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Abstract
The aim of this thesis is to investigate the impact of characteristic polynomials on the spec-
tral eigenvalue statistics of random matrix models, with applications in effective field the-
ory models of Quantum chromodynamics (QCD). The symmetries of the field theory lead
to random matrix ensembles named chiral Gaussian Unitary Ensemble (chGUE(N)) and
extensions thereof. The random matrix ensembles are comparable to the effective theory of
QCD in a low-energy regime, where chiral symmetry breaking is predominant and it suf-
fices to consider only the smallest eigenvalues of the QCD Dirac operator. We consider four
members of the chGUE(N) symmetry class: the classical chGUE(N) consisting of Hermi-
tian, chiral block matrices with complex entries and its extensions by N f massive flavors
describing dynamical quarks. Furthermore, we consider the chGUE(N) extended by exter-
nal parameters describing effects of external sources like temperature and its combination
with N f massiv flavors. The correlations of the chGUE(N), and its extensions with external
parameters, als well as its deformations with massive flavors, belong the class of determi-
nantal point processes. This implies that correlation functions can be expressed as deter-
minants of a correlation kernel. The random matrix ensembles we consider feature special
biorthogonal structures leading to a sub-class of determinantal point processes called invert-
ible polynomial ensembles. Such ensembles are characterised by a joint probability density
function (JPDF) containing two determinants, which can be linked to orthogonal polyno-
mials, if the considered model is independent of temperature. If temperature is present as
an external source, the JPDF has biorthogonal structure and the usage of orthogonal poly-
nomials becomes more involved. in this case, the correlation kernel can be expressed in
terms of expectation values of ratios of characteristic polynomials. We will derive a multi-
contour-integral representation of the expectation value of an arbitrary ratio of characteristic
polynomials for invertible polynomial ensembles at finite matrix size N. Additionally, we
perform a saddle point analysis and derive the large N asymptotic form of the correlation
kernel for the chGUE(N) matrix models including temperature as an external source. The
limiting kernels show determinantal structures comparable to existing results partially de-
rived with supersymmetry and orthogonal polynomial methods. We show that the limiting
kernel for non-zero temperature models is indeed equivalent to existing results for tempera-
ture independent models. Furthermore, we show that the resulting correlation functions for
both zero and non-zero temperature models agree with existing formulae of the correlation
functions derived via supersymmetry. This answers the question wether the correlations of
the underlying physical field model are indeed universal in the low-energy regime, where
random matrices can be used to model QCD effective field theories.
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Chapter 1

Introduction

In this thesis we discuss random matrix models, which can be used to describe aspects of
strong interactions in the standard model of elementary particles. The quantum field theory
associated with strong interactions is called Quantum chromodynamics (QCD) and forms a
complex system, which we approximate by an effective theory for its low-energy eigenval-
ues. The matrix models describe the temperature dependence of correlation functions of the
Dirac operator, which contains the information on quark interactions in the QCD Lagrangian.
This allows us to answer questions of universality for zero and non-zero temperature phases
in the phase diagram of the effective random matrix model. To evaluate the eigenvalue cor-
relation functions we compute expectation values of products and ratios of characteristic
polynomials with respect to the eigenvalues of the Dirac operator. The used formulae are
based on results from the principal publication [1].
In section 1.1 we discuss important features and applications of Random Matrix Theory
(RMT). In particular, we introduce Gaussian random matrix models, which serve as effec-
tive low-energy matrix models for QCD. In section 1.2 we give a brief introduction to Quan-
tum chromodynamics and its symmetries relevant for the RMT approach. We show how to
connect QCD and RMT and give a brief overview of the developed matrix models to study
QCD with and without temperature. An outline of the thesis is given in section 1.3.

1.1 Random Matrix Theory

Random Matrix Theory (RMT) is a theory, which combines the concepts of matrices and
random variables. Starting with a set of random variables, a random matrix can be formed
by arranging the random variables in matrix form. Thus, the matrix itself becomes a ran-
dom variable and consequently methods from both probability theory and matrix theory
are combined into one theory.
RMT is often used as a mathematical tool to analyze correlation functions of complex phys-
ical systems in form of an effective theory. This means the following: The theory models a
certain effect or aspect of the complex system, while reducing its complexity in the process.
This raises the question if and when results from the effective model can be used to describe
the complex system. Alternatively speaking: When does the reduced complexity lead to dif-
ferent results in the effective model and the complex system? If a result of an effective model
turns out to be true in any model of a given complex system and in particular also in the
complex system itself, then this result is called universal in physical sense. Thus, the main
objective in building an effective random matrix theory is to produce as many universal re-
sults as possible, while balancing the complexity of the matrix model and the corresponding
complex system.
Random matrices depend only on the underlying probability distribution and symmetries
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of the matrix. Therefore, random matrix models can be used to describe spectral properties
of complex systems dominated by symmetries. To study spectral properties the Hamiltonian
is replaced by a suitable random matrix. This is a sensible procedure in many applications,
in both physics and mathematics.
RMT started in 1928, when Wishart introduced the notion of rectangular matrices with ran-
dom entries. Those entries were chosen as independently, identically distributed random
variables with respect to a Gaussian probability density [2]. The first connection between
RMT and physics was suggested in the 1950s by Wigner, who used eigenvalue statistics of
random matrices to understand the energy levels of heavy nuclei [3]. In particular, Wigner
proposed that the spacings of energy levels could be modeled by eigenvalue spacings of
large random matrices [4]. This idea had profound implications, because it was a vast gen-
eralization of concepts already known and used in Statistical Mechanics. Since the Hamil-
tonian of a many-body system, studied in Statistical Mechanics, has many degrees of free-
dom, we might as well view the entries of the Hamiltonian, in its finite-dimensional matrix
representation, as random numbers. This immediately leads to a random matrix model de-
scribing the Hamiltonian.
The choice of distribution between entries of a random matrix impacts the spectral statistics
and has to be chosen appropriately for the given physical context. In general, the random
matrix model is a good approximation of the complex physical system, as long as the global
symmetries of the random matrix match the symmetries of the Hamiltonian, which is a Her-
mitian operator. In other words: The random matrix model and the complex physical sys-
tem belong to the same symmetry class. Therefore, the objective is to find a suitable random
matrix model whose global symmetries match those of the physical system. Consequently,
random matrix models are classified in terms of their symmetries. The first symmetry that
is used in the classification is self-adjointness, or Hermiticity, because physical systems dis-
play real eigenvalues originating from Hermitian Hamilton operators. The random matrix
ensemble, which shares this symmetry and has no other symmetry, is called Gaussian Uni-
tary Ensemble. It is one of three classical Gaussian ensembles introduced by Dyson [5–7]. It
is abbreviated as GUE(N) and contains all Hermitian N× N matrices H with entries drawn
from a Gaussian probability distribution. The underlying matrix space is CN×N meaning
each entry of H is a complex number z = a + ib. This leads to a conotation via the Dyson
index β = 2, counting the degrees of freedom a, b. Overall we find

1
N exp

[
−1

2
Tr H2

]
dH, where dH = ∏

1≤i<j≤N
dRe (Hij)dIm (Hij)

N

∏
k=1

dHkk ,

with normalization constant N . The measure dH is the flat Lebesgue measure of all in-
dependent entries of the underlying space CN×N . Changing the field C to R leads to the
GOE(N),1 meaning that the matrices H are not Hermitian, but real symmetric, which im-
plies that the number of independent parameters of the underlying field is β = 1. In the
language of symmetries, the change from complex to real space hints at the existence of an
additional symmetry. This symmetry is anti-unitary and coincides with the symmetry of
complex conjugation or charge conjugation. In physical settings this translates to the com-
bination of time-reversal and rotational invariance. Breaking the rotational invariance, but
at the same time keeping the time-reversal invariance is also possible. Thus, the Hamil-
ton operator becomes self-dual Hermitian with entries taken from the real quaternion space
HN×N . Therefore, we find the last of the three classical ensembles associated with β = 4

1GOE is the shorthand notation for Gaussian Orthogonal Ensemble.
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free parameters. The corresponding random matrix ensemble is denoted as GSE(N).2

The random matrix models we consider in this thesis are based on one of the chiral analogs
of the three Dyson ensembles, namely the chiral analog of the GUE(N). The notion of chi-
rality implies the existence of an additional symmetry. It turns out that chiral ensembles
feature a special block form

H =

(
0 W

W† 0

)
(1.1)

with blocks W of dimension N × (N + ν). Note: The fact that the matrix H is Hermitian,
does not imply the Hermiticity of the block matrix W. Nevertheless, the chiral ensembles
are classified as Hermitian random matrix ensembles on the level of H. The three chiral
ensembles are denoted by chGUE(N),3 chGOE(N) and chGSE(N) in analogy to the classical
Dyson ensembles.
We consider the blocks of the random matrix H in Eq. (1.1) to be composed of independent
random entries distributed with respect to a Gaussian probability measure. To study the
eigenvalue spectrum of H we may instead study the matrix product WW†, which is called a
Wishart matrix. To study the spectrum of WW† instead of H is possible, because the spectral
statistics of H are obtained via the exponential term Tr H2, which is equal to Tr WW† in case
of H being chiral. Furthermore, ν counts the number of zero eigenvalues of W†W, which
shares its non-zero spectrum with the Wishart matrix WW†. Consequently, the eigenvalues
wj of WW† are connected to the eigenvalues of H, which we denote by hj (j = 1, . . . , N).
The connection reads hj = ±√wj and shows a two-fold degeneracy. Following this, the
probability measure describing the chGUE(N) reads

1
N0

exp
[
−1

2
Tr H2

]
dH =

1
N0

exp
[
−Tr WW†

]
dW . (1.2)

All three chiral ensembles form Hermitian random matrix models and were introduced as
models for QCD by Verbaarschot [8, 9]. In this thesis we also consider the chGUE(N) model
extended by addition of a matrix T to the block matrix W, i.e.

H =

(
0 W

W† 0

)
→
(

0 W + T
W† + T† 0

)
. (1.3)

This type of matrix model is used to study the effect of temperature in QCD. Note that
the matrix T can be chosen diagonal with real entries [10–13]. Another type of extension
arises from a deformation with iµ instead of T, which corresponds to the effect of non-zero
chemical potential in QCD. This deformation breaks the Hermiticity of H, leading to a non-
Hermitian random matrix model, in contrast to the deformation with T in Eq. (1.3).
In general, we distinguish between two classes of random matrix models - Hermitian and
non-Hermitian models. Both classes appear in physics, mathematics and many other related
areas of science. Possible applications encompass areas such as: physics [14], medicine [15],
sociology [16, 17], engineering [18], finance [19] and pure mathematics [20, 21]. These ref-
erences are overviews and provide important further references to respective applications.
To give a more detailed overview on all the different areas, where RMT models appear, is
beyond the scope of this thesis. Hence, we also refer to collections such as [22] for more
informations. Because of the variety of applications, the study of random matrix ensembles

2GSE is the shorthand notation for Gaussian Symplectic Ensemble.
3The chGUE(N) ensemble is sometimes referred to as Wishart ensemble or Laguerre Unitary ensemble.
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has become a research topic of its own. In particular, the study of eigenvalue and eigen-
vector correlations of random matrices [23–26], but also the already mentioned symmetry
classifications [5, 27, 28] of random matrix models have drawn a lot of attention over the
years. In particular, the symmetry classification of physical operators in strong interacting
systems was a popular research topic [29, 30]. In recent years the study of sums and prod-
ucts [31] of random matrices has also attracted a lot of attention.
As mentioned before, we focus on the application of random matrix models to the theory of
strong interactions. The connection between these two fields is well established, as we will
see in the next subsection in more detail. See also [32] for a review and references therein
for more information. The results and techniques we discuss in this thesis may be useful in
adjacent applications of random matrix models and therefore are of its own interest.

1.2 Application to QCD

Quantum chromodynamics (QCD) is a field theory designed to describe the effects of the
strong force in the Standard Model of Elementary Particles. The Standard Model is consid-
ered as one of the biggest achievements in modern particle physics, because of its predictions
and their confirmation by experiments. The model combines three of the four fundamen-
tal forces of nature, namely the strong force, the electromagnetic force and the weak force.
In this thesis we focus solely on the strong force and its effects described by the quantum
field theory called QCD. The strong interaction has an effect on elementary particles called
quarks, of which six flavors are established by experimental data. Those quarks are: up,
down, strange, charm, top and bottom. In theoretical models one often keeps the number
of quarks as a free parameter, which is then denoted by N f - the number of flavors. We will
adopt this notation throughout this thesis to cover models of QCD with different numbers
of quarks, for example N f = 2 and N f = 3.
Quarks are fermions and described in QCD by quantum fields ψ f .4 The interaction between
quarks is carried out by exchanging gauge bosons, which are called gluons. The gauge group
containing the gluons is an SU (3) Lie group, leading to 8 gluons and three colors: red, blue
and green. To incorporate models for different number of colors, we keep the number of
colors as a free parameter, denoted by Nc. The gluons are described by bosonic fields Aµ,
which are vector fields of spin 1, similar to quantum electrodynamics. Furthermore, the
quark field ψ f is a vector Nc components representing the effect of each color. Henceforth,
we will not consider the structural impact of the color group in more detail.
One of the key features of QCD is asymptotic freedom, which describes the behaviour of
quarks at high energies, or temperatures. Above a critical energy quarks and gluons be-
come free particles and form a quark-gluon plasma (QGP). Both lattice data and experimen-
tal data of collider experiments show that at high temperatures a QGP phase exists [33, 34].
This hints at a more structured phase diagram. At vanishing chemical potential the phase
transition to the QGP phase is in fact an analytic crossover [35, 36], which is conjectured to
be extendable to small non-zero chemical potential.
Beyond the existence of the QGP phase, little is known about the shape and structure of
the phase diagram of QCD, particularly at the physical point - the point in phase space,
where the masses of the quarks in nature are realized. Therefore, the understanding of the
phase diagram and in particular the phase transition from low to high temperatures is still
of interest. In Fig. 1.1, a schematical depiction of the phase diagram of QCD is given as a
function of temperature T and baryon chemical potential µ. The order parameter for the

4The quark field index f denotes the flavor.
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Figure 1.1: Schematic diagram of the T − µ phase space of QCD taken from [37]. Three phases are
shown: The Quark Gluon Plasma, where quarks and gluons are asymptotically free,
the nuclear phase, where nuclear matter is formed and the Hadron Gas phase, where
quarks and gluons are confined in hadrons. The solid line represents a phase transition,
being of first order up to the critical end-point (CEP). The dashed line represents an

analytic crossover at a critical temperature TC up to the CEP.

