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General Introduction

Strategic interactions play a fundamental role in most economic settings. Game theory

is the mathematical language we use to describe the underlying logic and implications

of strategic interactions. In game theory, we call a situation in which every participant

(called player) knows everything that is payo�-relevant a game with complete infor-

mation. Apart from what every player does (i.e., their actions), every player knows

everything that happens in the future and even the other players' preferences.

However, in reality, a bidder who participates in an auction usually does not know the

valuation of the opposing bidders, and the outcome of a peace negotiation may depend

on the result of an upcoming election.

Harsanyi (1967, 1968a,b) proposes an approach to deal with these, so called, games with

incomplete information: At the beginning of a game, all payo�-relevant parameters are

determined by the realization of a random variable. The realization of this random

variable is often called a type or state.

The approach of Harsanyi and most of the subsequent research assumes that players

know the probability distribution of these states or types. However, a bidder may only

have a vague idea about the valuation of the opposing bidders and an event in the

future, e.g., the result of the United States presidential election in 2024, is still hard

to predict. Thus, motivated by the distinction between risk and uncertainty of Knight

(1921) and the famous paradox of Ellsberg (1961) such immeasurable uncertainty (or

ambiguity) has been introduced in decision and game theory. However, as one can

imagine, ambiguity leads to di�culties which can not occur under risk. One example

of this di�culties is dynamic inconsistency.

In this doctoral thesis, I analyze di�erent dynamic games with ambiguity and possible

problems and applications.
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General Introduction

Risk and Ambiguity

Exactly one hundred years ago Knight (1921) distinguished distinct kinds of uncer-

tainty. Whereas it is simple to derive the probability of a coin toss or a dice roll,

it is much harder to predict precise probabilities for more complex events, e.g., stock

prices (especially during a �nancial crisis) or the death rate of a new pandemic. Knight

(1921) distinguishes between risk and uncertainty. He uses the term risk for random-

ness or uncertainty that can be completely captured by one probability distribution,

while uncertainty describes situations where the probability distribution of outcomes

is unknown. Thereafter, the latter was named Knightian uncertainty or ambiguity.

Ellsberg (1961) captured the implications of risk and ambiguity in his famous thought

experiment called the Ellsberg paradox. The Ellsberg paradox shows that agents prefer

to bet on a risky urn instead of an ambiguous urn. This behavior cannot be explained

by the theory of subjective expected utility introduced by Savage (1954). The most

prominent decision models which capture the di�erence of risk and ambiguity are:

the maxmin expected utility (MEU) by Gilboa and Schmeidler (1989), the Choquet

expected utility by Schmeidler (1989), the incomplete preference model by Bewley

(2002) and the smooth ambiguity model by Klibano� et al. (2005).1

Since then, ambiguity has been introduced into many decision and game-theoretic

models and has been applied, e.g., in auction (Bose et al. (2006)), mechanism design

(Di Tillio et al. (2016)), asset pricing (Ju and Miao (2012)), optimal stopping (Riedel

(2009)) and cheap talk (Kellner and Le Quement (2018)). However, ambiguity may

induce dynamically inconsistent behavior, which complicates the analysis of dynamic

settings.

Dynamic Inconsistency

To analyze agents' behavior in dynamic settings with ambiguous beliefs, one must �rst

specify how agents update beliefs. In this thesis, I assume prior-by-prior Bayesian up-

dating (or full Bayesian updating, Pires (2002)), i.e., the set of interim beliefs consists

of the Bayesian update of each ex-ante belief. Additional to prior-by-prior Bayesian

updating, di�erent updating rules are de�ned in the literature, e.g, maximum likeli-

hood updating (Gilboa and Schmeidler (1993)), relative maximum likelihood updating

(Cheng (2021)) and the updating rules of Hanany and Klibano� (2007, 2009). Except

for the updating rules of Hanany and Klibano� (2007, 2009), all of them can lead to

dynamically inconsistent behavior in combination with maxmin preferences.

1For recent surveys of the literature on ambiguity and axiomatic foundation see Gilboa (2009),

Gilboa and Marinacci (2016) and Etner et al. (2012).
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General Introduction
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Figure 1: Dynamic Three Colors Ellsberg Experiment

Roughly speaking, new information can lead to a change in the worst-case belief, which

induces a di�erent optimal strategy and, therefore, dynamically inconsistent behavior.

To illustrate the problem of dynamic inconsistency, consider the following dynamic

version of the three-color Ellsberg experiment. An urn contains 30 red (R) balls and

60 blue (B) or yellow (Y ) balls. The exact distribution of blue and yellow balls is

unknown. Ex-ante the agent only knows that the probability of a red ball being drawn

is P(R) = 1
3
, whereas the probability of a blue (or yellow) ball is P(B),P(Y ) ∈

[
0, 2

3

]
.

The agent �rst observes if the drawn ball is yellow or not. Then, he can choose

between betting on the event �a blue ball is drawn� or the event �a red ball is drawn�.

The decision problem is depicted in Figure 1. Empty circles represent nature moves

and the solid circle the decision node of the agent. Further, r and b denotes the

choice of the agent, i.e., betting on red or blue, respectively. Let us assume that the

agent's preferences can be modeled by the maxmin expected utility model of Gilboa

and Schmeidler (1989). Ex-ante, before the agent learns if the ball is yellow, the worst

expected utilities of r and b are

min
P(B)∈[0, 23 ]

E(u(b)) = min
P(B)∈[0, 23 ]

1

3
· 0 + P(B) +

2

3
− P(B) =

2

3
,

min
P(B)∈[0, 23 ]

E(u(r)) = min
P(B)∈[0, 23 ]

1

3
· 1 +

2

3
− P(B) =

1

3
,

and the agent prefers betting on blue. Now, suppose the ball is not yellow and the

agent updates his belief set with prior-by-prior Bayesian updating. Then, the interim

worst-case expected utilities of r and b are

min
P(B)∈[0, 23 ]

E(u(b)) = min
P(B)∈[0, 23 ]

1
3

1
3

+ P(B)
· 0 +

P(B)
1
3

+ P(B)
= 0,

min
P(B)∈[0, 23 ]

E(u(r)) = min
P(B)∈[0, 23 ]

1
3

1
3

+ P(B)
+

P(B)
1
3

+ P(B)
· 0 =

1

3
.

Now, the agent prefers betting on red. Hence, learning that the color of the ball is not

yellow changes the optimal action of the agent. He does not follow the optimal ex-ante

plan at the interim stage and behaves dynamically inconsistent.
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General Introduction

Solving the problem of dynamically inconsistent behavior is not straightforward. There

is a well-known con�ict between dynamic consistency and consequentialism in the lit-

erature on ambiguous beliefs in dynamic settings. Intuitively, consequentialism states

that interim preferences do not depend on past discarded actions or events that are

not consistent with the given information set. Among others, Ellis (2018) and Aryal

and Stauber (2014) show that dynamic consistency, consequentialism, and a common

prior assumption are only ful�lled simultaneously if players behave as expected util-

ity maximizers. Hence, ambiguity, dynamic consistency, and consequentialism cannot

occur simultaneously. The literature proposes di�erent approaches to overcome this

impossibility result. The three main approaches are the following:

� Siniscalchi (2011) axiomatize and generalize the consistent planning approach of

Strotz (1955) to an ambiguous decision-theoretical setting. He states that

�...consistent planning (CP) is a re�nement of backward induction. If

there are unique optimal actions at any point in the tree, the two

concepts coincide. Otherwise, CP complements backward induction

with a speci�c tie-breaking rule: indi�erences at a history h are resolved

by considering preferences at the history that immediately precedes h.�

Siniscalchi (2011) shows that consistent planning satis�es consequentialism but

not dynamic consistency.

In our Ellsberg urn example of Figure 1, the optimal interim action of an agent

who uses consistent planning is betting on red. At the ex-ante stage, the optimal

plan that is consistent with the optimal interim choice is betting on red.

� Sarin and Wakker (1998) and Epstein and Schneider (2003) de�ne rectangular-

ity for di�erent decision-theoretic settings.2 They show that rectangularity im-

plies dynamically consistent behavior in their setting. Furthermore, Riedel et al.

(2018) explore a dynamic decision-theoretic setting where preference relations

are de�ned on pairs of imprecise probabilistic information and acts. Roughly

speaking, they show that an ambiguity-averse agent that behaves dynamically

consistently chooses a rectangular subjective ex-ante belief set and evaluates acts

according to the worst-case belief given his subjective ex-ante belief set.

Rectangularity is a condition on belief sets that leads to a generalized version of

the law of iterated expectation. Intuitively, the agent takes possible future worst-

case beliefs into account. Therefore, rectangularity depends on the information

structure of the decision problem. Epstein and Schneider (2003) and Riedel

2Sarin and Wakker (1998) do not use the term rectangularity. Instead, they use the term reduced

family of probability measures for the rectangular hull as de�ned in Epstein and Schneider (2003).
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General Introduction

et al. (2018) show that an agent with a rectangular belief set satis�es dynamic

consistency for a given information structure and consequentialism.

A di�erent but related approach is the one of Hill (2020). He solves the con�ict

of dynamic consistency and consequentialism by reformulating the dynamic con-

sistency axiom on subjective trees. Further, if subjective trees are represented

by a partition of the state space, dynamic consistency implies rectangularity.

In our Ellsberg urn example of Figure 1, the agent's optimal ex-ante and interim

action with rectangular beliefs is betting on red. The optimal interim action

becomes ex-ante optimal.

� The updating rules of Hanany and Klibano� (2007, 2009) satisfy dynamic con-

sistency but violate consequentialism. Roughly speaking, a decision maker with

maxmin preferences and a set of priors P only updates a subset of P . This sub-
set depends on his ex-ante optimal choice and ensures that the ex-ante optimal

plan over contingencies is interim optimal. For smooth-ambiguity preferences,

Hanany and Klibano� (2009) derive the so-called smooth-rule. The smooth-rule

updates the second order belief such that the ex-ante worst case beliefs receives

more weight. These updating rules predict a di�erent optimal strategy in our

Ellsberg urn example of Figure 1. Now, betting on blue is ex-ante and interim

optimal.

Besides, Klibano� et al. (2009) axiomatize a recursive smooth ambiguity model.

So far, it is still an open question if there exist settings or conditions where these

three approaches lead to similar or di�erent optimal behavior. Consistent planning

and rectangularity are both related to backward induction. Thus, in some settings, it

is argued that they induce equivalent optimal behavior. This is the case in our example

of Figure 1. However, we will see in Chapter 3 that settings exist where the equilibrium

strategies di�er. The updating rules of Hanany and Klibano� (2007, 2009) focus on the

ex-ante optimal choice. Therefore, as in our Ellsberg urn example, they will usually

predict di�erent behavior as consistent planning or rectangularity.

Ambiguity in Dynamic Games

The formation of beliefs plays a fundamental role in games with incomplete information

and motivated the de�nition of di�erent equilibrium concepts as, e.g., perfect Bayesian

equilibrium (Fudenberg and Tirole (1991a,b)) or sequential equilibrium (Kreps and

Wilson (1982)). One essential assumption for these equilibrium concepts is that rational

players use (whenever possible) Bayes' rule to update their beliefs after observing new

5



General Introduction

information. Further, in the canonical model with expected utility maximizers, Bayes'

rule leads to dynamically consistent behavior. The best response at the ex-ante stage

is also optimal at the interim or ex-post stage. This result breaks down if players

are ambiguity-averse and maximize their worst-case expected utility. Dynamically

inconsistent behavior makes it impossible to use the standard concepts of sequential

equilibrium and perfect Bayesian equilibria and complicates the analysis of dynamic

games with ambiguity.

Most of the literature on ambiguity in dynamic games focuses on the optimal decision at

one stage, e.g., Lo (1998), Kajii and Ui (2005), and Eichberger and Kelsey (1999) focus

on the interim optimization. Lo (1999) explores extensive-form games with maxmin

expected utility. Instead of imposing conditions to ensure dynamic consistency, he

introduces an equilibrium concept that explicitly requires that each player chooses a

strategy that is interim optimal in an equilibrium. Kajii and Ui (2005) also formulate

an incomplete information game with multiple priors. Their setting only consists of

two stages. First, new information arises due to signals which are independent of the

strategies. Then, players play a simultaneous-move game. Therefore, the information

structure is very close to decision-theoretic settings and does not capture the strategic

aspects that, e.g., occur in signaling games. Further, Eichberger and Kelsey (1999)

investigate signaling games in which beliefs are represented by capacities. They for-

mulate an equilibrium concept similar to perfect Bayesian equilibrium, but they focus

on interim utility maximization.

Hanany et al. (2020) de�ne sequential equilibria for multistage games with incomplete

ambiguous information. In their setting, players have smooth-ambiguity preferences

and use the smooth-rule of Hanany and Klibano� (2009) to update beliefs. Battigalli

et al. (2019) analyze self-con�rming equilibria for players with smooth-ambiguity pref-

erences. But instead of the smooth-rule, they use prior-by-prior Bayesian updating

and the consistent planning approach of Siniscalchi (2011). We discuss these papers in

more detail in Chapter 1.

So far, the literature on rectangularity in games is small. Liu and Xiong (2016) de�ne

rectangularity in a game-theoretical setting. However, they use a similar model as

Kajii and Ui (2005) and the information structure is very similar to decision theory

and cannot capture strategic aspects. Muraviev et al. (2017) use rectangularity to show

outcome equivalence between mixed and behavioral strategies in games with Ellsberg

strategies.

Generalizing rectangularity to games is not straightforward. In games, players receive

new information by observing actions played by their opponents. If players have het-

erogeneous information, observing opponents' actions reveals information about the

6



General Introduction

states. These strategic e�ects cannot occur in decision-theoretical models. Further,

as already mentioned Ellis (2018) and Aryal and Stauber (2014) show that dynamic

consistency, consequentialism, and a common prior assumption can only be satis�ed if

the players behave as expected utility maximizer.

Contribution

In this doctoral thesis, I generalize rectangularity to di�erent settings. Chapter 1

studies multistage games with ambiguous incomplete information about states of the

world or types of opponents. Here, ambiguity arises due to ambiguity about the choice

of nature. There is no ambiguity about the strategies of the opponents. First, I

generalize rectangularity to multistage games. Then, I de�ne and show the existence

of sequential equilibria with rectangular beliefs. To overcome the impossibility result

of Ellis (2018) and Aryal and Stauber (2014) I weaken the dynamic consistency and

common prior assumption slightly. Similar to Epstein and Schneider (2003) and Riedel

et al. (2018), dynamic consistency is only required for the information structure induced

by the game. Furthermore, players may have heterogeneous rectangular belief sets if

they receive heterogeneous information during the game.3

In Chapter 2, I analyze ambiguous persuasion with dynamically consistent players. In

the ambiguous persuasion setting, the Sender can design an ambiguous communication

device by choosing a set of communication devices. Here, ambiguity arises due to an

ambiguous strategy that cannot be modeled by the setting of Chapter 1. I show that the

Sender can gain from ambiguous persuasion even if the Receiver behaves dynamically

consistently. Furthermore, I discuss the relation to the (negative) value of information

of ambiguous communication for the Receiver.

Chapter 3 investigates a dynamic decreasing price auction with two buyers. The buyers

have ambiguous beliefs about the valuation of the opponent buyer. The timing of the

auction is discrete. At the beginning of each period, one player is chosen randomly

and secretly and gets a price o�er pk. If he rejects the price o�er, the other buyer gets

the same price o�er. If one of the buyers accepts, the auction ends immediately. If no

one accepts the current price, the auction proceeds to the next period with a new price

o�er pk+1 < pk. The timing becomes complex since the buyers never learn who gets

the price o�er �rst. Therefore, the auction cannot be modeled as a multistage game

of Chapter 1. I show that even if buyers behave dynamically consistently, the seller

can extract almost all surplus. Furthermore, in this setting, consistent planning, and

rectangularity lead to di�erent equilibrium strategies.

3See Section 1.2.2.2 for a more detailed discussion.
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Chapter 1

Dynamic Consistency in Incomplete

Information Games with Multiple

Priors

1.1 Introduction

In this chapter, we model multistage incomplete information games with uncertainty

about types or states, which include risk and ambiguity. The uncertainty is given by a

common set of probability distributions P over states or types, called imprecise proba-

bilistic information. If P is a singleton, the uncertainty reduces to risk, and players face

a usual incomplete information game. We assume that players have maxmin expected

preferences (MEU) as introduced by Gilboa and Schmeidler (1989) and maximize their

worst-case expected utility.

We contribute to the literature of ambiguity in dynamic games in two ways. First, we

characterize a belief formation process that ensures dynamically consistent behavior.

We assume that players update their belief sets prior-by-prior using Bayes' rule when-

ever possible. Players know which information they could potentially get in the future,

i.e., they know the structure of the game. When forming a set of ex-ante beliefs, players

combine their knowledge about the information structure and the information given by

the common set of imprecise probabilistic information. Formally, this leads to a belief

set for each player that satis�es a rectangularity condition and ensures dynamically

consistent behavior.

Second, we generalize the concept of sequential equilibrium to incomplete information

games with ambiguity. Sequential equilibria require sequential rationality, which can-

not be satis�ed if players are dynamically inconsistent. Thus, using our belief formation

8



1.1. Introduction

process, we ensure dynamically consistent behavior and, therefore, the existence of a

sequential equilibrium. Furthermore, we show that ambiguity can induce sequential

equilibria that cannot exist without ambiguity.

Using our belief formation process makes it possible to analyze dynamically consistent

behavior of ambiguity-averse players in dynamic games. This allows for an analysis of

ex-ante and ex-post stages, which, e.g., facilitates a consistent welfare analysis.

Ellis (2018) and Aryal and Stauber (2014) �x a common set of priors in a game with

ambiguity. They argue that generally, a common ex-ante belief set can only be rect-

angular for all players if ambiguity about other players' types reduces to risk. In our

setting, if players receive heterogeneous information during the game, our belief for-

mation process leads to heterogeneous ex-ante belief sets. Intuitively, players interpret

the common imprecise probabilistic information di�erently since they take their own

information structure into account. Considering this heterogeneity allows for rectan-

gular ex-ante belief sets of all players despite the common set of imprecise probabilistic

information.1 Therefore, the critique of Ellis (2018) and Aryal and Stauber (2014) does

not apply to our setting.

The structure of this chapter is as follows. First, we summarize the related literature. In

Section 1.2, we formulate the extensive-form game with ambiguity and de�ne belief sets

that satisfy rectangularity. Section 1.3 shows the existence and the relation of ex-ante

and interim equilibria. In Section 1.4, we prove the existence of sequential equilibria

with rectangular beliefs and discuss the relationship between sequential rationality

and rectangularity. Furthermore, we give an example that shows that ambiguity might

induce new sequential equilibria. Finally, Section 1.5 concludes.

Related Literature As already mentioned in the general introduction, Epstein

and Schneider (2003) and Riedel et al. (2018) axiomatize rectangularity in decision-

theoretical settings. However, due to the di�erent information structures in games

and decision-theoretical settings and strategic e�ects, we can not directly apply their

de�nition of rectangularity to games.

Hanany et al. (2020) and Battigalli et al. (2019) apply the approaches of Klibano� et al.

(2009) and Siniscalchi (2011) to games. Hanany et al. (2020) explore a �nite extensive-

form multistage game with incomplete information but use smooth ambiguity aversion

instead of multiple priors. They show that the smooth-rule of Hanany and Klibano�

(2009) is equivalent to sequential optimality and induces the existence of sequential

1Our setting does not satisfy Common Ex-Ante Behavior (Axiom 4) of Ellis (2018), since we allow

for heterogeneous rectangular ex-ante belief sets. Therefore, his impossibility result does not apply in

our setting.

9



1.2. Model

equilibria. Battigalli et al. (2019) explore (rationalizable) self-con�rming equilibria

in dynamic games with smooth ambiguity-averse players. They use the consistent

planning approach of Siniscalchi (2011). We discuss the relation to these papers in

Section 1.5.

Rectangularity has been rarely used in games. Liu and Xiong (2016) de�ne rectangu-

larity in a game-theoretical setting similar to Kajii and Ui (2005). Their game only

consists of two stages. First, players observe a signal which reveals information about

the ambiguous state. Then, they play a simultaneous-move game. The signal is in-

dependent of the strategies of the players. Therefore, their setting cannot capture

strategic aspects that arise, for example, in signaling games.

Muraviev et al. (2017) explore extensive-form games where players can use Ellsberg

strategies, introduced by Riedel and Sass (2014). Ellsberg strategies extend mixed

strategies to ambiguous strategies, i.e., instead of playing a probability distribution

over the pure strategies, a player chooses a set of probability distributions. They

show that a rectangularity condition ensures outcome-equivalence between mixed and

behavioral strategies, but they do not formulate a general equilibrium concept for such

games. However, similar to this chapter, Muraviev et al. (2017) have to construct a

�ltration to de�ne rectangularity. The di�erence lies in the source of ambiguity. In

Ellsberg games, ambiguity arises due to ambiguous strategies. In our setting, ambiguity

arises due to incomplete ambiguous information about states or types.

1.2 Model

This section de�nes a �nite extensive-form multistage game with incomplete informa-

tion, multiple priors, and perfect recall. The de�nition is similar to Hanany et al.

(2020), but instead of smooth ambiguity aversion, players face imprecise probabilistic

information and maxmin preferences. We will show later that given this imprecise

probabilistic information and the information structure of the game, each player con-

structs a subjective set of ex-ante beliefs. Given these beliefs, each player evaluates a

strategy by using maxmin expected utility (MEU).

De�nition 1.1. A tuple Γ = (N,H, (Ii)i∈N , (ui)i∈N ,P) is a �nite extensive-form

multistage game with incomplete information, perfect recall and multiple

priors with:

� N is a �nite set of players.

� H is a �nite set of (terminal) histories, where each history h is of the form

h = (h−1, (h0,i)i∈N , . . . , (hT,i)i∈N).

10



1.2. Model

For 0 ≤ t ≤ T + 1, let H t := {ht := (h−1, (h0,i)i∈N , . . . , (ht−1,i)i∈N) : h ∈ H} be
the set of partial histories up to but not including stage t. For each player i ∈ N ,

0 ≤ t ≤ T + 1 and ht ∈ H t, Ai(h
t) := {ĥt,i : ĥ ∈ H, ĥt = ht} is the set of actions

available to player i at ht. The set of uncertain types or states is H0.

� Ii :=
⋃

0≤t≤T Iti are the information sets for player i, where each Iti is a partition

of H t such that for all ht, ĥt ∈ H t, ĥt ∈ Ii(h
t) implies Ai(h

t) = Ai(ĥ
t), where

Ii(h
t) is the unique element of Iti such that ht ∈ Ii(ht). Furthermore, I =

⋃
i∈N Ii

denotes the set of all information sets.

For 0 ≤ t ≤ T and ht ∈ H t, Ri(h
t) := ((Ii(h

s), hts,i)0≤s<t, Ii(h
t)) is the ordered list

of information sets encountered by player i and the action taken by player i given

the partial history ht. The game satis�es perfect recall in that for each player i,

each stage 0 ≤ t ≤ T , and each partial history ht, ĥt ∈ H t, Ii(h
t) = Ii(ĥ

t) implies

Ri(h
t) = Ri(ĥ

t).

� ui : H → R is the (utility) payo� of player i.

� P ⊂ ∆(H0) is the set of imprecise probabilistic information over states or types

which is homogeneous across all players. We assume that P is compact and all

π ∈ P have full support, i.e., π(h0) > 0 for all h0 ∈ H0 and all π ∈ P.

The de�nition above allows for imperfectly observed actions as well as for private

information about types or states. The multistage structure assumes that each player

chooses an action at each stage. Since Ai(h
t) can be a singleton, this assumption is

not restrictive and sequential play can be modeled as well.

The only di�erence compared to the standard setting without ambiguity is the last

bullet point. Instead of having an exact distribution over types, players have imprecise

probabilistic information given by a set of possible distributions P . If P is a singleton,

there is no ambiguity, and the game reduces to the standard version without ambiguity.

The compactness assumption on P ensures the existence of a worst-case belief. Full

support ensures that an out-of-equilibrium path only occurs because of non-completely

mixed strategies. Therefore, for completely mixed strategies, Bayes' rule is always

well-de�ned.

At each stage, conditional on their information set I ti , players choose a distribution over

their actions which are available at I ti . A strategy pro�le consists of these distributions

for each player and information set.

De�nition 1.2. A (behavioral) strategy for player i in a game Γ is a function σi

such that σi(I
t
i ) ∈ ∆(Ai(I

t
i )) for each I ti ∈ Iti , where ∆(Ai(I

t
i )) denotes the set of all

probability vectors over Ai(I
t
i ).

Furthermore, let Σi denote the set of all strategies for player i, σ := (σi)i∈N be a strategy

11



1.2. Model

pro�le, and σ−i := (σj)j 6=i be the strategies of all opponents of i.

A strategy pro�le induces a transition probability with which a particular (partial)

history occurs. For a given strategy pro�le σ, a history h, and 0 ≤ r ≤ t ≤ T + 1, the

probability of reaching ht starting from hr is de�ned by

pσ(ht|hr) :=
∏
j∈N

∏
r≤s<t

σj(Ij(h
s))(hs,j).

It will be useful to split pσ(ht|hr) in one part that only depends on the player himself

and another part that represents the actions of all opponents. We de�ne

pσi(h
t|hr) :=

∏
r≤s<t

σi(Ii(h
s))(hs,i),

and

pσ−i(h
t|hr) :=

∏
j 6=i

∏
r≤s<t

σj(Ij(h
s))(hs,j).

Then, pσi(h
t|hr)pσ−i(ht|hr) = pσ(ht|hr).

1.2.1 Dynamic Inconsistency

Multiple priors can lead to dynamically inconsistent behavior. To illustrate dynamic

inconsistency, we repeat the three-player example from Aryal and Stauber (2014).2

We will use this example as a running example in the following sections to illustrate

notation and results.

Running Example. The game, depicted in Figure 1.1, shows that ambiguity and

multiple priors can lead to dynamically inconsistent behavior. There are two players,

player 1 and player 2. First, nature chooses the state L, R, or O. Let l, r and o be

the probability of L, R and O, respectively. The imprecise probabilistic information is

given by an ε-contamination of the distribution that assigns probability one to R, i.e.,

(l, r, o) = (0, 1, 0). We denote the set of all probability distributions over {L,R,O} by
∆. Then, the imprecise probabilistic information is 3

P = {(1− ε)(0, 1, 0) + ε(l, r, o) : (l, r, o) ∈ ∆}.
2To �t our de�nition of multistage games, one would have to include a constant action for player 2

at the information set of player 1 and a constant action for player 1 at the information set of player 2.

Since this does not change the results of the example, we skip these constant actions due to notational

convenience.
3P does not satisfy the full support assumption stated in De�nition 1.1. Formally, the full support

assumption is needed to guarantee that the probability of reaching an information set is zero if and

only if all partial histories leading to this information set have probability zero because of the played

strategy pro�le. Hence, if the probability of reaching an information set is zero for one ex-ante belief

π ∈ P, then it is zero for all ex-ante beliefs. Due to the ε-contamination structure of P, the probability

12
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Nature

RL

M

0, y

N

101, y

M

101, y

N

S

100, x

T

100, x

O

S

−1, x

T

−1, x

1

2

Figure 1.1: Three-Player Game of Aryal and Stauber (2014)

To illustrate the problem of dynamic inconsistency, assume that P represents the ex-

ante beliefs of player 1.

After the choice of nature, player 1 can observe if the state is O or not. If the state

is not O, player 1 can choose between N and M . If the state is O or R and player 1

played N , player 2 can choose an action without knowing which of the two cases is

true. Dashed lines depict the information sets of both players. For the moment, let us

concentrate on player 1. His payo�s are independent of the strategy of player 2. He gets

his lowest payo�, -1, if the state is O. Therefore, his ex-ante worst-case belief gives the

highest possible probability to O, i.e., the ex-ante worst-case belief is (0, 1− ε, ε). Since
the probability of L is zero, his optimal ex-ante strategy is playing M with probability

one.

Now, we check if player 1 has an incentive to deviate from his optimal ex-ante strategy

after observing that the state is not O. Updating P prior-by-prior using Bayes' rule

and conditioning on the event {L,R}, leads to the following set of updated beliefs

Bay
(
P|{L,R}

)
= {(l, r, 0) = (1− r, r, 0) : r ∈ [1− ε, 1]}.

His interim worst-case belief depends on his strategy. Playing M with probability one

would lead to a payo� of zero if the state is L and a payo� of 101 if it is R. Given this

strategy, his worst-case belief would be (ε, 1−ε, 0). But, given this belief, playingM with

of R is at least 1 − ε for all ex-ante beliefs. Therefore, the information set of player 1 always has a

positive probability. If player 1 plays N with probability zero, the information set of player 2 will not

be reached if O has probability zero. In this case, it depends on the ex-ante belief if the probability of

reaching the information set of player 2 is strictly positive. Assuming an ex-ante belief set P satisfying

the full support assumption would lead to the same results as long as the minimum probability of L

is small enough, i.e., smaller than 1
102 . Since the payo� of player 2 is independent of his actions and

since the payo� of player 1 is constant w.r.t. to the action chosen by player 2, we skip the full support

assumption due to notational convenience.
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1.2. Model

probability one is no longer optimal. On the other hand, playing N with probability one

leads to a payo� of 101 or 100 if the state is L or R, respectively. Hence, the worst-case

belief, if he plays N with probability one, is (0, 1, 0). But for this belief, playing M with

probability one is optimal. One can show that for ε > 1
102

the optimal interim strategy

of player 1 is a mixed strategy with probability 1
102

< 1 for M .

Hence, player 1 behaves dynamically inconsistently and plays a di�erent strategy after

observing that the state is not O. For detailed calculations see Aryal and Stauber

(2014).

The example above shows that new information can change beliefs such that the opti-

mal strategy changes as well. This leads to dynamically inconsistent behavior. How-

ever, at the ex-ante stage, player 1 knows that his actions only in�uence his payo� if the

state is not O. Should he not consider his knowledge about the information structure

of the game in his ex-ante decision?

In decision-theoretic settings, an essential property of a set of distributions or beliefs

to ensure dynamic consistency is rectangularity, or sometimes called stability under

pasting introduced by Epstein and Schneider (2003) and Sarin and Wakker (1998).

Rectangularity can be interpreted as a generalization of the law of iterated expecta-

tions. It captures the idea of decomposing any probability measure into its conditionals

and marginals. Therefore, at the ex-ante stage, players take their interim worst-case

beliefs and the information structure of the game into account. The information struc-

ture plays an essential role for rectangularity. The information that a player receives

in�uences his interim beliefs and, therefore, dynamically inconsistent behavior. Since

the game structure is known to each player, each player knows the possible information

sets for each stage. Knowing the possible sets of updated beliefs, a player constructs

his set of ex-ante beliefs in a rational way that is crucial for dynamic consistency. This

is given by constructing a set of ex-ante beliefs such that the belief system is rectangu-

lar (or stable under pasting). To de�ne rectangularity, we have to consider that each

player's information consists of the opponents' observed actions. Therefore, we de�ne

beliefs on a more general state space. However, we will see that de�ning beliefs on

the general state space does not change the equilibria of the game. Only ambiguity

aversion and dynamic inconsistency lead to new equilibria.

In the next section, we formulate the de�nition of beliefs and rectangularity.

1.2.2 Beliefs

In standard game-theoretic settings without ambiguity, players have a (common) ex-

ante belief over the set of types H0. Let π ∈ ∆H0 be such an ex-ante belief. Then,

player i faces the following maximization problem given a strategy pro�le of the oppo-
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1.2. Model

nents σ−i

max
σi∈∆Si

∑
h∈H

u(h)pσi(h|h0)pσ−i(h|h0)π(h0). (1.1)

To evaluate a strategy σi, player i calculates his expected payo� by multiplying the

ex-ante belief and the transition probability induced by his strategy and his conjecture

about the strategy pro�le of his opponents.

Furthermore, in games, new information is in�uenced by strategic aspects. In decision-

theoretic settings, further information usually occurs as an exogenously given signal. In

games, the signals are observable actions of the opponents. Therefore, the strategies of

the opponents in�uence the information that a player observes. To take this dependence

into account, we de�ne beliefs over the set of (terminal) histories H such that they

are consistent with the set of imprecise probabilistic information P and the strategy

pro�le of the opponents σ−i. We will see that our de�nition leads to an equivalent

maximization problem of player i as Equation (1.1).

Before we start with the de�nition of beliefs, we need the following de�nition of a

sequence of partitions, which represents the information �ow of the game.

De�nition 1.3. Given the set of histories H and the information sets I, we denote

with (F ti )t=0,...,T+1 the sequence of information partitions of player i, where

F0
i := H,

F ti :=
{{
h ∈ H : ht ∈ I ti

}
Iti∈Iti

}
.

Since there is a one-to-one relation between the elements F t
i of F ti and the information

sets I ti ∈ Iti , we sometimes call F t
i an information set.

Fix a player i and a strategy pro�le σ−i. First, we de�ne a system of beliefs of player i

induced by the partition (F ti )t=0,...,T+1, the imprecise probabilistic information P , and
σ−i. Then, we discuss which properties are needed to have a maximization problem,

which is equivalent to Equation (1.1). Finally, we show the existence of a belief system

satisfying all these properties.

De�nition 1.4. Given (F ti )t=0,...,T+1, the set of imprecise probabilistic information P
and a strategy pro�le σ−i, we call Ψσ−i = ((Ψt

σ−i
(F t

i ))F ti ∈Fti )t=0,...,T the belief system

of player i if

Ψt
σ−i

(F t
i ) ⊂ ∆(H),

with support on F t
i for all F

t
i ∈ F ti , t =, 0, . . . T and i ∈ N .

Furthermore, we call Ψ0
σ−i

:= Ψ0
σ−i

(F 0
i ) the ex-ante belief set and Ψt

σ−i
(F t

i ) the interim

belief set at information set F t
i .
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1.2. Model

To be consistent with the set of imprecise probabilistic information and the opponents'

strategy pro�le, a belief system should satisfy the following properties:

1) The ex-ante belief set Ψ0
σ−i

is consistent with the set of imprecise probabilistic in-

formation P and the strategy pro�le of the opponent σ−i. Formally, φ ∈ Ψ0
σ−i

(F 0
i )

if and only if there exist π ∈ P and a normalization constant ci ∈ R such that4

φ(h) =
pσ−i(h|h0)

ci
π(h0).

2) The interim belief sets Ψt
σ−i

(F t
i ) are generated using prior-by-prior Bayesian up-

dating whenever possible. Formally,

Ψt
σ−i

(F t
i ) =

{
Bay(φ|F t

i ) : φ ∈ Ψ0
σ−i

(F 0
i )
}
,

with

Bay(φ|F t
i )(h) =


φ(h)
φ(F ti )

if h ∈ F t
i ,

0 otherwise

for all F t
i with φ(F t

i ) > 0, for some φ ∈ Ψ0
σ−i

(F 0
i ).5

3) For all information sets with positive probability, the interim belief sets are con-

sistent with the set of imprecise probabilistic information P and the strategy

pro�le of the opponents σ−i. Let Bay(P|F t
i ) be the prior-by-prior Bayesian up-

date of P at the information set F t
i . Then, similar to 2), φ̃ ∈ Ψt

σ−i
(F t

i ) if and

only if there exist π̃ ∈ Bay(P|F t
i ) and a normalization constant cti ∈ R such that

φ̃(h) =
pσ−i(h|ht)

cti
π̃(ht)

for all F t
i with φ(F t

i ) > 0.

Property 1) ensures that the ex-ante beliefs are consistent with the information given by

the game structure and the set of imprecise probabilistic information P . The second

property is an extension of the usual assumption that players update their beliefs

using Bayes' rule whenever possible. Property 3) ensures the same relation between

the interim belief sets and the Bayesian update of P . Furthermore, if Ψ0
σ−i

= {φ} is
singleton and satis�es all properties, the ex-ante maximization problem of player i is

max
σi∈∆Si

∑
h∈H

u(h)pσi(h|h0)φ(h) = max
σi∈∆Si

1

ci

∑
h∈H

u(h)pσi(h|h0)pσ−i(h|h0)π(h0),

4Please note that the normalization constant is needed to guarantee, that φ(·) is a probability

measure.
5The full support assumption on P implies that φ(F ti ) > 0 if and only if φ′(F ti ) > 0 for any

φ, φ′ ∈ Ψ0
σ−i

(F 0
i ).
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1.2. Model

which is equivalent to the maximization problem of Equation (1.1). Therefore, using

our de�nition of beliefs over (terminal) histories does not in�uence the set of Nash

Equilibria in an unambiguous game. In Section 1.3, we will see that the equivalence of

the maximization problems extends to games with ambiguity if there is no dynamically

inconsistent behavior given the set of imprecise probabilistic information.

Before proceeding with the equilibrium analysis, we have to ensure that there exists a

belief system over histories satisfying the above properties. The following assumption

will ensure the existence.

