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(General Introduction

Strategic interactions play a fundamental role in most economic settings. Game theory
is the mathematical language we use to describe the underlying logic and implications
of strategic interactions. In game theory, we call a situation in which every participant
(called player) knows everything that is payoff-relevant a game with complete infor-
mation. Apart from what every player does (i.e., their actions), every player knows

everything that happens in the future and even the other players’ preferences.

However, in reality, a bidder who participates in an auction usually does not know the
valuation of the opposing bidders, and the outcome of a peace negotiation may depend

on the result of an upcoming election.

Harsanyi| (1967, |1968a.b) proposes an approach to deal with these, so called, games with
incomplete information: At the beginning of a game, all payoff-relevant parameters are
determined by the realization of a random variable. The realization of this random

variable is often called a type or state.

The approach of Harsanyi and most of the subsequent research assumes that players
know the probability distribution of these states or types. However, a bidder may only
have a vague idea about the valuation of the opposing bidders and an event in the
future, e.g., the result of the United States presidential election in 2024, is still hard
to predict. Thus, motivated by the distinction between risk and uncertainty of Knight
(1921) and the famous paradox of [Ellsberg (1961)) such immeasurable uncertainty (or
ambiguity) has been introduced in decision and game theory. However, as one can
imagine, ambiguity leads to difficulties which can not occur under risk. One example

of this difficulties is dynamic inconsistency.

In this doctoral thesis, I analyze different dynamic games with ambiguity and possible

problems and applications.
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Risk and Ambiguity

Exactly one hundred years ago Knight| (1921)) distinguished distinct kinds of uncer-
tainty. Whereas it is simple to derive the probability of a coin toss or a dice roll,
it is much harder to predict precise probabilities for more complex events, e.g., stock
prices (especially during a financial crisis) or the death rate of a new pandemic. Knight
(1921)) distinguishes between risk and uncertainty. He uses the term risk for random-
ness or uncertainty that can be completely captured by one probability distribution,
while uncertainty describes situations where the probability distribution of outcomes

is unknown. Thereafter, the latter was named Knightian uncertainty or ambiguity.

Ellsberg (1961) captured the implications of risk and ambiguity in his famous thought
experiment called the Ellsberg paradox. The Ellsberg paradox shows that agents prefer
to bet on a risky urn instead of an ambiguous urn. This behavior cannot be explained
by the theory of subjective expected utility introduced by [Savage| (1954). The most
prominent decision models which capture the difference of risk and ambiguity are:
the maxmin expected utility (MEU) by Gilboa and Schmeidler| (1989), the Choquet
expected utility by Schmeidler| (1989)), the incomplete preference model by Bewley
(2002) and the smooth ambiguity model by Klibanoff et al (2005) [[

Since then, ambiguity has been introduced into many decision and game-theoretic
models and has been applied, e.g., in auction (Bose et al.| (2006))), mechanism design
(D1 Tillio et al.| (2016))), asset pricing (Ju and Miao| (2012)), optimal stopping (Riedel
(2009)) and cheap talk (Kellner and Le Quement| (2018)). However, ambiguity may
induce dynamically inconsistent behavior, which complicates the analysis of dynamic

settings.

Dynamic Inconsistency

To analyze agents’ behavior in dynamic settings with ambiguous beliefs, one must first
specify how agents update beliefs. In this thesis, I assume prior-by-prior Bayesian up-
dating (or full Bayesian updating, Pires| (2002)), i.e., the set of interim beliefs consists
of the Bayesian update of each ex-ante belief. Additional to prior-by-prior Bayesian
updating, different updating rules are defined in the literature, e.g, maximum likeli-
hood updating (Gilboa and Schmeidler| (1993)), relative maximum likelihood updating
(Cheng| (2021))) and the updating rules of Hanany and Klibanoff (2007, 2009). Except
for the updating rules of [Hanany and Klibanoff (2007, 2009), all of them can lead to

dynamically inconsistent behavior in combination with maxmin preferences.

'For recent surveys of the literature on ambiguity and axiomatic foundation see Gilboal (2009),
Gilboa and Marinacci| (2016) and [Etner et al.| (2012).
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Figure 1: Dynamic Three Colors Ellsberg Experiment

Roughly speaking, new information can lead to a change in the worst-case belief, which
induces a different optimal strategy and, therefore, dynamically inconsistent behavior.
To illustrate the problem of dynamic inconsistency, consider the following dynamic
version of the three-color Ellsberg experiment. An urn contains 30 red (R) balls and
60 blue (B) or yellow (Y') balls. The exact distribution of blue and yellow balls is
unknown. Ex-ante the agent only knows that the probability of a red ball being drawn
is P(R) = 3, whereas the probability of a blue (or yellow) ball is P(B),P(Y) € [0, 2].
The agent first observes if the drawn ball is yellow or not. Then, he can choose
between betting on the event “a blue ball is drawn” or the event “a red ball is drawn”.
The decision problem is depicted in [Figure I Empty circles represent nature moves
and the solid circle the decision node of the agent. Further, » and b denotes the
choice of the agent, i.e., betting on red or blue, respectively. Let us assume that the
agent’s preferences can be modeled by the maxmin expected utility model of (Gilboa
and Schmeidler (1989). Ex-ante, before the agent learns if the ball is yellow, the worst

expected utilities of r and b are

1 2 2

min_ E(u(b)) = min --0+P(B)+ s —P(B) ==,

P(B)e[0,2] B(B)e[0,2] 3 3 3
1 2 1
min E(u(r))= min --1+=—P(B) =,
P(B)€[0,2] B(B)e[0,2] 3 3 3

and the agent prefers betting on blue. Now, suppose the ball is not yellow and the
agent updates his belief set with prior-by-prior Bayesian updating. Then, the interim

worst-case expected utilities of r and b are

i - : P(B)
min E(u(b)) = min 5 0+ 5 — 0,
P(B)E[03] pB)e)03] 3+ P(B) I +P(B)
3 P(B) 1
min  E(u(r)) = min 3 + 0= =
P(B)e0,2] (ulr) pmye2] 5 +P(B) 5 +P(B) 3

Now, the agent prefers betting on red. Hence, learning that the color of the ball is not
yellow changes the optimal action of the agent. He does not follow the optimal ex-ante

plan at the interim stage and behaves dynamically inconsistent.
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Solving the problem of dynamically inconsistent behavior is not straightforward. There
is a well-known conflict between dynamic consistency and consequentialism in the lit-
erature on ambiguous beliefs in dynamic settings. Intuitively, consequentialism states
that interim preferences do not depend on past discarded actions or events that are
not consistent with the given information set. Among others, |[Ellig (2018]) and |Aryal
and Stauber| (2014)) show that dynamic consistency, consequentialism, and a common
prior assumption are only fulfilled simultaneously if players behave as expected util-
ity maximizers. Hence, ambiguity, dynamic consistency, and consequentialism cannot
occur simultaneously. The literature proposes different approaches to overcome this

impossibility result. The three main approaches are the following:

e Siniscalchi| (2011) axiomatize and generalize the consistent planning approach of
Strotz (1955) to an ambiguous decision-theoretical setting. He states that

“...consistent planning (CP) is a refinement of backward induction. If
there are unique optimal actions at any point in the tree, the two
concepts coincide. Otherwise, CP complements backward induction
with a specific tie-breaking rule: indifferences at a history h are resolved

by considering preferences at the history that immediately precedes h.”

Siniscalchi (2011) shows that consistent planning satisfies consequentialism but

not dynamic consistency.

In our Ellsberg urn example of [Figure 1] the optimal interim action of an agent
who uses consistent planning is betting on red. At the ex-ante stage, the optimal

plan that is consistent with the optimal interim choice is betting on red.

e Sarin and Wakker| (1998) and Epstein and Schneider| (2003) define rectangular-
ity for different decision-theoretic settings| They show that rectangularity im-
plies dynamically consistent behavior in their setting. Furthermore, Riedel et al.
(2018) explore a dynamic decision-theoretic setting where preference relations
are defined on pairs of imprecise probabilistic information and acts. Roughly
speaking, they show that an ambiguity-averse agent that behaves dynamically
consistently chooses a rectangular subjective ex-ante belief set and evaluates acts

according to the worst-case belief given his subjective ex-ante belief set.

Rectangularity is a condition on belief sets that leads to a generalized version of
the law of iterated expectation. Intuitively, the agent takes possible future worst-
case beliefs into account. Therefore, rectangularity depends on the information
structure of the decision problem. [Epstein and Schneider| (2003) and Riedel

2Sarin and Wakker| (1998) do not use the term rectangularity. Instead, they use the term reduced
family of probability measures for the rectangular hull as defined in [Epstein and Schneider| (2003]).
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et al.| (2018)) show that an agent with a rectangular belief set satisfies dynamic

consistency for a given information structure and consequentialism.

A different but related approach is the one of Hill (2020). He solves the conflict
of dynamic consistency and consequentialism by reformulating the dynamic con-
sistency axiom on subjective trees. Further, if subjective trees are represented

by a partition of the state space, dynamic consistency implies rectangularity.

In our Ellsberg urn example of [Figure 1] the agent’s optimal ex-ante and interim
action with rectangular beliefs is betting on red. The optimal interim action

becomes ex-ante optimal.

e The updating rules of |Hanany and Klibanoff (2007, 2009) satisty dynamic con-
sistency but violate consequentialism. Roughly speaking, a decision maker with
maxmin preferences and a set of priors P only updates a subset of P. This sub-
set depends on his ex-ante optimal choice and ensures that the ex-ante optimal
plan over contingencies is interim optimal. For smooth-ambiguity preferences,
Hanany and Klibanoff (2009) derive the so-called smooth-rule. The smooth-rule
updates the second order belief such that the ex-ante worst case beliefs receives
more weight. These updating rules predict a different optimal strategy in our
Ellsberg urn example of Now, betting on blue is ex-ante and interim

optimal.
Besides, Klibanoff et al.| (2009)) axiomatize a recursive smooth ambiguity model.

So far, it is still an open question if there exist settings or conditions where these
three approaches lead to similar or different optimal behavior. Consistent planning
and rectangularity are both related to backward induction. Thus, in some settings, it
is argued that they induce equivalent optimal behavior. This is the case in our example
of [Figure 1} However, we will see in that settings exist where the equilibrium
strategies differ. The updating rules of Hanany and Klibanoff (2007, [2009) focus on the
ex-ante optimal choice. Therefore, as in our Ellsberg urn example, they will usually

predict different behavior as consistent planning or rectangularity.

Ambiguity in Dynamic Games

The formation of beliefs plays a fundamental role in games with incomplete information
and motivated the definition of different equilibrium concepts as, e.g., perfect Bayesian
equilibrium (Fudenberg and Tirole (1991alb)) or sequential equilibrium (Kreps and
Wilson|(1982)). One essential assumption for these equilibrium concepts is that rational

players use (whenever possible) Bayes’ rule to update their beliefs after observing new
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information. Further, in the canonical model with expected utility maximizers, Bayes’
rule leads to dynamically consistent behavior. The best response at the ex-ante stage
is also optimal at the interim or ex-post stage. This result breaks down if players
are ambiguity-averse and maximize their worst-case expected utility. Dynamically
inconsistent behavior makes it impossible to use the standard concepts of sequential
equilibrium and perfect Bayesian equilibria and complicates the analysis of dynamic

games with ambiguity.

Most of the literature on ambiguity in dynamic games focuses on the optimal decision at
one stage, e.g., Lol (1998), Kajii and Ui (2005), and [Eichberger and Kelsey| (1999)) focus
on the interim optimization. Lo (1999) explores extensive-form games with maxmin
expected utility. Instead of imposing conditions to ensure dynamic consistency, he
introduces an equilibrium concept that explicitly requires that each player chooses a
strategy that is interim optimal in an equilibrium. [Kajii and Ui (2005)) also formulate
an incomplete information game with multiple priors. Their setting only consists of
two stages. First, new information arises due to signals which are independent of the
strategies. Then, players play a simultaneous-move game. Therefore, the information
structure is very close to decision-theoretic settings and does not, capture the strategic
aspects that, e.g., occur in signaling games. Further, Eichberger and Kelsey (1999)
investigate signaling games in which beliefs are represented by capacities. They for-
mulate an equilibrium concept similar to perfect Bayesian equilibrium, but they focus

on interim utility maximization.

Hanany et al. (2020) define sequential equilibria for multistage games with incomplete
ambiguous information. In their setting, players have smooth-ambiguity preferences
and use the smooth-rule of Hanany and Klibanoff (2009) to update beliefs. Battigalli
et al.| (2019) analyze self-confirming equilibria for players with smooth-ambiguity pref-
erences. But instead of the smooth-rule, they use prior-by-prior Bayesian updating

and the consistent planning approach of Siniscalchi (2011). We discuss these papers in

more detail in [Chapter 1}

So far, the literature on rectangularity in games is small. |Liu and Xiong (2016)) define
rectangularity in a game-theoretical setting. However, they use a similar model as
Kajii and Ui (2005) and the information structure is very similar to decision theory
and cannot capture strategic aspects. [Muraviev et al.| (2017)) use rectangularity to show
outcome equivalence between mixed and behavioral strategies in games with Ellsberg

strategies.

Generalizing rectangularity to games is not straightforward. In games, players receive
new information by observing actions played by their opponents. If players have het-

erogeneous information, observing opponents’ actions reveals information about the
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states. These strategic effects cannot occur in decision-theoretical models. Further,
as already mentioned |Ellis (2018)) and |Aryal and Stauber| (2014) show that dynamic
consistency, consequentialism, and a common prior assumption can only be satisfied if

the players behave as expected utility maximizer.

Contribution

In this doctoral thesis, I generalize rectangularity to different settings.
studies multistage games with ambiguous incomplete information about states of the
world or types of opponents. Here, ambiguity arises due to ambiguity about the choice
of nature. There is no ambiguity about the strategies of the opponents. First, T
generalize rectangularity to multistage games. Then, I define and show the existence
of sequential equilibria with rectangular beliefs. To overcome the impossibility result
of Ellis| (2018) and |Aryal and Stauber| (2014)) T weaken the dynamic consistency and
common prior assumption slightly. Similar to Epstein and Schneider| (2003) and [Riedel
et al.| (2018)), dynamic consistency is only required for the information structure induced
by the game. Furthermore, players may have heterogeneous rectangular belief sets if

they receive heterogeneous information during the game[

In I analyze ambiguous persuasion with dynamically consistent players. In
the ambiguous persuasion setting, the Sender can design an ambiguous communication
device by choosing a set of communication devices. Here, ambiguity arises due to an
ambiguous strategy that cannot be modeled by the setting of [Chapter 1] Ishow that the
Sender can gain from ambiguous persuasion even if the Receiver behaves dynamically
consistently. Furthermore, I discuss the relation to the (negative) value of information

of ambiguous communication for the Receiver.

investigates a dynamic decreasing price auction with two buyers. The buyers
have ambiguous beliefs about the valuation of the opponent buyer. The timing of the
auction is discrete. At the beginning of each period, one player is chosen randomly
and secretly and gets a price offer py. If he rejects the price offer, the other buyer gets
the same price offer. If one of the buyers accepts, the auction ends immediately. If no
one accepts the current price, the auction proceeds to the next period with a new price
offer pry1 < pr. The timing becomes complex since the buyers never learn who gets
the price offer first. Therefore, the auction cannot be modeled as a multistage game
of [Chapter 1] I show that even if buyers behave dynamically consistently, the seller
can extract almost all surplus. Furthermore, in this setting, consistent planning, and

rectangularity lead to different equilibrium strategies.

3See [Section 1.2.2.2| for a more detailed discussion.



Chapter 1

Dynamic Consistency in Incomplete
Information Games with Multiple

Priors

1.1 Introduction

In this chapter, we model multistage incomplete information games with uncertainty
about types or states, which include risk and ambiguity. The uncertainty is given by a
common set of probability distributions P over states or types, called imprecise proba-
bilistic information. If P is a singleton, the uncertainty reduces to risk, and players face
a usual incomplete information game. We assume that players have maxmin expected
preferences (MEU) as introduced by |Gilboa and Schmeidler| (1989)) and maximize their

worst-case expected utility.

We contribute to the literature of ambiguity in dynamic games in two ways. First, we
characterize a belief formation process that ensures dynamically consistent behavior.
We assume that players update their belief sets prior-by-prior using Bayes’ rule when-
ever possible. Players know which information they could potentially get in the future,
i.e., they know the structure of the game. When forming a set of ex-ante beliefs, players
combine their knowledge about the information structure and the information given by
the common set of imprecise probabilistic information. Formally, this leads to a belief
set for each player that satisfies a rectangularity condition and ensures dynamically

consistent behavior.

Second, we generalize the concept of sequential equilibrium to incomplete information
games with ambiguity. Sequential equilibria require sequential rationality, which can-

not be satisfied if players are dynamically inconsistent. Thus, using our belief formation



1.1. INTRODUCTION

process, we ensure dynamically consistent behavior and, therefore, the existence of a
sequential equilibrium. Furthermore, we show that ambiguity can induce sequential

equilibria that cannot exist without ambiguity.

Using our belief formation process makes it possible to analyze dynamically consistent
behavior of ambiguity-averse players in dynamic games. This allows for an analysis of

ex-ante and ex-post stages, which, e.g., facilitates a consistent welfare analysis.

Ellis| (2018) and Aryal and Stauber| (2014) fix a common set of priors in a game with
ambiguity. They argue that generally, a common ex-ante belief set can only be rect-
angular for all players if ambiguity about other players’ types reduces to risk. In our
setting, if players receive heterogeneous information during the game, our belief for-
mation process leads to heterogeneous ex-ante belief sets. Intuitively, players interpret
the common imprecise probabilistic information differently since they take their own
information structure into account. Considering this heterogeneity allows for rectan-
gular ex-ante belief sets of all players despite the common set of imprecise probabilistic
information[l] Therefore, the critique of [Ellis (2018) and [Aryal and Stauber] (2014) does
not apply to our setting.

The structure of this chapter is as follows. First, we summarize the related literature. In
[Section 1.2 we formulate the extensive-form game with ambiguity and define belief sets
that satisfy rectangularity. shows the existence and the relation of ex-ante
and interim equilibria. In we prove the existence of sequential equilibria
with rectangular beliefs and discuss the relationship between sequential rationality
and rectangularity. Furthermore, we give an example that shows that ambiguity might
induce new sequential equilibria. Finally, concludes.

Related Literature As already mentioned in the general introduction, Epstein
and Schneider| (2003) and Riedel et al. (2018)) axiomatize rectangularity in decision-
theoretical settings. However, due to the different information structures in games
and decision-theoretical settings and strategic effects, we can not directly apply their

definition of rectangularity to games.

Hanany et al.| (2020)) and Battigalli et al.| (2019) apply the approaches of Klibanoff et al.
(2009) and Siniscalchi| (2011 to games. [Hanany et al.  (2020]) explore a finite extensive-
form multistage game with incomplete information but use smooth ambiguity aversion
instead of multiple priors. They show that the smooth-rule of Hanany and Klibanott

(2009)) is equivalent to sequential optimality and induces the existence of sequential

LOur setting does not satisfy Common Ex-Ante Behavior (Axiom 4) of [Ellis| (2018)), since we allow
for heterogeneous rectangular ex-ante belief sets. Therefore, his impossibility result does not apply in

our setting.
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equilibria. Battigalli et al.| (2019) explore (rationalizable) self-confirming equilibria
in dynamic games with smooth ambiguity-averse players. They use the consistent
planning approach of Siniscalchi (2011). We discuss the relation to these papers in

Rectangularity has been rarely used in games. Liu and Xiong (2016)) define rectangu-
larity in a game-theoretical setting similar to Kajii and Ui (2005)). Their game only
consists of two stages. First, players observe a signal which reveals information about
the ambiguous state. Then, they play a simultaneous-move game. The signal is in-
dependent of the strategies of the players. Therefore, their setting cannot capture

strategic aspects that arise, for example, in signaling games.

Muraviev et al. (2017) explore extensive-form games where players can use Ellsberg
strategies, introduced by [Riedel and Sass (2014). Ellsberg strategies extend mixed
strategies to ambiguous strategies, i.e., instead of playing a probability distribution
over the pure strategies, a player chooses a set of probability distributions. They
show that a rectangularity condition ensures outcome-equivalence between mixed and
behavioral strategies, but they do not formulate a general equilibrium concept for such
games. However, similar to this chapter, [Muraviev et al. (2017) have to construct a
filtration to define rectangularity. The difference lies in the source of ambiguity. In
Ellsberg games, ambiguity arises due to ambiguous strategies. In our setting, ambiguity

arises due to incomplete ambiguous information about states or types.

1.2 Model

This section defines a finite extensive-form multistage game with incomplete informa-
tion, multiple priors, and perfect recall. The definition is similar to [Hanany et al.
(2020)), but instead of smooth ambiguity aversion, players face imprecise probabilistic
information and maxmin preferences. We will show later that given this imprecise
probabilistic information and the information structure of the game, each player con-
structs a subjective set of ex-ante beliefs. Given these beliefs, each player evaluates a

strategy by using maxmin expected utility (MEU).

Definition 1.1. A tuple I' = (N, H,(Z;)ien, (u;)ien, P) is a finite extensive-form
multistage game with incomplete information, perfect recall and multiple

priors with:
e N is a finite set of players.

e H is a finite set of (terminal) histories, where each history h is of the form
h = (h—la (hO,i)i€N> ) (hT,i)ieN)~

10
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For 0 <t <T+1,let H = {h" .= (h_1, (hos)ien, -, (hi—14)ien) : h € H} be
the set of partial histories up to but not including stage t. For each player i € N,
0<t<T+1andht e H', Ai(h') = {hy; : h e H h = h'} is the set of actions

available to player i at ht. The set of uncertain types or states is H.

o 7, = Uyerer It are the information sets for player i, where each I} is a partition

of H' such that for all b, ht € H' ht € I;(ht) implies A;(ht) = A;(h), where
I;(ht) is the unique element of I} such that h* € I;(h'). Purthermore, T = J;cy ZL;
denotes the set of all information sets.
For0<t<Tandh' € H*, Ry(h') == ((Ii(h*), Il ;)o<s<t, 1i(h')) is the ordered list
of information sets encountered by player i and the action taken by player i given
the partial history ht. The game satisfies perfect recall in that for each player i,
each stage 0 <t < T, and each partial history ht, ht € H', I,(h*) = I;(h') implies
Ri(h') = Ry(h').

e u;: H — R is the (utility) payoff of player i.

o P C A(HY) is the set of imprecise probabilistic information over states or types
which s homogeneous across all players. We assume that P is compact and all
7 € P have full support, i.e., w(h°) >0 for all h° € H® and all ™ € P.

The definition above allows for imperfectly observed actions as well as for private
information about types or states. The multistage structure assumes that each player
chooses an action at each stage. Since A;(h') can be a singleton, this assumption is

not restrictive and sequential play can be modeled as well.

The only difference compared to the standard setting without ambiguity is the last
bullet point. Instead of having an exact distribution over types, players have imprecise
probabilistic information given by a set of possible distributions P. If P is a singleton,
there is no ambiguity, and the game reduces to the standard version without ambiguity.
The compactness assumption on P ensures the existence of a worst-case belief. Full
support ensures that an out-of-equilibrium path only occurs because of non-completely
mixed strategies. Therefore, for completely mixed strategies, Bayes’ rule is always
well-defined.

At each stage, conditional on their information set I?, players choose a distribution over
their actions which are available at I!. A strategy profile consists of these distributions

for each player and information set.

Definition 1.2. A (behavioral) strategy for player i in a game I is a function o;
such that o;(I1) € A(A;(1})) for each I} € T!, where A(A;(I})) denotes the set of all
probability vectors over A;(I}).

Furthermore, let 3; denote the set of all strategies for player i, o = (0;)ien be a strategy

11
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profile, and o_; = (0});2 be the strategies of all opponents of i.

A strategy profile induces a transition probability with which a particular (partial)
history occurs. For a given strategy profile o, a history h, and 0 < r <t < T + 1, the
probability of reaching h' starting from A" is defined by

po(h'|R7) = H H o;(1 (hs,j)-

JEN r<s<t

It will be useful to split p,(h'|h") in one part that only depends on the player himself

and another part that represents the actions of all opponents. We define
po,('B7) =[] oi(Li(h*)) (),
r<s<t
and

po_, (A7) = H H o;(I (hsj)-

j#i r<s<t

Then, pq, (h'[h")po_,(h'[h") = ps(h[R").

1.2.1 Dynamic Inconsistency

Multiple priors can lead to dynamically inconsistent behavior. To illustrate dynamic
inconsistency, we repeat the three-player example from Aryal and Stauber (2014).@
We will use this example as a running example in the following sections to illustrate

notation and results.

Running Example. The game, depicted in shows that ambiguity and
multiple priors can lead to dynamically inconsistent behavior. There are two players,
player 1 and player 2. First, nature chooses the state L, R, or O. Let [, r and o be
the probability of L, R and O, respectively. The imprecise probabilistic information is
given by an e-contamination of the distribution that assigns probability one to R, i.e.,
(I,r,0) = (0,1,0). We denote the set of all probability distributions over {L, R,O} by

A. Then, the imprecise probabilistic information is[]

P={(1-6)0,1,0)+¢€(l,r,0) : (I,r,0) € A}.

2To fit our definition of multistage games, one would have to include a constant action for player 2
at the information set of player 1 and a constant action for player 1 at the information set of player 2.
Since this does not change the results of the example, we skip these constant actions due to notational
convenience.

3P does not satisfy the full support assumption stated in Formally, the full support
assumption is needed to guarantee that the probability of reaching an information set is zero if and
only if all partial histories leading to this information set have probability zero because of the played
strategy profile. Hence, if the probability of reaching an information set is zero for one ex-ante belief

m € P, then it is zero for all ex-ante beliefs. Due to the e-contamination structure of P, the probability

12
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Nature

0,y 101,y 101,y g

100,z 100,z -1,z —1,x
Figure 1.1: Three-Player Game of |Aryal and Stauber| (2014))

To illustrate the problem of dynamic inconsistency, assume that P represents the ex-

ante beliefs of player 1.

After the choice of nature, player 1 can observe if the state is O or not. If the state
s not O, player 1 can choose between N and M. If the state is O or R and player 1
played N, player 2 can choose an action without knowing which of the two cases is
true. Dashed lines depict the information sets of both players. For the moment, let us
concentrate on player 1. His payoffs are independent of the strateqy of player 2. He gets
his lowest payoff, -1, if the state is O. Therefore, his ex-ante worst-case belief gives the
highest possible probability to O, i.e., the ex-ante worst-case belief is (0,1 — €, €). Since
the probability of L is zero, his optimal ex-ante strategy is playing M with probability

one.

Now, we check if player 1 has an incentive to deviate from his optimal ex-ante strateqy
after observing that the state is not O. Updating P prior-by-prior using Bayes’ rule
and conditioning on the event {L, R}, leads to the following set of updated beliefs

Bay(P|{L,R}) = {(l,r,0) = (1 —r,7,0) : r € [1 — ¢ 1]}.

His interim worst-case belief depends on his strategy. Playing M with probability one
would lead to a payoff of zero if the state is L and a payoff of 101 if it is R. Given this
strategy, his worst-case belief would be (e,1—¢,0). But, given this belief, playing M with

of R is at least 1 — € for all ex-ante beliefs. Therefore, the information set of player 1 always has a
positive probability. If player 1 plays IV with probability zero, the information set of player 2 will not
be reached if O has probability zero. In this case, it depends on the ex-ante belief if the probability of
reaching the information set of player 2 is strictly positive. Assuming an ex-ante belief set P satisfying

the full support assumption would lead to the same results as long as the minimum probability of L
1
@.
since the payoff of player 1 is constant w.r.t. to the action chosen by player 2, we skip the full support

is small enough, i.e., smaller than Since the payoff of player 2 is independent of his actions and

assumption due to notational convenience.

13
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probability one is no longer optimal. On the other hand, playing N with probability one

leads to a payoff of 101 or 100 if the state is L or R, respectively. Hence, the worst-case

belief, if he plays N with probability one, is (0,1,0). But for this belief, playing M with
1

probability one is optimal. One can show that for € > 155 the optimal interim strategy

of player 1 is a mized strateqy with probability 1(1)—2 <1 for M.

Hence, player 1 behaves dynamically inconsistently and plays a different strategy after
observing that the state is not O. For detailed calculations see |Aryal and Stauber

(2014).

The example above shows that new information can change beliefs such that the opti-
mal strategy changes as well. This leads to dynamically inconsistent behavior. How-
ever, at the ex-ante stage, player 1 knows that his actions only influence his payoff if the
state is not O. Should he not consider his knowledge about the information structure

of the game in his ex-ante decision?

In decision-theoretic settings, an essential property of a set of distributions or beliefs
to ensure dynamic consistency is rectangularity, or sometimes called stability under
pasting introduced by |[Epstein and Schneider| (2003) and Sarin and Wakker| (1998).
Rectangularity can be interpreted as a generalization of the law of iterated expecta-
tions. It captures the idea of decomposing any probability measure into its conditionals
and marginals. Therefore, at the ex-ante stage, players take their interim worst-case
beliefs and the information structure of the game into account. The information struc-
ture plays an essential role for rectangularity. The information that a player receives
influences his interim beliefs and, therefore, dynamically inconsistent behavior. Since
the game structure is known to each player, each player knows the possible information
sets for each stage. Knowing the possible sets of updated beliefs, a player constructs
his set of ex-ante beliefs in a rational way that is crucial for dynamic consistency. This
is given by constructing a set of ex-ante beliefs such that the belief system is rectangu-
lar (or stable under pasting). To define rectangularity, we have to consider that each
player’s information consists of the opponents’ observed actions. Therefore, we define
beliefs on a more general state space. However, we will see that defining beliefs on
the general state space does not change the equilibria of the game. Only ambiguity

aversion and dynamic inconsistency lead to new equilibria.

In the next section, we formulate the definition of beliefs and rectangularity.

1.2.2 Beliefs

In standard game-theoretic settings without ambiguity, players have a (common) ex-
ante belief over the set of types H°. Let 7 € AH° be such an ex-ante belief. Then,

player i faces the following maximization problem given a strategy profile of the oppo-
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nents o_;

max » u(h)pa,(hh®)ps_, (h[h")m(h°). (1.1)
CEAS T
To evaluate a strategy o;, player i calculates his expected payoff by multiplying the
ex-ante belief and the transition probability induced by his strategy and his conjecture

about the strategy profile of his opponents.

Furthermore, in games, new information is influenced by strategic aspects. In decision-
theoretic settings, further information usually occurs as an exogenously given signal. In
games, the signals are observable actions of the opponents. Therefore, the strategies of
the opponents influence the information that a player observes. To take this dependence
into account, we define beliefs over the set of (terminal) histories H such that they
are consistent with the set of imprecise probabilistic information P and the strategy

profile of the opponents o_;. We will see that our definition leads to an equivalent

maximization problem of player ¢ as [Equation (1.1)]

Before we start with the definition of beliefs, we need the following definition of a

sequence of partitions, which represents the information flow of the game.

Definition 1.3. Given the set of histories H and the information sets I, we denote

with (F})i=o....7+1 the sequence of information partitions of player i, where

77777

FV=H,

)

Fe={{nen neny, .}

Since there is a one-to-one relation between the elements F} of F} and the information

sets If € I!, we sometimes call F} an information set.