transition from low to high temperature is the chiral condensate Σ, which is zero in the QGP
phase and non-zero in the hadron phase. At Σ = 0 asymptotic freedom allows for pertur-
bative expansion of the Lagrangian of QCD in powers of the coupling constant gQCD. In
the hadronic phase, quarks and gluons appear together in colorless particles called either
baryons, like proton and neutron, or mesons, like the pions π±, π0. This feature is called
confinement and - crucially - perturbation theory in terms of quarks and gluons is no longer
available. In QCD at low baryon density µ symmetry analysis of quarks and gluons leads
to the concept of chiral symmetry breaking. At high temperatures the chiral symmetry is
restored, while at low temperatures the chiral quark condensate, in the limit of massless
quarks, breaks the chiral symmetry of the Dirac operator spontaneously. The Goldstone
Theorem [38] leads to the existence of Goldstone Bosons. At N f = 2 the quark mass breaks
the chiral symmetry explicitly, but even for small quark masses one can still see the effects
of the spontaneous symmetry breaking. In particular, we can identify the lightest mesons
(pions) with the Goldstone Bosons and therefore use these particles as building blocks for
effective field models. For Σ 6= 0 one possibility to study QCD is to discretize space-time in
a finite volume V = L4. This leads to what is called lattice QCD, which depends on lattice
spacing a, lattice shape and lattice boundary conditions. The advantage of lattice QCD is
that numerical simulations are possible to gain access to the QGP and phase transition re-
gions of the phase diagram of QCD. However, the necessary parametrization of space-time
requires a Euclidean metric space, which is achieved via Wick rotation of the time direction
circumventing the sign problem in the original Minkowski space. For more details on lattice
QCD we refer to the literature [39–44]. To compare lattice simulations to experimental data
we have to send the lattice spacing a → 0. This means we take the continuum limit first and
afterwards the thermodynamical limit by sending V → ∞.
In this thesis we do not consider lattice QCD to model the effects described by QCD in the
low energy hadronic phase. As the title of the thesis suggests we use effective theories to
model QCD in the low-energy regime. We consider models with and without temperature
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quark flavor quark mass (in MeV) quark flavor quark mass (in GeV)

u 4 c 1, 3

d 8 b 4, 4

s 160 t 175

Table 1.1: The bare masses of the 6 known quarks are shown, divided in groups relative to the
QCD scale ΛQCD ∼ 1 GeV [45].

to better understand the effects of temperature in the phase diagram. In general, an effective
field theory uses the lightest particles on a given energy scale as building blocks to perform
perturbation theory. One example of an effective theory for QCD is Chiral Perturbation The-
ory (chPT). This theory uses the Goldstone Bosons of chiral symmetry breaking as building
blocks. These bosons can be identified with the lightest mesons of the theory - the pions.
Consequently, the perturbation is done in terms of the pion masses and poin momenta.
A simple way to categorize the three methods - perturbative QCD, lattice QCD and low-
energy effective field theory - can be done with respect to the physical quark masses, which
are given in Tab. 1.1. The quarks can be grouped into light quarks (u, d, s) and heavy quarks
(c, b, t) according to their mass. First principle calculations of QCD lead to perturbative
QCD, which is only applicable above several GeV, courtesy of the asymptotic freedom. In
contrast, a low-energy effective field theory can only be applied well below the QCD scale
ΛQCD ∼ 1 GeV. Thus, only theories containing 2 or 3 flavors make sense. Especially the
N f = 2 flavor theories are interesting, as the two corresponding quarks build up the pions
π±, π0 and lead to chiral symmetry and their explicit and spontaneous breaking by the pion
mass and the chiral condensate respectively. Lattice QCD serves as a tool to understand the
region between the two perturbative schemes. In particular, the crossover along the temper-
ature axis in the phase diagram at non-zero chemical potential has been tested with lattice
simulations - see [46] for more information.
Starting from chPT one can take another step to arrive at random matrix models which can
be used to describe chPT and thus QCD indirectly. It is clear, that such an approach can only
serve as a description of certain aspects of QCD and never describe the whole field theory.
The RMT models we introduce in chapter 2 of this thesis describe certain spectral properties
of the QCD Dirac operator D, in particular they predict the spectral behaviour of the small-
est eigenvalues of D.
In summary, QCD is a non-Abelian Yang-Mills gauge theory [47] of fermionic quark fields
and gauge bosons (gluons) who all carry a color charge. A Quantum Field Theory (QFT),
such as QCD, is characterised by the action, which is an integral of the Lagrangian over the
4-dimensional space-time light cone. We focus solely on the Euclidean formulation of QCD,
as this is needed for both the comparison to lattice QCD data and in order to match with the
random matrix models we introduce in chapter 2. The action of QCD reads

SQCD =
∫

d4x LQCD(x), with LQCD = Lgluon + Lquark .

The Lagrangian LQCD describing the interaction of quarks and gluons reads

LQCD =
1
2

Tr
[
Fµν(x)Fµν(x)

]
+

N f

∑
f=1

ψ̄ f (x)(D + m f )ψ f (x) = Lgluon + Lquark . (1.4)
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Fµν is the field strength tensor on SU (Nc) and ψ̄ f = ψ†
f γ4 is the Dirac conjugate field. The

dynamics of the fermionic fields ψ f are described by the Dirac operator D, while the gluons
are described by fields Aµ, which also appear as part of the Dirac operator representation.
Thus, the Dirac operator can be written as

D =
4

∑
µ=1

γµDµ, where Dµ = ∂µ + igQCDAµ , (1.5)

with gQCD the coupling constant of QCD. The fact that QCD is a field theory allows us to ap-
ply Feynman’s path integral formalism [48] and make the connection to Statistical Mechan-
ics. In particular, we describe the theory via partition functions, who contain all necessary
informations of the considered field theory. The Euclidean partition function of QCD reads

ZQCD = Tr
[
e−βH

]
=
∫

dAµ

N f

∏
f=1

det(D + m f ) exp (−SYM) , (1.6)

where β is the inverse temperature and SYM is the Euclidean Yang-Mills action, which is
basically the gluonic part of the Lagrangian of QCD in Eq. (1.4). The N f -fold determinant
over the Dirac operator originates from the Berezin integral over Grassmann variables [49]
using the Matthews-Salam formula [50, 51]

N f

∏
f=1

det(D + m f 11) =
∫

dψ̄dψ exp
(
−
∫

d4x Lquark(x)
)

.

This explains the connection of Eq. (1.6) and the QCD Lagrangian in Eq. (1.4). The QCD
partition function can also be interpreted as an average (or expectation value) over the Yang-
Mills action of the fermion determinant. Depending on the notation we can write5

ZQCD =

〈 N f

∏
f=1

det(D + m f 11)

〉
= E

[ N f

∏
f=1

det(D + m f 11)

]
.

Note that the fermion determinant det(D + m f 11) is mathematically nothing more than the
characteristic polynomial with respect to the Dirac operator D. This hints at the connection
of characteristic polynomials and their expecation values to the spectral statistics of QCD.
We will encounter more characteristic polynomials of random matrices in the models for
QCD in chapters 3, 4 and 5.
In a fashion similar to the partition function one can also define the spectral density of the
Dirac operator as an expectation value with respect to the Yang-Mills action, namely

ρ(λ) =

〈
∑
n

δ(λ− λn)

〉
= E

[
∑
n

δ(λ− λn)

]
.

5The bracket notation 〈O〉 is often used in physics literature, while the notation E(O) is used more often in
mathematical literature.
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The spectral density is an important quantity in terms of universality and connected to chiral
symmetry breaking, which can be seen in the Banks-Casher relation [52]

ρD(λ ≈ 0) =
1
π

VΣ , (1.7)

where V is the space-time volume. We can define the chiral condensate Σ as the expectation
value of the quark vacuum ground state, i.e.

Σ = |〈0|ψ̄ψ|0〉| 6= 0 .

Thus, the quark vaccum ground state breaks chiral symmetry spontaneously. More pre-
cisely, we can write [30]

Σ = |〈0|ψ̄ψ|0〉| = lim
a→0

lim
m→0

lim
V→∞

π

V

∫ 2mρ(λ)dλ

m2 + λ2 . (1.8)

The order of the limits is crucial to provide a correct ultra-violett cut-off on the lattice or
in the effective theory. The smallest eigenvalues of the Dirac operator make up a large
portion of the chiral condensate, which we can deduce from the Banks-Casher relation, as
the average distance of eigenvalues is directly related to the volume V, see Eq. (1.7). Thus,
we can say the following: The global symmetries are manifest in the lowest eigenvalues of
the Dirac operator in a finite volume V = L4, low energy effective theories apply and the
spectral gap is closed. ChPT applies, if 1/ΛQCD � L, where ΛQCD is the typical QCD scale
and L is the size of the box making up the finite volume V. In chPT the expansion in pion
fields with masses mπ and quantised momenta p ∝ 1/L leads to

1
L
∼ O(p), mπ ∼ O(p), m f ∼ O(p2) ,

where the quark mass m f follows from the Gell-Mann-Oakes-Renner relation m2
π ∼ m f . The

product mπ L, pion mass and size of the box, is an indicator for the behaviour of zero and
non-zero modes. Looking at the pion propagator

∆(p2) =
1
V

1
p2 + m2

π

we see that for mπ L ∼ O(1) zero and non-zero models share a 1/L2 vanishing pion propa-
gator. This regime is called p-regime, because the expansion is basically done by counting
the number of derivatives (or momenta) in the chiral perturbation ∂ ∼ p [53]. The modes in
the p-regime share a Compton wave-length that is smaller than the size of the box.
There is another kinematic regime due to Gasser and Leutwyler [54] called ε-regime, where
the partition function describing the system splits into a zero-momentum and a non-zero-
momentum part. For mπ L � O(1) only the non-zero mode propagator vanishes - the zero
modes produce a divergence in the chiral limit. Introducing a new parameter ε ∼ 1/L and
expanding around the zero momentum part of the Lagrangian, we find [32, 55, 56]

mπ ∼ O(ε2), m f ∼ O(ε4), V ∼ O(ε−4) .

The term m2
πV is of order one in this counting regime and the zero modes are no longer

suppressed [56]. However, the wavelength of the pions must be much larger than the box
length size of the finite volume enclosing the physical system.
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The zero-momentum part of the theory is fully described by its global symmetries and can
be modeled by RMT with the same symmetries [8]. To reach the ε-regime a rescaling scheme
of eigenvalues and masses and also the spectral density is needed [9]:

λ̂n = ΣVλn, m̂ f = ΣVm f , ρmicro(λ̂) = lim
V→∞

1
ΣV

ρ

(
λ̂

ΣV

)
. (1.9)

This is called the microscopic limit of QCD. The results we derive from our RMT models
have to be compared to physical quantities taken in this limit. Consequently, we can only
use results from RMT models directly as predictions for QCD in the ε-regime of chPT after
taking the microscopic limit. In particular, the microscopic spectral density can be computed
analytically using random matrix models as well as finite volume partition functions [57–
60], when temperature is zero. To compare results of RMT with lattice data it is necessary
to introduce the quenched approximation, which is achieved by taking the limit N f → 0. At
N f = 0 the result for the microscopic spectral density derived from RMT models reads [32]

ρmicro(λ̂) =
λ̂

2
(

J2
ν(λ̂)− Jν−1(λ̂)Jν+1(λ̂)

)
, (1.10)

where J(λ) denotes the standard Bessel function of the first kind. The microscopic spec-
tral density is plotted in Fig. 1.2 in comparison to lattice data of staggered fermions in the
fundamental representation of SU (3) in the quenched approximation. In order to identify

Figure 1.2: The microscopic spectral density ρS from Eq. (1.10) is compared to data of staggered
fermions in the fundamental representation of SU (3). This was done for different lat-
tice sizes in the quenched approximation in [61]. Similar comparisons for the smallest

eigenvalues can be found in [61, 62].

a suitable RMT model we have to study the symmetries of the Dirac operator in a given
gauge representation. Starting from Eq. (1.5) we see that the Euclidean 4× 4 dimensional
γ-matrices fullfill the Clifford algebra relation

{γµ, γν} = γµγν + γνγµ = 2δµν .

Additionally, the γ-matrices can be represented in their chiral representation, meaning they
feature off-block structure, i.e. for k = 1, 2, 3 and Pauli matrices σk we have

γk =

(
0 iσk
−iσk 0

)
, γ4 =

(
0 112

112 0

)
.
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Analyzing the global symmetries of the Dirac operator leads to its chiral representation,
since the Dirac operator is anti-Hermitian D† = −D and anticommutes with the matrix
γ5 = γ1γ2γ3γ4, i.e. {D, γ5} = 0. For γ-matrices in their chiral representation this leads to

D = i
(

0 d
d† 0

)
. (1.11)

The off-block entry d is a differential operator and depends on the gauge fields Aµ and
space-time. The commutation relation of γ5 with the Dirac operator implies that all non-
zero eigenvalues of D come in pairs and are purely imaginary.
Now we come back to the chiral symmetry breaking. From the construction of the γ5-matrix
we find the projectors

P± =
1
2
(114 ± γ5), P2

± = P±, P+P− = P−P+ = 0, P+ + P− = 114 .

We can use these to decompose the quark fields into left-handed (L) and right-handed (R)
components, ψ f ,L/R = P±ψ f , with respect to their chirality. The quark part of the QCD
Lagrangian can be decomposed term by term and we obtain

N f

∑
f=1

ψ̄ f (D+m f 114)ψ f =
N f

∑
f=1

ψ̄ f ,LDψ f ,L +
N f

∑
f=1

ψ̄ f ,RDψ f ,R +
N f

∑
f=1

m f (ψ̄ f ,Lψ f ,R + ψ̄ f ,Rψ f ,L) . (1.12)

The terms above are invariant under different symmetry transformations. We see that the
massless term is invariant under global rotations ψ f ,L = ULψ f ,L and ψ f ,R = URψ f ,R. The
UL/R ∈ U L/R(N f ) are unitary matrices from groups with indices corresponding to different
chirality. Hence, this term is invariant under

U L(N f )×U R(N f ) = SU L(N f )× SU R(N f )×U V(1)×U A(1) .

The two phases U V(1) and U A(1) stand for additional conserved vector (V) and axial-vector
(A) currents. The first of the two symmetries can be identified with the conservation of the
baryon number. The U A(1) symmetry is always broken by the anomaly.
The mass term violates the separation in left-handed and right-handed fields, as we can see
in Eq. (1.12). In the case that all quark masses are taken to be equal, i.e. m f = m for all
f = 1, . . . , N f , the mass term is invariant under UL = UR, which means, that one of the
SU (N f ) groups remains. Hence, the breaking pattern with respect to the mass term reads:

SU L(N f )× SU R(N f )→ SU (N f ) .