Assumption 1.1. We assume that the number of actions is constant across di�erent

information sets at the same stage, i.e., |Ai(I ti )| = |Ai(Î ti )| for all I ti , Î ti ∈ It and i ∈ N ,

where Ai(I
t
i ) denotes the actions set of player i at information set I ti .

Assumption 1.1 may seem restrictive. However, any �nitely repeated game with in-

complete information does satisfy Assumption 1.1. Furthermore, for any game Γ as

de�ned in De�nition 1.1, we can �nd a game Γ′ satisfying Assumption 1.1 such that the

equilibria of Γ and Γ′ are payo�-equivalent. One can easily construct Γ′ by including

copies of partial histories of Γ. To be more precise, let t be a stage with two information

sets I ti and Î
t
i and assume that |Ai(I ti )| = c1 6= c2 = |Ai(Î ti )|. Then, we can copy the

partial histories starting at I ti c2-times and the partial histories starting at Î ti c1-times.

The new action sets, including the copies, have both a cardinality equal to c1 times

c2. Since a player is indi�erent between any copy of a partial history and the partial

history itself, including these copies does not change the equilibrium payo�s. For the

rest of the chapter, we assume that Assumption 1.1 is satis�ed.

Due to Assumption 1.1, the number of actions player i can choose from at stage t is

the same for all information sets. We denote this number with |Ati|.

Lemma 1.1. Let c̄i :=
∏T

t=1|Ati|. The following sets form a belief system that satis�es

Properties 1) to 3).

Φ0
σ−i

(F 0
i ) :=

{
pσ−i(h|h0)

c̄i
π(h0) : π ∈ P

}
,

Φt
σ−i

(F t
i ) :=

{
Bay(φ|F t

i ) : φ ∈ Φ0
σ−i

(F 0
i )
}

for all information sets with φ(F t
i ) > 0. Furthermore, any belief system satisfying

Properties 1) to 3) has to be equal to Φσ−i at all information sets with φ(F t
i ) > 0.

Simple calculations show that Assumption 1.1, Property 1), and the normalization of

beliefs imply that the normalization constant equals c̄i. Then, Property 1) and 2) follow

immediately from the de�nition of Φσ−i . Bayesian updating implies that cti =
∏T

s=t|Asi |
and Property 3) follows similar to Property 1). The formal proof can be found in

Section 1.6.1 in the Appendix.
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We come back to our running example to illustrate the de�nitions above:6

Running Example (cont.). We denote with LM the history, where nature chooses

type L and player 1 plays M . All histories are denoted similarly. Furthermore, denote

the probability with which player 1 plays N with n and similarly all probabilities of an

action with the corresponding lower case. The set of all histories H is then given by

H = {LM,LN,RM,RNS,RNT,OS,OT}.

At the ex-ante stage, player 1 and 2 have no information about the states. Therefore,

their information partitions at the ex-ante stage consist only of one element, which is

the set of all histories

F0
i = H.

At the interim stage, player 1 can observe if the state is O or not. His information set

consists of three elements. The �rst set contains all histories starting at L or R. The

second and third set represent the case where player 1 learns that the state is O:

F1
1 = {F 1

1,1, F
1
1,2, F

1
1,3} =

{
{LM,LN,RM,RNS,RNT}, {OS}, {OT}

}
.

Similarly, player 2's interim information partition consists of the set that contains all

histories starting from O and histories where the state is R and player 1 plays N and

the sets where he learns the exact history:

F1
2 = {F 1

2,1, F
1
2,2, F

1
2,3, F

1
2,4} =

{
{RNS,RNT,OS,OT}, {LM}, {LN}, {RM}

}
.

A strategy σ−1 = (s, t) of player 2 induces a transition probability pσ−1(·|·) for each

history h ∈ H which is independent of player 1's strategy. Multiplying the imprecise

probabilistic information with the transition probability, pσ−1(·|·), induced by the strategy
σ−1 = (s, t), leads to the following set of ex-ante beliefs for player 1:

Φ0
(s,t) =

{(
l

2
,
l

2
,
r

2
,
rs

2
,
rt

2
, os, ot

)
: (l, r, o) ∈ P

}
.

Similarly, the ex-ante belief set of player 2 given strategy σ−2 = (m,n) of player 1 is

Φ0
(m,n) =

{(
lm, ln, rm,

rn

2
,
rn

2
,
o

2
,
o

2

)
: (l, r, o) ∈ P

}
.

6Please note that our running example does not satisfy the multistage structure and Assump-

tion 1.1. The game can be easily translated into a game that satis�es both assumptions by including

trivial moves. However, due to the simple structure and the fact that each player has only one non-

trivial move, Assumption 1.1 is not needed for the following constructions and calculations. Therefore,

due to simplicity, we use this simpler version of the game.
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1.2.2.1 Rectangularity

Given the above notation and de�nitions, we formulate the formal de�nition of rectan-

gularity. As already mentioned, rectangularity is a generalization of the law of iterative

expectation.

Let us �rst look at the case without ambiguity, i.e., there exists only one ex-ante

belief φ, and assume that Bayes' rule is always well de�ned. For each information

set F 1
i in the next stage, Bayesian updating leads to an updated belief φ̃F 1

i
. Roughly

speaking, Bayes' rule is de�ned such that the denominator of Bayes' rule equals the

marginal belief of reaching the information set on which we update the ex-ante belief.

Hence, multiplying (or pasting) the updated belief given an information set F 1
i with the

marginal belief of reaching this information set leads to the ex-ante belief restricted to

F 1
i . This holds for any information set and, therefore, summation over all information

sets leads to the ex-ante belief on H, i.e.,

φ(h) =
∑
F 1
i ∈F1

i

φ(F 1
i )φ̃F 1

i
(h).

Now, we generalize this property to an ambiguous setting. With ambiguity, players

have a set of ex-ante beliefs. Rectangularity states that we can take any updated and

marginal belief (even if they are not derived from the same ex-ante belief), and the

pasting is still an element of the ex-ante belief set.

De�nition 1.5. For beliefs φ ∈ Ψt−1
σ−i

(F t−1
i ) and φ̃ = (φ̃F ti )F ti ∈Fti with φ̃F ti ∈ Ψt

σ−i
(F t

i ),

the pasting of marginal and updated belief, φ ◦ φ̃, is de�ned as

φ ◦ φ̃(·) :=
∑
F ti ∈Fti

φ(F t
i )φ̃F ti (·).

The pasting of Ψt−1
σ−i

(F t−1
i ) and (Ψt

σ−i
(F t

i ))F ti ∈Fti is de�ned as the set consisting of pasting

each element of Ψt−1
σ−i

(F t−1
i ) with each element of (Ψt

σ−i
(F t

i ))F ti ∈Fti , i.e.,

Ψt−1
σ−i

(F t−1
i ) ◦

(
Ψt
σ−i

(F t
i )
)
F ti ∈Fti

=
{
φ ◦ φ̃ : φ ∈ Ψt−1

σ−i
(F t−1

i ) and φ̃F ti ∈ Ψt
σ−i

(F t
i )
}
.

A set of beliefs Ψt−1
σ−i

(F t−1
i ) is called rectangular (stable under pasting) if

Ψt−1
σ−i

(F t−1
i ) ◦

(
Ψt
σ−i

(F t
i )
)
F ti ∈Fti

= Ψt−1
σ−i

(F t−1
i ).

A belief system Ψ is called stable under pasting (rectangular) if Ψt−1
σ−i

(F t−1
i ) is stable

under pasting for all F t
i ∈ F ti , i ∈ N and t = 1, . . . T + 1.

By the intuition given above, without ambiguity, rectangularity should follow from

Bayesian updating. The following remark shows that this is indeed true.
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1.2. Model

Remark 1.1. Let Ψ0
i be singleton and φ(F t

i ) > 0 for all F t
i . Then, Bayes' rule is

always well de�ned and rectangularity is equivalent to Bayes' rule. To see this, take

into account that since Ψ0
σ−i

is singleton, Ψt
σ−i

(F t
i ) are singleton as well. Denote by

F̄ t
i the element of the partition F ti which contains h. First we show that Bayes' rule

implies rectangularity:

φ ◦ φ̃(h) =
∑
F ti ∈Fti

φ(F t
i )φ̃F ti (h) = φ(F̄ t

i )
φ(h)

φ(F̄ t
i )

= φ(h).

The other direction follows by similar calculations since φ(F̄ t
i ) > 0:

φ(h) = φ ◦ φ̃(h) = φ(F̄ t
i )φ̃F̄ ti (h) ⇔ φ̃F̄ ti (h) =

φ(h)

φ(F̄ t
i )
.

Furthermore, rectangularity preserves some nice properties. Remark 1.2 shows that

the Bayesian update of φ ◦ φ̃ equals φ̃ and the marginal probability of a pasting φ ◦ φ̃
equals the marginal probability of φ. We will see that these properties are bene�cial

when we explain the construction of a rectangular belief system.

Remark 1.2. Let Ψt−1
σ−i

(F t−1
i ) be rectangular. Then, for any φ ∈ Ψt−1

σ−i
(F t−1

i ) there exist

some φ′ ∈ Ψt−1
σ−i

(F t−1
i ) and φ̃ = (φ̃F ti )F ti ∈Fti ∈ (Ψt

σ−i
(F t

i ))F ti ∈Fti such that

φ(h̄) = φ′ ◦ φ̃(h̄) =
∑
F ti ∈Fti

φ′(F t
i )φ̃F ti (h̄).

Let F̄ t
i denote the element of the partition which contains h̄. Then, φ(h̄) = φ′(F̄ t

i )φ̃F̄ ti (h̄).

� The Bayesian update of φ given F̄ t
i equals

Bay(φ|F̄ t
i )(h̄) =

φ(h̄)∑
h∈F̄ ti

φ(h)
=

∑
F ti
φ′(F t

i )φ̃F ti (h̄)∑
h∈F̄ ti

∑
F ti
φ′(F t

i )φ̃F ti (h)

=
φ′(F̄ t

i )φ̃F̄ ti (h̄)

φ′(F̄ t
i )
∑

h∈F̄ ti
φ̃F̄ ti (h)

= φ̃F̄ ti (h̄),

where the last equality follows since
∑

h∈F̄ ti
φ̃F̄ ti (h) = 1 for all t ≥ 0.

� The marginal distribution is given by∑
h∈F̄ ti

φ(h) =
∑
h∈F̄ ti

∑
F ti

φ′(F t
i )φ̃F ti (h) = φ′(F̄ t

i )
∑
h∈F̄ ti

φ̃F̄ ti (h)

︸ ︷︷ ︸
=1

= φ′(F̄ t
i ).

Hence, marginal and updated distributions of a distribution of a belief set that is rectan-

gular coincide with the marginal and updated distribution from which it is constructed.
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1.2. Model

The literature on decision theory using rectangularity and cited above shows that a

rectangular belief system can always be constructed in the following way. First, given

the ex-ante belief set and the information structure, one can calculate the prior-by-

prior Bayesian updates for all information sets. Then, one proceeds by backward

induction and constructs a rectangular belief set by pasting marginal and updated

beliefs. The belief sets constructed like this are the smallest rectangular sets that

contain the original belief sets. Therefore, they are called the rectangular hulls of the

original belief sets. The same method can be used here to get a rectangular belief

system for completely mixed σ−i. When σ−i is completely mixed, Bayes' rule is always

well de�ned, and we can derive the prior-by-prior Bayesian update of Φ0
σ−i

for each

stage and each information set. Denote with Φt−1
σ−i

(F t−1
i ) the Bayesian update of Φ0

σ−i

at t − 1 given the information set F t−1
i and, similarly, with Φt

σ−i
(F t

i ) the Bayesian

update at t given F t
i .

7 The rectangular hull rect(Φt−1
σ−i

(F t−1
i )) is given by the pasting of

Φt−1
σ−i

(F t−1
i ) and Φt

σ−i
, i.e.,

rect(Φt−1
σ−i

) =
{
φ ◦ φ̃ : φ ∈ Φt−1

σ−i
(F t−1

i ) and φ̃F ti ∈ Φt
σ−i

(F t
i ), ∀F t

i ∈ F ti
}
.

Remark 1.2 shows that the set of Bayesian updates of rect(Φt−1
σ−i

) coincides with the

set of Bayesian updates of Φt−1
σ−i

. Therefore, rect(Φt−1
σ−i

) is rectangular by construction.

This method holds for any arbitrary t. Hence, starting with the last two periods, T −1

and T , and proceeding by backward induction we can always close a prior set Φ0
σ−i

under pasting and rect(Φ0
σ−i

) is the smallest set containing Φ0
σ−i

that is rectangular.

Furthermore, the construction induces that the Bayesian updates of rect(Φ0
σ−i

) are

rectangular for any information set.

If σ−i is not completely mixed, there can exist information sets such that the marginal

probability of reaching these information sets is zero. Let F̄ t
i be an information set

such that there exists φ ∈ Φ0
σ−i

with φ(F̄ t
i ) = 0. The full support assumption of P

implies that φ′(F̄ t
i ) = 0 for all φ′ ∈ Φ0

σ−i
. Let F̄ t−1

i be information set that precedes F̄ t
i ,

i.e., F̄ t
i ⊆ F̄ t−1

i and, without loss of generality, let φ(F̄ t−1
i ) > 0.8 Furthermore, perfect

recall implies that all information sets that are reachable from F̄ t
i have probability zero

as well. For information sets with probability zero, Bayes' rule is not well de�ned. The

construction of the rectangular hull as described above can be generalized as follows.

For all information sets with positive probability, the set of updated beliefs is derived

prior-by-prior Bayesian updating. For information sets with probability zero, players

can choose an arbitrary compact set of updated beliefs. Then, the rectangular hull is

7We assume that the Bayesian update is a probability distribution over the whole set of full histories

H such that histories that are not an element of the observed information set have probability zero.
8If φ(F̄ t−1

i ) = 0 we can replace F̄ ti by F̄ t−1
i and check if the probability of the information set

preceding F̄ t−1
i has positive probability. Repeating this leads to an information set with probability

zero such that the preceding information set has a strictly positive probability.
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1.2. Model

constructed by backward induction, as described above. The construction may change

the set of beliefs at information sets with zero probability. But the construction of the

rectangular hull of the belief set at F̄ t−1
i is not in�uenced by the belief set at F̄ t

i , since

the marginal probability of F̄ t
i is zero. Therefore, the arbitrary choice of updated belief

sets at information sets with probability zero does not in�uence the construction of the

rectangular hull, and we use the notation rect(Φt
σ−i

) for any strategy σ−i ∈ Σ−i.

To illustrate the construction of a rectangular prior set, we come back to our running

example.

Running Example (cont.). We have already shown that

H = {LM,LN,RM,RNS,RNT,OS,OT},
F0
i = H,

F1
1 = {F 1

1,1, F
1
1,2, F

1
1,3} =

{
{LM,LN,RM,RNS,RNT}, {OS}, {OT}

}
,

F1
2 = {F 1

2,1, F
1
2,2, F

1
2,3, F

1
2,4} =

{
{RNS,RNT,OS,OT}, {LM}, {LN}, {RM}

}
,

Φ0
(s,t) =

{(
l

2
,
l

2
,
r

2
,
rs

2
,
rt

2
, os, ot

)
: (l, r, o) ∈ P

}
,

Φ0
(m,n) =

{(
lm, ln, rm,

rn

2
,
rn

2
,
o

2
,
o

2

)
: (l, r, o) ∈ P

}
.

To construct the rectangular hull of Φ0
(s,t), we need the marginal and updated beliefs of

player 1. The marginal beliefs for an arbitrary φ ∈ Φ0
(s,t) of the information sets of

player 1 are

φ(F 1
1,1) = l +

r

2
+
rs

2
+
rt

2
= l + r,

φ(F 1
1,2) = os,

φ(F 1
1,3) = ot.

For an arbitrary ex-ante belief φ ∈ Φ0
(s,t), the Bayesian update given F 1

1,1 is

Bay(φ|F 1
1,1) =

( l

2(l + r)
,

l

2(l + r)
,

r

2(l + r)
,

rs

2(l + r)
,

rt

2(l + r)
, 0, 0

)
.

Hence, the prior-by-prior Bayesian updates of Φ0
(s,t) given the information sets F 1

1,1,

F 1
1,2, and F

1
1,3 are

Bay(Φ0
(s,t)|F 1

1,1) =
{( l

2(l + r)
,

l

2(l + r)
,

r

2(l + r)
,

rs

2(l + r)
,

rt

2(l + r)
, 0, 0

)
: (l, r, o) ∈ P

}
=

{(
l̃, l̃, r̃, r̃s, r̃t, 0, 0

)
: l̃ ∈

[
0,
ε

2

]
, r̃ ∈

[
1− ε

2
,
1

2

]
, l̃ + r̃ =

1

2

}
,

Bay(Φ0
(s,t)|F 1

1,2) =
{(

0, 0, 0, 0, 0, 1, 0
)}
,

Bay(Φ0
(s,t)|F 1

1,3) =
{(

0, 0, 0, 0, 0, 0, 1
)}
.
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1.2. Model

The rectangular hull rect(Φ0
(s,t)) consists of all possible combination of marginal and

updated beliefs. For the histories of the information sets F 1
1,2 and F 1

1,3 ,the updated

belief is either zero or one. Therefore, we concentrate on the information set F 1
1,1.

Since l̃, r̃, l, and r are elements of closed intervals, we can focus on the all possible

combination of the lowest and highest values for l̃, r̃, l, and r. Then, the convex hull

of the pasting of these distributions forms the rectangular hull.

Let φ be such that r = 1 and l = 0. Given this ex-ante belief, the marginal probability

of reaching F 1
1,1 is φ(F 1

1,1) = 1. Let φ′ denote the pasting of the marginal φ(F 1
1,1) and

the update φ̃. Considering lowest and highest values for r̃ and l̃, there are two updated

beliefs φ̃ that can be pasted with this marginal belief:

� φ̃ such that l̃ = 0 = 1
2
− r̃:

The pasting is then given by

φ′ = φ ◦ φ̃ =
(
φ(F 1

1,1)l̃, φ(F 1
1,1)l̃, φ(F 1

1,1)r̃, φ(F 1
1,1)r̃s, φ(F 1

1,1)r̃t, 0, 0
)

=

(
1 · 0, 1 · 0, 1 · 1

2
, 1 · s

2
, 1 · t

2
, 0, 0

)
=

(
0, 0,

1

2
,
s

2
,
t

2
, 0, 0

)
.

� φ̃ such that l̃ = ε
2

= 1
2
− r̃:

The pasting is then given by

φ′ = φ ◦ φ̃ =
(
φ(F 1

1,1)l̃, φ(F 1
1,1)l̃, φ(F 1

1,1)r̃, φ(F 1
1,1)r̃s, φ(F 1

1,1)r̃t, 0, 0
)

=

(
1 · ε

2
, 1 · ε

2
, 1 ·

(
1

2
− ε

2

)
, 1 ·

(
1

2
− ε

2

)
s, 1 ·

(
1

2
− ε

2

)
t, 0, 0

)
=

(
ε

2
,
ε

2
,
1− ε

2
,
(1− ε)s

2
,
(1− ε)t

2
, 0, 0

)
.

Combining any possible combination of (l, r, o) and (l̃, r̃) in such a way leads to the

pastings given in Table 1.1. The probability of OS and OT follows from the pasting

Marginal Update Pasting

r = 1, l = 0 l̃ = 0 = 1
2
− r̃

(
0, 0, 1

2
, s

2
, t

2
, 0, 0

)
r = 1, l = 0 l̃ = ε

2
= 1

2
− r̃

(
ε
2
, ε

2
, 1−ε

2
, (1−ε)s

2
, (1−ε)t

2
, 0, 0

)
r = 1− ε, l = ε l̃ = 0 = 1

2
− r̃

(
0, 0, 1

2
, s

2
, t

2
, 0, 0

)
r = 1− ε, l = ε l̃ = ε

2
= 1

2
− r̃

(
ε
2
, ε

2
, 1−ε

2
, (1−ε)s

2
, (1−ε)t

2
, 0, 0

)
r = 1− ε, l = 0 l̃ = 0 = 1

2
− r̃

(
0, 0, 1−ε

2
, (1−ε)s

2
, (1−ε)t

2
, εs, εt

)
r = 1− ε, l = 0 l̃ = ε

2
= 1

2
− r̃

(
(1−ε)ε

2
, (1−ε)ε

2
, (1−ε)2

2
, (1−ε)2s

2
, (1−ε)2t

2
, εs, εt

)
Table 1.1: Pasting for Rectangular Hull of Player 1
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1.2. Model

with the updated belief given the information sets F 1
1,2 and F 1

1,3. For the �rst four rows

the marginal probability of reaching F 1
1,2 or F 1

1,3 is zero since o = 1 − r − l = 0. For

the last two rows, l = 0 and r = 1− ε, imply o = ε. Since the prior-by-prior Bayesian

update given F 1
1,2 or F

1
1,3 consists of just one belief, which gives probability one to OS or

OT , respectively, the pasting of marginal and update for OS and OT equals the values

given above.

The rectangular hull rect(Φ0
(s,t)) of player 1 is then given by the convex hull of the

pastings given in Table 1.1:

rect(Φ0
(s,t)) = conv

{(
0, 0,

1− ε
2

,
(1− ε)s

2
,
(1− ε)t

2
, εs, εt

)
,(

ε

2
,
ε

2
,
1− ε

2
,
(1− ε)s

2
,
(1− ε)t

2
, 0, 0

)
,

(
0, 0,

1

2
,
s

2
,
t

2
, 0, 0

)
,(

(1− ε)ε
2

,
(1− ε)ε

2
,
(1− ε)2

2
,
(1− ε)2s

2
,
(1− ε)2t

2
, εs, εt

)}
.

To see the di�erence between the rectangular hull and Φ0
(s,t), remember that Φ0

(s,t) is

given by

Φ0
(s,t) =

{(
l

2
,
l

2
,
r

2
,
rs

2
,
rt

2
, os, ot

)
: (l, r, o) ∈ P

}
= conv

{(
0, 0,

1− ε
2

,
(1− ε)s

2
,
(1− ε)r

2
,
εs

2
,
εr

2

)
,

(
ε

2
,
ε

2
,
1− ε

2
,
(1− ε)s

2
,
(1− ε)r

2
, 0, 0

)
,

(
0, 0,

1

2
,
s

2
,
t

2
, 0, 0

)}
.

Since the belief
(

(1−ε)ε
2

, (1−ε)ε
,

(1−ε)2

2
, (1−ε)2s

2
, (1−ε)2t

2
, εs, εt

)
is not an element of Φ0

(s,t), it

follows that Φ0
(s,t) ( rect(Φ0

(s,t)). The last row in Table 1.1 shows that this belief is

constructed by pasting the marginal probability of the ex-ante worst-case belief with the

interim worst-case belief. We will see later, that this belief changes the ex-ante optimal

behavior such that player 1 plays dynamically consistently.

Similar calculations as above show that the Bayesian update of Φ0
(m,n) given F 1

2,1 and

the rectangular hull rect(Φ0
(m,n)) of player 2 are given by

Bay(Φ0
(m,n)|F 1

2,1)) =

{
(0, 0, 0, r̃n, r̃n, õ, õ) : r̃n ∈

[
(1− ε)n

2(1− ε)n+ 2ε
,
1

2

]
,

õ ∈
[
0,

ε

2n(1− ε) + 2ε

]
, õ+ r̃n =

1

2

}
,
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and

rect(Φ0
(m,n)) = conv

{(
0, 0, (1− ε)m, (1− ε)n+ ε

2
,
(1− ε)n+ ε

2
, 0, 0

)
,(

0, 0,m,
(1− ε)n2

a
,
(1− ε)n2

a
,
εn

a
,
εn

a

)
,(

0, 0, (1− ε)m, (1− ε)n
2

,
(1− ε)n

2
,
ε

2
,
ε

2

)
,
(

0, 0,m,
n

2
,
n

2
, 0, 0

)
,(

εm, εn, (1− ε)m, (1− ε)n
2

,
(1− ε)n

2
, 0, 0

)
,(

εm, εn, (1− ε)m, (1− ε)2n2

a
,
(1− ε)2n2

a
,
(1− ε)εn

a
,
(1− ε)εn

a

)}
,

with a = 2((1− ε)n+ ε).

The rectangular belief set of player 1 shows the main di�erences of Φσ−i and rect(Φσ−i).

The rectangular hull contains the belief, which is the pasting of the prior and interim

worst-case belief. We will see later that due to rectangularity, the ex-ante worst-case

belief given the rectangular hull will be the pasting of the marginal belief derived from

the ex-ante worst-case belief and the interim worst-case belief. Therefore, updating

leads to the interim worst-case belief, and dynamically inconsistent behavior cannot

occur.

Given the complex structure of beliefs described in the last section, one might wonder

why we are not proceeding by constructing rectangular ex-ante belief sets over the

set of types H0 and updating these sets prior-by-prior using Bayes' rule. For our

analysis, it is essential that �rst, the information structure of the game is given by a

sequence of partitions of a �xed set, and second, the rectangular belief set of player i

is independent of his strategy σi but depends on the strategy of the opponents. The

information partition at a stage t is a partition of the set of partial histories H t up to

this stage. Then, the information partition It+1
i at stage t+1 is a partition of H t+1 but

not of H t. Therefore, the �rst part is not satis�ed. Furthermore, there can exist paths

that start from the same type or state but lead to di�erent information sets depending

on the action of the opponent. When constructing rectangular beliefs for all players,

we have to consider this dependence on information sets and actions of opponents.9

The following example illustrates that the opponents' strategies and their in�uence

on the information that a player receives play an essential role for rectangular beliefs.

9Aryal and Stauber (2014) construct a rectangular belief sets of beliefs over {L,R,O} of player 1 in

our running example. Then, they transfer this belief set to a state space that considers the di�erence

between the partial histories RN and RM and show that this transferred belief set is not rectangular

for player 2. We are proceeding the other way around. We �rst transfer the set of imprecise prob-

abilistic information to heterogeneous beliefs sets on H and then construct the rectangular hull for

each player.
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1.2. Model

Even in a simple two-player signaling game, the rectangular hull may depend on the

opponent's strategy.

Example 1.1. We consider a signaling game with three states L, R, or O. Player 1

learns the state and can play either A or B in each state. Player 2 only observes

the action chosen by player 1. We compare the rectangular hull of player 2 for two

di�erent strategies of player 1: σ1 = (AAA) denotes the strategy of always playing A

and σ′1 = (AAB) denotes the strategy of playing A at state L and R and B at state O.

The game is depicted in Figure 1.2. We highlight the histories which are played with

positive probability given σ1 or σ′1. Since we focus on player 2, we only specify the

payo�s of player 2. The imprecise probabilistic information is the same as in our

running example

P = {(1− ε)(0, 1, 0) + ε(l, r, o) : (l, r, o) ∈ ∆},

where l, r, and o denote the probability of L, R, and O, respectively, and ε > 0.

Given the strategy σ1, i.e., player 1 always plays A, player 2 does not learn anything

B
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-1
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Figure 1.2: Example 1.1.

about nature's choice. His ex-ante and interim decision problems are similar to the

ex-ante decision problem of player 1 in our running example. One can easily show

that Φ0
σ1

is rectangular. Given the strategy σ′1, player 2 learns if the state is O or

{L,R}. His ex-ante and interim decision problems are similar to the ex-ante and

interim decision problem of player 1 in our running example. Similar to our running

example, one can show that Φ0
σ′1

is not rectangular. The detailed calculation may be

found in Section 1.6.3.1 in the Appendix.

1.2.2.2 Common prior assumption

There is a well-known con�ict between dynamic consistency and consequentialism in

the literature on ambiguous beliefs in dynamic settings. Intuitively, consequentialism

states that at any information set, the preferences do not depend on past discarded

actions or events that are not consistent with the given information set.
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Aryal and Stauber (2014) and Ellis (2018) show that dynamic consistency, consequen-

tialism, and a common prior assumption are only ful�lled simultaneously if the players

behave as expected utility maximizers. Rectangular belief sets satisfy consequentialism

and dynamic consistency for a �xed information structure. We allow for heterogeneous

belief sets by assuming that each player may interpret the common set of imprecise

probabilistic information P di�erently by taking his own information structure into

account. Therefore, we overcome the impossibility result of Aryal and Stauber (2014)

and Ellis (2018) by �rst, requiring for each player dynamic consistency only for his

information structure and second, allowing for heterogeneous belief sets.

However, even if we allow for heterogeneous belief sets across players, the heterogeneity

is restricted by rectangularity and the common prior assumption on P . First, note that
a belief φ ∈ rectΦ0

σ−i
depends on the the strategy of the opponents. Therefore, we say

that rectangular ex-ante beliefs satisfy a common prior assumption if the set of marginal

beliefs over states or types H0φ(h̃0) =
∑
h̄∈H

: h̄0=h̃0

φ(h̄) : φ ∈ rectΦ0
σ−i


is the same for all players. In the next remark we discuss two special cases in which the

rectangular ex-ante beliefs satisfy a common prior assumption. In the �rst case, players

receive homogeneous information. The second case allows heterogeneous information

but requires Φ0
σ−i

= rect(Φ0
σ−i

). Thus, heterogeneous ex-ante belief sets only occur if

players receive heterogeneous information and behave dynamically inconsistently given

non-rectangular belief sets Φ0
σ−i

.

Remark 1.3. Case 1) Homogeneous information across all players implies that all

actions are observable and all players have the same information structure about

the set of states or types H0, i.e., I1
i = I1

j , for all players i and j.10 Since

the information sets are the same for all players, we omit the subscript i. Let

H0(F 1
i ) = {h0 ∈ H0 : ∃ ĥ ∈ F 1

i with h0 = ĥ0} denote the set of all states or types
leading to F 1

i . First observe∑
h∈F 1

i

pσ−i(h|h0)π(h0)

ci
=

∑
ĥ0∈H0(F 1

i )

π(ĥ0)
∑
h∈F 1

i

:h0=ĥ0

pσ−i(h|h0)

ci

=
∑

ĥ0∈H0(F 1
i )

π(h0), (1.2)

10Due to perfect recall, a player always remembers his own action. Therefore, to ensure homogeneous

information, it is necessary that all actions are observable.
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1.2. Model

where the second step follows since
∑

h∈F 1
i

:h0=ĥ0

pσ−i (h|h
0)

ci
= 1.11 Any arbitrary belief

φi ∈ rect(Φ0
σ−i

) of a �xed player i can be represented by the pasting of a marginal

and updated belief. Further, �x an arbitrary state or type h̃0. There exists exactly

one information set at stage one, F̃ 1
i , such that all histories starting at h̃0 are an

element of F̃ 1
i . The homogeneous information structure implies that F̃ 1

j = F̃ 1
i for

all i, j ∈ N and we omit the subscript i. Then, Equation (1.2) implies 12∑
h̄∈H

: h̄0=h̃0

φi(h̄) =
∑
h̄∈F̃ 1

: h̄0=h̃0

φi(h̄)

=
∑
h̄∈F̃ 1

: h̄0=h̃0

∑
h∈F̃ 1

pσ−i(h|h0)π(h0)

ci

 pσ−i (h̄|h̄
0)π′(h̄0)

ci∑
h∈F̃ 1

pσ−i (h|h0)π′(h0)

ci

=

∑
ĥ0∈H0(F̃ 1) π(h0)∑
ĥ0∈H0(F̃ 1) π

′(h0)
π′(h̃0)

∑
h̄∈F̃ 1

: h̄0=h̃0

pσ−i(h|h0)

ci

=

∑
ĥ0∈H0(F̃ 1) π(h0)∑
ĥ0∈H0(F̃ 1) π

′(h0)
π′(h̃0),

where the last step uses again
∑

h̄∈F̃ 1

: h̄0=h̃0

pσ−i (h|h
0)

ci
= 1. Now, the last part of the

equation does not depend on player i. Hence, the marginal beliefs of a state or

type h̃0 are the same for all i, j ∈ N , that is∑
h̄∈H

s.t. h̄0=h̃0

φi(h̄) =
∑
h̄∈H

s.t. h̄0=h̃0

φj(h̄).

Case 2) If Φ0
σ−i

= rect(Φ0
σ−i

) for all i ∈ N , any φ ∈ rect(Φ0
σ−i

) can be represented as

φ(h) =
pσ−i(h|h0)π(h0)

ci
.

Then, similar to Equation (1.2), one can show that even without homogeneous

information, there exists π ∈ P such that∑
h̄∈H

s.t. h̄0=h̃0

φ(h) = π(h̃0)

for any type or state h̃0. Hence, the set of marginal beliefs over states or types

equals the common set of imprecise probabilistic information P.
11To see this, remember that by ci = c̄i =

∏T
t=1|Ati|. We could interpret 1

c̄i
as the transition

probability of the strategy that chooses at each information set a uniform distribution over the set of

acts Ati. Therefore, there exists a strategy of player i, σi such that pσi
(h|h0) = 1

c̄i
= 1

ci
.

12Note, that assuming homogeneous information leads to a similar setting as in Liu and Xiong

(2016).
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1.3. Ex-Ante and Interim Equilibria

1.3 Ex-Ante and Interim Equilibria

In this section, we de�ne ex-ante and interim expected utility, and equilibria. We prove

the existence of ex-ante and interim expected equilibria with rectangular beliefs. Then,

we show that rectangularity leads to dynamically consistent behavior.

1.3.1 De�nition and Existence

Given the ex-ante or interim set of beliefs, we assume that players evaluate a strategy

pro�le by maximizing their worst-case expected utility.

De�nition 1.6. The ex-ante expected utility of a strategy pro�le σ = (σi, σ−i) for

player i is given by

U e((σi, σ−i)) := min
φ∈Ψ0

σ−i

∑
h∈H

ui(h)pσi(h|h0)φ(h).

Similarly, the interim expected utility at F t
i ∈ F ti at stage t = 0, . . . , T given a belief

set Ψt
σ−i

(F t
i ) is

U i
i (σ,Ψ

t
σ−i

(F t
i )) := min

φ∈Ψtσ−i (F
t
i )

∑
h∈H

ui(h)pσi(h|ht)φ(h).

Given the ex-ante and interim expected utility of the players, the de�nitions of an ex-

ante and interim equilibrium are straightforward and follow the standard idea of Nash

Equilibrium.

De�nition 1.7. A strategy pro�le σ∗ is an ex-ante equilibrium with rectangular

beliefs if and only if Ψ0
σ−i

= rect(Φ0
σ∗−i

) and

U e
i (σ∗) ≥ U e

i ((σ′i, σ
∗
−i))

for all σ′i ∈ Σi and i ∈ N .

De�nition 1.8. A tuple (σ∗, (Ψt
σ∗−i

)i∈N), consisting of a strategy pro�le σ∗ and collec-

tion of beliefs Ψt
σ∗−i

for each information set at stage t and each player, is an interim

equilibrium with rectangular beliefs at stage t if and only if players have rectan-

gular beliefs Ψt
σ−i

(F t
i ) = rect(Φt

σ∗−i
(F t

i )) for all F
t
i ∈ F ti and

U i
i (σ
∗,Ψt

σ−i
(F t

i )) ≥ U i
i ((σ

′
i, σ
∗
−i),Ψ

t
σ−i

(F t
i ))

for all σ′i ∈ Σi, F
t
i ∈ F ti and all i ∈ N .

Since the normalization constant ci of an ex-ante belief over histories is constant across

all histories, it does not in�uence the maximization problem of player i. Formally, if

29



1.3. Ex-Ante and Interim Equilibria

Ψσ−i = Φσ−i :

U e((σi, σ−i)) =
1

ci
min
π∈P

∑
h∈H

ui(h)pσi(h|ht)pσ−i(h|ht)π(h0),

and similar for the interim stages with the constant cti. Therefore, de�ning belief over

histories instead of partial histories as in classical approaches does not in�uence the

set of equilibria.

Without assuming rectangularity existence of an ex-ante equilibrium follows from stan-

dard arguments using that φ(h) =
pσ−i (h|h

0)

ci
π(h0) for all φ ∈ Φ0

σ−i
. With rectangularity,

this simple characterization of the beliefs does not hold in general.

Theorem 1.1. There exists an ex-ante equilibrium with rectangular beliefs.

The proof of Theorem 1.1 follows the usual idea using Kakutani's �xed point theorem

and can be found in the Appendix. For Kakutani's �xed point theorem, it is essentially

that U e
i ((σi, σ−i)) is jointly continuous in (σi, σ−i). Due to our de�nition of beliefs,

the opponents' strategies in�uence the set of beliefs over which a player minimizes.

Therefore, continuity is not trivial, and we need the following lemma for the proof of

Theorem 1.1.

Lemma 1.2. U e
i ((σi, σ−i)) with Ψ0

σ−i
= rect(Φ0

σ−i
) is jointly continuous in (σi, σ−i).