Fix a player 7 and a strategy profile o_;. First, we define a system of beliefs of player ¢
induced by the partition (F})i—o,. r+1, the imprecise probabilistic information P, and

o_;. Then, we discuss which properties are needed to have a maximization problem,

which is equivalent to [Equation (1.1)| Finally, we show the existence of a belief system

satisfying all these properties.
Definition 1.4. Given (F})i—o.. 111, the set of imprecise probabilistic information P
and a strategy profile o_;, we call ¥, . = ((\Iff,ﬂ_(Fit))Fiteff)tzomT the belief system
of player i if

v, () C A(H),

with support on F} for oll F! € F, t=,0,...T andi € N.
Furthermore, we call WO_ = W0 (F?) the ez-ante belief set and W._ (F}) the interim

i

belief set at information set F.
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To be consistent with the set of imprecise probabilistic information and the opponents’

strategy profile, a belief system should satisfy the following properties:

1) The ex-ante belief set W) is consistent with the set of imprecise probabilistic in-
formation P and the strategy profile of the opponent o_;. Formally, ¢ € W0 (F))

if and only if there exist 7 € P and a normalization constant ¢; € R such thatf]

_ Po;(R[R°)
=——"7

C;

¢(h) (h).

2) The interim belief sets W% (F}) are generated using prior-by-prior Bayesian up-

i

dating whenever possible. Formally,
wl (F!) = {Bay(6lF}) : o € WO_(FD)},
with

%22) if h e F!,

Bay(¢|F})(h) =} * .
0 otherwise

for all F} with ¢(F}) > 0, for some ¢ € W)_ (F)f]

3) For all information sets with positive probability, the interim belief sets are con-
sistent with the set of imprecise probabilistic information P and the strategy
profile of the opponents o_;. Let Bay(P|F}) be the prior-by-prior Bayesian up-
date of P at the information set F'. Then, similar to 2), ¢ € vl (F}) if and
only if there exist 7 € Bay(P|F}) and a normalization constant ¢! € R such that

o ()

i
G

o(h) w(h')

for all F} with ¢(F}) > 0.

Property 1) ensures that the ex-ante beliefs are consistent with the information given by
the game structure and the set of imprecise probabilistic information P. The second
property is an extension of the usual assumption that players update their beliefs
using Bayes’ rule whenever possible. Property 3) ensures the same relation between
the interim belief sets and the Bayesian update of P. Furthermore, if U9 = {¢} is

singleton and satisfies all properties, the ex-ante maximization problem of player 7 is

1
0 _ + 0 0 0
15, > ko (HAYR) = s, =5 k) (A o (),

‘Please note that the normalization constant is needed to guarantee, that ¢(-) is a probability

measure.
®The full support assumption on P implies that ¢(F!) > 0 if and only if ¢'(F}) > 0 for any

¢, 9" € WO (FP).
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which is equivalent to the maximization problem of [Equation (1.1)} Therefore, using

our definition of beliefs over (terminal) histories does not influence the set of Nash
Equilibria in an unambiguous game. In we will see that the equivalence of
the maximization problems extends to games with ambiguity if there is no dynamically

inconsistent behavior given the set of imprecise probabilistic information.

Before proceeding with the equilibrium analysis, we have to ensure that there exists a
belief system over histories satisfying the above properties. The following assumption

will ensure the existence.

Assumption 1.1. We assume that the number of actions is constant across different
information sets at the same stage, i.e., |A;(I)| = |A;(IV)| for all It, I' € T" and i € N,

1771

where A;(I}) denotes the actions set of player i at information set I!.

|[Assumption 1.1| may seem restrictive. However, any finitely repeated game with in-

complete information does satisfy [Assumption 1.1l Furthermore, for any game I' as
defined in [Definition 1.1 we can find a game I" satisfying [Assumption 1.1|such that the
equilibria of T and I" are payoff-equivalent. One can easily construct I'' by including

copies of partial histories of I. To be more precise, let ¢ be a stage with two information
sets I and I and assume that |A;(I")] = ¢; # ¢ = |A;(I")|. Then, we can copy the
partial histories starting at I} co-times and the partial histories starting at ff c1-times.
The new action sets, including the copies, have both a cardinality equal to ¢; times
co. Since a player is indifferent between any copy of a partial history and the partial

history itself, including these copies does not change the equilibrium payoffs. For the

rest of the chapter, we assume that [Assumption 1.7]is satisfied.

Due to [Assumption 1.1, the number of actions player ¢ can choose from at stage ¢ is

the same for all information sets. We denote this number with |AY|.

Lemma 1.1. Let ¢; == Hthl\Aﬂ. The following sets form a belief system that satisfies
Properties 1) to 3).

0 (#) = {0 r0) e,

C;
@, (F!) = { Bay(o|F)) : 6 € ®)_(F")}

Jor all information sets with ¢(F}) > 0. Furthermore, any belief system satisfying
Properties 1) to 8) has to be equal to ®,_, at all information sets with ¢(F}) > 0.

Simple calculations show that [Assumption 1.1} Property 1), and the normalization of

beliefs imply that the normalization constant equals ¢;. Then, Property 1) and 2) follow
immediately from the definition of ®,_,. Bayesian updating implies that ¢! = []._,|A?]
and Property 3) follows similar to Property 1). The formal proof can be found in
in the Appendix.
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We come back to our running example to illustrate the definitions above:ﬁ

Running Example (cont.). We denote with LM the history, where nature chooses
type L and player 1 plays M. All histories are denoted similarly. Furthermore, denote
the probability with which player 1 plays N with n and similarly all probabilities of an

action with the corresponding lower case. The set of all histories H is then given by
H={LM,LN,RM,RNS,RNT,0S,0T}.

At the ex-ante stage, player 1 and 2 have no information about the states. Therefore,
their information partitions at the ex-ante stage consist only of one element, which is
the set of all histories

F)=H.

At the interim stage, player 1 can observe if the state is O or not. His information set
consists of three elements. The first set contains all histories starting at L or R. The

second and third set represent the case where player 1 learns that the state is O:
Fi ={F\,,Fl,, F{3} = {{LM,LN,RM,RNS, RNT},{OS},{OT}}.

Similarly, player 2’s interim information partition consists of the set that contains all
histories starting from O and histories where the state is R and player 1 plays N and

the sets where he learns the exact history:
F21 = {F21,17 F21,27 F21,3a F21,4} = {{RNSa RNT7 OSa OT}v {LM}’ {LN}7 {RM}}

A strategy o_1 = (s,t) of player 2 induces a transition probability p,_ ,(-|-) for each
history h € H which is independent of player 1’s strateqy. Multiplying the imprecise
probabilistic information with the transition probability, p,_,(+|), induced by the strategy
o_1 = (s,1), leads to the following set of ex-ante beliefs for player 1:

1 t
(I)?s,t) = {(5757 g, g, %,08,015) : (l,r,0) € 73}.

Similarly, the ex-ante belief set of player 2 given strategy o_o = (m,n) of player 1 is

(ID(()mm) = {(lm, In,rm, %, %, g, g) : (L,r0) € 77} .

Please note that our running example does not satisfy the multistage structure and
The game can be easily translated into a game that satisfies both assumptions by including
trivial moves. However, due to the simple structure and the fact that each player has only one non-
trivial move, [Assumption 1.1]is not needed for the following constructions and calculations. Therefore,
due to simplicity, we use this simpler version of the game.
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1.2.2.1 Rectangularity

Given the above notation and definitions, we formulate the formal definition of rectan-
gularity. As already mentioned, rectangularity is a generalization of the law of iterative

expectation.

Let us first look at the case without ambiguity, i.e., there exists only one ex-ante
belief ¢, and assume that Bayes’ rule is always well defined. For each information
set ! in the next stage, Bayesian updating leads to an updated belief qZF}. Roughly
speaking, Bayes’ rule is defined such that the denominator of Bayes’ rule equals the
marginal belief of reaching the information set on which we update the ex-ante belief.
Hence, multiplying (or pasting) the updated belief given an information set F' with the
marginal belief of reaching this information set leads to the ex-ante belief restricted to
F!. This holds for any information set and, therefore, summation over all information

sets leads to the ex-ante belief on H, i.e.,

p(h) =Y ¢(For (h).

FleF}

Now, we generalize this property to an ambiguous setting. With ambiguity, players
have a set of ex-ante beliefs. Rectangularity states that we can take any updated and
marginal belief (even if they are not derived from the same ex-ante belief), and the

pasting is still an element of the ex-ante belief set.

Definition 1.5. For beliefs ¢ € VN (F!™') and ¢ = (¢pt) prerr with ¢pe € U (FY),

i

the pasting of marginal and updated belief, ¢ o ¢, is defined as

$pod() =Y d(FNr ().

FleF!

The pasting of Vi (F!™) and (U, (FY))ptert is defined as the set consisting of pasting

%

each element of W'~ (F}™') with each element of (Ve (F)))ptert i-e.,

W F ) o (W, (F)) oy = {0061 6 € WA and dpy € W, (7))}
A set of beliefs W (F/™") is called rectangular (stable under pasting) if

Vo (FY) 0 (U5 (F)) pue = Vo L (F).

FleF?

A belief system W is called stable under pasting (rectangular) if \Iff,j(Fl-t_l) is stable
under pasting for all Ff € F}, i€ N andt=1,...T + 1.

By the intuition given above, without ambiguity, rectangularity should follow from

Bayesian updating. The following remark shows that this is indeed true.
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Remark 1.1. Let 99 be singleton and ¢(F) > 0 for all F!. Then, Bayes’ rule is
always well defined and rectangularity is equivalent to Bayes’ rule. To see this, take

into account that since V2 is singleton, W, (F}) are singleton as well. Denote by
F! the element of the partition F! which contains h. First we show that Bayes’ rule

implies rectangularity:

dpop(h) = ¢(F)op(h) = 6(F,

FleF?

The other direction follows by similar calculations since ¢(F}) > 0:

o(h) = pod(h) = ¢(F)op(h) &  dp(h)= Wlt) :

Furthermore, rectangularity preserves some nice properties. shows that
the Bayesian update of ¢ o é equals qg and the marginal probability of a pasting ¢ o é
equals the marginal probability of ¢. We will see that these properties are beneficial

when we explain the construction of a rectangular belief system.

Remark 1.2. Let W'~ (F/™") be rectangular. Then, for any ¢ € WL~ (F/™") there exist
some ¢ € W N (F™Y) and ¢ = (¢t ) prerr € (VL (F}))prerr such that

o(h) = ¢ 0 d(h) = Y &' (F))or:(h).

t t
FleF!

Let F! denote the element of the partition which contains h. Then, ¢(h) = ¢ (F!) ¢zt (h).

7

e The Bayesian update of ¢ given F! equals

o) X @ (F)oR(R)
Bay(@Fz )(h) _Eheﬁf ¢(h) - Zheﬁlﬁ ZFf QS/(F;t)Q;FZt(h)
_¢ (Fz )¢F;(h> _ (513#(71)’

where the last equality follows since Y, gzgpit(h) =1 for allt > 0.

o The marginal distribution is given by

Do) = > dENr(h) =& (F) Y ome(h) = ¢'(F)).

heF} heF}! F} heF}

—_——
=1

Hence, marginal and updated distributions of a distribution of a belief set that is rectan-

gular coincide with the marginal and updated distribution from which it is constructed.
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The literature on decision theory using rectangularity and cited above shows that a
rectangular belief system can always be constructed in the following way. First, given
the ex-ante belief set and the information structure, one can calculate the prior-by-
prior Bayesian updates for all information sets. Then, one proceeds by backward
induction and constructs a rectangular belief set by pasting marginal and updated
beliefs. The belief sets constructed like this are the smallest rectangular sets that
contain the original belief sets. Therefore, they are called the rectangular hulls of the
original belief sets. The same method can be used here to get a rectangular belief
system for completely mixed o_;. When o_; is completely mixed, Bayes’ rule is always
well defined, and we can derive the prior-by-prior Bayesian update of @272, for each
stage and each information set. Denote with ®’~!(F/~') the Bayesian update of ®%
at t — 1 given the information set F;~' and, similarly, with ® (F}) the Bayesian
update at ¢ given Ff. The rectangular hull rect(®L-!(F{ ™)) is given by the pasting of
®I-Y(FITY) and @ e,

rect(®} 1) = {¢ 0o : ¢ € B (F) and ¢ € B, (FY), VF] € ff} :

Remark 1.2 shows that the set of Bayesian updates of rect(®."!) coincides with the
set of Bayesian updates of ®.~!. Therefore, rect(®!"!) is rectangular by construction.

This method holds for any arbitrary ¢. Hence, starting with the last two periods, T'—1
and 7', and proceeding by backward induction we can always close a prior set <I>27i
under pasting and rect(®_) is the smallest set containing ®0_ that is rectangular.
Furthermore, the construction induces that the Bayesian updates of rect(®) ) are

rectangular for any information set.

If o_; is not completely mixed, there can exist information sets such that the marginal
probability of reaching these information sets is zero. Let F! be an information set
such that there exists ¢ € % with ¢(F}) = 0. The full support assumption of P
implies that ¢/(F}) = 0 for all ¢' € ®)_. Let F/~" be information set that precedes F7,
i.e., ! C F/~' and, without loss of generality, let ¢(F; ') > 0F| Furthermore, perfect
recall implies that all information sets that are reachable from F have probability zero
as well. For information sets with probability zero, Bayes’ rule is not well defined. The
construction of the rectangular hull as described above can be generalized as follows.
For all information sets with positive probability, the set of updated beliefs is derived
prior-by-prior Bayesian updating. For information sets with probability zero, players

can choose an arbitrary compact set of updated beliefs. Then, the rectangular hull is

"We assume that the Bayesian update is a probability distribution over the whole set of full histories
H such that histories that are not an element of the observed information set have probability zero.
8If ¢(F!~') = 0 we can replace F! by F/~' and check if the probability of the information set
preceding Fit_l has positive probability. Repeating this leads to an information set with probability

zero such that the preceding information set has a strictly positive probability.
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constructed by backward induction, as described above. The construction may change
the set of beliefs at information sets with zero probability. But the construction of the
rectangular hull of the belief set at F'~! is not influenced by the belief set at F!, since
the marginal probability of F} is zero. Therefore, the arbitrary choice of updated belief
sets at information sets with probability zero does not influence the construction of the

rectangular hull, and we use the notation rect(®._ ) for any strategy o_; € ¥_;.

To illustrate the construction of a rectangular prior set, we come back to our running

example.
Running Example (cont.). We have already shown that

H={LM,LN,RM,RNS,RNT,0S,0T},
‘E’OZHﬂ

Fl = {Fl{l, Fl{Q, F1{3} = {{LM,LN,RM,RNS,RNT},{0OS},{OT}},
f21 = {F21,17 F21,27 F21,37 F21,4} = {{RN‘Sv RNTa OS) OT}7 {LM}7 {LN}7 {RM}}7

11 t
(I)((]s,t) = {(57 5,%,%,%,05,@) : (l,r,0) € P} ,

rTm rm o o

S RICREL 2) : (l,r,o)EP}.

To construct the rectangular hull of CD(S’t), we need the marginal and updated beliefs of

(mn) =

player 1. The marginal beliefs for an arbitrary ¢ € (ID?S " of the information sets of
player 1 are

1y g m s Tt
¢(F11,2):087
¢(F11,3>:0t

For an arbitrary ex-ante belief ¢ € @(()si), the Bayesian update given F1171 15

~ l I r rs rt
lhﬂme>—<2a+ryzu+ryza+rf2U+TV2U+TY’ )

Hence, the prior-by-prior Bayesian updates of (ID ) given the information sets F1 ¥

1
Fly, and F}4 are

{ l r TS rt
<zu+ D 20 2040 2 u+r)za+ry0”>:“rm)ep}

{

:{(Z,Z 5,7,0,0) : 1€ [0, 5], ~€[1;’ﬂi %}
{
{

Bay(é[()s,t) |F11,2) = (07 Oa 07 07 07 1a O) }7
Bay<cb[()s,t) ’F11,3) = (07 Oa 07 07 07 O, 1) }
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The rectangular hull rect(q)(()s t)) consists of all possible combination of marginal and
updated beliefs. For the histories of the information sets Ff’Q and F11’3 ,the updated
belief is either zero or one. Therefore, we concentrate on the information set Fllﬁl.
Since 1, 7, 1, and r are elements of closed intervals, we can focus on the all possible
combination of the lowest and highest values for l~, 7, I, and r. Then, the convexr hull

of the pasting of these distributions forms the rectangular hull.

Let ¢ be such that r =1 and | = 0. Given this ex-ante belief, the marginal probability
of reaching F} | is ¢(F\,) = 1. Let ¢ denote the pasting of the marginal ¢(F},) and
the update gb. Considering lowest and highest values for 7 and l, there are two updated

beliefs é that can be pasted with this marginal belief:

o & such thatl—()— -7
The pasting is then given by

_1 P

° qgsuchthatizg 5
The pasting is then given by

0 6 = (o(FL )L 6(FL )L S(FL)F, 6(FL 1 )Fs, 6(FL, )7, 0,0)

€ 1 € 1 € 1
1.- 1. (===} 1.[=2== 1.2 -2
151 (3-5) 1 (3-5) o1 (3-5)100)

Combining any possible combination of (I,r,0) and (I,7) in such a way leads to the
pastings given in [Table 1.1, The probability of OS and OT follows from the pasting

Marginal Update Pasting

r=1,1=0 |Il=0=1-7 (0,0,1,£,£,0,0)
r=1,1=0 |l=§=1-7 <§,§,§,%7<2>’0’0>
r=l-el=c|l=0=1%-7 (0,0,%,%,%,0,0)
r=l-el=c|l=5=1—7 (5.5 555 152, 552, 0,0)
r=l-el=0|l=0=1—7 0,0, 15¢, U592 020 g e
r=l-el=0|l=5=1-7 Ci“ﬁg*ﬂgﬁﬁkﬁiﬂjﬁmaa>

Table 1.1: Pasting for Rectangular Hull of Player 1
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1.2. MODEL

with the updated belief given the information sets Fl{2 and F1173. For the first four rows
the marginal probability of reaching Fll’2 or F11,3 s zero since o =1 —r —1=20. For
the last two rows, | =0 and r =1 — €, imply o = €. Since the prior-by-prior Bayesian
update given F1172 or F1173 consists of just one belief, which gives probability one to OS or
OT, respectively, the pasting of marginal and update for OS and OT equals the values

given above.

The rectangular hull rect(@o ) of player 1 is then given by the convex hull of the
pastings given in |Table 1.1);

1-— 1-— 1—e)t
rect(cb?svt)) = conv{ <0,0, 5 6, ( 26)8, ( 5 ) ,es,et) ,

e e l—€e (1—¢s (1—e) 1 st
- = 0,0 0,0,=,=,=,0,0
(2’2’ 2 2 2 ) 27272
(1—ee (1—€e (1—€)? (1—€)s (1—e)*t
t .
( 2 Y 2 ) 2 Y 2 ) 2 768’6

To see the difference between the rectangular hull and @ (5.0)7 remember that @((]S p U8

given by

11 t
(I)(()s,t) = {(5 5 g TQ—S 7"2 os,ot) : (I,r,0) EP}

1—€e (1— 1-—
= conv{ (0,0, 6, ( 6)8, (1=er © g) ,

2 2 2 7272

e e l—€e (1—¢€s (1—¢€r 1
<§7§a 9 ) 9 9 9 7070 ; 070a§7

[N VA

t
—,0,0 .
7277>}

Since the belief ((1 e (=0 (156)2, (1726)287 (lfg)zt,es,et is not an element of CI>(()8 ys it
follows that CD?St rect(CI)(S t)). The last row in |Table 1.1 shows that this belief is

) =

constructed by pasting the marginal probability of the ex-ante worst-case belief with the
interim worst-case belief. We will see later, that this belief changes the ex-ante optimal

behavior such that player 1 plays dynamically consistently.

Similar calculations as above show that the Bayesian update of @?m n) given F21,1 and

the rectangular hull rect((IDO ) of player 2 are given by

mn

(1—e)n 1}

Bay( \F;l)) {(OOOrn rnoo):rh€{2(1_€>n+2€,2

€ 1
5¢ [0 5+ 1 = ~
¢ {’271(1—6)—1—26]’0—’_7% 2}’
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1.2. MODEL

and

rect(é(m n)) = conv { <O, 0,(1—¢)m,
e)n2 (1—e€)n? en en>

2 2
(1 —e)n (1—en
(1- 0,0
em, en, E) 9 ) 2 ) )
<€m en, (1 —e)m, (1- €)2n27 (1- 6)2n2’ (1— E)GH’ (1- e)en) } |
a a a a

with a = 2((1 — €)n + €).

The rectangular belief set of player 1 shows the main differences of ®, , and rect(®, ).
The rectangular hull contains the belief, which is the pasting of the prior and interim
worst-case belief. We will see later that due to rectangularity, the ex-ante worst-case
belief given the rectangular hull will be the pasting of the marginal belief derived from
the ex-ante worst-case belief and the interim worst-case belief. Therefore, updating
leads to the interim worst-case belief, and dynamically inconsistent behavior cannot

occur.

Given the complex structure of beliefs described in the last section, one might wonder
why we are not proceeding by constructing rectangular ex-ante belief sets over the
set of types H® and updating these sets prior-by-prior using Bayes’ rule. For our
analysis, it is essential that first, the information structure of the game is given by a
sequence of partitions of a fixed set, and second, the rectangular belief set of player ¢
is independent of his strategy o; but depends on the strategy of the opponents. The
information partition at a stage ¢ is a partition of the set of partial histories H* up to
this stage. Then, the information partition Z/*' at stage t+ 1 is a partition of H'*! but
not of H!. Therefore, the first part is not satisfied. Furthermore, there can exist paths
that start from the same type or state but lead to different information sets depending
on the action of the opponent. When constructing rectangular beliefs for all players,
we have to consider this dependence on information sets and actions of opponents.ﬂ
The following example illustrates that the opponents’ strategies and their influence

on the information that a player receives play an essential role for rectangular beliefs.

9Aryal and Stauber| (2014) construct a rectangular belief sets of beliefs over {L, R, O} of player 1 in
our running example. Then, they transfer this belief set to a state space that considers the difference
between the partial histories RN and RM and show that this transferred belief set is not rectangular
for player 2. We are proceeding the other way around. We first transfer the set of imprecise prob-
abilistic information to heterogeneous beliefs sets on H and then construct the rectangular hull for

each player.

25



1.2. MODEL

Even in a simple two-player signaling game, the rectangular hull may depend on the

opponent’s strategy.

Example 1.1. We consider a signaling game with three states L, R, or O. Player 1
learns the state and can play either A or B in each state. Player 2 only observes
the action chosen by player 1. We compare the rectangular hull of player 2 for two
different strategies of player 1: o1 = (AAA) denotes the strategy of always playing A
and o} = (AAB) denotes the strategy of playing A at state L and R and B at state O.
The game is depicted in [Figure 1.3, We highlight the histories which are played with
positive probability given oy or of. Since we focus on player 2, we only specify the
payoffs of player 2. The wmprecise probabilistic information is the same as in our

running example
P ={(1-¢€)(0,1,0)+€(l,r,0): (l,r,0) € A},

where [, v, and o denote the probability of L, R, and O, respectively, and ¢ > 0.
Given the strategy o1, i.e., player 1 always plays A, player 2 does not learn anything

Nature

0 101 0 101 101 100 -1 -1

Figure 1.2: [Example 1.1

about nature’s choice. His ex-ante and interim decision problems are similar to the
ex-ante decision problem of player 1 in our running example. One can easily show
that @21 is rectangular. Given the strategy oy, player 2 learns if the state is O or
{L,R}. His ez-ante and interim decision problems are similar to the ex-ante and
interim decision problem of player 1 in our running example. Similar to our running
example, one can show that CIDS,l 15 not rectangular. The detailed calculation may be

found in [Section 1.6.5.1) in the Appendiz.

1.2.2.2 Common prior assumption

There is a well-known conflict between dynamic consistency and consequentialism in
the literature on ambiguous beliefs in dynamic settings. Intuitively, consequentialism
states that at any information set, the preferences do not depend on past discarded

actions or events that are not consistent with the given information set.
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1.2. MODEL

Aryal and Stauber| (2014)) and [Ellis (2018) show that dynamic consistency, consequen-
tialism, and a common prior assumption are only fulfilled simultaneously if the players
behave as expected utility maximizers. Rectangular belief sets satisfy consequentialism
and dynamic consistency for a fixed information structure. We allow for heterogeneous
belief sets by assuming that each player may interpret the common set of imprecise
probabilistic information P differently by taking his own information structure into
account. Therefore, we overcome the impossibility result of Aryal and Stauber| (2014)
and Ellis| (2018) by first, requiring for each player dynamic consistency only for his

information structure and second, allowing for heterogeneous belief sets.

However, even if we allow for heterogeneous belief sets across players, the heterogeneity
is restricted by rectangularity and the common prior assumption on P. First, note that
a belief ¢ € rectd)g_i depends on the the strategy of the opponents. Therefore, we say
that rectangular ex-ante beliefs satisfy a common prior assumption if the set of marginal
beliefs over states or types H°

¢(h) = > ¢(h): ¢ € rect®) |
5050
is the same for all players. In the next remark we discuss two special cases in which the
rectangular ex-ante beliefs satisfy a common prior assumption. In the first case, players
receive homogeneous information. The second case allows heterogeneous information
but requires ®) = rect(®)_ ). Thus, heterogeneous ex-ante belief sets only occur if
players receive heterogeneous information and behave dynamically inconsistently given

non-rectangular belief sets @0 .

Remark 1.3. Case 1) Homogeneous information across all players implies that all
actions are observable and all players have the same information structure about
the set of states or types H°, i.e., T} = I, for all players i and j.m Since
the information sets are the same for all players, we omit the subscript ©. Let
HY(FY) = {h® € H° : 3h € F' with h® = h°} denote the set of all states or types

leading to F!'. First observe

Pa_;(h|R°)7(R°) 3 20 Po_;(h|h?)
3 ) gy 5 )
heF} ‘i hOeHO(FY) heF} <

B0}

= Y w(n, (1.2)

ROCHO(F}))

10Duye to perfect recall, a player always remembers his own action. Therefore, to ensure homogeneous

information, it is necessary that all actions are observable.
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0
where the second step follows since her! w = 1. Any arbitrary belief
:hRO=p0
¢; € rect(@gii) of a fized player i can be represented by the pasting of a marginal

and updated belief. Further, fit an arbitrary state or type h°. There exists exactly
one information set at stage one, Fil, such that all histories starting at RO are an
element of ﬁil. The homogeneous information structure implies that Fjl = Fil for
all i,7 € N and we omit the subscript i. Then, |Equation (1.2)| implies H

Y dilh)= > ¢ilh)

heH heF!
:hO=h0 :hO=hO

Po_; (h[h)7’ (h)

Po_,(h|h%)m (h?)
- Z Z c, po_, (h[h0)7’ (hO)

heF! \heF! ! ZheFl i
:hO=p0
_ ZHOEHO(Fl)ﬂ-(hO) ﬂ_l(iLO) Z pff—i(h‘ho)
D ) K
:h0O=h0
B ZEOGHO(F“) m(h?) ﬂ_,(ﬁ(])
ZEOGHO(FI) ' (h?) ’
0
where the last step uses again ) o w = 1. Now, the last part of the
ho—h

equation does not depend on player i. Hence, the marginal beliefs of a state or

type RO are the same for alli,5 € N, that is

Soodih)y= > oi(h).

heH _ heH
s.t. h9=h0 s.t. hO=h0

Case 2) If ®) =rect(®) ) for alli € N, any ¢ € rect(P)_) can be represented as
Po_(h|1°)m (h%)

C;

¢(h) =

Then, similar to |Equation (1.2), one can show that even without homogeneous

information, there erists m € P such that

S o) = (i)

for any type or state ho. Hence, the set of marginal beliefs over states or types

equals the common set of imprecise probabilistic information P.

o see this, remember that by ¢; = & = [[,_,|Al. We could interpret = as the transition
probability of the strategy that chooses at each information set a uniform distribution over the set of

acts Af. Therefore, there exists a strategy of player i, o; such that p,, (h|h°) = Cl = Ci

12No‘ce that assuming homogeneous information leads to a similar setting as in [Liu and Xiong

(2016).
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1.3. EX-ANTE AND INTERIM EQUILIBRIA

1.3 Ex-Ante and Interim Equilibria

In this section, we define ex-ante and interim expected utility, and equilibria. We prove
the existence of ex-ante and interim expected equilibria with rectangular beliefs. Then,

we show that rectangularity leads to dynamically consistent behavior.

1.3.1 Definition and Existence

Given the ex-ante or interim set of beliefs, we assume that players evaluate a strategy

profile by maximizing their worst-case expected utility.

Definition 1.6. The ex-ante expected utility of a strategy profile o = (0;,0_;) for
player i is given by
U((0i,0-)) = min > u;(h)ps, (h|h°)p(h).

6\1,0 )
oelo_; heH

Similarly, the interim expected utility at F! € F} at staget =0,...,T given a belief
set W (F}) is

i

Ulo, ¥ (F})):= min u;(h)ps, (h|h") ().
(0, ¥, (£7)) ¢€%i(F$)h€ZH (h)po, (h|h")p(h)
Given the ex-ante and interim expected utility of the players, the definitions of an ex-
ante and interim equilibrium are straightforward and follow the standard idea of Nash

Equilibrium.

Definition 1.7. A strateqy profile c* is an ex-ante equilibrium with rectangular
beliefs if and only if W) _ = rect(®). ) and

Ui (0") 2 Ui ((0},07,))

K3 77 —1

for all o} € ¥; andi € N.

Definition 1.8. A tuple (0%, (V.. )ien), consisting of a strategy profile o* and collec-
tion of beliefs \Iff,ii for each mforn:bation set at stage t and each player, is an interim
equilibrium with rectangular beliefs at stage t if and only if players have rectan-
gular beliefs W', (F}) = rect(®L. (F})) for all F} € F} and

7 i 7 1

Ui(o", W, () = Ui((0},07), ¥, (F)))

7

for all o} € ¥, Ff € F} and alli € N.

7

Since the normalization constant ¢; of an ex-ante belief over histories is constant across

all histories, it does not influence the maximization problem of player i. Formally, if
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1.3. EX-ANTE AND INTERIM EQUILIBRIA

U((0,0-4)) = ~ min' S we(B)pon (lH)po_(hI)(RO),

c; m€P
heH
and similar for the interim stages with the constant ¢f. Therefore, defining belief over
histories instead of partial histories as in classical approaches does not influence the

set of equilibria.

Without assuming rectangularity existence of an ex-ante equilibrium follows from stan-
o_; (h|hO . .
ww(ho) for all € ®Y_ . With rectangularity,

this simple characterization of the beliefs does not hold in general.

dard arguments using that ¢(h) =

Theorem 1.1. There exists an ex-ante equilibrium with rectangular beliefs.

The proof of follows the usual idea using Kakutani’s fixed point theorem
and can be found in the Appendix. For Kakutani’s fixed point theorem, it is essentially
that Uf((04,0-;)) is jointly continuous in (¢;,0_;). Due to our definition of beliefs,
the opponents’ strategies influence the set of beliefs over which a player minimizes.
Therefore, continuity is not trivial, and we need the following lemma for the proof of
cOTC

Lemma 1.2. Uf((0;,0-;)) with V)_ = rect(®)_) is jointly continuous in (0;,0_;).

To prove continuity we use that any belief in rect(CDSﬂ_) can be represented by the
pasting of marginal and updated belief. Due to marginal and updated
beliefs can be represented by multiplying p,_,(h|-) and © € P. This leads to the

following representation of an arbitrary element ¢ € rect(®J_ ).

Po_; (h‘ho) 7]_/ <h0>

o(h) = Z Z wﬂ(ho) - h|h

Po_;
(3 —_
FleFl \her} ZheFl ¢

. ()

Using this representation, we transform Uf((0;,0_;)) to a minimization problem over
the set (m, (W/)Fil) € P x PVl which is independent of o_;. Then, jointly continuity of

the transformed problem follows by standard methods.

Theorem 1.2. There exists an interim equilibrium with rectangular beliefs at stage t.