This breaking pattern also applies, if the explicit breaking via the mass term is replaced by
spontaneous breaking via the condensate, since

Σ = |〈0|ψ̄ψ|0〉| = |〈0|ψ̄LψR + ψ̄RψL|0〉| 6= 0

is again invariant under SU (N f ), if UL = UR. The explicit breaking of chiral symmetry can
be avoided in the already mentioned quenched approximation, which is realized when we
send the number of flavors to zero, i.e. N f → 0. Physically, this means, we assume, that the
quarks are heavy enough such that the mass term dominates the dynamics described by the
Dirac operator. In that setting only the effects of the pure gauge fields on the Dirac spectrum
are affecting the spectral statistics, which is of its own interest.
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Now we are ready to move on to the random matrix models, which were introduced to
describe the spectrum of the Dirac operator. Looking at Eq. (1.11) and comparing to Eq.
(1.1) leads immediately to the suggestion of Shuryak and Verbaarschot from 1993 [8]. They
proposed to replace the differential operators d, which build the off-blocks in the Dirac oper-
ator represenation in Eq. (1.11), with random matrices W. The number of eigenvalues of the
RMT version of the Dirac operator is then denoted by 2N + ν and should be proportional to
the space-time volume V. The replacement leads to a block W of size N × (N + ν), where ν
denotes the zero-modes of the Dirac operator. All in all we have

D + m f 11 =

(
0 id

id† 0

)
+ m f 11→

(
0N iW

iW† 0N+ν

)
+ m f 112N+ν = D + m f 112N+ν , (1.13)

where we have included the mass m f corresponding to the quark flavor f . The matrix-
valued RMT Dirac operator has 2N non-zero eigenvalues lying on iR, and ν zero eigen-
values. The Yang-Mills action is replaced by a Gaussian probability distribution P(W). In
particular, Verbaarschot introduced the term Tr WW† inside an exponential in P(W). Cru-
cially, the symmetries of the Dirac operator blocks d are conserved in the symmetries of W.
This includes possible anti-unitary symmetries the Dirac operator might possess depending
on the gauge representation. The classification of possible anti-unitary symmetries can be
found in the literature [27, 28]. In short, the matrix elements of W can become real, complex
or real quaternion.6 The three random matrix ensembles are exactly the three chiral Gaus-
sian ensembles chGOE(N) (real), chGUE(N) (complex) and chGSE(N) (quaternion). These
three cases correspond to special combinations of representations of the color gauge group
and the number of colors Nc. The case of Nc = 3 colors and gauge group elements in the
fundamental representation corresponds to the matrix model with complex entries, i.e. the
chGUE(N). Therefore, the partition function coming from the chGUE(N) density, but in the
presence of N f massive, dynamical quarks, reads (compare Eq. (1.2))

ZN = Z
(N f ,ν)
N (m1, . . . , mN f ) =

1
N

∫
dW

N f

∏
f=1

det(D + m f 112N+ν) exp
[
−Tr WW†

]
, (1.14)

where D is the matrix-valued Dirac operator from Eq. (1.13) and N is a constant we use to
simplify the joint probability density function of the eigenvalues in later chapters.
As we have seen in the previous section the eigenvalues of the Wishart matrix WW† are
connected to the eigenvalues of the Dirac operator D via ±√wj = yj,7 where yj are the
eigenvalues of D and wj the eigenvalues of WW† respectively. To obtain results in the RMT
model we have to access the spectrum of the random matrix model at the correct scaling.
We will go into more detail on different scaling limits in chapter 2. For now it suffices to note
that after the eigenvalues are appropriately rescaled with N, we can take the large N-limit
and obtain results comparable to QCD in the microscopic limit.
To include temperature in the random matrix model a simple shift by a constant, determin-
istic matrix T was considered by several groups, for example [12, 13]. The change of the

6In arbitrary space-time dimensions one could expect all ten Hermitian matrix models [27, 28]. Since we are
focused on 4 space-time dimensions, only the three chiral ensembles are possible [5].

7The eigenvalues of H are also called the squared singular values of W, when H has the chiral block-form as
in Eq. (1.1).
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model, as it was indicated already in Eq. (1.3), leads to a new Dirac operator

D = i
(

0 W + T
W† + T† 0

)
,

which replaces the Dirac operator in Eq. (1.14).
Results using the temperature dependent RMT models date back to the 90s. In particular,
the works [12] and [13] studied the model using supersymmetric techniques and derived
correlation functions in the large N limit, which can be compared to the microscopic limit
of QCD in the quenched approximation [12].8 Both works considered only quadratic ma-
trices W, meaning ν = 0. At the same time results for the correlation functions of zero-
temperature models were derived [63, 64], which opens to the question of universality of
the correlation functions with respect to temperature. The equivalence of results of both
temperature phases, T = 0 and T < TC, could not be answered with the techniques and
knowledge available at the time. Since then the understanding of the underlying structures,
even at finite N, has grown thanks to works such as [25, 65, 66]. Hence, the models can now
be reviewed, also for ν 6= 0, and the connection of the results from T 6= 0 [12, 13] to T = 0
[63, 64] can be seen in a new light, answering the question of universality. This is covered in
chapters 4 and 5 of this thesis.

1.3 Outline

The thesis is organized as follows:

In chapter 2 the mathematical framework to study random matrix models of the chGUE(N)
symmetry class is introduced. In particular, the focus is set on random matrix ensembles
with biorthogonal structures leading to determinantal point processes and their correlation
kernels. Expectation values of characteristic polynomials will be linked to the computation
of correlation kernels. Scaling limits as well as questions universality will also be discussed.
In chapter 3 we derive results valid for polynomial ensembles at finite matrix size N. For-
mulae for expectation values of ratios of characteristic polynomials are derived leading to
determinantal structures, which do not depend on N. The results of chapter 3 are based on
the principal publication [1].
In chapter 4 the obtained results from chapter 3 will be used as a starting point of a large
N analysis. Via saddle point approximation the large N limit of the correlation kernel is
derived for the chGUE(N) with an external source describing temperature for both N f = 0
and N f 6= 0 massive flavors. In chapter 5 the question of universality of the asymptotic
results of chapter 4 is discussed. In particular, it is shown that the results for non-zero tem-
perature from chapter 4 are equivalent to previously derived results for zero temperature
from [63]. Additionally, the equivalence to results obtained for the non-zero temperature
model via supersymmetry [13] is shown. The results of both chapters are still unpublished.
We then conclude the thesis in chapter 6.
The appendices contain: Properties of Vandermonde determinants in Appendix A, material
concerning determinantal formulae for expectation values of characteristic polynomials in
polynomial ensembles in Appendix B, derivation of JPDFs in Appendix C and additional
results for Giambelli compatible point processes in Appendix D.

8In [13] the extension of [12] to N f massive flavors was made.
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Chapter 2

Mathematical and Physical
Framework

In this chapter we introduce concepts and techniques from Random Matrix Theory, which
are needed in chapters 3, 4 and 5. In particular, we discuss Hermitian random matrix models
and their applications in Quantum chromodynamics and similar structured strong interact-
ing field theories. As a result, we introduce the random matrix models from the chGUE(N)
symmetry class via the Altland-Zirnbauer classification of Hermitian random matrix mod-
els and highlight the matrix-valued probability distributions we need for the discussions in
chapters 4 and 5. Next, we illustrate how eigenvalue and singular value distribution func-
tions can be obtained for the chGUE(N)-type models. In the process, we briefly discuss
integraliblity of group integrals and obtain the joint probability density functions for the
models with and without external sources in the chGUE(N) symmetry class. Additionally,
we introduce properties of orthogonal polynomials and show their connection to expecta-
tion values of characteristic polynomials as well as partition functions. Then, we discuss
the existence and usage of scaling limits with respect to universality in spectral correlation
functions. Lastly, we introduce the notion of determinantal point processes and give an
overview of important properties of the associated correlation kernels and correlation func-
tions. Additionally, a discussion of biorthogonal ensembles and their subclasses is given,
which leads to the notion of polynomial ensembles - the main subject of chapter 3.

2.1 Random matrix models for QCD

Quantum chromodynamics (QCD), as a highly involved quantum theory of non-Abelian
fermionic fields and gauge fields, requires tools from group and representation theory, as
well as field theory to tackle its spectral properties.
In this thesis we focus on the fundamental representation with Nc ≥ 3 colors, so the corre-
sponding random matrix model is the chiral Gaussian Unitary Ensemble.1 The main idea to
model QCD with random matrices, which are drawn from the chGUE(N), is to replace
the Dirac operator D with a random matrix, whose off-diagonal blocks are rectangular
N × (N + ν) dimensional matrices W with independent Gaussian entries. The spectrum
of the Dirac operator can be obtained from the non-zero eigenvalues of the Wishart ma-
trix WW†, or equivalently from the squared singular values of W. In order to derive the
spectral statistics of eigenvalues we first have to formulate the partition function describing
the model on random matrix level and identify the joint probability density function of the
eigenvalues (or singular values).

1We use the short-hand notation chGUE(N) to denote the chiral Gaussian Unitary Ensemble, which is some-
times referred to as complex Wishart Laguerre ensemble.
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Random matrix models from the chGUE symmetry class

The classical chGUE(N) is defined on the space of N × (N + ν) complex non-Hermitian
matrices W with independent, identically distributed, Gaussian entries. A chiral, anti-
Hermitian matrix D is obtained from W as a 2N + ν dimensional matrix of the form

D = i
(

0N W
W† 0N+ν

)
. (2.1)

The partition function of the chGUE(N) is given as the integral over the measure PchGUE(W)dW
and denoted by ZN . The measure is the product of the flat Lebesgue measure dW, on the
space CN×(N+ν), and the density function PchGUE(W). ZN serves as an analogon to the phys-
ical partition function, which is modeled by the random matrix H. In the context of QCD
the partition function ZN is related to finite-volume partition functions of the physical Dirac
operator in the microscopic limit (see section 2.4). We can write

ZchGUE
N =

∫
PchGUE(W)dW , where PchGUE(W) =

1
N0

exp
(
−Tr WW†

)
. (2.2)

The constant N0 serves as a normalization constant to be determined later.
The derivation of the joint probability density function of the real, positive eigenvalues of
the Wishart matrix product WW† is done using a singular value decomposition of the ma-
trix W. We demonstrate how to use this concept in the next subsection. At this point it is
necessary to mention important extensions and generalizations of the chGUE(N). In par-
ticular, we have to make a connection to the Dirac operator with N f massive quark flavors
and include the effect of temperature on the spectral statistics in the model. The latter can be
done by substracting a rectangular, deterministic matrix T from the matrix W. In this case
the ensemble is called chGUE(N) with an external source. Comparing with Eq. (1.14) the
density function reads, when m f → 0 for all f = 1, . . . , N f :

Pext
chGUE(W) =

1
Next

exp
(
−Tr (W − T)(W† − T†)

)
. (2.3)

The study of random matrix ensembles with external sources goes back to the works of
Brezin and Hikami [67, 68] and works by Guhr [69–71]. We are interested in the k-point
correlation functions of the eigenvalues of WW†. Crucially, these functions can be studied
and obtained analytically in the external source case. This follows from the existence of a
special type of group integral, as we will see in more detail in the next subsection.
Another important type of model in the chGUE(N) symmetry class is given by the classical
chGUE(N) enhanced by a deformation with a fixed number of determinants. In our case
we conveniently choose the number of deforming determinants to be equal to the number
of physical flavors N f . Recalling Eq. (1.6) this identification connects to the inclusion of
dynamical massive quarks via fermion determinants of the Dirac operator. The additional
product of N f determinants leads to a density of the form

Pdeformed
chGUE (W) =

1
Ndef

N f

∏
f=1

det(D + m f ) exp
(
−Tr WW†

)

=
1
Ndef

N f

∏
f=1

det
(

m f 11N iW
iW† m f 11N+ν

)
exp

(
−Tr WW†

)
.

(2.4)
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The combination of the deformation of the chGUE(N) with an external source leads to the
main model we want to study in the following chapters of this thesis. We denote this model
with the upper index temp to indicate that it includes temperature, as an external source, but
at the same time includes N f massive flavors. We obtain the density

Ptemp
chGUE(W) =

1
N

N f

∏
f=1

det(Dtemp + m f ) exp
(
−Tr WW†

)

=
1
N

N f

∏
f=1

det
(

m f 11N i(W + T)
i(W† + T†) m f 11N+ν

)
exp

(
−Tr WW†

)
,

(2.5)

which allows us to write the random matrix parition function as

Ztemp
N =

∫
Ptemp

chGUE(W)dW =
1
N

∫
dW

N f

∏
f=1

det(Dtemp + m f 112N+ν) exp
[
−Tr WW†

]
,

where we have introduced the temperature dependent Dirac operator Dtemp as

Dtemp = i
(

0 W + T
W† + T† 0

)
.

The expansion of the fermion fields into a sum over Matsubara frequencies is a common
technique on the lattice to study the phase transitions in QCD phase space. The model
introduced above shares the chiral and flavor structure of the QCD Dirac operator and in-
cludes the temperature dependence schematically in analogy to the addition of the lowest
Matsubara frequency [10, 72, 73]. The effect of temperature is thus restricted to the lowest
eigenvalues of the Dirac operator and conveniently leads to mean-field universal critical ex-
ponents. As we have seen before, the smallest eigenvalues dominate in the ε-regime, where
RMT models can be applied to QCD. Thus, the correlation functions of these eigenvalues
can be used to study the chiral phase transition along the temperature axis in phase space,
where the spectrum of the Dirac operator is purely imaginary [10, 72, 73]. The phase tran-
sition along the temperature axis, is analytical and of second order with mean field critical
exponents [10, 72, 73]. The critical temperature TC divides the phase space into two do-
mains: Below TC chiral symmetry is spontaneously broken, and above TC it is restored. The
macroscopic spectral density below TC is given by a semicircle, which splits into two disjoint
semicircles above TC, which is in agreement with with lattice simulations.
Starting from the matrix density function, the next objective is to derive and discuss the joint
probability density function (JPDF) of the eigenvalues of the Dirac operator Dtemp under the
influence of temperature. This objective can be achieved by performing singular value de-
compositions of the matrices W and T simultaneously and is done in the next section.