To prove continuity we use that any belief in rect(Φ0
σ−i

) can be represented by the

pasting of marginal and updated belief. Due to Remark 1.2 marginal and updated

beliefs can be represented by multiplying pσ−i(h|·) and π ∈ P . This leads to the

following representation of an arbitrary element φ ∈ rect(Φ0
σ−i

).

φ(h) =
∑
F 1
i ∈F1

i

∑
h∈F 1

i

pσ−i(h|h0)

ci
π(h0)

 pσ−i (h|h
0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

pσ−i (h|h0)

ci
π′
F 1
i
(h0)

.

Using this representation, we transform U e
i ((σi, σ−i)) to a minimization problem over

the set (π, (π′)F 1
i
) ∈ P ×P |F1

i | which is independent of σ−i. Then, jointly continuity of

the transformed problem follows by standard methods.

Theorem 1.2. There exists an interim equilibrium with rectangular beliefs at stage t.

Proof. The compactness of P implies compactness of Bay(P|F t
i ) for any F

t
i . Hence, re-

placing rect(Φ0
σ−i

) in Lemma 1.2 by rect(Φt
σ−i

(F t
i )) shows jointly continuity of U

i
i (σi, σ−i).

Then, the proof follows the same line as the proof of Theorem 1.1.
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1.3.2 Relation of Ex-Ante and Interim Equilibria

Now, we come back to the problem of dynamic consistency and show that rectangularity

induces dynamically consistent behavior.

Our next theorem shows that under rectangularity, a completely mixed ex-ante equi-

librium implies an interim equilibrium. Therefore, as in games without ambiguity,

a player would deviate from an ex-ante optimal strategy only at out-of-equilibrium

information sets.

Theorem 1.3 (Ex-ante implies Interim). Let σ∗ be a completely mixed ex-ante equi-

librium with rectangular beliefs. Then (σ∗,Ψt
σ−i

) with Ψt
σ−i

(F t
i ) = rect(Φt

σ∗−i
(F t

i )) is an

interim equilibrium with rectangular beliefs at stage t.

We will prove this theorem by showing that due to rectangularity, a completely mixed

interim equilibrium at t − 1 implies a completely mixed equilibrium at t. This holds

for any arbitrary t = 0, . . . T + 1 such that Theorem 1.3 follows by iteration. The next

corollary follows immediately from the recursive structure of the proof.

Corollary 1.1. Let (σ∗,Ψt−1
σ−i

) be a completely mixed interim equilibrium at t − 1

with rectangular beliefs, i.e., Ψt−1
σ−i

(F t−1
i ) = rect(Φt−1

σ∗−i
(F t−1

i )). Then (σ∗,Ψt
σ−i

) with

Ψt
σ−i

(F t
i ) = rect(Φt

σ∗−i
(F t

i )) is an interim equilibrium with rectangular beliefs at stage t.

The formal proof of Theorem 1.3 can be found in Section 1.6.1.2 in the Appendix.

To give an intuition of the result, we need the next lemma. It shows the relation

between the worst-case expected utility at di�erent stages and is essential for the

relation between interim and ex-ante equilibria.

Lemma 1.3. Let φ∗ ∈ arg minφ∈rect(Φt−1
σ−i (F

t−1
i ))

∑
h∈H ui(h)pσi(h|ht−1)φ(h). Then,∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈H

ui(h)pσi(h|ht)φ̃(h). (1.3)

We give a sketch of the proof since it helps to understand the role of rectangularity.

The proof consists of two steps. First, Bayesian updating implies that the left-hand

side of Equation (1.3) is greater or equal than the right-hand side. The other direction

follows from rectangularity. Due to rectangularity, there exists a φ′ ∈ Ψt−1
σ−i

(F t−1
i ) such

that

φ′(h) =
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗
F ti

(h), (1.4)
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1.3. Ex-Ante and Interim Equilibria

where φ̃∗
F ti

and φ∗ are the worst-case beliefs at F t
i or F t−1

i , respectively, i.e. φ′ is the

pasting of the worst-case beliefs at t and t−1. We still do not know if φ′ is the worst-case

belief at t− 1. Therefore, the left-hand side of Equation (1.3) can be smaller or equal

than the left-hand side evaluated with the belief φ′ instead of φ∗. Then, using that φ′

is the pasting of the worst-case beliefs φ∗ and φ̃∗
F ti
, we can prove that the left-hand side

of Equation (1.3) evaluated with φ′ equals the right-hand side of Equation (1.3).

As the next remark shows, Lemma 1.3 implies that the worst-case belief at F t−1
i is the

pasting of the worst-case belief at F t−1
i and the worst-case beliefs at t. Therefore, the

Bayesian update of the worst-case belief at F t−1
i leads to the worst-case belief at all

subsequent information sets at t.

Remark 1.4. The proof of Lemma 1.3 shows the existence of a belief φ′ ∈ Ψt−1
σ−i

(F t−1
i ) =

rect(Ψt−1
σ−i

(F t−1
i )) which satis�es Equation (1.4), i.e.,

φ′(h) =
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗
F ti

(h),

where φ∗ and φ̃∗
F ti

are the worst-case beliefs at F t−1
i and F t

i , respectively. Furthermore,

the proof states∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h)

≤
∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ′(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈Φtσ−i (F

t
i )

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h).

But by Lemma 1.3, we know that the inequality is an equality. Therefore, φ′ is a worst-

case belief at F t−1
i and Remark 1.2 implies that the worst-case belief at an information

set at stage t is the Bayesian update of the worst-case belief of the previous information

set at stage t− 1.

Remark 1.4 and Lemma 1.3 show how rectangularity leads to dynamically consistent

behavior which is necessary for the proof of Theorem 1.3.

The proof of Theorem 1.3 follows the usual idea of contraposition. If there would

exist a pro�table deviation at t, this deviation would be pro�table at t − 1 as well.

Therefore, an equilibrium at t − 1 implies an equilibrium at t. Then, the theorem

follows from iteration. However, one has to consider the worst-case beliefs. The belief

set only depends on the strategy of the opponents. Therefore, �xing the strategy of

the opponents leads to �xed belief sets. However, the worst-case belief of player i may

change if he deviates from the equilibrium strategy. To prove Theorem 1.3, we have

32



1.3. Ex-Ante and Interim Equilibria

to de�ne the pasting of the worst-case belief at t given the equilibrium strategy with

the worst-case belief at t− 1 given the deviation strategy. Due to rectangularity, this

pasting is an element of the belief set at t− 1. Then, we use Lemma 1.3 to show that

a pro�table deviation at t implies a pro�table deviation at t− 1.

Theorem 1.3 shows the relation between equilibria at di�erent stages. Roughly speak-

ing, due to rectangularity, players update their beliefs such that their worst-case belief

at t is the Bayesian update of the worst-case belief at t− 1. This implies dynamically

consistent behavior and leads to the relation between ex-ante and interim equilibria

stated in Theorem 1.3.

We come back to our running example and show that rectangularity rules out dynamic

inconsistency.

Running Example (cont.). Remember the results from above. Without rectangularity,

player 1 behaves dynamically inconsistently. His optimal ex-ante strategy is to play M

with probability one. After learning that the state is not O, his optimal interim strategy

is to play M with probability m = 1
102

if ε > 1
102

. Now, we will show that beliefs that

are rectangular lead to dynamically consistent behavior. Since player 2 is indi�erent

between S and T , we still focus on player 1. We already know the information partitions

and rectangular beliefs of player 1:

H = {LM,LN,RM,RNS,RNT,OS,OT},
F0
i = H,

F1
1 = {F 1

1,1, F
1
1,2} =

{
{LM,LN,RM,RNS,RNT}, {OS,OT}

}
,

Ψ0
1 = rect(Φ0

(s,t))

= conv

{(
0, 0,

1− ε
2

,
(1− ε)s

2
,
(1− ε)t

2
, εs, εt

)
,(

ε

2
,
ε

2
,
1− ε

2
,
(1− ε)s

2
,
(1− ε)t

2
, 0, 0

)
,

(
0, 0,

1

2
,
s

2
,
t

2
, 0, 0

)
,(

(1− ε)ε
2

,
(1− ε)ε

2
,
(1− ε)2

2
,
(1− ε)2s

2
,
(1− ε)2t

2
, εs, εt

)}
.

From Remark 1.2, we know that the prior-by-prior Bayesian updates of rect(Φ0
(s,t)) and

Φ0
(s,t) are the same. Therefore, the optimal interim strategy with rectangular beliefs is

the same as without rectangularity, i.e., m∗ = 1
102

if ε > 1
102

. For the optimal ex-ante

strategy with rectangular beliefs we solve the following problem

max
(1−m,m)

U e
1 ((1−m,m))

= max
(1−m,m)

min
φ∈rect(Φ0

(s,t)
)
101(1−m)φ(LN) + 101mφ(RM) + 100(1−m)φ(RNT )
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+ 100(1−m)φ(RNS)− φ(OS)− φ(OT )

= max
(1−m,m)

min
( l

2
, l
2
, r
2
, rs

2
, rt

2
,os,ot)

∈rect(Φ0
(s,t)

)

101(1−m)
l

2
+ 101m

r

2
+ 100(1−m)

r

2
− (1− r − l)

= max
(1−m,m)

min
( l

2
, l
2
, r
2
, rs

2
, rt

2
,os,ot)

∈rect(Φ0
(s,t)

)

l

(
101(1−m)

2
− 1

)
+ r

(
100 +m

2
− 1

)
+ 1.

The worst-case belief depends on m. If 101(1 − m) > 100 + m, the worst-case belief

gives the lowest possible value to l, the highest value to o, and r = 1 − l − o. If

101(1 − m) ≤ 100 + m, the worst-case belief gives the highest value to o, the lowest

value to r, and l = 1− o− r. Hence, the worst-case belief is

φ∗ =


(

0, 0, 1−ε
2
, (1−ε)s

2
, (1−ε)t

2
, εs, εt

)
if m < 1

102
,(

ε(1−ε)
2

, ε(1−ε)
2

, (1−ε)2

2
, (1−ε)2s

2
, (1−ε)2t

2
, εs, εt

)
if m ≥ 1

102
.

The worst-case ex-ante utility is

U e
1 ((1−m,m)) =

(1− ε)(100+m
2
− 1) + 1 if m < 1

102
,

(1− ε)ε(101(1−m)
2

− 1) + (1− ε)2(100+m
2
− 1) + 1 if m ≥ 1

102
,

=

(1− ε)(49 + m
2

) + 1 if m < 1
102
,

m (1−ε)
2

(1− 102ε) + (1− ε)(49 + ε
2
) + 1 if m ≥ 1

102
.

Hence, the optimal ex-ante strategy is m∗ = 1
102

if ε > 1
102

which proves dynamic

consistency.

Given the relation between ex-ante and interim equilibria discussed in this section, we

can now de�ne and prove the existence of sequential equilibria.

1.4 Sequential Equilibria

Kreps and Wilson (1982) de�ne a sequential equilibrium in a game without ambiguity

as a tuple of a strategy pro�le and a belief system such that the strategy pro�le is

sequentially rational and the belief system is consistent with respect to the strategy

pro�le. Consistency with respect to a strategy pro�le σ means that there exists a se-

quence of completely mixed strategy pro�les that converges to σ such that the sequence

of beliefs constructed by Bayesian updating given the completely mixed strategy pro-

�les converges to the equilibrium belief. We use a similar notion of consistency that

includes rectangularity.

Fix a sequence εk = (εkI )I∈∪i∈NIi with 0 < εkIi ≤
1

|Ai(Ii)| for all player i and information

sets Ii that converges in the sup-norm to zero. For any k, let Γk denote the restriction of
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Γ such that the set of feasible strategies is the set of all completely mixed σk satisfying

σki (Ii)(ai) ≥ εkIi for all players, information sets, and actions ai ∈ Ai(Ii). Let Σk denote

the set of strategy pro�les satisfying this constraint. For every strategy pro�le in Σk,

Bayes' rule is always well de�ned. Let (σk)k with σk ∈ Σk converge to σ ∈ Σ as k

goes to in�nity. For each player i and each σk−i, we can construct a ex-ante belief set

rect(Φ0
σk−i

) which is rectangular. Now, we construct an ex-ante belief system given σ

which is rectangular and consistent with σk−i. First, note that

lim
k→∞

pσk−i(h|h
0)

ci
=
pσ−i(h|h0)

ci
(1.5)

for all h ∈ H. Take an arbitrary tuple (π, (π′
F 1
i
)F 1

i ∈F1
i
) ∈ P × P |F1

i |. Then, there exists

a sequence of φk ∈ rect(Φ0
σk−i

) such that

φk(h) =
∑
F 1
i ∈F1

i

φk(F 1
i )φ̄kF 1

i
(h) =

∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσk−i(h|h
0)

ci
π(h0)

) p
σk−i

(h|h0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

p
σk−i

(h|h0)

ci
π′
F 1
i
(h0)

.

Please note that the latter fraction
p
σk−i

(h|h0)

p
σk−i

(h|h0)

ci
π′
F1
i

(h0)

∑
h∈F1

i

p
σk−i

(h|h0)

ci
π′
F1
i

(h0)

is an element of the Bayesian

update of P given F 1
i and σk for each k and therefore an element of ∆(H1), the set

of probability distributions over partial histories at stage one. Taking the limit of φk

only in�uences the path probability induced by the strategy of the opponents, i.e., π

and π′
F 1
i
are �xed. Hence, Equation (1.5) implies

lim
k→∞

φk(h) =
∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)

ci
π(h0)

)
lim
k→∞

p
σk−i

(h|h0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

p
σk−i

(h|h0)

ci
π′
F 1
i
(h0)

.

Then, the compactness of ∆(H1) implies that every sequence of

p
σk−i

(h|h0)

ci
π′
F1
i

(h0)

∑
h∈F1

i

p
σk−i

(h|h0)

ci
π′
F1
i

(h0)

has a convergent subsequence.

The limit of rect(Φσk−i
) is then de�ned as

lim
k→∞

rect(Φ0
σk−i

)

:=
{
φ ∈ [0, 1]H : ∃(φk)k=1,2,... ∈

(
rect(Φ0

σk−i
)
)
k=1,2,...

with φ(h) = lim
k→∞

φk(h)
}
.

Similarly, one can de�ne the limit of rectangular interim belief sets at stages t > 0.
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By construction, limk rect(Φt−1
σk−i

(F t−1
i )) is rectangular as the following calculations show.

Let φ ∈ limk rect(Φt−1
σk−i

(F t−1
i )) and (φF ti )F ti ∈

(
Bay

(
limk rect(Φt−1

σk−i
(F t−1

i ))|F t
i

))
F ti

. We

have to show that the pasting of φ and (φF ti )F ti is an element of limk rect(Φt−1
σk−i

(F t−1
i )).

The pasting is given by

φ ◦ (φF ti )F ti (·) =
∑
F ti ∈Fti

lim
k
φk(F t

i ) lim
k
φF ti (·) = lim

k

∑
F ti ∈Fti

φk(F t
i )φF ti (·).

Then, since
∑

F ti ∈Fti
φk(F t

i )φF ti (·) ∈ rect(Φt−1
σk−i

) we get

φ ◦ (φF ti )F ti (·) ∈ lim
k

rect(Φt−1
σk−i

(F t−1
i ))

and rectangularity is maintained under the limit. Now, we can de�ne consistency with

respect to a strategy pro�le σ and sequential rationality for rectangular beliefs.

De�nition 1.9. We say that a belief system Ψ is consistent w.r.t. σ if there exists

a sequence (σk)k=1,... such that

� σk ∈ Σk for all k,

� σ = limk σ
k,

� Ψt
σ−i

(F t
i ) = {φ : φ(h) = limk φ

k(h), φk ∈ Bay(rect(Φ0
σk−i
|F t
i ))} for all F t

i ∈ F ti
and t ≥ 0.

The de�nition of consistency w.r.t. σ and the discussion above show that a belief

system, which is consistent w.r.t. σ and rectangular for σk, is rectangular for σ.

The second property of sequential equilibria is sequential rationality. Roughly speaking,

sequential rationality captures the idea that a strategy is optimal at each stage and

each information set. Therefore, a strategy is sequentially rational if it is an ex-ante

and interim equilibrium at each stage.

De�nition 1.10. A tuple (σ,Ψ), consisting of a strategy pro�le and a belief system, is

sequentially rational if

� σ is an ex-ante equilibrium with rectangular beliefs Ψ0
σ−i

= rect(Φ0
σ−i

) for all

i ∈ N and

� for all t > 0, the tupel (σ,Ψt) is an interim equilibrium with rectangular beliefs

Ψt
σ−i

(F t
i ) = rect(Φt

σ−i
(F t

i )) for all i ∈ N at stage t.

Now, we can de�ne a sequential equilibrium.
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De�nition 1.11. The tupel (σ∗,Ψ) consisting of a strategy pro�le and a belief system

with Ψ0
σ−i

= rect(Φ0
σ∗−i

) is a sequential equilibrium with rectangular beliefs if

� (σ∗,Ψ) is sequentially rational and

� Ψ is consistent w.r.t. σ.

Given dynamic consistency, the existence proof follows a similar idea as without am-

biguity.

Theorem 1.4. There exists a sequential equilibrium with rectangular beliefs.

Proof. Let εk, Γk, and σk as above. For each Γk, we can construct a belief system Ψk

that is rectangular, i.e., Ψt,k
i (F t

i ) = rect(Φt
σk−i

(F t
i )). Furthermore, by Theorem 1.1 there

exists an ex-ante equilibrium σ̂k with rectangular beliefs Ψ0,k for each Γk. Theorem 1.3

shows that (σ̂k,Ψt,k) is an interim equilibrium with rectangular beliefs at stage t. By

compactness of the set of strategy pro�les, there exists a sub-sequence of σk which

converges to σ̂. For this sub-sequence, we can construct a system of rectangular beliefs

Ψ such that, Ψt
σ−i

(F t
i ) = limk Ψt,k

σ−i
(F t

i ). Then by construction Ψ is rectangular and

satis�es consistency w.r.t. σ̂.

By Lemma 1.2 U e
i (σ) and U i

i (σ,Φ
t) are jointly continuous in σ. Then, since Σ is the

closure of
⋃
k Σk the strategy pro�le σ̂ satis�es sequential rationality.

1.4.1 Sequential Rationality and Rectangularity

The assumption that Ψ0
σ−i

= rect(Φ0
σ∗−i

) is essential. Epstein and Schneider (2003)

and Riedel et al. (2018) show that dynamic consistency implies rectangular belief sets.

However, sequential rationality is a weaker condition than the dynamic consistency

axiom required by Epstein and Schneider (2003) and Riedel et al. (2018). The follow-

ing version of our running example shows that sequential rationality does not imply

rectangularity.

Running Example (cont.). In Section 1.2.1, we show that the interim optimal strat-

egy of player 1 given P is m∗ = 1
102

if ε > 1
102

. For ε < 1
102

, playing m∗ = 1 is the

optimal interim strategy. Hence, given ε < 1
102

, playing M with probability one is an

ex-ante and interim optimal choice. We have already shown, that

Φ0
(s,t) =

{(
l

2
,
l

2
,
r

2
,
rs

2
,
rt

2
, os, ot

)
: (l, r, o) ∈ P

}
is not rectangular for arbitrary ε. However, one can easily show that m∗ = 1 and Φ(s,t)

are sequentially rational for ε < 1
102

. Therefore, sequential rationality does not imply

rectangular belief sets.
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Even if the equivalence of sequential rationality and rectangularity does not hold in

general, we can prove for a special case that sequential rationality of (σ∗,Ψ) implies

that σ∗ is sequentially rational with respect to rect(Ψ).

Theorem 1.5. Let (σ∗,Ψσ−i) with Ψσ−i = Φσ−i be sequentially rational. Furthermore,

let ((φ∗
F ti

)F ti )t=0,...T denote the collection of worst-case beliefs given σ∗ at di�erent in-

formation sets and stages. Assume that for all players i ∈ N , all stages t = 0, . . . T ,

and information sets F t
i ∈ F ti , there exists no φF ti ∈ Ψt

σ−i(F ti )
such that φF ti 6= φ∗

F ti
and

σ∗i is an ex-ante or interim best response for the same game with singleton belief φF ti .

Then, (σ∗, rect(Φσ−i)) is sequentially rational.

Intuitively, the assumptions ensure a unique worst case belief. Then, the only ex-ante

belief that ensures sequential rationality is the pasting of all worst-case beliefs. Since

this is the worst-case belief given the rectangular hull, σ∗ is sequentially rational given

the rectangular hull rect(Ψσ−i). The example above does not satisfy the above assump-

tion since m = 1 is optimal given any ex-ante belief in Ψ0
(s,t). We guess that similar

results do hold for more general cases. However, exploring the relation of sequential

rationality and rectangularity for more general cases is left for future research.

1.4.2 Properties of Sequential Equilibria

There are two properties of sequential equilibria with rectangular beliefs that we would

like to highlight.

Remark 1.5. First, due to ambiguity and multiple prior preferences, players may

have heterogeneous worst-case beliefs. Since each player maximizes his worst-case util-

ity, ambiguity can induce sequential equilibria that cannot exist without ambiguity and

common priors.

Second, as in games without ambiguity, sequential equilibria are an equilibrium re�ne-

ment that rules out non-credible threats.

The following example illustrates these properties of sequential equilibria with rectan-

gular beliefs.

Example 1.2. This example follows the idea of Greenberg (2000) and is similar to

the running example of Hanany et al. (2020). There are three countries, two small

countries A and B, and one in�uential country C. Country A and B are involved

in peace negotiations, which are successful if both countries agree on peace. At stage

one, A decides whether to agree with the peace agreement (peace) or not (war). If A

plays peace, country B can choose peace or war. If one of the countries chooses war,

the peace negotiation fails. Country C observes if the peace negotiations failed or not,

but it cannot distinguish which of the two countries broke up the negotiation. After
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1.4. Sequential Equilibria

observing that the peace negotiations failed, country C can either punish country A

or B, denoted by pA and pB, respectively or stay neutral, denoted by n. If the peace

agreement is successful, C favors either A or B, denoted with fA and fB. To introduce

ambiguity, we assume that C can condition his action on a payo�-irrelevant ambiguous

state, I, or II. This means that C observes the state, whereas countries A and B

do not know the state. With pIA and pIIA and, similarly, pIB, p
II
B , n

I , nII , we denote

actions pA, pB, n conditioned on the state I or II, respectively. The game is depicted

in Figure 1.3.

Nature

State I [µ]

War

pA

0

10

1

n

6

6

x

pB

10

0

0

Peace

War

pA

0

10

0

n

6

6

x

pB

10

0

1

Peace

fA

5

4

4

fB

4

5

4

State II[1− µ]

War

pB

10

0

0

n

6

6

x

pA

0

10

1

Peace

War

pB

10

0

1

n

6

6

x

pA

0

10

0

Peace

fB

4

5

4

fA

5

4

4

A

B

C

III

C

II

Figure 1.3: Example Peace Negotiation.

First, we show that there exists no ex-ante equilibrium in which the peace agreement

takes place without ambiguity. Therefore, without ambiguity there cannot exist a se-

quential equilibrium with a peace agreement. Let µ represent the ex-ante belief of coun-

tries A and B that the state is I in a game without ambiguity. Furthermore, let α and

β denote the probability with which countries A and B choose war, respectively. In

Section 1.6.3.2 in the Appendix, we calculate all ex-ante equilibria of this game without

ambiguity and show that in all of them, at least one of the countries A or B plays war

with probability one. Intuitively, A and B cannot distinguish between state I and II

and choose the same action at both states. Therefore, the updated belief of C given that

the negotiations failed is the same at both information sets II and III . It is then either

optimal for C always to punish A or B or, if C is indi�erent, to mix and, e.g., punish

A if the state is I and B if the state is II, or vice versa. To motivate A and B to play

peace, both have to believe that they will be punished with a high probability. Without

ambiguity and with common beliefs, the ex-ante belief of A that himself will be punished
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1.4. Sequential Equilibria

is µpIA+(1−µ)pIIA and, similarly, country B's belief to be punished is µpIB +(1−µ)pIIB .

These beliefs sum up to a value smaller or equal to one.13 Hence, both countries cannot

believe simultaneously that they will be punished with a su�ciently high probability to

motivate them to play peace.

With multiple priors, ambiguity induces a new equilibrium in which the peace agreement

does not fail. Instead of one ex-ante belief µ, the players are faced with the imprecise

probabilistic information P = [µ
	
, µ̄]. In Section 1.6.3.2, we construct the ex-ante belief

sets Φ0
σ−A

, Φ0
σ−B

, and Φ0
σ−C

and show that they are rectangular. With ambiguity, there

exists an ex-ante equilibrium where A and B play peace with probability one. Consider

the following strategy pro�le σ∗:

α∗ = 0, β∗ = 0, f IA = f IIA =
1

2
, pIA = pIIB = 1.

This strategy pro�le forms an ex-ante equilibrium as long as µ̄ > 0.55 and µ
	
< 0.45.

Given α∗ = 0 and β∗ = 0, C has no incentive to deviate since the information sets II

and III are reached with probability zero. To show that A does not have an incentive to

deviate, we compare his worst-case payo� from playing α∗ or α = 1. The payo� from

playing α∗ is

min
µ∈[µ

	
,µ̄]
µ
[
(1− α∗)(1− β∗)(5f IA + 4f IB)

]
+ (1− µ)

[
(1− α∗)(1− β∗)(5f IIA + 4f IIB )

]
= 4.5.

The payo� from deviating to war, i.e., α = 1 is

min
µ∈[µ

	
,µ̄]
µ · 0 + 10(1− µ) = 10(1− µ̄).

Therefore deviating to war is not pro�table as long as µ̄ > 0.55. Similarly, one can show

that B does not deviate from β∗ as long as µ
	
< 0.45. This proves that under ambiguity

with [0.45, 0.55] ⊂ [µ
	
, µ̄] there exists an ex-ante equilibrium in which both countries play

peace with probability one. Intuitively, due to the worst-case beliefs, each small country

believes that it will be punished with a high enough probability to deter it from playing

war.

Next, we discuss that the ex-ante equilibrium under ambiguity speci�ed above is a se-

quential equilibrium if x ≤ 0.5. Furthermore, for x > 0.5, it is not a sequential equilib-

rium. The formal proof is given in Section 1.6.3.2. If x ≤ 0.5, we can �nd a sequence

of αk and βk, that converge to 0 as k goes to in�nity such that C is indi�erent between

pA and pB at both information sets for all k. Since x ≤ 0.5, playing nI = nII = 0

is optimal at the interim stage.14 Therefore, we can �nd a sequence of strategy pro-

�les with completely mixed strategies (σk)k that converges to the ex-ante equilibrium σ∗

13It is equal to one if C plays n with probability zero and strictly smaller than one if n is played

with a strictly positive probability.
14If x = 0.5, country C is indi�erent between all 3 actions. Therefore, pIA = 1, pIIB = 1, nI = nII = 0

is a best response.
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speci�ed above and satis�es sequential rationality. Furthermore, the limit of the belief

systems constructed by Bayes' rule for each completely mixed strategy pro�le σk satis-

�es consistency by construction. If x > 0.5, country C has an incentive to deviate to

nI = nII = 1 at the interim stage. Hence, there does not exist a sequence of completely

mixed strategy pro�les that converges to σ∗ and satis�es sequential rationality.

The analysis above shows that, due to ambiguity, there exist ex-ante equilibria in which

peace is played with probability one. Furthermore, these equilibrium strategy pro�les are

part of a sequential equilibrium as long as x is small enough, i.e., as long as punishing

is a credible strategy for country C.

1.5 Conclusion and Discussion

In this chapter, we introduce rectangularity to �nite multistage games with ambiguous

incomplete information. Players face imprecise probabilistic information about states

or types of opponents. Furthermore, they know the information structure of the game.

Given the imprecise probabilistic information and the knowledge about the information

structure, each player constructs an ex-ante belief set, which is rectangular. We show

that rectangularity ensures dynamically consistent behavior in multistage games with

multiple priors and, therefore, the existence of sequential equilibria. Furthermore,

we show that in multistage games with rectangular beliefs, ambiguity can create new

sequential equilibria that do not exist in games without ambiguity. To conclude, we

discuss some related issues and corresponding literature.

Singleton Subjective Beliefs One could argue that our results could be obtained

by choosing a single subjective ex-ante belief for each player that equals the worst-

case ex-ante belief given rectangular beliefs. Due to rectangularity, the worst-case

beliefs at the interim stages are the Bayesian updates of the worst-case ex-ante belief.

Therefore, updating this single subjective ex-ante belief would lead to the same beliefs

at the interim stages as in the setting with a subjective set of beliefs. But the setting

with single subjective beliefs would lack an explanation of how players derive their

subjective beliefs. In our model, the subjective set of ex-ante beliefs is endogenously

derived from the common imprecise probabilistic information and the knowledge about

the game's information structure. This combination leads to rectangular belief sets

for dynamically consistent players. The choice of the worst-case beliefs arises due to

ambiguity aversion and MEU.

Other Approaches to Deal with Dynamic Inconsistency Siniscalchi (2011)

characterizes a consistent planning approach for dynamic choices with dynamically
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inconsistent preferences. He de�nes an individual's preferences over decision trees.

Consistent planning is a re�nement of backward induction that assumes that a deci-

sion maker can correctly forecast future decisions. In our approach, rectangular beliefs

are constructed by a backward induction method on the beliefs. Auster and Kellner

(2020) use the consistent planning approach to analyze Dutch auctions in an ambigu-

ous independent private value setting. In their setting, our approach leads to similar

equilibrium outcomes as consistent planning.

Battigalli et al. (2019) use the consistent planning approach to de�ne self-con�rming

equilibria (SCE) for sequential games with players who admit smooth-ambiguity pref-

erences of Klibano� et al. (2005). They show that the SCE of a sequential game is

not equivalent to the SCE of the strategic form of the game. Further, they analyze

su�cient conditions to generalize the monotonicity result of Battigalli et al. (2015) to

dynamic games, which states that in static games, the set of SCE expands as ambiguity

aversion increases.

Another way to rule out dynamic inconsistency in decision-theoretic settings is the

updating rules proposed by Hanany and Klibano� (2007, 2009). They propose updating

rules that update only a subset of the ex-ante belief set using Bayes' rule. Which subset

is updated depends on the optimal ex-ante choice. Updating this subset of beliefs leads

to an interim belief set supporting the ex-ante optimal choice and ensures dynamic

consistency. However, comparing this approach to our model shows that the updating

rules of Hanany and Klibano� (2007, 2009) give a higher weight to the ex-ante optimal

choice. This approach may generate di�erent equilibria compared to our approach. For

example, in our running example, the updating rules of Hanany and Klibano� (2007,

2009) would lead to an equilibrium satisfying sequential rationality in which m = 1 is

ex-ante and interim optimal.

An essential assumption to use rectangularity is that all players know the information

structure. To use the updating rules of Hanany and Klibano� (2007, 2009), agents

only have to know the information they are getting. But in games, it is often assumed

that the players know the game tree and the information structure. If the players know

which information they could get in the future, it seems intuitive that they take this

information into account when constructing their ex-ante belief sets.

Hanany et al. (2020) de�ne sequential equilibria for similar multistage games as we

do but assume smooth ambiguity preferences instead of maxmin preferences. (Hanany

and Klibano�, 2009) de�ne an updating rule, the smooth-rule. Hanany et al. (2020)

extend the smooth-rule to multistage games. They show that sequential optimality is

equivalent to sequential optimality with respect to beliefs updated with the smooth-

rule. Given sequential optimality, they can de�ne sequential equilibria. Further, they
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show that the set of equilibria extends under a common belief assumption if ambiguity

aversion increases.

Ellsberg Games As mentioned in the introduction, Ellsberg games introduce am-

biguous strategies, i.e., instead of playing a probability distribution over the pure strate-

gies, players can choose a set of probability distributions. In extensive-form games with

Ellsberg strategies, ambiguity arises due to the strategy of the players. In our model,

ambiguity occurs due to ambiguous information about types or states. This facilitates

the de�nition of sequential equilibria since strategies are not ambiguous. Muraviev

et al. (2017) illustrate the implications of their results for equilibrium concepts in

extensive-form games with Ellsberg strategies with an example. They show the ex-

istence of a dynamically consistent Ellsberg equilibrium for this example. However,

a general formulation of equilibrium concepts for extensive-form games with Ellsberg

strategies and existence results is left for future research. Our results support their

conjecture that rectangularity implies the existence of dynamically consistent Ellsberg

equilibria.

Games with Two Types All examples that show the issue of dynamic inconsistency

under MEU in games have at least three possible states or types. The reason for this

is that dynamically inconsistent behavior cannot occur in games with only two types

or states, i.e., |H0| = 2. With two types, there are only two cases that can arise in an

interim stage. Either the player learns the correct type or not. If the player knows the

correct type, updated beliefs about types are either zero or one. It is easy to show that

then rectangularity is always satis�ed. If the player does not learn the type, Bayes' rule

is always well de�ned. Further, since there are only two types, the Bayesian update is

monotone in the prior probability. This monotonicity implies dynamically consistent

behavior for the second case. But as Example 1.2 shows, ambiguity also induces new

sequential equilibria in dynamic games with two states or types. Hence, new equilibria

may arise even if there is no dynamically inconsistent behavior. Therefore, there are

two e�ects in games with dynamically inconsistent behavior: ambiguous beliefs and

dynamically inconsistent behavior.
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1.6 Appendix

1.6.1 Proofs

Proof of Lemma 1.1. Property 1) and the normalization of beliefs imply that for any

φ ∈ Ψ0
σ−i

we have

1 =
∑
h∈H

φ(h) =
∑
h∈H

pσ−i(h|h0)π(h0)

ci
=

1

ci

∑
h∈H

pσ−i(h|h0)π(h0)

⇔ ci =
∑
h∈H

pσ−i(h|h0)π(h0)

=
∑
h0∈H0

π(h0)
∑

h̄T−1∈HT−1

s.t. h̄0=h0

pσ−i(h̄
T−1|h0)

∑
ĥ∈H

s.t. ĥT−1=h̄T−1

pσ−i(ĥ|h̄T−1)

︸ ︷︷ ︸
=|ATi |

= |ATi |
∑
h0∈H0

π(h0)
∑

h̄T−1∈HT−1

s.t. h̄0=h0

pσ−i(h̄
T−1|h0).

Proceeding in the same way by backward induction then shows that ci =
∏T

s=1|Asi |.
Then, Property 1) and 2) follow by de�nition. Property 3) follows from Bayesian

updating. Let F t
i be an information set with φ(F t

i ) > 0. Then, any φ̃ ∈ Ψt
σ−i

(F t
i ) has

the following form for all h ∈ F t
i

φ̃(h) =

pσ−i (h|h
0)π(h0)

ci∑
h̄∈F ti

pσ−i (h̄|h̄0)π(h̄0)

ci

.

We can rewrite the denominator in the following way:

∑
h̄∈F ti

pσ−i(h̄|h̄0)π(h̄0)

ci
=
∑
h̄t∈F ti

pσ−i(h̄
t|h̄0)π(h̄0)∏t−1
s=1|Asi |

∑
h∈F ti

s.t. ht=h̄t

pσ−i(h|h̄t)∏T
s=t|Asi |︸ ︷︷ ︸

=1

.

Then,

φ̃(h) =
pσ−i(h|h0)π(h0)

ci∏t−1
s=1|Asi |

∑
h̄t∈F ti

pσ−i(h̄
t|h̄0)π(h̄0)

=
pσ−i(h

t|h0)π(h0)∑
h̄t∈F ti

pσ−i(h̄
t|h̄0)π(h̄0)

pσ−i(h|ht)
cti

= π̃(ht)
pσ−i(h|ht)

cti
,

where π̃ ∈ Bay(P|F t
i ) and c

t
i =

∏T
s=t|Asi |.
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1.6.1.1 Proofs: Existence of Ex-Ante Equilibria

Proof of Lemma 1.2. First, consider the case where σ−i is completely mixed and Bayes'

rule is always well de�ned. Then, any φ ∈ rect(Φ0
σ−i

) has the following form

φ(h) =
∑
F 1
i ∈F1

i

φ′(F 1
i )φ̃F 1

i
(h).

By Remark 1.2, we can assume without loss of generality that φ′ ∈ Φ0
σ−i

and φ̃F 1
i
∈

Φ1
σ−i

(F 1
i ). Furthermore, Bayes' rule is always well de�ned. Therefore, there exist π ∈ P

and π′
F 1
i
∈ P for each F 1

i such that

φ(h) =
∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)

ci
π(h0)

) pσ−i (h|h
0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

pσ−i (h|h0)

ci
π′
F 1
i
(h0)

.

With this formulation of φ and since pσ−i(·|·) is completely characterized by σ−i, we

can now write U e
i as follows

U e
i (σ) = min

φ∈rect(Φ0
σ−i )

∑
h∈H

ui(h)pσi(h|h0)φ(h)

= min
(π,(π′)

F1
i

)

∈P×P|F
1
i |

∑
h∈H

ui(h)pσi(h|h0)

( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)π(h0)

ci

) pσ−i (h|h
0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

pσ−i (h|h0)π′
F1
i

(h0)

ci

)

=: Û e
i ((σi, σ−i)).