Proof. The compactness of P implies compactness of Bay(P|F}) for any F}. Hence, re-
placing rect(®? mey rect(®!_ (F})) shows jointly continuity of U} (o, 0_;).
Then, the proof follows the same line as the proof of [Theorem 1.1 m
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1.3.2 Relation of Ex-Ante and Interim Equilibria

Now, we come back to the problem of dynamic consistency and show that rectangularity

induces dynamically consistent behavior.

Our next theorem shows that under rectangularity, a completely mixed ex-ante equi-
librium implies an interim equilibrium. Therefore, as in games without ambiguity,
a player would deviate from an ex-ante optimal strategy only at out-of-equilibrium

information sets.

Theorem 1.3 (Ex-ante implies Interim). Let o* be a completely mized ex-ante equi-
librium with rectangular beliefs. Then (o™, Vg _ ) with W, _ (F}) = rect(®g. (F})) is an
interim equilibrium with rectangular beliefs at stage t.

We will prove this theorem by showing that due to rectangularity, a completely mixed
interim equilibrium at ¢ — 1 implies a completely mixed equilibrium at ¢. This holds
for any arbitrary t = 0,...7 + 1 such that follows by iteration. The next

corollary follows immediately from the recursive structure of the proof.

Corollary 1.1. Let (a*,@'f,j) be a completely mized interim equilibrium at t — 1
with rectangular beliefs, i.e., WIL(F{™') = rect(®L.N(F7Y). Then (o, V. ) with

Wl (F}) = rect(®L. (F})) is an interim equilibrium with rectangular beliefs at stage t.

v i

The formal proof of [Theorem 1.3 can be found in [Section 1.6.1.2| in the Appendix.
To give an intuition of the result, we need the next lemma. It shows the relation

between the worst-case expected utility at different stages and is essential for the

relation between interim and ex-ante equilibria.

Lemma 1.3. Let ¢* € arg mind)Erect(q,g:;(F;—l)) ZheH ul(h)pgz(h|ht_l)¢(h) Then,

Z ui(h)pUi (h|ht_1)¢*(h)
heF!~!

= > S EIpe(WRTY) _ min N ui(h)pe, (IR)G(R). (1.3)

b t
FteF! perect(®G_, (F)) hen

7

We give a sketch of the proof since it helps to understand the role of rectangularity.

The proof consists of two steps. First, Bayesian updating implies that the left-hand

side of |[Equation (1.3)|is greater or equal than the right-hand side. The other direction

. . . _ -1
follows from rectangularity. Due to rectangularity, there exists a ¢’ € \Iff,_i(Ff ) such
that

§(h) =Y ¢"(F)ds(h), (1.4)

FleF!
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where &}t and ¢* are the worst-case beliefs at F! or F/™!, respectively, i.e. ¢’ is the

pasting of the worst-case beliefs at t and t—1. We still do not know if ¢’ is the worst-case

belief at ¢t — 1. Therefore, the left-hand side of [Equation (1.3)|can be smaller or equal
than the left-hand side evaluated with the belief ¢’ instead of ¢*. Then, using that ¢’
is the pasting of the worst-case beliefs ¢* and é*p,t» we can prove that the left-hand side
of [Equation (1.3)|evaluated with ¢ equals the r{ght—hand side of [Equation (1.3)]

As the next remark shows, implies that the worst-case belief at F/ ™' is the
pasting of the worst-case belief at F{ ™' and the worst-case beliefs at ¢. Therefore, the
Bayesian update of the worst-case belief at /' leads to the worst-case belief at all

subsequent information sets at t.

Remark 1.4. The proof of|{Lemma 1.5 shows the existence of a belief ¢’ € \I/f,j(Ff_l) =
rect(WL-(FFY)) which satisfies |Equation (1.4)L i.e.,

G0 = 3 ¢ (ENGp(h),

FleF!

where ¢* and gf;}t are the worst-case beliefs at F/™' and F}, respectively. Furthermore,

the proof states

S™ e, (BB (h)

heF!

IN

S wilhpa (hlH ) (h)

heF}™!

= Z gb*(Fit)pm(ht’ht_l) min Z uz(h)pm(h|ht)q;(h)

pedt  (F?
FteF! $e®e ) pepy

But by[Lemma 1.3, we know that the inequality is an equality. Therefore, ¢ is a worst-
case belief at F!™" and implies that the worst-case belief at an information

set at stage t is the Bayesian update of the worst-case belief of the previous information

set at stage t — 1.

and show how rectangularity leads to dynamically consistent
behavior which is necessary for the proof of [['heorem 1.3|

The proof of follows the usual idea of contraposition. If there would
exist a profitable deviation at ¢, this deviation would be profitable at ¢ — 1 as well.
Therefore, an equilibrium at ¢ — 1 implies an equilibrium at ¢. Then, the theorem
follows from iteration. However, one has to consider the worst-case beliefs. The belief
set only depends on the strategy of the opponents. Therefore, fixing the strategy of
the opponents leads to fixed belief sets. However, the worst-case belief of player ¢ may
change if he deviates from the equilibrium strategy. To prove we have
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to define the pasting of the worst-case belief at ¢ given the equilibrium strategy with
the worst-case belief at ¢ — 1 given the deviation strategy. Due to rectangularity, this
pasting is an element of the belief set at t — 1. Then, we use to show that
a profitable deviation at t implies a profitable deviation at ¢ — 1.

Theorem 1.3|shows the relation between equilibria at different stages. Roughly speak-
ing, due to rectangularity, players update their beliefs such that their worst-case belief
at t is the Bayesian update of the worst-case belief at ¢ — 1. This implies dynamically

consistent behavior and leads to the relation between ex-ante and interim equilibria
stated in

We come back to our running example and show that rectangularity rules out dynamic

inconsistency.

Running Example (cont.). Remember the results from above. Without rectangularity,
player 1 behaves dynamically inconsistently. His optimal ex-ante strategy is to play M
with probability one. After learning that the state is not O, his optimal interim strategy
is to play M with probability m = ﬁ if € > %02. Now, we will show that beliefs that
are rectangular lead to dynamically consistent behavior. Since player 2 s indifferent
between S and T, we still focus on player 1. We already know the information partitions

and rectangular beliefs of player 1:

H = {LM,LN,RM,RNS, RNT,0S,0T},

FP =H,

Fi={F,,F,} = {{LM,LN,RM,RNS,RNT},{0S,0T}},
U] = rect(®7, ;)

1-— 1-— 1-—
= conv 0,0, E, ( E)S, ( e)t,es,et )
2 2 2

cel—€e (1—¢s (1—e)t 1 st
-, = 0,0 0,0,=,=,=,0,0
(2727 2 9 2 ) 2 ) Y Y Y ’272727 Y )
1— _ 2 (1 — )2 AT
( 6)6’<1 6)6’(1 €) 7(1 €) s’(l €) t,eaet ‘
2 2 2 2 2

From we know that the prior-by-prior Bayesian updates of rect(@?sjt)) and

CD?S p ore the same. Therefore, the optimal interim strategy with rectangular beliefs s

: ity e, mt = L ife> L
the same as without rectangularity, i.e., m* = 55 if € > 155

strategy with rectangular beliefs we solve the following problem

For the optimal ex-ante

( max : Us((1 —m,m))
1-m,m

= max min ~ 101(1 — m)¢(LN) + 101m¢(RM) + 100(1 — m)p(RNT)

(1—m,m) ¢6rect(<1>?sﬂt))
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+100(1 — m)$(RNS) — $(0S) — ¢(OT)

[ r r
= max min 101(1 = m)—= 4+ 10lm= + 100(1 —m)= — (1 —r — 1)
(1-m,m) (é,%,%,%,g,os ot) 2 2 2
Erect(®? (s t))
= max min Z(M—l>+r(w—l)+l.
(1—m,m) (é é L,z 2 os,ot) 2 2
Grect(é( 7t))

The worst-case belief depends on m. If 101(1 — m) > 100 + m, the worst-case belief
gives the lowest possible value to [, the highest value to o, and r = 1 —1 — o. If
101(1 — m) < 100 + m, the worst-case belief gives the highest value to o, the lowest

value to r, and l =1 — o —r. Hence, the worst-case belief is

- e(1—e) e(l—e¢) (1—e)2 (1—€)2s (1—e)2t
( 2 T2 0 2 0 2 0 2 7637€t) ifm > 3.

The worst-case ex-ante utility is

(1—e)(* —1)+1 zfm<102,

(1— e 1) 4 (1—e2(12%m 1) 41 ifm > L,

Us (1 —m,m)) =

A =eM9+F) +1 zfm<1027
91— 1020) + (1 — )49+ 5) +1  if m > .
Hence, the optimal ex-ante strategy is m* = ﬁ if € > 1—(1)2 which proves dynamic
consistency.

Given the relation between ex-ante and interim equilibria discussed in this section, we

can now define and prove the existence of sequential equilibria.

1.4 Sequential Equilibria

Kreps and Wilson| (1982) define a sequential equilibrium in a game without ambiguity
as a tuple of a strategy profile and a belief system such that the strategy profile is
sequentially rational and the belief system is consistent with respect to the strategy
profile. Consistency with respect to a strategy profile 0 means that there exists a se-
quence of completely mixed strategy profiles that converges to o such that the sequence
of beliefs constructed by Bayesian updating given the completely mixed strategy pro-
files converges to the equilibrium belief. We use a similar notion of consistency that

includes rectangularity.

k

Fix a sequence € = (€}) ey, vz, With 0 < €} < el (  for all player i and information

sets I; that converges in the sup-norm to zero. For any k:, let I'* denote the restriction of
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I" such that the set of feasible strategies is the set of all completely mixed o* satisfying

o¥(I;)(a;) > € for all players, information sets, and actions a; € 4;(;). Let £* denote

(2

the set of strategy profiles satisfying this constraint. For every strategy profile in :¥,
Bayes’ rule is always well defined. Let (o%), with o* € ¥* converge to o € ¥ as k

goes to infinity. For each player ¢ and each o”,, we can construct a ex-ante belief set

79

rect(CI)gk ) which is rectangular. Now, we construct an ex-ante belief system given o

—1

which is rectangular and consistent with o”,. First, note that

lim =~ — Poi (1.5)

for all h € H. Take an arbitrary tuple (7, (71 ) picr1) € P X PIZl. Then, there exists
a sequence of ¢F € rect(q)gk ) such that

(hI0) p ok (h|h?) )
Dok — T
k’ _ —1 0 Ci i
= 3 HEN = Y (X T )

Fler}! Fler! heF} ZheFil _’C—iﬂ}il(ho)

Pk (hIh0)
o Pk (WRO) = (h0) )
Please note that the latter fraction —= o D) is an element of the Bayesian
her! ”TWF; (h0)

update of P given F! and o* for each k and therefore an element of A(H?'), the set
of probability distributions over partial histories at stage one. Taking the limit of ¢*
only influences the path probability induced by the strategy of the opponents, i.e., 7w

and 77, are fixed. Hence, |Equation (1.5)| implies

0 T—i i (h())
K Po_.(h|h7) 0) . T,
i o (h) = 37 (32 F )t
FleF!  heF} > ohert — o T (h0)
Pk (h[h0)
_ch ! (}'LO)
Then, the compactness of A(H') implies that every sequence of plk <h|h0§
2her! = (h0)

has a convergent subsequence.

The limit of rect(®,x ) is then defined as

lim rect(®Y )

k—oo 71'

_ {¢ €017 : A¢Mcrs,.. € (rect(®%)),_,,  with 6(h) = lim gzﬁk(h)}.

Similarly, one can define the limit of rectangular interim belief sets at stages ¢ > 0.
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1.4. SEQUENTIAL EQUILIBRIA

By construction, limy, rect(@ff;l. (F!1)) is rectangular as the following calculations show.
Let ¢ € limgrect(® 1 (FI)) and (¢pt) e € (Bay(limk rect(@tzl(ﬂt_lmﬂt)) . We
o i/ ok, th
have to show that the pasting of ¢ and (¢p:)p is an element of limy rect(@(tffk}(ﬂt71))'
The pasting is given by
¢ o (drt)pe Z hm o*( Ft)hm Ope(r) = hm Z o*(F, ¢Ft

FleF! FlteF!

Then, since 3 pec 7 " (F)pre(-) € rect(@i?) we get

¢o (QSFf)F;() € liin rect(q)i—it(ﬂtq))

and rectangularity is maintained under the limit. Now, we can define consistency with

respect to a strategy profile 0 and sequential rationality for rectangular beliefs.

Definition 1.9. We say that a belief system ¥ is consistent w.r.t. o if there exists

a sequence (Jk)k:Lm such that
e of € X for all k,
e 0 = lim; 0",

o U, (F}) ={¢ : o(h) = limy ¢"(h), ¢" € Bay(rect(®Yy [F))} for all F} € F}
and t > 0. B

The definition of consistency w.r.t. ¢ and the discussion above show that a belief

system, which is consistent w.r.t. o and rectangular for o*, is rectangular for o.

The second property of sequential equilibria is sequential rationality. Roughly speaking,
sequential rationality captures the idea that a strategy is optimal at each stage and
each information set. Therefore, a strategy is sequentially rational if it is an ex-ante

and interim equilibrium at each stage.

Definition 1.10. A tuple (o, V), consisting of a strategy profile and a belief system, is

sequentially rational if

e 0 is an ex-ante equilibrium with rectangular beliefs \Ifgﬂ_ = rect(®? ) for all
1€ N and

e for all t > 0, the tupel (o, V") is an interim equilibrium with rectangular beliefs
Wl (F}) = rect(®._(F})) for alli € N at stage t.

Now, we can define a sequential equilibrium.
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1.4. SEQUENTIAL EQUILIBRIA

Definition 1.11. The tupel (o*, V) consisting of a strategy profile and a belief system

with WY _ = rect(cbgi‘) is a sequential equilibrium with rectangular beliefs if
o (0*,V) is sequentially rational and
o U is consistent w.r.t. o.

Given dynamic consistency, the existence proof follows a similar idea as without am-
biguity.

Theorem 1.4. There exists a sequential equilibrium with rectangular beliefs.

Proof. Let €*, T'*, and o* as above. For each I'*, we can construct a belief system U*
that is rectangular, i.e., Wo*(F!) = rect(®!, (F})). Furthermore, by [Theorem 1.1|there

exists an ex-ante equilibrium 6% with rectangular beliefs U%* for each I'*. [Theorem 1.3

shows that (6%, U¥*) is an interim equilibrium with rectangular beliefs at stage t. By

compactness of the set of strategy profiles, there exists a sub-sequence of ¢* which
converges to 6. For this sub-sequence, we can construct a system of rectangular beliefs
¥ such that, W! (Ff) = lim, W4 (F!). Then by construction ¥ is rectangular and

satisfies consistency w.r.t. &.

By Uf (o) and Uf(o, ®') are jointly continuous in o. Then, since ¥ is the
closure of | J, ¥* the strategy profile & satisfies sequential rationality. O]

1.4.1 Sequential Rationality and Rectangularity

The assumption that ¥y . = rect(®y. ) is essential. [Epstein and Schneider| (2003)
and Riedel et al. (2018) show that dynamic consistency implies rectangular belief sets.
However, sequential rationality is a weaker condition than the dynamic consistency
axiom required by [Epstein and Schneider| (2003)) and Riedel et al.| (2018). The follow-

ing version of our running example shows that sequential rationality does not imply

rectangularity.
Running Example (cont.). In|Section 1.2.1, we show that the interim optimal strat-
eqy of player 1 given P is m* = ﬁ if € > %02. For e < ﬁ, playing m* = 1 is the

1
102°

ex-ante and interim optimal choice. We have already shown, that

[l 1l rrsort
(I)?s,t) = {(5,57 CHDR E’OS’Ot) : (I,r,0) € 7?}

is not rectangular for arbitrary e. However, one can easily show that m* =1 and P,y

L
102"

optimal interim strategy. Hence, given € < playing M with probability one is an

are sequentially rational for e < Therefore, sequential rationality does not imply

rectangular belief sets.
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1.4. SEQUENTIAL EQUILIBRIA

Even if the equivalence of sequential rationality and rectangularity does not hold in
general, we can prove for a special case that sequential rationality of (o*, ¥) implies

that o* is sequentially rational with respect to rect(¥).

Theorem 1.5. Let (6*,V,_.) with ¥, _. = ®,_. be sequentially rational. Furthermore,
let ((¢5)Ft)i=0..7 denote the collection of worst-case beliefs given o™ at different in-
formation sets and stages. Assume that for all players i € N, all stagest =0,...T,
and information sets F! € F!, there exists no ¢t € \I/tafi(Ff) such that ¢p: =+ gb*FZt and
ol s an ez-ante or interim best response for the same game with singleton belief Pr.

Then, (o*,rect(®,_,)) is sequentially rational.

Intuitively, the assumptions ensure a unique worst case belief. Then, the only ex-ante
belief that ensures sequential rationality is the pasting of all worst-case beliefs. Since
this is the worst-case belief given the rectangular hull, o* is sequentially rational given
the rectangular hull rect(W,_,). The example above does not satisfy the above assump-
tion since m = 1 is optimal given any ex-ante belief in \If?&t). We guess that similar
results do hold for more general cases. However, exploring the relation of sequential

rationality and rectangularity for more general cases is left for future research.

1.4.2 Properties of Sequential Equilibria

There are two properties of sequential equilibria with rectangular beliefs that we would
like to highlight.

Remark 1.5. First, due to ambiguity and multiple prior preferences, players may
have heterogeneous worst-case beliefs. Since each player mazimizes his worst-case util-
ity, ambiguity can induce sequential equilibria that cannot exist without ambiguity and

COMMON Priors.

Second, as i games without ambiguity, sequential equilibria are an equilibrium refine-
ment that rules out non-credible threats.

The following example illustrates these properties of sequential equilibria with rectan-
gular beliefs.

Example 1.2. This example follows the idea of |Greenberg (2000) and is similar to
the running example of |Hanany et al.| (2020). There are three countries, two small
countries A and B, and one influential country C. Country A and B are involved
in peace negotiations, which are successful if both countries agree on peace. At stage
one, A decides whether to agree with the peace agreement (peace) or not (war). If A
plays peace, country B can choose peace or war. If one of the countries chooses war,
the peace negotiation fails. Country C observes if the peace negotiations failed or not,

but it cannot distinguish which of the two countries broke up the negotiation. After
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1.4. SEQUENTIAL EQUILIBRIA

observing that the peace negotiations failed, country C can either punish country A
or B, denoted by pa and pg, respectively or stay neutral, denoted by n. If the peace
agreement is successful, C favors either A or B, denoted with fa and fg. To introduce
ambiguity, we assume that C' can condition his action on a payoff-irrelevant ambiguous
state, I, or II. This means that C' observes the state, whereas countries A and B
do not know the state. With p% and p%l and, similarly, pL, pt, n!, n'l, we denote

actions pa, pr, n conditioned on the state I or I, respectively. The game is depicted

m [Frgure 1.5,

Figure 1.3: Example Peace Negotiation.

First, we show that there exists no ex-ante equilibrium in which the peace agreement
takes place without ambiguity. Therefore, without ambiguity there cannot exist a se-
quential equilibrium with a peace agreement. Let p represent the ex-ante belief of coun-
tries A and B that the state is I in a game without ambiguity. Furthermore, let o and

B denote the probability with which countries A and B choose war, respectively. In

[Section 1.6.3.2 in the Appendiz, we calculate all ex-ante equilibria of this game without

ambiguity and show that in all of them, at least one of the countries A or B plays war
with probability one. Intuitively, A and B cannot distinguish between state I and I1
and choose the same action at both states. Therefore, the updated belief of C' given that
the negotiations failed is the same at both information sets I; and Ir;. It is then either
optimal for C always to punish A or B or, if C' is indifferent, to miz and, e.g., punish
A if the state is I and B if the state is 11, or vice versa. To motivate A and B to play
peace, both have to believe that they will be punished with a high probability. Without
ambiguity and with common beliefs, the ex-ante belief of A that himself will be punished
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1.4. SEQUENTIAL EQUILIBRIA

is up'y + (1 —p)pll and, similarly, country B’s belief to be punished is ups + (1 — p)pk.
These beliefs sum up to a value smaller or equal to one.[l—j Hence, both countries cannot
believe simultaneously that they will be punished with o sufficiently high probability to

motivate them to play peace.

With multiple priors, ambiguity induces a new equilibrium in which the peace agreement

does not fail. Instead of one ex-ante belief i, the players are faced with the imprecise

probabilistic information P = [, ii]. In |Section 1.6.3.4 we construct the ex-ante belief

sets @0, ®0_ . and ®)__ and show that they are rectangular. With ambiguity, there
exists an ex-ante equilibrium where A and B play peace with probability one. Consider

the following strategy profile o*:

a'=0, =0, fi= ,ff:%, ph=pg =1

This strategy profile forms an ex-ante equilibrium as long as p > 0.55 and p < 0.45.
Given o =0 and 5* =0, C has no incentive to deviate since the information sets Iy
and I;; are reached with probability zero. To show that A does not have an incentive to
deviate, we compare his worst-case payoff from playing o or o = 1. The payoff from
playing o* is
min (1= a")(1 = B)(6F5 + 45H)] + (L= ) [(1 = )1 = B)GSE + 415)] = 45,
The payoff from deviating to war, i.e., a« =1 is

min -0+ 10(1 — p) = 10(1 — ).

HE [, 7]
Therefore deviating to war is not profitable as long as i > 0.55. Similarly, one can show
that B does not deviate from 3 as long as p < 0.45. This proves that under ambiguity
with [0.45,0.55] C [, ft] there exists an ex-ante equilibrium in which both countries play
peace with probability one. Intuitively, due to the worst-case beliefs, each small country
believes that it will be punished with a high enough probability to deter it from playing

war.

Next, we discuss that the ex-ante equilibrium under ambiguity specified above is a se-

quential equilibrium iof x < 0.5. Furthermore, for x > 0.5, it is not a sequential equilib-

rium. The formal proof is given in [Section 1.6.3.2. If x < 0.5, we can find a sequence

of a* and ¥, that converge to 0 as k goes to infinity such that C is indifferent between
pa and pp at both information sets for all k. Since x < 0.5, playing n' = n'l = 0
15 optimal at the interim stage.ﬁ Therefore, we can find a sequence of strateqy pro-

files with completely mized strategies (o), that converges to the ex-ante equilibrium o*

13Tt is equal to one if C' plays n with probability zero and strictly smaller than one if n is played

with a strictly positive probability.
Y1f x = 0.5, country C is indifferent between all 3 actions. Therefore, p!y = 1,plf = 1,nf =n!f =0

is a best response.
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specified above and satisfies sequential rationality. Furthermore, the limit of the belief
systems constructed by Bayes’ rule for each completely mized strategy profile o* satis-
fies consistency by construction. If x > 0.5, country C' has an incentive to deviate to
n! =n!l =1 at the interim stage. Hence, there does not exist a sequence of completely

maxed strateqy profiles that converges to o* and satisfies sequential rationality.

The analysis above shows that, due to ambiguity, there exist ex-ante equilibria in which
peace s played with probability one. Furthermore, these equilibrium strategy profiles are
part of a sequential equilibrium as long as x is small enough, i.e., as long as punishing

s a credible strateqy for country C.

1.5 Conclusion and Discussion

In this chapter, we introduce rectangularity to finite multistage games with ambiguous
incomplete information. Players face imprecise probabilistic information about states
or types of opponents. Furthermore, they know the information structure of the game.
Given the imprecise probabilistic information and the knowledge about the information
structure, each player constructs an ex-ante belief set, which is rectangular. We show
that rectangularity ensures dynamically consistent behavior in multistage games with
multiple priors and, therefore, the existence of sequential equilibria. Furthermore,
we show that in multistage games with rectangular beliefs, ambiguity can create new
sequential equilibria that do not exist in games without ambiguity. To conclude, we

discuss some related issues and corresponding literature.

Singleton Subjective Beliefs One could argue that our results could be obtained
by choosing a single subjective ex-ante belief for each player that equals the worst-
case ex-ante belief given rectangular beliefs. Due to rectangularity, the worst-case
beliefs at the interim stages are the Bayesian updates of the worst-case ex-ante belief.
Therefore, updating this single subjective ex-ante belief would lead to the same beliefs
at the interim stages as in the setting with a subjective set of beliefs. But the setting
with single subjective beliefs would lack an explanation of how players derive their
subjective beliefs. In our model, the subjective set of ex-ante beliefs is endogenously
derived from the common imprecise probabilistic information and the knowledge about
the game’s information structure. This combination leads to rectangular belief sets
for dynamically consistent players. The choice of the worst-case beliefs arises due to

ambiguity aversion and MEU.

Other Approaches to Deal with Dynamic Inconsistency Siniscalchi (2011)

characterizes a consistent planning approach for dynamic choices with dynamically
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inconsistent preferences. He defines an individual’s preferences over decision trees.
Consistent planning is a refinement of backward induction that assumes that a deci-
sion maker can correctly forecast future decisions. In our approach, rectangular beliefs
are constructed by a backward induction method on the beliefs. |Auster and Kellner
(2020)) use the consistent planning approach to analyze Dutch auctions in an ambigu-
ous independent private value setting. In their setting, our approach leads to similar

equilibrium outcomes as consistent planning.

Battigalli et al| (2019)) use the consistent planning approach to define self-confirming
equilibria (SCE) for sequential games with players who admit smooth-ambiguity pref-
erences of Klibanoff et al.| (2005). They show that the SCE of a sequential game is
not equivalent to the SCE of the strategic form of the game. Further, they analyze
sufficient conditions to generalize the monotonicity result of |Battigalli et al.| (2015) to
dynamic games, which states that in static games, the set of SCE expands as ambiguity

aversion increases.

Another way to rule out dynamic inconsistency in decision-theoretic settings is the
updating rules proposed by Hanany and Klibanoff| (2007, 2009). They propose updating
rules that update only a subset of the ex-ante belief set using Bayes’ rule. Which subset
is updated depends on the optimal ex-ante choice. Updating this subset of beliefs leads
to an interim belief set supporting the ex-ante optimal choice and ensures dynamic
consistency. However, comparing this approach to our model shows that the updating
rules of [Hanany and Klibanoff] (2007, |2009)) give a higher weight to the ex-ante optimal
choice. This approach may generate different equilibria compared to our approach. For
example, in our running example, the updating rules of [Hanany and Klibanoff (2007,
2009) would lead to an equilibrium satisfying sequential rationality in which m =1 is

ex-ante and interim optimal.

An essential assumption to use rectangularity is that all players know the information
structure. To use the updating rules of [Hanany and Klibanoff] (2007, [2009)), agents
only have to know the information they are getting. But in games, it is often assumed
that the players know the game tree and the information structure. If the players know
which information they could get in the future, it seems intuitive that they take this

information into account when constructing their ex-ante belief sets.

Hanany et al.| (2020) define sequential equilibria for similar multistage games as we
do but assume smooth ambiguity preferences instead of maxmin preferences. (Hanany
and Klibanofl, 2009) define an updating rule, the smooth-rule. |Hanany et al.| (2020)
extend the smooth-rule to multistage games. They show that sequential optimality is
equivalent to sequential optimality with respect to beliefs updated with the smooth-

rule. Given sequential optimality, they can define sequential equilibria. Further, they
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show that the set of equilibria extends under a common belief assumption if ambiguity

aversion increases.

Ellsberg Games As mentioned in the introduction, Ellsberg games introduce am-
biguous strategies, i.e., instead of playing a probability distribution over the pure strate-
gies, players can choose a set of probability distributions. In extensive-form games with
Ellsberg strategies, ambiguity arises due to the strategy of the players. In our model,
ambiguity occurs due to ambiguous information about types or states. This facilitates
the definition of sequential equilibria since strategies are not ambiguous. Muraviev
et al| (2017) illustrate the implications of their results for equilibrium concepts in
extensive-form games with Ellsberg strategies with an example. They show the ex-
istence of a dynamically consistent Ellsberg equilibrium for this example. However,
a general formulation of equilibrium concepts for extensive-form games with Ellsberg
strategies and existence results is left for future research. Our results support their
conjecture that rectangularity implies the existence of dynamically consistent Ellsberg

equilibria.

Games with Two Types All examples that show the issue of dynamic inconsistency
under MEU in games have at least three possible states or types. The reason for this
is that dynamically inconsistent behavior cannot occur in games with only two types
or states, i.e., |H°| = 2. With two types, there are only two cases that can arise in an
interim stage. Either the player learns the correct type or not. If the player knows the
correct type, updated beliefs about types are either zero or one. It is easy to show that
then rectangularity is always satisfied. If the player does not learn the type, Bayes’ rule
is always well defined. Further, since there are only two types, the Bayesian update is
monotone in the prior probability. This monotonicity implies dynamically consistent
behavior for the second case. But as shows, ambiguity also induces new
sequential equilibria in dynamic games with two states or types. Hence, new equilibria
may arise even if there is no dynamically inconsistent behavior. Therefore, there are
two effects in games with dynamically inconsistent behavior: ambiguous beliefs and

dynamically inconsistent behavior.
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1.6 Appendix

1.6.1 Proofs

Proof of[Lemma 1.1} Property 1) and the normalization of beliefs imply that for any
¢ € U we have

1= 3 on = Y L) LS e

heH heH heH
e= 3 o (HR)m(R)
heH
= > 7" D> pe (BTURY) > pe (RATT)
hOeHO RT-1cHT—1 heH
s.t. hO=hO st. hT-1=pT-1

-~
—| AT
= AT

=1AT1 Y w(0%) Y pe (A7)

hOeHO hRT-leHT—1
s.t. hO=h0
Proceeding in the same way by backward induction then shows that ¢; = HST:1|Af|.
Then, Property 1) and 2) follow by definition. Property 3) follows from Bayesian
updating. Let F be an information set with ¢(F}) > 0. Then, any ¢ € ¥!_(FY) has
the following form for all h € F}

po_; (h|h®)m (h°)

¢(h) =

Po_; (h|R0)m(h0) *

ZTZEFQS = C;

We can rewrite the denominator in the following way:

Z poﬂ‘(}ﬂﬁo)ﬂ-(ﬁo) _ Z p07i<;—lt‘}_10>7r(}_10) Z pcrfi(hv_lt)

A 1| 45 T a5
TZEFZ’ g EteFit H5:1|AZ| hEFit Hszt‘Ai‘
s.b. ht=ht B
]
Then,
qg(h) _ Po_; (h|h’0) ( O)
Hi—l‘AS| theFt Po_; (ht|h0> ( )
ORI e G0
> hier Poi (RRO)m(R0) ¢ ¢
where 7 € Bay(P|F}) and ¢ = []._,|A3]. O
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1.6.1.1 Proofs: Existence of Ex-Ante Equilibria

Proof of[Lemma 1.3, First, consider the case where o_; is completely mixed and Bayes’
rule is always well defined. Then, any ¢ € rect(®)_ ) has the following form

= > (FENop(h)

Fler}]

By [Remark 1.2] we can assume without loss of generality that ¢ € <I>gﬂ, and QBFS €

®! (F!). Furthermore, Bayes’ rule is always well defined. Therefore, there exist 7 € P
and 77, € P for each F} such that

o) (1)

Po_, (h[1") h|h
= > ( > P ho)) p(,_i@:;)ﬁ,

Fler! heFr} Zhngc—i F_l(ho)

k3

With this formulation of ¢ and since p,_,(+|-) is completely characterized by o_;, we

can now write US as follows

Ui(o) = min )Zui(h)pai(h\ho)fb(h)

¢pE€rect(PY

—i" heH
po_,; (h|h°) ! 0
e AL h?)
- 0 p01h|h0 (h°)> o
-, Zron o T (2 R
ePxPIF| e Fiery heh 2 her) a

= Uf((01,0-4)).