2.2 Joint Probability Density Function

The matrix-valued density function of the chGUE(N) encodes the spectral information in
terms of all independent entries of the given matrix product WW†, as we can see from Eq.
(2.2). From a representation theory point of view the expression of the Wishart matrix WW†

in terms of all independent matrix entries is only one possible choice. In analogy with clas-
sic linear algebra, we can perform a change of basis to go to the eigenvalue basis of WW†.
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This has the advantage of reducing the number of variables from N2 independent entries
to N eigenvalues. A change of basis leads to a Jacobian, which we have to take into ac-
count. In this case the Jacobian is non-trivial and leads to non-trivial involvement among
the eigenvalues of WW†. From a physical standpoint the invariance of the spectrum under
basis change is required, because Hamiltonians and all other possible observables should
not depend on a particular choice of basis.

The expression det(y112N+ν − D) can be used to determine the eigenvalues of the Dirac
operator exploiting its chiral block form, see Eq. (2.1). We need to find the zeros of this
polynomial equation, which becomes possible via the block determinant formula

det
(

A B
C D

)
= det A det(D− CA−1B), if A is invertible,

det
(

A B
C D

)
= det D det(A− BD−1C), if D is invertible.

The matrix y112N+ν − D can be treated via both cases above. In particular, we obtain for
y 6= 0

det(y112N+ν − D) = det
(

y11N iW
iW† y112N+ν

)
= det(y11N)det

(
y11N+ν − iW† 1

y
11NiW

)
= yN det

(
1
y
(y211N+ν + W†W)

)
= y−ν det(y211N+ν + W†W) ,

and similarly

det(y112N+ν − D) = det
(

y11N iW
iW† y112N+ν

)
= det(y11N+ν)det

(
y11N − iW

1
y

11N+νiW†
)

= yN+ν det
(

1
y
(y211N + WW†)

)
= yν det(y211N + WW†) .

Combining both equations and substituting x = y2 we arrive at a special case of Sylvester’s
determinant identity [74]

det(x11N+ν + W†W) = xν det(x11N + WW†) .

From the equations above we gain some insight into the derivation of the spectrum of the
Dirac operator. In particular, we verify that the eigenvalues of D can be obtained by the
eigenvalues of the product WW†, or W†W. The non-zero eigenvalues come in pairs, due
to the substitution x = y2, which originates from the chirality property of D and its anti-
Hermiticity. The non-zero eigenvalues λn, n = 1, . . . , N, of WW† can be derived as the zeros
of the characteristic polynomial

0 = det(x̃11N −WW†) =
N

∏
n=1

(x̃− λn) ,

with x̃ = −x. Since the Dirac operator is anti-Hermitian, the product of its blocks - the
Wishart matrix WW† - is Hermitian, as we can see from Eq. (2.1). Hence, the eigenvalues of
WW† are real and positive, as D has a purely imaginary eigenvalue spectrum.
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Singular Value Decomposition

By standard linear algebra we know that the transformation to an eigenvalue basis can be
done via unitary matrices if the original matrix is Hermitian. This is the case for WW† as we
have seen above. Consequently, we consider a tranformation

Λ = UWW†U†

with a diagonal eigenvalue matrix Λ containing the eigenvalues of WW†. The matrix U ∈
U (N) contains the eigenvectors with respect to WW†.
To look at the decomposition with U alone does not suffice in our situation as we can see
looking back at the partition function ZN of the chGUE(N). The integration in Eq. (2.2)
is done over the independent, real variables of the entries of W, not WW†. In principle, it
is possible to make a change of variables to the eigenvalues of the positive definite matrix
WW†. However, this yields a non-trivial Jacobian and can be circumvented by consideration
of the singular values of W instead. Hence, we go over from the eigenvalues of WW† to the
singular values of W in order to unlock spectral information in our model and to keep the
calculation simple.2 The decomposition of W associated with its squared singular values
λn = w2

n, where n = 1, . . . , N, reads

W = UWWDV†
W , where WD =

(
ΛW 0N×ν

)
and ΛW =


w1 0 0 . . . 0
0 w2 0 . . . 0
... 0

. . .
...

...
... 0

0 0 . . . 0 wN

 .

We have unitary matrices UW and V†
W with dimensions depending on the remaining degrees

of freedom after decomposing W to WD. Their direct product is an element of the coset space
[U (N)×U (N + ν)]/(U (1))N . The matrices are comprised of vectors, which form the sets
of left and right eigenvectors of W respectively.

The next question is how the measure dW behaves under the singular value decomposi-
tion defined above. Recall that the measure in our model has to be drawn from a complex
rectangular matrix, that is, the underlying matrix space is CN×(N+ν). The measure itself is
equal to the flat Lebesgue measure, which means

dW =
N

∏
n=1

N+ν

∏
m=1

dReWnm dImWnm , (2.6)

where the matrix entry Wnm has to be decomposed into its real and imaginary part. Taking
a conjugation like W → UWV with unitary matrices of appropriate dimensions leaves the
measure invariant, because the differential length element (ds)2 = Tr dWdW† is invariant
on CN×(N+ν) under this transformation.3 However, this only implies that the decomposition
into squared singular values leads to a factorisation into a singular value dependent part and
an eigenvector dependent part with respect to the measure. This particular factorisation is

2The squared singular values of W are exactly the eigenvalues of the product WW†.
3More details and information can be found in the literature [24, 75, 76].
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known in the literature. We find, looking for example in [23]

dW = c

(
N

∏
n=1

λν
n

)
|∆N(λ1, . . . , λN)|2

(
N

∏
n=1

dλn

)
dµ(UW)dµ(VW) . (2.7)

The prefactor c is independent of the squared singular values and can be found in the lit-
erature for the chGUE(N) but also many other matrix ensembles for the same or similar
matrix decompositions. The term ∆N(λ1, . . . , λN) denotes the Vandermonde determinant of
N elements, which can be written as

∆N(λ1, . . . , λN) = det
[
λi−1

j

]N

i,j=1
= ∏

1≤i<j≤N
(λj − λi) =

∣∣∣∣∣∣∣∣∣
1 . . . 1

λ1 . . . λN
...

...
...

λN−1
1 . . . λN−1

N

∣∣∣∣∣∣∣∣∣
= (−1)N(N−1)/2 det

[
λN−i

j

]N

i,j=1
.

(2.8)

This determinant becomes zero, when two arguments λi and λj become equal. Therefore,
it serves as a repulsory factor, keeping the eigenvalues apart from each other. More details
and properties of the Vandermonde determinant can be found in Appendix A.
The measure dµ(X) denotes the Haar measure with respect to its argument [77]. This measure
is left and right invariant under conjugation with corresponding group elements [78]. The
integration over the Haar measures can be performed for all four models introduced in
section 2.1. The two temperature independent models, which are the classical chGUE(N)
given via Eq. (2.2) and the deformed chGUE(N) via Eq. (2.4), are unitary bi-invariant under
the singular value decomposition. Thus, the integration over the Haar measures containing
the eigenvector dependence is trivial. Consequently, we find for the classical chGUE(N)4

PchGUE(λ1, . . . , λN) =
1

Z(0,0)
N

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

)
, (2.9)

with normalisation constant given as

Z(0,0)
N =

(
N

∏
n=1

∫
dλn

)
∆2

N(λ1, . . . , λN)

(
N

∏
n=1

λν
ne−λn

)
.

Similarly, we find for the deformed chGUE(N)

Pdeformed
chGUE (λ1, . . . , λN) =

1

Z
(N f ,0)
N

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

N f

∏
f=1

(m2
f + λn)

)
, (2.10)

where the constant reads

Z
(N f ,0)
N =

(
N

∏
n=1

∫
dλn

)
∆2

N(λ1, . . . , λN)

(
N

∏
n=1

λν
ne−λn

)( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)
.

4More details regarding the derivation of joint probability density functions with and without external pa-
rameters can be found in Appendix C.



2.2. Joint Probability Density Function 19

The temperature dependent models given in the Eqs. (2.3) and (2.5) are not unitary bi-
invariant. In both ensembles we need to do a second singular value decomposition, with
respect to the external source matrix T = 1

2UTTDV†
T . The integration over the Haar measures

is now non-trivial and we have to utilize the Berezin-Karpelevich integral [79]5

I(U, V) =
∫

U (N)
dµ(U)

∫
U (N+ν)

dµ(V) exp
(

ReTr
(

UWDV†T†
D

))
= C ∏N

n=1(anλn)−
ν
2

∆N(a1, . . . , aN)

det[Iν(2
√

aiλj)]
N
i,j=1

∆N(λ1, . . . , λN)
,

where we have used the substitution 4an = t2
n for all n = 1, . . . , N to denote the squared

singular values of T. Additionally, Iν(z) denotes the modified Bessel function of the first
kind with argument z. The JPDF for the chGUE(N) with an external source then reads

Pext
chGUE(λ1, . . . , λN) =

1

Z(0,T)
N

[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN),

(2.11)

with a constant

Z(0,T)
N =

( N f

∏
n=1

∫
dλn

)[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]
det

[
Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN).

For the ensemble from the chGUE(N) symmetry class, which contains both N f massive
flavors and additionally depends on temperature as an external source, the JPDF becomes6

P temp
chGUE(λ1, . . . , λN) =

1

Z
(N f ,T)
N

[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN) .

(2.12)

The partition function is given by

Z
(N f ,T)
N =

(
N

∏
n=1

∫
dλn

)[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN) .

Given the JPDF of eigenvalues (or singular values) the next challenge in unlocking the spec-
tral statistics of the Dirac operator is to derive correlation functions with respect to these
new variables (eigenvalues or singular values). By construction, the eigenvalues obtained
for D are random variables, but are no longer independent. This becomes particularly clear,
when we look at the JPDF, which contains the Vandermonde determinant, which serves as
a repulsion between the eigenvalues. In order to obtain correlation functions between the

5There exist some variations and extensions of the Berezin-Karpelevich integral, which can be found in [65,
69–71, 80–83].

6For more details see Appendix C.
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random variables λ1, . . . , λN it is necessary to introduce the notion of the k-point correlation
function ρk,N . This function describes the correlation between the first k variables λ1, . . . , λk
taken out of the set of variables {λ1, . . . , λN}. It is clear, that k ≤ N has to be assumed. The
k-point correlation function can be obtained from the JPDF by integrating out the last N − k
variables, i.e.7

ρk,N(λ1, . . . , λk) ≡
N!

(N − k)!

(
N

∏
n=k+1

∫
dλn

)
P(λ1, . . . , λN) . (2.13)

There are two values of k, which are particularly interesting. The first is k = 1, which is
called the averaged spectral density8 and is given as

ρ1,N(λ) = N

(
N

∏
n=2

∫
dλn

)
P(λ1, . . . , λN) .

It describes the density of all variables at the position λ. The second value is k = N, which
gives back the JPDF itself weighted with N!. The question that remains is, how to perform
the integrals for any value of k in Eq. (2.13). We introduce the methods of orthogonal poly-
nomials to tackle this question in the next section.

2.3 Orthogonal Polynomials

We introduce orthogonal polynomials (OP) as a tool to perform the integrals in the definition
of the k-point correlation function for the chGUE(N) and extensions thereof given in Eq.
(2.13). We denote polynomials that are orthogonal with respect to a weight function w(λ) by
pn(λ), n = 1, . . . , N. Orthogonality is given in the following sense:

〈pj(λ), pk(λ)〉 =
∫ b

a
dλpj(λ)pk(λ)w(λ) = hjδjk . (2.14)

Here 〈·, ·〉 denotes the scalar product with support [a, b]. The hj are the norms of the OP
pj(λ) and δjk is the Kronecker-δ-function.
For the classical chGUE(N) with JPDF given in Eq. (2.9) the weight function for an eigen-
value variable λ reads

w(0)(λ) = λνe−λ .

For the deformed chGUE(N) we have a slightly more complicated weight function:

w(N f )(λ) =
N f

∏
f=1

(λ + m2
f )w

(0)(λ) .

We have to distinguish between these two models and the other two models, depending on
temperature (compare Eqs. (2.11) and (2.12)), because the former two share JPDFs proper-
tional to ∆2

N and the latter two do not. They have JPDFs that only contain one Vandermonde
determinant and cannot be treated with orthogonal polynomials directly. We will see how
to treat the two temperature depending models in section 2.5.

7The definition of the k-point correlation function holds for all four random matrix models we have intro-
duced in this chapter.

8The adjective ”averaged” is omitted most of the time, when considering ρ1,N(λ).
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Correlation kernel and correlation functions

We start by considering a random matrix model featuring a JPDF of the form

P(λ1, . . . , λN) =
1

ZN
∆2

N(λ1, . . . , λN)
N

∏
n=1

w(λn) ,

where the weight function factorises with respect to the λn. Then, we can write

P(λ1, . . . , λN) =
∏N−1

n=0 hn

ZN

(
N

∏
n=1

w(λn)

)
det

[
KN(λn, λm)

]N

n,m=1
, (2.15)

where

KN(λ, λ′) =
N−1

∑
n=0

pn(λ)pn(λ′)

hn
(2.16)

is the so-called correlation kernel.9 This can be achieved by rewriting the Vandermonde deter-
minant in terms of orthogonal polynomials. More details regarding this issue can be found
in Appendix A. The kernel satisfies a reproducing property10

KN(λ, λ′) =
∫

dyKN(λ, y)KN(y, λ′)w(y) .

The reproducing property of the kernel carries over to the determinant of the kernel, which
is comprised and referred to as the Dyson-Gaudin integration lemma [84, 85] given in a sim-
plified, but suitable, form in [76].

Lemma 2.1. Let JN = (Jij)
N
i,j=1 = JN(x) be an N× N matrix whose entries depend on a real vector

x = (x1, . . . , xN) and have the form Jij = f (xi, xj), where f is a complex-valued function satisfying
- for some measure dµ(x) - the reproducing kernel property:∫

dµ(y) f (x, y) f (y, z) = f (x, z) .

Then we have ∫
dµ(xN)det JN(x) = [q− (N − 1)]det JN−1 ,

where q =
∫

dµ(x) f (x, x). The matrix JN−1 = (Jij)
N−1
i,j=1 has the same functional form as JN with x

replaced by a vector with dimension N − 1, namely (x1, . . . , xN−1).

Proof. See [76].

9There exists another convention for the definition of the kernel. Therein, the weight function w(λ) from Eq.
(2.15) is included in the definition of the kernel in Eq. (2.16).

10We have to include the weight function in the determinant in Eq. (2.15) to show the reproducing property.
This is possible, since ∏l al det( f (i, j)) = det(√aiaj f (i, j)).
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This lemma allows us to perform the integrals in the k-point correlation function iteratively.
We can write

ρk,N(λ1, . . . , λN) =
N!

