with s = 1/2 each).

initial state

|ψ〉 ∝

⎛
⎝ N∏

j=1

e
ε sin(αj)s

˜

x
j e

ε cos(αj)s
˜

y
j

⎞
⎠ |φ〉, (A4)

with αj =
jπ
N and ε a parameter for the magnitude of the deflection of the spin expectation values from

zero. This way we create a (still entangled) state with single spin expectations values �= 0 in the xy-plane
fanned out by 180 degrees. Figure 17 shows associated time evolutions and that the spins do indeed still
synchronize, starting in an entangled state equation (A4).

Appendix B. Additions to section 4

In addition to section 4 we present more cases of how the spins behave with broken symmetry (without the
conserved quantities Mtrans and �S

˜
2).

14



New J. Phys. 23 (2021) 083038 P Vorndamme et al

Figure 17. Time evolution of initial state equation (A4) w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions
and Jj ∈ [1.6, 2.4], hj = −1 ∀j, N = 24 and two different values of ε. The video of (a) is provided in the supplementary data.

Figure 18. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions and
Jj = 2 ∀j, N = 24 and for different configurations of hj. Videos of (a) and (e) are provided in the supplementary data.

B.1. Inhomogeneous magnetic field
As shown in equation (3) all magnetic fields hj have to be equal or the conserved quantities are broken.

Figure 18 shows time evolutions of initial state |ψB〉 where only a few spins see a magnetic field
hj = h �= 0 and all others fields are zero. Surprisingly the spins do still synchronize and precess together
while they decay. The spins without magnetic field are carried with the others.

The frequency h̃ of the collective precession decreases the more spins there are with hj = 0. This can be

viewed as every spin sees a mean field h̃ =
∑

j hj/N. From figures 18(a)–(e) the number of magnetic fields

hj = h is halved and the precession frequency h̃ also halves.
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Figure 19. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (1) with isotropic Heisenberg interactions, Jj = 2 ∀j,
N = 24 and hj ∈ [−1 − ξ,−1 + ξ]. Videos of (a) and (e) are provided in the supplementary data.

Another way of breaking the symmetry is by choosing random magnetic fields. Figure 19 shows time
evolutions for initial state |ψB〉 where the magnetic fields hj are drawn at random from a distribution of
different width ξ. The spins do still synchronize up to large values of ξ up to the point where the decay of
the transverse magnetization is faster than the synchronization.

B.2. Dipolar and long range interactions
We now investigate how initial state |ψB〉 behaves when all spins (not only neighbors) interact with dipolar
interactions or just long-range Heisenberg interactions.

The Hamiltonian of a dipolar interacting spin system is given by

H
∼
=

N∑
j=1

N∑
k=j+1

λ

r3
jk

⎛
⎝�s
˜

j ·�s
˜

k −
3(�s
˜

j ·�rjk)(�s
˜

k ·�rjk)

r2
jk

⎞
⎠− h

N∑
j=1

s
˜

z
j . (B1)

We use the parameter λ to tune the strength of the interaction. We also need spatial coordinates�rj for all
spins. For simplicity we arrange them on the unit circle

�rj =

⎛
⎝cos(2πj/N)

sin(2πj/N)
0

⎞
⎠ . (B2)

Figure 20 shows time evolutions for initial state |ψB〉 for two different parameters λ. As expected the
spin expectation values decay the faster the larger the parameter λ is. But even for a small λ in figure 20(a)
the spins do not synchronize at all. This can also be seen in the related video at [30]. Dipolar interactions
are highly anisotropic, therefore, the conservation of the transverse magnetization is broken strongly.

Finally, we want to test if synchronization under isotropic Heisenberg couplings is limited to
nearest-neighbor interactions or holds under long-range interactions. To this end, we take as an example
the above Hamiltonian equation (B1) and remove the anisotropic parts

H
∼
=

N∑
j=1

N∑
k=j+1

λ

r3
jk

�s
˜

j ·�s
˜

k − h
N∑

j=1

s
˜

z
j . (B3)

Again we tune the interaction strength by the parameter λ. Figure 21 shows calculations for very small
to larger values of λ. For λ = 0.005 in figure 21 the time scale shown is not sufficient for the spins to
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Figure 20. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (B1) with coordinates equation (B2), N = 24, and for
different parameters λ. The video of (a) is provided in the supplementary data.

Figure 21. Time evolution of initial state |ψB〉 w.r.t. Hamiltonian equation (B3) with coordinates equation (B2), N = 24, and for
different parameters λ. The video of (b) is provided in the supplementary data.

synchronize, whereas in figure 20(c) there is enough time for the magnetization to decay completely. This
shows that the magnetization decay through the anisotropic terms of the dipolar interaction happens on a
much faster time scale than the isotropic part causes synchronization. Choosing λ significantly larger in
figure 21 leads to synchronization in the given time frame.

One finding of this chapter is that the synchronization effect is more general, and it does not only
appear for nearest-neighbor isotropic Heisenberg interactions.
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