Now, we show that U¢((0;,0_;)), and therefore U¢((0;,0_;)), are jointly continuous in
(04,0_;). First note, that

pa,l(hlh ) / (h())

Zui(h)pai(h\h°)< > (Z Mﬂho)) o 1h\h

heH FleF!  heF} ' ZhGFl < F.l (h?)

) (1.6)

is continuous in (0;,0_;). Then, for all € > 0 exists a 6 > 0 such that |a —b| < § implies

pa_i(h‘h 71_/ (hO)

pafi(h‘ho) i B
> wlhpa (hR®) | D | Y = ——m(h) pa (W),

heH FleF} \heF} ! ZheFil i ﬂ-Fil (hO)
p_ (W), g
o, (h|R° — T (h°)
= wi(h)p, (A0 | > [ D po_i (A7) )w(ho) K <e.
C; pb,i(h|h ) 0
heH FleF! \heF} Dohert —a ﬂFil(h )

By the compactness of P, there exist (7, (77-;—,01)]?1> and (7?, (W;;,I;)Fil) in P x PVl such
that

Pa_; (h'ho) /,(Z (hO)

= > uwilh)pa, (R | ) Z%ﬂho) PG y

heH FleFr! \heF} ‘ ZheF} < (ho)
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and

Py_ (h|h0) /b<h0>

- suimmont) (5 (5 20|

C Pv_
heH FleF! \heF} ' ZheFl P

1

w7t (h0)

Without loss of generality assume that U¢(a) > U¢(b). Then for all € > 0 exists § > 0
such that for |a — b| < ¢ it follows

Ui (a) — U7 (b)]
pa_;(hlh°) b 0
i ’ h )
0 p&—i(h|h0) b/1.0 [ 7-(-F%-l(
S Zuz(h)pal(h’h ) Z Z s ™ (h ) pa_i(hlho) b 10
heH FleF! \heF} ’ 2 heF} c—iﬂpg(h )
— U5 (b)

<e.

The first inequality holds since (7%, %) is in general not a worst-case belief given strat-

egy a. The second inequality follows by the continuity of [Equation (1.6)|in (o4, 0-;).

Hence, U¢(0) is jointly continuous in o = (0y,0_;) for completely mixed o_;.

If o_; is not completely mixed and Bayes’ rule is not well defined for some F}, the
denominator »°, 1 ¢ (h) equals zero. However, this is equivalent to ¢(F}) = 0.@
Therefore,

Ut ((01,0-4))
= mln Zul )Po, (h|R°)

et ch
erP'f !

po_,; (h|h?) 0

Po (B1) o\ e ()
Z Z C; W(h ) pa_i(h‘ho) / 0
FleF} heF} ’ Ehng c—iﬂFil(h )

s.t. ¢(F)7#0
and we can ignore information sets F}' where Bayes’ rule is not well defined. O]

Now we can prove [I'’heorem 1.1

Proof of|Theorem 1.1 First remember that the set of histories H, the set of infor-
mation sets Z, the set of actions for each player at each information set A;(I}), and

15This equivalence follows from the full support assumption of P. Since 7(h°) > 0 for all h° and
all 7 € P an information set has only probability zero if the transition probability of all histories
contained in this information set are 0. This implies that p,_, (h|h%)7(h%) = 0 for all = € P.

46



1.6. APPENDIX

the set of players N are finite. A behavior strategy of player i was defined such that
oi(1) € A(A;(I})). The set of strategies of player 7 is then ¥; = X, A(A;(I{)) and
the set of strategy profiles 3 = X, %;. We define the best response of player ¢ given
the strategy of the opponents o_; as the correspondence B; : ¥_; — 3; with
Bi(o_;) ={0; € ¥; : 0, € argmax U (0;,0_;)}.
;€Y

Then, the correspondence B : ¥ — X with

B(o) = X Bi(o-;)

ieN

defines the best response.
We will use Kakutani’s fixed point theorem to show that B(-) has a fixed point, and
therefore, the existence of an ex-ante equilibrium. To apply Kakutani’s fixed point

theorem, we need the following conditions:
i) ¥ is non-empty, convex, and compact.

ii) B : ¥ — X is a upper-hemicontinuous correspondence and B(c) is non-empty
and closed Vo € Y.

iii) B(o) is convex Vo € X.
We will show this conditions step by step:
i) Since Z; and A;(I}) are finite for all information sets I} and all player i, A(A;(I}))

is non-empty, compact, and convex. Therefore, >; and ¥ are non-empty, compact,

and convex as well.

ii) To show the second point, we use Berge’s maximum theorem. Let C': ¥_; — ¥,
be a correspondence such that C'(o_;) = ¥; for all o_;. Then, C'is upper and lower

hemicontinuous as the following explanation shows and therefore continuous.

The definition of lower hemicontinuity says: C'is lower hemicontinuous at a if for
all open sets V' intersecting C(a) exists a neighbourhood U of a such that C(z)
intersects V for all z € U. Since C'(a) = X; = C(z) for all z € ¥_;, the definition
is satisfied for each a, U, and V.

For upper hemicontinuity, we use the graph-theoretic characterization: Let
Gr(C) ={(a,b) e X_; x%; : be C(a)}.

If 3; is compact and Gr(C) closed, C' : ¥_; — 3; is a upper hemicontinuous
correspondence with closed domain and closed values. By the definition of C' it
follows that Gr(C) = ¥_; x ¥;. ¥; and ¥X_; are compact by i) and therefore

closed. Hence, C' is upper hemicontinuous.
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iii)

Now, we can apply Berge’s maximum theorem: With our notation

U,L-e : El X E,i — R,
C: Y — X S.t C(O'_i) = E,
C*(o_;) = argmax{Uf(0;,0_;) : 0, € C(o_;) = L;} = Bi(o-i).

Berge’s maximum theorem states that if U? is jointly continuous in both ar-
guments and C' is continuous in o_;, then C* is non-empty, convex valued, and
upper hemicontinuous in o_;. Hence, by [Lemma 1.2] B; is a upper-hemicontinuous
correspondence and B;(o_;) is non-empty and closed Vo_; € ¥_;. Since B(o) =
X,en Bi(o-i) the same holds for B().

To show the convexity of B(c), we first show that Uf(-) is concave in o;. Let d;
and 7; € 3; and « € [0,1]. Then,

Uiloois (L =e)g.00) = o )Z 0 (0)pas, -0 (B0 1)
7—i’ heH
T
=i S u T (eg ) +0 =) 21 tht,i))gb(h)

> min )Z (Haaz L(hY)) (hy) +H 1—aoZ(I(ht))(h“)>gb(h)

€rect(®Y .
perect(Py_, helH

= min : (a Z wi(R)ps, (h|R°)p(h) + (1 — ) Z ui(h)pgi(hmo)gb(h))

¢€rect(<1>gi, e =,
5 (hh°) 1— E 5. (h|h%)o
- ¢Erercrtu<1}}0 ZUZ p ! | ( ) ( a <Z>6relgg(1£0 ul p i ’ ( )
'hen - hent

=aU{(0i,0-) + (1 — a)U; (64, 0-).

With the concavity of Uf(-) we can prove that B;(o_;) is convex for all o_;. Fix
some arbitrary o_;, let 7;, 6; € B;(0_;), and a € [0,1]. We have to show, that
ao; + (1 — a)o; € Bi(o_;) = argmax, 5. Uf(0;,0_;). Since 7y, 6; € Bi(0_;) it
follows that

Uf(&i,a,i) = Uie((}i,O',Z) = Imax U (O’i, O',Z'>

0, €Y,
> Uf(ao; + (1 — a)dy,0-;)

> an (6i70—i) + (1 - a)Uie<5i>0— ) - mGaEX U (Uiaa—i)a

where the last inequality follows from the concavity of Uf. Then,

Uf(ag; + (1 — )dy,0-;) = max Uf(oi,0-;).
g;€
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Thus, we have

ac; + (1 — a)o; € argmax Uf (0;,0_;) = Bi(o_;).
o€,

Hence, B;(0_;) is convex valued for all o_; € ¥_;. Since this is true for all i € N,

it follows that B(o) is convex valued for all o € X.

Now, we can apply Kakutani’s fixed point theorem, which shows that the best response
correspondence B has a fixed point and, therefore, proves the existence of an ex-ante

equilibrium with rectangular beliefs. O

1.6.1.2 Proofs: Relation of Ex-Ante and Interim Equilibria
Proof of [Lemma 1.3 The proof consists of two steps:

i) First, we show that

S™ wilh)pa, (A1) ()

heF!

> Y O FEDpe (W) min Y ug(A)p, (A (R)

t t
FleF! gerect(®o_;(F) hen

which follows directly from Bayesian updating. Since ¢*(F}) = 0 is equivalent to
¢*(h) =0 for all h € F!, we get

Y wMpo, (ARG (R) = Y > wilh)p, (hh)e* (h)

her; FieF! heF?
= zg F@; > wi(h)pe, (bR )6 (h)
FleF; '’ heF}
s.t. ¢*(F})>0
. oy ()
- E «(h)ps, (h|A 1
> o) 3 wlp ()

FleF? heF} ——r
Erect(Pf_, (F))

ST o) min ST wlh)pe ()

it 1 t
FreFt (i)Erect(q)U_i (F1)) her

= > O EDpe (RN min Y wi(h)ps, (h|h)$(h),

perect(®t  (F!
FleF! gerect(®y_( ))heFZP

Y

i

where the last equality follows from p,, (h*|h'™1) = p,, (h*|h~Y) for all h, h in FY.

ii) For the other direction we show that left-hand side is smaller or equal than the
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right-hand side, i.e.,

S wshpa (BB )" ()

heF™!

< D S (FDpe (BT min Y " u(h)pg, (h[BY)G(h),

<I>t FZt
FteFt ¢Erect( ( ) hert

let ¢, € argminge, g (pty) Yonen Ui()pa, (Al)G(h) for all F} and ¢* as
above. Rectangularity implies that there exists a ¢' € @Zj(Ff’l) such that

= 3 6 (B h)

FleF?

which in general is not a worst-case belief. Then,

Y wlh)pe, (RPN (h) < Y ui(h)pe, (B[ (R)

hEFf71 heFit71
= > wi(h)pe, (hBTY) D ¢(Fd" (h)
heF; ™! Fler;
= > " (F)) Y ui(h)po, (W' 1)" (h)
FleF? heF}
=Y & (Fpo, (WA min >~ wi(h)po, (hB')d(h).
FleF! 9eD;_ (Ft)heFt

Combining Step i) and ii) proves O

Proof of |Theorem 1.5 (ex-ante implies interim). We show that for an arbitrary ¢ a
completely mixed interim equilibrium with rectangular beliefs at ¢—1 implies an interim

equilibrium with rectangular beliefs at ¢. Then, the theorem follows by iteration.

Let (0%, rect(®!~!) be a completely mixed interim equilibrium with rectangular beliefs
at t — 1 and assume that (¢o*,rect(®,_)) is not an interim equilibrium at ¢. Hence,
there exist a player 7, an information set F!, and a strategy profile (¢}, 0*,) such that
player i deviates from ¢o*. Let F/~! be the information set that precedes F! and ¢* the

worst-case belief at Fit_1 given o*,, i.e.,

RS arg min Z ui(h)pgj(hmt_l)gb(h).

¢>Erect(<1>fr;_1i (F=1) —_

Similarly, let ¢*! denote the worst-case belief at I given ¢ and ¢ denote the worst-

case at F/~! belief given the strategy o; which equals o/ for s > t and equals o} for
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s < t. Furthermore, let ¢ be the pasting of ¢ and ¢**. Then, ¢’ is in general not a
worst-case belief. Similar to Step ii) of the proof of it follows that

Ui (0", rect(@ 1 (F1)) < Y wilh)po: (h|R' )¢ ()

heH

= > o(F)per (WA U (0" vect (@ (F)).  (L7)

FleF!

By our assumption (0%, rect(®.. )) is not an interim equilibrium at ¢, i.e., there exist
F! and o} such that

Ui (0", vect(®y. (F))) < Uj((07,0%,;), rect(@g. (F7))). (1.8)

Furthermore, since o* is completely mixed and P has full support, it follows that

O(F} )poz (W[R™1) >0 (1.9)

for all F}. Combining [Equation (1.7)| [Equation (1.8) and [Equation (1.9)|leads to

Ui(o", rect (@ (FI)) < Y (ENper (W R Ui (0], 0% ,), rect (DL (F)))
FteF!

= min S wi(h)pe: (WA ) (IR)6(R).  (1.10)

t—1
pErect(P77) hell

—1

The last equality in [Equation (1.10)| follows by construction and [Remark 1.4f The
pasting of ¢ and the interim worst-case belief at ¢ given ¢/, is the worst-case belief at

t — 1 given the strategy o; which equals o] for s > ¢ and equals o} for s < t. Then,

IEquation (1.10)| follows from [Lemma 1.3}

The calculation above forms a contradiction since (0%, rect(®’.')) is an interim equi-
7

librium with rectangular beliefs at stage ¢ — 1. Hence, (0*,rect(®.. )) is an interim

equilibrium with rectangular beliefs at stage t. O

1.6.1.3 Proofs: Sequential Rationality and Rectangularity

Proof of [Theorem 1.5 First, we show that ¢%, is the pasting of the worst-case beliefs of
all interim stages. Assume that this is not the case, then there exists an information set

F! such that Bay(¢*Fio\Et) =+ ¢*Fi,g. Furthermore, o* is sequentially rational with respect
to U, ,. Hence, o] is an ex-ante best response given the belief ¢7, and therefore
an interim best response given the belief Bay(¢7.o|F}) as well. This contradicts the
assumption that there does not exist a belief ¢z 7£ ¢} such that o7 is a best response
given ¢pe. Hence, ¢, is the pasting of the worst-case beliefs of all interim stages
and ¢%, € U _ . Thelrefore, of is an ex-ante best response given rect(¥,_.). Then,
rectanéularity and the fact, that ¢* is sequentially rational given W, ., implies that

(o*,rect(V,_,) is sequentially rational. O
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1.6.2 Further Results
Additional to [Theorem 1.3 we can show that an equilibrium at stage t implies an

equilibrium at stage t — 1 if a no-profitable one-stage-deviation property is satisfied.

Definition 1.12. A tuple (o, V) of an strategy profile and a belief system satisfies the
no-profitable one-stage-deviation property at stage t if for all F! it holds that

Ui (o™, W'(F)) 2 Ui((07,0%,), U'(F}))
Jor all o such that o) equals o} everywhere except at FY.

Theorem 1.6 (Interim implies ex-ante equilibria). Assume that W is a belief system
which is rectangular and that (o*,V*®) satisfies the no-profitable one-stage-deviation
property for all s < t. If (o*,9") is an interim equilibrium with rectangular beliefs at

stage t, then o* is an ex-ante equilibrium with rectangular beliefs.

Similarly to we prove by showing that due to rectangularity

an interim equilibrium at stage ¢ implies an interim equilibrium at stage ¢t — 1. Then,

the recursive structure implies the following corollary.

Corollary 1.2. Assume that ¥ is a belief system which is rectangular and that (o*, U®)
satisfies the no-profitable one-stage-deviation property for all s < t. If (o*,¥") is an
interim equilibrium with rectangular beliefs at stage t, then (o*,W'™1) is an interim

equilibrium with rectangular beliefs at stage t — 1.

Furthermore, shows that rectangularity and the non-profitable one-stage-

deviation property for all stages imply sequential rationality.

Corollary 1.3. Let U be a belief system which is stable under pasting and assume that
(o*, W) satisfies the no-profitable one-stage-deviation property for all t > 0. Then,
(o*, W) is sequentially rational.

Proof. The result follows immediately from [Theorem 1.6] The no-profitable one-stage-
deviation property of (o*, UT) at the last stage and rectangularity imply that (o*, ¥7T)
is an interim equilibrium with rectangular beliefs at the last stage. Then,
implies that (o*, ¥*) is an interim equilibrium with rectangular beliefs at all stages t

and ¢* is an ex-ante equilibrium with rectangular beliefs. O]

As in the proof of the relation of interim and ex-ante worst-case belief
and, therefore, |[Lemma 1.3/ and [Remark 1.4] are essential to prove [I'heorem 1.6

Proof of [Theorem 1.6, We will prove that an interim equilibrium with rectangular be-
liefs at stage ¢ implies an interim equilibrium with rectangular beliefs at stage t — 1.
Since this holds for arbitrary ¢, iteration proves the theorem.
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Assume that (o*, ) is an interim equilibrium with rectangular beliefs at stage t. We
prove that an arbitrary player ¢+ has no incentive to deviate from ¢* at an arbitrary
information set F} " if all other players j # i play o7.

Fix some arbitrary F such that the probability of reaching F! from F!~' given o,
is positive.m Let ¢*' denote the worst-case belief at F! given of. Furthermore, let
a; denote a strategy which is equal to o} at all stages s > ¢ and equal to o, at stage
t — 1. The worst-case belief at F/~! given &; is denoted by ¢'~!. The worst-case belief
at F~! given o/ is denoted by ¢!

Since o*, is fixed, the belief sets of player ¢ are fixed as well. Furthermore, the worst-
case belief at F} depends only on the part of the strategy of player i which is chosen at
stages s > t. Hence, the worst-case beliefs at F} given o and &; are the same by the

definition of ;. By we know that the Bayesian update of the worst-case
belief at ¢t — 1 is the worst-case belief at t. This implies

Bay(¢'™') = ¢™". (1.11)
The optimality of o at F} implies
> " wi(h)per (WA =~ wi(h)pgr (b h') ™. (1.12)
heF} heF}

Combining [Equation (1.11)|and [Equation (1.12)|gives us

o () )
}; uwi(h)pg: (h|h )ZheF; () 2 }; ui(h)pgy(h|h )ZheF; S
Now, we can cancel the normalization terms of Bayes’ rule on both sides and multiply
each side with pg:(h*['~'). Then, replacing #'~! with the worst-case belief at ¢ — 1
given o} leads to

D_ il (hApoy (B A6 (h) 2 3 wslh)per (W1 )poy (BB )6 ()

heF} heF}

> Z ui(h)paé (h|ht)pcr§ (ht‘ht_l)gb/’t_l(h)'

heF}

This holds for any F} which is reachable from F/~'. Hence, summation over all this
F! leads to

> wilh)po; (BB )p; (WA 1) ()
heF!™!

> 3 uslh)p (W (1) (). (1.13)

heF;™!

16For information sets with zero probability, it follows by the full support assumption on P that
¢'~1(h) = 0 for all h € F! for any ¢'~' € ®!*(F/~"). Hence, the histories h € F! do not influence
the expected utility at Fffl.

23



1.6. APPENDIX

Furthermore, by the no-profitable one-stage-deviation property, it follows that

> wm)par (BRNG™ (h) =Y wilh)per (AR )y (WA (R).  (1.14)

heF!™! heF!—!

Combining [Equation (1.13)|and [Equation (1.14)leads to
Z wi(h)po; (A=) ¢™ 1 > Z u;(h)por (RIR)per (W' |R 1) " =1 (h)

heF;™! heF!i~!

which proves the optimality of o7 at F'~'. This holds for any arbitrary F/ ' and for
any arbitrary player 7. Hence, (¢*, ¥'"!) is an interim equilibrium with rectangular
beliefs at ¢t — 1. ]

1.6.3 Examples

1.6.3.1 Calculations [Example 1.1

Let ay, agr, and by, and so on denote the probabilities that player 1 plays A or B at
state L, R, and O, respectively. Similar, m, n, p, and o denote the probabilities that
player 2 plays M, N, P, or O. The set of histories H, the information partition J,,
and the ex-ante belief set @2_2 of player 2 are given by

H ={LBO,LBP,LAN, LAM, RBO, RBP, RAN, RAM,0BO,OBP,OAM,OAN},

Fy = {{LAN, LAM, RAN, RAM,0AM,OAN},

{LBO, LBP, RBO, RBP, OB0,0BP}},

o0 — {(lbL by lay laprbr mbr rar rar obo obo oao an) (o) € 73}.

2727272 2727272727272 2
Moreover, let Fy, for k = 1,2 denote the elements of the partition F; in the same
order as they are denoted above. We first look at the case where player 1 always plays

A. Then, we compare it with the case where player 1 plays A if the state is L or R
and B if the state is O.

e Player 1 plays oy, i.e., ap = ar =ap = 1:

The ex-ante belief set and marginal beliefs are given by

P = {(ooééooggoogg) - (I,r,0) € 7?},
¢(F211) =1,

¢(F21,2) = 0.
For information sets with positive marginal probability Bayes’ rule is well defined

and the Bayesian updates are given by

Il
Bay (®0 |F},) = {<0,0,§,§,0,0,g,g,o,o,g,g) . (I,r,0) eP}.
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Then, rect(®Y ) = @Y. .
e Player 1 plays o1, i.e., ap = ar =bo = 1:
The ex-ante belief set and the marginal beliefs are given by

[ 1
q)ol — —, =
o1 {(070727270707

)

,0,0) : (I,r,0) 673},

N O
N O

T
757

N3

The Bayesian updates for information sets with positive marginal probability are

Bay(@gi ‘FQll)

l [ r r
= 0,0 0,0 0,0,0,0) : (I
{( ) ’Q(Z—‘—T)’ 2(l+r>7 ) 72(l+r)7 2([—‘—7")’ ) ) ) > ( 7r70) E P}?

11
Bay(@%\Fig) = (o,o, 0,0,0,0, 5 5,0,0) .

The rectangular hull rect((Pgi) is

rect(cngl)

:conv{ (0,0,%,%,0,0, (1;), (156),0,0,0,0),
(0,0,0,0,0,0,%,%,0,0,0,0) , (0,0,0,0,0,0, (1;6), “;6),%,%,0,0),
(0707 6(12—6)’€<12—6)’0’O’ (1—26)2’ (1—26)275’270’0) }

1.6.3.2 Calculations

Example 1.2

Denote the history that the state is I, country A chooses war, and country C' punishes
A by IW P4. The other histories are denoted similarly. First, we construct the belief

sets <I>2_i and show that they are rectangular. Then, we show that for the game with

the restricted strategy set X, there exists an ex-ante and sequential equilibrium such

that no player chooses war.

Belief Sets and Rectangularity The information filtration
beliefs Y are given by

H = {IWP4,IWN, IW Py, IPW P4, IPWN, [PW Pg, [PPF,, IPPFy,

F! and the ex-ante

IIPPFg, IIPPF4, IIPW Py, IIPW N, [IPW Py, [IW Py, IIWN, ITW P4},

F'=H,
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Fi=H,

Fi = {{IWP, IWM,IW Pg, IIW Pg, IIWN, [IW P4},
{IPWP4,IPWN,IPWPg,IPPF,,IPPFp,IIPPFg,
IIPPFs, 1IPW P, IIPWN,IIPW P4} },

F& = {{IWPs, IWN,IW Py, IPW P4, IPWN,IPW Pg},
{IPPF,,IPPFg},{IIPPFg IIPPF,},

{IIPW Pg, IIPWN, IIPW Py, I[IW Pg, ITWN, ITW P4},

and
o0 _ ) (1h ' ppp pBpy pBn’ pBpp p(1—P)fa p(1=B)f5
o_A 2 ’ 2 ’ 2 ’ 2 ’ 2 ’ 2 ) 2 ) 2 )
(I—p)@ =8 Q=@ =B i (1—pBpl (1—p)pn!!
2 ’ 2 ’ 2 ’ 2 ’
1— 17 1— 17 1— 17 1— 17
W= ill (=l (1= " | ;)m) e w,m},
1— I 1— I 1 — ' 1— I
» - {@api,mﬂmpg’ et LT L 18
p(l—a)fp (1—p)(A—a)fff (1—p)(1—a)ff (1—-p)d—a)py
2 ’ 2 ’ 9 ’ 2 ’
(I—pw)(1—a)' (1—p)(1—a)pl I

) (1 - :u)aplBla (1 - N)Om )

2 ’ 2

o {@ pa pa p(l—a)B p(l—a)f pl—a)8 p(l—a)(l =B
o_¢ 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 2
p(l—)(1=p) (1= —a)1=F) (1-p—a)l-p)
2 ’ 2 ’ 2
1-p(A-a)f A-—p)(l-)8 QA—p)(1—-a)f (1-pa (1-pa
3 ’ 3 ’ 3 ’ 3 ’ 3

We denote with Fy ) and Fj , the first and second element of Fp. Similarly, Ff,,, F&,,
Ff 5 and F{, denote the elements of Ff. It is easy to verify that ®)_ is rectangular
fori=A,B,C.
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The marginal belief of player A is ¢(F;) = 1. Updating ®Y_ prior-by-prior leads to

5! _{(upﬁ pn' pph pBply pbn pBph (1 —B)fi w(l—B)fh

o_aA 2 ) 2 ) 2 ) 2 ’ 2 ) 2 ) 2 ’ 2
(1= =" A=pwQ=0)fF (1—wbpg (1—p)pn
2 ’ 2 ’ 2 ’ 2 ’
1— 17 1— 17 1 — 11 1— 17
( /;)ﬁpA ! 2#)2937( 5)7% ! 2#)m> e Ufﬂ}-

0
o_A"

Then, the pasting of marginal and updated beliefs shows that rect(®)_,) = ®

For country B, we have to differ between the information sets Fig ; and Fj,. Marginals

and updated beliefs are given by

®; ,(Fp1)

{ (Pl 1" 1p5,0,0,0,0,0,0,0,0,0,0, (1 = p)ply, (1 =y’ (1 = w)p})

IR
I I I I I 1_,“) II (1—M> II
ol (F2 :{ooo“pA’“‘" upp pfa 1fp ( B A
aB(B,Q) (777272a272727 2 ) 2 )
1_,UPII 1—,un” 1_,UPII ~
( 2)B’( 2) ’( 2)14,0,0’0) IU/G[H,,U/]}

The pasting of marginal and updated beliefs shows that rect(®)_ ) = ®0_ .

Country C has four information sets. The marginal and updated beliefs are

O(Fhy) = pla+ (1 —a)p),
O(Fho) = pu(l —a)(1 = 3),
O(Fhs) =1 —p)(l—a)(l-p),
O(Fhy) =1 —p)(a+ (1 —a)b),
and
o o(Fey) = {<3(a T 0—a)f) Mot (A=a)f) 3t 0 =a)f)
(1-a)B (1-a)p (1—-a)s

3a+(1—a)B) 3(a+ (1—a)f) 3(a+ (1 —a)B)’
0,0,0,0, 0,0,0,0,0,0) e [g,ﬂ]},

11
B (Fly) = {(0 0,0,0,0,0,5,5,0.0,0,0,0,0,0, 0) }

11
B (Fly) = { (0, 0,0.0,0,0,0,0, 5, .0,0,0,0,0, 0) }
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1 1 (1—-a)B (1—-a)s
@UCﬁbgz{(Q&Q&Oﬁiﬂk&&3m+%1_QWYBW+%1_awy
(1—-a)p o' a
3t (1—a)f) 3@t 1-a)f) 3atd-ap)

«

aa+u—@m>:“ewﬁ}

The pasting of marginal and updated beliefs leads to rect(®)__) = ®)__. Hence, ®)

o_c ) Xo_a0

@) ., and &) _ are rectangular.

Sequential Equilibria From the analysis in [Example 1.2] we know that ¢* with

I % I
, P4 =pg =1

DN | —

OZ*:B*:O, fi,*:fi[,*:

is an ex-ante equilibrium if [0.45,0.55] C [u, ). To show that o* is an sequential
equilibrium if z < 0.5, we have to find a sequence of completely mixed strategy profiles
that converges to ¢*, such that sequential rationality and consistency w.r.t ¢* are
satisfied. Let X5 = [oF,1 — o] and X% = [8¥,1 — "] be strategy sets of country A
and B such that o, ¥ — 0 if k — oco. Furthermore, assume that of = (1 — o*)g*.
For country C, we define ¥f, such that p/y, pil € [¢",1 — €] with ¢ — 0 if k& — oco.
Now, we show that for all k the strategy profile o* with

k__ k k _ ok Lk II,k_l I,k IIk_ k
- ) ﬁ 67 A — JA _27 pA =Pa I—e

(07

I

is an ex-ante equilibrium and o* together with the belief system ®* constructed using
Bayes’ rule is an interim equilibrium of the game with the restricted strategy sets ¥¥
specified above. Similarly to above, one can show that A, B, and C' have no incentive to
deviate from o” at the ex-ante stage. At the interim stage, the maximization problem
of country A does not change and oF is still optimal. The expected interim payoff of
country B from playing war is given by

min 10—= MpA

MG[HM

+(1—p)-0=5pu.
The expected interim payoff from playing peace is

1-—
min —(5fA+4fB)+—(5f +AfE) ==
el 2 4

Since p < 0.45, it is optimal for B to play 8¥ = 8*. Furthermore, since o* and 3" are
such that o = (1 — c_vk)@k, the sets of updated beliefs of C' after observing war are

111111
q)clrc(Fé,l)—{(—a—a—,— - —0000000000>}
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111111
ot (FL)=1<1(0,0,0,0.0,0,0,0,0,0,—, -, = = — = .
g,c( 074) {(7 ) Yy Yy My My My Yy My 7676a6)67676>}

Therefore, country C'is indifferent between punishing A or B if z < 0.5 and indifferent
between all three actions if # = 0.5. By the definition of ¢*, it follows that o* con-
verges to o*. This shows sequential rationality. Finally, the belief system ®F satisfies

consistency w.r.t. ¢* by construction. Hence, o is part of a sequential equilibrium.

If z > 0.5, country C strictly prefers to play n with probability one. Therefore o* is

not interim optimal for C' and does not form a sequential equilibrium.

Equilibria without Ambiguity In this part, we show that without ambiguity there

is no ex-ante equilibrium in which countries A and B play peace.

The expected payoff of country A of playing war with probability « is

pl6n'a+10pga +66n' (1 — o) + 108p5(1 — ) + (1 — a)(1 — B)(5f4 + 45)]
+ (1 — p) [Gnﬂa + 10pH a4 680 (1 — a) 4+ 108pH (1 — a)}
+ (1= (1 —a)(1 = B)(BSA +45)

—a(1 = B)[u(6n" + 10p}) + (1= ) (6n'" + 10p3)]

— (1= 8)|u(sfh +afh) + (L= WG +4fh] + T,

where T is independent of the strategy of A. Hence, maximizing the expected payoff
of country A leads to the following best response a*:

1 if (60 +10p) + (1 — p) (60" +10pF ) > p(5f4 +4f5) + (1 — w)(5fA + 45,
o =<¢[0,1] if p(6n! +10p%) 4+ (1 — p)(6n'! + 10p) = u(5f4 +4f5) + (1L — w) (54T + 415D,
0 if 1(6n +10p%) + (1 — p) (60" +10pg ) < p(5f4 +4f5) + (1 — w)(5fA" + 45,

if 8 <1and a* € [0,1] if 8 = 1. Similarly, one can calculate the best response of
country B:

1 if p(6n’ +10pY) + (1 — ) (60" + 10p4) > u(5fh +4f4) + (1 — w) (5S4 + 440,
B*=1410,1] if p(6n’ 4 10p%) + (1 — p)(6nL +10p]) = p(5f5 +4f4) + (1 — w) (B fE + 45D,
0 if p(6n' +10ph) 4+ (1 — p)(6n'" + 10pY) < p(5fh +4f4) + (1 — w55 +4f4),

if « < 1and g* € [0,1] if &« = 1. The best response of country C' depends on the payoff

x. We distinguish between the following three cases:

11

e If x > 1, playing n’* = n’l* =1 is a dominant strategy.

o If z < 0.5, country C' will never play n. The probability of playing pa or pp
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depends on « and §. In particular,

1 ifa>(1—-a)p,
P =4100,1] ifa=(1-a)s

0 if < (1—a)p.

e If z € [0.5,1], the best response depends on the relation between «, § and .