(N − k)!
∏N

n=1 hn−1

ZN

(
N

∏
n=k+1

∫
dλn

)
det

[
KN(λi, λj)

]N
i,j=1

N

∏
n=1

w(λn)

=
1

(N − k)!
(N − k)!

k

∏
n=1

w(λn)det
[
KN(λi, λj)

]k
i,j=1

=
k

∏
n=1

w(λn)det
[
KN(λi, λj)

]k
i,j=1 .

Setting k = 1 yields the spectral density

ρ(λ) = ρ1,N(λ) = w(λ)KN(λ, λ) .

Similarly, setting k = N recovers the JPDF

ρN,N(λ1, . . . , λN) =
N

∏
n=1

w(λn)det
[
KN(λi, λj)

]N
i,j=1 ,

where we have applied the normalization constant given as ZN = N! ∏N
n=1 hn−1. What have

we learned from this? The kernel can be expressed via orthogonal polynomials and the k-
point correlation function can be written as a determinant of a k× k matrix containing the
kernel as entries. Therefore, we have to study and obtain the set of orthogonal polynomials
for a given weight function in order to express the kernel. Thus, we now present some
results for orthogonal polynomials with general weigths.

Properties of Orthogonal Polynomials with general weights

We consider orthogonal polynomials on the positive real half line with a general weight
function w(λ). We follow [32], with further information drawn from [23, 24]. We assume
that w(λ) is measurable and all moments

∫
dλw(λ)λk ≤ ∞ exist, for k ∈ N. This allows to

construct OPs via the Gram-Schmidt procedure.
The orthogonal polynomials pk(λ) are also considered to be monic, i.e. pk(λ) = λk +
O(λk−1), and satisfy a recurrence relation

λpk(λ) = pk+1(λ) + αk
k pk(λ) + αk−1

k pk−1(λ) ,

where
αl

k = h−1
l

∫
dλw(λ)λpk(λ)pl(λ) .

This relation becomes even more symmetric by going from orthogonal to orthonormal poly-
nomials Pk(λ) = pk(λ)/

√
hk, namely

λPk(λ) = ckPk+1(λ) + αk
kPk(λ) + ck−1Pk−1(λ), ck−1 =

√
hk

kk−1
.
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The kernel becomes

KN(λ, λ′) =
N−1

∑
n=0

Pn(λ)Pn(λ
′) .

Using the recurrence relation of the OPs we can derive the Christoffel Darboux formula of
the kernel. This special formula reads [23]

KN(λ, λ′) =
N−1

∑
n=0

Pn(λ)Pn(λ
′) = cN−1

PN(λ)PN−1(λ
′)− PN−1(λ)PN(λ

′)

λ− λ′
. (2.17)

The derivation of the OPs via the Gram Schmidt procedure is possible, but not always prac-
tical. Luckily, for the classical chGUE(N) the weight function is w(λ) = xνe−λ and the
monic polynomials orthogonal with respect to this weight are known already. They can be
expressed via generalized Laguerre polynomials, hence the reason to call the chGUE(N) by
the name Wishart-Laguerre ensemble. We can write

pn(λ) = (−1)nn!Lν
n(λ) , hn = n!Γ(n + ν + 1) . (2.18)

The next model we considered was the deformation with N f flavors. In that case the JPDF
features a weight function of the form

w(λ) = λνe−λ
N f

∏
f=1

(λ + m2
f ) .

The problem arising in this case is that the orthogonal polynomials are rather cumbersome
and not elementary as for the classical chGUE(N), where generalized Laguerre polynomials
appear. It is unclear, how the two sets of polynomials can be related, in particular, how we
can trace back to the Laguerre polynomials in the case N f = 0 from the more general N f 6= 0
case. Therefore, we show another way of deriving the orthogonal polynomials and even the
kernel for the deformed chGUE(N). We need to compute expectation values of products of
characteristic polynomials.

Expectation values of characteristic polynomials

We start with the presentation of the Heine formula [86, 87]11

pN(λ) = EP

[
N

∏
n=1

(λ− λn)

]
= EP [DN(λ)] , (2.19)

where we have introduced the notation DN(λ) = ∏N
n=1(λ− λn) for the characteristic poly-

nomial and denoted the JPDF by P . The Heine formula allows us to express an orthogonal
polynomial as an expectation value of one characteristic polynomial. To show this, we need
to recall the definition of the expectation value of an observable O with respect to the JPDF
P . We can write

EP [O(λ1, . . . , λN)] =
N

∏
n=1

∫
dλnP(λ1, . . . , λN)O(λ1, . . . , λN) . (2.20)

11It is possible to obtain the orthogonal polynomial pN(λ) as a ratio of two determinants of size N by the
Gram-Schmidt procedure, see [32, Eq. 14].
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Setting O = DN(λ) and choosing the JPDF as the JPDF of the classical chGUE(N) given in
Eq. (2.9) we find

EP [DN(λ)] =
1

ZN

(
N

∏
n=1

∫
dλn

)
∆2

N(λ1, . . . , λN)
N

∏
n=1

w(λn)
N

∏
n=1

(λ− λn)

=
1

ZN

(
N

∏
n=1

∫
dλn

)
∆N(λ1, . . . , λN)

N

∏
n=1

w(λn)∆N+1(λ1, . . . , λN , λ) ,

where we have used an extension property of the Vandermonde determinant that is shown
in Appendix A, see Lemma A.2.
Now we can write both Vandermonde determinants in terms of orthogonal polynomials
with respect to the weight function and expand the determinants in sums over permutations
from SN and SN+1 respectively

EP [DN(λ)] =
1

ZN
∑

σ∈SN

∑
σ′∈SN+1

(−1)σ+σ′
( N

∏
n=1

∫
dλnw(λn)pσ(n)−1(λn)pσ′(n)−1(λn)

)
pσ′(N+1)−1(λ)

=
1

ZN
∑

σ∈SN

∑
σ′∈SN+1

(−1)σ+σ′
N

∏
n=1

hσ(n)−1δσ(n)−1,σ′(n)−1 pσ′(N+1)−1(λ) .

The orthogonality of the polynomials ensures that σ′(N + 1) is fixed to N + 1. Thus, we
obtain

EP [DN(λ)] =
1

ZN

N

∏
n=1

hn−1 ∑
σ∈SN

pN(λ) = pN(λ)

as desired.

The correlation kernel KN(λ, λ′) can also be expressed as an expectation value of charac-
teristic polynomials, namely [32, 88]

KN+1(λ, λ′) =
1

hN
EP

[
DN(λ)DN(λ

′)
]

. (2.21)

Given an JPDF with two Vandermonde determinants, like the classical chGUE(N), the ex-
tension to arbitrary products, ratios and products of inverse characteristic polynomials is
immediate and has been studied extensively in the past. Ensembles of this kind are called
orthogonal polynomial ensembles to emphasize their close relation to orthogonal polynomials.
Further information and useful formulae may be found in [89–91]. We summarize this class
in terms of weight function and partition function

Z
(N f ,0)
N =

(
N

∏
n=1

∫ ∞

0
dλn w(N f )(λn)

)
∆2

N(λ1, . . . , λN) . (2.22)

The weight function w(N f )(λ) depends on the number flavors N f in the model. Thus, it is
either the classical chGUE(N) weight function w(0)(λ) = λνe−λ or the deformed chGUE(N)
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weight function

w(N f )(λ) = λνe−λ
N f

∏
f=1

(λ + m2
f ) = w(0)(λ)

N f

∏
f=1

(λ + m2
f ) . (2.23)

For both ensembles above the kernel is accessible by the expectation value of a product
of two characteristic polynomials with respect to the weight function of the corresponding
JPDF, see Eq. (2.21). Consequently, we have for the classical chGUE(N)

K[0]
N (λ, λ′) =

1

h[0]N−1

EPchGUE

[
DN−1(λ)DN−1(λ

′)

]
, (2.24)

and similarly for deformed chGUE(N)

K
[N f ]

N (λ, λ′) =
1

h
[N f ]

N−1

EPdeformed
chGUE

[
DN−1(λ)DN−1(λ

′)

]
(2.25)

with norms h
[N f ]

N of the OPs orthogonal with respect to the weight function Eq. (2.23).12

The partition function for the deformed chGUE(N) can be expressed as an expectation value
of characteristic polynomials with respect to the JPDF of the classical chGUE(N), namely

Z
(N f ,0)
N = (−1)NN f Z(0,0)

N EPchGUE

[ N f

∏
f=1

DN(−m2
f )

]
. (2.26)

This means, we can circumvent the OPs with respect to the more involved weight function
w(N f )(λ) by calculating expectation values of products of characteristic polynomials with
respect to the weight w(0)(λ), which is simpler and more importantly has OPs that are ele-
mentary. We also can obtain the kernel in Eq. (2.25) in a similar fashion. We can rewrite the
expectation value and find [32]

EPdeformed
chGUE

[DN−1(λ)DN−1(λ
′)]

h
[N f ]

N−1

= (−1)N f h[0]N−1

EPchGUE

[
∏

N f
f=1 DN−1(−m2

f )DN−1(λ)DN−1(λ
′)
]

EPchGUE

[
∏

N f
f=1 DN(−m2

f )
] .

(2.27)

With this knowledge we can highlight the following result by Akemann and Vernizzi [90],
which helps calculating the expectation values of characteristic polynomials we have en-
countered in the Eqs. (2.26) and (2.27).

Theorem 2.2. Assume we start with a random matrix model given by a partition function ZN of
∆2

N-type, like in Eq. (2.22), with factorizing weight function w(K)(x). Let {vi | i = 1, . . . , M} and
{ui | i = 1, . . . , L} be two sets of numbers which are pairwise distinct among each set. Without
loss of generality we assume M ≥ L, where the empty set with L = 0 is permitted as well. Taking
orthonormal polynomials Pk(x) with respect to the weight w(0)(x) and together with norms hk, the

12We are a priori unable to compute the OPs directly, but this is not necessary to state the formula for the
kernel. We only need to know that the OPs exist.
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following statement can be proven:

EP

[
M

∏
i=1

DN(vi)
L

∏
j=1

DN(uj)

]
=

∏N+M−1
i=N

√
hi ∏N+L−1

j=N
√

hj

∆M({v})∆L({u})
det

1≤l,m≤M
[B(vl , um)]

with the definition

B(vl , um) ≡
{

∑N+L−1
i=0 Pi(vl)Pi(um) for m = 1, . . . , L,

PN+m−1(vl) for m = L + 1, . . . , M.

Proof. This was proven in [90] for an even wider class of random matrix models, but cru-
cially it applies also to orthogonal polynomial ensembles with eigenvalues on the positive
real half-line.

The result of the Theorem implies that for a given expectation value of a product of M + L
characteristic polynomials there exist many different determinantal representations depend-
ing on the numbers M and L and the polynomials Pn(λ) which are orthonormal with respect
to the weight w(0)(λ). It is also worth noting that we can apply the Christoffel-Darboux
identity to the first L rows of the determinant of B(vl , um) in the above Theorem. Thus,
these rows contain kernels, while the last M − L rows contain orthonormal polynomials.
This representation will become very useful in chapter 5, when we discuss questions of uni-
versality.

2.4 Scaling Limits and universality

In previous sections we considered matrix models and their correlations at finite matrix size
N. Scaling limits and concepts of universality arise when the matrix size N tends to infinity:
N → ∞. We call the limit N → ∞ a scaling limit of an observable depending on variables
λ1, . . . , λN , if the variables are rescaled with respect to N. The observables we consider in
this thesis are the correlation kernel and the k-point correlation function. The N → ∞ limit
is used to apply the underlying random matrix model of the chGUE(N) symmetry class to
the QCD Dirac operator spectrum.
We distinguish between the global scaling limit and different local scaling limits. The global
scaling limit describes the limit as N tends to +∞, where the spectral correlations are con-
sidered with respect to the full support of the underlying probability measure and corre-
sponding spectrum. This implies that distances between eigenvalues, called spacings, can
be as large as the spectrum and its support allows. As N tends to +∞ the fluctuations be-
tween individual eigenvalues with small spacings are averaged out, and expectation values
factorise. In contrast to the global scale we can also look specifically at local scales. Those
scales are obtained, when we zoom into a specific point or area of the spectrum, for example
the edges. The zoom-in is achieved by magnifying fluctuations between eigenvalues in the
respective area of interest, which becomes possible via rescaling the eigenvalues with suit-
able powers 1/Nδ. The value of δ depends on the point of interest in the spectrum. Hence,
the corresponding local scaling limit is obtained by taking the finite N result of the consid-
ered observable, then rescaling the underlying variables with 1/Nδ and then taking N → ∞.
Consequently, the limiting result of the observable will differ depending on the region of the
spectrum characterised by δ.
A scaling limit is called universal, when the limiting expression of the observable does not
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depend on the specifics of the underlying random matrix model. This implies that the lim-
iting expression of the observable appears in exactly the same scaling regime, but with a
different random matrix model as a finite N starting point. This phenomenon is the math-
ematical version of universality. In the physical context another concept of universality is
commonly used. Therein the fact that two different models or theories, for example RMT
and chiral perturbation theory of QCD, yield the same operator spectral statistics in a local
scaling regime is also denoted as universality. The only requirement here is that the two
starting models or theories belong to the same symmetry class, which is why we described
the symmetries of the Dirac operator in the introduction and used matrix models with chiral
symmetry. Note also that the second type of universality is the reason that why we apply
RMT to QCD in the first place. The RMT models for QCD with temperature dependence are
oftentimes the simplest members of the underlying symmetry (or universality) class. Thus,
we do not need to study QCD directly but can rather use the much simpler RMT models
from the chGUE(N) symmetry class instead. Crucially, because of universality we still ob-
tain useful results in the scaling limit, where this universality concept is met. Note that in
the following chapters of this thesis we encounter both concepts of universality.
A well-known result representing a global scaling limit is the macroscopic spectral density of
all eigenvalues for the chGUE(N), and their real and quaternion counterparts. The global
spectral density is restricted to the positive part of the real line. As N tends to infinity, the
density becomes the Marchenko Pastur density [92]13

ρMP(λ) =
1

2π

√
(λ+ − λ)(λ− λ−)

qλ
I[λ−,λ+] , with λ± = (1±√q)2 .

In the above equation IΣ is the indicator function on the interval Σ that is 1 on the interval
and zero outside. The density ρMP(λ) forms a probability distribution together with the
Lebesgue measure dλ on the compact interval [λ−, λ+]. The number of zero-modes ν of the
chGUE(N) is encoded in the parameter q as limN→∞

N
N+ν = q ∈ (0, 1].14 The Marchenko

Pastur density is illustrated in Fig. 2.1 for q = 1 and also checked numerically for q = 0.1
with 1000 eigenvalues of the Wishart matrix WW†. The application to effective theories of
QCD is achieved exactly by choosing q = 1. Another result for the global spectral density is

Figure 2.1: Left: The Marchenko-Pastur density for q = 1 is relevant for QCD applications and
shows different local statistics: I) Bessel kernel statistics at the hard edge, II) sine kernel
statistics in the bulk and III) Airy kernel statistics at the soft edge. Right: Normalized

histogram of eigenvalues of Wishart matrix WW† with N = 1000 and q = 0.1.