Now, we show that Û e
i ((σi, σ−i)), and therefore U e

i ((σi, σ−i)), are jointly continuous in

(σi, σ−i). First note, that

∑
h∈H

ui(h)pσi(h|h0)
( ∑
F 1
i ∈F1

i

( ∑
h∈F 1

i

pσ−i(h|h0)

ci
π(h0)

) pσ−i (h|h
0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

pσ−i (h|h0)

ci
π′
F 1
i
(h0)

)
(1.6)

is continuous in (σi, σ−i). Then, for all ε > 0 exists a δ > 0 such that |a−b| < δ implies∣∣∣∣∣∑
h∈H

ui(h)pai(h|h0)

 ∑
F 1
i ∈F1

i

∑
h∈F 1

i

pa−i(h|h0)

ci
π(h0)

 pa−i (h|h
0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

pa−i (h|h0)

ci
π′
F 1
i
(h0)


−
∑
h∈H

ui(h)pbi(h|h0)

 ∑
F 1
i ∈F1

i

∑
h∈F 1

i

pb−i(h|h0)

ci
π(h0)

 pb−i (h|h
0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

pb−i (h|h
0)

ci
π′
F 1
i
(h0)

∣∣∣∣∣ < ε.

By the compactness of P , there exist (πa, (π′,a
F 1
i
)F 1

i
) and (πb, (π′,b

F 1
i
)F 1

i
) in P ×P |F1

i | such

that

Û e
i (a) =

∑
h∈H

ui(h)pai(h|h0)

 ∑
F 1
i ∈F1

i

∑
h∈F 1

i

pa−i(h|h0)

ci
πa(h0)

 pa−i (h|h
0)

ci
π′,a
F 1
i
(h0)∑

h∈F 1
i

pa−i (h|h0)

ci
π′,a
F 1
i
(h0)
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and

Û e
i (b) =

∑
h∈H

ui(h)pbi(h|h0)

 ∑
F 1
i ∈F1

i

∑
h∈F 1

i

pb−i(h|h0)

ci
πb(h0)

 pb−i (h|h
0)

ci
π′,b
F 1
i
(h0)∑

h∈F 1
i

pb−i (h|h
0)

ci
π′,b
F 1
i
(h0)

 .

Without loss of generality assume that Û e
i (a) ≥ Û e

i (b). Then for all ε > 0 exists δ > 0

such that for |a− b| < δ it follows

|Û e
i (a)− Û e

i (b)|

≤

∣∣∣∣∣∑
h∈H

ui(h)pai(h|h0)

 ∑
F 1
i ∈F1

i

∑
h∈F 1

i

pa−i(h|h0)

ci
πb(h0)

 pa−i (h|h
0)

ci
π′,b
F 1
i
(h0)∑

h∈F 1
i

pa−i (h|h0)

ci
π′,b
F 1
i
(h0)


− Û e

i (b)

∣∣∣∣∣
<ε.

The �rst inequality holds since (πb, π′,b) is in general not a worst-case belief given strat-

egy a. The second inequality follows by the continuity of Equation (1.6) in (σi, σ−i).

Hence, Û e
i (σ) is jointly continuous in σ = (σi, σ−i) for completely mixed σ−i.

If σ−i is not completely mixed and Bayes' rule is not well de�ned for some F 1
i , the

denominator
∑

h∈F 1
i
φ′
F 1
i
(h) equals zero. However, this is equivalent to φ(F 1

i ) = 0.15

Therefore,

Û e
i ((σi, σ−i))

= min
(π,(π′)

F1
i

)

∈P×P|F
1
i |

∑
h∈H

ui(h)pσi(h|h0)

 ∑
F 1
i ∈F1

i

s.t. φ(F 1
i )6=0

∑
h∈F 1

i

pσ−i(h|h0)

ci
π(h0)

 pσ−i (h|h
0)

ci
π′
F 1
i
(h0)∑

h∈F 1
i

pσ−i (h|h0)

ci
π′
F 1
i
(h0)

 .

and we can ignore information sets F 1
i where Bayes' rule is not well de�ned.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. First remember that the set of histories H, the set of infor-

mation sets I, the set of actions for each player at each information set Ai(I
t
i ), and

15This equivalence follows from the full support assumption of P. Since π(h0) > 0 for all h0 and

all π ∈ P an information set has only probability zero if the transition probability of all histories

contained in this information set are 0. This implies that pσ−i(h|h0)π(h0) = 0 for all π ∈ P.
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the set of players N are �nite. A behavior strategy of player i was de�ned such that

σi(I
t
i ) ∈ ∆(AI(I

t
i )). The set of strategies of player i is then Σi =×Iti∈Ii

∆(Ai(I
t
i )) and

the set of strategy pro�les Σ =×i∈N Σi. We de�ne the best response of player i given

the strategy of the opponents σ−i as the correspondence Bi : Σ−i → Σi with

Bi(σ−i) = {σi ∈ Σi : σi ∈ arg max
σi∈Σi

U e
i (σi, σ−i)}.

Then, the correspondence B : Σ→ Σ with

B(σ) =×
i∈N

Bi(σ−i)

de�nes the best response.

We will use Kakutani's �xed point theorem to show that B(·) has a �xed point, and

therefore, the existence of an ex-ante equilibrium. To apply Kakutani's �xed point

theorem, we need the following conditions:

i) Σ is non-empty, convex, and compact.

ii) B : Σ → Σ is a upper-hemicontinuous correspondence and B(σ) is non-empty

and closed ∀σ ∈ Σ.

iii) B(σ) is convex ∀σ ∈ Σ.

We will show this conditions step by step:

i) Since Ii and Ai(I ti ) are �nite for all information sets I ti and all player i, ∆(Ai(I
t
i ))

is non-empty, compact, and convex. Therefore, Σi and Σ are non-empty, compact,

and convex as well.

ii) To show the second point, we use Berge's maximum theorem. Let C : Σ−i → Σi

be a correspondence such that C(σ−i) = Σi for all σ−i. Then, C is upper and lower

hemicontinuous as the following explanation shows and therefore continuous.

The de�nition of lower hemicontinuity says: C is lower hemicontinuous at a if for

all open sets V intersecting C(a) exists a neighbourhood U of a such that C(x)

intersects V for all x ∈ U . Since C(a) = Σi = C(x) for all x ∈ Σ−i, the de�nition

is satis�ed for each a, U , and V .

For upper hemicontinuity, we use the graph-theoretic characterization: Let

Gr(C) := {(a, b) ∈ Σ−i × Σi : b ∈ C(a)} .

If Σi is compact and Gr(C) closed, C : Σ−i → Σi is a upper hemicontinuous

correspondence with closed domain and closed values. By the de�nition of C it

follows that Gr(C) = Σ−i × Σi. Σi and Σ−i are compact by i) and therefore

closed. Hence, C is upper hemicontinuous.
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Now, we can apply Berge's maximum theorem: With our notation

U e
i : Σi × Σ−i → R,

C : Σ−i → Σi s.t C(σ−i) = Σ,

C∗(σ−i) := arg max{U e
i (σi, σ−i) : σi ∈ C(σ−i) = Σi} = Bi(σ−i).

Berge's maximum theorem states that if U e
i is jointly continuous in both ar-

guments and C is continuous in σ−i, then C
∗ is non-empty, convex valued, and

upper hemicontinuous in σ−i. Hence, by Lemma 1.2 Bi is a upper-hemicontinuous

correspondence and Bi(σ−i) is non-empty and closed ∀σ−i ∈ Σ−i. Since B(σ) =

×i∈N Bi(σ−i) the same holds for B(·).

iii) To show the convexity of B(σ), we �rst show that U e
i (·) is concave in σi. Let σ̄i

and σ̃i ∈ Σi and α ∈ [0, 1]. Then,

U e
i (ασ̄i + (1− α)σ̃, σ−i) = min

φ∈rect(Φ0
σ−i )

∑
h∈H

ui(h)pασ̄i+(1−α)σ̃(h|h0)φ(h)

= min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)
T∏
t=0

(
α σ̄i(Ii(h

t))(ht,i)︸ ︷︷ ︸
≥0

+(1− α) σ̃i(Ii(h
t))(ht,i)︸ ︷︷ ︸
≥0

)
φ(h)

≥ min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)
( T∏
t=0

ασ̄i(Ii(h
t))(ht,i) +

T∏
t=0

(1− α)σ̃i(Ii(h
t))(ht,i)

)
φ(h)

= min
φ∈rect(Φ0

σ−i )

(
α
∑
h∈H

ui(h)pσ̄i(h|h0)φ(h) + (1− α)
∑
h∈H

ui(h)pσ̃i(h|h0)φ(h)
)

≥α min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)pσ̄i(h|h0)φ(h) + (1− α) min
φ∈rect(Φ0

σ−i )

∑
h∈H

ui(h)pσ̃i(h|h0)φ(h)

=αU e
i (σ̄i, σ−i) + (1− α)U e

i (σ̃i, σ−i).

With the concavity of U e
i (·) we can prove that Bi(σ−i) is convex for all σ−i. Fix

some arbitrary σ−i, let σ̄i, σ̃i ∈ Bi(σ−i), and α ∈ [0, 1]. We have to show, that

ασ̄i + (1 − α)σ̃i ∈ Bi(σ−i) = arg maxσi∈Σi
U e
i (σi, σ−i). Since σ̄i, σ̃i ∈ Bi(σ−i) it

follows that

U e
i (σ̄i, σ−i) = U e

i (σ̃i, σ−i) = max
σi∈Σi

U e
i (σi, σ−i)

≥ U e
i (ασ̄i + (1− α)σ̃i, σ−i)

≥ αU e
i (σ̄i, σ−i) + (1− α)U e

i (σ̃i, σ−i) = max
σi∈Σi

U e
i (σi, σ−i),

where the last inequality follows from the concavity of U e
i . Then,

U e
i (ασ̄i + (1− α)σ̃i, σ−i) = max

σi∈Σi
U e
i (σi, σ−i).
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Thus, we have

ασ̄i + (1− α)σ̃i ∈ arg max
σi∈Σi

U e
i (σi, σ−i) = Bi(σ−i).

Hence, Bi(σ−i) is convex valued for all σ−i ∈ Σ−i. Since this is true for all i ∈ N ,

it follows that B(σ) is convex valued for all σ ∈ Σ.

Now, we can apply Kakutani's �xed point theorem, which shows that the best response

correspondence B has a �xed point and, therefore, proves the existence of an ex-ante

equilibrium with rectangular beliefs.

1.6.1.2 Proofs: Relation of Ex-Ante and Interim Equilibria

Proof of Lemma 1.3. The proof consists of two steps:

i) First, we show that∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h)

≥
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈H

ui(h)pσi(h|ht)φ̃(h)

which follows directly from Bayesian updating. Since φ∗(F t
i ) = 0 is equivalent to

φ∗(h) = 0 for all h ∈ F t
i , we get∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ∗(h) =
∑
F ti ∈Fti

∑
h∈F ti

ui(h)pσi(h|ht−1)φ∗(h)

=
∑
F ti ∈Fti

s.t. φ∗(F ti )>0

φ∗(F t
i )

φ∗(F t
i )

∑
h∈F ti

ui(h)pσi(h|ht−1)φ∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )
∑
h∈F ti

ui(h)pσi(h|ht−1)
φ∗(h)

φ∗(F t
i )︸ ︷︷ ︸

∈rect(Φtσ−i (F
t
i ))

≥
∑
F ti ∈Fti

φ∗(F t
i ) min

φ̃∈rect(Φ1
σ−i (F

t
i ))

∑
h∈F ti

ui(h)pσi(h|ht−1)φ̃(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h),

where the last equality follows from pσi(h
t|ht−1) = pσi(h̄

t|h̄t−1) for all h, h̄ in F t
i .

ii) For the other direction we show that left-hand side is smaller or equal than the
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right-hand side, i.e.,∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h)

≤
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h),

let φ̃∗
F ti
∈ arg minφ̃∈rect(Φtσ−i (F

t
i ))

∑
h∈H ui(h)pσi(h|ht)φ̃(h) for all F t

i and φ∗ as

above. Rectangularity implies that there exists a φ′ ∈ Φt−1
σ−i

(F t−1
i ) such that

φ′(h) =
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗
F ti

(h)

which in general is not a worst-case belief. Then,∑
h∈F t−1

i

ui(h)pσi(h|ht−1)φ∗(h) ≤
∑

h∈F t−1
i

ui(h)pσi(h|ht−1)φ′(h)

=
∑

h∈F t−1
i

ui(h)pσi(h|ht−1)
∑
F ti ∈Fti

φ∗(F t
i )φ̃
∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )
∑
h∈F ti

ui(h)pσi(h|ht−1)φ̃∗(h)

=
∑
F ti ∈Fti

φ∗(F t
i )pσi(h

t|ht−1) min
φ̃∈Φtσ−i (F

t
i )

∑
h∈F ti

ui(h)pσi(h|ht)φ̃(h).

Combining Step i) and ii) proves Lemma 1.3.

Proof of Theorem 1.3 (ex-ante implies interim). We show that for an arbitrary t a

completely mixed interim equilibrium with rectangular beliefs at t−1 implies an interim

equilibrium with rectangular beliefs at t. Then, the theorem follows by iteration.

Let (σ∗, rect(Φt−1
σ−i

) be a completely mixed interim equilibrium with rectangular beliefs

at t − 1 and assume that (σ∗, rect(Φt
σ−i

)) is not an interim equilibrium at t. Hence,

there exist a player i, an information set F t
i , and a strategy pro�le (σ′i, σ

∗
−i) such that

player i deviates from σ∗. Let F t−1
i be the information set that precedes F t

i and φ
∗ the

worst-case belief at F t−1
i given σ∗−i, i.e.,

φ∗ ∈ arg min
φ∈rect(Φt−1

σ∗−i
(F t−1
i ))

∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t−1)φ(h).

Similarly, let φ∗,t denote the worst-case belief at F t
i given σ

∗
i and φ̄ denote the worst-

case at F t−1
i belief given the strategy σi which equals σ′i for s ≥ t and equals σ∗i for
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s < t. Furthermore, let φ′ be the pasting of φ̄ and φ∗,t. Then, φ′ is in general not a

worst-case belief. Similar to Step ii) of the proof of Lemma 1.3, it follows that

U i
i (σ
∗, rect(Φt−1(F t−1

i ))) ≤
∑
h∈H

ui(h)pσ∗i (h|h
t−1)φ′(h)

=
∑
F ti ∈Fti

φ̄(F t
i )pσ∗i (h

t|ht−1)U i
i (σ
∗, rect(Φt

σ∗−i
(F t

i ))). (1.7)

By our assumption (σ∗, rect(Φt
σ∗−i

)) is not an interim equilibrium at t, i.e., there exist

F t
i and σ

′
i such that

U i
i (σ
∗, rect(Φt

σ∗−i
(F t

i ))) < U i
i ((σ

′
i, σ
∗
−i), rect(Φt

σ∗−i
(F t

i ))). (1.8)

Furthermore, since σ∗ is completely mixed and P has full support, it follows that

φ̄(F t
i )pσ∗i (h

t|ht−1) > 0 (1.9)

for all F t
i . Combining Equation (1.7), Equation (1.8), and Equation (1.9) leads to

U i
i (σ
∗, rect(Φt−1

σ∗−i
(F t−1

i ))) <
∑
F ti ∈Fti

φ̄(F t
i )pσ∗i (h

t|ht−1)U i
i ((σ

′
i, σ
∗
−i), rect(Φt

σ∗−i
(F t

i )))

= min
φ∈rect(Φt−1

σ∗−i
)

∑
h∈H

ui(h)pσ∗i (h
t|ht−1)pσ′i(h|h

t)φ(h). (1.10)

The last equality in Equation (1.10) follows by construction and Remark 1.4: The

pasting of φ̄ and the interim worst-case belief at t given σ′i, is the worst-case belief at

t − 1 given the strategy σi which equals σ′i for s ≥ t and equals σ∗i for s < t. Then,

Equation (1.10) follows from Lemma 1.3.

The calculation above forms a contradiction since (σ∗, rect(Φt−1
σ∗−i

)) is an interim equi-

librium with rectangular beliefs at stage t − 1. Hence, (σ∗, rect(Φt
σ∗−i

)) is an interim

equilibrium with rectangular beliefs at stage t.

1.6.1.3 Proofs: Sequential Rationality and Rectangularity

Proof of Theorem 1.5. First, we show that φ∗
F 0
i
is the pasting of the worst-case beliefs of

all interim stages. Assume that this is not the case, then there exists an information set

F t
i such that Bay(φ∗

F 0
i
|F t
i ) 6= φ∗

F ti
. Furthermore, σ∗ is sequentially rational with respect

to Ψσ−i . Hence, σ∗i is an ex-ante best response given the belief φ∗
F 0
i
and therefore

an interim best response given the belief Bay(φ∗
F 0
i
|F t
i ) as well. This contradicts the

assumption that there does not exist a belief φF ti 6= φ∗
F ti

such that σ∗i is a best response

given φF ti . Hence, φ∗
F 0
i
is the pasting of the worst-case beliefs of all interim stages

and φ∗
F 0
i
∈ Ψ0

σ−i
. Therefore, σ∗i is an ex-ante best response given rect(Ψσ−i). Then,

rectangularity and the fact, that σ∗ is sequentially rational given Ψσ−i , implies that

(σ∗, rect(Ψσ−i) is sequentially rational.
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1.6.2 Further Results

Additional to Theorem 1.3, we can show that an equilibrium at stage t implies an

equilibrium at stage t− 1 if a no-pro�table one-stage-deviation property is satis�ed.

De�nition 1.12. A tuple (σ∗,Ψ) of an strategy pro�le and a belief system satis�es the

no-pro�table one-stage-deviation property at stage t if for all F t
i it holds that

U i
i (σ
∗,Ψt(F t

i )) ≥ U i
i ((σ

′
i, σ
∗
−i),Ψ

t(F t
i ))

for all σ′i such that σ′i equals σ
∗
i everywhere except at F

t
i .

Theorem 1.6 (Interim implies ex-ante equilibria). Assume that Ψ is a belief system

which is rectangular and that (σ∗,Ψs) satis�es the no-pro�table one-stage-deviation

property for all s < t. If (σ∗,Ψt) is an interim equilibrium with rectangular beliefs at

stage t, then σ∗ is an ex-ante equilibrium with rectangular beliefs.

Similarly to Theorem 1.3, we prove Theorem 1.6 by showing that due to rectangularity

an interim equilibrium at stage t implies an interim equilibrium at stage t− 1. Then,

the recursive structure implies the following corollary.

Corollary 1.2. Assume that Ψ is a belief system which is rectangular and that (σ∗,Ψs)

satis�es the no-pro�table one-stage-deviation property for all s < t. If (σ∗,Ψt) is an

interim equilibrium with rectangular beliefs at stage t, then (σ∗,Ψt−1) is an interim

equilibrium with rectangular beliefs at stage t− 1.

Furthermore, Theorem 1.6 shows that rectangularity and the non-pro�table one-stage-

deviation property for all stages imply sequential rationality.

Corollary 1.3. Let Ψ be a belief system which is stable under pasting and assume that

(σ∗,Ψt) satis�es the no-pro�table one-stage-deviation property for all t ≥ 0. Then,

(σ∗,Ψ) is sequentially rational.

Proof. The result follows immediately from Theorem 1.6. The no-pro�table one-stage-

deviation property of (σ∗,ΨT ) at the last stage and rectangularity imply that (σ∗,ΨT )

is an interim equilibrium with rectangular beliefs at the last stage. Then, Theorem 1.6

implies that (σ∗,Ψt) is an interim equilibrium with rectangular beliefs at all stages t

and σ∗ is an ex-ante equilibrium with rectangular beliefs.

As in the proof of Theorem 1.3 the relation of interim and ex-ante worst-case belief

and, therefore, Lemma 1.3 and Remark 1.4 are essential to prove Theorem 1.6.

Proof of Theorem 1.6. We will prove that an interim equilibrium with rectangular be-

liefs at stage t implies an interim equilibrium with rectangular beliefs at stage t − 1.

Since this holds for arbitrary t, iteration proves the theorem.
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Assume that (σ∗,Ψt) is an interim equilibrium with rectangular beliefs at stage t. We

prove that an arbitrary player i has no incentive to deviate from σ∗ at an arbitrary

information set F t−1
i if all other players j 6= i play σ∗j .

Fix some arbitrary F t
i such that the probability of reaching F t

i from F t−1
i given σ∗−i

is positive.16 Let φ∗,t denote the worst-case belief at F t
i given σ∗i . Furthermore, let

σ̄i denote a strategy which is equal to σ∗i at all stages s ≥ t and equal to σ′i at stage

t− 1. The worst-case belief at F t−1
i given σ̄i is denoted by φ̄t−1. The worst-case belief

at F t−1
i given σ′i is denoted by φ′,t−1.

Since σ∗−i is �xed, the belief sets of player i are �xed as well. Furthermore, the worst-

case belief at F t
i depends only on the part of the strategy of player i which is chosen at

stages s ≥ t. Hence, the worst-case beliefs at F t
i given σ

∗
i and σ̄i are the same by the

de�nition of σ̄i. By Remark 1.4, we know that the Bayesian update of the worst-case

belief at t− 1 is the worst-case belief at t. This implies

Bay(φ̄t−1) = φ∗,t. (1.11)

The optimality of σ∗i at F
t
i implies∑

h∈F ti

ui(h)pσ∗i (h|h
t)φ∗,t ≥

∑
h∈F ti

ui(h)pσ′i(h|h
t)φ∗,t. (1.12)

Combining Equation (1.11) and Equation (1.12) gives us∑
h∈F ti

ui(h)pσ∗i (h|h
t)

φ̄t−1(h)∑
h∈F ti

φ̄t−1(h)
≥
∑
h∈F ti

ui(h)pσ′i(h|h
t)

φ̄t−1(h)∑
h∈F ti

φ̄t−1(h)
.

Now, we can cancel the normalization terms of Bayes' rule on both sides and multiply

each side with pσ′i(h
t|ht−1). Then, replacing φ̄t−1 with the worst-case belief at t − 1

given σ′i leads to∑
h∈F ti

ui(h)pσ∗i (h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h) ≥
∑
h∈F ti

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h)

≥
∑
h∈F ti

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ′,t−1(h).

This holds for any F t
i which is reachable from F t−1

i . Hence, summation over all this

F t
i leads to ∑

h∈F t−1
i

ui(h)pσ∗i (h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h)

≥
∑

h∈F t−1
i

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ′,t−1(h). (1.13)

16For information sets with zero probability, it follows by the full support assumption on P that

φt−1(h) = 0 for all h ∈ F ti for any φt−1 ∈ Φt−1
i (F t−1

i ). Hence, the histories h ∈ F ti do not in�uence

the expected utility at F t−1
i .
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Furthermore, by the no-pro�table one-stage-deviation property, it follows that∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t−1)φ∗,t−1(h) ≥

∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t)pσ′i(h

t|ht−1)φ̄t−1(h). (1.14)

Combining Equation (1.13) and Equation (1.14) leads to∑
h∈F t−1

i

ui(h)pσ∗i (h|h
t−1)φ∗,t−1 ≥

∑
h∈F t−1

i

ui(h)pσ′i(h|h
t)pσ′i(h

t|ht−1)φ′,t−1(h)

which proves the optimality of σ∗i at F
t−1
i . This holds for any arbitrary F t−1

i and for

any arbitrary player i. Hence, (σ∗,Ψt−1) is an interim equilibrium with rectangular

beliefs at t− 1.

1.6.3 Examples

1.6.3.1 Calculations Example 1.1

Let aL, aR, and bL and so on denote the probabilities that player 1 plays A or B at

state L, R, and O, respectively. Similar, m, n, p, and o denote the probabilities that

player 2 plays M , N , P , or O. The set of histories H, the information partition F1
2 ,

and the ex-ante belief set Φ0
σ−2

of player 2 are given by

H = {LBO,LBP,LAN,LAM,RBO,RBP,RAN,RAM,OBO,OBP,OAM,OAN},
F1

2 =
{
{LAN,LAM,RAN,RAM,OAM,OAN},

{LBO,LBP,RBO,RBP,OBO,OBP}
}
,

Φ0
σ−2

=

{(
lbL
2
,
lbL
2
,
laL
2
,
laL
2,

rbR
2
,
rbR
2
,
raR
2
,
raR
2
,
obO
2
,
obO
2
,
oaO

2
,
oaO

2

)
: (l, r, o) ∈ P

}
.

Moreover, let F 1
2,k for k = 1, 2 denote the elements of the partition F1

2 in the same

order as they are denoted above. We �rst look at the case where player 1 always plays

A. Then, we compare it with the case where player 1 plays A if the state is L or R

and B if the state is O.

� Player 1 plays σ1, i.e., aL = aR = aO = 1:

The ex-ante belief set and marginal beliefs are given by

Φ0
σ1

=

{(
0, 0,

l

2
,
l

2
, 0, 0,

r

2
,
r

2
, 0, 0,

o

2
,
o

2

)
: (l, r, o) ∈ P

}
,

φ(F 1
2,1) = 1,

φ(F 1
2,2) = 0.

For information sets with positive marginal probability Bayes' rule is well de�ned

and the Bayesian updates are given by

Bay(Φ0
σ1
|F 1

2,1) =

{(
0, 0,

l

2
,
l

2
, 0, 0,

r

2
,
r

2
, 0, 0,

o

2
,
o

2

)
: (l, r, o) ∈ P

}
.
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Then, rect(Φ0
σ1

) = Φ0
σ1
.

� Player 1 plays σ′1, i.e., aL = aR = bO = 1:

The ex-ante belief set and the marginal beliefs are given by

Φ0
σ′1

=

{(
0, 0,

l

2
,
l

2
, 0, 0,

r

2
,
r

2
,
o

2
,
o

2
, 0, 0

)
: (l, r, o) ∈ P

}
,

φ(F 1
2,1) = l + r,

φ(F 1
2,2) = o.

The Bayesian updates for information sets with positive marginal probability are

Bay(Φ0
σ′1
|F 1

2,1)

=

{(
0, 0,

l

2(l + r)
,

l

2(l + r)
, 0, 0,

r

2(l + r)
,

r

2(l + r)
, 0, 0, 0, 0

)
: (l, r, o) ∈ P

}
,

Bay(Φ0
A|F 1

2,3) =

(
0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0

)
.

The rectangular hull rect(Φ0
σ′1

) is

rect(Φ0
σ′1

)

= conv

{(
0, 0,

ε

2
,
ε

2
, 0, 0,

(1− ε)
2

,
(1− ε)

2
, 0, 0, 0, 0

)
,(

0, 0, 0, 0, 0, 0,
1

2
,
1

2
, 0, 0, 0, 0

)
,

(
0, 0, 0, 0, 0, 0,

(1− ε)
2

,
(1− ε)

2
,
ε

2
,
ε

2
, 0, 0

)
,(

0, 0,
ε(1− ε)

2
,
ε(1− ε)

2
, 0, 0,

(1− ε)2

2
,
(1− ε)2

2
,
ε

2
,
ε

2
, 0, 0

)}
.

1.6.3.2 Calculations Example 1.2

Denote the history that the state is I, country A chooses war, and country C punishes

A by IWPA. The other histories are denoted similarly. First, we construct the belief

sets Φ0
σ−i

and show that they are rectangular. Then, we show that for the game with

the restricted strategy set Σk, there exists an ex-ante and sequential equilibrium such

that no player chooses war.

Belief Sets and Rectangularity The information �ltration F ti and the ex-ante

beliefs Φ0
σ−i

are given by

H = {IWPA, IWN, IWPB, IPWPA, IPWN, IPWPB, IPPFA, IPPFB,

IIPPFB, IIPPFA, IIPWPB, IIPWN, IIPWPA, IIWPB, IIWN, IIWPA},
F0 = H,
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F1
A = H,

F1
B =

{
{IWPA, IWM, IWPB, IIWPB, IIWN, IIWPA},
{IPWPA, IPWN, IPWPB, IPPFA, IPPFB, IIPPFB,

IIPPFA, IIPWPB, IIPWN, IIPWPA}
}
,

F1
C =

{
{IWPA, IWN, IWPB, IPWPA, IPWN, IPWPB},
{IPPFA, IPPFB}, {IIPPFB, IIPPFA},
{IIPWPB, IIPWN, IIPWPA, IIWPB, IIWN, IIWPA},

and

Φ0
σ−A

=

{(
µpIA

2
,
µnI

2
,
µpIB

2
,
µβpIA

2
,
µβnI

2
,
µβpIB

2
,
µ(1− β)f IA

2
,
µ(1− β)f IB

2
,

(1− µ)(1− β)f IIB
2

,
(1− µ)(1− β)f IIA

2
,
(1− µ)βpIIB

2
,
(1− µ)βnII

2
,

(1− µ)βpIIA
2

,
(1− µ)pIIB

2
,
(1− µ)nII

2
,
(1− µ)pIIA

2

)
: µ ∈ [µ

	
, µ̄]

}
,

Φ0
σ−B

=

{(
µαpIA, µαn

I , µαpIB,
µ(1− α)pIA

2
,
µ(1− α)nI

2
,
µ(1− α)pIB

2
,
µ(1− α)f IA

2
,

µ(1− α)f IB
2

,
(1− µ)(1− α)f IIB

2
,
(1− µ)(1− α)f IIA

2
,
(1− µ)(1− α)pIIB

2
,

(1− µ)(1− α)nII

2
,
(1− µ)(1− α)pIIA

2
, (1− µ)αpIIB , (1− µ)αnII ,

(1− µ)αpIIA

)
: µ ∈ [µ

	
, µ̄]

}
,

Φ0
σ−C

=

{(µα
3
,
µα

3
,
µα

3
,
µ(1− α)β

3
,
µ(1− α)β

3
,
µ(1− α)β

3
,
µ(1− α)(1− β)

2

µ(1− α)(1− β)

2
,
(1− µ)(1− α)(1− β)

2
,
(1− µ)(1− α)(1− β)

2
(1− µ)(1− α)β

3
,
(1− µ)(1− α)β

3
,
(1− µ)(1− α)β

3
,
(1− µ)α

3
,
(1− µ)α

3

(1− µ)α

3

)
: µ ∈ [µ

	
, µ̄]

}
.

We denote with F 1
B,1 and F

1
B,2 the �rst and second element of F1

B. Similarly, F 1
C,1, F

1
C,2,

F 1
C,3 and F 1

C,4 denote the elements of F1
C . It is easy to verify that Φ0

σ−i
is rectangular

for i = A,B,C.
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The marginal belief of player A is φ(F 1
A) = 1. Updating Φ0

σ−A
prior-by-prior leads to

Φ1
σ−A

=
{(µpIA

2
,
µnI

2
,
µpIB

2
,
µβpIA

2
,
µβnI

2
,
µβpIB

2
,
µ(1− β)f IA

2
,
µ(1− β)f IB

2
,

(1− µ)(1− β)f IIA
2

,
(1− µ)(1− β)f IIB

2
,
(1− µ)βpIIB

2
,
(1− µ)βnII

2
,

(1− µ)βpIIA
2

,
(1− µ)pIIB

2
,
(1− µ)nII

2
,
(1− µ)pIIA

2

)
: µ ∈ [µ

	
, µ̄]
}
.

Then, the pasting of marginal and updated beliefs shows that rect(Φ0
σ−A

) = Φ0
σ−A

.

For country B, we have to di�er between the information sets F 1
B,1 and F

1
B,2. Marginals

and updated beliefs are given by

φ(F 1
B,1) = α,

φ(F 1
B,2) = 1− α,

Φ1
σ−B

(F 1
B,1) =

{(
µpIA, µn

I , µpIB, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (1− µ)pIA, (1− µ)nI , (1− µ)pIB

)
: µ ∈ [µ

	
, µ̄]
}
,

Φ1
σ−B

(F 2
B,2) =

{(
0, 0, 0,

µpIA
2
,
µnI

2
,
µpIB

2
,
µf IA

2
,
µf IB

2
,
(1− µ)f IIB

2
,
(1− µ)f IIA

2
,

(1− µ)pIIB
2

,
(1− µ)nII

2
,
(1− µ)pIIA

2
, 0, 0, 0

)
: µ ∈ [µ

	
, µ̄]
}
.

The pasting of marginal and updated beliefs shows that rect(Φ0
σ−B

) = Φ0
σ−B

.

Country C has four information sets. The marginal and updated beliefs are

φ(F 1
C,1) = µ(α + (1− α)β),

φ(F 1
C,2) = µ(1− α)(1− β),

φ(F 1
C,3) = (1− µ)(1− α)(1− β),

φ(F 1
C,4) = (1− µ)(α + (1− α)β),

and

Φ1
σ−C

(F 1
C,1) =

{( α

3(α + (1− α)β)
,

α

3(α + (1− α)β)
,

α

3(α + (1− α)β)
,

(1− α)β

3(α + (1− α)β)
,

(1− α)β

3(α + (1− α)β)
,

(1− α)β

3(α + (1− α)β)
,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

: µ ∈ [µ
	
, µ̄]
}
,

Φ1
σ−C

(F 1
C,2) =

{(
0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0, 0, 0, 0, 0

)}
,

Φ1
σ−C

(F 1
C,3) =

{(
0, 0, 0, 0, 0, 0, 0, 0,

1

2
,
1

2
, 0, 0, 0, 0, 0, 0

)}
,
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Φ1
σ−C

(F 1
C,3) =

{(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

(1− α)β

3(α + (1− α)β)
,

(1− α)β

3(α + (1− α)β)
,

(1− α)β

3(α + (1− α)β)
,

α

3(α + (1− α)β)
,

α

3(α + (1− α)β)
,

α

3(α + (1− α)β)

)
: µ ∈ [µ

	
, µ̄]
}
.

The pasting of marginal and updated beliefs leads to rect(Φ0
σ−C

) = Φ0
σ−C

. Hence, Φ0
σ−A

,

Φ0
σ−B

, and Φ0
σ−C

are rectangular.

Sequential Equilibria From the analysis in Example 1.2, we know that σ∗ with

α∗ = β∗ = 0, f I,∗A = f II,∗A =
1

2
, pI,∗A = pII,∗B = 1

is an ex-ante equilibrium if [0.45, 0.55] ⊂ [µ
	
, µ̄]. To show that σ∗ is an sequential

equilibrium if x ≤ 0.5, we have to �nd a sequence of completely mixed strategy pro�les

that converges to σ∗, such that sequential rationality and consistency w.r.t σ∗ are

satis�ed. Let Σk
A = [α

	
k, 1 − α

	
k] and Σk

B = [β
	

k, 1 − β
	

k] be strategy sets of country A

and B such that α
	
k, β
	

k → 0 if k → ∞. Furthermore, assume that α
	
k = (1 − α

	
k)β
	

k.

For country C, we de�ne Σk
C such that pIA, p

II
A ∈ [εk, 1 − εk] with εk → 0 if k → ∞.

Now, we show that for all k the strategy pro�le σk with

αk = α
	
k, βk = β

	

k, f I,kA = f II,kA =
1

2
, pI,kA = pII,kA = 1− εk

is an ex-ante equilibrium and σk together with the belief system Φk constructed using

Bayes' rule is an interim equilibrium of the game with the restricted strategy sets Σk
i

speci�ed above. Similarly to above, one can show that A, B, and C have no incentive to

deviate from σk at the ex-ante stage. At the interim stage, the maximization problem

of country A does not change and α
	
k is still optimal. The expected interim payo� of

country B from playing war is given by

min
µ∈[µ

	
,µ̄]

10
µpIA

2
+ (1− µ) · 0 = 5µ

	
.

The expected interim payo� from playing peace is

min
µ∈[µ

	
,µ̄]

µ

2
(5f IA + 4f IB) +

1− µ
2

(5f IIA + 4f IIB ) =
9

4
.

Since µ
	
< 0.45, it is optimal for B to play βk = β

	

k. Furthermore, since α
	
k and β

	

k are

such that α
	
k = (1− α

	
k)β
	

k, the sets of updated beliefs of C after observing war are

Φ1
σ−C

(F 1
C,1) =

{(
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)}
,
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Φ1
σ−C

(F 1
C,4) =

{(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)}
.

Therefore, country C is indi�erent between punishing A or B if x < 0.5 and indi�erent

between all three actions if x = 0.5. By the de�nition of σk, it follows that σk con-

verges to σ∗. This shows sequential rationality. Finally, the belief system Φk satis�es

consistency w.r.t. σ∗ by construction. Hence, σ∗ is part of a sequential equilibrium.

If x > 0.5, country C strictly prefers to play n with probability one. Therefore σ∗ is

not interim optimal for C and does not form a sequential equilibrium.

Equilibria without Ambiguity In this part, we show that without ambiguity there

is no ex-ante equilibrium in which countries A and B play peace.