If @ > (1 — a)p, the probability of punishing B is zero, i.e., pk* = pi* = 0.

Furthermore,
0 if a <z,
P =1100,1 ifa=az,
1 if a >z,

and n/* =1 — pi* n!t* =1 — p'l*. Similarly, if o < (1 — @) the probability of

. . . . I II
punishing A is zero, i.e., p,~ =p,; " =0,

0 if (1—a)f <=,

I« I1% .
ps P =4[0,1] if (1—«)p
1 if (1—a)p>ux,

I 17
and n[,* -1 _pB;*’nII,* =1 _pok.

T,

Using the best responses, one can show that the following equilibria occur depending

on the payoff x:

o > 1:
In any equilibrium, it has to hold that n/* = n//* = 1 and either o* = 1 and
p*€[0,1] or a* € [0,1] and f* = 1.

o r < 0.5
In any equilibrium, the strategies of A and B are o* = % and f* = 1. The
strategy of C has to satisfy n/* = n//* = 0 and
10(uply + (1= p)pid) > 4+ pfp + (1 —p)fg. (1.15)

e zc[0.5,1]:
There are two types of equilibria: Either o* = %, 15}

a* = z, /6* — Lnl,* — n[[,* - 1.

* 11 %

=1and nt* =nl*=1or

This shows that in all equilibria, at least one small country plays war with probability
one. Hence, there does not exist an equilibrium in which the peace agreement is
successful. Please note that we did not specify conditions on f4, f%, fil and fL since

C is always indifferent between f} and f5 or f4 and fLI.
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Chapter 2

Dynamic Consistency in Ambiguous

Persuasion

2.1 Introduction

The standard Bayesian persuasion literature analyzes the communication of a Sender
and a Receiver. The Sender tries to persuade the Receiver by designing a communi-
cation device. Depending on an unknown state, the communication devices generate
a signal realization. Given this signal realization, the Receiver chooses an action that
influences the payoff of Sender and Receiver. This setting without ambiguity was firstly
studied by [Kamenica and Gentzkow| (2011)).

Beauchéne et al.|(2019), henceforth abbreviated by BLL, introduce ambiguity in a stan-
dard Bayesian persuasion setting and characterize conditions under which the Sender
can gain from ambiguous communication. BLL deal with the problem of dynami-
cally inconsistent behavior by restricting their analysis to interim equilibria. They
introduce ambiguity in the standard Bayesian persuasion setting of [Kamenica and
Gentzkow| (2011) by allowing the Sender to choose a set of communication devices.
Each communication device can generate a signal that reveals information about an
unknown (risky) state w € Q. Sender and Receiver only observe the signal realization
without knowing which communication device generated the signal realization. There-
fore, ambiguity about the communication device induces ambiguity about the risky
state w. However, they claim that there is no gain of ambiguous persuasion compared

to Bayesian persuasion if the players behave dynamically consistently[]

In this chapter, we first show that we can restrict without loss of generality to messages

that produce recommended actions or synonyms of recommended actions. A synonym

!See Proposition 5 of Beauchéne et al.| (2019).
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2.1. INTRODUCTION

m' of a message m is a message that induces the same posterior belief or best response
of the Receiver as the message m. This result generalizes the well-known Proposition 1
by Kamenica and Gentzkow (2011)), which states that one can restrict without loss of

generality to so-called straightforward signals to the ambiguous persuasion setting.

Then, we define beliefs over a more general state space of straightforward messages
and states. The more general state space allows for rectangular ambiguous beliefs.
These beliefs take the dependence of the ambiguous signal and the ex-ante risky state
into account and allow for a non-singleton ex-ante belief set. Given these beliefs, the
optimal interim strategy of the Receiver in BLL is ex-ante optimal and, therefore,
dynamically consistent. Hence, ambiguous persuasion can generate a higher value for

the Sender even under dynamically consistent behavior.

This chapter is organized as follows: First, we discuss the related literature. In
[tion 2.2] we formulate the ambiguous persuasion model and give an example that illus-
trates the gain of an ambiguous strategy and the dynamically inconsistent behavior.
Section 2.2.2| generalizes Proposition 1 of Kamenica and Gentzkow| (2011) and defines
rectangular beliefs. defines perfect Bayesian equilibria under rectangular
beliefs and generalizes the results of BLL. Furthermore, in we discuss the
value of information under ambiguous persuasion. Finally, concludes and

discusses related literature in more detail.

Related Literature Asin we follow the approach of [Epstein and Schnei-
der| (2003)) and Riedel et al.|(2018) and define rectangularity in the ambiguous persua-
sion setting. However, the results of cannot be applied straightforwardly in
the ambiguous persuasion setting. In ambiguous persuasion, ambiguity arises due to
an ambiguous communication device of the Sender. Hence, the strategy of the Sender
is ambiguous. In we only consider ambiguity about the state space and
not about the opponents’ strategy. However, restricting to straightforward signals, we
can define rectangular beliefs on a more general state space in the setting of BLL. The

relation to the consistent planning approach of |Siniscalchi (2011) and the updating
rules by Hanany and Klibanoff (2007)) are discussed in [Section 2.5

The literature on ambiguous communication or information is still relatively small.
Kellner and Le Quement| (2018)) introduce ambiguity in a cheap talk setting by allowing
the Sender to commit his signal on an ambiguous payoff-irrelevant state. They show
that ambiguity may lead to a pareto improvement compared to non-ambiguous cheap
talk. |Cheng (2020) analyzes the ambiguous persuasion setting of BLL from an ex-ante
perspective. He shows that if Sender and Receiver use the updating rule of [Hanany

and Klibanoff (2007), the Sender cannot benefit from ambiguous persuasion.
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2.2. MODEL

Furthermore, there is increasing literature on the value of information under ambigu-
ity. |Hill] (2020)) defines the value of ambiguous information in a decision-theoretical
model which uses so-called subjective trees. |Li (2020) studies the relation of ambiguity
aversion and an aversion of (partial) information. Kops and Pasichnichenko| (2020)
experimentally show that for a specific decision problem, a majority of the subjects
have a negative value of ambiguous information, which is correlated with ambiguity
aversion. However, in a different experiment |Ortoleva and Shishkin| (2020) find an
opposite result. They do not find any evidence for a negative value of information for
ambiguity avers agents. In we discuss the relation to Hill (2020) and |Li
(2020) in more detail.

2.2 Model

Except for the belief formation process, we follow the model of BLL. Let us first

summarize their model.

2.2.1 Model of BLL

The persuasion game consists of two players, a Sender (he) and a Receiver (she). The
utility of both players depends on the state of the world w € 2 and an action a € A
chosen by the Receiver. We denote with u(a,w) and v(a,w) the utilities of the Receiver
and the Sender, respectively. 2 and A are compact subsets of the Euclidean space.
Ex-ante, the state w is unknown, and both players have the a common prior state
belief pg € AQ, where AQ denotes the set of all distribution functions on . Thus,
ex-ante there exists no ambiguity about the stateE] The Sender tries to persuade
the Receiver by choosing a signal that reveals information about the state. A signal
consists of a finite set of signal realizations or messages M and a set of communication
devices I = {m;}rexf| Each communication device is a distribution over the set of
messages M for each w € Q, i.e., m(-|w) € AM for all w € Q. Again, AM denotes the
set of all distribution functions on M. As in BLL, we assume that the m,’s have common
support for all £ € K. The only difference to the standard Bayesian persuasion setting
is that the Sender chooses a set of communication devices instead of one communication
device. It is ambiguous to both players, which of the communication devices generates
the observed message. After observing a message m, the Receiver updates her prior

state belief using Bayes’ rule. Since she does not know which communication device

2Qur definition of belief differs from the one of BLL. To avoid confusion, we use the term state

belief whenever we refer to beliefs in the sense of BLL.
3Please note that we deviate from the model of BLL by defining II as the set of communication

devices. BLL define II as the convex hull of the set of communication devices. Since Sender and

Receiver have maxmin preferences, the minimization problems over {r} or co({m}) coincide.
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2.2. MODEL

generated the message, she updates py with respect to each communication device my,
which leads to the following set of posterior state beliefs after observing the message
m € M:

. 7T m .
Po= {0 € a0 s pipl) = - U ey
Jo po(w)mi(m|w) dw
Sender and Receiver have maxmin preferences & la (Gilboa and Schmeidler| (1989),
i.e., they maximize their worst-case expected utility. BLL assume that the Receiver
maximizes her interim worst-case expected utility given that message m was observed.
Hence, for all m € M the expected utility is given by
U(a,P,) = min E, (u(a,w)).

Pm GPm

As usual in the persuasion literature, we assume that the Receiver chooses the sender-
preferred action if she has multiple maximizers. We denote with a,, the (sender-
preferred) best response of the Receiver after observing the message m. The Sender

chooses the signal (M, II) that maximizes his ex-ante worst-case expected utility

(iz% Errle%l E,, [E,r [, w) |wH .
Since the Sender only chooses an action at the ex-ante stage, he can never behave
dynamically inconsistently. However, the interim best response of the Receiver is,
in general, not ex-ante optimal. Intuitively, ex-ante, the Receiver can hedge against
ambiguity by playing any constant strategy. The following example from BLL shows
that ambiguity can lead to a higher expected payoff for the Sender. Furthermore, we

show that the interim equilibrium strategy of the Receiver is not ex-ante ante optimal.

Example 2.1. Assume that the Sender is a brand-name drug producer. The Receiver
is a physician who can choose between prescribing the brand name drug (a = ag) or
a generic competitor (a = ag). The Sender always prefers that the Receiver prescribes
the brand name drug. The Receiver’s preferences depend on the state, which reflects the
effectiveness of the generic drug. If the generic drug is effective (w = w,), the Receiver
prefers the generic drug. If not (w = w;), she prefers the brand name drug. The payoffs
of Sender and Receiver are given in|Table 2.1

‘ We Wi
ag | (1,2) (1,2)
ac | (0,3) (0,—1)

Table 2.1: Payoffs (S, R)
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2.2. MODEL

Sender and Receiver have a common ex-ante state belief py = P(w = w;) < i. BLL
show that the optimal Bayesian persuasion signal is such that the set of messages M

consists of two messages M = {i,e} and the communication device is given by

1—-4
m(elwe) = = _;;0 =1 — 7(i|w.),
mlelw;) =0=1—7(i|lw;).

Then, the ex-ante expected payoff of the Sender given the optimal Bayesian persuasion
is attained by P(m =1i) -1+ P(m =e)-0=4py < 1.

Furthermore, BLL construct an ambiguous persuasion signal that leads to a higher
expected payoff of the Sender. Let M = {e,i} be as before. The set of communication
devices Il = {m, 7'} is given by a communication device that always reveals the true

state and a communication device that does the opposite, i.e.,

— m(e|w;), m(ilwe) =0=1—7(e|we),
— 7' (e|w;), 7 (ilwe) =1=1—7"(e|we).
Given this ambiguous communication device, the interim state beliefs are

Pn = {(O’ 1)7 (170)}

for m € {e,i}. Due to the mazmin preferences, the interim worst-case belief for both
messages always gives probability one to the inefficient state w;. Therefore, the Receiver
chooses the brand name drug with probability one. Then, the ex-ante expected payoff of
the Sender is one which is greater than the ex-ante expected payoff given the optimal

Bayesian persuasion.
Howewver, the ex-ante expected payoff of the Recewer is given by

Erneiﬁl . (m(m|we) + 7(m|w;))Epr (u(am, w)),
mede,t

where a,, denotes her action after observing the messages m. If she chooses the brand
name drug independently of the signal that she will observe, her ex-ante expected payoff

equals
2 Plw=w)+2 Plw=w)=2.
Her expected payoff if she always choose the generic drug is
3-Plw=we)+1 -Plw=uw;)=3—4py.

Since py < i the optimal interim strategy of always prescribing the brand name drug

s not ex-ante optimal, and the Receiver behaves dynamically inconsistently.

4Please note, that for simplicity we deviate from the illustrating example of BLL (page 317) by

assuming uy = 3, ur, = —1 and ¢ = 1, which is consistent with the payoffs in Example 2 of BLL.
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2.2.2 Dynamically Consistent Belief Formation Process

In this model, ambiguity arises due to the ambiguous communication device. Ambigu-
ous interim beliefs only occur due to the combination of a risky state and an ambiguous

signal. Consider the following two situations at the ex-ante stage:

1) The Receiver does not observe any message. All information about the state

w € () is represented by py.

2) As in situation 1) the Receiver knows py. Additionally, she knows that she will

receive an ambiguous message before making her decision.

In the first situation, the Receiver knows that there will be no additional information.
She chooses her optimal action, given the expected utility with respect to pg. In the
second situation, the Receiver has ex-ante the same information about the state as
in Situation 1). However, she knows that she will receive additional but ambiguous
information before making her decision. Further, she knows that this ambiguous in-
formation influences her interim beliefs and, thus, her best response. A rational player
should consider this knowledge about a game’s information structure at the ex-ante
stage. Rectangularity takes the interplay of the prior state belief py and the knowledge

about the information structure into account. This ensures dynamic consistency.

This section shows that defining beliefs over a general state space allows the definition
of non-singleton rectangular belief sets. Then, given rectangular beliefs, the Receiver
behaves dynamically consistently, and the equilibrium of BLL is a perfect Bayesian

equilibrium.
2.2.2.1 Straightforward Messages

In the ambiguous persuasion setting, the set of messages M is part of the Sender’s
strategy. In a Bayesian persuasion setting, Kamenica and Gentzkow| (2011) call a
communication device straightforward if M C A. They show that one can restrict
without loss of generality to straightforward communication devices in a Bayesian
persuasion setting. The next proposition generalizes this result to our ambiguous
persuasion setting. It shows that the Sender chooses without loss of generality M C
AU A, where A is a duplicated set of A such that there exists a bijection b(-) between

A and A. Given this result, we can define rectangular ex-ante beliefs over Q x (AU A).

Proposition 2.1. Let (M,T1) € argsup mingen By, [Ex [V(apm, w)|w]]. Let A be such
that there exists a bijection b(-) : A — A between A and A. Then, there exist a tuple
(M’ T1') with M' € AU A and I! = {x},7},} such that (M',II') generates the same
value for the Sender as (M, 1I).
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The intuition of the result is as follows. Kamenica and Gentzkow| (2011) show that
for Bayesian persuasion, it is without loss of generality that M C A. BLL show
that ambiguous persuasion increases the value for the Sender compared to Bayesian
persuasion only if the Sender uses a signal with synonyms. Synonyms are messages that
copy the meaning of another message, i.e., they induce the same posterior state belief
set or best response of the Receiver. Furthermore, they show that for any ambiguous
signal, one can find an ambiguous signal which only consists of two communication
devices and leads to the same value. Hence, in order to allow synonyms, we have to
duplicate the message space. Further, duplication is enough to generate the same value

as any ambiguous signal. Therefore, M C AU A.

Proof of Proposition 1. Corollary 1 of BLL shows that there exist m; and 75 such that
(M, {m, m}) generates the same value as (M, II). Hence, we have to show that (M’ IT")
generates the same value as (M, {m,m2}). We first look at the case where the Sender

does not use synonyms.
i) The Sender does not use synonyms:

Since (M, {m1,m}) does not use synonyms, there does not exist any m, m’ € M
with m # m' such that a,, = a,/. Remember, that pI, denotes the posterior
state belief of the Receiver given the message m and the communication device 7.
Furthermore, a,, denotes the Receivers’ best response given message m € M and
the communication devices {7y, m}. Since (M, {m, m2}) does not use synonyms,
there exists at most one m € M for each a € A such that a = a,,. We define
mi(-lw) € AM’ with M’' C A such that

- mi(mlw) if Im € M with a = a,,,
Ti(alw) =
0 otherwise.

Then, the posterior state belief p7i equals the posterior state belief pl if a = ay,.
Therefore, (M, {m,m}) and (M’, {7, 72}) generate the same set of posterior
state beliefs and the same best response of the Receiver. Since the best response

does not change, the value of the Sender is the same for both signals.
ii) The Sender uses synonyms:

If (M,{m,m}) uses synonyms, we can split M in M; and M, such that there
exists a bijection between M; and M, and M; U My = M. Then, (M, {71, T2})
with

mi(m|w)

ZmGMl U (m‘w)

mi(mlw) =
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defines a signal that does not use synonyms. Hence, as in Case i), there exists
(M7, {71, m2}) with M] C A that generates the same value as (M, {7, T2}).
Similarly, one can define the restriction of m; to My and find (M}, {71, 71}) with
M C fl, that generates the same value as M, and the restriction of m; to M,.
Then, (M’, {r},m5}) with M' = M{ U M} and

, Ti(alw) e, Ti(mlw) if a € A,
mi(alw) = 1 ]
Ti(alw) Y ens, milmlw) ifa € A,

generates the same value as (M, {m, T2 }).

]

IProposition 2.1 shows that without loss of generality we can assume that M C AU A.

Due to the assumption that all 7, have common full support on M, a strategy of
the Sender (M,1I) is completely characterized by II. For the rest of the chapter, we
will use the term strategy of the Sender for such a II. Furthermore, we denote with
supp(Il) = supp(mx(-|w)) the support of m, € II for all k € K.

2.2.2.2 Rectangular Beliefs

Given the results from the previous section, we can define beliefs over the general state
space 2 x (AU fl) Defining beliefs over this general state space allows the Receiver
to form a joint belief about the risky state w € ) and the message m € M, i.e., the
Receiver forms beliefs of the events “the state is w, and I observe message m.” Then,
the probability of this event depends on the risky state w € €2 and the ambiguous

communication device that generates the message.

Definition 2.1. For a strategy Il of the Sender, we define the set of ex-ante beliefs

of the Receiver as

Y = {pk EAQ x (AU A)) : Iy, € 1T with

p(w,m) =

po(w)mr(m|w) if m € supp(1l),
0 otherwise.

Please note that the strategy of the Sender generates the information structure of the

persuasion games. Hence, it has to influence the joint belief over states and messages.

At the interim stage the Receiver observes a message m € supp(Il). The information

structure at the ex-ante stage (¢ = 0) and interim stage (¢t = 1) can be represented by
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the following partitions

Fo=Qx (AUb(A)),
Fi= {{Q X m}mGAUb(A)}-
Then, given an observation m € supp(Il), the Receiver updates her ex-ante belief set

prior-by-prior using Bayes’ formula, i.e., she updates each prior belief in ®% with Bayes’

formula

Kl — k(w0 m) ) = Po(w)m(m|w)
o = (el =

if m = m and zero otherwise. Then, the set of updated beliefs given m € supp(Il) is

Bay (O i) = {p"|n : p* € Oy}

Remark 2.1. Note that p*((w, m)|m) = 0 for m & supp(I1) and p*((w,m)|m) = pi*(w)
for all w € €.

To define rectangularity let us first look at the case without ambiguity, i.e., if IT = {7}
and ®Y = {p} is singleton. After observing message m the updated belief is given

by plm. Furthermore, the marginal beliefs of observing m € AU A under p is

p(Q,m):/Qp(w,m)dw:/on(w)ﬂ(m]w)dw.

Then, the structure of Bayes’ formula implies that multiplying the updated belief after
observing message m with the marginal probability of observing m leads to the prior
belief restricted to the events that the message is m. This holds for all messages m and,
therefore, for all information sets of the partition defined above. Hence, integrating

over all m € supp(II) leads to the prior belief

plw,m) = / p(Q, m")pl o (w, m) dm’.
supp(1T)

Now, we generalize these considerations to an ambiguous setting, i.e., II is not a sin-
gleton. Rectangularity requires that any combination of marginal belief and updated
belief is a prior belief that the agent considers as possible. The Receiver knows which
messages she could receive and, thus, which updated beliefs potentially exist. Taking
this knowledge into account, rectangularity requires that any combination of marginal

and updated belief is an element of the ex-ante belief set.
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Definition 2.2. The pasting of an ex-ante belief p € ® and a collection of updated
beliefs (plm)m € X s supp(Il) Bay(®Y|m) is defined a

po (pladaliosm) = [ p(@rip(e i) i
supp(IT)

= ( /Q po(e)r(ml) do’) 2 wim(mlw)

fgpo(w’)ﬂ(m\w’) dw'

The set of ex-ante beliefs is called rectangular (or stable under pasting) if it contains

all pastings of an ex-ante belief p € ®Y and interim beliefs (p|s)m, i-e.,
po(pla)a(-) € Py

for all p € Y and (pln)m € X )Bay(®0n]m).

€supp(IT

If Y is not rectangular, one can always construct the smallest set, which is rectangular
and contains ®Y by backward induction. We call this set the rectangular hull and
denote it with rect(®Y). Simple calculations show that Bay(®Y|) = Bay(rect(®Y)|m).
The same holds for the set of marginal beliefs under ®% and rect(®%). For a more

detailed explanation of the construction and the properties of the rectangular hull, we

refer to [Chapter 1]

So far, we focused on the beliefs of the Receiver. The Sender only chooses an action
at the ex-ante stage. Therefore, the interim beliefs of the Sender do not influence the
equilibria of the game. For technical completeness, we can always find an information
structure of the Sender that does not influence the ex-ante decision of the Sender
but ensures that the ex-ante belief set of the Sender is rectangular for any strategy
II. For example, the Sender could observe which communication device generated the
observed message at the interim stage. However, this chapter aims to find a belief
formation process that ensures dynamically consistent behavior. Since the Sender can

never behave dynamically inconsistently, we do not go into details.

2.3 Dynamic Consistency and PBE

Finally, we show that rectangularity implies dynamically consistent behavior of the

Receiver and, therefore, the existence of a perfect Bayesian equilibrium.

Definition 2.3. A perfect Bayesian equilibrium (PBE) with rectangular beliefs consists
of a strategy I1* of the Sender, a strategy (am)men of the Receiver and a belief system W

for each player. Strategies and belief systems have to satisfy the following conditions:

5Please note, that the pasting is always well defined due to the common support assumption.

Furthermore, the second equality follows since p(w, m|m) = 0 if m # m.
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o The belief systems of both players consist of an ex-ante belief set U9 and interim
belief set U for each message m € AU A such that

VY = rect(®Y.) and UL = dY..
Furthermore, the interim belief sets are derived by Bayes rule whenever possible,
i.e., U = Bay(Y?|m) for all m € supp(IT*).
o The equilibrium strategy of the Sender 1I* with supp(II*) C AU A mazimizes his

ex-ante worst-case expected utility

min E, [v(Gy,, w)] .
pETY

e The equilibrium strateqy of the Receiver maximizes her interim worst-case ex-

pected utility for all m € supp(1T*)

p‘meig"l Eﬂ"m (u(am7 W)),
m R

and her ez-ante worst-case expected utility given the ex-ante belief set W%

min E,(u(am,w)).
peYY,

The following proposition shows that we can generalize any ex-ante best response of
the Sender and interim best response of the Receiver to a perfect Bayesian equilibrium

using rectangularity.

Proposition 2.2. Let (M,11) be the optimal ex-ante choice of the Sender and (am)men
the optimal interim choice of the Receiver as in BLL. Then, there exists (M*,11*), with
M* C AU A and |II*|= 2 that generates the same value of the Sender as (M,II).

Furthermore, I1*, (G)menr, and

WY, = rect(®Y.),
\IJO — @%*,
(U ) menr = (Bay(VY|m))mensr=

are a PBE with rectangular beliefs.

Proof. The first part of the proof follows from [Proposition 2.1l Furthermore, the Sender

never behaves dynamically inconsistently. We only have to show that the Receivers
interim best response of BLL is an interim and ex-ante best response given rectangular
beliefs. Remember that p*(-) = p¥((-,m)|m) for all 7 € supp(Il) and that the set
of Bayesian updates given @Y or rect(®Y) are the same. Therefore, the interim best
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response given the state beliefs of BLL is an interim best response given rectangular
beliefs, as well. Furthermore, we can rewrite the ex-ante expected utility of the Receiver
as
min / (0 ME, . (u(ap, w)) dii,
pErect(®P.) Jsupp(ID)
where p|s is the Bayesian update of p given message m. We first show the relation
between ex-ante and interim worst-case expected utility. Let p* denote the ex-ante

worst-case belief given rectangular beliefs. Then,

[ @B, (ulanw) di
supp(I1*)

= / P (Q,m) min E,p, (u(apm,w))dm.  (2.1)
supp(IT*) Pl €Bay

(rect(q)on* )|m)

To prove [Equation (2.1)] we first show that the left-hand side is greater or equal than

the right-hand side using the inequality

E . (u(as,w)) > min E,.. (u(am,w
oo (W ) Pl €Bay (rect(®f. ) |1h) ol (1 )

for all m € supp(IT*).

To prove the other direction, let p'|; be the worst-case belief given that she observed m.
Then, due to rectangularity, there exists p € rect(®.) such that p* o (p/|n)m = P
Furthermore, rectangularity implies, that p(-|m) = p/(:|/) and p(Q, m) = p*(2, m) for
all m. Hence,

/ o P (00,0 i < / P )E,. (u(ag,w)) drin
supp(II*

supp(I1*)

_ / (B, (ulan, w)) din
supp(IT*)

= / p (2, m) min K., (u(as,w)) dm.
supp(IT*) plm EBay

(rect(®Y,, )|r)

Combining both directions proves [Equation (2.1)l Finally, we show that an interim

best response of the Receiver is an ex-ante best response, as well. We denote the

(sender-preferred) interim best response of the Receiver given message m by ay, , i.e.,

min E, . (u(ap,w)) > min E. (ula-.w
Plin €Bay (2. 1) Ao (18, ) ~ plneBay(@hlm) (1, 2))

for any arbitrary as; € A and all 7 € supp(IT*). We have to show that (a,)mesupp(i+)
is ex-ante optimal. Since p(€2,m) > 0 for all 7 € supp(II*) and p(2,7) = 0 for all

m ¢ supp(IT*), [Equation (2.1)|implies

min / P )E,, (ulag,w)) i
supp(I1*)

perect(®Y,,)

= min / p(Q2, 1) min Ey,, (u(ap,w)) dm
supp(11*)

pEreCt(@%*) P'\mEBaY(Q%* |77)
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min
P’\mGBa}’(‘D%* |m)

< min / p(§2,m)
perect(®Y,) supp(IT*)

/ p(, M)E,, (u(as,w)) dm
supp(11*)

B (@@, w)) diin

= min
perect(®Y,)

for any arbitrary (as)mesupp(n)- The inequality follows from the interim optimality of

(i )mesupp(r+) and the last equality from [Equation (2.1)|

Hence, the Receivers’ ex-ante best response equals the interim best response and the

interim equilibrium of Beauchéne et al.| (2019) satisfies ex-ante optimality. O

Remark 2.2. In the proof of |Proposition 2.1, we show how (M*,I1I*) can be con-

structed. The construction is similar as for Bayesian persuasion in |Kamenica and

Gentzkow (2011)). Intuitively, any two messages m and m' that are not synonyms of
each other but induce the same optimal strategy, i.e., 4, = Gy, are replaced by the
same message m. This implies that M* C AU A. The construction shows that even if

the message sets M and M* are different, the Receiver’s actions do not change.
To illustrate the previous results, we come back to our example from [Section 2.2.1

Example 2.2 (Example 2.1| cont.). Remember that the optimal ambiguous communi-

cation device was given by 11 = {m, ©'} with

(i)
(i)

Then, the set of ex-ante beliefs of the Receiver is ®Y = {p, p'} with

1=1-—m(e|lw),
0=1-

’/T/(e‘wi)a

Do if m=i,w=uw, Do ifm=ew=uw,
plom)={1—py ifm=cw=w, pPwm={l-p ifm=iw=cw,
0 otherwise, 0 otherwise.

To construct the rectangular hull, we need to calculate all interim beliefs

, 1 ifm=i,w=w;, 1 ifm=ec,w=uw,,
p(w,m|i) = _ p(w,mle) = .
0  otherwise, 0 otherwise,
1 ofm=1w=w,, 1 ifm=ew=uw,,
P (w,mli) = f p'(w,mle) = !

0 otherwise,

and and marginal beliefs

marg(p(" Z)) = Po;
marg(p'(-,€)) = po,

0 otherwise,

marg(p(-,e)) =1—po,
marg(p'(+,4)) =1 — po.

73



2.4. VALUE OF INFORMATION

Then, we obtain the rectangular hull rect(®%) = {p, 0', p, p} by combining any marginal

and interim belief, where p and p’ are as before and

1_p0 me:Z,w:W“ 1_p0 ?;fm:e7w:wi7
ﬁ(w7m> = p() ifmze,w:we, ﬁ(w7m) = pO ifm:i’w:we’
0 otherwise, 0 otherwise.

Given the rectangular hull, the worst-case belief of the Receiver, if she plans to choose
the generic drug after message m, is P(w = w;, m) = 1—pg > %. Therefore, always pre-
scribing the brand name drug is ex-ante optimal, and the Receiver behaves dynamically

consistently.

2.4 Value of Information

Our example shows that the Receiver is better off by making her decision based on py.
Therefore, she would prefer getting no additional information than getting ambiguous
information. This result is consistent with the recent literature on the (negative) value
of information under ambiguity, e.g., Li (2020) or Hill (2020). However, BLL show
in their Subsections 6.3 and 6.4 that the Receiver may benefit from listening to an

ambiguous device.

We denote the ex-ante expected utility of action a of the Receiver without any addi-

tional information by U%(a), i.e.,

U’(a) :/Qu(a,w)po(w) dw.

Definition 2.4. A communication device 11 has a positive value of information for the
Receiver if

max min  E,(u(am,w)) > max Uo(a)_
(am)mesupp MEAISWPP I perect (DY) ueA

Ambiguous information induces two effects. On the one hand, an ambiguous communi-
cation device generates ambiguous beliefs and decreases the worst-case expected utility
of the Receiver. On the other hand, the communication device still reveals information
about the state. This information allows the Receiver to choose an action that is better
suited for the state and increases her expected utility. Then, the value of information
is positive if the second effect exceeds the negative effect of ambiguity and ambiguity

aversion.
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BLL say that a communication device satisfies a participation constraint if
max min 7(m|w)u(am, w) dm po(w) dw > max U%(a).
s [ emfutan, ) dm () do > max U
They call this condition a participation constraint since it ensures that the Receiver is
willing to pay attention to the communication device. If the participation constraint is
not satisfied, the Receiver would be better off by ignoring the communication device,

ex-ante. Since ®Y C rect(®Y), it follows that

max min// (m|w)u(am,,w)dm py(w) dw

(a@m)mesupp mEAlsuPP I Tl
= max min B, (u(a,,w)) > max min = E,(u(am,w)).
(am)mesuppn€AIPP Il PPy (@m)mesupp TEASWPP I perect(Y)

Thus, any communication device with a positive value of information satisfies the

participation constraint of BLL.

BLL characterize a condition that guarantees that the Receiver benefits from listening
to a communication device (see BLL Proposition 8). We now translate this condition

to our setting. We denote the default actions by ag, i.e., the action that maximizes
U%a).

Definition 2.5. Let a,, denote the interim optimal action of the Receiver with rect-
angular beliefs Bay(rect(®Y)|m). A message m is value-increasing (to the Receiver) if
. (u(d,)) > U%ao) for all ply, € Bay(rect(®)|m)

BLL show that a communication device II satisfies the participation constraint if II
only uses value-increasing messages. The next proposition proves a stronger and very
intuitive result: A communication device that increases the worst-case expected utility

of the Receiver for any message has a positive value of information.

Proposition 2.3. If Il only uses value-increasing messages, Il has a positive value of

information for the Receiver.