13ρMP(λ) was also derived by Dyson in [93] and was tested against numerics in [94].
14The zero modes have to be rescaled appropriately as N → Nν for q to remain finite as N → ∞.
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found for the GUE(N) in the N → ∞ limit. The limiting density originates from the rescaled
1-point correlation function ρ1,N(λ) = KN(λ, λ) → ρ(λ) and forms a semicircle on the real
line as N tends to infinity. This is the famous Wigner semicircle [95]. The same limiting
behaviour of the 1-point function in the large N-limit on the global scale is also observed for
the GOE(N) and GSE(N), which makes the semicircle a universal result.
We have seen that the eigenvalues of the QCD Dirac operator yn come in pairs and are
connected to the eigenvalues of the Wishart matrix WW† λn via yn = ±

√
λn. It is convenient

to go from the eigenvalues of WW† (which are the squared singular values of W) to the
singular values of W. We have seen this in particular in the derivation of the JPDF in section
2.2. For q = 1 the Marchenko Pastur distribution then becomes a quarter circular law, i.e.

ρMP(λ = x2)dλ =
1

2π

√
4− λ

λ
I[0,4]dλ =

1
π

√
4− x2I[0,2]dx = ρQC(x)dx (2.28)

This can be checked numerically by computing the singular values of W, see Fig. 2.2.

Figure 2.2: Quarter Circular Law: Computed are the singular values x of the block matrix W of
the chGUE(N) with positive Dirac eigenvalues λ = x2. Taking a matrix W of size
N = 2000 and comparing the histogram with the quarter circular law shows good

agreement between the numerical simulation and the analytical prediction.

Since the singular values of W only describe the +
√

λn part of the Dirac spectrum, we obtain
the full semicircle for the Dirac eigenvalues by mapping the quartercircle to the full real line.
The global density of D at the origin y = 0 is then constant as expected. To study the be-
haviour of the Dirac spectrum in this limit with other techniques, like loop-equations, is
also possible, see [96].
The concept of local scaling limits, sometimes referred to as microscopic limits, can be illus-
trated by the Marchenko Pastur density for q = 1, see Fig 2.1 and Eq. (2.28).
We can see that the density is defined on the interval [λ−, λ+] = [0, 4]. By rescaling the eigen-
values we can zoom in on different regions I), II) and III) of the support. Region II) is called
bulk of the spectrum and contains all eigenvalues on the interior of the intervall (λ−, λ+).
Looking at the correlation kernel associated with the Marchenko Pastur distribution it has
been shown that in the bulk the sine kernel is found [23, 97, 98]

Kbulk(x, y) =
sin(π(x− y))

π(x− y)
.

The sine kernel is highly universal in the bulk [85, 99–103].
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For q = 1 the region III) is called soft edge of the spectrum. At the edge point λ = 4 the den-
sity vanishes like

√
N. For finite, but large N one can always find eigenvalues in the samples

that are located to the right of the support [0, 4] with non-zero probability. This means the
edge of the spectrum lets eigenvalues through the barrier to the outside of the support of
the density. Such a behaviour justifies the name soft edge. For all unitary ensembles, even
those with regular external potentials, the kernel at the soft edge is universal and given by
the Airy kernel

Ksoft(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
,

where Ai(x) denotes the Airy function of argument x.15

The region I) of the Marchenko Pastur density is another type of edge called hard edge of the
spectrum. The density blows up as λ → 0 and builds an impregable wall for the eigenval-
ues that keeps them close to the origin. The rescaling to reach this region can be done via
multiplication with a factor N−1/2. For the chGUE(N) one finds the so-called Bessel kernel at
the hard edge. The Bessel kernel for general ν takes the form

Khard(x, y) =
1
2

xJν+1(x)Jν(y)− yJν+1(y)Jν(x)
x2 − y2 ,

where Jν(x) denotes the Bessel function of the first kind with argument x.
One of the important questions we want to answer in this thesis is wether the Bessel ker-
nel is still universal when chGUE(N) models with external source describing temperature
are considered at the hard edge in comparison to chGUE(N) models without the external
source.

We have seen in the introduction that the application of RMT to effective theories of QCD,
like chiral perturbation theory, is possible in the ε-regime leading to the microscopic limit
of QCD, see Eq. (1.9). This implies that we have to be especially interested in the low-lying
eigenvalues of the Dirac operator, since those eigenvalues determine a large portion of the
chiral condensate and thus are primarily important in the chiral-non-chiral phase transition
of QCD. This becomes apparent via the Banks-Casher relation in Eq. (1.7). Thus, on the RMT
level we have to consider the region close to the origin, which features a hard edge for the
eigenvalues of WW† as described above. This local scaling limit is then comparable to the
microscopic limit of QCD, after the appropriate rescaling of the eigenvalues λn by N−1/2.
We introduce the following scaling scheme for the masses m f and eigenvalues λn:

m2
f =

µ2
f

4NΞ
and λn =

ζ2
n

4NΞ
,

where µ f and ζn are microscopic variables. As we zoom in at the origin and take N → ∞
these variables remain finite and thus are comparable to their physical counterparts.16 The
value Ξ = Ξ(a1, . . . , aN) is the temperature dependent chiral condensate, which we can write
as

Ξ =

{
Σ , for zero temperature models,
Ξ(a1, . . . , aN) , for non-zero temperature models.

With this scaling scheme we are able to reach the hard edge limit, which appears for the

15The Airy kernel appeared first in [104, 105].
16The factor 4 ensures that comparisons with known results [13, 63] are possible in chapter 5.
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squared singular values λn as we have seen from the Marchenko Pastur distribution near
the origin. Furthermore, we are now able to compare results obtained in this limit and an-
swer the question of universality for objects like the correlation kernel, the k-point function
and the partition function.
We denote the k-point function, at the hard edge, with microscopic variables ζ1, . . . , ζk, de-
scribing the Dirac eigenvalues, by

ρ
(N f )

S (ζ1, . . . , ζk) = det
1≤a,b≤k

[
K
(N f )

S (ζa, ζb)
]

with the corresponding correlation kernel also taken at the hard edge. The k-point function
can also be written in terms of the k-point function of the squared singular values of W.
Following the notation in [106] we have

ρ
(N f )

S (ζ1, . . . , ζk) = |ζ1| · . . . · |ζk| σ
(N f )

S (ζ2
1, . . . , ζ2

k) ,

where σS denotes the k-point function for the squared singular values of W.

The kernel K
(N f )

S can be obtained from the finite N kernel K
(N f )

N via

K
(N f )

S (ζa, ζb) =
√
|ζaζb| lim

N→∞

1
2NΞ

K
(N f )

N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
.

For temperature independent random matrix models like the classical chGUE(N) it was also
realized that finite-volume QCD partition functions Zν can be expressed as large N limits of
finite N partition functions ZN , namely17

Z (N f +2k)
ν (µ1, . . . , µN f , {iζm}2k

m=1) = lim
N→∞

Z
(N f +2k,0)
N (m2

1, . . . , m2
N f

, {z2
m}2k

m=1)

C
[N f +2k]
N

(2.29)

with m f = µ2
f /4N and z2

m = (iζm)2/4N.18 This representation will be particularly helpful
in showing universality in chapter 5.

2.5 Determinantal Point Processes

The random matrix models we introduced in section 2.1 form stochastic point processes
with respect to the finite set of squared singular values (or eigenvalues) {λn}N

n=1. Moreover,
the joint probability density functions of the classical chGUE(N) given in Eq. (2.9) and the
deformed chGUE(N) given in Eq. (2.10) are both of ∆2-type and thus treatable via orthogo-
nal polynomial methods as we have seen in previous sections of this chapter. Additionally,
they form determinantal point processes,19 which means all k-point correlation functions of the
set {λ1, . . . , λN} can be expressed as a determinant of a k× k matrix with kernel entries

ρk,N(λ1, . . . , λk) = det [KN(λm, λn)]
k
m,n=1 .

17The form of the normalisation constant C
[N f +2k]
N is given in Eq. (5.8) in chapter 5.

18We have omitted the rescaling with the chiral condensate for the partition function, because it is usually
included later in the expressions for the k-point functions and kernels as overall prefactors.

19More information on determinantal point processes can be found in [107, 108].
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Note that there exists an invariance of the k-point correlation function under the following
transformation of the kernel

KN(x, y)→ KN(x, y)
f (x)
f (y)

(2.30)

for any non-zero function f .
The other two ensembles, the chGUE(N) with external source in Eq. (2.11) and the temper-
ature depending deformed chGUE(N)-type ensemble in Eq. (2.12), are drawn from a more
general class of ensembles. This class is called biorthogonal ensembles introduced by Borodin
[109]. For biorthogonal ensembles classical methods like orthogonal polynomials are no
longer easily applicable. Crucially, these ensembles still belong to the class of determinantal
point processes, which was also shown by Borodin [109]. We aim to give a short overview of
the important properties of biorthogonal ensembles and discuss sub-classes in this section.

Biorthogonal Ensembles

Biorthogonal ensembles, as described by Borodin [109], are given in terms of a JPDF of a set
of real random variables {λ1, . . . , λN} drawn from an interval I ⊂ R with a determinantal
structure, i.e.

P(λ1, . . . , λN) =
1

ZN
det

[
ψj(λi)

]N
i,j=1 det

[
ϕj(λi)

]N
i,j=1 (2.31)

with normalisation constant ZN . The k-point functions are given via

ρk,N(λ1, . . . , λk) = det [KN(λm, λn)]
k
m,n=1 ,

where the kernel is given by

KN(x, y) =
N

∑
i,j=1

ψi(x)ci,j ϕj(y) with
N

∑
k=1

gi,kcj,k = δij .

The elements gi,j and ci,j can be collected in matrices G = (gi,j)
N
i,j=1 and C = (ci,j)

N
i,j=1 which

are then connected via CT = G−1. This, in principle, reduces the solution of the correlation
kernel to the linear algebra problem of computing the Gram matrix G and then its inverse
[88, 110]. The Gram matrix elements are computed via the integral

gi,j =
∫

I
dλψi(λ)ϕj(λ) .

Consequently, only the inversion of G remains as a challenge. Furthermore, it is possible to
construct new biorthogonal functions ηi ∈ {ψ1, . . . , ψN} and ζ j ∈ {ϕ1, . . . , ϕN} via∫

I
dληi(λ)ζ j(λ) = δij ,

which justifies the name biorthogonal and allows us to write the kernel as a single sum

KN(x, y) =
N

∑
k=1

ηk(x)ζk(y) .

The normalization constant ZN of any given biorthogonal ensemble can be computed using
the extended Andreief formula, which is given in the following Proposition.
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Proposition 2.3. We consider the N-fold integration over two determinants of different sizes (N +
k)× (N + k) and (N + l)× (N + l) with block structure, such that

N

∏
n=1

∫
I

dxn det

[
Ra,b |1≤b≤N+k

1≤a≤k
ηb(xa) |1≤b≤N+k

1≤a≤N

]
det

[
Sb,a |1≤a≤l

1≤b≤N+l ϕb(xa) |1≤a≤N
1≤b≤N+l

]
= (−1)kl N! det

[
0k×l Ra,b |1≤b≤N+k

1≤a≤k
Sb,a |1≤a≤l

1≤b≤N+l

∫
I dxϕb(x)ηa(x) |1≤a≤N+k

1≤b≤N+l

]
.

The functions η and ϕ are given such that the integrals on both sides are convergent. Apart from this
they can be chosen arbitrarily.

Proof. See [111].

The special case k = l = 0 leads back to the classical Andreief formula, i.e.(
N

∏
n=1

∫
I

dxn

)
det[ψl(xk)]

N
k,l=1 det[φl(xk)]

N
k,l=1 = N! det

[∫
I

dxψk(x)φl(x)
]N

k,l=1
.

This allows us to compute the normalisation constant ZN :

ZN =

(
N

∏
n=1

∫
I

dλn

)
det

[
ψj(λi)

]N
i,j=1 det[ϕm(λn)]

N
n,m=1

= N! det
[∫

I
dλψk(λ)ϕl(λ)

]N

k,l=1
= N! det G

with entries gi,j =
∫

I dλψi(λ)ϕj(λ).

Subclasses of Biorthogonal Ensembles

There are many possible applications of biorthogonal ensembles in physics and mathematics
depending on the choice of functions ψ(λ) and ϕ(λ). For example, choosing ψj(λ) = λj−1

and ϕi(λ) = w(λ)λi−1 leads to classical ∆2-type ensembles with weight function w(λ). In
this sub-class of biorthogonal ensembles we may use orthogonal polynomial methods with
respect to the weight function w(λ). Therefore, this sub-class is denoted as the class of
orthogonal polynomial ensembles. A simple example describing an orthogonal polynomial en-
semble is given by the eigenvalues of N × N complex Hermitian random matrices H from
the GUE(N), defined by the probability measure

PGUE(H)dH = cN exp[−Tr [H2]]dH , cN = 2
N(N−1)

2 π−
N2
2 .

The probability density function of the real eigenvalues x1, . . . , xN of H reads [24]

PGUE(λ1, . . . , λN) =
1

ZGUE
N

∆N(λ1, . . . , λN)
2 exp

[
−

N

∑
j=1

λ2
j

]
.

This is a biorthogonal ensemble, where the resulting functions are given as ϕk(λ) = λk−1e−λ2

and ψk(λ) = λk−1.
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This sub-class also includes the classical chGUE(N) with Eqs. (2.2) and (2.9)

PchGUE(W) =
1
N0

e−Tr WW†
,

PchGUE(λ1, . . . , λN) =
1

Z(0,0)
N

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

)
,

and the deformed chGUE(N) with Eqs. (2.4) and (2.10)

Pdeformed
chGUE (W) =

1
Ndef

N f

∏
f=1

det(D + m f ) exp
(
−Tr WW†

)
,

Pdeformed
chGUE (λ1, . . . , λN) =

1

Z
(N f ,0)
N

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

N f

∏
f=1

(m2
f + λn)

)
.

The intermediate step between general biorthogonal ensembles and orthogonal polynomial
ensembles is achieved by ensembles whose JPDF features one Vandermonde determinant
and one determinant each:

P(λ1, . . . , λN) =
1

ZN
∆(λ1, . . . , λN)det[ϕl(λk)]

N
k,l=1 .