The expected payo� of country A of playing war with probability α is

µ
[
6nIα + 10pIBα + 6βnI(1− α) + 10βpIB(1− α) + (1− α)(1− β)(5f IA + 4f IB)

]
+ (1− µ)

[
6nIIα + 10pIIB α + 6βnII(1− α) + 10βpIIB (1− α)

]
+ (1− µ)(1− α)(1− β)(5f IIA + 4f IIB )

=α(1− β)
[
µ(6nI + 10pIB) + (1− µ)(6nII + 10pIIB )

]
− α(1− β)

[
µ(5f IA + 4f IB) + (1− µ)(5f IIA + 4f IIB )

]
+ T,

where T is independent of the strategy of A. Hence, maximizing the expected payo�
of country A leads to the following best response α∗:

α∗ =


1 if µ(6nI + 10pIB) + (1− µ)(6nII + 10pIIB ) > µ(5f IA + 4f IB) + (1− µ)(5f IIA + 4f IIB ),

[0, 1] if µ(6nI + 10pIB) + (1− µ)(6nII + 10pIIB ) = µ(5f IA + 4f IB) + (1− µ)(5f IIA + 4f IIB ),

0 if µ(6nI + 10pIB) + (1− µ)(6nII + 10pIIB ) < µ(5f IA + 4f IB) + (1− µ)(5f IIA + 4f IIB ),

if β < 1 and α∗ ∈ [0, 1] if β = 1. Similarly, one can calculate the best response of
country B:

β∗ =


1 if µ(6nI + 10pIA) + (1− µ)(6nII + 10pIIA ) > µ(5f IB + 4f IA) + (1− µ)(5f IIB + 4f IIA ),

[0, 1] if µ(6nI + 10pIA) + (1− µ)(6nII + 10pIIA ) = µ(5f IB + 4f IA) + (1− µ)(5f IIB + 4f IIA ),

0 if µ(6nI + 10pIA) + (1− µ)(6nII + 10pIIA ) < µ(5f IB + 4f IA) + (1− µ)(5f IIB + 4f IIA ),

if α < 1 and β∗ ∈ [0, 1] if α = 1. The best response of country C depends on the payo�

x. We distinguish between the following three cases:

� If x > 1, playing nI,∗ = nII,∗ = 1 is a dominant strategy.

� If x < 0.5, country C will never play n. The probability of playing pA or pB
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depends on α and β. In particular,

pI,∗A , pII,∗A =


1 if α > (1− α)β,

[0, 1] if α = (1− α)β,

0 if α < (1− α)β.

� If x ∈ [0.5, 1], the best response depends on the relation between α, β and x.

If α > (1 − α)β, the probability of punishing B is zero, i.e., pI,∗B = pII,∗B = 0.

Furthermore,

pI,∗A , pII,∗A =


0 if α < x,

[0, 1] if α = x,

1 if α > x,

and nI,∗ = 1− pI,∗A , nII,∗ = 1− pII,∗A . Similarly, if α < (1− α)β the probability of

punishing A is zero, i.e., pI,∗A = pII,∗A = 0,

pI,∗B , pII,∗B =


0 if (1− α)β < x,

[0, 1] if (1− α)β = x,

1 if (1− α)β > x,

and nI,∗ = 1− pI,∗B , nII,∗ = 1− pII,∗B .

Using the best responses, one can show that the following equilibria occur depending

on the payo� x:

� x > 1:

In any equilibrium, it has to hold that nI,∗ = nII,∗ = 1 and either α∗ = 1 and

β∗ ∈ [0, 1] or α∗ ∈ [0, 1] and β∗ = 1.

� x < 0.5:

In any equilibrium, the strategies of A and B are α∗ = 1
2
and β∗ = 1. The

strategy of C has to satisfy nI,∗ = nII,∗ = 0 and

10(µpIA + (1− µ)pIIA ) ≥ 4 + µf IB + (1− µ)f IIB . (1.15)

� x ∈ [0.5, 1]:

There are two types of equilibria: Either α∗ = 1
2
, β∗ = 1 and nI,∗ = nII,∗ = 1 or

α∗ = x, β∗ = 1, nI,∗ = nII,∗ = 1.

This shows that in all equilibria, at least one small country plays war with probability

one. Hence, there does not exist an equilibrium in which the peace agreement is

successful. Please note that we did not specify conditions on f IA, f
I
B, f

II
A and f IIB since

C is always indi�erent between f IA and f IB or f IIA and f IIB .
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Chapter 2

Dynamic Consistency in Ambiguous

Persuasion

2.1 Introduction

The standard Bayesian persuasion literature analyzes the communication of a Sender

and a Receiver. The Sender tries to persuade the Receiver by designing a communi-

cation device. Depending on an unknown state, the communication devices generate

a signal realization. Given this signal realization, the Receiver chooses an action that

in�uences the payo� of Sender and Receiver. This setting without ambiguity was �rstly

studied by Kamenica and Gentzkow (2011).

Beauchêne et al. (2019), henceforth abbreviated by BLL, introduce ambiguity in a stan-

dard Bayesian persuasion setting and characterize conditions under which the Sender

can gain from ambiguous communication. BLL deal with the problem of dynami-

cally inconsistent behavior by restricting their analysis to interim equilibria. They

introduce ambiguity in the standard Bayesian persuasion setting of Kamenica and

Gentzkow (2011) by allowing the Sender to choose a set of communication devices.

Each communication device can generate a signal that reveals information about an

unknown (risky) state ω ∈ Ω. Sender and Receiver only observe the signal realization

without knowing which communication device generated the signal realization. There-

fore, ambiguity about the communication device induces ambiguity about the risky

state ω. However, they claim that there is no gain of ambiguous persuasion compared

to Bayesian persuasion if the players behave dynamically consistently.1

In this chapter, we �rst show that we can restrict without loss of generality to messages

that produce recommended actions or synonyms of recommended actions. A synonym

1See Proposition 5 of Beauchêne et al. (2019).
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m′ of a message m is a message that induces the same posterior belief or best response

of the Receiver as the message m. This result generalizes the well-known Proposition 1

by Kamenica and Gentzkow (2011), which states that one can restrict without loss of

generality to so-called straightforward signals to the ambiguous persuasion setting.

Then, we de�ne beliefs over a more general state space of straightforward messages

and states. The more general state space allows for rectangular ambiguous beliefs.

These beliefs take the dependence of the ambiguous signal and the ex-ante risky state

into account and allow for a non-singleton ex-ante belief set. Given these beliefs, the

optimal interim strategy of the Receiver in BLL is ex-ante optimal and, therefore,

dynamically consistent. Hence, ambiguous persuasion can generate a higher value for

the Sender even under dynamically consistent behavior.

This chapter is organized as follows: First, we discuss the related literature. In Sec-

tion 2.2, we formulate the ambiguous persuasion model and give an example that illus-

trates the gain of an ambiguous strategy and the dynamically inconsistent behavior.

Section 2.2.2 generalizes Proposition 1 of Kamenica and Gentzkow (2011) and de�nes

rectangular beliefs. Section 2.3 de�nes perfect Bayesian equilibria under rectangular

beliefs and generalizes the results of BLL. Furthermore, in Section 2.4 we discuss the

value of information under ambiguous persuasion. Finally, Section 2.5 concludes and

discusses related literature in more detail.

Related Literature As in Chapter 1 we follow the approach of Epstein and Schnei-

der (2003) and Riedel et al. (2018) and de�ne rectangularity in the ambiguous persua-

sion setting. However, the results of Chapter 1 cannot be applied straightforwardly in

the ambiguous persuasion setting. In ambiguous persuasion, ambiguity arises due to

an ambiguous communication device of the Sender. Hence, the strategy of the Sender

is ambiguous. In Chapter 1, we only consider ambiguity about the state space and

not about the opponents' strategy. However, restricting to straightforward signals, we

can de�ne rectangular beliefs on a more general state space in the setting of BLL. The

relation to the consistent planning approach of Siniscalchi (2011) and the updating

rules by Hanany and Klibano� (2007) are discussed in Section 2.5.

The literature on ambiguous communication or information is still relatively small.

Kellner and Le Quement (2018) introduce ambiguity in a cheap talk setting by allowing

the Sender to commit his signal on an ambiguous payo�-irrelevant state. They show

that ambiguity may lead to a pareto improvement compared to non-ambiguous cheap

talk. Cheng (2020) analyzes the ambiguous persuasion setting of BLL from an ex-ante

perspective. He shows that if Sender and Receiver use the updating rule of Hanany

and Klibano� (2007), the Sender cannot bene�t from ambiguous persuasion.
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Furthermore, there is increasing literature on the value of information under ambigu-

ity. Hill (2020) de�nes the value of ambiguous information in a decision-theoretical

model which uses so-called subjective trees. Li (2020) studies the relation of ambiguity

aversion and an aversion of (partial) information. Kops and Pasichnichenko (2020)

experimentally show that for a speci�c decision problem, a majority of the subjects

have a negative value of ambiguous information, which is correlated with ambiguity

aversion. However, in a di�erent experiment Ortoleva and Shishkin (2020) �nd an

opposite result. They do not �nd any evidence for a negative value of information for

ambiguity avers agents. In Section 2.5, we discuss the relation to Hill (2020) and Li

(2020) in more detail.

2.2 Model

Except for the belief formation process, we follow the model of BLL. Let us �rst

summarize their model.

2.2.1 Model of BLL

The persuasion game consists of two players, a Sender (he) and a Receiver (she). The

utility of both players depends on the state of the world ω ∈ Ω and an action a ∈ A
chosen by the Receiver. We denote with u(a, ω) and ν(a, ω) the utilities of the Receiver

and the Sender, respectively. Ω and A are compact subsets of the Euclidean space.

Ex-ante, the state ω is unknown, and both players have the a common prior state

belief p0 ∈ ∆Ω, where ∆Ω denotes the set of all distribution functions on Ω. Thus,

ex-ante there exists no ambiguity about the state.2 The Sender tries to persuade

the Receiver by choosing a signal that reveals information about the state. A signal

consists of a �nite set of signal realizations or messages M and a set of communication

devices Π = {πk}k∈K .3 Each communication device is a distribution over the set of

messages M for each ω ∈ Ω, i.e., πk(·|ω) ∈ ∆M for all ω ∈ Ω. Again, ∆M denotes the

set of all distribution functions onM . As in BLL, we assume that the πk's have common

support for all k ∈ K. The only di�erence to the standard Bayesian persuasion setting

is that the Sender chooses a set of communication devices instead of one communication

device. It is ambiguous to both players, which of the communication devices generates

the observed message. After observing a message m, the Receiver updates her prior

state belief using Bayes' rule. Since she does not know which communication device

2Our de�nition of belief di�ers from the one of BLL. To avoid confusion, we use the term state

belief whenever we refer to beliefs in the sense of BLL.
3Please note that we deviate from the model of BLL by de�ning Π as the set of communication

devices. BLL de�ne Π as the convex hull of the set of communication devices. Since Sender and

Receiver have maxmin preferences, the minimization problems over {πk} or co
(
{πk}

)
coincide.
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generated the message, she updates p0 with respect to each communication device πk,

which leads to the following set of posterior state beliefs after observing the message

m ∈M :

Pm =

{
pπkm (·) ∈ ∆Ω : pπkm (·) =

p0(·)πk(m|·)∫
Ω
p0(ω)πk(m|ω) dω

, πk ∈ Π

}
.

Sender and Receiver have maxmin preferences á la Gilboa and Schmeidler (1989),

i.e., they maximize their worst-case expected utility. BLL assume that the Receiver

maximizes her interim worst-case expected utility given that message m was observed.

Hence, for all m ∈M the expected utility is given by

U(a, Pm) = min
pm∈Pm

Epm(u(a, ω)).

As usual in the persuasion literature, we assume that the Receiver chooses the sender-

preferred action if she has multiple maximizers. We denote with âm the (sender-

preferred) best response of the Receiver after observing the message m. The Sender

chooses the signal (M,Π) that maximizes his ex-ante worst-case expected utility

sup
(M,Π)

min
π∈Π

Ep0

[
Eπ
[
ν(âm, ω)|ω

]]
.

Since the Sender only chooses an action at the ex-ante stage, he can never behave

dynamically inconsistently. However, the interim best response of the Receiver is,

in general, not ex-ante optimal. Intuitively, ex-ante, the Receiver can hedge against

ambiguity by playing any constant strategy. The following example from BLL shows

that ambiguity can lead to a higher expected payo� for the Sender. Furthermore, we

show that the interim equilibrium strategy of the Receiver is not ex-ante ante optimal.

Example 2.1. Assume that the Sender is a brand-name drug producer. The Receiver

is a physician who can choose between prescribing the brand name drug (a = aB) or

a generic competitor (a = aG). The Sender always prefers that the Receiver prescribes

the brand name drug. The Receiver's preferences depend on the state, which re�ects the

e�ectiveness of the generic drug. If the generic drug is e�ective (ω = ωe), the Receiver

prefers the generic drug. If not (ω = ωi), she prefers the brand name drug. The payo�s

of Sender and Receiver are given in Table 2.1.

ωe ωi

aB (1, 2) (1, 2)

aG (0, 3) (0,−1)

Table 2.1: Payo�s (S,R)
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Sender and Receiver have a common ex-ante state belief p0 = P(ω = ωi) <
1
4
.4 BLL

show that the optimal Bayesian persuasion signal is such that the set of messages M

consists of two messages M = {i, e} and the communication device is given by

π(e|ωe) =
1− 4p0

1− p0

= 1− π(i|ωe),

π(e|ωi) = 0 = 1− π(i|ωi).

Then, the ex-ante expected payo� of the Sender given the optimal Bayesian persuasion

is attained by P(m = i) · 1 + P(m = e) · 0 = 4p0 < 1.

Furthermore, BLL construct an ambiguous persuasion signal that leads to a higher

expected payo� of the Sender. Let M = {e, i} be as before. The set of communication

devices Π = {π, π′} is given by a communication device that always reveals the true

state and a communication device that does the opposite, i.e.,

π(i|ωi) = 1 = 1− π(e|ωi), π(i|ωe) = 0 = 1− π(e|ωe),
π′(i|ωi) = 0 = 1− π′(e|ωi), π′(i|ωe) = 1 = 1− π′(e|ωe).

Given this ambiguous communication device, the interim state beliefs are

Pm = {(0, 1), (1, 0)}

for m ∈ {e, i}. Due to the maxmin preferences, the interim worst-case belief for both

messages always gives probability one to the ine�cient state ωi. Therefore, the Receiver

chooses the brand name drug with probability one. Then, the ex-ante expected payo� of

the Sender is one which is greater than the ex-ante expected payo� given the optimal

Bayesian persuasion.

However, the ex-ante expected payo� of the Receiver is given by

min
π∈Π

∑
m∈{e,i}

(
π(m|ωe) + π(m|ωi)

)
Epπm

(
u(am, ω)

)
,

where am denotes her action after observing the messages m. If she chooses the brand

name drug independently of the signal that she will observe, her ex-ante expected payo�

equals

2 · P(ω = ωe) + 2 · P(ω = ωi) = 2.

Her expected payo� if she always choose the generic drug is

3 · P(ω = ωe) + 1 · P(ω = ωi) = 3− 4p0.

Since p0 <
1
4
, the optimal interim strategy of always prescribing the brand name drug

is not ex-ante optimal, and the Receiver behaves dynamically inconsistently.
4Please note, that for simplicity we deviate from the illustrating example of BLL (page 317) by

assuming uH = 3, uL = −1 and c = 1, which is consistent with the payo�s in Example 2 of BLL.
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2.2.2 Dynamically Consistent Belief Formation Process

In this model, ambiguity arises due to the ambiguous communication device. Ambigu-

ous interim beliefs only occur due to the combination of a risky state and an ambiguous

signal. Consider the following two situations at the ex-ante stage:

1) The Receiver does not observe any message. All information about the state

ω ∈ Ω is represented by p0.

2) As in situation 1) the Receiver knows p0. Additionally, she knows that she will

receive an ambiguous message before making her decision.

In the �rst situation, the Receiver knows that there will be no additional information.

She chooses her optimal action, given the expected utility with respect to p0. In the

second situation, the Receiver has ex-ante the same information about the state as

in Situation 1). However, she knows that she will receive additional but ambiguous

information before making her decision. Further, she knows that this ambiguous in-

formation in�uences her interim beliefs and, thus, her best response. A rational player

should consider this knowledge about a game's information structure at the ex-ante

stage. Rectangularity takes the interplay of the prior state belief p0 and the knowledge

about the information structure into account. This ensures dynamic consistency.

This section shows that de�ning beliefs over a general state space allows the de�nition

of non-singleton rectangular belief sets. Then, given rectangular beliefs, the Receiver

behaves dynamically consistently, and the equilibrium of BLL is a perfect Bayesian

equilibrium.

2.2.2.1 Straightforward Messages

In the ambiguous persuasion setting, the set of messages M is part of the Sender's

strategy. In a Bayesian persuasion setting, Kamenica and Gentzkow (2011) call a

communication device straightforward if M ⊆ A. They show that one can restrict

without loss of generality to straightforward communication devices in a Bayesian

persuasion setting. The next proposition generalizes this result to our ambiguous

persuasion setting. It shows that the Sender chooses without loss of generality M ⊆
A ∪ Ã, where Ã is a duplicated set of A such that there exists a bijection b(·) between
A and Ã. Given this result, we can de�ne rectangular ex-ante beliefs over Ω× (A∪ Ã).

Proposition 2.1. Let (M,Π) ∈ arg sup minπ∈Π Ep0 [Eπ [ν(âm, ω)|ω]]. Let Ã be such

that there exists a bijection b(·) : A → Ã between A and Ã. Then, there exist a tuple

(M ′,Π′) with M ′ ⊆ A ∪ Ã and Π′ = {π′1, π′2} such that (M ′,Π′) generates the same

value for the Sender as (M,Π).
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The intuition of the result is as follows. Kamenica and Gentzkow (2011) show that

for Bayesian persuasion, it is without loss of generality that M ⊆ A. BLL show

that ambiguous persuasion increases the value for the Sender compared to Bayesian

persuasion only if the Sender uses a signal with synonyms. Synonyms are messages that

copy the meaning of another message, i.e., they induce the same posterior state belief

set or best response of the Receiver. Furthermore, they show that for any ambiguous

signal, one can �nd an ambiguous signal which only consists of two communication

devices and leads to the same value. Hence, in order to allow synonyms, we have to

duplicate the message space. Further, duplication is enough to generate the same value

as any ambiguous signal. Therefore, M ⊂ A ∪ Ã.

Proof of Proposition 1. Corollary 1 of BLL shows that there exist π1 and π2 such that

(M, {π1, π2}) generates the same value as (M,Π). Hence, we have to show that (M ′,Π′)

generates the same value as (M, {π1, π2}). We �rst look at the case where the Sender

does not use synonyms.

i) The Sender does not use synonyms:

Since (M, {π1, π2}) does not use synonyms, there does not exist any m,m′ ∈ M
with m 6= m′ such that âm = âm′ . Remember, that pπm denotes the posterior

state belief of the Receiver given the message m and the communication device π.

Furthermore, âm denotes the Receivers' best response given message m ∈M and

the communication devices {π1, π2}. Since (M, {π1, π2}) does not use synonyms,

there exists at most one m ∈ M for each a ∈ A such that a = âm. We de�ne

π̄i(·|ω) ∈ ∆M ′ with M ′ ⊂ A such that

π̄i(a|ω) =

πi(m|ω) if ∃m ∈M with a = âm,

0 otherwise.

Then, the posterior state belief pπim equals the posterior state belief pπ̄ia if a = âm.

Therefore, (M, {π1, π2}) and (M ′, {π̄1, π̄2}) generate the same set of posterior

state beliefs and the same best response of the Receiver. Since the best response

does not change, the value of the Sender is the same for both signals.

ii) The Sender uses synonyms:

If (M, {π1, π2}) uses synonyms, we can split M in M1 and M2 such that there

exists a bijection between M1 and M2 and M1 ∪M2 = M . Then, (M1, {π̂1, π̂2})
with

π̂i(m|ω) =
πi(m|ω)∑

m∈M1
πi(m|ω)
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de�nes a signal that does not use synonyms. Hence, as in Case i), there exists

(M ′
1, {π̄1, π̄2}) with M ′

1 ⊂ A that generates the same value as (M1, {π̂1, π̂2}).
Similarly, one can de�ne the restriction of πi to M2 and �nd (M ′

2, {π̃1, π̃1}) with
M ′

2 ⊂ Ã, that generates the same value as M2 and the restriction of πi to M2.

Then, (M ′, {π′1, π′2}) with M ′ = M ′
1 ∪M ′

2 and

π′i(a|ω) =

π̄i(a|ω)
∑

m∈M1
πi(m|ω) if a ∈ A,

π̃i(a|ω)
∑

m∈M2
πi(m|ω) if a ∈ Ã,

generates the same value as (M, {π1, π2}).

Proposition 2.1 shows that without loss of generality we can assume that M ⊂ A ∪ Ã.
Due to the assumption that all πk have common full support on M , a strategy of

the Sender (M,Π) is completely characterized by Π. For the rest of the chapter, we

will use the term strategy of the Sender for such a Π. Furthermore, we denote with

supp(Π) = supp(πk(·|ω)) the support of πk ∈ Π for all k ∈ K.

2.2.2.2 Rectangular Beliefs

Given the results from the previous section, we can de�ne beliefs over the general state

space Ω × (A ∪ Ã). De�ning beliefs over this general state space allows the Receiver

to form a joint belief about the risky state ω ∈ Ω and the message m ∈ M , i.e., the

Receiver forms beliefs of the events �the state is ω, and I observe message m.� Then,

the probability of this event depends on the risky state ω ∈ Ω and the ambiguous

communication device that generates the message.

De�nition 2.1. For a strategy Π of the Sender, we de�ne the set of ex-ante beliefs

of the Receiver as

Φ0
Π =

{
ρk ∈∆(Ω× (A ∪ Ã)) : ∃πk ∈ Π with

ρk(ω,m) =

p0(ω)πk(m|ω) if m ∈ supp(Π),

0 otherwise.

}
.

Please note that the strategy of the Sender generates the information structure of the

persuasion games. Hence, it has to in�uence the joint belief over states and messages.

At the interim stage the Receiver observes a message m ∈ supp(Π). The information

structure at the ex-ante stage (t = 0) and interim stage (t = 1) can be represented by

68



2.2. Model

the following partitions

F0 = Ω× (A ∪ b(A)),

F1 =
{
{Ω×m}m∈A∪b(A)

}
.

Then, given an observation m̂ ∈ supp(Π), the Receiver updates her ex-ante belief set

prior-by-prior using Bayes' formula, i.e., she updates each prior belief in Φ0
Π with Bayes'

formula

ρk|m̂ = ρk((ω,m)|m̂) =
p0(ω)πk(m|ω)∫

Ω
p0(ω′)πk(m|ω′) dω′

,

if m = m̂ and zero otherwise. Then, the set of updated beliefs given m̂ ∈ supp(Π) is

Bay(Φ0
Π|m̂) = {ρk|m̂ : ρk ∈ Φ0

Π}.

Remark 2.1. Note that ρk((ω,m)|m̂) = 0 for m̂ /∈ supp(Π) and ρk((ω, m̂)|m̂) = pπkm̂ (ω)

for all ω ∈ Ω.

To de�ne rectangularity let us �rst look at the case without ambiguity, i.e., if Π = {π}
and Φ0

Π = {ρ} is singleton. After observing message m the updated belief is given

by ρ|m. Furthermore, the marginal beliefs of observing m ∈ A ∪ Ã under ρ is

ρ(Ω,m) =

∫
Ω

ρ(ω,m) dω =

∫
Ω

p0(ω)π(m|ω) dω.

Then, the structure of Bayes' formula implies that multiplying the updated belief after

observing message m with the marginal probability of observing m leads to the prior

belief restricted to the events that the message is m. This holds for all messages m and,

therefore, for all information sets of the partition de�ned above. Hence, integrating

over all m ∈ supp(Π) leads to the prior belief

ρ(ω,m) =

∫
supp(Π)

ρ(Ω,m′)ρ|m′(ω,m) dm′.

Now, we generalize these considerations to an ambiguous setting, i.e., Π is not a sin-

gleton. Rectangularity requires that any combination of marginal belief and updated

belief is a prior belief that the agent considers as possible. The Receiver knows which

messages she could receive and, thus, which updated beliefs potentially exist. Taking

this knowledge into account, rectangularity requires that any combination of marginal

and updated belief is an element of the ex-ante belief set.
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De�nition 2.2. The pasting of an ex-ante belief ρ̄ ∈ Φ0
Π and a collection of updated

beliefs (ρ|m̂)m̂ ∈×m̂∈supp(Π)
Bay(Φ0

Π|m̂) is de�ned as5

ρ̄ ◦ (ρ|m̂)m̂(ω,m) :=

∫
supp(Π)

ρ̄(Ω, m̂)ρ(ω,m|m̂) dm̂

=
(∫

Ω

p0(ω′)π̄(m|ω′) dω′
) p0(ω)π(m|ω)∫

Ω
p0(ω′)π(m|ω′) dω′

.

The set of ex-ante beliefs is called rectangular (or stable under pasting) if it contains

all pastings of an ex-ante belief ρ̄ ∈ Φ0
Π and interim beliefs (ρ|m̂)m̂, i.e.,

ρ̄ ◦ (ρ|m̂)m̂(·) ∈ Φ0
Π

for all ρ̄ ∈ Φ0
Π and (ρ|m̂)m̂ ∈×m̂∈supp(Π)

Bay(Φ0
Π|m̂).

If Φ0
Π is not rectangular, one can always construct the smallest set, which is rectangular

and contains Φ0
Π by backward induction. We call this set the rectangular hull and

denote it with rect(Φ0
Π). Simple calculations show that Bay(Φ0

Π|m̂) = Bay(rect(Φ0
Π)|m̂).

The same holds for the set of marginal beliefs under Φ0
Π and rect(Φ0

Π). For a more

detailed explanation of the construction and the properties of the rectangular hull, we

refer to Chapter 1.

So far, we focused on the beliefs of the Receiver. The Sender only chooses an action

at the ex-ante stage. Therefore, the interim beliefs of the Sender do not in�uence the

equilibria of the game. For technical completeness, we can always �nd an information

structure of the Sender that does not in�uence the ex-ante decision of the Sender

but ensures that the ex-ante belief set of the Sender is rectangular for any strategy

Π. For example, the Sender could observe which communication device generated the

observed message at the interim stage. However, this chapter aims to �nd a belief

formation process that ensures dynamically consistent behavior. Since the Sender can

never behave dynamically inconsistently, we do not go into details.

2.3 Dynamic Consistency and PBE

Finally, we show that rectangularity implies dynamically consistent behavior of the

Receiver and, therefore, the existence of a perfect Bayesian equilibrium.

De�nition 2.3. A perfect Bayesian equilibrium (PBE) with rectangular beliefs consists

of a strategy Π∗ of the Sender, a strategy (âm)m∈M of the Receiver and a belief system Ψ

for each player. Strategies and belief systems have to satisfy the following conditions:

5Please note, that the pasting is always well de�ned due to the common support assumption.

Furthermore, the second equality follows since ρ(ω,m|m̂) = 0 if m 6= m̂.
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� The belief systems of both players consist of an ex-ante belief set Ψ0
i and interim

belief set Ψm
i for each message m ∈ A ∪ Ã such that

Ψ0
R = rect(Φ0

Π∗) and Ψ0
S = Φ0

Π∗ .

Furthermore, the interim belief sets are derived by Bayes rule whenever possible,

i.e., Ψm
i = Bay(Ψ0

i |m) for all m ∈ supp(Π∗).

� The equilibrium strategy of the Sender Π∗ with supp(Π∗) ⊆ A ∪ Ã maximizes his

ex-ante worst-case expected utility

min
ρ∈Ψ0

S

Eρ [ν(âm, ω)] .

� The equilibrium strategy of the Receiver maximizes her interim worst-case ex-

pected utility for all m ∈ supp(Π∗)

min
ρ|m∈ΨmR

Eρ|m(u(am, ω)),

and her ex-ante worst-case expected utility given the ex-ante belief set Ψ0
R

min
ρ∈Ψ0

R

Eρ(u(am, ω)).

The following proposition shows that we can generalize any ex-ante best response of

the Sender and interim best response of the Receiver to a perfect Bayesian equilibrium

using rectangularity.

Proposition 2.2. Let (M,Π) be the optimal ex-ante choice of the Sender and (am)m∈M

the optimal interim choice of the Receiver as in BLL. Then, there exists (M∗,Π∗), with

M∗ ⊆ A ∪ Ã and |Π∗|= 2 that generates the same value of the Sender as (M,Π).

Furthermore, Π∗, (âm)m∈M∗, and

Ψ0
R = rect(Φ0

Π∗),

Ψ0
S = Φ0

Π∗ ,

(Ψm
i )m∈M∗ = (Bay(Ψ0

i |m))m∈M∗

are a PBE with rectangular beliefs.

Proof. The �rst part of the proof follows from Proposition 2.1. Furthermore, the Sender

never behaves dynamically inconsistently. We only have to show that the Receivers

interim best response of BLL is an interim and ex-ante best response given rectangular

beliefs. Remember that pπkm̂ (·) = ρk((·, m̂)|m̂) for all m̂ ∈ supp(Π) and that the set

of Bayesian updates given Φ0
Π or rect(Φ0

Π) are the same. Therefore, the interim best
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response given the state beliefs of BLL is an interim best response given rectangular

beliefs, as well. Furthermore, we can rewrite the ex-ante expected utility of the Receiver

as

min
ρ∈rect(Φ0

Π∗ )

∫
supp(Π)

ρ(Ω, m̂)Eρ|m̂(u(am̂, ω)) dm̂,

where ρ|m̂ is the Bayesian update of ρ given message m̂. We �rst show the relation

between ex-ante and interim worst-case expected utility. Let ρ∗ denote the ex-ante

worst-case belief given rectangular beliefs. Then,∫
supp(Π∗)

ρ∗(Ω, m̂)Eρ∗|m̂(u(am̂, ω)) dm̂

=

∫
supp(Π∗)

ρ∗(Ω, m̂) min
ρ|m̂∈Bay(rect(Φ0

Π∗ )|m̂)
Eρ|m̂(u(am̂, ω)) dm̂. (2.1)

To prove Equation (2.1), we �rst show that the left-hand side is greater or equal than

the right-hand side using the inequality

Eρ∗|m̂(u(am̂, ω)) ≥ min
ρ|m̂∈Bay(rect(Φ0

Π∗ )|m̂)
Eρ|m̂(u(am̂, ω))

for all m̂ ∈ supp(Π∗).

To prove the other direction, let ρ′|m̂ be the worst-case belief given that she observed m̂.

Then, due to rectangularity, there exists ρ̄ ∈ rect(Φ0
Π∗) such that ρ∗ ◦ (ρ′|m̂)m̂ = ρ̄.

Furthermore, rectangularity implies, that ρ̄(·|m̂) = ρ′(·|m̂) and ρ̄(Ω, m̂) = ρ∗(Ω, m̂) for

all m̂. Hence,∫
supp(Π∗)

ρ∗(Ω, m̂)Eρ∗|m̂(u(am̂, ω)) dm̂ ≤
∫

supp(Π∗)

ρ̄(Ω, m̂)Eρ̄|m̂(u(am̂, ω)) dm̂

=

∫
supp(Π∗)

ρ∗(Ω, m̂)Eρ′|m̂(u(am̂, ω)) dm̂

=

∫
supp(Π∗)

ρ∗(Ω, m̂) min
ρ|m̂∈Bay(rect(Φ0

Π∗ )|m̂)
Eρ|m̂(u(am̂, ω)) dm̂.

Combining both directions proves Equation (2.1). Finally, we show that an interim

best response of the Receiver is an ex-ante best response, as well. We denote the

(sender-preferred) interim best response of the Receiver given message m̂ by âm̂ , i.e.,

min
ρ|m̂∈Bay(Φ0

Π∗ |m̂)
Eρ|m̂(u(âm̂, ω)) ≥ min

ρ|m̂∈Bay(Φ0
Π∗ |m̂)

Eρ|m̂(u(am̂, ω))

for any arbitrary am̂ ∈ A and all m̂ ∈ supp(Π∗). We have to show that (âm̂)m̂∈supp(Π∗)

is ex-ante optimal. Since ρ(Ω, m̂) ≥ 0 for all m̂ ∈ supp(Π∗) and ρ(Ω, m̂) = 0 for all

m̂ /∈ supp(Π∗), Equation (2.1) implies

min
ρ∈rect(Φ0

Π∗ )

∫
supp(Π∗)

ρ(Ω, m̂)Eρ|m̂(u(am̂, ω)) dm̂

= min
ρ∈rect(Φ0

Π∗ )

∫
supp(Π∗)

ρ(Ω, m̂) min
ρ′|m̂∈Bay(Φ0

Π∗ |m̂)
Eρ′|m̂(u(am̂, ω)) dm̂
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≤ min
ρ∈rect(Φ0

Π∗ )

∫
supp(Π∗)

ρ(Ω, m̂) min
ρ′|m̂∈Bay(Φ0

Π∗ |m̂)
Eρ′|m̂(u(âm̂, ω)) dm̂

= min
ρ∈rect(Φ0

Π∗ )

∫
supp(Π∗)

ρ(Ω, m̂)Eρ|m̂(u(âm̂, ω)) dm̂

for any arbitrary (am̂)m̂∈supp(Π). The inequality follows from the interim optimality of

(âm̂)m̂∈supp(Π∗) and the last equality from Equation (2.1).

Hence, the Receivers' ex-ante best response equals the interim best response and the

interim equilibrium of Beauchêne et al. (2019) satis�es ex-ante optimality.

Remark 2.2. In the proof of Proposition 2.1, we show how (M∗,Π∗) can be con-

structed. The construction is similar as for Bayesian persuasion in Kamenica and

Gentzkow (2011). Intuitively, any two messages m and m′ that are not synonyms of

each other but induce the same optimal strategy, i.e., âm = âm′, are replaced by the

same message m̄. This implies that M∗ ⊆ A ∪ Ã. The construction shows that even if

the message sets M and M∗ are di�erent, the Receiver's actions do not change.

To illustrate the previous results, we come back to our example from Section 2.2.1

Example 2.2 (Example 2.1 cont.). Remember that the optimal ambiguous communi-

cation device was given by Π = {π, π′} with

π(i|ωi) = 1 = 1− π(e|ωi), π(i|ωe) = 0 = 1− π(e|ωe),
π′(i|ωi) = 0 = 1− π′(e|ωi), π′(i|ωe) = 1 = 1− π′(e|ωe).

Then, the set of ex-ante beliefs of the Receiver is Φ0
Π = {ρ, ρ′} with

ρ(ω,m) =


p0 if m = i, ω = ωi,

1− p0 if m = e, ω = ωe,

0 otherwise,

ρ′(ω,m) =


p0 if m = e, ω = ωi,

1− p0 if m = i, ω = ωe,

0 otherwise.

To construct the rectangular hull, we need to calculate all interim beliefs

ρ(ω,m|i) =

, 1 if m = i, ω = ωi,

0 otherwise,
ρ(ω,m|e) =

1 if m = e, ω = ωe,

0 otherwise,

ρ′(ω,m|i) =

1 if m = i, ω = ωe,

0 otherwise,
ρ′(ω,m|e) =

1 if m = e, ω = ωi,

0 otherwise,

and and marginal beliefs

marg(ρ(·, i)) = p0, marg(ρ(·, e)) = 1− p0,

marg(ρ′(·, e)) = p0, marg(ρ′(·, i)) = 1− p0.
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Then, we obtain the rectangular hull rect(Φ0
Π) = {ρ, ρ′, ρ̂, ρ̄} by combining any marginal

and interim belief, where ρ and ρ′ are as before and

ρ̄(ω,m) =


1− p0 if m = i, ω = ωi,

p0 if m = e, ω = ωe,

0 otherwise,

ρ̂(ω,m) =


1− p0 if m = e, ω = ωi,

p0 if m = i, ω = ωe,

0 otherwise.

Given the rectangular hull, the worst-case belief of the Receiver, if she plans to choose

the generic drug after message m, is P(ω = ωi,m) = 1−p0 >
3
4
. Therefore, always pre-

scribing the brand name drug is ex-ante optimal, and the Receiver behaves dynamically

consistently.

2.4 Value of Information

Our example shows that the Receiver is better o� by making her decision based on p0.

Therefore, she would prefer getting no additional information than getting ambiguous

information. This result is consistent with the recent literature on the (negative) value

of information under ambiguity, e.g., Li (2020) or Hill (2020). However, BLL show

in their Subsections 6.3 and 6.4 that the Receiver may bene�t from listening to an

ambiguous device.

We denote the ex-ante expected utility of action a of the Receiver without any addi-

tional information by U0(a), i.e.,

U0(a) =

∫
Ω

u(a, ω)p0(ω) dω.