Proof. Since E,,, (u(a,w)) > U(ao) for all p|,, € Bay(rect(®f})|m), it follows that
min E,. (u(@,w)) > U’ay). (2.2)

plmEBay (rect(®Y)|m)

Then, rectangularity and [Equation (2.2)|imply

max min E( (A, w))
am)mesupp TEAISWPP I perect(P
Esupp

perect (DY, ' |m€Bay (@Y, |m)

= min / p(Q2,m) min Ey,,, (@G, w)) dm
) J supp(I1%)

> min / p(,m)U°(ag) dm = U°(ay).
) Jsupp(11*)

pErect(@%*

I6)



2.5. CONCLUSION AND DISCUSSION

2.5 Conclusion and Discussion

We show that the gain of ambiguous persuasion arises due to ambiguity and ambiguity
aversion and not due to dynamically inconsistent behavior. First, we show that we
can restrict without loss of generality to straightforward messages and synonyms, i.e.,
M c AU A. Given this result, we can introduce beliefs over the more general state
space Q x AU A. This state space allows for the dependence of the risky state and
ambiguous signals. Therefore, the Receiver can take the potentially ambiguous infor-
mation structure at the ex-ante stage into account. Then, rectangular beliefs ensure
dynamically consistent behavior in ambiguous persuasion and the existence of a perfect
Bayesian equilibrium. This shows that ambiguity induces new equilibria in persuasion
settings, even if the players behave dynamically consistently. To conclude, we discuss

some related issues and literature.

Endogenous Ambiguity in Cheap Talk |Kellner and Le Quement (2018) show
that in a cheap talk setting, an ambiguous strategy of the Sender can lead to an interim
equilibrium that improves the ex-ante expected payoff of Sender and Receiver. In their
setting, players face a risky state w € ). The Sender can commit his signal on an
ambiguous payoff-irrelevant state 6 € ©, which leads to an ambiguous posterior belief
for the Receiver. As in our ambiguous persuasion setting, the equilibrium strategy of
the Receiver is not ex-ante optimal. However, similarly to the procedure described
above, defining beliefs and rectangularity over the general state space 2 x O, leads to
a perfect Bayesian equilibrium with the same strategies as in the interim equilibrium
of [Kellner and Le Quement| (2018)).

Preferences for Partial Information of |Li (2020)) [Li (2020) characterizes aver-
sion to partial information under ambiguity aversion. He shows that an ambiguity-
averse decision maker (DM) with maxmin preferences is always (weakly) averse to
partial information. Furthermore, the DM is neutral to a specific information partition
7 if and only if his ex-ante belief set is rectangular with respect to 7. More formally,
let II denote the set of all partitions of a state space S and let F be the set of acts
which are maps from states to consequences f : S — X. Li defines ex-ante preferences
on an extended choice domain, which is the product space of information partitions
m € Il and acts f € F. Given an information partition 7, the DM anticipates the
possible future information and constructs his ex-ante preference > recursively from
the interim preferences at each event EF € m. Then, Li says that a preference relation
> exhibits aversion to partial information, if (7% f) = (m, f) for all acts f € F and
partition 7 € II, where 7° denotes the information partition where no information is

learned, i.e., 7 = {S}.
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It is important to note, that the definition of aversion to partial information requires
(f, 7)) = (f,n) for all acts f € F. In the ambiguous persuasion setting, the Receiver
cannot condition his action on a state or message without any additional information.
But anticipating that he will receive ambiguous information allows him at the ex-ante
stage to condition his action on the messages that he could observe. In Li’s setting,
this would imply that given 7° the DM can only choose from constant acts. Given
an ambiguous communication device, the DM can choose any act that is measurable

with respect to the information partition induced by the communication device. These

are exactly the two effects we describe after [Definition 2.4L On the one hand, an

ambiguous information device induces ambiguity, which decreases the utility of an
ambiguity avers Receiver. On the other hand, anticipating this information at the ex-
ante stage allows the Receiver to choose an action for each message that could occur
with positive probability. Li focuses only on the first effect since the set of acts F is
the same under 7° and 7. Therefore, his result about partial information aversion of
maxmin preferences does not contradict our result about a positive value of information
(Proposition 2.3)).

Subjective Trees of Hill (2020) Hill (2020) formulates a dynamic consistency
axiom in a model with so-called subjective trees. Roughly speaking, subjective trees
are information structures that are not necessarily represented by a partition of the
state space. He argues that using his version of the dynamic consistency axiom resolves
the conflict between dynamic consistency and ambiguity. In Appendix A, he defines
a different setup with an extended state space. Under the extended state space, his
formulation of the dynamic consistency axiom is equivalent to the standard formulation.
In this work, we use a general state space instead of a non-partitional information
structure, as in the Appendix of Hill| (2020). Furthermore, our definition of a positive

value of information is similar to the definition of |Hilll (2020).

Other Approaches Dealing with Dynamic Inconsistency [Cheng (2020)) uses
a model similar to BLL but focuses on the Receiver’s ex-ante optimization problem.
He shows that if the Receiver can commit to his ex-ante optimal choice, the Sender
cannot gain from ambiguous persuasion. The same results can be archived without
commitment if the Receiver uses the updating rule of Hanany and Klibanoff (2007).
These updating rules restrict the interim belief set to beliefs that maintain the ex-ante

optimality.

Our approach follows the idea of Riedel et al.| (2018). They discuss why a dynamically
consistent agent expands his ex-ante belief set to a rectangular hull. Intuitively, an

agent who knows that he receives further information before deciding should take his
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knowledge about the information structure into account. Therefore, different infor-
mation structures may induce different ex-ante belief sets. In our setting, this occurs
if one compares the ex-ante belief (set) without any additional information and the

ex-ante belief set in the presence of an ambiguous communication device.

The consistent planning approach of Siniscalchi| (2011) is another way to deal with
dynamically inconsistent behavior. Following the idea of |Strotz| (1955)), a player con-
siders that his future selves will have different worst-case beliefs. However, even if the
interpretation is different, it would lead to similar optimal actions but different beliefs

of the Receiver as in our setting.
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Chapter 3

Dynamic Consistency in Ambiguous
Dutch Auctions

3.1 Introduction

In the canonical model with subjective expected utility maximizers and independent
private values, it is well-known that the descending price (or Dutch) auction and the
first-price sealed-bid auction generate the same equilibrium outcomes. However, this
result breaks down if buyers are non-expected utility maximizers. In practice, buyers
usually have only little information about the valuation of their opponents. Therefore,
it is an important and interesting question how buyers bid if they are faced with

ambiguous beliefs about the valuation of their opponents.

Bose and Daripal (2009)) address this question and analyze a discrete decreasing price
auction with two ambiguity-averse buyers with valuation v € [0,1]. In their setting,
buyers can not fix one subjective belief about the valuation of the other buyer. The
beliefs of both buyers are given by a set of density functions. More precisely, there is
one underlying density function f with full support in [0, 1] and the set of beliefs is an

e-contamination of f:
O ={1—e)f()+e€l() : L€ P},

where P denotes the set of all density functions on [0, 1]. Intuitively, 1 — € can be
interpreted as the confidence in the subjective belief f, or € as the degree of ambiguity.[]
Further, buyers are ambiguity-averse and maximize their worst-case expected utility
a la Gilboa and Schmeidler| (1989). (Bose and Daripal (2009) consider the following
modified Dutch mechanism (MDM): The seller starts with a price close to one. At the

LFor more details and an axiomatization of e-contamination see |[Kopylov| (2016]).
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beginning of a period k, the seller chooses secretly and randomly one buyer. This buyer
is approached first and can either accept or reject the offer at price pi. If he rejects the
offer, the other buyer can accept or reject the same offer. If one of the buyers accepts,
the game ends immediately. If both buyers reject the price pg, the game proceeds to
the next period k 4+ 1 with a lower price pr1. The procedure is repeated until either
a buyer accepts or the last price p,, is reached. Buyers never learn who received which
offer first.

For a given MDM, the buyers face an incomplete information game with two players
and ambiguous information about the valuation of the other buyer. Ambiguity may
lead to dynamically inconsistent behavior. Bose and Daripal (2009) use the consistent
planning approach of Siniscalchi| (2011)). They show that for any degree of ambiguity
¢, the seller can always design an MDM such that he can extract almost all surplus.
Intuitively, consider a price p;, and buyer i with value v* > p, and suppose buyer i gets
the price offer p,. His ex-post utility of accepting this price is v — pj. Since buyers are
ambiguity-averse, the expected utility of waiting one period is v* —py,; times the worst-
case belief of receiving the offer py.; if he rejects the current price pi. In the worst-case,
it is relatively likely that the opponent buyer j ends the game before buyer ¢ receives
the offer p,,1. If the price difference is small enough, the expected utility of waiting
becomes smaller than the utility of accepting the current price v* — py. Therefore, the
buyers accept a price that is very close to their valuation. Then, by making the price

difference small enough, the seller can extract almost all surplus.

However, almost all results of Bose and Daripa) (2009)) are based on an incorrect worst-
case belief. In this chapter, we first correct the worst-case belief of Bose and Daripa
(2009). Then, we show that the seller can still extract almost all surplus even if buyers
behave dynamically consistently. In contrast to [Bose and Daripa (2009)), we assume
that buyers have rectangular beliefs instead of using the consistent planning approach
of Siniscalchi (2011)). To our knowledge, we are the first who analyze sequential auctions

with ambiguity-averse buyers and rectangular beliefs.

Even if the definition of rectangularity is similar to we can not apply the
results of [Chapter 1l Since the buyers never know which buyer receives the current
offer first, the incomplete information game induced by an MDM cannot be represented

by a multistage game.

It is often conjectured that rectangularity and consistent planning lead to similar equi-
librium outcomes. However, we show that this is not the case for the incomplete
information game induced by an MDM. Independently of the approach, the seller can
extract almost all surplus by making the price difference arbitrarily small. However, we

show that the equilibrium strategies of buyers with rectangular worst-case beliefs differ
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from the equilibrium strategies of buyers, which use the consistent planning approach.

This chapter is organized as follows: First, we discuss the related literature. In
we define the modified Dutch mechanism, strategies, beliefs, and formulate the
information structure of the game. Further, in [Section 3.2.5 we explain the mistake of
the worst-case belief of [Bose and Daripa (2009) and derives the corrected worst-case
belief. In [Section 3.3 we analyze the modified Dutch mechanism with dynamically
consistent buyers. We first define rectangularity and derive the rectangular worst-

case belief. Then, we show the surplus extraction result with rectangular beliefs in

[Section 3.3.3| [Section 3.4|illustrates the results with a numerical example. The differ-

ent equilibrium predictions of rectangularity and consistent planning are discussed in
Finally, concludes and discusses future research.

Related Literature There is vast literature on auction design with expected utility
maximizers. Among others [Myerson (1981)) and Riley and Samuelson (1981)) discuss
auctions with risk-neutral and Matthews (1983) and Maskin and Riley| (1984) with

risk-averse buyers.

Karni| (1988) shows that first-price sealed-bid auctions and decreasing price auctions
are equivalent if and only if buyers are dynamically consistent. Our result does not
contradict the work of [Karni (1988). Even if buyers with rectangular beliefs behave
dynamically consistently, the rectangular belief sets depend on the information struc-
ture. Therefore, in a Dutch auction, rectangularity will lead to different belief sets than
a first-price auction. Dynamically consistent behavior can occur, even if the different

auctions are not equivalent.

Lucking-Reiley| (1999)) provides an interesting field experiment. He compares the rev-
enue of two dynamic auctions (the English and Dutch auction) with the revenue of two
static auctions (first- and second-price auction). The canonical model with expected
utility maximizers predicts that the English auction (Dutch auction) and the second-
price auction (first-price auction) are strategically equivalent. In his experiment, the
English auction and the second-price auction generate almost the same revenues for
the seller. In contrast, the Dutch auction generates 30 percent higher revenues than

the first-price auction. This result is in line with our theory.

The literature on ambiguous auction increased in the last years. Among others, Lo
(1998) analyzes first and second-price auction with ambiguity-averse buyers. Bose et al.
(2006)) study static auctions with ambiguity-averse buyers and seller. Di Tillio et al.
(2016)) consider a screening model with one agent and one principle. The valuation is
privately known to the agent. Ambiguity arises due to an ambiguous mechanism. The

principal can design a set of mechanisms and commit to one without revealing it to
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the buyer. Di Tillio et al.| (2016]) show that a seller can increase his profit by using the

ambiguous mechanism.

Ghosh and Liu (2020) and |Auster and Kellner| (2020)) investigate sequential auction
settings using the consistent planning approach of |Siniscalchi (2011)). The setting of
Ghosh and Liu| (2020) differs from our setting. In their model, multiple units of a
good are sold to multiple buyers. In each period, each buyer submits a sealed bid
simultaneously. The buyer with the highest bid gets one unit of the good and leaves
the auction. This procedure is repeated until all units are sold. If two buyers submit
the same bid, ties are broken with a coin tossf] Similar to our setting [Auster and
Kellner| (2020) analyze a Dutch auction but in continuous time. Further, they allow
more general belief sets than the e-contamination. In their setting, the seller cannot
extract almost all surplus. However, the Dutch auction still generates a higher surplus
than a first-price sealed-bid auction. Further, due to the continuous-time structure,

the timing becomes less complex, and consistent planning and rectangular beliefs lead

to equivalent equilibrium outcomes in their setting (see [Section 3.6]).

3.2 Ambiguous Dutch Auction

Our basic setting and the definition of an ambiguous Dutch auction mostly follow the
setting of |Bose and Daripal (2009)).

3.2.1 Basic Setting

There is one seller who wants to sell one indivisible object. The seller’s valuation of this
object is normalized to zero. Two buyers with valuation v; € [0, 1] for ¢ = 1,2 compete
for the object. The own valuation is private information of each buyer. The seller is
risk and ambiguity-neutral. He believes that each buyers valuation is drawn from a
distribution F* with density f(v) > 0 for all v € [0, 1]. In contrast, the buyers are less
confident about the opponent’s valuation. Each buyer is risk-neutral, but ambiguity
avers about the valuation of the other buyer and maximizes his worst-case expected
payoff & la (Gilboa and Schmeidler| (1989). The set of priors of each buyer is given by

an e-contamination of the density f, i.e.,

7 = {g()=(1-of()+el): L€ P},

where P denotes the set of all density functions with support supp(l) C [0, 1]. Through-
out the whole chapter, we will denote with capital letter, F', G, L, and M the distri-

bution functions corresponding to densities f, g, [, and m. Please note, that the

2Even if it seems to be a minor difference if ties are broken before or after buyers submit their bits,
it influences the equilibrium outcome. We discuss this issue in more detail in
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e-contamination structure of g € ®; ! implies an e-contamination structure of the cor-
responding distribution function G(-) = (1 — €)F(-) + €L(+).

3.2.2 The Modified Dutch Mechanism (MDM)
The timing of the modified Dutch mechanism (MDM) is as follows: At the beginning

the seller publicly announces a price sequence {p1,ps,...,pn}, Where p; denotes the

asked price in period k. In period k:
1) The seller tosses a fair coin to decide which buyer to approach first.

2) The buyer chosen in Step 1) gets the offer py. If he accepts, he receives the object

at the price pg, and the game is over.

3) If he rejects, the second buyer gets the offer py. If he accepts, he receives the object

at the price pg, and the game is over.
4) If the second buyer rejects and k < n, the game proceeds to period k + 1.

This procedure is repeated in each period until either one of the buyers accepts a price
or period n is reached. If the buyers do not accept any price pi, ps, ..., p,, the object
remains unsold. The procedure and the price sequence are common knowledge, but
the buyers never know the result of the coin toss at Step 1), i.e., they do not know who

is approached first.

We will consider the same price sequence as |Bose and Daripa (2009)), which depends
on the degree of ambiguity € and a parameter § € (0,1). We will see later, that the
seller can use ¢ to influence the difference of two consecutive prices and therefore the

surplus of the buyers. For § > 0, let {po, p1, P2, - -.,Pn} be the price sequence, where

po=1 and
(1-9)*
NS
(1-5+%)

D = for any £ > 0.

It is important to note that p, and the price difference

Ay :=py—p1 =0,

k
1—9 €d
A = — s B ————— e

are decreasing in k. Bose and Daripal (2009) show that lim,, ZZ;& A, = 1. Further-
more, for any given n € (0, 1) there exists an integer 7" such that ZZ:O A >1—n.
Then, let n be the smallest integer for which this inequality is satisfied and p, the

last offered price. This choice of n ensures, that all types above n participate at the
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auction. The intuition of the surplus extraction result is as follows: The seller can use
n and 0 to design the price sequence in such a way that almost all types participate
and each type obtains a surplus smaller than 6. Hence, by making n and § arbitrarily

small the seller can extract almost all surplus.

3.2.3 Information and Strategies of Buyers

Given an MDM, the strategy o; : [0,1] — {A, R}" of a buyer i consists of a strategy
for each type. A strategy o'(v') of type v' is a plan to accept or reject the seller’s
offer at every price offer of the price sequence given the history of the game so far, i.e.,

o'(v') € {A, R}, where A denotes accepting and R rejecting.

Ex-post, the seller’s payoff is py, if the object is sold in period k and zero otherwise. The
payoff of buyer i of type v is u;(0;(v"), 0;(v7)) = v’ —py, if he buys the object in period k
and zero if he does not obtain the object. We assume that ex-ante the seller can commit
to the mechanism described above, including the price sequence {p1,ps,...,p,}. Given
the mechanism, the setting reduces to an incomplete information game with two players

(buyer ¢ and j).
Similar to Bose and Daripal (2009), we define interior cut-off strategies as follows.E]

Definition 3.1. A strategy of buyer i, i € {1,2}, is called an interior cut-off strategy
if there exists a vector vi = (vi, ... v"),0 <o <v' | <--- <o} <1, such that for

k > 1, the highest price accepted by the interval of types [vi, v _|) is pg, where v} = 1.

We will prove later that without loss of generality, we can restrict to interior cut-
off strategies. Furthermore, like Bose and Daripa (2009), we assume two simplifying
assumptions to solve indifference. If a buyer is indifferent between accepting and re-
jecting, he accepts the price. Further, if a buyer is indifferent between buying in two
different periods, he buys in the earlier period. Thus, buyers choose the seller-preferred

action in case of indifference.

As described above, the valuation of each buyer is private information, and buyers are
ambiguity-averse. Receiving a price offer p; reveals information about the valuation
of the other buyer. Let us assume that both buyers play interior cut-off strategies. If
buyer ¢ gets the price offer pg, he does not know if buyer j already got the offer py
and rejected it or if he is asked first. Getting the offer p; only reveals that buyer j
rejected all prices before py. Therefore, the type of buyer j has to be smaller than
Uifp which is the lowest type who accepts py_1. The information partition of the state

space 0 = [0, 1] which is induced by the MDM and an interior cut-off strategy of the

3Please note, that our definition differs from Bose and Daripal (2009) since we do not require a
strict inequality v} < vl _, forall k=1,...,n.
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opponent v/ is as follows

I'=1,=9Q,
[i = {[O,Ué), [1%7 1]} = {[Ov 1)7 {1}}a
L= {[0,00_1), [y, vk ), [v],09), {13},

where £k = —1 denotes the ex-ante stage after the MDM is announced but before the

first price is offered.

3.2.4 Updating Beliefs and Worst-Case Belief

Assume player ¢ gets the offer pp. To decide whether he should reject or accept the
price, he compares the expected payoff of waiting one period and the payoff of accepting
pr. The expected payoff of waiting one period depends on the worst-case belief that
he gets the offer p, 1 given that he rejects py.

Before we derive and correct the worst-case belief of Bose and Daripal (2009)), we have
to specify how ambiguity avers players update their beliefs. We assume that both
buyers use prior-by-prior Bayesian updating, i.e., they update each belief in ®; ' using
Bayes’ rule. The prior-by-prior Bayesian update of ®;' in period k given the event
FE e is

0P = {Bay(g|E) : g € 9, '},

where Bay(g|E) denotes the Bayesian update of g given the event E

Bay(glE)() = 2

Note, that
g H(EB)=0

for all £ € {[U{_Q,vf’_i,))}l:&'“,k U{{1}} and ¢¢* ¢ (IDf_l’E/ with £/ € I]_,. However,
these are the events that imply that the game already ended before period k. Therefore,
the information sets that influence the decision in period k are only the first two sets
of I, i.e., [0,9._,) and [v]_,,v]_,). Due to the full support assumption on f and
since € < 1, these two information sets have a strictly positive probability for any
g1 e ® 1 and B’ € Ii_, and Bayes’ rule is well defined.

Formally, there exists a set of interim beliefs ®* in period k for each event E € I}.
However, for all events except [O,vi_l), the game already ended before period k. To
simplify notation, we sometimes denote with ®F the set of interim beliefs given the

event [0,v]_,).
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Lemma 3.1. The e-contamination structure is maintained under Bayesian updating.
Let E C Q. Then,

U :={Bay(g|E) : g€ ®;'}
={(1 — &) Bay(f|E) + exBay(l|E) : | € P} = ¥? (3.1)

wz‘thek:WE(E)ﬁ>eforallk21andeoze.

The proof of can be found in [Section 3.7.2.1]in the Appendix.

Corollary 3.1. In each period k > 1, the set of updated beliefs is given by
OF = {(1—e)f* () +el®() : LeP}

with
f(: I()
[ P A R TR P
Fog_y) L(vy_y)
and €, = - . Furthermore, €, > €1 for all k =1,...n.

(1—e)F(v]_|)+e

Proof. The result follows immediately from with £ = [O,Ui_l). Further-
more, [0,v]) C [0,v)_,) and the full support assumption on f imply F(v]) < F(v]_,).

Therefore, €, > €41 for all k =1,...n. O

3.2.5 Worst-Case Belief of Bose and Daripa/ (2009)

The entire analysis of |[Bose and Daripa) (2009) is based on the following lemma. It
formalizes the observation that in each period given that buyer ¢ gets the offer p, he

compares the expected payoff of accepting p, with the expected payoff of waiting and

accepting py1.

Lemma 3.2 (Lemma 1 Bose and Daripal (2009)). Suppose the item has not been sold
in pertods 1,...,k—1 and in period k < n the seller offers the item to buyer i at price
pr. Suppose j follows an interior cut-off strategy that gives rise to a vector of cut-offs
vl = (v{, ...,vl). For any type v of i, the difference in payoff from buying immedialely

at price py versus waiting one period to buy at price pri1 S

Gh.(v) = v —pr — (v — pra) Hy,
where HE is the worst-case belief of buyer i that he will get the offer pry1 if he rejects
Pr-

Bose and Daripal (2009) claim that the worst-case belief H} of getting offer py; if he
rejects py is given by (1 — €)H}, where
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However, this worst-case belief is not correct. Let A denote the event ¢ obtains the
item at pry1 and B the event i refuses the current offer of pp. Then, |Bose and Daripa
(2009) derive Hj by claiming thaff]

min P (4|B) = min (1 — )P (4|B) + P"(A|B). (3.2)

g .
gked! lkeBay(Plv<v]_,)

But since A, B ¢ 2, [Lemma 3.1] and [Equation (3.2)|do not hold.

Lemma 3.3. The worst-case belief Hi of 15 given by

- (= e)(F(vi) +F(vi;+1>> |
(L —e)(F(vy) + F(vi_,)) + e

E =

Further, there exists no density f with full support on [0,1] such that Hi = (1 — €)H}
forallk=1,...,n—1.

Proof. We first derive the worst-case belief Hj = min g P9 (A|B). Then, we show
that H; differs from (1 — €)H}. For an arbitrary fixed g* € ®F one can calculate
P9 (A|B) analogously to H! in Appendix A.1. of Bose and Daripa (2009). Using

g*() = g(vi(—v'f)gl)’ we can rewrite mingcqr P¢" (A|B) to

G(v]) + G(v]
min PY(A|B) = min <U’;) il (UI;H),
ged; ! gea; ! G(vy) + G(vy_y)

where GG denotes the distribution function of g. The e-contamination structure of G

gives

(3.3)

Then, a worst-case belief g* = arg min ¢y PQ(A\B) has to satisfy L*(viﬂ) = L*(v]) =

0<1= L*(U£_1)= which is well defined since v]_, > vi > viﬂ. L*(viﬂ) =0 apd

L*(v]_,) = 1 follows immediately from |Equati0n (3.3)|. Furthermore, v,_; > v,

implies that P/(A|B) is monotone increasing in L*(v]). Therefore, L*(v]) = 0. Then,

(1 - F () + Fluip))

Hie =P AB) = TR + Pl + €

H is smaller than (1 — €)H} if F(v]) + F(v]_,) < 1 and greater than (1 — €)H} if
F(v) + F(v_y) > 1. Hence, Hj = (1 — ) Hj, if and only if F(v}) + F(v;_,) = 1. But,

this condition is cannot be satisfied for all k =1,... n. m

*Please note, that the worst-case expected payoff of waiting equals mingep, P(A|B)(v — prr1) +
(1 —P9(A|B)) - 0. Therefore, minimizing the expected payoff is equivalent to minimize P9(A|B).

5For completeness we derive P9 (A|B) in [Section 3.7.1|ind the Appendix.
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Almost all proofs of [Bose and Daripal (2009) build upon the fact that the worst-case
belief is given by (1 — €)H} and H; < 1 for all k =1,...,n — 1. However, there might
exist k € 1,...,n — 1 such that the corrected worst-case belief H! > 1 — . Therefore,
the correction of the proofs of Bose and Daripal (2009) is not straightforward. A more
detailed discussion on the correction of the results of Bose and Daripaj (2009) can be
found in in the Appendix.

3.3 Dynamically Consistent Buyers

Epstein and Schneider| (2003)) define rectangularity (or stability under pasting) as a
condition on ambiguous beliefs that ensures dynamically consistent behavior. We will
see that rectangular beliefs will lead to different equilibrium strategies as consistent
planning. However, we show that the seller can still extract almost all surplus. In
[Section 3.5 we discuss the different implications of rectangularity and the consistent

planning approach of Siniscalchi (2011)) in more detail.

Now, we define rectangular beliefs for the incomplete information game induced by an
MDM. Rectangularity ensures that a buyer takes the possible future worst-case beliefs
into account and therefore behaves dynamically consistently. Then, we derive the

rectangular worst-case belief of a buyer and discuss surplus extraction with rectangular
beliefs.

3.3.1 Rectangularity

The basic idea of rectangularity is that agents take their possible future worst-case
beliefs into account. Let us first consider the case without ambiguity, i.e., ®; ' consists
of a single prior belief g. For an arbitrary event E € I}, g(FE) is the marginal probability
of the event E. Further, remember that Bay(g|E)(:) denotes the Bayesian update of g
given the event E. Then, Bayes’ rule implies that multiplying the marginal probability
g(FE) with the updated belief Bay(g|E)(-) and taking the sum over all events in I},

generates the prior belief g

g(-)= D g(E)Bay(g|E)().

Eeli :g(E)>0

Under ambiguity, the set of beliefs ®; ' is not a singleton. Rectangularity generalizes
the above considerations to ambiguous settings. It ensures that the combination of any

marginal and updated beliefs are an element of the ex-ante belief set.
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Definition 3.2. The pasting of an ex-ante belief § € ®;' and a collection of updated
beliefs (9p)per; € Xpers OPF is defined as
k

go(9p)per () = Z 9(E)ge(-).

Eel}

The set of ex-ante beliefs is called rectangular (or stable under pasting) if it contains

any pasting of an ex-ante belief and interim beliefs, i.e.,
go(95)per; € ;'

for allg € ®;' and (QE)EGI; € XEEI;? @fE

An arbitrary ex-ante belief set does not have to satisfy rectangularity. However, Ep-
stein and Schneider]| (2003) and show that given an arbitrary ex-ante belief
set ®; ! there always exists a rectangular hull of ®; !, denoted by rect(®;'). The rect-
angular hull is the smallest set of density functions that contains ®; ' and satisfies
rectangularity. To construct the rectangular hull, one starts with the set of beliefs at
the terminal period n and period n — 1 and constructs the rectangular hull by combin-
ing any marginal probabilities at n — 1 with any updated belief at n. Then, given the
rectangular hull in period n — 1, one proceeds by backward induction. Trivially, if ®;*

is rectangular, then ®; ' = rect(®; ).

There are two important properties of rectangularity, that are also used for the con-
struction of the rectangular hull. First, the set of Bayesian updates under the rectangu-
lar hull rect(@i_l) equals the set of Bayesian updates under @;17 ie,forallk=0,...,n
and F € I}

{Bay(g|F)(:) : g € ®;'} = {Bay(g|F)(-) : g € rect(®;")}.

Second, an analogous statement holds for the set of marginal beliefs g(F') for all F' € I
and k = —1,...n of the rectangular hull rect(®; ') and ®;'. [Epstein and Schneider
(2003) and discuss the construction and properties of the rectangular hull

in more detail.

3.3.2 Rectangular Worst-Case Beliefs

The probability P9(A|B) of getting the offer pyy; if buyer ¢ rejects the current price
i, depends on two events. First, with positive probability buyer j gets the offer p;
after buyer ¢ rejected p,. If buyer j accepts the offer p;, the game is over and 7 does
not get the offer p,1. Second, if buyer j rejects py, period k + 1 is reached. In period
k + 1, with positive probability buyer j gets the offer py,; first. If he accepts py1 the

game ends and buyer ¢ does not receive the offer py.;. Hence, getting the offer pyi,
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if buyer ¢ rejects the current price p, depends on the probability that j does neither
accept pg nor pryq (given that period k + 1 is reached).

Therefore, the worst-case probability P9(A|B) depends on the worst-case belief in pe-
riod k and the worst-case belief in period k+ 1. But, with ambiguous beliefs the worst-
case belief in period k+1 is in general not the Bayesian update of the worst case belief in
period k. Intuitively, in period £ if buyer j plays an interior cut-off strategy, the worst-
case of buyer 7 is that buyer j accepts the current price p. Therefore, the worst-case
belief in period k is g**(v/) = (1 — ) f*(v7) + exl*(v7) with I*([v],v]_,)) = 1. Similar,
in period k + 1 the worst-case belief is g**"1(v/) = (1 — exy1) FF 1 (07) + epr I (07)
with **1([v] ,,v])) = 1. Then, g***! does not equal the Bayesian update of g** in
period k + 1.

The consistent planning approach of Bose and Daripal (2009) and the worst-case belief
of assume that the worst-case probability PY(A|B) only depends on the
worst-case beliefs in period k. Therefore, it neither takes into account that P9(A|B)
depends on the worst-case belief in period £ and k£ + 1 nor that the worst-case belief in

period k£ 4+ 1 does not equal the Bayesian update of the worst-case belief in period k.

Rectangularity takes this change of the worst-case belief into account. The rectangular
worst-case probability of getting the offer ps; if he rejects pi depends on the worst-case
belief of period k and the worst-case belief of period k£ + 1. Therefore, it allows for a
change in the worst-case belief between period k£ and k£ + 1. The following proposition
formally characterizes the rectangular worst-case belief if the buyers follow an interior
cut-off strategy.

Proposition 3.1. Suppose the ez-ante belief set of buyer j is given by rect(®; ). Fur-
ther, suppose the item has not been sold in periods 1,...,k — 1 and in period k < n

the seller offers the item to buyer i at price py. Suppose j follows an interior cut-off

strateqy that gives rise to a vector of cut-offs v/ = (v, ... ,v,%). For any type v of i the

difference in payoff from buying immediately at price py versus waiting one period to

buy at price pryq 1S
GZ(“) =v—pp— (v— Pk+1)ﬁ;i, (3.4)

where

FHuh) + (1 = ewpn) FR(0)) P (0] )

= (=) 1+ (1 — &) Fr(v))

(3.5)

[Proposition 3.1} is important for the equilibrium analysis. To characterize equilibrium

strategies, we only have to compare the payoffs from buying immediately with the

payoff of waiting one period and accept the next price. Type v accepts the price py if
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G (v) > 0. Since G%(v) is monotone increasing in v, a type v who does not accept pyy1
would never accept the higher price p,. Thus, we do not need to consider any strategy

that involves waiting for more than one period.