Looking at the definition of general biorthogonal ensembles in Eq. (2.31) this sub-class can
be reached by setting ψj(λ) = λj−1. The existence of the one Vandermonde determinant in
the JPDF hints at a closer connection to orthogonal polynomial methods in this sub-class.
Following the terminology of Kuijlaars and Stivigny [112] this sub-class is called the class of
polynomial ensembles. The biorthogonality relation and the computation of the Gram matrix
entries is not necessarily simpler in this class, but in some cases it is possible to compute the
gi,j explicitly. In this thesis we will use expectation values of characteristic polynomials and
their connection to the correlation kernels to simplify the models, where the computation of
the G matrix entries proves to be difficult.

Starting from an orthogonal polynomial ensemble a member of this more general sub-class is
obtained by breaking the unitary bi-invariance via an external source [67, 68]. The GUE(N)
with an external source [67, 70] containing an additional constant, deterministic Hermitian
matrix A of size N × N in its probability measure is a simple example for a polynomial
ensemble. We have20

Pext1(H)dH = cN exp[−Tr [(H − A)2]]dH ,

and a JPDF given as

Pext1(x1, . . . , xN) =
1
Zext1

N
∆N(x1, . . . , xN)det

[
exp[−(xj − ak)

2]
]N

j,k=1 , (2.32)

where we have to identify ϕk(x) = e−(x−ak)
2
. This follows from a group integral, which is

a version of the Harish-Chandra–Itzykson–Zuber integral [113, 114], and from multiplying
the Gaussian term inside the determinant. We refer to [67] for the derivation. Notice also

20We choose A to be diagonal, A = diag(a1, . . . , aN) with aj ∈ R for j = 1, . . . , N, without loss of generality.
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that the second determinant in Eq. (2.32) cannot be reduced to a Vandermonde determinant
in general. The class of polynomial ensembles naturally includes the chGUE(N) with an
external source matrix T leading to additional parameters {an}N

n=1 (compare Eqs. (2.3) and
(2.11)) [65]

Pext
chGUE(W) =

1
Next

exp
(
−Tr (W − T)(W† − T†)

)
Pext

chGUE(λ1, . . . , λN) =
1

Z(0,T)
N

[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN)

=
1

Z(0,T)
N

det
[
ϕi(λj)

]N
i,j=1 ∆N(λ1, . . . λN) .

The modified Bessel function of second kind Iν, inside the determinant with function

ϕk(λ) =

(
λ

ak

)ν/2

e−(λ+ak) Iν

(
2
√

akλ
)

,

follows from the Berezin-Karpelevich integral, cf. [82]. In principle we may also allow the
parameter ν > −1 to take real values.
The more general chGUE(N) ensemble with N f massive flavors and temperature depen-
dence defined in Eq. (2.5) and JPDF given in Eq. (2.12) also belongs to the class of polyno-
mial ensembles by setting

ϕk(λ) =

(
λ

ak

)ν/2

e−(λ+ak) Iν

(
2
√

akλ
) N f

∏
f=1

(m2
f + λ),

which leads to

Ptemp
chGUE(W) =

1
N

N f

∏
f=1

det(Dtemp + m f ) exp
(
−Tr WW†

)
,

P temp
chGUE(λ1, . . . , λN) =

1

Z
(N f ,T)
N

det
[
ϕi(λj)

]N
i,j=1 ∆N(λ1, . . . λN).

More examples from the class of polynomial ensembles are the so-called Muttalib-Borodin
ensembles [109, 115] and the Polya ensembles [116, 117]. In addition to the application to
temperature dependent QCD, polynomial ensembles appear as distributions of eigenvalues
(or singular values) of random matrices [65–68, 70], in sums and products of random ma-
trices [31, 118–120] and in the context of counting intersection numbers of moduli spaces
on Riemann surfaces [121]. Polymomial ensembles still have some invariance properties in
terms of their correlation kernels and k-point functions, as well as their associated biorthog-
onal functions [117, 122].
In the next chapter we will review some important results for polynomial ensembles with
emphasis on the impact of expectation values of characteristic polynomials in this sub-class
of determinantal point processes.



35

Chapter 3

Expectation Values of Characteristic
Polynomials in Polynomial Ensembles

In this chapter we look at the impact of expectation values of characteristic polynomials in
a sub-class of determinantal point processes. This sub-class contains special biorthogonal
ensembles [109] which are called polynomial ensembles [123]. We start the discussion in
this chapter with the definition of a polynomial ensemble, as we will use it in the rest of the
chapter and then continue with presenting results derived in part in the principal publica-
tion [1].

Definition 3.1. Consider a set of real random variables x1, . . . , xN ∈ I defined by the joint proba-
bility density function (JPDF) P(x1, . . . , xN), where I ⊂ R is an interval. The variables x1, . . . , xN
form a polynomial ensemble [123], if their JPDF takes the form

P(x1, . . . , xN) =
1

ZN
∆N(x1, . . . , xN)det[ϕl(xk)]

N
k,l=1 ,

where ∆N(x1, . . . , xN) = ∏j>i(xj − xi) is the Vandermonde determinant of N variables. The
ϕ1, . . . ϕN are certain integrable, real-valued functions on I, such that the normalisation constant
ZN , which reads

ZN =

(
N

∏
n=1

∫
I

dxn

)
∆N(x1, . . . , xN)det[ϕl(xk)]

N
k,l=1 = N! det G , (3.1)

exists and is non-zero. The matrix entries gk,l are supposed to be finite and can be computed via

gk,l =
∫

I
dxxk−1ϕl(x) , (3.2)

such that the Gram matrix G = (gi,j)
N
i,j=1 is non-singular.

The motivation to study polynomial ensembles in this thesis originates from effective mod-
els for the theory of strong interactions under the influence of external parameters like tem-
perature. We have introduced the models with and without temperature in section 2.1. For
more information regarding the zero-temperature models, we refer to [32, 63, 64], and simi-
larly to [12, 13] for results in the non-zero temperature case.

We will collect important results for expectation values of characteristic polynomials in poly-
nomial ensembles in section 3.1. We will denote a characteristic polynomial of the variables
x1, . . . xN as DN(x) = ∏N

n=1(x− xn) with respect to the value x. The expectation value was
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already introduced in Eq. (2.20) for a given JPDF of N variables:

EP [O(x1, . . . , xN)] =

(
N

∏
n=1

∫
I

dxn

)
P(x1, . . . , xN)O(x1, . . . , xN) . (3.3)

With this preparation we are ready to state results for expectation values of products and
ratios of characteristic polynomials in polynomial ensembles.
We start from the analog of the Heine formula, going to products and then arbitrary ratios
of characteristic polynomials. We then proceed to introduce the definition of invertible poly-
nomial ensembles in section 3.2. We discuss examples of this class and present the first main
result of this thesis, which is a multi-integral representation of an arbitrary ratio of charac-
teristic polynomials. Additionally, we provide a procedure called reweighting in section 3.3,
which allows us to trace more general polynomial ensembles back to invertible polynomial
ensembles. This procedure will become important in chapters 4 and 5, when we consider
the most general model in this thesis of temperature dependent Dirac eigenvalues in the
presence of N f massive flavors.
This chapter is based on the work in [1].

3.1 Determinantal structures in polynomial ensembles

We focus on results derived for expectation values of characteristic polynomials and their
impact in polynomial ensemble settings in this section in order to keep this thesis compact.
To mention all the authors and results in this field is beyond the scope of this thesis, so we
refer to the following list of references [1, 25, 65, 66, 91, 109, 112, 120, 122, 124–126], where
the results of this section are drawn from, and where more informations and references may
be found.
The analog of the Heine formula, presented in chapter 2, see Eq. (2.19), for polynomial
ensembles reads [65, 124]

EP [DN(z)] =
1

det G

∣∣∣∣∣∣∣∣∣
g1,1 . . . g1,N z0

g2,1 . . . g2,N z1

...
...

...
...

gN+1,1 . . . gN+1,N zN

∣∣∣∣∣∣∣∣∣ . (3.4)

This formula can be extended to an arbitrary number of characteristic polynomials. The re-
sulting formula and a proof can be found in Appendix B.
Similarly, the expectation value of an inverse characteristic polynomial for any given poly-
nomial ensemble was computed in [65] and later also stated in [124]. The result reads

EP

[
1

DN(y)

]
=

1
det G

∣∣∣∣∣∣∣∣∣∣
g1,1 g1,2 . . . g1,N

...
...

. . .
...

gN−1,1 gN−1,2 . . . gN−1,N∫ ∞
0 du ϕ1(u)

y−u

∫ ∞
0 du ϕ2(u)

y−u . . .
∫ ∞

0 du ϕN(u)
y−u

∣∣∣∣∣∣∣∣∣∣
. (3.5)

The next step is then to consider expectation values of ratios of characteristic polynomials.
For polynomial ensembles with real eigenvalues1 it has been shown [14, 127] that the k-point

1All ensembles we have introduced in chapter 2 feature real eigenvalues - or squared singular values, which
are real.
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function can be obtained via a ratio of characteristic polynomials:

ρk,N(x1, . . . , xk) = Res
z1=x1

. . . Res
zk=xk

(
∂k

∂y1 . . . ∂yk
EP

[
k

∏
i=1

DN(yi)

DN(zi)

])
yi=zi

.

The residue in the equation above is defined through

f (x) ≡ Res
z=x

∫
I

dt
f (t)

z− t
. (3.6)

This immediately leads to the question how to compute ratios of characteristic polynomials.
For a simple ratio of two characteristic polynomials we find [25, 128]

EP

[
DN(z)
DN(y)

]
=

(−1)
det G

∣∣∣∣∣∣∣∣∣∣∣

g1,1 . . . g1,N z0

g2,1 . . . g2,N z1

...
...

...
...

gN,1 . . . gN,N zN−1∫ ∞
0 du z−u

y−u ϕ1(u) . . .
∫ ∞

0 du z−u
y−u ϕN(u) 0

∣∣∣∣∣∣∣∣∣∣∣
.

In [1] we showed that the following Theorem of Borodin, Olshanski, Strahov [129], derived
originally for orthogonal polynomial ensembles, also holds for polynomial ensembles:

Theorem 3.2. Assume that x1, . . . , xN form a polynomial ensemble in the sense of Definition 3.1.
Let u1, . . . , uM ∈ C\R and z1, . . . , zM ∈ C for any M ∈N be pairwise distinct variables. Then

EP

[
M

∏
m=1

DN(zm)

DN(um)

]
=

[
det

(
1

ui − zj

)M

i,j=1

]−1

det
[

1
ui − zj

EP

(
DN(zj)

DN(ui)

)]M

i,j=1
,

where DN(z) = ∏N
n=1(z − xn) denotes the characteristic polynomial associated with the random

variables x1, . . ., xN .

The proof can be found in Appendix D using the notion of Giambelli compatible point pro-
cesses, which is an interesting sub-class of determinantal point processes.
There is another application for the ratio of characteristic polynomials shown in [65]. We
can use the ratio to derive the correlation kernel KN(x1, x2) via the following formula:

KN(x1, x2) =
1

x1 − x2
Res
y=x2

(
EP

[
DN(x1)

DN(y)

])
. (3.7)

We will capitalize on this equation in chapter 4 to derive the correlation kernel for our tem-
perature dependent models for QCD. In order to do so for both models, with and without
N f massive flavors, we will need not only the ratio of two characteristic polynomials but
rather a general ratio of arbitrary numbers of characteristic polynomials in both numera-
tor and denominator of the ratio. We will discuss this in the next section. More details on
determinantal structures and more formulae can be found in Appendix B.
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3.2 Results for Invertible Polynomial Ensembles

In this section we present one of the main results from [1], which features arbitrary ratios of
characteristic polynomials,

E

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]
,

allowing the number of characteristic polynomials in the numerator M and denominator,
L ≤ N, to differ. We impose the following conditions on the parameters yn and zn: The
parameters y1, . . . , yL must be drawn from C\R, while the parameters z1, . . . , zM can be
taken from C - in both cases the parameters have to be pairwise distinct. We will not consider
the most general polynomial ensembles in the sense of Definition 3.1. Instead we impose
certain conditions on the functions ϕj(x) which are specified below. We obtain a sub-class
of polynomial ensembles, which we call invertible polynomial ensembles.

Definition 3.3. Consider a polynomial ensemble from Definition 3.1 and assume that the function
ϕl(x) = ϕ(al , x) is analytic in both arguments, for l = 1, . . . , N, where a1, . . . , aN are real param-
eters. Additionally, assume that there exists a family {πk}∞

k=0 of monic polynomials such that each
polynomial πk of degree k can be represented as

πk(a) =
∫

I
dxxk ϕ(a, x), k = 0, 1, . . . . (3.8)

In addition, assume that Eq. (3.8) is invertible, i.e. there exists a function F : I′ ×C→ C such that

zk =
∫

I′
dsF(s, z)πk(s), k = 0, 1, . . . , (3.9)

where I ′ is a certain contour in the complex plane. Then, we will refer to such a polynomial ensemble
as an invertible polynomial ensemble.

Remark 3.4. The condition in Eq. (3.8) together with Eq. (3.1) immediately implies that for
any invertible polynomial ensemble the normalising partition function simplifies as follows:

ZN = N!∆N(a1, . . . , aN). (3.10)

Here, we use the Andreief formula in Proposition 2.3 and that the Vandermonde determi-
nant can be rewritten as a determinant of arbitrary monic polynomials.

We are now ready to discuss the first simple example of a polynomial ensemble that is in-
vertible according to our Definition 3.3.

Example 3.5. We have already introduced the GUE(N) with an external source in Eq. (2.32).
There, the eigenvalues take real values, I = R, and the functions ϕl(x) can be chosen as

ϕl(x) = ϕ(al , x) =
e−(x−al)

2

√
π

, (3.11)

which are analytic. From [130, Eq. 8.951] we know the following representation of the
standard Hermite polynomials Hn(t) of degree n:

Hn(t) =
(2i)n
√

π

∫ ∞

−∞
dxe−(x+it)2

xn ,
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which can be made monic as follows, 2−nHn(x) = xn + O(xn−2). This leads directly to the
first condition for invertibility via the integral

(2i)−nHn(ia) =
1√
π

∫ ∞

−∞
dssne−(s−a)2

,

from which we can read off

πk(a) =
∫ ∞

−∞
dxxk e−(x−a)2

√
π

,

with πk(a) = (2i)−k Hk(ia), for k = 0, 1, . . ., which is again monic. Thus, the first condition
in Eq. (3.8) is satisfied. For the second condition in Eq. (3.9) we use the integral [130, Eq.
7.374.6]

yn =
1√
π

∫ ∞

−∞
dx 2−nHn(x)e−(x−y)2

.