De�nition 2.4. A communication device Π has a positive value of information for the

Receiver if

max
(am)m∈supp Π∈A|supp Π|

min
ρ∈rect(Φ0

Π)
Eρ(u(am, ω)) ≥ max

a∈A
U0(a).

Ambiguous information induces two e�ects. On the one hand, an ambiguous communi-

cation device generates ambiguous beliefs and decreases the worst-case expected utility

of the Receiver. On the other hand, the communication device still reveals information

about the state. This information allows the Receiver to choose an action that is better

suited for the state and increases her expected utility. Then, the value of information

is positive if the second e�ect exceeds the negative e�ect of ambiguity and ambiguity

aversion.
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BLL say that a communication device satis�es a participation constraint if

max
(am)m∈supp Π∈A|supp Π|

min
π∈Π

∫
Ω

∫
M

π(m|ω)u(am, ω) dmp0(ω) dω ≥ max
a∈A

U0(a).

They call this condition a participation constraint since it ensures that the Receiver is

willing to pay attention to the communication device. If the participation constraint is

not satis�ed, the Receiver would be better o� by ignoring the communication device,

ex-ante. Since Φ0
Π ⊆ rect(Φ0

Π), it follows that

max
(am)m∈supp Π∈A|supp Π|

min
π∈Π

∫
Ω

∫
M

π(m|ω)u(am, ω) dmp0(ω) dω

= max
(am)m∈supp Π∈A|supp Π|

min
ρ∈Φ0

Π

Eρ(u(am, ω)) ≥ max
(am)m∈supp Π∈A|supp Π|

min
ρ∈rect(Φ0

Π)
Eρ(u(am, ω)).

Thus, any communication device with a positive value of information satis�es the

participation constraint of BLL.

BLL characterize a condition that guarantees that the Receiver bene�ts from listening

to a communication device (see BLL Proposition 8). We now translate this condition

to our setting. We denote the default actions by a0, i.e., the action that maximizes

U0(a).

De�nition 2.5. Let âm denote the interim optimal action of the Receiver with rect-

angular beliefs Bay(rect(Φ0
Π)|m). A message m is value-increasing (to the Receiver) if

Eρ|m(u(â, ω)) ≥ U0(a0) for all ρ|m ∈ Bay(rect(Φ0
Π)|m).

BLL show that a communication device Π satis�es the participation constraint if Π

only uses value-increasing messages. The next proposition proves a stronger and very

intuitive result: A communication device that increases the worst-case expected utility

of the Receiver for any message has a positive value of information.

Proposition 2.3. If Π only uses value-increasing messages, Π has a positive value of

information for the Receiver.

Proof. Since Eρ|m(u(â, ω)) ≥ U0(a0) for all ρ|m ∈ Bay(rect(Φ0
Π)|m), it follows that

min
ρ|m∈Bay(rect(Φ0

Π)|m)
Eρ|m(u(â, ω)) ≥ U0(a0). (2.2)

Then, rectangularity and Equation (2.2) imply

max
(am)m∈supp Π∈A|supp Π|

min
ρ∈rect(Φ0

Π)
Eρ(u(am, ω))

= min
ρ∈rect(Φ0

Π∗ )

∫
supp(Π∗)

ρ(Ω,m) min
ρ′|m∈Bay(Φ0

Π∗ |m)
Eρ′|m(u(âm, ω)) dm

≥ min
ρ∈rect(Φ0

Π∗ )

∫
supp(Π∗)

ρ(Ω,m)U0(a0) dm = U0(a0).
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2.5 Conclusion and Discussion

We show that the gain of ambiguous persuasion arises due to ambiguity and ambiguity

aversion and not due to dynamically inconsistent behavior. First, we show that we

can restrict without loss of generality to straightforward messages and synonyms, i.e.,

M ⊂ A ∪ Ã. Given this result, we can introduce beliefs over the more general state

space Ω × A ∪ Ã. This state space allows for the dependence of the risky state and

ambiguous signals. Therefore, the Receiver can take the potentially ambiguous infor-

mation structure at the ex-ante stage into account. Then, rectangular beliefs ensure

dynamically consistent behavior in ambiguous persuasion and the existence of a perfect

Bayesian equilibrium. This shows that ambiguity induces new equilibria in persuasion

settings, even if the players behave dynamically consistently. To conclude, we discuss

some related issues and literature.

Endogenous Ambiguity in Cheap Talk Kellner and Le Quement (2018) show

that in a cheap talk setting, an ambiguous strategy of the Sender can lead to an interim

equilibrium that improves the ex-ante expected payo� of Sender and Receiver. In their

setting, players face a risky state ω ∈ Ω. The Sender can commit his signal on an

ambiguous payo�-irrelevant state θ ∈ Θ, which leads to an ambiguous posterior belief

for the Receiver. As in our ambiguous persuasion setting, the equilibrium strategy of

the Receiver is not ex-ante optimal. However, similarly to the procedure described

above, de�ning beliefs and rectangularity over the general state space Ω×Θ, leads to

a perfect Bayesian equilibrium with the same strategies as in the interim equilibrium

of Kellner and Le Quement (2018).

Preferences for Partial Information of Li (2020) Li (2020) characterizes aver-

sion to partial information under ambiguity aversion. He shows that an ambiguity-

averse decision maker (DM) with maxmin preferences is always (weakly) averse to

partial information. Furthermore, the DM is neutral to a speci�c information partition

π if and only if his ex-ante belief set is rectangular with respect to π. More formally,

let Π denote the set of all partitions of a state space S and let F be the set of acts

which are maps from states to consequences f : S → X. Li de�nes ex-ante preferences

on an extended choice domain, which is the product space of information partitions

π ∈ Π and acts f ∈ F . Given an information partition π, the DM anticipates the

possible future information and constructs his ex-ante preference � recursively from

the interim preferences at each event E ∈ π. Then, Li says that a preference relation

� exhibits aversion to partial information, if (π0, f) � (π, f) for all acts f ∈ F and

partition π ∈ Π, where π0 denotes the information partition where no information is

learned, i.e., π0 = {S}.
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It is important to note, that the de�nition of aversion to partial information requires

(f, π0) � (f, π) for all acts f ∈ F . In the ambiguous persuasion setting, the Receiver

cannot condition his action on a state or message without any additional information.

But anticipating that he will receive ambiguous information allows him at the ex-ante

stage to condition his action on the messages that he could observe. In Li's setting,

this would imply that given π0 the DM can only choose from constant acts. Given

an ambiguous communication device, the DM can choose any act that is measurable

with respect to the information partition induced by the communication device. These

are exactly the two e�ects we describe after De�nition 2.4. On the one hand, an

ambiguous information device induces ambiguity, which decreases the utility of an

ambiguity avers Receiver. On the other hand, anticipating this information at the ex-

ante stage allows the Receiver to choose an action for each message that could occur

with positive probability. Li focuses only on the �rst e�ect since the set of acts F is

the same under π0 and π. Therefore, his result about partial information aversion of

maxmin preferences does not contradict our result about a positive value of information

(Proposition 2.3).

Subjective Trees of Hill (2020) Hill (2020) formulates a dynamic consistency

axiom in a model with so-called subjective trees. Roughly speaking, subjective trees

are information structures that are not necessarily represented by a partition of the

state space. He argues that using his version of the dynamic consistency axiom resolves

the con�ict between dynamic consistency and ambiguity. In Appendix A, he de�nes

a di�erent setup with an extended state space. Under the extended state space, his

formulation of the dynamic consistency axiom is equivalent to the standard formulation.

In this work, we use a general state space instead of a non-partitional information

structure, as in the Appendix of Hill (2020). Furthermore, our de�nition of a positive

value of information is similar to the de�nition of Hill (2020).

Other Approaches Dealing with Dynamic Inconsistency Cheng (2020) uses

a model similar to BLL but focuses on the Receiver's ex-ante optimization problem.

He shows that if the Receiver can commit to his ex-ante optimal choice, the Sender

cannot gain from ambiguous persuasion. The same results can be archived without

commitment if the Receiver uses the updating rule of Hanany and Klibano� (2007).

These updating rules restrict the interim belief set to beliefs that maintain the ex-ante

optimality.

Our approach follows the idea of Riedel et al. (2018). They discuss why a dynamically

consistent agent expands his ex-ante belief set to a rectangular hull. Intuitively, an

agent who knows that he receives further information before deciding should take his
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knowledge about the information structure into account. Therefore, di�erent infor-

mation structures may induce di�erent ex-ante belief sets. In our setting, this occurs

if one compares the ex-ante belief (set) without any additional information and the

ex-ante belief set in the presence of an ambiguous communication device.

The consistent planning approach of Siniscalchi (2011) is another way to deal with

dynamically inconsistent behavior. Following the idea of Strotz (1955), a player con-

siders that his future selves will have di�erent worst-case beliefs. However, even if the

interpretation is di�erent, it would lead to similar optimal actions but di�erent beliefs

of the Receiver as in our setting.
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Chapter 3

Dynamic Consistency in Ambiguous

Dutch Auctions

3.1 Introduction

In the canonical model with subjective expected utility maximizers and independent

private values, it is well-known that the descending price (or Dutch) auction and the

�rst-price sealed-bid auction generate the same equilibrium outcomes. However, this

result breaks down if buyers are non-expected utility maximizers. In practice, buyers

usually have only little information about the valuation of their opponents. Therefore,

it is an important and interesting question how buyers bid if they are faced with

ambiguous beliefs about the valuation of their opponents.

Bose and Daripa (2009) address this question and analyze a discrete decreasing price

auction with two ambiguity-averse buyers with valuation v ∈ [0, 1]. In their setting,

buyers can not �x one subjective belief about the valuation of the other buyer. The

beliefs of both buyers are given by a set of density functions. More precisely, there is

one underlying density function f with full support in [0, 1] and the set of beliefs is an

ε-contamination of f :

Φ−1 := {(1− ε)f(·) + εl(·) : l ∈ P},

where P denotes the set of all density functions on [0, 1]. Intuitively, 1 − ε can be

interpreted as the con�dence in the subjective belief f , or ε as the degree of ambiguity.1

Further, buyers are ambiguity-averse and maximize their worst-case expected utility

á la Gilboa and Schmeidler (1989). Bose and Daripa (2009) consider the following

modi�ed Dutch mechanism (MDM): The seller starts with a price close to one. At the

1For more details and an axiomatization of ε-contamination see Kopylov (2016).
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beginning of a period k, the seller chooses secretly and randomly one buyer. This buyer

is approached �rst and can either accept or reject the o�er at price pk. If he rejects the

o�er, the other buyer can accept or reject the same o�er. If one of the buyers accepts,

the game ends immediately. If both buyers reject the price pk, the game proceeds to

the next period k + 1 with a lower price pk+1. The procedure is repeated until either

a buyer accepts or the last price pn is reached. Buyers never learn who received which

o�er �rst.

For a given MDM, the buyers face an incomplete information game with two players

and ambiguous information about the valuation of the other buyer. Ambiguity may

lead to dynamically inconsistent behavior. Bose and Daripa (2009) use the consistent

planning approach of Siniscalchi (2011). They show that for any degree of ambiguity

ε, the seller can always design an MDM such that he can extract almost all surplus.

Intuitively, consider a price pk and buyer i with value vi > pk and suppose buyer i gets

the price o�er pk. His ex-post utility of accepting this price is v
i− pk. Since buyers are

ambiguity-averse, the expected utility of waiting one period is vi−pk+1 times the worst-

case belief of receiving the o�er pk+1 if he rejects the current price pk. In the worst-case,

it is relatively likely that the opponent buyer j ends the game before buyer i receives

the o�er pk+1. If the price di�erence is small enough, the expected utility of waiting

becomes smaller than the utility of accepting the current price vi − pk. Therefore, the
buyers accept a price that is very close to their valuation. Then, by making the price

di�erence small enough, the seller can extract almost all surplus.

However, almost all results of Bose and Daripa (2009) are based on an incorrect worst-

case belief. In this chapter, we �rst correct the worst-case belief of Bose and Daripa

(2009). Then, we show that the seller can still extract almost all surplus even if buyers

behave dynamically consistently. In contrast to Bose and Daripa (2009), we assume

that buyers have rectangular beliefs instead of using the consistent planning approach

of Siniscalchi (2011). To our knowledge, we are the �rst who analyze sequential auctions

with ambiguity-averse buyers and rectangular beliefs.

Even if the de�nition of rectangularity is similar to Chapter 1, we can not apply the

results of Chapter 1. Since the buyers never know which buyer receives the current

o�er �rst, the incomplete information game induced by an MDM cannot be represented

by a multistage game.

It is often conjectured that rectangularity and consistent planning lead to similar equi-

librium outcomes. However, we show that this is not the case for the incomplete

information game induced by an MDM. Independently of the approach, the seller can

extract almost all surplus by making the price di�erence arbitrarily small. However, we

show that the equilibrium strategies of buyers with rectangular worst-case beliefs di�er
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from the equilibrium strategies of buyers, which use the consistent planning approach.

This chapter is organized as follows: First, we discuss the related literature. In Sec-

tion 3.2, we de�ne the modi�ed Dutch mechanism, strategies, beliefs, and formulate the

information structure of the game. Further, in Section 3.2.5, we explain the mistake of

the worst-case belief of Bose and Daripa (2009) and derives the corrected worst-case

belief. In Section 3.3, we analyze the modi�ed Dutch mechanism with dynamically

consistent buyers. We �rst de�ne rectangularity and derive the rectangular worst-

case belief. Then, we show the surplus extraction result with rectangular beliefs in

Section 3.3.3. Section 3.4 illustrates the results with a numerical example. The di�er-

ent equilibrium predictions of rectangularity and consistent planning are discussed in

Section 3.5. Finally, Section 3.6 concludes and discusses future research.

Related Literature There is vast literature on auction design with expected utility

maximizers. Among others Myerson (1981) and Riley and Samuelson (1981) discuss

auctions with risk-neutral and Matthews (1983) and Maskin and Riley (1984) with

risk-averse buyers.

Karni (1988) shows that �rst-price sealed-bid auctions and decreasing price auctions

are equivalent if and only if buyers are dynamically consistent. Our result does not

contradict the work of Karni (1988). Even if buyers with rectangular beliefs behave

dynamically consistently, the rectangular belief sets depend on the information struc-

ture. Therefore, in a Dutch auction, rectangularity will lead to di�erent belief sets than

a �rst-price auction. Dynamically consistent behavior can occur, even if the di�erent

auctions are not equivalent.

Lucking-Reiley (1999) provides an interesting �eld experiment. He compares the rev-

enue of two dynamic auctions (the English and Dutch auction) with the revenue of two

static auctions (�rst- and second-price auction). The canonical model with expected

utility maximizers predicts that the English auction (Dutch auction) and the second-

price auction (�rst-price auction) are strategically equivalent. In his experiment, the

English auction and the second-price auction generate almost the same revenues for

the seller. In contrast, the Dutch auction generates 30 percent higher revenues than

the �rst-price auction. This result is in line with our theory.

The literature on ambiguous auction increased in the last years. Among others, Lo

(1998) analyzes �rst and second-price auction with ambiguity-averse buyers. Bose et al.

(2006) study static auctions with ambiguity-averse buyers and seller. Di Tillio et al.

(2016) consider a screening model with one agent and one principle. The valuation is

privately known to the agent. Ambiguity arises due to an ambiguous mechanism. The

principal can design a set of mechanisms and commit to one without revealing it to
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the buyer. Di Tillio et al. (2016) show that a seller can increase his pro�t by using the

ambiguous mechanism.

Ghosh and Liu (2020) and Auster and Kellner (2020) investigate sequential auction

settings using the consistent planning approach of Siniscalchi (2011). The setting of

Ghosh and Liu (2020) di�ers from our setting. In their model, multiple units of a

good are sold to multiple buyers. In each period, each buyer submits a sealed bid

simultaneously. The buyer with the highest bid gets one unit of the good and leaves

the auction. This procedure is repeated until all units are sold. If two buyers submit

the same bid, ties are broken with a coin toss.2 Similar to our setting Auster and

Kellner (2020) analyze a Dutch auction but in continuous time. Further, they allow

more general belief sets than the ε-contamination. In their setting, the seller cannot

extract almost all surplus. However, the Dutch auction still generates a higher surplus

than a �rst-price sealed-bid auction. Further, due to the continuous-time structure,

the timing becomes less complex, and consistent planning and rectangular beliefs lead

to equivalent equilibrium outcomes in their setting (see Section 3.6).

3.2 Ambiguous Dutch Auction

Our basic setting and the de�nition of an ambiguous Dutch auction mostly follow the

setting of Bose and Daripa (2009).

3.2.1 Basic Setting

There is one seller who wants to sell one indivisible object. The seller's valuation of this

object is normalized to zero. Two buyers with valuation vi ∈ [0, 1] for i = 1, 2 compete

for the object. The own valuation is private information of each buyer. The seller is

risk and ambiguity-neutral. He believes that each buyers valuation is drawn from a

distribution F with density f(v) > 0 for all v ∈ [0, 1]. In contrast, the buyers are less

con�dent about the opponent's valuation. Each buyer is risk-neutral, but ambiguity

avers about the valuation of the other buyer and maximizes his worst-case expected

payo� à la Gilboa and Schmeidler (1989). The set of priors of each buyer is given by

an ε-contamination of the density f , i.e.,

Φ−1
i := {g(·) = (1− ε)f(·) + εl(·) : l ∈ P} ,

where P denotes the set of all density functions with support supp(l) ⊂ [0, 1]. Through-

out the whole chapter, we will denote with capital letter, F , G, L, and M the distri-

bution functions corresponding to densities f , g, l, and m. Please note, that the

2Even if it seems to be a minor di�erence if ties are broken before or after buyers submit their bits,

it in�uences the equilibrium outcome. We discuss this issue in more detail in Section 3.6.
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ε-contamination structure of g ∈ Φ−1
i implies an ε-contamination structure of the cor-

responding distribution function G(·) = (1− ε)F (·) + εL(·).

3.2.2 The Modi�ed Dutch Mechanism (MDM)

The timing of the modi�ed Dutch mechanism (MDM) is as follows: At the beginning

the seller publicly announces a price sequence {p1, p2, . . . , pn}, where pk denotes the

asked price in period k. In period k:

1) The seller tosses a fair coin to decide which buyer to approach �rst.

2) The buyer chosen in Step 1) gets the o�er pk. If he accepts, he receives the object

at the price pk, and the game is over.

3) If he rejects, the second buyer gets the o�er pk. If he accepts, he receives the object

at the price pk, and the game is over.

4) If the second buyer rejects and k < n, the game proceeds to period k + 1.

This procedure is repeated in each period until either one of the buyers accepts a price

or period n is reached. If the buyers do not accept any price p1, p2, . . . , pn, the object

remains unsold. The procedure and the price sequence are common knowledge, but

the buyers never know the result of the coin toss at Step 1), i.e., they do not know who

is approached �rst.

We will consider the same price sequence as Bose and Daripa (2009), which depends

on the degree of ambiguity ε and a parameter δ ∈ (0, 1). We will see later, that the

seller can use δ to in�uence the di�erence of two consecutive prices and therefore the

surplus of the buyers. For δ > 0, let {p0, p1, p2, . . . , pn} be the price sequence, where

p0 = 1 and

pk =
(1− δ)k(

1− δ + εδ
2

)k−1
for any k > 0.

It is important to note that pk and the price di�erence

∆0 := p0 − p1 = δ,

∆k := pk − pk+1 =

(
1− δ

1− δ + εδ
2

)k
εδ

2

are decreasing in k. Bose and Daripa (2009) show that limn→∞
∑n−1

k=0 ∆k = 1. Further-

more, for any given η ∈ (0, 1) there exists an integer T such that
∑T

k=0 ∆k ≥ 1 − η.
Then, let n be the smallest integer for which this inequality is satis�ed and pn the

last o�ered price. This choice of n ensures, that all types above η participate at the
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auction. The intuition of the surplus extraction result is as follows: The seller can use

η and δ to design the price sequence in such a way that almost all types participate

and each type obtains a surplus smaller than δ. Hence, by making η and δ arbitrarily

small the seller can extract almost all surplus.

3.2.3 Information and Strategies of Buyers

Given an MDM, the strategy σi : [0, 1] → {A,R}n of a buyer i consists of a strategy

for each type. A strategy σi(vi) of type vi is a plan to accept or reject the seller's

o�er at every price o�er of the price sequence given the history of the game so far, i.e.,

σi(vi) ∈ {A,R}n, where A denotes accepting and R rejecting.

Ex-post, the seller's payo� is pk if the object is sold in period k and zero otherwise. The

payo� of buyer i of type vi is ui(σi(v
i), σj(v

j)) = vi−pk if he buys the object in period k
and zero if he does not obtain the object. We assume that ex-ante the seller can commit

to the mechanism described above, including the price sequence {p1, p2, . . . , pn}. Given
the mechanism, the setting reduces to an incomplete information game with two players

(buyer i and j).

Similar to Bose and Daripa (2009), we de�ne interior cut-o� strategies as follows.3

De�nition 3.1. A strategy of buyer i, i ∈ {1, 2}, is called an interior cut-o� strategy

if there exists a vector vi = (vi1, . . . , v
i
n), 0 ≤ vin ≤ vin−1 ≤ · · · ≤ vi1 ≤ 1, such that for

k ≥ 1, the highest price accepted by the interval of types [vik, v
i
k−1) is pk, where v

i
0 = 1.

We will prove later that without loss of generality, we can restrict to interior cut-

o� strategies. Furthermore, like Bose and Daripa (2009), we assume two simplifying

assumptions to solve indi�erence. If a buyer is indi�erent between accepting and re-

jecting, he accepts the price. Further, if a buyer is indi�erent between buying in two

di�erent periods, he buys in the earlier period. Thus, buyers choose the seller-preferred

action in case of indi�erence.

As described above, the valuation of each buyer is private information, and buyers are

ambiguity-averse. Receiving a price o�er pk reveals information about the valuation

of the other buyer. Let us assume that both buyers play interior cut-o� strategies. If

buyer i gets the price o�er pk, he does not know if buyer j already got the o�er pk

and rejected it or if he is asked �rst. Getting the o�er pk only reveals that buyer j

rejected all prices before pk. Therefore, the type of buyer j has to be smaller than

vjk−1, which is the lowest type who accepts pk−1. The information partition of the state

space Ω = [0, 1] which is induced by the MDM and an interior cut-o� strategy of the

3Please note, that our de�nition di�ers from Bose and Daripa (2009) since we do not require a

strict inequality vik < vik−1 for all k = 1, . . . , n.
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3.2. Ambiguous Dutch Auction

opponent vj is as follows

I i−1 = I i0 = Ω,

I i1 =
{

[0, vj0), [vj0, 1]
}

= {[0, 1), {1}} ,
I ik =

{
[0, vjk−1), [vjk−1, v

j
k−2), . . . , [vj1, v

j
0), {1}

}
,

where k = −1 denotes the ex-ante stage after the MDM is announced but before the

�rst price is o�ered.

3.2.4 Updating Beliefs and Worst-Case Belief

Assume player i gets the o�er pk. To decide whether he should reject or accept the

price, he compares the expected payo� of waiting one period and the payo� of accepting

pk. The expected payo� of waiting one period depends on the worst-case belief that

he gets the o�er pk+1 given that he rejects pk.

Before we derive and correct the worst-case belief of Bose and Daripa (2009), we have

to specify how ambiguity avers players update their beliefs. We assume that both

buyers use prior-by-prior Bayesian updating, i.e., they update each belief in Φ−1
i using

Bayes' rule. The prior-by-prior Bayesian update of Φ−1
i in period k given the event

E ∈ I ik is

Φk,E
i = {Bay(g|E) : g ∈ Φ−1

i },

where Bay(g|E) denotes the Bayesian update of g given the event E

Bay(g|E)(·) =
g(·)
g(E)

.

Note, that

gk−1
i (E) = 0

for all E ∈
{

[vjl−2, v
j
l−3)
}
l=3,...,k

∪ {{1}} and gk−1
i ∈ Φk−1,E′

i with E ′ ∈ I ik−1. However,

these are the events that imply that the game already ended before period k. Therefore,

the information sets that in�uence the decision in period k are only the �rst two sets

of I ik, i.e., [0, vjk−1) and [vjk−1, v
j
k−2). Due to the full support assumption on f and

since ε < 1, these two information sets have a strictly positive probability for any

gk−1
i ∈ Φk−1,E′

i and E ′ ∈ I ik−1 and Bayes' rule is well de�ned.

Formally, there exists a set of interim beliefs Φk,E
i in period k for each event E ∈ I ik.

However, for all events except [0, vjk−1), the game already ended before period k. To

simplify notation, we sometimes denote with Φk
i the set of interim beliefs given the

event [0, vjk−1).
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3.2. Ambiguous Dutch Auction

Lemma 3.1. The ε-contamination structure is maintained under Bayesian updating.

Let E ⊆ Ω. Then,

Ψ1 :=
{
Bay(g|E) : g ∈ Φ−1

i

}
= {(1− εk)Bay(f |E) + εkBay(l|E) : l ∈ P} =: Ψ2 (3.1)

with εk = ε
(1−ε)f(E)+ε

> ε for all k ≥ 1 and ε0 = ε.

The proof of Lemma 3.1 can be found in Section 3.7.2.1 in the Appendix.

Corollary 3.1. In each period k ≥ 1, the set of updated beliefs is given by

Φk
i =

{
(1− εk)fk(·) + εkl

k(·) : l ∈ P
}

with

fk(·) :=
f(·)

F (vjk−1)
, lk(·) :=

l(·)
L(vjk−1)

and εk = ε

(1−ε)F (vjk−1)+ε
. Furthermore, εk ≥ εk+1 for all k = 1, . . . n.

Proof. The result follows immediately from Lemma 3.1 with E = [0, vjk−1). Further-

more, [0, vjk) ⊂ [0, vjk−1) and the full support assumption on f imply F (vjk) < F (vjk−1).

Therefore, εk ≥ εk+1 for all k = 1, . . . n.

3.2.5 Worst-Case Belief of Bose and Daripa (2009)

The entire analysis of Bose and Daripa (2009) is based on the following lemma. It

formalizes the observation that in each period given that buyer i gets the o�er pk he

compares the expected payo� of accepting pk with the expected payo� of waiting and

accepting pk+1.

Lemma 3.2 (Lemma 1 Bose and Daripa (2009)). Suppose the item has not been sold

in periods 1, . . . , k− 1 and in period k < n the seller o�ers the item to buyer i at price

pk. Suppose j follows an interior cut-o� strategy that gives rise to a vector of cut-o�s

vj = (vj1, . . . , v
j
n). For any type v of i, the di�erence in payo� from buying immediately

at price pk versus waiting one period to buy at price pk+1 is

Gi
k(v) = v − pk − (v − pk+1)H̄ i

k,

where H̄ i
k is the worst-case belief of buyer i that he will get the o�er pk+1 if he rejects

pk.

Bose and Daripa (2009) claim that the worst-case belief H̄ i
k of getting o�er pk+1 if he

rejects pk is given by (1− ε)H i
k, where

H i
k =

F (vjk) + F (vjk+1)

F (vjk) + F (vjk−1)
.
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3.2. Ambiguous Dutch Auction

However, this worst-case belief is not correct. Let A denote the event i obtains the

item at pk+1 and B the event i refuses the current o�er of pk. Then, Bose and Daripa

(2009) derive H i
k by claiming that4

min
gk∈Φki

Pgk(A|B) = min
lk∈Bay(P|v<vjk−1)

(1− ε)Pfk(A|B) + εPlk(A|B). (3.2)

But since A,B 6⊂ Ω, Lemma 3.1 and Equation (3.2) do not hold.

Lemma 3.3. The worst-case belief H̄ i
k of Lemma 3.2 is given by

H̄ i
k =

(1− ε)(F (vjk) + F (vjk+1))

(1− ε)(F (vjk) + F (vjk−1)) + ε
.

Further, there exists no density f with full support on [0, 1] such that H̄ i
k = (1− ε)H i

k

for all k = 1, . . . , n− 1.

Proof. We �rst derive the worst-case belief H̄ i
k = ming∈Φki

Pgk(A|B). Then, we show

that H̄ i
k di�ers from (1 − ε)H i

k. For an arbitrary �xed gk ∈ Φk
i one can calculate

Pgk(A|B) analogously to H i
k in Appendix A.1. of Bose and Daripa (2009).5 Using

gk(·) = g(·)
g(v<vjk+1)

, we can rewrite ming∈Φki
Pgk(A|B) to

min
g∈Φ−1

i

Pg(A|B) = min
g∈Φ−1

i

G(vjk) +G(vjk+1)

G(vjk) +G(vjk−1)
,

where G denotes the distribution function of g. The ε-contamination structure of G

gives

Pg(A|B) =
(1− ε)(F (vjk) + F (vjk+1)) + ε(L(vjk) + L(vjk+1))

(1− ε)(F (vjk) + F (vjk−1)) + ε(L(vjk) + L(vjk−1))
. (3.3)

Then, a worst-case belief g∗ = arg ming∈Φ−1
i

Pg(A|B) has to satisfy L∗(vjk+1) = L∗(vjk) =

0 < 1 = L∗(vjk−1), which is well de�ned since vjk−1 ≥ vjk ≥ vjk+1. L∗(vjk+1) = 0 and

L∗(vjk−1) = 1 follows immediately from Equation (3.3). Furthermore, vjk−1 ≥ vjk+1

implies that Pg(A|B) is monotone increasing in L∗(vjk). Therefore, L
∗(vjk) = 0. Then,

H̄ i
k = Pg∗(A|B) =

(1− ε)(F (vjk) + F (vjk+1))

(1− ε)(F (vjk) + F (vjk−1)) + ε
.

H̄ i
k is smaller than (1 − ε)H i

k if F (vjk) + F (vjk−1) < 1 and greater than (1 − ε)H i
k if

F (vjk) + F (vjk−1) > 1. Hence, H̄ i
k = (1− ε)H i

k if and only if F (vjk) + F (vjk−1) = 1. But,

this condition is cannot be satis�ed for all k = 1, . . . , n.

4Please note, that the worst-case expected payo� of waiting equals minG∈PB
Pg(A|B)(v− pk+1) +

(1− Pg(A|B)) · 0. Therefore, minimizing the expected payo� is equivalent to minimize Pg(A|B).
5For completeness we derive Pgk(A|B) in Section 3.7.1 ind the Appendix.

87
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Almost all proofs of Bose and Daripa (2009) build upon the fact that the worst-case

belief is given by (1− ε)H i
k and H

i
k < 1 for all k = 1, . . . , n− 1. However, there might

exist k ∈ 1, . . . , n− 1 such that the corrected worst-case belief H̄ i
k > 1− ε. Therefore,

the correction of the proofs of Bose and Daripa (2009) is not straightforward. A more

detailed discussion on the correction of the results of Bose and Daripa (2009) can be

found in Section 3.7.3 in the Appendix.

3.3 Dynamically Consistent Buyers

Epstein and Schneider (2003) de�ne rectangularity (or stability under pasting) as a

condition on ambiguous beliefs that ensures dynamically consistent behavior. We will

see that rectangular beliefs will lead to di�erent equilibrium strategies as consistent

planning. However, we show that the seller can still extract almost all surplus. In

Section 3.5, we discuss the di�erent implications of rectangularity and the consistent

planning approach of Siniscalchi (2011) in more detail.

Now, we de�ne rectangular beliefs for the incomplete information game induced by an

MDM. Rectangularity ensures that a buyer takes the possible future worst-case beliefs

into account and therefore behaves dynamically consistently. Then, we derive the

rectangular worst-case belief of a buyer and discuss surplus extraction with rectangular

beliefs.

3.3.1 Rectangularity

The basic idea of rectangularity is that agents take their possible future worst-case

beliefs into account. Let us �rst consider the case without ambiguity, i.e., Φ−1
i consists

of a single prior belief g. For an arbitrary event E ∈ I ik, g(E) is the marginal probability

of the event E. Further, remember that Bay(g|E)(·) denotes the Bayesian update of g

given the event E. Then, Bayes' rule implies that multiplying the marginal probability

g(E) with the updated belief Bay(g|E)(·) and taking the sum over all events in I ik,

generates the prior belief g

g(·) =
∑

E∈Iik : g(E)>0

g(E)Bay(g|E)(·).

Under ambiguity, the set of beliefs Φ−1
i is not a singleton. Rectangularity generalizes

the above considerations to ambiguous settings. It ensures that the combination of any

marginal and updated beliefs are an element of the ex-ante belief set.
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3.3. Dynamically Consistent Buyers

De�nition 3.2. The pasting of an ex-ante belief ḡ ∈ Φ−1
i and a collection of updated

beliefs (gE)E∈Iik ∈×E∈Iik
Φk,E
i is de�ned as

ḡ ◦ (gE)E∈Iik(·) :=
∑
E∈Iik

ḡ(E)gE(·).

The set of ex-ante beliefs is called rectangular (or stable under pasting) if it contains

any pasting of an ex-ante belief and interim beliefs, i.e.,

ḡ ◦ (gE)E∈Iik ∈ Φ−1
i

for all ḡ ∈ Φ−1
i and (gE)E∈Iik ∈×E∈Iik

Φk,E
i .

An arbitrary ex-ante belief set does not have to satisfy rectangularity. However, Ep-

stein and Schneider (2003) and Chapter 1 show that given an arbitrary ex-ante belief

set Φ−1
i there always exists a rectangular hull of Φ−1

i , denoted by rect(Φ−1
i ). The rect-

angular hull is the smallest set of density functions that contains Φ−1
i and satis�es

rectangularity. To construct the rectangular hull, one starts with the set of beliefs at

the terminal period n and period n− 1 and constructs the rectangular hull by combin-

ing any marginal probabilities at n− 1 with any updated belief at n. Then, given the

rectangular hull in period n− 1, one proceeds by backward induction. Trivially, if Φ−1
i

is rectangular, then Φ−1
i = rect(Φ−1

i ).

There are two important properties of rectangularity, that are also used for the con-

struction of the rectangular hull. First, the set of Bayesian updates under the rectangu-

lar hull rect(Φ−1
i ) equals the set of Bayesian updates under Φ−1

i , i.e., for all k = 0, . . . , n

and F ∈ I ik

{Bay(g|F )(·) : g ∈ Φ−1
i } = {Bay(g|F )(·) : g ∈ rect(Φ−1

i )}.

Second, an analogous statement holds for the set of marginal beliefs g(F ) for all F ∈ I ik
and k = −1, . . . n of the rectangular hull rect(Φ−1

i ) and Φ−1
i . Epstein and Schneider

(2003) and Chapter 1 discuss the construction and properties of the rectangular hull

in more detail.

3.3.2 Rectangular Worst-Case Beliefs

The probability Pg(A|B) of getting the o�er pk+1 if buyer i rejects the current price

pk, depends on two events. First, with positive probability buyer j gets the o�er pk

after buyer i rejected pk. If buyer j accepts the o�er pk, the game is over and i does

not get the o�er pk+1. Second, if buyer j rejects pk, period k + 1 is reached. In period

k + 1, with positive probability buyer j gets the o�er pk+1 �rst. If he accepts pk+1 the

game ends and buyer i does not receive the o�er pk+1. Hence, getting the o�er pk+1
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3.3. Dynamically Consistent Buyers

if buyer i rejects the current price pk depends on the probability that j does neither

accept pk nor pk+1 (given that period k + 1 is reached).

Therefore, the worst-case probability Pg(A|B) depends on the worst-case belief in pe-

riod k and the worst-case belief in period k+1. But, with ambiguous beliefs the worst-

case belief in period k+1 is in general not the Bayesian update of the worst case belief in

period k. Intuitively, in period k if buyer j plays an interior cut-o� strategy, the worst-

case of buyer i is that buyer j accepts the current price pk. Therefore, the worst-case

belief in period k is g∗,k(vj) = (1− εk)fk(vj) + εkl
k(vj) with lk([vjk, v

j
k−1)) = 1. Similar,

in period k + 1 the worst-case belief is g∗,k+1(vj) = (1 − εk+1)fk+1(vj) + εk+1l̄
k+1(vj)

with l̄k+1([vjk+1, v
j
k)) = 1. Then, g∗,k+1 does not equal the Bayesian update of g∗,k in

period k + 1.

The consistent planning approach of Bose and Daripa (2009) and the worst-case belief

of Lemma 3.2 assume that the worst-case probability Pg(A|B) only depends on the

worst-case beliefs in period k. Therefore, it neither takes into account that Pg(A|B)

depends on the worst-case belief in period k and k+ 1 nor that the worst-case belief in

period k + 1 does not equal the Bayesian update of the worst-case belief in period k.

Rectangularity takes this change of the worst-case belief into account. The rectangular

worst-case probability of getting the o�er pk+1 if he rejects pk depends on the worst-case

belief of period k and the worst-case belief of period k + 1. Therefore, it allows for a

change in the worst-case belief between period k and k + 1. The following proposition

formally characterizes the rectangular worst-case belief if the buyers follow an interior

cut-o� strategy.