Proof. The payoff of accepting pi is v — pi. If buyer i rejects the offer p, he gets a
payoff of v — pi, 1 if he gets and accepts the offer p,, 1. If the game ends before he gets
the offer pr.1, his payoff is zero. Further, ﬁ}c is the probability that ¢ gets the offer

pry1 if he rejects py. Therefore, Gi(v) is given by [Equation (3.4)l It is left to show

that H is specified as above.

In[Section 3.7.1|in the Appendix, we show that for a fixed belief g € ®; ! the probability
of getting offer pi.; if he rejects py is

G*(v]) + G* 1 (v] )G (v])

PoAlB) = 1+ G*(vl)

The rectangular worst-case belief is then given by

b — min Gk(vi) + Gk“(”iﬂ)Gk(Ué)
gk €rect(®F) 1+ Gk (Ui)

(3.6)

where G* is the distribution function corresponding to ¢* and G**! the distribution
function corresponding to the Bayesian update Bay(g*|v < vi) at k -+ 1. Since ®; ' C
rect(®; '), we first have to show that the distribution functions G* and G**! can be

represented by an e-contamination of the distribution function F'.

Note that for any arbitrary g € rect(®¥), G*(v]) = ¢"(E) with E = [0,v]] € Ii,,
and G**(v] ) = Bay(g|E)(E') with E' = [0,v],] € I, . The sets of marginal and
updated beliefs given the rectangular hull of ® equal the sets of marginal and updated
beliefs given ®¥. Therefore, there exists m* € ®F and I* € Bay(P|E) such that

GH(v) = g"(B) = m"(E) = M"(}) = (1 — &) F*(v}) + ex L*(v}), (3.7)

where the last step follows since any density function in ®F can be represented as e-
contamination of f. Similar, for G¥*!, there exists m* € ®* and I* € Bay(P|E’) such
that

G (v].4,) = Bay(g"| E)(E') = Bay(m"|E)(E") = M"" (v] ,,)

= (1= ) P (0] )) + e L (0]). (3.8)

Now, dividing denominator and nominator by G*(v]), we can rewrite [Equation (3.6)t

P (R G C (G T
F gk €rect (®F) 1+ G’“(vi)
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1+ Gkﬂ(viﬂ)

= min

rect(®F L_+1
gke ect(®r) Gk(vi) -+
B min 1+ (1— €k+1)Fk+1(Ui+1) + €k+1Lk+1(Ui+1)
leBay(P|E),l[€Bay(P|E") (1—ek)Fk(vft)+ekLk(vi) +1
14+ (1= ) FF M (v],)
L+ 1

(1 =) F*(uh) + (1 — ) (1 — exr) FF (o) F* (v )
14 (1 = ex) F*(vy)

F*(u}) + (1 = et FH(0)) P (v)
L+ (1= ex) F*(vf)

= (1 —Ek)

)

where the third step follows from the e-contamination structure of [Equation (3.7) and
Equation (3.8)| and the fourth step since L**'(vf,,) = LF(v]) = 0 minimizes the

equation. ]

The following lemma shows that rectangular beliefs lead to dynamically consistent
behavior.

Lemma 3.4. With rectangular beliefs the worst-case belief in period k + 1 is the
Bayesian update of the worst-case belief in period k. Therefore,
Lo GRu) + G ()G () Lo G + G )G )

gk Erect(®k) 1+ G* (Ui) N 9k€¢f7§k+1€¢§+1 1+ G* (Ui)

Proof. First, we show that the left-hand side is greater or equal than the right-hand
side. Let

e g G0+ GG
gkerect(tbf) 1+ G* ('Ui)

denote a rectangular worst-case belief in period k. Further, let G**(v]) = ¢g*(E) with
E=[0,v]] € Ii, and G**1(v], ) = Bay(¢*|E)(E") with B’ = [0,v],] € I{.,. Then,
similar to the proof of [Proposition 3.1} there exists m* m* € ®F such that

G (w]) = g"(E) = m"(E) = M*(v)),
G (vl ) = Bay(¢"|E)(E') = Bay(m*|E)(E') = M*"'(v],,)

and
G+ PTG MA) + N () M)
g Erect(®F) 1+ Gk(vi) 14+ M’f(vi)
St R <]
- gkedk ghtleqhtt 1+ G*(v))
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To prove that the right-hand side is greater or equal than the left-hand side, let

*,k

arg min G’“(U;ﬁ) + G'Hl(viﬂ)Gk(Ui)'

—x k+1
)€ k1 1+ G’f(vj)
ghedl ghtice; k

(", g

The definition of rectangularity implies that g** o (QEkH)EeI}iﬂ € rect(®F). Then

G*(v]) + GF (vl ) G*(v])

G*(v]) + GF1(v], )G (v])

min : >  min :
gredk ghricalt! 1+ G*(v}) g*erect(®}) L+ G*(uy)
Combining both directions gives
i — min G*(ut) + ék“(“iﬂ)Gk(U%)
g gkedk ghtlcph+! 1+ G*(v])
L G+ GMIL)GH)
gk €erect(®F) 1+ Gk(vi)

]

Hence, due to rectangularity, the interim worst-case belief is the Bayesian update of
the ex-ante worst-case belief. Therefore, rectangularity implies dynamically consistent
behavior. The next subsection shows that the seller can extract almost all surplus,

even if the buyers behave dynamically consistently.

3.3.3 Surplus Extraction under Dynamic Consistency

The rectangular worst-case belief differs from the worst-case belief of Bose and Daripa
(2009). This subsection shows that the main result of [Bose and Daripa, (2009)) still holds
if buyers behave dynamically consistently. We first characterize and define equilibrium
strategies under rectangular beliefs if § is sufficiently small. The equilibrium existence
follows from the results of Bose and Daripal (2009)). In contrast to Bose and Daripa
(2009)), under rectangular beliefs, there might exist prices such that no type of buyer 4
or j plan to buy at these prices. However, given the characterization of the equilibrium
strategies, we can still show that the seller can extract almost all surplus even if the

buyers behave dynamically consistently.

Let us start with the definition and characterization of equilibrium strategies. Remem-
ber, that a strategy o; of buyer i specifies for each type a plan to reject or accept the
seller’s offer at every information set, o; : [0,1] — {4, R}", where A denotes accept-
ing and R rejecting. Further, u;(0;(v"),0;(v7)) is the ex-post payoff of buyer i of the
strategy profile (oy,0;) if the types are given by v* and v7.
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Definition 3.3. A (perfect Bayesian) equilibrium with rectangular beliefs consists of a

set of beliefs for each information set and a strategy profile (o5, 0%) such that
e the ex-ante belief sets equal the rectanuglar hull rect(®; ) for i = 1,2,

e prior-by-prior Bayesian updating is applied whenever possible, i.e., the set of
interim beliefs conditional on the price offer py are rect(®F) for k=0,...,n and
1=1,2, and

e given the rectangular belief sets at each information set the equilibrium strategies
are a best response for each type, i.e., for all i € {1,2} and v' € [0,1]

min B9 (u;(o}(v'),0%)) > min  E(u;(0:(v'),07)) Vo (v') € {A, R}"

gErect(®F) J gErect(®F) I
forallk=—-1,...n.
Further, we call an equilibrium symmetric if o; = aj.lﬂ

So far, our definition of an interior cut-off strategy does not specify any out-off equi-
librium behavior. However, as in [Bose and Daripa (2009), we can extend an interior

cut-off strategy to a perfect cut-off strategy as follows.

Remark 3.1. Let p(v) denote the highest price that a buyer of type v accepts. By
monotonicity, type v would also accept any price smaller than p(v). A perfect cut-off
strategy s an interior cut-off strategy with the additional requirement that a type who

accepts py does accept every price p; with | > k.

The following proposition shows that for ¢ sufficiently small, we can restrict the equi-

librium analysis without loss of generality to cut-off strategies.

Proposition 3.2. There evists 6 € (0,1) such that for all § < § the equilibrium
strategies of both players are perfect cul-off strategies and vi, < vi _, for allk =2,... n.
Furthermore, if no types of j buy at a price py, then no types of i buy at price p and

vice versa.

The formal proof can be found in [Section 3.7.2.2]in the Appendix. To simplify notation

we explain the intuition of the proof in terms of interior cut-off strategies. Statements

)

as “buy p,” mean that the buyer accepts pr and any lower price but does reject any

price higher than py. Then, one can extend the interior cut-off strategy to a perfect
cut-off strategy as described by [Remark 3.1} The idea of the proof is as follows. We
first show that there exists a non-degenerate interval of types who buy at price p, and

a non-degenerate interval of types who buy at p;. Suppose in equilibrium there exists

%Note that o; = o; implies that both buyers have the same information partitions I} = I,z and

therefore the same rectangular belief sets rect(®; ') = rect(@;l) forall k=—-1,...n.
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prices pg_; through p, such that no types of j would buy at prices {px_ii1,---Pn-1},
but there are types of 7 who buy at py_; and, of course, at p,,. Then, buyer ¢ will never
accept prices in {px_;11,...Pn_2}, because he could profit from deviating to price p,_1.
But, there could exist types of ¢ who buy at p,_1. Since no type of buyer j buys
at prices {px_i+1,...pn_1}, there has to exist a type, vi_l, who is indifferent between

buying at p,_; and waiting till p,.

The proof of |Proposition 3.2|shows that if there are types of ¢ who buy at p,_1, then for

0 sufficiently small there are types of j just below Uifz who would profit from deviating
and buying at p,_;. If no type of < buys at p,_; we can still show that for ¢ sufficiently
small there are types of 7 just below vi_l who would profit from deviating and buying
at p,_1 if [ > 2. Therefore, if no type of 5 buys at p,_1, then there is a non-degenerate

interval of types who buy at p, and a non-degenerate interval of types who buy at

Pn—2. Then, [Proposition 3.2 follows from iteration.

The assumption [ > 2 is essential. If no type of ¢ buys at p,_; and [ = 2, the proof of

|[Proposition 3.2 cannot rule out “price gaps” in the following sense: Let p; be such a

“price gap”. Then, there are no types of buyer i or j such that py is the highest price
accepted by a type of buyer ¢ and j. However, “price gaps” can only occur, if [ = 2.
Therefore, a “price gap” contains at most one price and we get vi < vl _,. For example,
a cut-off strategy such that for both players, there exist types who accept as a highest
price pi1, p3, ps, - - ., and p, could be an equilibrium. But a strategy with a “price gap”

containing more than one price can never be an equilibrium.

Finally, the existence of “price gaps” does not contradict the definition of perfect cut-off
strategies. As described above, the “price gaps” only require that there are no types
such that a price py is the highest price that these types accept. But it is still possible

that there exists types who accept prices pr_; > pr. and therefore also py..
Given the previous results, we can now characterize equilibrium strategies.

Proposition 3.3. For § < 8, in any equilibrium the strategy of any buyer i is a perfect
cut-off strategy v = (vi,...,v.), where v\, = p,. Further, for 1 < k < (n — 1),

r n

vi € (pr,vi_,], where vg =1 and v} is given by

i) if there exists types of i who buy at py

vp = pr + A —

with Hi as in|Equation (3.5)| of [Proposition 3.1,

i) vl = vl | if no types of i buy at py.
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Proof. The result follows immediately from [Proposition 3.2] [Proposition 3.1] and [Re-]
mark 3.1} |[Proposition 3.2 and Remark 3.1] imply that for sufficiently small 9, any

equilibrium strategy is a perfect cut-off strategy as described by |[Proposition 3.2| and

Remark 3.1. If no type of buyer i buys at py, then the interval [vi,vi |) must be

degenerated, i.e., vi, = vi_,. If there exists a type who buys at price p; and a type who

buys at py_1, then v} is the lowest type who accepts pg. This type has to be indifferent
between waiting until p;_; and buying at py, i.e., Gi(vi) = 0. Furthermore, Gi(px) < 0
and since there exist types who buy at p,_1, Gt (vr_1) > 0. Gi(v) is strictly increasing

and continuous in v. Therefore, there exists vl € (pg,vi ] such that Gi(vi) = 0 and

[Equation (3.4)| implies

U/i—]?k = (U]ig_pk‘+1)H]i
& v =pr+ Pk — Penr b =+ A —E
=t = ) —

If no type of buyer i buys at p,_1, then a type who buys at p,_» has to exist. Thus,
the same consideration can be repeated with v}_, = vl ;. O

The existence of a symmetric equilibrium for sufficiently small § follows from Bose and
Daripa, (2009)). They show that a symmetric equilibrium exists even if the best response
mapping is discontinuous at v; = v} _,. Hence, there exists a symmetric equilibrium
for sufficiently small 6 even if “price gaps” with at most one price occur. We focus on
symmetric equilibria for the rest of the chapter and therefore omit the superscripts @

or j.

Now, we can state the main result. For any preference parameter €, the seller can

design an MDM such that he can extract almost all surplus of almost all buyers.

Proposition 3.4. For any preference parameter € > 0, there existsn > 0 and 6*(e) > 0
such that for any § < 6*(e) there is an MDM such that in any equilibrium of the game
induced by this MDM, the item s sold if at least one buyer has a valuation greater than

n and no type obtains an ex-post surplus greater than 9.

We have to ensure that the ex-post surplus of both buyers is still smaller than ¢ even if
“price gaps” occur. The first part of the proof is analogous to Bose and Daripa, (2009).

The second part considers rectangular beliefs and takes “price gaps” into account.

Proof. From the previous results it follows that for any € > 0, there is a §*(¢) > 0 such
that whenever § < 6*(e), an equilibrium exists and all equilibria can be characterized
by

o,
U = pr + Ap —.
1— Hy

96



3.3. DYNAMICALLY CONSISTENT BUYERS

Further, as noted in [Section 3.2.2} for any n € (0, 1) there exists an integer 7" such that
by choosing n = T, the price sequence of the MDM covers at least a fraction (1 — n)

of types. The item is not sold to at most types in [0,n]. Thus, it only remains to show
that no type that buys gets an ex-post surplus greater than J. This part has to be
adjusted. For any price p, with £ > 2 such that there exists types who accept the price

pr, we have one of the following cases.
Case 1) There are types who buy at py_1{]

The highest type who accepts py is vx_1. Therefore, the maximum rent of a buyer

who accepts pg, is

H, H,
#:Ak—l"’Ak—l#
1—-Hk-1 1—H, 4

E—1
1—c¢ 1de 1—-0 1)
A 1|1 = — - <9
= k1(+ e) 62<1—5+%> S3=0

where the first inequality follows since H,_1 < 1— ¢ and the second inequality

. 1-6
since 642 < 1.

Uk—1 — Pk = Ph—1 — Pk + D1

Case 2) There are no types who buy at p_;:

Then vg_1 = v_» and similar to Case 1), we get

~ ~

H._ H._
Ug—2 — Pk = Pk—2 — Drk+1 T Ak—21# = Apg+ Dy + Ajpg—2
— Hj — Hj

k—1
1—c¢ 1+ €de 1—-9¢ )
Ao |2 = — 1 —
< k2(+ . ) . 2(1—(5—1—%) <(+E)2<(5,

where the first inequality follows since, A,_o > Ar_; and FIk_g < 1—¢€ The

1-5
P o1 <lande<1.

second and third inequality follow since

Finally, we have to consider k = 2 and k = 1. Suppose, there are types who accept

p2. Then, by [Lemma 3.6 in [Section 3.7.2.2] in the Appendix, it follows that a positive

mass of types accepts p;. Similar to Case 1) we get

v —p2 <0

"Case 1) is analogously to Bose and Daripal (2009). However, Bose and Daripal (2009) uses the fact
that H,_; < 1 — e which does not hold for the corrected worst-case belief of Therefore,
it is not straightforward, that the main result of |Bose and Daripa) (2009) is still satisfied with the
corrected worst-case belief. However, in in the Appendix we prove that the result still
holds by using the specific expression of Hj_;.
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and the maximum rent of buyers who accept p, is smaller than 0. For & = 1, by

definition of vy and p;, the maximum rent of a type who accepts p; is
vo—plzl—(l—é):(S

Hence, there exists no type who can extract a surplus strictly greater than ¢. O]

3.4 Numerical Example

The following numerical example shows how the different beliefs, the incorrect, the
correct and the rectangular worst-case belief influence the surplus extraction. As in
Bose and Daripa (2009), F is the uniform distribution on [0,1], n =7, 6 = 0,05 and
e = 0.2. Each table shows the price sequence py, the equilibrium cut-off values vy, the
buyers’ maximum rent, and the worst-case belief. The equilibrium cut-off values v, are
derived by solving

i

for k=1,...,6 with vo = 1 and v; = p5. lflk is either given by the worst-case belief of
Bose and Daripal (2009) (1 — €)Hy, the corrected worst-case belief of [Section 3.2.5| Hy,

or the rectangular worst-case belief H.

For all cases, H ¢ and therefore the cut-off value v, depend on the cut-off values v,_; and

Vk+1. Then, from [Equation (3.9)| we get a system of recursive equations with vy = 1
and v; = p7. Solving this system we get the values vy, ..., vg listed in to

Furthermore, the tables show the maximum rent of the buyers. The maximum rent
in period k is the highest rent of a type who accepts price p,. More formally, the
maximum rent is given by vi_1 — pg, i.e., the difference of the highest type who accepts

pr and the price py.

Price | Value | Max rent | HBP
0.9500 | 0.9682 0.0500 0.9819
0.9450 | 0.9644 0.0232 0.9954
0.9401 | 0.9593 0.0243 0.9947
0.9352 | 0.9542 0.0241 0.9947
0.9303 | 0.9492 0.0240 0.9943
0.9254 | 0.9434 0.0238 0.9849

Table 3.1: Worst-Case Belief of Bose and Daripa (2009) with (1 —€)Hy = (1 —¢)HPP.
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Table 3.1| shows the results for the (incorrect) worst-case belief of Bose and Daripal
(2009)

Hy=(1—e)H,=(1- e)];gzg i ?EZZ*S = (1— ) HPP.

H?PP is smaller than one and therefore (1 — €)Hy, = (1 — ¢) HPP smaller than (1 — ¢).

Bose and Daripal (2009) use this fact repeatedly to prove almost all their results.

Price | Value | Max rent | H'™"
0.9500 | 0.9866 | 0.0500 | 1.1004
0.9450 | 0.9823 | 0.0416 | 1.1037
0.9401 | 0.9768 | 0.0423 | 1.1024
0.9352 | 0.9715 | 0.0417 | 1.1014
0.9303 | 0.9655 | 0.0412 | 1.0984
0.9254 | 0.9562 | 0.0402 | 1.0802

Table 3.2: Correct Worst-Case Belief with Hy = (1 — ) He"™.

illustrates the results with the corrected worst-case belief from [Section 3.2.5]
ie.,
H, = H, = (1 — )(F(v) + F(vg41))

(1 —€)(F(vg) + F(ug—1)) + €
One can see that H' is greater than one and thus Hy = (1 — e)H®" > 1 —e.
Therefore, the proofs of Bose and Daripal (2009)) cannot be applied to the corrected
worst-case belief. However, we show in in the Appendix that the results
of Bose and Daripal (2009) still hold with the corrected worst-case belief.
illustrates this result. The maximum rent of a buyer in is still smaller or
equal to 6. shows the results with the rectangular worst-case belief

= (1—)H"".

Price | Value | Max rent | H"
0.9500 | 0.9678 0.0500 0.9771
0.9450 | 0.9637 0.0228 0.9883
0.9401 | 0.9585 0.0236 0.9867
0.9352 | 0.9534 0.0234 0.9856
0.9303 | 0.9483 0.0232 0.9842
0.9254 | 0.9426 0.0229 0.9752

Table 3.3: Rectangular Worst-Case Belief with Hj, = (1 —e)H"e,

- A k Vg — €k+1 F Uk ol Uk+1
Hk:Hk:(l—Ek)F( )+§1+(1_€>5F‘(k<35+< )

= (1— ) H™",

99



3.5. RECTANGULARITY VERSUS CONSISTENT PLANNING

Comparing[Table 3.2|and [Table 3.3|illustrate the difference of rectangularity and consis-
tent planning. The worst-case belief and the maximum rent are smaller for dynamically

consistent buyers than for consistent planning. We compare both approaches in the

next section in more detail.

3.5 Rectangularity versus Consistent Plan-
ning

Bose and Daripal (2009) analyze the dynamic Dutch auction using the consistent plan-
ning approach of Siniscalchi| (2011)). It is still an open question if there exist settings
or conditions such that rectangularity and consistent planning lead to the same equi-
librium or decision outcomes. Since rectangular beliefs and consistent planning are
both based on a backward induction procedure, it is sometimes conjectured for specific
settings that both approaches lead to the same equilibrium outcome, e.g., in |Auster
and Kellner| (2020) and However, the numerical example shows that this
is not the case in this chapter. First, let us describe the consistent planning approach

in the ambiguous Dutch auction setting before explaining the difference in equilibrium

predictions.

3.5.1 Consistent Planning in the Ambiguous Dutch Auction

Consistent planning follows a backward induction procedure with an additional tie
breaking rule. Let us start in period n and assume buyer ¢ gets the offer p,. In the last
period, the expected payoff of rejecting is zero. Therefore, buyer ¢ accepts the offer if
and only if his valuation v satisfies v > p,,. In period n—1, if buyer ¢ gets the offer p,,_,
he has to compare the following plans: i) accept p,_1, ii) reject p,_1 and accept p,,
iii) reject p,_1 and reject p,. Then, consistent planning ensure, that if rejecting p, is
optimal in period n, the third plan is optimal in period n — 1. Further, if accepting p,
is optimal in period n, only plan i) and ii) are consistent with the decision in period n.
Hence, if accepting p,, is optimal in period n, buyer i compares plan i) and ii) in period
n — 1 and choose the one with higher expected payoff. This procedure is repeated until
period zero. In an arbitrary period k, buyer ¢ will reject the offer p;, if rejecting pyq is
optimal in period k+ 1. If accepting pr11 is optimal in period £+ 1, in period k buyer ¢
compares the expected payoff of accepting p, with the expected payoff of rejecting py

and accepting piiq. Formally, this leads to [Lemma 3.2] i.e., buyer i accepts py if and
only

Gy (v) =v—pr — (v —pry1)Hj, > 0.
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3.5. RECTANGULARITY VERSUS CONSISTENT PLANNING

However, the procedure described above does not consider any strategic reasoning.
Even further, to apply the consistent planning approach of |Siniscalchi (2011)) we have
to model the ambiguous Dutch auction as a decision-theoretical setting. For a fixed
strategy of buyer j, consistent planning analyzes the decision problem of buyer ¢ in
periods n — 1 and n as depicted in [Figure 3.1] Solid circles represent decision nodes of
buyer ¢, where A denotes accepting and R rejecting the current price. Empty circles
represent nature moves and E; denotes the event that buyer i does not get the offer
pr and E? the event that i gets the offer p, with k = n — 1,n. Then, H} is given by

the worst-case belief of event E7.

U — Pn

U — Pn-1

Figure 3.1: Decision Problem of Buyer ¢ with Consistent Planning in Period n and

n— 1.

3.5.2 Consistent Planning and Rectangularity
The decision problem in does not consider that buyer ¢ knows the auction

structure. He knows that the worst-case belief of event E? depends on the probability
that the object remains unsold at p,_; and the probability that he gets the offer p,
given that period n is reached. Further, buyer ¢« knows that period n is only reached
if his worst-case in period n — 1 does not occur. Taking this into account,
represents the true decision setting of buyer i, where ¢i denotes the position of buyer 1,
i.e., if he is asked first or second and j € A, B the action of buyer j. The decision prob-
lem as depicted in allows buyer ¢ to take changes of the worst-case belief
within the event E? into account. Further, in we can split period n — 1 and
n. In the switch from period n — 1 to n happens within the event E2. The
consistent planning approach of Siniscalchi| (2011) is defined for a decision-theoretical
setting. It cannot take the specific timing of the ambiguous Dutch auction into ac-
count. Therefore, rectangularity and consistent planning lead to different equilibrium

strategies. Formally, this follows from the different worst-case beliefs. The rectangular
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|
|
@ =1, -0 1 g 0 0
I ]_A R
|
1
- -
q,,_1=1,j=R or, q;,=1, or
i . | T i
q;_1:2,j:R : qu—Q,ij A
|
/l} —
¢, _,=1or i Pr
q;,1:2,j:R :
|
U = Pn-1 |
|
1
. | .
period n — 1 ! period n

Figure 3.2: Decision Problem of Buyer ¢ with Rectangular Beliefs in Period n and n—1.

worst-case belief is given byf|

P < R R U e )
e 1+ G*(vy)

Y

whereas the consistent planning worst-case belief is

Hi — min Gk(vi) + Gkﬂ(viﬂ)Gk(vi)
B grear 1+ GF(v))

I

where for Hi, G**! is the distribution function corresponding to g**! = Bay(¢g*|v < vt)

the Bayesian update of ¢*.

For each period k, the worst-case belief ¢* of buyer ¢ in a period k, is that buyer j
accepts the current offer, i.e., g*(v) = (1 — €) f¥(v) + el*(v) with [*(v € [vl_,.0i)) = 1.
Therefore, the worst-case belief in period k + 1 cannot be the Bayesian update of the

worst-case belief in period k and for a fixed strategy of buyer j
i< i

Rectangularity takes this change in the worst-case belief into account and induces a

different optimal strategy than consistent planning.

3.6 Conclusion and Discussion

We consider a Dutch auction mechanism with ambiguity-averse buyers. First, we
correct the worst-case belief of Bose and Daripal (2009). Then, we analyze the Dutch

auction for dynamically consistent buyers and showed that the seller can still extract

8This representation of the rectangular worst-case belief follows from the proof of [Proposition 3.1
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almost all surplus. Furthermore, we discuss the different implications of rectangularity
and consistent planning. Rectangularity allows the buyers to take the structure of
the auction into account. Therefore, under the rectangular worst-case belief, a buyer
believes that it is less likely to receive the offer py; if he rejects pr. This decreases the
expected payoff of waiting, and dynamically consistent buyers accept prices closer to

their types.

This observation opens many future research questions. As a first step, it is essential
to understand how the consistent planning approach of Siniscalchi (2011) could be
extended to games. Ts the right way to apply consistent planning, or should
the definition be extended to take situations as described in into account?
Without ambiguity, this problem does not arise since the belief in period k+1 is always
the Bayesian update of the belief in period k.

Further, when do consistent planning and rectangularity predict the same equilibrium
outcome? The timing in the Dutch auction setting is very complex. Since the buyers
do not know who gets the price offer p; first, the game cannot be represented by a
multistage game. |Auster and Kellner| (2020) analyze an ambiguous Dutch auction in
a continuous-time setting. Due to the continuous-time setting, they do not have to
specify which buyer is asked first and do not need the complex structure of Bose and
Daripal (2009)). In their setting, rectangularity and consistent planning induce the same

equilibrium strategy.

We conjecture that in multistage games, rectangularity and consistent planning will
predict equivalent equilibrium outcomes. Multistage games require a specific time
structure. In each period, players first observe private information (e.g., the move of one
opponent from the previous period). Then, players move simultaneously. Therefore,
the probability of reaching a specific information set in the next period depends only
on the worst-case belief of one period. However, more detailed analysis and discussion

are left for future research.

Alternatively, one could use a different time structure for the Dutch auction. In each
period, both buyers simultaneously choose an action. If both buyers reject the current
price, the game precedes to the next period. If buyer i accepts and buyer j rejects,
buyer ¢ gets the object and vice versa. If both buyers accept, the winner is chosen
randomly. This version of the Dutch auction mechanism could be modeled as a multi-
stage game. However, as discussed by Bose and Daripal (2009)), it leads to an uncertain
outcome of accepting. Therefore, the full surplus extraction result does not hold in

this setting.
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3.7 Appendix

3.7.1 Derivation Worst-Case Belief

The probability that buyer ¢ obtains the item at price p,,; given that he refuses the
current offer py, PY(A|B) can be derived analogously to Bose and Daripa (2009) by
replacing F' with G. For completeness, we repeat the derivation here. Let us fix one
belief g € ®;* and G be the corresponding distribution function. Further, G* denotes
the distribution function corresponding to the updated belief in period k, g* € ®F.

We first derive the probability 7} that period k + 1 is reached given that i refuses the
current offer p,. Then, we derive the probability v, that i gets the offer py; given
that stage k + 1 is reached. The probability P9(A|B) is then given by i,

;. can be derived as follows. Let ¢° € {1,2} denote the position of player i in period
k, i.e., if he is asked first or second. Further, let A* denote the event, that ¢ gets the
offer p. Then,

T = P(q' = 1|A)G*(v]) + P(q" = 2|A")

with
4 . Pl = 1)P(A'|¢" = 1
P(g' = 1|AY) = . —— . —
(@ =14 = B =T (Al = 1) + Pl = 2)B(ATg =)
_ 3 1
FHIGD 1+ GHD
and
i i i i G*(v]
P(g — 2]AT) = 1 — P(q _1|A)_1++k’(“ij).
k
Therefore,
i 2GR
e = T kg
14+ G*(v))

In period k£ + 1, ¢ gets the offer pyy for sure if he is asked first. If he is asked second,
he only gets the offer if buyer j refuses pg.1:

11 4
vy, = 2 + §Gk+1(”i+1)-
Then,
i QGk(Ui) 11 k41, j
PI(A|B) = m;, = HG—’“(vi) (5 + §G (UkJrl))
_ G*(v]) + Gk(vi)qkﬂ(viﬂ)
1+ G*(v}) '
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Now, for a fixed g, if G*(v]) = G((;(vk) for all £ > 1 we get
Vk 1
]P)g(A|B) _ G(Ui) + G(Ui+l)

3.7.2 Proofs of [Section 3.3

3.7.2.1 Proof of Lemma 3.1

G(v]_y) +G(v])

The proof generalizes the proof of |[Nishimura and Ozaki| (2002, page 6 - 8) and consists

of four steps. Step 1) proves an observation which is used recurrently in Step 2) and
3). Step 2) and 3) show that U2 C ¥! and ¥! C W2 Finally, Step 4) proves ¢, > e.

Step 1)

Step 2)

First, we show that ¢ € ! if and only if there exists a density function [ € P
such that

sy = =0 )
(L—e)f(E)+el(E)
L -9fB)  JO,  dAE) 1Y
(A= Of(BE)+e(B) f(E)  (1—e)f(E)+e(B)I(E)
- _(i)_f){ -~ )( Bay(f1E)() + 7= )Eég) P UE)
We can assume, without loss of generality, that [(E) > 0. Otherwise, g(z) = JJ:((}?)

for all x € E which immediately implies that g € U2,

Let g be an arbitrary density function in 2. Then, the definitions of U2 and ¢,
imply that there exists an [ € P such that

9() = (1 — &) Bay (f|E)(-) + exBay(I|E)(-))
(1—e)f(E) €
— B E .
0 —a7(8) + B0+ = rE
Since P consists of all density functions on [0, 1] there exists a density function
[ € P such that

Bay({|E)(-).  (3.10)

I(x) = Bay(l|E)(z) Vr€FE
and [(x) = 0 otherwise. Then, [(E) = 1 and

Bay(l|E)() = Bay (/| E)(").