Proposition 3.1. Suppose the ex-ante belief set of buyer j is given by rect(Φ−1
i ). Fur-

ther, suppose the item has not been sold in periods 1, . . . , k − 1 and in period k < n

the seller o�ers the item to buyer i at price pk. Suppose j follows an interior cut-o�

strategy that gives rise to a vector of cut-o�s vj = (vj1, . . . , v
j
n). For any type v of i the

di�erence in payo� from buying immediately at price pk versus waiting one period to

buy at price pk+1 is

Gi
k(v) = v − pk − (v − pk+1)Ĥ i

k, (3.4)

where

Ĥ i
k = (1− εk)

F k(vjk) + (1− εk+1)F k(vjk)F
k+1(vjk+1)

1 + (1− εk)F k(vjk)
. (3.5)

Proposition 3.1 is important for the equilibrium analysis. To characterize equilibrium

strategies, we only have to compare the payo�s from buying immediately with the

payo� of waiting one period and accept the next price. Type v accepts the price pk if
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Gi
k(v) ≥ 0. Since Gi

k(v) is monotone increasing in v, a type v who does not accept pk+1

would never accept the higher price pk. Thus, we do not need to consider any strategy

that involves waiting for more than one period.

Proof. The payo� of accepting pk is v − pk. If buyer i rejects the o�er pk, he gets a

payo� of v− pk+1 if he gets and accepts the o�er pk+1. If the game ends before he gets

the o�er pk+1, his payo� is zero. Further, Ĥ i
k is the probability that i gets the o�er

pk+1 if he rejects pk. Therefore, Gi
k(v) is given by Equation (3.4). It is left to show

that Ĥ i
k is speci�ed as above.

In Section 3.7.1 in the Appendix, we show that for a �xed belief g ∈ Φ−1
i the probability

of getting o�er pk+1 if he rejects pk is

Pg(A|B) =
Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
.

The rectangular worst-case belief is then given by

Ĥ i
k = min

gk∈rect(Φki )

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
(3.6)

where Gk is the distribution function corresponding to gk and Gk+1 the distribution

function corresponding to the Bayesian update Bay(gk|v < vjk) at k + 1. Since Φ−1
i ⊆

rect(Φ−1
i ), we �rst have to show that the distribution functions Gk and Gk+1 can be

represented by an ε-contamination of the distribution function F .

Note that for any arbitrary gk ∈ rect(Φk
i ), G

k(vjk) = gk(E) with E = [0, vjk] ∈ I ik+1

and Gk+1(vjk+1) = Bay(g|E)(E ′) with E ′ = [0, vjk+1] ∈ I ik+2 . The sets of marginal and

updated beliefs given the rectangular hull of Φk
i equal the sets of marginal and updated

beliefs given Φk
i . Therefore, there exists m

k ∈ Φk
i and l

k ∈ Bay(P|E) such that

Gk(vjk) = gk(E) = mk(E) = Mk(vjk) = (1− εk)F k(vjk) + εkL
k(vjk), (3.7)

where the last step follows since any density function in Φk
i can be represented as ε-

contamination of f . Similar, for Gk+1, there exists m̄k ∈ Φk
i and l̄

k ∈ Bay(P|E ′) such
that

Gk+1(vjk+1) = Bay(gk|E)(E ′) = Bay(m̄k|E)(E ′) = M̄k+1(vjk+1)

= (1− εk+1)F k+1(vjk+1) + εk+1L̄
k+1(vjk+1). (3.8)

Now, dividing denominator and nominator by Gk(vjk), we can rewrite Equation (3.6):

Ĥ i
k = min

gk∈rect(Φki )

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
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= min
gk∈rect(Φki )

1 +Gk+1(vjk+1)
1

Gk(vjk)
+ 1

= min
l∈Bay(P|E),l̄∈Bay(P|E′)

1 + (1− εk+1)F k+1(vjk+1) + εk+1L̄
k+1(vjk+1)

1

(1−εk)Fk(vjk)+εkLk(vjk)
+ 1

=
1 + (1− εk+1)F k+1(vjk+1)

1

(1−εk)Fk(vjk)
+ 1

=
(1− εk)F k(vjk) + (1− εk)(1− εk+1)F k(vjk)F

k+1(vjk+1)

1 + (1− εk)F k(vjk)

= (1− εk)
F k(vjk) + (1− εk+1)F k(vjk)F

k+1(vjk+1)

1 + (1− εk)F k(vjk)
,

where the third step follows from the ε-contamination structure of Equation (3.7) and

Equation (3.8) and the fourth step since L̄k+1(vjk+1) = Lk(vjk) = 0 minimizes the

equation.

The following lemma shows that rectangular beliefs lead to dynamically consistent

behavior.

Lemma 3.4. With rectangular beliefs the worst-case belief in period k + 1 is the

Bayesian update of the worst-case belief in period k. Therefore,

min
gk∈rect(Φki )

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
= min

gk∈Φki ,ḡ
k+1∈Φk+1

i

Gk(vjk) + Ḡk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
.

Proof. First, we show that the left-hand side is greater or equal than the right-hand

side. Let

g∗ ∈ arg min
gk∈rect(Φki )

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
.

denote a rectangular worst-case belief in period k. Further, let G∗,k(vjk) = g∗(E) with

E = [0, vjk] ∈ I ik+1 and G
∗,k+1(vjk+1) = Bay(g∗|E)(E ′) with E ′ = [0, vjk+1] ∈ I ik+2. Then,

similar to the proof of Proposition 3.1, there exists mk, m̄k ∈ Φk
i such that

G∗,k(vjk) = g∗(E) = mk(E) = Mk(vjk),

G∗,k+1(vjk+1) = Bay(g∗|E)(E ′) = Bay(m̄k|E)(E ′) = M̄k+1(vjk+1)

and

min
gk∈rect(Φki )

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
=
Mk(vjk) + M̄k+1(vjk+1)Mk(vjk)

1 +Mk(vjk)

≥ min
gk∈Φki ,ḡ

k+1∈Φk+1
i

Gk(vjk) + Ḡk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
.
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To prove that the right-hand side is greater or equal than the left-hand side, let

(ḡ∗,k, ḡ∗,k+1) ∈ arg min
gk∈Φki ,ḡ

k+1∈Φk+1
i

Gk(vjk) + Ḡk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
.

The de�nition of rectangularity implies that ḡ∗,k ◦ (ḡ∗,k+1
E )E∈Iik+1

∈ rect(Φk
i ). Then

min
gk∈Φki ,ḡ

k+1∈Φk+1
i

Gk(vjk) + Ḡk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
≥ min

gk∈rect(Φki )

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
.

Combining both directions gives

Ĥ i
k = min

gk∈Φki ,ḡ
k+1∈Φk+1

i

Gk(vjk) + Ḡk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)

= min
gk∈rect(Φki )

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
.

Hence, due to rectangularity, the interim worst-case belief is the Bayesian update of

the ex-ante worst-case belief. Therefore, rectangularity implies dynamically consistent

behavior. The next subsection shows that the seller can extract almost all surplus,

even if the buyers behave dynamically consistently.

3.3.3 Surplus Extraction under Dynamic Consistency

The rectangular worst-case belief di�ers from the worst-case belief of Bose and Daripa

(2009). This subsection shows that the main result of Bose and Daripa (2009) still holds

if buyers behave dynamically consistently. We �rst characterize and de�ne equilibrium

strategies under rectangular beliefs if δ is su�ciently small. The equilibrium existence

follows from the results of Bose and Daripa (2009). In contrast to Bose and Daripa

(2009), under rectangular beliefs, there might exist prices such that no type of buyer i

or j plan to buy at these prices. However, given the characterization of the equilibrium

strategies, we can still show that the seller can extract almost all surplus even if the

buyers behave dynamically consistently.

Let us start with the de�nition and characterization of equilibrium strategies. Remem-

ber, that a strategy σi of buyer i speci�es for each type a plan to reject or accept the

seller's o�er at every information set, σi : [0, 1] → {A,R}n, where A denotes accept-

ing and R rejecting. Further, ui(σi(v
i), σj(v

j)) is the ex-post payo� of buyer i of the

strategy pro�le (σi, σj) if the types are given by vi and vj.
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De�nition 3.3. A (perfect Bayesian) equilibrium with rectangular beliefs consists of a

set of beliefs for each information set and a strategy pro�le (σ∗1, σ
∗
2) such that

� the ex-ante belief sets equal the rectanuglar hull rect(Φ−1
i ) for i = 1, 2,

� prior-by-prior Bayesian updating is applied whenever possible, i.e., the set of

interim beliefs conditional on the price o�er pk are rect(Φ
k
i ) for k = 0, . . . , n and

i = 1, 2, and

� given the rectangular belief sets at each information set the equilibrium strategies

are a best response for each type, i.e., for all i ∈ {1, 2} and vi ∈ [0, 1]

min
g∈rect(Φki )

Eg(ui(σ∗i (vi), σ∗j )) ≥ min
g∈rect(Φki )

Eg(ui(σi(vi), σ∗j )) ∀σi(vi) ∈ {A,R}n

for all k = −1, . . . n.

Further, we call an equilibrium symmetric if σi = σj.
6

So far, our de�nition of an interior cut-o� strategy does not specify any out-o� equi-

librium behavior. However, as in Bose and Daripa (2009), we can extend an interior

cut-o� strategy to a perfect cut-o� strategy as follows.

Remark 3.1. Let p(v) denote the highest price that a buyer of type v accepts. By

monotonicity, type v would also accept any price smaller than p(v). A perfect cut-o�

strategy is an interior cut-o� strategy with the additional requirement that a type who

accepts pk does accept every price pl with l ≥ k.

The following proposition shows that for δ su�ciently small, we can restrict the equi-

librium analysis without loss of generality to cut-o� strategies.

Proposition 3.2. There exists δ̄ ∈ (0, 1) such that for all δ < δ̄ the equilibrium

strategies of both players are perfect cut-o� strategies and vik < vik−2 for all k = 2, . . . , n.

Furthermore, if no types of j buy at a price pk, then no types of i buy at price pk and

vice versa.

The formal proof can be found in Section 3.7.2.2 in the Appendix. To simplify notation

we explain the intuition of the proof in terms of interior cut-o� strategies. Statements

as �buy pk� mean that the buyer accepts pk and any lower price but does reject any

price higher than pk. Then, one can extend the interior cut-o� strategy to a perfect

cut-o� strategy as described by Remark 3.1. The idea of the proof is as follows. We

�rst show that there exists a non-degenerate interval of types who buy at price pn and

a non-degenerate interval of types who buy at p1. Suppose in equilibrium there exists

6Note that σi = σj implies that both buyers have the same information partitions Iik = Ijk and

therefore the same rectangular belief sets rect(Φ−1
i ) = rect(Φ−1

j ) for all k = −1, . . . n.
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3.3. Dynamically Consistent Buyers

prices pk−l through pn such that no types of j would buy at prices {pk−l+1, . . . pn−1},
but there are types of j who buy at pk−l and, of course, at pn. Then, buyer i will never

accept prices in {pk−l+1, . . . pn−2}, because he could pro�t from deviating to price pn−1.

But, there could exist types of i who buy at pn−1. Since no type of buyer j buys

at prices {pk−l+1, . . . pn−1}, there has to exist a type, vjk−l, who is indi�erent between

buying at pk−l and waiting till pn.

The proof of Proposition 3.2 shows that if there are types of i who buy at pn−1, then for

δ su�ciently small there are types of j just below vjk−l who would pro�t from deviating

and buying at pn−1. If no type of i buys at pn−1 we can still show that for δ su�ciently

small there are types of j just below vjk−l who would pro�t from deviating and buying

at pn−1 if l > 2. Therefore, if no type of j buys at pn−1, then there is a non-degenerate

interval of types who buy at pn and a non-degenerate interval of types who buy at

pn−2. Then, Proposition 3.2 follows from iteration.

The assumption l > 2 is essential. If no type of i buys at pn−1 and l = 2, the proof of

Proposition 3.2 cannot rule out �price gaps� in the following sense: Let pk be such a

�price gap�. Then, there are no types of buyer i or j such that pk is the highest price

accepted by a type of buyer i and j. However, �price gaps� can only occur, if l = 2.

Therefore, a �price gap� contains at most one price and we get vik < vik−2. For example,

a cut-o� strategy such that for both players, there exist types who accept as a highest

price p1, p3, p5, . . . , and pn could be an equilibrium. But a strategy with a �price gap�

containing more than one price can never be an equilibrium.

Finally, the existence of �price gaps� does not contradict the de�nition of perfect cut-o�

strategies. As described above, the �price gaps� only require that there are no types

such that a price pk is the highest price that these types accept. But it is still possible

that there exists types who accept prices pk−l > pk and therefore also pk.

Given the previous results, we can now characterize equilibrium strategies.

Proposition 3.3. For δ < δ̄, in any equilibrium the strategy of any buyer i is a perfect

cut-o� strategy vi = (vi1, . . . , v
i
n), where vin = pn. Further, for 1 ≤ k ≤ (n − 1),

vik ∈ (pk, v
i
k−1], where v0 = 1 and vik is given by

i) if there exists types of i who buy at pk

vik = pk + ∆k
Ĥ i
k

1− Ĥ i
k

with Ĥ i
k as in Equation (3.5) of Proposition 3.1.

ii) vik = vik−1 if no types of i buy at pk.
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Proof. The result follows immediately from Proposition 3.2, Proposition 3.1 and Re-

mark 3.1. Proposition 3.2 and Remark 3.1 imply that for su�ciently small δ, any

equilibrium strategy is a perfect cut-o� strategy as described by Proposition 3.2 and

Remark 3.1. If no type of buyer i buys at pk, then the interval [vik, v
i
k−1) must be

degenerated, i.e., vik = vik−1. If there exists a type who buys at price pk and a type who

buys at pk−1, then v
i
k is the lowest type who accepts pk. This type has to be indi�erent

between waiting until pk−1 and buying at pk, i.e., G
i
k(v

i
k) = 0. Furthermore, Gi

k(pk) < 0

and since there exist types who buy at pk−1, G
i
k(vk−1) > 0. Gi

k(v) is strictly increasing

and continuous in v. Therefore, there exists vik ∈ (pk, v
i
k−1] such that Gi

k(v
i
k) = 0 and

Equation (3.4) implies

vik − pk = (vik − pk+1)Ĥ i
k

⇔ vik = pk + (pk − pk+1)
Ĥ i
k

1− Ĥ i
k

= pk + ∆k
Ĥ i
k

1− Ĥ i
k

.

If no type of buyer i buys at pk−1, then a type who buys at pk−2 has to exist. Thus,

the same consideration can be repeated with vik−2 = vik−1.

The existence of a symmetric equilibrium for su�ciently small δ follows from Bose and

Daripa (2009). They show that a symmetric equilibrium exists even if the best response

mapping is discontinuous at vik = vik−1. Hence, there exists a symmetric equilibrium

for su�ciently small δ even if �price gaps� with at most one price occur. We focus on

symmetric equilibria for the rest of the chapter and therefore omit the superscripts i

or j.

Now, we can state the main result. For any preference parameter ε, the seller can

design an MDM such that he can extract almost all surplus of almost all buyers.

Proposition 3.4. For any preference parameter ε > 0, there exists η > 0 and δ∗(ε) > 0

such that for any δ < δ∗(ε) there is an MDM such that in any equilibrium of the game

induced by this MDM, the item is sold if at least one buyer has a valuation greater than

η and no type obtains an ex-post surplus greater than δ.

We have to ensure that the ex-post surplus of both buyers is still smaller than δ even if

�price gaps� occur. The �rst part of the proof is analogous to Bose and Daripa (2009).

The second part considers rectangular beliefs and takes �price gaps� into account.

Proof. From the previous results it follows that for any ε > 0, there is a δ∗(ε) > 0 such

that whenever δ < δ∗(ε), an equilibrium exists and all equilibria can be characterized

by

vk = pk + ∆k
Ĥk

1− Ĥk

.
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Further, as noted in Section 3.2.2, for any η ∈ (0, 1) there exists an integer T such that

by choosing n = T , the price sequence of the MDM covers at least a fraction (1 − η)

of types. The item is not sold to at most types in [0, η]. Thus, it only remains to show

that no type that buys gets an ex-post surplus greater than δ. This part has to be

adjusted. For any price pk with k > 2 such that there exists types who accept the price

pk, we have one of the following cases.

Case 1) There are types who buy at pk−1:
7

The highest type who accepts pk is vk−1. Therefore, the maximum rent of a buyer

who accepts pk, is

vk−1 − pk = pk−1 − pk + ∆k−1
Ĥk−1

1− Ĥk − 1
= ∆k−1 + ∆k−1

Ĥk−1

1− Ĥk−1

< ∆k−1

(
1 +

1− ε
ε

)
=

1

ε

δε

2

(
1− δ

1− δ + εδ
2

)k−1

<
δ

2
< δ,

where the �rst inequality follows since Ĥk−1 < 1 − ε and the second inequality

since 1−δ
1−δ+ εδ

2

< 1.

Case 2) There are no types who buy at pk−1:

Then vk−1 = vk−2 and similar to Case 1), we get

vk−2 − pk = pk−2 − pk+1 + ∆k−2
Ĥk−2

1− Ĥk−2

= ∆k−2 + ∆k−1 + ∆k−2
Ĥk−2

1− Ĥk−2

< ∆k−2

(
2 +

1− ε
ε

)
=

1 + ε

ε

δε

2

(
1− δ

1− δ + εδ
2

)k−1

< (1 + ε)
δ

2
< δ,

where the �rst inequality follows since, ∆k−2 > ∆k−1 and Ĥk−2 < 1 − ε. The

second and third inequality follow since, 1−δ
1−δ+ εδ

2

< 1 and ε < 1.

Finally, we have to consider k = 2 and k = 1. Suppose, there are types who accept

p2. Then, by Lemma 3.6 in Section 3.7.2.2 in the Appendix, it follows that a positive

mass of types accepts p1. Similar to Case 1) we get

v1 − p2 < δ

7Case 1) is analogously to Bose and Daripa (2009). However, Bose and Daripa (2009) uses the fact

that H̄k−1 < 1− ε which does not hold for the corrected worst-case belief of Section 3.2.5. Therefore,

it is not straightforward, that the main result of Bose and Daripa (2009) is still satis�ed with the

corrected worst-case belief. However, in Section 3.7.3 in the Appendix we prove that the result still

holds by using the speci�c expression of H̄k−1.
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and the maximum rent of buyers who accept p2 is smaller than δ. For k = 1, by

de�nition of v0 and p1, the maximum rent of a type who accepts p1 is

v0 − p1 = 1− (1− δ) = δ.

Hence, there exists no type who can extract a surplus strictly greater than δ.

3.4 Numerical Example

The following numerical example shows how the di�erent beliefs, the incorrect, the

correct and the rectangular worst-case belief in�uence the surplus extraction. As in

Bose and Daripa (2009), F is the uniform distribution on [0, 1], n = 7, δ = 0, 05 and

ε = 0.2. Each table shows the price sequence pk, the equilibrium cut-o� values vk, the

buyers' maximum rent, and the worst-case belief. The equilibrium cut-o� values vk are

derived by solving

vk = pk + ∆k
H̃k

1− H̃k

(3.9)

for k = 1, . . . , 6 with v0 = 1 and v7 = p7. H̃k is either given by the worst-case belief of

Bose and Daripa (2009) (1− ε)Hk, the corrected worst-case belief of Section 3.2.5 H̄k,

or the rectangular worst-case belief Ĥk.

For all cases, H̃k and therefore the cut-o� value vk depend on the cut-o� values vk−1 and

vk+1. Then, from Equation (3.9) we get a system of recursive equations with v0 = 1

and v7 = p7. Solving this system we get the values v1, . . . , v6 listed in Table 3.1 to

Table 3.3.

Furthermore, the tables show the maximum rent of the buyers. The maximum rent

in period k is the highest rent of a type who accepts price pk. More formally, the

maximum rent is given by vk−1−pk, i.e., the di�erence of the highest type who accepts
pk and the price pk.

Price Value Max rent HBD

0.9500 0.9682 0.0500 0.9819

0.9450 0.9644 0.0232 0.9954

0.9401 0.9593 0.0243 0.9947

0.9352 0.9542 0.0241 0.9947

0.9303 0.9492 0.0240 0.9943

0.9254 0.9434 0.0238 0.9849

Table 3.1: Worst-Case Belief of Bose and Daripa (2009) with (1− ε)Hk = (1− ε)HBD.

98



3.4. Numerical Example

Table 3.1 shows the results for the (incorrect) worst-case belief of Bose and Daripa

(2009)

H̃k = (1− ε)Hk = (1− ε)F (vk) + F (vk+1)

F (vk) + F (vk−1)
= (1− ε)HBD.

HBD is smaller than one and therefore (1 − ε)Hk = (1 − ε)HBD smaller than (1 − ε).
Bose and Daripa (2009) use this fact repeatedly to prove almost all their results.

Price Value Max rent Hcorr

0.9500 0.9866 0.0500 1.1004

0.9450 0.9823 0.0416 1.1037

0.9401 0.9768 0.0423 1.1024

0.9352 0.9715 0.0417 1.1014

0.9303 0.9655 0.0412 1.0984

0.9254 0.9562 0.0402 1.0802

Table 3.2: Correct Worst-Case Belief with H̄k = (1− ε)Hcorr.

Table 3.2 illustrates the results with the corrected worst-case belief from Section 3.2.5,

i.e.,

H̃k = H̄k =
(1− ε)(F (vk) + F (vk+1))

(1− ε)(F (vk) + F (vk−1)) + ε
= (1− ε)Hcorr.

One can see that Hcorr is greater than one and thus H̄k = (1 − ε)Hcorr > 1 − ε.

Therefore, the proofs of Bose and Daripa (2009) cannot be applied to the corrected

worst-case belief. However, we show in Section 3.7.3 in the Appendix that the results

of Bose and Daripa (2009) still hold with the corrected worst-case belief. Table 3.2

illustrates this result. The maximum rent of a buyer in Table 3.2 is still smaller or

equal to δ. Table 3.3 shows the results with the rectangular worst-case belief

Price Value Max rent Hrect

0.9500 0.9678 0.0500 0.9771

0.9450 0.9637 0.0228 0.9883

0.9401 0.9585 0.0236 0.9867

0.9352 0.9534 0.0234 0.9856

0.9303 0.9483 0.0232 0.9842

0.9254 0.9426 0.0229 0.9752

Table 3.3: Rectangular Worst-Case Belief with Ĥk = (1− ε)Hrect.

H̃k = Ĥk = (1− εk)
F k(vk) + (1− εk+1)F k(vk)F

k+1(vk+1)

1 + (1− εk)F k(vk)
= (1− ε)Hrect.
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Comparing Table 3.2 and Table 3.3 illustrate the di�erence of rectangularity and consis-

tent planning. The worst-case belief and the maximum rent are smaller for dynamically

consistent buyers than for consistent planning. We compare both approaches in the

next section in more detail.

3.5 Rectangularity versus Consistent Plan-

ning

Bose and Daripa (2009) analyze the dynamic Dutch auction using the consistent plan-

ning approach of Siniscalchi (2011). It is still an open question if there exist settings

or conditions such that rectangularity and consistent planning lead to the same equi-

librium or decision outcomes. Since rectangular beliefs and consistent planning are

both based on a backward induction procedure, it is sometimes conjectured for speci�c

settings that both approaches lead to the same equilibrium outcome, e.g., in Auster

and Kellner (2020) and Chapter 1. However, the numerical example shows that this

is not the case in this chapter. First, let us describe the consistent planning approach

in the ambiguous Dutch auction setting before explaining the di�erence in equilibrium

predictions.

3.5.1 Consistent Planning in the Ambiguous Dutch Auction

Consistent planning follows a backward induction procedure with an additional tie

breaking rule. Let us start in period n and assume buyer i gets the o�er pn. In the last

period, the expected payo� of rejecting is zero. Therefore, buyer i accepts the o�er if

and only if his valuation v satis�es v ≥ pn. In period n−1, if buyer i gets the o�er pn−1

he has to compare the following plans: i) accept pn−1, ii) reject pn−1 and accept pn,

iii) reject pn−1 and reject pn. Then, consistent planning ensure, that if rejecting pn is

optimal in period n, the third plan is optimal in period n− 1. Further, if accepting pn

is optimal in period n, only plan i) and ii) are consistent with the decision in period n.

Hence, if accepting pn is optimal in period n, buyer i compares plan i) and ii) in period

n−1 and choose the one with higher expected payo�. This procedure is repeated until

period zero. In an arbitrary period k, buyer i will reject the o�er pk if rejecting pk+1 is

optimal in period k+1. If accepting pk+1 is optimal in period k+1, in period k buyer i

compares the expected payo� of accepting pk with the expected payo� of rejecting pk

and accepting pk+1. Formally, this leads to Lemma 3.2, i.e., buyer i accepts pk if and

only

Gi
k(v) = v − pk − (v − pk+1)H̄ i

k > 0.
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However, the procedure described above does not consider any strategic reasoning.

Even further, to apply the consistent planning approach of Siniscalchi (2011) we have

to model the ambiguous Dutch auction as a decision-theoretical setting. For a �xed

strategy of buyer j, consistent planning analyzes the decision problem of buyer i in

periods n− 1 and n as depicted in Figure 3.1. Solid circles represent decision nodes of

buyer i, where A denotes accepting and R rejecting the current price. Empty circles

represent nature moves and E1
k denotes the event that buyer i does not get the o�er

pk and E
2
k the event that i gets the o�er pk with k = n − 1, n. Then, H̄ i

k is given by

the worst-case belief of event E2
k .

· · ·

E1
n−1

0

E2
n−1

A
v − pn−1

R

E1
n

0

E2
n

A
v − pn

R
0

Figure 3.1: Decision Problem of Buyer i with Consistent Planning in Period n and

n− 1.

3.5.2 Consistent Planning and Rectangularity

The decision problem in Figure 3.1 does not consider that buyer i knows the auction

structure. He knows that the worst-case belief of event E2
n depends on the probability

that the object remains unsold at pn−1 and the probability that he gets the o�er pn

given that period n is reached. Further, buyer i knows that period n is only reached

if his worst-case in period n − 1 does not occur. Taking this into account, Figure 3.2

represents the true decision setting of buyer i, where qik denotes the position of buyer i,

i.e., if he is asked �rst or second and j ∈ A,B the action of buyer j. The decision prob-

lem as depicted in Figure 3.2 allows buyer i to take changes of the worst-case belief

within the event E2
n into account. Further, in Figure 3.2 we can split period n− 1 and

n. In Figure 3.1 the switch from period n− 1 to n happens within the event E2
n. The

consistent planning approach of Siniscalchi (2011) is de�ned for a decision-theoretical

setting. It cannot take the speci�c timing of the ambiguous Dutch auction into ac-

count. Therefore, rectangularity and consistent planning lead to di�erent equilibrium

strategies. Formally, this follows from the di�erent worst-case beliefs. The rectangular
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· · ·

qin−1=2,
j=A

0

qin−1=1 or

qin−1=2,j=R
A

v − pn−1

R

qin−1=1,
j=A

0

qin−1=1,j=R or

qin−1=2,j=R

qin=1, or
qin=2,j=R

A
v − pn

qin=2,
j=A

0
R

0

period n− 1 period n

Figure 3.2: Decision Problem of Buyer i with Rectangular Beliefs in Period n and n−1.

worst-case belief is given by8

Ĥ i
k = min

gk∈Φki ,g
k+1∈Φk+1

i

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
,

whereas the consistent planning worst-case belief is

H̄ i
k = min

gk∈Φki

Gk(vjk) +Gk+1(vjk+1)Gk(vjk)

1 +Gk(vjk)
,

where for H̄ i
k, G

k+1 is the distribution function corresponding to gk+1 = Bay(gk|v < vik)

the Bayesian update of gk.

For each period k, the worst-case belief g∗ of buyer i in a period k, is that buyer j

accepts the current o�er, i.e., g∗(v) = (1− ε)fk(v) + εlk(v) with lk(v ∈ [vik−1.v
i
k)) = 1.

Therefore, the worst-case belief in period k + 1 cannot be the Bayesian update of the

worst-case belief in period k and for a �xed strategy of buyer j

Ĥ i
k < H̄ i

k.

Rectangularity takes this change in the worst-case belief into account and induces a

di�erent optimal strategy than consistent planning.

3.6 Conclusion and Discussion

We consider a Dutch auction mechanism with ambiguity-averse buyers. First, we

correct the worst-case belief of Bose and Daripa (2009). Then, we analyze the Dutch

auction for dynamically consistent buyers and showed that the seller can still extract

8This representation of the rectangular worst-case belief follows from the proof of Proposition 3.1.
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almost all surplus. Furthermore, we discuss the di�erent implications of rectangularity

and consistent planning. Rectangularity allows the buyers to take the structure of

the auction into account. Therefore, under the rectangular worst-case belief, a buyer

believes that it is less likely to receive the o�er pk+1 if he rejects pk. This decreases the

expected payo� of waiting, and dynamically consistent buyers accept prices closer to

their types.

This observation opens many future research questions. As a �rst step, it is essential

to understand how the consistent planning approach of Siniscalchi (2011) could be

extended to games. Is Figure 3.1 the right way to apply consistent planning, or should

the de�nition be extended to take situations as described in Figure 3.2 into account?

Without ambiguity, this problem does not arise since the belief in period k+1 is always

the Bayesian update of the belief in period k.

Further, when do consistent planning and rectangularity predict the same equilibrium

outcome? The timing in the Dutch auction setting is very complex. Since the buyers

do not know who gets the price o�er pk �rst, the game cannot be represented by a

multistage game. Auster and Kellner (2020) analyze an ambiguous Dutch auction in

a continuous-time setting. Due to the continuous-time setting, they do not have to

specify which buyer is asked �rst and do not need the complex structure of Bose and

Daripa (2009). In their setting, rectangularity and consistent planning induce the same

equilibrium strategy.

We conjecture that in multistage games, rectangularity and consistent planning will

predict equivalent equilibrium outcomes. Multistage games require a speci�c time

structure. In each period, players �rst observe private information (e.g., the move of one

opponent from the previous period). Then, players move simultaneously. Therefore,

the probability of reaching a speci�c information set in the next period depends only

on the worst-case belief of one period. However, more detailed analysis and discussion

are left for future research.

Alternatively, one could use a di�erent time structure for the Dutch auction. In each

period, both buyers simultaneously choose an action. If both buyers reject the current

price, the game precedes to the next period. If buyer i accepts and buyer j rejects,

buyer i gets the object and vice versa. If both buyers accept, the winner is chosen

randomly. This version of the Dutch auction mechanism could be modeled as a multi-

stage game. However, as discussed by Bose and Daripa (2009), it leads to an uncertain

outcome of accepting. Therefore, the full surplus extraction result does not hold in

this setting.
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3.7 Appendix

3.7.1 Derivation Worst-Case Belief

The probability that buyer i obtains the item at price pk+1 given that he refuses the

current o�er pk, Pg(A|B) can be derived analogously to Bose and Daripa (2009) by

replacing F with G. For completeness, we repeat the derivation here. Let us �x one

belief g ∈ Φ−1
i and G be the corresponding distribution function. Further, Gk denotes

the distribution function corresponding to the updated belief in period k, gk ∈ Φk
i .

We �rst derive the probability πik that period k + 1 is reached given that i refuses the

current o�er pk. Then, we derive the probability ψik, that i gets the o�er pk+1 given

that stage k + 1 is reached. The probability Pg(A|B) is then given by πikψ
i
k.

πik can be derived as follows. Let qi ∈ {1, 2} denote the position of player i in period

k, i.e., if he is asked �rst or second. Further, let Ai denote the event, that i gets the

o�er pk. Then,

πik = P(qi = 1|Ai)Gk(vjk) + P(qi = 2|Ai)

with

P(qi = 1|Ai) =
P(qi = 1)P(Ai|qi = 1)

P(qi = 1)P(Ai|qi = 1) + P(qi = 2)P(Ai|qi = 2)

=
1
2

1
2

+ 1
2
Gk(vjk)

=
1

1 +Gk(vjk)

and

P(qi = 2|Ai) = 1− P(qi = 1|Ai) =
Gk(vjk)

1 +Gk(vjk)
.

Therefore,

πik =
2Gk(vjk)

1 +Gk(vjk)
.

In period k + 1, i gets the o�er pk+1 for sure if he is asked �rst. If he is asked second,

he only gets the o�er if buyer j refuses pk+1:

ψik =
1

2
+

1

2
Gk+1(vjk+1).

Then,

Pg(A|B) = πikψ
i
k =

2Gk(vjk)

1 +Gk(vjk)

(
1

2
+

1

2
Gk+1(vjk+1)

)
=
Gk(vjk) +Gk(vjk)G

k+1(vjk+1)

1 +Gk(vjk)
.
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Now, for a �xed g, if Gk(vjk) =
G(vjk)

G(vjk−1)
for all k ≥ 1 we get

Pg(A|B) =
G(vjk) +G(vjk+1)

G(vjk−1) +G(vjk)
.

3.7.2 Proofs of Section 3.3

3.7.2.1 Proof of Lemma 3.1

The proof generalizes the proof of Nishimura and Ozaki (2002, page 6 - 8) and consists

of four steps. Step 1) proves an observation which is used recurrently in Step 2) and

3). Step 2) and 3) show that Ψ2 ⊆ Ψ1 and Ψ1 ⊆ Ψ2. Finally, Step 4) proves εk > ε.

Step 1) First, we show that g ∈ Ψ1 if and only if there exists a density function l ∈ P
such that

g(·) =
(1− ε)f(·) + εl(·)

(1− ε)f(E) + εl(E)

=
(1− ε)f(E)

(1− ε)f(E) + εl(E)

f(·)
f(E)

+
εl(E)

(1− ε)f(E) + εl(E)

l(·)
l(E)

=
(1− ε)f(E)

(1− ε)f(E) + εl(E)
Bay(f |E)(·) +

εl(E)

(1− ε)f(E) + εl(E)
Bay(l|E)(·).

We can assume, without loss of generality, that l(E) > 0. Otherwise, g(x) = f(x)
f(E)

for all x ∈ E which immediately implies that g ∈ Ψ2.

Step 2) Let g be an arbitrary density function in Ψ2. Then, the de�nitions of Ψ2 and εk

imply that there exists an l ∈ P such that

g(·) = ((1− εk)Bay(f |E)(·) + εkBay(l|E)(·))

=
(1− ε)f(E)

(1− ε)f(E) + ε
Bay(f |E)(·) +

ε

(1− ε)f(E) + ε
Bay(l|E)(·). (3.10)

Since P consists of all density functions on [0, 1] there exists a density function

l̄ ∈ P such that

l̄(x) = Bay(l|E)(x) ∀x ∈ E

and l̄(x) = 0 otherwise. Then, l̄(E) = 1 and

Bay(l̄|E)(·) = Bay(l|E)(·).

Using this properties of l̄ we can rewrite Equation (3.10):

g(·) =
(1− ε)f(E)

(1− ε)f(E) + ε
Bay(f |E)(·) +

εl̄(E)

(1− ε)f(E) + εl̄(E)
Bay(l̄|E)(·).

Then by Step 1) it follows that g ∈ Ψ1. Hence, Ψ2 ⊆ Ψ1.
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Step 3) For the other direction, i.e., Ψ1 ⊆ Ψ2, let g be an arbitrary element of Ψ1. Then,

Step 1) implies

g(·) =
(1− ε)f(E)

(1− ε)f(E) + εl(E)
Bay(f |E)(·) +

εl(E)

(1− ε)f(E) + εl(E)
Bay(l|E)(·)

=
(1− ε)f(E)Bay(f |E)(·)

(1− ε)f(E) + εl(E)

(1− ε)f(E) + ε+ εl(E)− εl(E)

(1− ε)f(E) + ε

+
εl(E)Bay(l|E)(·)

(1− ε)f(E) + εl(E)

(1− ε)f(E) + ε

(1− ε)f(E) + ε

=(1− ε)f(E)Bay(f |E)(·) (1− ε)f(E) + εl(E) + ε(1− l(E))

((1− ε)f(E) + εl(E))((1− ε)f(E) + ε)

+
ε

(1− ε)f(E) + ε︸ ︷︷ ︸
=εk

((1− ε)f(E) + ε)l(E)Bay(l|E)(·)
(1− ε)f(E) + εl(E)

=εk
((1− ε)f(E) + ε)l(E)

(1− ε)f(E) + εl(E)︸ ︷︷ ︸
:=ε̃

Bay(l|E)(·) + (1− ε)f(E)Bay(f |E)(·)

·
(

1

(1− ε)f(E) + ε
+

ε(1− l(E))

((1− ε)f(E) + εl(E))((1− ε)f(E) + ε)

)
=εk ε̃Bay(l|E)(·) +

(1− ε)f(E)

(1− ε)f(E) + ε︸ ︷︷ ︸
=1−εk

Bay(f |E)(·)

+
ε

(1− ε)f(E) + ε︸ ︷︷ ︸
=εk

(1− l(E))(1− ε)f(E)Bay(f |E)(·)
((1− ε)f(E) + εl(E))

=εk ε̃Bay(l|E)(·) + (1− εk)Bay(f |E)(·)

+ εk
(1− l(E))(1− ε)f(E)Bay(f |E)(·)

((1− ε)f(E) + εl(E))︸ ︷︷ ︸
=1−ε̃

Bay(f |E)(·)

=(1− εk)Bay(f |E)(·) + εk

(
ε̃Bay(l|E)(·) + (1− ε̃)Bay(f |E)(·)

)
.

Since ε̃ ∈ (0, 1], l̄(x) := ε̃Bay(l|E)(x) + (1 − ε̃)Bay(f |E)(x) for all x ∈ E and

zero otherwise is a density function, i.e., l̄ ∈ P . Furthermore, Bay(l̄|E) = l̄, since

l̄(E) = 1. Hence, g(·) ∈ Ψ2 and Ψ1 ⊆ Ψ2.

Step 4) The full support assumption of f implies that f(E) < 1 for all E 6= Ω. Therefore,

it follows immediately that

εk =
ε

(1− ε)f(E) + ε
> ε.

Furthermore, if E = Ω, then f(Ω) = 1 and εk = ε.
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3.7.2.2 Proof of Proposition 3.2

The proof follows a similar idea as the proof of Bose and Daripa (2009). However, since

most parts explicitly use the form of the worst-case belief, we have to adjust parts of

the proof. It consists of several lemmata. First, Lemma 3.5 shows that both buyers

have a positive measure of types who plan to buy at pn. Lemma 3.6 proves that in

any equilibrium, a positive measure of types plans to buy at p1. Then, the idea is as

follows. Suppose there is a �price gap� in the sense that there are no types of buyer j

who plan to buy at prices in {pn−l+1, . . . , pn−1}. Then, there are no types of i who

plan to buy at prices {pn−l+1, . . . , pn−2}. Lemma 3.8 shows, that if there exists types

of i who buy at pn−1, then there exists types of j who strictly prefer to buy at pn−1 as

well. Further, if no type of i buys at pn−1, then there still exist types of j who strictly

prefer to buy at pn−1 if l > 2. Hence, there might exist a �price gap�, but the �price

gap� contains at most one price. Then, Proposition 3.2 follows by iteration.

Lemma 3.5. In any equilibrium, vin = vjn = pn. Further, a positive measure of types

of both buyers plan to buy at price pn but not at any earlier price.

The proof is analogously to the proof of Lemma 3 of Bose and Daripa (2009). The

idea of the proof is, that all types v ∈ (pn, pn−1) do not buy at price p ≥ pn−1, since

v − p < 0. But, since the payo� of not buying is zero, buyers of type v ∈ (pn, pn−1)

prefer to buy at pn.

Lemma 3.6. In any equilibrium, a positive measure of types of each buyer plans to

buy at price p1.

Lemma 3.6 can be proven analogously to the proof of Lemma 4 in Bose and Daripa

(2009) using the fact that Ĥ i
k < 1− ε and that the ε-contamination structure still holds

for marginal probabilities of the rectangular hull. For completeness, we repeat it here.

Proof. Suppose j does not plan to buy at prices p1, . . . , pk for 1 ≤ k < n and pk+1 is

the �rst price at which j buys. (This is denoted as vj1 = · · · = vjk = 1 and vjk+1 < 1.)

Clearly, the best response of i is not to buy at prices p1, . . . , pk−1. If i refuses pk the

probability that the game reaches pk+1 is one. Therefore,

Ĥj
k = min

gk+1∈rect(Φkj )

1

2
+

1

2
gk+1(v ≤ vik+1) =

1

2
+

1

2
(1− εk+1)F k+1(vik+1), (3.11)

where the last equality follows since, gk+1(v ≤ vik+1) = Gk(vik+1) and the set of marginal

distributions given the rectangular hull, rect(Φk,·
j ), equals the set of marginal distribu-

tions given Φk
j . Therefore, the ε-contamination structure is maintained for marginal

distributions of the rectangular hull.
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Further, j does not plan to buy at prices p1, . . . , pk. Therefore, v
j
k = 1 and F k+1(vik+1) =

F (vik+1) and εk+1 = ε. Then, the payo� from refusing pk is (1
2

+ 1
2
(1− ε)F (vjk+1))(v −

pk+1). De�ne the following function:

Ĝi
k(v) :=v − pk −

(
1

2
+

1

2
(1− ε)F (vjk+1)

)
(v − pk+1)

=
1

2
(v − pk)(1− (1− ε)F (vjk+1))− 1

2
(1 + (1− ε)F (vjk+1))∆k.

Note that

2Ĝi
k(1) = (1− pk)(1− (1− ε)F (vjk+1))− (1 + (1− ε)F (vjk+1))∆k

> δε− (2− ε)∆k ≥ δε− (2− ε)∆1 =
δε2

2(1− δ) + δε
> 0,

where the second step follows from the fact that (1 − pk) ≥ (1 − p1) = δ, and the

fact that F (vjk+1) < 1, and the third step uses ∆1 ≥ ∆k. Since Ĝi
k(v) is continuous,

increasing in v, and negative at v = pk, there exists v
i
k such that Ĝi

k(v) > 0 for v > vik
and Ĝi

k(v
i
k) = 0. Since we know that i does not plan to buy at any earlier price than pk,

it must be that types [vik, 1] of buyer i plan to buy at pk. The second part shows that

there exist types of j close to one who would deviate and buy at pk. First, remember

that

Gj
k(v) = v − pk − (v − pk+1)Ĥj

k

with

Ĥj
k = (1− εk)

F k(vjk) + (1− εk+1)F k(vjk)F
k+1(vjk+1)

1 + (1− εk)F k(vjk)
≤ (1− εk) ≤ 1− ε.

Then,

Gj
k(1) = (1− pk)− (1− pk+1)Ĥj

k = (1− pk)(1− Ĥj
k)−∆kĤ

j
k

≥ δ(1− Ĥj
k)−∆1Ĥ

j
k > δε−∆1 = δε− δε

2

1− δ
(1− δ) + δε

2

> 0,

where the �rst inequality follows since 1−pk ≥ 1−p1 = δ and ∆k ≤ ∆1. Further, Ĥ
j
k ≤

1 − ε < 1 implies the third inequality. The last inequality follows since 1−δ
(1−δ)+ δε

2

< 1.

Since Gj
k(v) is increasing and continuous, there are types of j of positive measure near

one who would deviate and buy at pk. Contradiction.

Lemma 3.7. Suppose there are types of buyer i who plan to buy at pn−l−t and pn−l but

not at prices in between. Then vin−l−t − vin < δ(l + t)
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Similar to Lemma 3.6, the proof is analogously to Lemma 5 of Bose and Daripa (2009)

using the fact that Ĥ i
k < 1− ε and Equation (3.11). For more details see Lemma 3.10

in Section 3.7.3.

Remember that we assume an equilibrium strategy where no types of j plan to buy

at prices in {pn−l+1, . . . , pn−1} with l ≥ 2. Then, no types of i plan to buy at prices

{pn−l+1, . . . , pn−2}.

Lemma 3.8. There exists δ̄ > 0 such that for all δ < δ̄ then there are types (of positive

measure) of j who buy at pn−1 if

i) there are types of i who buy at pn−1 or

ii) no types of i buy at pn−1 and l > 2.

The proof of Lemma 3.8 explicitly uses the expression of the worst-case belief and

therefore has to be adjusted.

Proof. In the proposed equilibrium, types v > vjn−l of j buy at prices p ≥ pn−l, with

type vjn−l and some types just above vjn−l buying at price pn−l. But since j does not

buy at prices {pn−l+1, . . . , pn−1}, types just below vjn−l must buy at pn and not before.

Therefore, in the proposed equilibrium, it must be that vjn−l is indi�erent between

buying at pn−l or pn. So we have, for buyer j,

vjn−l − pn−l = (vjn−l − pn)Ĥj
n−l, (3.12)

where Ĥj
n−l is the worst-case belief, that j gets the o�er pn if he refuses pn−l. One can

derive Ĥj
n−l as follows. Similar to Section 3.7.1, denote with πjn−l, the probability that

the object stays unsold in period n− l, with πjn−1, the probability that the object stays

unsold in period n − 1 and with ψjn the probability that j gets the o�er pn. Then,

Ĥj
n−l = minπjn−lπ

j
n−1ψ

j
n with

πjn−l =
2Gn−l(vin−l)

1 +Gn−l(vin−l)
,

πjn−1 = Gn−1(vin−1),

ψjn =
1

2
+

1

2
Gn(vin).

Similar to the proof of Proposition 3.1, the properties of rectangularity impliy

Ĥj
n−l =

(1− εn−l)F n−l(vin−l)(1− εn−1)F n−1(vin−1)(1 + (1− εn)F n(vin))

1 + (1− εn−l)F n−l(vin−l)
.

Rewriting Equation (3.12) gives,

vjn−l − pn−l =
(pn−l − pn)Ĥj

n−l

1− Ĥj
n−l

. (3.13)
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To establish that contrary to what has been supposed, i.e., that there are types of j

who will in fact buy at price pn−1, we show that there are types v such that

Gj
n−1(v) = v − pn−1 − (v − pn)Ĥj

n−1 > 0,

where Ĥj
n−1 is the usual rectangular worst-case belief, that j gets the o�er pn if he

refuses pn−1. It is useful to break up the analysis into several cases.

Case 1) l and t are �xed positive integers:

Intuitively, this is the case where both i and j follow strategies where they do not buy

for some �nite number of prices. Note that in this case, δ(l + t)→ 0 as δ → 0.

i) Some types of i buy at pn−1:

In the proposed equilibrium no types of j buy at pn−1. Consider the value of

Gj
n−1(·) at vjn−l. We have

Gj
n−1(vjn−l) = vjn−l − pn−1 − (vjn−l − pn)Ĥj

n−1

= (vjn−l − pn−l) + (pn−l − pn)−∆n−1 −
(
(vjn−l − pn−l) + (pn−l − pn)

)
Ĥj
n−1

= (pn−l − pn)
1− Ĥj

n−1

1− Ĥj
n−l
−∆n−1

>

(
2

1− Ĥj
n−1

1− Ĥj
n−l
− 1

)
∆n−1,

where the second step follows from Equation (3.13) and the third step follows from

the fact that pn−l − pn ≥ pn−2 − pn = ∆n−2 + ∆n−1 > 2∆n−1. From the previous

lemma, we know that as δ → 0: vin−l−t − vin → 0, vin−l − vin < vin−l−t − vin → 0

and vin−1 − vin < vin−l−t − vin → 0. Then, using

εn−l =
ε

(1− ε)F (vin−l−t)) + ε
, F n−l =

F (vin−l)

F (vin−l−t)
,

εn−1 =
ε

(1− ε)F (vin−l)) + ε
, F n−1 =

F (vin−1)

F (vin−l)
,

εn =
ε

(1− ε)F (vin−1)) + ε
, F n =

F (vin)

F (vin−1)
,

and Lemma 3.7, one can show that

lim
δ→0

1− Ĥj
n−1

1− Ĥj
n−l

>
1

2
.

Hence for su�ciently small δ, we have Gj
n−1(vjn−l) > 0.
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ii) No types of i buy at pn−1 and l > 2:

In this case, if buyer j refuses pn−1, he knows that the game proceeds to the next

stage. Then, analogously to Equation (3.11) we get

Ĝj
n−1(v) = v − pn−1 −

(
1

2
+

1

2
(1− εn)F n(vin)

)
(v − pn).

It follows that9

2Ĝj
n−1(vjn−l) = (vjn−l − pn−1)

(
1− (1− εn)F n(vin)

)
−∆n−1

(
1 + (1− εn)F n(vin)

)
= (vjn−l − pn−l + pn−l − pn + pn − pn−1)

(
1− (1− εn)F n(vin)

)
−∆n−1

(
1 + (1− εn)F n(vin)

)
= (vjn−l − pn−l)

(
1− (1− εn)F n(vin)

)
+ (pn−l − pn)

(
1− (1− εn)F n(vin)

)
− 2∆n−1

= (pn−l − pn)
(
1− (1− εn)F n(vin)

)( Ĥj
n−l

1− Ĥj
n−l

+ 1

)
− 2∆n−1

= (pn−l − pn)
1− (1− εn)F n(vin)

1− Ĥj
n−l

− 2∆n−1

>

(
l
1− (1− εn)F n(vin)

1− Ĥj
n−l

− 2

)
∆n−1,

where the fourth step follows from Equation (3.13) and the �nal inequality follows,

as before, from the fact that ∆k is decreasing in k and pn−l−pn = pn−l−pn−l+1 +

pn−l+1 − · · · − pn > l∆n−1. Similar to Case 1.1) one can show that as δ → 0

1− (1− εn)F n(vin)

1− Ĥj
n−l

→ 1

and we have for δ su�ciently small Ĝj
n−1(vjn−l) > 0 since l > 2.10

Analogously to Bose and Daripa (2009), we can show that in Case 2) (t is arbitrary and

l varies with n) and Case 3) (l is a �xed integer and t varies with n) Gj
n−1(vjn−l) > 0

and Ĝj
n−1(vjn−l) > 0. For completeness, we repeat it here:

Case 2) t is arbitrary and l varies with n:

In this case the gap pn−l − pn−1 does not vanish as δ → 0. Then, since for any given

η > 0, Ĥj
n−l is bounded away from zero, it follows from that vjn−l−pn−l does not vanish.

9Please note that, due to a calculation error in Bose and Daripa (2009), our expression slightly

deviates from their expression.
10The condition l > 2 is needed, since without further conditions on F and ε it is not clear if

1−(1−εn)Fn(vin)

1−Ĥj
n−l

↗ 1 or
1−(1−εn)Fn(vin)

1−Ĥj
n−l

↘ 1. Therefore, for l = 2 we get Ĝjn−1(vjn−l) ≥ 0 and it could

be possible, that j is indi�erent between buying at pn−2 or buying at pn−1 or waiting till pn.
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Since pn−1 < pn−l, also v
j
n−l − pn−1 does not vanish. However, pn − pn−1 → 0 as δ → 0

and Ĥj
n−1 < 1 (for Case 1.i)) and (1 − εnF n(vin) < 1 (for Case 1.ii)). Therefore, for δ

small enough, Gj
n−1(vjn−l) > 0 and Ĝj

n−1(vjn−l) > 0.

Case 3) l is a �xed integer and t varies with n:

This is the case when as δ → 0, δ(l + t) does not go to zero because t (and n) become

arbitrarily large as δ becomes small. However, this is analogous to the case we have

analyzed before with i, and j roles switched. We know that in equilibrium, both buyers

have types who plan to buy at the price pn−l. If i plans to buy at prices pn−l−t and

pn−l, but not to buy in between, the best response of j should involve not buying at

prices {pn−l−t+1, . . . , pn−k−2}. If pn−l−t − pn−l−1 does not go to zero, we can use the

arguments from Case 2) above to argue that contrary to what is being supposed, for

small δ, buyer i will have some types of positive measure who buy at pn−l−1 rather

than waiting till pn−l

Now, since Gj
n−1(·) (and Ĝj

n−1(·) > 0) is strictly increasing, continuous, and negative

at pn−1, there is vjn−1 ∈ (pn−1, v
j
n−l) such that Gj

n−1(v) > 0 (and Ĝj
n−1(v) > 0 ) for

v ∈ (vjn−1, v
j
n−l). Since types below vjn−l do not buy at any price greater than or equal

to pn−l, these types (of positive measure) strictly prefer to stop at pn−1 rather than

wait till pn. This contradicts the supposed equilibrium.

3.7.3 Correction Results of Bose and Daripa (2009)

Using H̄ i
k instead of (1 − ε)H i

k leads to several problems in the proofs of Bose and

Daripa (2009). Many proofs use the fact that (1 − ε)H i
k < 1 − ε, but this does not

hold for H̄ i
k. More precisely, there exists f with full support on [0, 1] and vj, such that

H̄ i
k > (1− ε). The numerical example in Section 3.4 illustrates this problem.

We now summarize the results of Bose and Daripa (2009) and show how the proofs

have to be adapted when using the corrected worst-case belief.

Proposition 1 of Bose and Daripa (2009) Bose and Daripa (2009) �rst show

that there exists δ̄ > 0 such that for all δ < δ̄, the equilibrium strategy of both players

are interior cut-o� strategy. The formal proof consists of several lemmata and uses

the fact that H i
k < 1 frequently. However, the result still holds under the corrected

worst-case belief. Even if the idea of the proof stays the same, many technical details

have to be adjusted. First, as in Bose and Daripa (2009), one can show that there

exists a positive measure of types of both buyers who plan to buy at price pn but not

at any earlier price.
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Lemma 3.9 (Lemma 4 of Bose and Daripa (2009)). In any equilibrium, a positive

measure of types of each buyer plan to buy at price p1.

Proof. The �rst part of the proof still holds given the corrected worst-case belief.

Suppose j does not plan to buy at prices p1, . . . , pk for 1 ≤ k < n and pk+1 is the �rst

price at which j buys. (This is denoted as vj1 = · · · = vjk = 1 and vjk+1 < 1.) Clearly,

the best response of i is not to buy at prices p1, . . . , pk−1. If i refuses pk the probability

that the game reaches pk+1 is one, i.e., π
i
k = 1. Therefore,

H̄ i
k = min

g∈Φki

1

2
+

1

2
Gk+1(vjk+1)

=
1

2
+

1

2
(1− εk+1)F k+1(vjk+1) =

1

2
+

1

2
(1− ε)F (vjk+1), (3.14)

where the last step follows from vjk = 1. Therefore, the payo� from refusing pk is

(1
2

+ 1
2
(1− ε)F (vjk+1))(v − pk+1). De�ne the following function:

Ĝi
k(v) :=v − pk −

(
1

2
+

1

2
(1− ε)F (vjk+1)

)
(v − pk+1) (3.15)

=
1

2
(v − pk)(1− (1− ε)F (vjk+1))− 1

2
(1 + (1− ε)F (vjk+1))∆k.

Note that

2Ĝi
k(1) = (1− pk)(1− (1− ε)F (vjk+1))− (1 + (1− ε)F (vjk+1))∆k

> δε− (2− ε)∆k ≥ δε− (2− ε)∆1 =
δε2

2(1− δ) + δε
> 0,

where the second step follows from the fact that (1 − pk) ≥ (1 − p1) = δ, and the

fact that F (vjk+1) < 1, and the third step uses ∆1 ≥ ∆k. Since Ĝi
k(v) is continuous,

increasing in v, and negative at v = pk, there exists v
i
k such that Ĝi

k(v) > 0 for v > vik
and Ĝi

k(v
i
k) = 0. Since we know that i does not plan to buy at any earlier price than

pk, it must be that types [vik, 1] of buyer i plan to buy at pk. For the second part, Bose

and Daripa (2009) use the fact that (1 − ε)H i
k < 1 − ε. But, this does not hold given

H̄ i
k. Therefore, we have to adjust the second part. Using the de�nition of H̄ i

k, we can

still show, that Gj
k(1) > 0. First, remember that

Gj
k(v) = v − pk − (v − pk+1)H̄j

k

with the worst case belief

H̄j
k =

(1− ε)(F (vik) + F (vik+1))

(1− ε)(F (vik) + F (vik−1)) + ε
.
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Then,

Gj
k(1) = (1− pk)− (1− pk+1)H̄j

k

= (1− pk)(1− H̄j
k)−∆kH̄

j
k

≥ δ(1− H̄j
k)−∆1H̄

j
k

= δ
(1− ε)(F (vik−1)− F (vik+1)) + ε

(1− ε)(F (vik) + F (vik−1)) + ε
− δε

2

1− δ
(1− δ) + δε

2

(1− ε)(F (vik) + F (vik+1))

(1− ε)(F (vik) + F (vik−1)) + ε

≥ δ
(1− ε)(F (vik−1)− F (vik+1)) + ε− ε(1− ε)

(1− ε)(F (vik) + F (vik−1)) + ε
> 0,

where the �rst inequality follows since 1− pk ≥ 1− p1 = δ and ∆k ≤ ∆1. The second

inequality follows since 1−δ
(1−δ)+ δε

2

< 1 and (F (vik) +F (vik+1)) ≤ 2 and the last inequality

since (F (vik−1)−F (vik+1)) ≥ 0. Since Gj
k(v) is increasing and continuous, there are types

of j of positive measure near 1 who would deviate and buy at pk. Contradiction.

Lemma 3.10 (Lemma 5 of Bose and Daripa (2009)). Suppose there are types of buyer i

who plan to buy at pn−l−t and pn−l but not at prices in between. Then vin−l−t − vin <
δ(l + t)

Proof. Since there are no types who buy at prices between pn−l−t and pn−l, buyer j

will never accept a price in {pn−l−t+1, . . . , pn−l−2}.
Case 1) Some types of buyer j buy at prices pn−l−t and/or pn−l−1, t ≥ 1:

In this case, if i refuses pn−l−t it is possible, that the game ends before, pn−l is o�ered.

We know, that vin−l−t is given by Gi
n−l−t(v) = 0, i.e.,

vin−l−t − pn−l−t = (vin−l−t − pn−l)H̄ i
n−l−t

= (vin−l−t − pn−l−t + ∆n−l−t + · · ·+ ∆n−l−1)H̄ i
n−l−t

⇔ vin−l−t − pn−l−t = (∆n−l−t + · · ·+ ∆n−l−1)
H̄ i
n−l−t

1− H̄ i
n−l−t

. (3.16)

Here H̄ i
n−l−t is the worst-case probability that i gets the o�er pn−l if he rejects the

current price pn−l−t. Since there are types of buyer i who plan to buy at pn−l−1, H̄
i
n−l−t

can be derived from the following three probabilities. Let πin−l−t denote the probability

that the object remains unsold at pn−l−t, π̂
i
n−l−1 denotes the probability that the object

remains unsold at pn−l−1 and ψ
i
n−l the probability that i gets the o�er pn−l. Similar to

Section 3.7.1 one can show that

πin−l−t =
2G(vjn−l−t)

G(vjn−l−1) +G(vjn−l−t)
,

π̂in−l−1 =
G(vjn−l−1)

G(vjn−l−t)
,
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ψin−l =
1

2
+

1

2

G(vjn−l)

G(vjn−l−1)
. (3.17)

The worst-case probability is then given by

H̄ i
n−l−t = min

g∈Φ−1
i

πin−l−tπ̂
i
n−l−1ψ

i
n−l = min

g∈Φ−1
i

G(vjn−l−1) +G(vjn−l)

G(vjn−l−t−1) +G(vjn−l−t)

=
(1− ε)(F (vjn−l−1) + F (vjn−l))

(1− ε)(F (vjn−l−t−1) + F (vjn−l−t)) + 2ε
. (3.18)

Further,

H̄ i
n−l−t

1− H̄ i
n−l−t

=
(1− ε)(F (vjn−l−1) + F (vjn−l))

(1− ε)(F (vjn−l−t−1) + F (vjn−l−t)− F (vjn−l−1)− F (vjn−l)) + 2ε

≤ 2(1− ε)
2ε

=
1− ε
ε

, (3.19)

where the inequality holds since, F (vjn−l−1)+F (vjn−l) ≤ 2 and F (vjn−l−t−1)+F (vjn−l−t)−
F (vjn−l−1)− F (vjn−l) ≥ 0. The rest of the proof follows as in Bose and Daripa (2009).

We repeat it for completeness. Let α := 1−δ
1−δ+ δε

2

. Note, that α > 1 and from the

de�nition of ∆k, we have ∆k = 1
2
δεαk < 1

2
δε. Therefore,

vin−l−t − pn = vin−l−t − pn−l−t + ∆n−l−t + · · ·+ ∆n−1

= (∆n−l−t + · · ·+ ∆n−l−1)
H̄ i
n−l−t

1− H̄ i
n−l−t

+ ∆n−l−t + · · ·+ ∆n−1

≤ (∆n−l−t + · · ·+ ∆n−l−1)
1− ε
ε

+ ∆n−l−t + · · ·+ ∆n−1

= (∆n−l−t + · · ·+ ∆n−l−2)
1− ε
ε

+
∆n−l−1

ε
+ ∆n−l + · · ·+ ∆n−1

<
1

2
(δ(1− ε)(t− 1) + δ + δεl) < δ(t+ ε(1− t) + εl) < δ(l + t),

where the second step follows from Equation (3.16), the third step from Equation (3.19)

and the �fth step uses ∆k <
1
2
δε for all k = n− l− t, . . . , n− 1. Finally, since vin = pn,

vin−l−t − vin < δ(l + t).11

The proof of the Case 2), follows as in Bose in Daripa. For completeness, we repeat it

here.

Case 2) No types of buyer j buy at prices pn−l−t and pn−l−1, t ≥ 1:

We know that types of i buy at pn−l−t and at pn−l but not at the prices in between. If

t > 1, any type of i who buys atpn−l−t can deviate pro�tably and buy atpn−l−1 instead.

Contradiction. Therefore in this case the only possibility is t = 1.

11For t = 1, or if j only buys at pn−l−t OR pn−l−1, v
j
n−l−t = vjn−l−1 and the worst-case belief

changes slightly. However, similar to above it follows that
H̄i

n−l−t

1−H̄i
n−l−t

≤ 2(1−ε)
ε and vin−l−t − pn−l−t ≤

δ(1− ε)(t− 1) + δ + δεl < δ(l + t).
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So it remains to prove the inequality when t = 1 and no type of j buys at pn−l−1. In

this case, analogously to Equation (3.15) vin−l−1 is given by

Ĝi
n−l−1(v) = v − pn−l−1 −

(
1

2
+

1

2
Ri
n−l−1

)
(v − pn−l) = 0,

where Ri
n−l−1 is the conditional probability that j rejects pn−l.

12 Using the fact, that

v − pn−l = v − pn−l−1 + ∆n−l−1, and solving

vin−l−1 − pn−l = ∆n−l−1

1 +Ri
n−l−1

1−Ri
n−l−1

< ∆n−l−1
2− ε
ε

,

where the inequality uses the fact that 1− εn < 1− ε. Similar to Case 1), it follows

vin−l−1 − pn = vin−l−1 − pn−l−1 + ∆n−l−1 + · · ·+ ∆n−1

< ∆n−l−1

(
2− ε
ε

+ 1

)
+ ∆n−l + · · ·+ ∆n−1

= ∆n−l−1
2

ε
+ ∆n−l + · · ·+ ∆n−1 < δ +

εδ

2
l < δ(l + 1).

Suppose in equilibrium no types of j plan to buy at prices in {pn−l+1, . . . , pn−1}. Then,
there are no types of i who plan to buy at prices {pn−l+1, . . . , pn−2}. The next lemma

shows that given this equilibrium strategy, there are types of buyer j who can pro�t

from deviating and buy at pn−1. Hence, the strategy described above cannot be an

equilibrium. Then, Proposition 1 follows from iterating this result.

Lemma 3.11 (Lemma 6 of Bose and Daripa (2009)). There is δ̄ > 0 such that for all

δ < δ̄ there are types (of positive measure) of j who buy at pn−1.

Proof. Again, the structure is similar to Bose and Daripa (2009). Case 2) and 3)

follow analogeously to Bose and Daripa (2009) and the proof of Lemma 3.8. Only

Case 1) (l and t are �xed positive integers) requires some adjustments In the proposed

equilibrium, types v > vjn−l of j buy at prices p ≥ pn−l, with type vjn−l and some types

just above buying at price pn−l. But since j does not buy at prices {pn−l+1, . . . , pn−1},
types just below vjn−l must buy at pn and not before. Therefore, in the proposed

equilibrium, it must be that vjn−l is indi�erent between buying at pn−l or pn. So we

have, for buyer j,

vjn−l − pn−l = (vjn−l − pn)H̄j
n−l, (3.20)

12Suppose the lowest price higher that pn−l at which some types of j buy is pn−l−1−s. Then

Rin−l−1 = (1− εn−l−1)
F (vjn−l)

F (vjn−l−1−s)
.
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where H̄j
n−l is the worst-case belief, that j gets the o�er pn if he refuses pn−l. One can

derive H̄j
n−l similar to Equation (3.18)

H̄j
n−l =

(1− ε)(F (vin−1 + F (vin))

(1− ε)(F (vin−l + F (vin−l−t)) + 2ε

if there are types of i who buy at pn−1. If no types of i plan to buy at pn−1, then

vin−1 = vin−l and 2ε in the denominator has to be replaced by ε.

Rewriting Equation (3.20) gives,

vjn−l − pn−l =
(pn−l − pn)H̄j

n−l

1− H̄j
n−l

. (3.21)

To establish that there are types of j who will in fact want to buy at price pn−1, we

show that there are types v such that

Gj
n−1(v) = v − pn−1 − (v − pn)H̄j

n−1 > 0,

where H̄j
n−1 is the usual worst-case belief, that j gets the o�er pn if he refuses pn−1.

Case 1.1) Some types of i buy at pn−1:

In the proposed equilibrium, no types of j buy at pn−1. Therefore, it must be

that Gj
n−1(v) is not strictly positive for any v ∈ [pn−1, v

j
n−l]. Consider the value

of Gj
n−1(·) at vjn−l. We have

Gj
n−1(vjn−l) = vjn−l − pn−1 − (vjn−l − pn)H̄j

n−1

= (vjn−l − pn−l) + (pn−l − pn)−∆n−1 −
(
(vjn−l − pn−l) + (pn−l − pn)

)
H̄j
n−1

= (pn−l − pn)
1− H̄j

n−1

1− H̄j
n−l
−∆n−1

>

(
2

1− H̄j
n−1

1− H̄j
n−l
− 1

)
∆n−1,

where the third step follows from the fact that pn−l − pn ≥ pn−2 − pn = ∆n−2 +

∆n−1 > 2∆n−1. Then,

1− H̄j
n−1

1− H̄j
n−l

=

(
(1− ε)(F (vin−l)− F (vjn)) + ε

) (
(1− ε)(F (vin−l) + F (vjn−l+t)) + 2ε)

)(
(1− ε)(F (vin−l) + F (vjn−l+t)− F (vin−1)− F (vin)) + 2ε)

)
· 1(

(1− ε)(F (vin−l)F (vjn−1)) + ε
) .
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From the previous lemma, we know that as δ → 0: vin−l−t − vin → 0, vin−l − vin <
vin−l−t − vin → 0 and vin−1 − vin < vin−l−t − vin → 0. Therefore, as δ → 0

1− H̄j
n−1

1− H̄j
n−l
→ ε(1− ε)F (vin) + ε2

2ε(1− ε)F (vin) + ε2
>

ε(1− ε)F (vin) + ε2

2 (ε(1− ε)F (vin) + ε2)
=

1

2
.

Hence for su�ciently small δ, we have Gj
n−1(vjn−l) > 0.

Case 1.2) No types of i buy at pn−1:

In this case, if buyer j refuses pn−1, he knows that the game proceeds to the next

stage and with probability 1
2
he gets the o�er next period. Then,

Ĝj
n−1(v) = v − pn−1 −

(
1

2
+

1

2
(1− εn)F n(vin)

)
(v − pn).

It follows that13

2Ĝj
n−1(vjn−l) = (vjn−l − pn−1)

(
1− (1− εn)F n(vin)

)
−∆n−1

(
1 + (1− εn)F n(vin)

)
= (vjn−l − pn−l + pn−l − pn + pn − pn−1)

(
1− (1− εn)F n(vin)

)
−∆n−1

(
1 + (1− εn)F n(vin)

)
= (vjn−l − pn−l)

(
1− (1− εn)F n(vin)

)
+ (pn−l − pn)

(
1− (1− εn)F n(vin)

)
− 2∆n−1

= (pn−l − pn)
(
1− (1− εn)F n(vin)

)( H̄j
n−l

1− H̄j
n−l

+ 1

)
− 2∆n−1

= (pn−l − pn)
1− (1− εn)F n(vin)

1− H̄j
n−l

− 2∆n−1

>

(
2

1− (1− εn)F n(vin)

1− H̄j
n−l

− 2

)
∆n−1.

Now, similar to Case 1.1) we know that as δ → 0: vin−l−t − vin → 0, vin−l − vin <
vin−l−t − vin → 0 and vin−1 − vin < vin−l−t − vin → 0. Therefore, as δ → 0

1− (1− εn)F n(vin)

1− H̄j
n−l

→ 2(1− ε)F (vin) + ε

(1− ε)F (vin) + ε
> 1.

Hence, for su�ciently small δ, Ĝj
n−1(vjn−l) > 0.

Analogously to Bose and Daripa (2009), we can show that in Case 2) (t is arbitrary and

l varies with n) and Case 3) (l is a �xed integer and t varies with n) Gj
n−1(vjn−l) > 0

13Please note that, due to a calculation error in Bose and Daripa (2009), our expression slightly

deviates from their expression.
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and Ĝj
n−1(vjn−l) > 0. In the proof of Lemma 3.8 we explain Case 2) and 3) in more

detail.

Now, since Gj
n−1(·) (and Ĝj

n−1(·)) is strictly increasing, continuous, and negative at

pn−1, there is vjn−1 ∈ (pn−1, v
j
n−l) such that Gj

n−1(v) > 0 (and Ĝj
n−1(v) > 0 ) for

v ∈ (vjn−1, v
j
n−l). Since types below vjn−l do not buy at any price greater than or equal

to pn−l, these types (of positive measure) strictly prefer to stop at pn−1 rather than

wait till pn. This contradicts the supposed equilibrium.

Lemma 2 of Bose and Daripa (2009) Lemma 2 of Bose and Daripa (2009) gen-

eralize the cut-o� strategies to perfect cut-o� strategies. If pk(v) is the highest price

that type v would accept. Then, monotonicity implies that v accepts all prices lower

than pk(v). The result and the proof do not depend on H̄ i
k and therefore still hold with

the corrected worst-case belief.

Proposition 2 of Bose and Daripa (2009) Next, Bose and Daripa (2009) char-

acterize the cut-o� types in an equilibrium. Using our corrected worst-case belief the

notation of the statement changes slightly. However, the intuition and the proof follow

analogously to the proof of Bose and Daripa (2009).

Proposition 3.5 (Proposition 2 of Bose and Daripa (2009)). For δ < δ̄, in any equi-

librium the strategy of any buyer i is a perfect cut-o� strategy vi = (vii, . . . , v
i
n), where

vin = pn. Further, for 1 ≤ k ≤ n− 1, vik ∈ (pk, v
i
k−1), where vi = 0 and vik is given by

vik = pk + ∆k
H̄ i
k

1− H̄ i
k

,

where H̄ i
k is the corrected worst-case belief. Further, for any given vj, vik is unique.

Proposition 3 of Bose and Daripa (2009) Proposition 3 of Bose and Daripa

(2009) shows the existence of a symmetric equilibrium for all δ < δ
	
with δ

	
> 0. The

proof only uses the fact that H̄ i
k < 1. Since this is satis�ed for the corrected belied,

existence follows from the proof of Bose and Daripa (2009) which is an application of

Brouwer's �xed point theorem.

Proposition 4 of Bose and Daripa (2009) The main result of Bose and Daripa

(2009) shows that the seller can extract almost all surplus

Proposition 3.6 (Proposition 4 of Bose and Daripa (2009)). For any preference pa-

rameter ε > 0, there exists δ∗(ε) > 0 such that for ans δ < δ∗(ε) and η > 0, there is

an MDM such that in any equilibrium of the game induced by the MDM, the item is
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sold if at least one buyer has valuation greater than η and no type obtains an ex-post

surplus greater than δ.

Proof. The �rst part can be proven as in Bose and Daripa (2009). From the previous

results it follows that for any ε > 0, there is a δ∗(ε) > 0 such that whenever δ < δ∗(ε),

an equilibrium exists and all equilibria can be characterized by

vk = pk + ∆k
H̄k

1− H̄k

.

Further, as noted in Section 3.2.2 for any η ∈ (0, 1), there exists an integer T such that

by choosing n = T , the price sequence of the MDM covers at least a fraction (1 − η)

of types. The item is not sold to at most types in [0, η]. Thus, it only remains to show

that no type that buys gets an ex-post surplus greater than δ. This part has to be

adjusted.

Since types in [vk, vk−1] buys at price pk, the ex-post surplus of any type buying at pk

is at most vk−1−pk. Furthermore, the characterization of the equilibrium cut-o� types

implies

vk−1 − pk = ∆k−1

(
1 +

H̄k

1− H̄k

)
= ∆k−1

1

1− H̄k

=
εδ

2

(
1− δ

(1− δ) δε
2

)k−1

︸ ︷︷ ︸
<1

(1− ε)
≤2︷ ︸︸ ︷

(F (vk) + F (vk−1)) +ε

(1− ε)(F (vk−1)− F (vk+1)) + ε

<
εδ

2

2(1− ε) + ε

(1− ε) (F (vk−1)− F (vk+1))︸ ︷︷ ︸
>0

+ε

<
εδ

2

2

ε
= δ.

Hence, no type can extract an ex-post surplus greater than δ.
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