Using this properties of [ we can rewrite [Equation (3.10)}
NS i I dE) oo
1) = G B0 + o P 1))

Then by Step 1) it follows that g € ¥!. Hence, U2 C W',
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Step 3) For the other direction, i.e., ¥ C W2 let g be an arbitrary element of ¥'. Then,
Step 1) implies

el(E)

(1—¢€)f(E)
9(-) 0= of(B) + d(E>BaY(f|E)(') + 0= of(E) + EZ(E)BW(”E)(')
_ (= of(E)Bay(flE)(-) (1 — €) f(E) + € + el(E) — €l(E)
(1—e)f(F)+el(F) (I1—e)f(E)+e
el(E)Bay(l|E)(-) (1—¢€)f(E)+e
(L—e)f(E)+el(E)(1—e)f(E)+e

(1—e)f(E)+€el(E)+e(l—-1UE))
:(1—e)f(E)Bay(f|E)()(( ) f(E)+el(E)((1—¢)f(E)+e)
¢ (1= e)f(E) + e)l(E)Bay(I|E)(-)

(1—f(B) e (1= e)f(E) +€l(E)

~~
=€k

_ (A= f(E) +)l(E)
" (1= f(E) +€(E)

-~
=€

+

Bay(I[|[E)(-) + (1 — ) f(E)Bay(f[E)(")

( 1 N (1-U(E)) )
L= (B +¢  (1-af(B) +dE)(1—-f(E)+e

—adBay((E)() + e Bay(f1E)()

-~

e (- UB)( - F(E)Bay(IE)()
T=ofB +e  ((1-f(E) +d(E))
_eBay(UIE)C) + (1 — o) Bay (1))
(1~ ()1 - O f(E)Bay (f|E)()

(-7 ram)  wUInY

_16

+

+ €k

N

(1 — ) Bay(f1B)() + e (Bay(U1E)() + (1 - Bay(f1B)()).

Since € € (0,1], I(z) := éBay(l|E)(z) + (1 — é)Bay(f|E)(z) for all x € E and
zero otherwise is a density function, i.e., [ € P. Furthermore, Bay(I|E) = [, since
I[(E) = 1. Hence, g(-) € ¥? and ¥! C W2,
Step 4) The full support assumption of f implies that f(F) < 1 for all E # €. Therefore,
it follows immediately that
€

T A Of(E) T e

Furthermore, if £ = ), then f(2) =1 and ¢, = €.

> €.
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3.7.2.2 Proof of |Proposition 3.2

The proof follows a similar idea as the proof of Bose and Daripal (2009). However, since
most parts explicitly use the form of the worst-case belief, we have to adjust parts of
the proof. Tt consists of several lemmata. First, shows that both buyers
have a positive measure of types who plan to buy at p,. proves that in
any equilibrium, a positive measure of types plans to buy at p;. Then, the idea is as
follows. Suppose there is a “price gap” in the sense that there are no types of buyer j
who plan to buy at prices in {p,—i+1,...,pn—1}. Then, there are no types of i who
plan to buy at prices {pn_i41,..-,Pn_2}- shows, that if there exists types
of ¢ who buy at p,_1, then there exists types of 7 who strictly prefer to buy at p,_; as
well. Further, if no type of ¢ buys at p,,_1, then there still exist types of j who strictly
prefer to buy at p,_; if [ > 2. Hence, there might exist a “price gap”, but the “price

gap” contains at most one price. Then, [Proposition 3.2/ follows by iteration.

Lemma 3.5. In any equilibrium, v’ = v} = p,. Further, a positive measure of types

of both buyers plan to buy at price p, but not at any earlier price.

The proof is analogously to the proof of Lemma 3 of |Bose and Daripa (2009). The
idea of the proof is, that all types v € (p,,pn_1) do not buy at price p > p,_1, since
v —p < 0. But, since the payoff of not buying is zero, buyers of type v € (pn, pn_1)
prefer to buy at p,.

Lemma 3.6. In any equilibrium, a positive measure of types of each buyer plans to

buy at price p;.

Lemma 3.6| can be proven analogously to the proof of Lemma 4 in Bose and Daripa
(2009) using the fact that H} < 1—e and that the e-contamination structure still holds

for marginal probabilities of the rectangular hull. For completeness, we repeat it here.

Proof. Suppose j does not plan to buy at prices pi,...,pr for 1 < k < n and pgyq is
the first price at which j buys. (This is denoted as v} = --- = v = 1 and U£+1 < 1)
Clearly, the best response of ¢ is not to buy at prices pq,...,pr_1. If ¢ refuses p; the

probability that the game reaches py,, is one. Therefore,

>
—_

j 1 : 11 .
) = 1 — Z gkttt Z — - _ k+1/, 1
Hj = gk+11§i§(q>§) +39 (v <vpyy) 5+ (1 — exr) ¥ (v)40), (3.11)

N}

where the last equality follows since, g**'(v < vf, ;) = G¥(v},,) and the set of marginal
distributions given the rectangular hull, rect(q)f"), equals the set of marginal distribu-
tions given @?. Therefore, the e-contamination structure is maintained for marginal

distributions of the rectangular hull.
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Further, j does not plan to buy at prices py, ..., pr. Therefore, vi = 1land F’“*l(v,iﬂ) =

F(vi.,) and €11 = €. Then, the payoff from refusing py, is (1 + 3(1 — e)F(viH))(v -

Pr+1)- Define the following function:

Ghlo) ==~ (5 + 501 - OF(h) ) (0 s
=5 (0= P~ (1 = OF(],1)) — 51+ (1= OF(t]) A

Note that

2G,(1) = (1= p)(1 = (1 = ) F(v,,) — (1+ (1 — ) F(v],,)) Ay
de?

_ (92— > Se — (2 — - -
>0e— (2—€)Ap > de— (2—¢€)A; 2(1—5)+56>

0,

where the second step follows from the fact that (1 — px) > (1 — p;) = §, and the
fact that F(viﬂ) < 1, and the third step uses A; > A,. Since G%(v) is continuous,
increasing in v, and negative at v = py, there exists vi such that Gi(v) > 0 for v > vi
and é}g(v}c) = 0. Since we know that ¢ does not plan to buy at any earlier price than py,
it must be that types [v, 1] of buyer ¢ plan to buy at py. The second part shows that
there exist types of j close to one who would deviate and buy at p,. First, remember
that

GI(v) =v—pr — (v — per1)Hj
with

(1 - ek)Fk(Ui) +(1— 6k+1)Fk(Ui)Fk+l(Ui+1>
L+ (1 —€)F*(v)

<(1—¢)<1l-—e

Then,

GL(L) = (1= p) = (1 = pre) B = (1= p)(1 = B) — A
Ny ~ oe 1—90
>6(1—H))—AH >0e— Ay =66 — ———F >0,
= ( k) 14+ 1 9 (1 . 5) + %
where the first inequality follows since 1 —p, > 1—p; = 6 and Ax < A;. Further, fI,‘i <
1 — e < 1 implies the third inequality. The last inequality follows since ﬁ < 1.
i 2
Since G7,(v) is increasing and continuous, there are types of j of positive measure near

one who would deviate and buy at p,. Contradiction. O

Lemma 3.7. Suppose there are types of buyer i who plan to buy at p,_;—; and p,_; but

not at prices in between. Then v _, , — v < §(1 +t)
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Similar to the proof is analogously to Lemma 5 of Bose and Daripal (2009)

using the fact that H < 1 — ¢ and [Equation (3.11)| For more details see [Lemma 3.10
in

Remember that we assume an equilibrium strategy where no types of j plan to buy

at prices in {p,_i41,...,Pn—1} with [ > 2. Then, no types of i plan to buy at prices
{pn—l+17 s 7pn—2}~
Lemma 3.8. There exists § > 0 such that for all § < & then there are types (of positive

measure) of j who buy at p,—1 if
i) there are types of i who buy at p,_q1 or
i) no types of i buy at p,_1 and | > 2.

The proof of explicitly uses the expression of the worst-case belief and
therefore has to be adjusted.

Proof. In the proposed equilibrium, types v > Ui—l of j buy at prices p > p,_;, with
type UZH and some types just above vfhl buying at price p,,_;. But since j does not
buy at prices {pn—i+1,---,Pn-1}, types just below fo must buy at p, and not before.
Therefore, in the proposed equilibrium, it must be that Ufl_z is indifferent between

buying at p,_; or p,. So we have, for buyer j,
v = pa = (vl — pn)ﬁ,{_l, (3.12)

where Hi—z is the worst-case belief, that j gets the offer p, if he refuses p,,_;. One can

derive ]:Ifb_l as follows. Similar to [Section 3.7.1, denote with 7T£L_l, the probability that

the object stays unsold in period n — I, with 7/_,, the probability that the object stays

n—1

unsold in period n — 1 and with v the probability that j gets the offer p,. Then,

[:Ii_l = min7)_ 7)) with
o 26" (v}, )
TG
Wi—l = Gn_l(vfz—l)a
. 1 1 )
Jj — — ZG™ (v,
Similar to the proof of [Proposition 3.1 the properties of rectangularity impliy
i A=) F (0 ) (1 — ) (0, ) (L4 (L = en) 7 (07)
n-t 1+ (1 =€) t(v: ) '
Rewriting [Equation (3.12)| gives,
Y (pn—l - pn) Aifl

(3.13)

Up—i = Pn—-1 = —
’I’Ll n 7
1-H;_,
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To establish that contrary to what has been supposed, i.e., that there are types of j

who will in fact buy at price p,_1, we show that there are types v such that

~ s

Gﬁl_l(v) =v—pp1— (v—p)H | >0,

n

where FI%_I is the usual rectangular worst-case belief, that j gets the offer p, if he

refuses p,_1. It is useful to break up the analysis into several cases.

Case 1) [ and ¢t are fixed positive integers:

Intuitively, this is the case where both ¢ and j follow strategies where they do not buy
for some finite number of prices. Note that in this case, 6(l +t) — 0 as § — 0.

i) Some types of i buy at p,_;:
In the proposed equilibrium no types of j buy at p,_;. Consider the value of
G?_.(-) at v)_,. We have
Gifl(vi—l) = Ufz—l — Pn-1— (Ufz—l - pn)ﬁifl

= (Uzl_l - pn—l) + (pn—l - pn) - An—l - ((UZL_[ - pn—l) + (pn—l - pn)) HZL_l

where the second step follows from [Equation (3.13)|and the third step follows from

the fact that p,_; — pn > P2 — Pn = D2 + A1 > 2A,_1. From the previous

lemma, we know that as 6 — 0: v, , — v, — 0, 0", —o: <o’ , , —v) — 0
and v} _; — vl <o’ , ,—v. — 0. Then, using
€ = Ei 7 -l — F(?Z-z) 7
(1 - €>F(Un—l—t>> te F(Un—l—t)
€, 1 = Ei , -l — F(Uizfl)’
(1—€e)F(v,,)) +e€ F(vr,)
F )
E’I”L = Ei 5 Fn g #7
(1 —€e)F (v, 1)) +e F(vy, 1)

and [Lemma 3.7, one can show that
C1-H | 1
lim —— > —.
=01 —H? 2

Hence for sufficiently small §, we have G7_,(v/_,) > 0.
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ii) No types of i buy at p,_; and [ > 2:

In this case, if buyer j refuses p,,_1, he knows that the game proceeds to the next

stage. Then, analogously to [Equation (3.11) we get

1

Gh0) =0 = = (5 + 5L )"0 ) (0= o)

It follows thatf]

(0] = pnt) (1= (1 =€) F"(v)))
+ Dot — ) (1= (1 =€) F™(v))) — 28,4

N
= (pn—l - pn) (1 - (1 - En)Fn('U:z)) (# + 1> - 2An—1
- A7
1—(1—¢€,)F"(v))

= (Pt — Pn — AV

(p 1—P ) 1—H31_z 1
N Pl Gl LA GNP DN

-

where the fourth step follows from [Equation (3.13)|and the final inequality follows,

as before, from the fact that A, is decreasing in k and p,_; —p, = pnt —Pn_131+

Prnis1 — -+ — Pp > LA, 1. Similar to Case 1.1) one can show that as 6 — 0
1—(1—¢,)F™(
(1—e)F"()
-

n—Il

and we have for § sufficiently small GZ_ (v7_,) > 0 since [ > 2.

Analogously to Bose and Daripal (2009), we can show that in Case 2) (¢ is arbitrary and
| varies with n) and Case 3) (I is a fixed integer and t varies with n) G7_,(v]_,) > 0
and G7_ (v]

;) > 0. For completeness, we repeat it here:

Case 2) t is arbitrary and [ varies with n:

In this case the gap p,_; — p,_1 does not vanish as 6 — 0. Then, since for any given

n >0, }AIZH is bounded away from zero, it follows from that vf;hl — Pn_1 does not vanish.

9Please note that, due to a calculation error in Bose and Daripal (2009), our expression slightly
deviates from their expression.
10The condition I > 2 is needed, since without further conditions on F and e it is not clear if

% 1 or % . 1. Therefore, for [ = 2 we get G?,_,(v)_,) > 0 and it could
- T n—l

n—1

be possible, that j is indifferent between buying at p,_o or buying at p,,_; or waiting till p,.
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Since p,_1 < pn_i, also Ufl_l — pn—1 does not vanish. However, p, — p,_1 — 0asd =0
and H | <1 (for Case 1.i)) and (1 — e, F™(v}) < 1 (for Case 1.i)). Therefore, for
small enough, G?_(v/_,) > 0and G?_,(v/_,) > 0.

n—1\%n

Case 3) [ is a fixed integer and t varies with n:

This is the case when as 6 — 0, (I + ) does not go to zero because ¢ (and n) become
arbitrarily large as § becomes small. However, this is analogous to the case we have
analyzed before with ¢, and j roles switched. We know that in equilibrium, both buyers
have types who plan to buy at the price p,_;. If 7 plans to buy at prices p,_;_; and
Pn_1, but not to buy in between, the best response of j should involve not buying at
prices {pn_i1—t11,-- > Pnk—2}t U puyt — pny_1 does not go to zero, we can use the
arguments from Case 2) above to argue that contrary to what is being supposed, for
small 0, buyer ¢ will have some types of positive measure who buy at p,_;_; rather
than waiting till p,_;

Now, since GI_ () (and GZ_,(-) > 0) is strictly increasing, continuous, and negative
at pn_1, there is v} | € (pn_1,v’_,) such that G (v) > 0 (and G?_,(v) > 0 ) for
v e (vi_l, va_l). Since types below vi_l do not buy at any price greater than or equal
to p,_;, these types (of positive measure) strictly prefer to stop at p,_; rather than

wait till p,,. This contradicts the supposed equilibrium. O

3.7.3 Correction Results of Bose and Daripa (2009)

Using H} instead of (1 — ¢)H] leads to several problems in the proofs of Bose and
Daripal (2009). Many proofs use the fact that (1 —¢)H; < 1 — ¢, but this does not
hold for H}. More precisely, there exists f with full support on [0, 1] and v/, such that

Hi > (1 —¢). The numerical example in illustrates this problem.

We now summarize the results of |Bose and Daripal (2009) and show how the proofs

have to be adapted when using the corrected worst-case belief.

Proposition 1 of Bose and Daripal (2009) Bose and Daripal (2009) first show
that there exists 0 > 0 such that for all § < 6, the equilibrium strategy of both players
are interior cut-off strategy. The formal proof consists of several lemmata and uses
the fact that H < 1 frequently. However, the result still holds under the corrected
worst-case belief. Even if the idea of the proof stays the same, many technical details
have to be adjusted. First, as in |Bose and Daripal (2009), one can show that there
exists a positive measure of types of both buyers who plan to buy at price p,, but not

at any earlier price.
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Lemma 3.9 (Lemma 4 of Bose and Daripa (2009)). In any equilibrium, a positive

measure of types of each buyer plan to buy at price p;.

Proof. The first part of the proof still holds given the corrected worst-case belief.
Suppose j does not plan to buy at prices p1,...,pr for 1 < k < n and pgyq is the first
price at which j buys. (This is denoted as v{ == vi =1 and 'Ui+1 < 1.) Clearly,
the best response of 7 is not to buy at prices py, ..., pr_1. If i refuses py the probability
that the game reaches py; is one, i.e., T, = 1. Therefore,
H; = min E + leH(vi )
gedk 2 1

1 1 ; 1
=5+l —a) P (v,) = 5 +

573 (1-e)F(vi.,), (3.14)

N | —

where the last step follows from vi = 1. Therefore, the payoff from refusing py is
(3+ 31 =€) F(v],))(v — prr1)- Define the following function:

Ghlo) === (5 + 51 OF(h) ) (0 o) (3.15)

=50 =P~ (1 = OF (1)) — 50+ (1= OF(t]) A

Note that

N

2G,(1) = (1= p)(1 = (1 = ) F(v1,) = (1 + (1 = ) F(v}41)) Ay
de?

ETTR P

>0e—(2—€)Ar >d0e—(2—€)A;
where the second step follows from the fact that (1 — px) > (1 — p;) = J, and the
fact that F(viﬂ) < 1, and the third step uses A; > A,. Since G%(v) is continuous,
increasing in v, and negative at v = py, there exists vi such that Gi(v) > 0 for v > vi
and G}C(U}C) = 0. Since we know that ¢ does not plan to buy at any earlier price than
P, it must be that types [v}, 1] of buyer i plan to buy at py. For the second part, Bose
and Daripa (2009) use the fact that (1 — e¢)H; < 1 — e. But, this does not hold given
HE. Therefore, we have to adjust the second part. Using the definition of H}, we can
still show, that G7(1) > 0. First, remember that

G1(v) =v —pr — (v — prs1) Hi

with the worst case belief

(1 — (F(vh) + F(vhy))
(1= (F(v) + Fvp 1)) + €

1l =
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Then,

GL(D) = (1 =p) = (1= prs1) HY
= (1—pe)(1 — HY) — AcHj,
>6(1 — H]) — A H]
= (F(h )~ Flpa)) te _de 1-5 (1= O(F()) + F(oh.,)
(1 —)(F () + Flop_y)) +e 21—+ 5 (L—e)(F(v) + Fvp_y)) +e
(1 — &) (F(viy) = Fvpa)) +e—e(l—¢)
(1= )(F(v}) + Fvi)) + €
where the first inequality follows since 1 —p, >1—p; =06 and A, < Ay. The second
< 1and (F(v)+ F(vj.,)) <2 and the last inequality

> 5

> 0,

inequality follows since = 5) 5
since (F(vj,_;)—F(vj,,)) > 0. Smce G (v) is increasing and continuous, there are types

of j of positive measure near 1 who would deviate and buy at py. Contradiction. [

Lemma 3.10 (Lemma 5 of Bose and Daripa, (2009))). Suppose there are types of buyer i
who plan to buy at p,_;_; and p,—_; but not at prices in between. Then v\ _, , — v <
o(l+1)

Proof. Since there are no types who buy at prices between p,_; ; and p,_;, buyer j
will never accept a price in {pp,__¢11,---,Pni—2}-

Case 1) Some types of buyer j buy at prices p,_;_; and/or p, 1, t > 1:

In this case, if ¢ refuses p,_;_; it is possible, that the game ends before, p,,_; is offered.

We know, that v’ , , is given by G _, ,(v) =0, i.e.,

Uvizflft — Pn—i—t = (Uizflft - pn—l)Hj«L,l,t
= (U;'l—l—t — Pn—i—t + Anflft +-+ An7171>Hfl_l_t
i _ — (A A Hriz—l—t
S Upgg = Pt = (Bt D) — 57— (3.16)
1 - Hrzz—l—t

Here H'! , , is the worst-case probability that i gets the offer p,_; if he rejects the
current price p,_;_;. Since there are types of buyer ¢ who plan to buy at p,_;_1, HS , ,
can be derived from the following three probablhtles Let 7' _, , denote the probability
that the object remains unsold at p,,_;_¢, 7, _;_; denotes the probability that the object
remains unsold at p,_ ;1 and ¢’ _; the probability that i gets the offer p,_;. Similar to
one can show that

i QG(Ui—l—J
T = A ,
ot Gvy__) +G(v),__,)
Py _ G<ng'—l—1)
TG
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A 1 1 GH_)
el =5t (3.17)
22 G(v) ;1)

The worst-case probability is then given by

i . i ~g i . G(”i—l—l) + G(“i—l)
Hn—l—t = Im{ll 71-n—l—tﬂ-n—l—lwn—l = mll;ll j yi
€, geP; G(Unflftfl) + G(Unflft)

(L=e)(F (v} y) + F(v), ) + 2€

Further,

i, ., (1—e)(F(vl_,_y)+ Fv_))

L=H, oy (L= (F(u)_y ) + F(0) ) = F(0 ) = F(v),)) + 2
21—¢) 1—c¢

2% ¢’
where the inequality holds since, F(vfl_l_l)—i—F(vi_l) < 2and F</UZL—l—t—1)+F(vi—l—t> —
F(v)_, ) — F(v)_,) > 0. The rest of the proof follows as in [Bose and Daripa/ (2009).
We repeat it for completeness. Let a = 1_15:55:' Note, that @ > 1 and from the
definition of Ay, we have A, = %56&k < %56. TheQrefore,

<

(3.19)

i

Un—i—t = Pn = Uiz—lft — Pn—i—t + An—l—t + -+ An—l

Hi
= (Apt A ) T A+ A
1- Hfz—l—t
1—e¢
S (Anflft + -+ Anflfl) c + Anflft -+ Anfl
1—€e A,__
= (A4 A s) - + el ! + A+ + A,

<%(5(1—6)(t—1)+5+6el)<5(t+e(1—t)+el)<5(l+t),

where the second step follows from [Equation (3.16)] the third step from [Equation (3.19)|

and the fifth step uses A < %56 forall k =n—1—t,...,n—1. Finally, since v}, = p,,
vh__, — vl < 0(l+ 1)

The proof of the Case 2), follows as in Bose in Daripa. For completeness, we repeat it
here.

Case 2) No types of buyer j buy at prices p,—;—¢ and p,_;_1, t > 1:

We know that types of ¢ buy at p,_;_; and at p,_; but not at the prices in between. If
t > 1, any type of ¢ who buys atp,,_;_; can deviate profitably and buy atp,_;_; instead.
Contradiction. Therefore in this case the only possibility is ¢ = 1.

HUFor ¢+ = 1, or if j only buys at pp_i—+ OR pp_i_1, vfl_l_t = UfL_l_
H)_,_ 2(1—¢)
—F— < =

n—Il—t

,; and the worst-case belief
changes slightly. However, similar to above it follows that I and ”;714 — Pt <

51— €)(t—1)+0+del < 5(1+1).
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So it remains to prove the inequality when ¢ = 1 and no type of j buys at p,_;_1. In

this case, analogously to [Equation (3.15)|v%_,_, is given by

Ai 1 1
mo1 (V) =v = ppg — (5 + 5R2_5_1> (v —pn) =0,

where R _, | is the conditional probability that j rejects pn_l.m Using the fact, that
V—=Ppt =V —Ppi-1+ A7’L—l—17 and SOlViIlg

1+ R, 2 —¢€
—741 < Anf — ’
L=R, e

Uy 1 = Pt = D
where the inequality uses the fact that 1 — ¢, < 1 — e. Similar to Case 1), it follows

)

Up—i—1 = Pn = Uiflfl — Pn—i—1 + YA P A W

€

2—c¢
< An—l—l( +1) +An—l+"'+An—l

2 5
= A D Ay <5 %z <5 +1).

]

Suppose in equilibrium no types of j plan to buy at prices in {p,_i41,...,Pn_1}. Then,
there are no types of ¢ who plan to buy at prices {p,_i11,.-.,Pn_2}. The next lemma
shows that given this equilibrium strategy, there are types of buyer j who can profit
from deviating and buy at p,_;. Hence, the strategy described above cannot be an

equilibrium. Then, Proposition 1 follows from iterating this result.

Lemma 3.11 (Lemma 6 of Bose and Daripal (2009)). There is § > 0 such that for all
§ < & there are types (of positive measure) of j who buy at p,_;.

Proof. Again, the structure is similar to [Bose and Daripa (2009). Case 2) and 3)
follow analogeously to Bose and Daripal (2009) and the proof of Only
Case 1) (I and t are fixed positive integers) requires some adjustments In the proposed
equilibrium, types v > vfl_l of j buy at prices p > p,,_;, with type vi_l and some types
just above buying at price p,_;. But since j does not buy at prices {p,_i41,---,Pn-1},
types just below Ui_z must buy at p, and not before. Therefore, in the proposed
equilibrium, it must be that Ufl_l is indifferent between buying at p,_; or p,. So we

have, for buyer j,

Vb= Por = (v, — pa)H (3.20)

12Quppose the lowest price higher that p,_; at which some types of j buy is p,—_;—1—s. Then

. B _Flon)
Rnflfl - (1 - En_l_l) F(’U'Z‘,_L—l—s) '
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where Hi—z is the worst-case belief, that j gets the offer p,, if he refuses p,_;. One can
derive H7_, similar to |Equation (3.18)|

(=0 + ()
(L= )(F (i, + F(ul_, )+ 2€

if there are types of ¢ who buy at p,_;. If no types of ¢ plan to buy at p,_;, then

v!_, =v'_, and 2¢ in the denominator has to be replaced by e.

Rewriting [Equation (3.20)| gives,

Uj —p _ (pnfl - pn) i
n—l n—l 1 Hi_l

= (3.21)

To establish that there are types of 7 who will in fact want to buy at price p,_1, we

show that there are types v such that

G%_l(v) =0 —pp1— (v—p)H | >0,

n

where ﬁiq is the usual worst-case belief, that j gets the offer p, if he refuses p,_;.
Case 1.1) Some types of i buy at p,_1:

In the proposed equilibrium, no types of j buy at p,_;. Therefore, it must be
that 'G’fl_l(v) is' not strictly positive for any v € [p,_1, fo]. Consider the value
of G _,(-) at v!_,. We have

ng—l(vi—l) = UZL—Z — Pn—-1— (UZL—Z - pn)ﬁi—l

= (Uifl - pn—l) + (pn—l - pn) - An—l - (('Uifl - pn—l) + (pn—l - pn)) Hgl_l

1—-H
= (pn—l - pn) _@—1 An—l
1-H

where the third step follows from the fact that p,_; — pp > Pn2 — pn = Ao +
An—l > 2An—1- Then,

1— Hg_l

1-H
(L= ) (F(vpy) = F(o)) +€) (1= (F(vn) + F(u)_.4)) + 26))

(L= )(F(v)_) + F(v_4) = F(v,y) = F(v},)) + 2¢))

1
(L= (F(u), )F(W)_y) +e)

n—l

117



3.7. APPENDIX

From the previous lemma, we know that as § — 0: v, , — v’ — 0, v}, — v} <

n—I n

v, —vh = 0and vt —ot <o, , —v. — 0. Therefore, as § — 0

1-H e(1—e)F(v) + € e(l—eF(w,)+€e 1

1 _ﬁg_z 2¢(1 —e)F(vi) + €2~ 2(e(l — e)F(vi) +€2) 2

Hence for sufficiently small §, we have G7_,(v/_,

) > 0.
Case 1.2) No types of i buy at p,_;:

In this case, if buyer j refuses p,_1, he knows that the game proceeds to the next
stage and with probability % he gets the offer next period. Then,

1
2 2

Ghsv) == s = (5 5= @) 6) ) (0= )

It follows that™]

260, (vh ) = (v = po1) (1= (1= &) F"(v}) = Anr (14 (1= &) F"(v},))
— (0] = Dat A+ Dut = Do AP0 —par) (1= (1= &) F"(01))
— Ay (T4 (1 =€) F™(v)))

= (vjy = pat) (1= (1= ) F"(v,))
+ (paat — pn) (1 = (1 =€) F™(v})) — 28,4

= (Pt —pn) (1 — (1 = &) F™(v},)) (f# + 1) — 20,4

J
n—

1— (1= )" (vy)

= (pnfl - pn) 1— Hi_l - 2An71
1—(1—e)Fr(vi
S P G LGRS N
T
Now, similar to Case 1.1) we know that as 6 — 0: v’ _, , — v, = 0, v}, , — v} <

7
n—1

vl o, —vl = 0and vl | —v! <o’ , ,—v: — 0. Therefore, as § — 0

1—(1—e)F*(vl) 2(1—€e)F(vl)+e

n

— — 4 > 1.
1- HI (1—e)F(v)) +e

Hence, for sufficiently small §, G/, (v _,) > 0.

Analogously to Bose and Daripal (2009), we can show that in Case 2) (t is arbitrary and

| varies with n) and Case 3) (I is a fixed integer and ¢ varies with n) G7_,(v]_,) > 0

13Please note that, due to a calculation error in [Bose and Daripal (2009), our expression slightly
deviates from their expression.
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and G?_,(v]_,) > 0. In the proof of we explain Case 2) and 3) in more

detail.

Now, since GZ_,(-) (and G _(-)) is strictly increasing, continuous, and negative at
Pn_1, there is v) | € (pp_1,v._,) such that G (v) > 0 (and G%_,(v) > 0 ) for

v e (vfl_l, v!_,). Since types below Ufl_l do not buy at any price greater than or equal
to p,_;, these types (of positive measure) strictly prefer to stop at p,_; rather than

wait till p,. This contradicts the supposed equilibrium. O

Lemma 2 of Bose and Daripa (2009) Lemma 2 of Bose and Daripal (2009)) gen-
eralize the cut-off strategies to perfect cut-off strategies. If py(v) is the highest price
that type v would accept. Then, monotonicity implies that v accepts all prices lower
than py.(v). The result and the proof do not depend on H; and therefore still hold with

the corrected worst-case belief.

Proposition 2 of Bose and Daripa (2009) Next, Bose and Daripa (2009) char-
acterize the cut-off types in an equilibrium. Using our corrected worst-case belief the
notation of the statement changes slightly. However, the intuition and the proof follow

analogously to the proof of Bose and Daripal (2009).

Proposition 3.5 (Proposition 2 of Bose and Daripal (2009)). For § < 0, in any equi-
s

librium the strategy of any buyer i is a perfect cut-off strategy v' = (v ), where

vl = p,. Further, for 1 <k <mn—1, v, € (pg,vi_,), where v' =0 and v. is given by

[7i
k

1—-H}’

v = Pk + A
where H} is the corrected worst-case belief. Further, for any given v7, vl is unique.

Proposition 3 of Bose and Daripa (2009) Proposition 3 of Bose and Daripa
(2009) shows the existence of a symmetric equilibrium for all § < ¢ with 6 > 0. The
proof only uses the fact that H{ < 1. Since this is satisfied for the corrected belied,
existence follows from the proof of Bose and Daripa; (2009) which is an application of

Brouwer’s fixed point theorem.

Proposition 4 of Bose and Daripal (2009) The main result of Bose and Daripal

(2009) shows that the seller can extract almost all surplus

Proposition 3.6 (Proposition 4 of Bose and Daripal (2009)). For any preference pa-
rameter € > 0, there exists 6*(e) > 0 such that for ans 6 < 6*(¢) and n > 0, there is
an MDM such that in any equilibrium of the game induced by the MDM, the item is
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sold if at least one buyer has valuation greater than n and no type obtains an ex-post

surplus greater than §.

Proof. The first part can be proven as in Bose and Daripa (2009). From the previous
results it follows that for any e > 0, there is a §*(¢) > 0 such that whenever § < §*(e),

an equilibrium exists and all equilibria can be characterized by

H;,
1—H,

U = P + Ag

Further, as noted in [Section 3.2.2|for any ) € (0, 1), there exists an integer 7" such that
by choosing n = T, the price sequence of the MDM covers at least a fraction (1 — n)

of types. The item is not sold to at most types in [0,n]. Thus, it only remains to show
that no type that buys gets an ex-post surplus greater than J. This part has to be
adjusted.

Since types in [vg, vx_1] buys at price pg, the ex-post surplus of any type buying at py
is at most v,_1 — pg. Furthermore, the characterization of the equilibrium cut-off types

implies
Hy, 1
= =A0r |1 ) = Ay _
Ug—1 — Dk k1(+1_Hk) k:ll_Hk
<2
k—1 A~
e 1-90 (1 —€) (F(vg) + F(vp_1)) +e
2\(1=0)%) 0= F(u) — Flog) + e
ps]
_ €l 2(1—€)+e
2 (1—e¢)(F(vg_1) — F(vk+1)2+e
>0
€02
< ——=0.
2 €
Hence, no type can extract an ex-post surplus greater than 9. O]
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