Renaming y = iz and x = is we obtain

zk =
∫

I′
dsF(s, z)πk(s) , for k = 0, 1, . . . , with F(s, z) =

i√
π

e(s−z)2

and I′ = iR. This implies that also the second condition is satisfied and the GUE(N) with
an external source A is indeed an invertible polynomial ensemble.

Remark 3.6. Example 3.5 is the simplest case of a much wider class of polynomial ensembles
of Polya type convolved with fixed matrices, as introduced in [131, Theorem II.3]. Such
polynomials ensembles are generalising the form in Eq. (3.11) to

ϕ(al , x) = f (x− al) ,

such that the function f is (N− 1)-times differentiable on R, analytic on C, and the moments
of its derivatives exist,2∣∣∣∣∫ ∞

−∞
dxxk ∂j f (x)

∂xj

∣∣∣∣ < ∞ , ∀k, j = 0, 1, . . . , N − 1 .

It immediately follows that its generalised moment matrix leads to polynomials, upon shift-
ing the integration variable, and thus Eq. (3.8) is satisfied. It is not too difficult to show using
Fourier transformation of f that also the condition in Eq. (3.9) of Definition 3.3 is satisfied
and thus these ensembles are indeed invertible.

Example 3.7. Our second example is the chGUE(N) with an external source, see Eq. (2.11).
We have I = R+, since the variables xn now originate from a singular value decomposition
and thus are real and positive. The functions ϕl(x) can be chosen as

ϕl(x) = ϕ(al , x) =
(

x
al

)ν/2

e−(x+al) Iν(2
√

alx) ,

which are analytic, with positive, real numbers al describing the temperature dependence
in our model. The following integral is known, see e.g. [130, Eq. 6.631.10] after analytic

2The unconvoluted polynomial ensemble has ϕj(x) = ∂j f (x)/∂xj.
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continuation, ∫ ∞

0
xn+ ν

2 e−x Iν(2
√

ax)dx = n!aν/2eaLν
n (−a) .

Here, Lν
n(y) is the standard generalised Laguerre polynomial of degree n, which is made

monic as follows, n!Lν
n(−x) = xn + O(xn−1). Then, the first condition (3.8) is satisfied,

πk(a) =
∫ ∞

0
dxxk

( x
a

) ν
2

e−(x+a) Iν(2
√

ax) ,

with πk(a) = k!Lν
k(−a) for k = 0, 1, . . . .. For the second condition given in Eq. (3.9) we

consider the following integral, see [130, Eq. 7.421.6], which is also called Hankel transform,∫ ∞

0
dttν/2e−tn!Lν

n(t)Jν

(
2
√

zt
)
= znzν/2e−z .

Bringing factors on the other side and making the substitution t = −s to make the same
monic polynomials n!Lν

n(−s) as above appear in the integrand, we obtain after using the
identity of Bessel functions Iν(x) = i−ν Jν(ix)

zk =
∫

I′
dsF(s, z)πk(s) , for k = 0, 1, . . . , and F(s, z) = (−1)ν

( s
z

)ν/2
es+z Iν

(
2
√

zs
)

(3.12)

with I′ = R− = (−∞, 0]. Consequently, also the chGUE(N) with an external source is an
invertible polynomial ensemble.

Remark 3.8. The chGUE(N) with an external source is sometimes defined without the fac-
tors a−ν/2e−a in the literature, in contrast to our definition in Eqs. (2.11), (2.12). This turns
out to be a disadvantage, since the conditions of Definition 3.3 for invertible polynomial
ensembles are not satisfied. Therefore, we consider the models after including these factors
in order to meet the conditions of Definition 3.3. Consequently, we derive the following
formulae for expectation values below.3

We can now state the main results of this chapter. First, we have a formula for expectation
values of products and ratios of characteristic polynomials in the case of invertible polyno-
mial ensembles.

Theorem 3.9. Consider a polynomial ensemble from Definition 3.1 formed by x1, . . ., xN , and as-
sume that this ensemble is invertible in the sense of Definition 3.3. Then we have for L ≤ N

EP

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]
=

(−1)
L(L−1)

2

L!∆M(z1, . . . , zM)

[
M

∏
j=1

∫
I′

dsjF(sj, zj)
N

∏
n=1

(sj − an)

]

×
[

L

∏
l=1

∫
I

dvl

(
vl

yl

)N−L ∏M
m=1(zm − vl)

∏L
j=1(yj − vl)

]

×
[

L

∏
l=1

∮
Cl

dul

2πi
1

∏N
n=1(ul − an)

ϕ(ul , vl)

∏M
j=1(sj − ul)

]
× ∆M(s1, . . . , sM)∆L(v1, . . . , vL)∆L(u1, . . . , uL) ,

(3.13)

3Looking more closely at the derivation of the JPDF for the chGUE(N) with external source - see Appendix
B - we find that the relevant factor can also be absorbed into Next and is recovered by changing Next.
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where DN(z) = ∏N
n=1(z − xn) denotes the characteristic polynomial associated with the random

variables x1, . . ., xN , the parameters y1, . . . , yL ∈ C\R and z1, . . . , zM ∈ C are pairwise distinct,
and all contours Cl with l = 1, . . . , N encircle the points a1, . . . , aN counter-clockwise.

We would like to emphasize that Theorem 3.9 generalises Theorem 5.1 in [25] for the ra-
tio of two characteristic polynomials derived for the polynomial ensemble with ϕ(a, x) =
xLe−x I0(2

√
ax) to general ratios in invertible polynomial ensembles. Our result is well

suited for the asymptotic analysis when N → ∞ as the number of integrations does not
depend on N. Theorem 3.9 features M + L real integrations and L complex contour integra-
tions and both M and L are fixed natural numbers, independent of N. We proceed with the
proof of Theorem 3.9.

Proof. Denoting by SN the symmetric group of a set of N variables with its elements being
the permutations of the variables in the set, we will utilise the following Lemma that was
proven in [132].

Lemma 3.10. Let L be an integer with 1 ≤ L ≤ N, and let x1, . . . , xN and y1, . . . , yL denote two
sets of parameters that are pairwise distinct. Then the following identity holds

L

∏
l=1

yN−L
l

∏N
n=1(yl − xn)

= ∑
σ∈SN/(SN−L×SL)

∆L(xσ(1), . . . , xσ(L))∆N−L(xσ(L+1), . . . , xσ(N))∏L
n=1 xN−L

σ(n)

∆N(xσ(1), . . . , xσ(N))∏L
n,l=1(yl − xσ(n))(−1)L(L−N)

on the coset of the permutation group.

As shown in [132] this follows from the Cauchy-Littlewood formula and the determinantal
formula for the Schur polynomials, which are defined in Appendix D, see Eq. (D.1). We can
use this identity to reduce the number of variables in the inverse characteristic polynomials
from N to L. Applied to the averages of products and ratios of characteristic polynomials,
we obtain the formula

EP

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]
=

N!(−1)L(L−N)

(N − L)!L!ZN

[
N

∏
n=1

∫
I

dxn

M

∏
m=1

(zm − xn)

]
det[ϕl(xk)]

N
k,l=1

×
∏L

k=1

(
xk
yk

)N−L

∏L
n,l=1(yl − xn)

∆L(x1, . . . , xL)∆N−L(xL+1, . . . , xN) ,

where we used the fact that each term in the sum over permutations gives the same contri-
bution to the expectation. Hence, we can undo the permutations under the sum by a change
of variables, and replace the sum over SN/(SN−L × SL) by the cardinality of the coset space
N!/(N− L)!L!. Expanding the determinant over the det [ϕl(xk)]

N
k,l=1 is the next logical step.

Then we separate the integration over the first L variables xl=1,...,L and the following N − L
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variables xn=L+1,...,N , by also splitting the characteristic polynomials accordingly. This gives

EP

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]
=

(−1)L(L−N)N!
(N − L)!L!ZN

∑
σ∈SN

sgn (σ)

×
[

L

∏
l=1

∫
I

dxl ϕσ(l)(xl)
xN−L

l

yN−L
l

∏M
m=1(zm − xl)

∏L
j=1(yj − xl)

]
∆L(x1, . . . , xL)

×
[

N

∏
k=L+1

∫
I

dxk ϕσ(k)(xk)
M

∏
m=1

(zm − xk)

]
∆N−L(xL+1, . . . , xN) .

(3.14)

Because we are aiming at an expression that will be amenable to taking the large-N limit,
we now focus on the integrals over N − L variables in the second line, which we denote by
J. Here, we make use of one of the properties of the Vandermonde determinant, namely the
absorption of the M characteristic polynomials in J into a larger Vandermonde determinant,
see Eq. (A.2), to write

J =

[
N

∏
k=L+1

∫
I

dxk ϕσ(k)(xk)

]
∆N−L+M(xL+1, . . . , xN , z1, . . . , zM)

∆M(z1, . . . , zM)
.

We use the representation of the Vandermonde determinant given in Eq. (A.1) to pull the
integrations

∫
I dxk ϕσ(k)(xk) into the corresponding columns and use the definition of the

Gram matrix and its entries, see Eq. (3.2), to obtain

J =
1

∆M(z1, . . . , zM)

∣∣∣∣∣∣∣∣∣
g1,σ(L+1) . . . g1,σ(N) 1 . . . 1
g2,σ(L+1) . . . g2,σ(N) z1 . . . zM

...
...

...
...

...
...

gN+M−L,σ(L+1) . . . gN+M−L,σ(N) zN+M−L−1
1 . . . zN+M−L−1

M

∣∣∣∣∣∣∣∣∣ .

The first property of an invertible polynomial ensemble, given in Eq. (3.8), enables us to
rewrite J as

J =
1

∆M(z1, . . . , zM)

×

∣∣∣∣∣∣∣∣∣
π0(aσ(L+1)) . . . π0(aσ(N)) 1 . . . 1
π1(aσ(L+1)) . . . π1(aσ(N)) z1 . . . zM

...
...

...
...

...
...

πN+M−L−1(aσ(L+1)) . . . πN+M−L−1(aσ(N)) zN+M−L−1
1 . . . zN+M−L−1

M

∣∣∣∣∣∣∣∣∣ .

The second property of invertible polynomial ensembles given in Eq. (3.9) allows us to
replace again the determinant of monic polynomials by a Vandermonde determinant of size
N − L + M to obtain

J =
∆N−L(aσ(L+1), . . . , aσ(N))

∆M(z1, . . . , zM)

[
M

∏
j=1

∫
I′

dtjF(tj, zj)
N

∏
n=L+1

(tj − aσ(n))

]
∆M(t1, . . . , tM) .
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Let us come back to the expectation value of characteristic polynomials in the form of Eq.
(3.14) and insert what we have derived for J above. This gives

EP

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]
=

(−1)L(L−N)N!
(N − L)!L!ZN∆M(z1, . . . , zM)

×
[

M

∏
j=1

∫
I′

dtjF(tj, zj)
N

∏
n=1

(tj − an)

]
∆M(t1, . . . , tM)

×
[

L

∏
l=1

∫
I

dxl

(
xl

yl

)N−L ∏M
m=1(zm − xl)

∏L
j=1(yj − xl)

]
∆L(x1, . . . , xL)

× ∑
σ∈SN

sgn (σ)∆N−L(aσ(L+1), . . . , aσ(N))
L

∏
l=1

ϕ(aσ(l), xl)

∏M
j=1(tj − aσ(l))

.

(3.15)

The integrals are now put into a form to apply the following Lemma, that will allow us to
simplify (and eventually get rid of) the sum over permutations.

Lemma 3.11. Let SN denote the permutation group of {1, . . . , N}, and let SL be the subgroup of SN
realized as the permutation group of the first L elements {1, . . . , L}. Also, let SN−L be the subgroup
of SN realised as the permutation group of the remaining N − L elements {L + 1, . . . , N}. Assume
that F is a complex valued function on SN which satisfies the condition F(σh) = F(σ) for each
σ ∈ SN , and each h ∈ SL × SN−L. Then we have

∑
σ∈SN

F(σ) = (N − L)!L! ∑
1≤l1<...<lL≤N

F
((

l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N
))

, (3.16)

where (i1, . . . , iN) is one-line notation for the permutation
(

1 2 . . . N
i1 i2 . . . iN

)
, and notation ľp

means that lp is removed from the list.

Proof. Recall that if G is a finite group, and H is its subgroup, then there are transversal
elements t1, . . . , tk ∈ G for the left cosets of H such that G = t1H ] . . . ] tk H, where ]
denotes disjoint union. It follows that if F is a function on G with the property F(gh) = F(g)
for any g ∈ G, and any h ∈ H, then

∑
g∈G

F(g) = |H|
k

∑
i=1

F (ti) , (3.17)

where |H| denotes the number of elements in H. In our situation G = SN , H = SL × SN−L,
and each transversal element can be represented as a permutation(

l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N
)

,

written in one-line notation, where 1 ≤ l1 < . . . < lL ≤ N. Moreover, each collection of
numbers l1, . . ., lL satisfying the condition 1 ≤ l1 < . . . < lL ≤ N gives a transversal element
for the left cosets of H = SL × SN−L in G = SN . We conclude that Eq. (3.17) is reduced to
Eq. (3.16).
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Assume that Φ(x1, . . . , xL) is antisymmetric under permutations σ of its L variable, i.e.

Φ(xσ(1), . . . , xσ(L)) = sgn (σ)Φ(x1, . . . , xL),

and that L ≤ N. Let F be the function on SN defined by

F(σ) = sgn (σ)∆N−L(aσ(L+1), . . . , aσ(N))

[
L

∏
k=1

∫
I

dxk f (aσ(k), xk)

]
Φ(x1, . . . , xL) ,

where f is a function of two variables. Clearly, F satisfies the condition F(σh) = F(σ) for
each σ ∈ SN , and each h ∈ SL × SN−L. Application of Lemma 3.11 to this function gives

∑
σ∈SN

F(σ) = (N − L)!L! ∑
1≤l1<...<lL≤N

sgn
((

l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N
))

× ∆(l1,...,lL)
N−L (a1, . . . , aN)

[
L

∏
k=1

∫
I

dxk f (alk , xk)

]
Φ(x1, . . . , xL) ,

where the reduced Vandermonde determinant is defined in Eq. (A.6). Taking into account
that

sgn
((

l1, . . . , lL, 1, . . . , ľ1, . . . , ľL . . . , N
))

= (−1)l1+...+lL− L(L+1)
2 ,

we obtain the formula

∑
σ∈SN

sgn (σ)∆N−L(aσ(L+1), . . . , aσ(N))

[
L

∏
k=1

∫
I

dxk f (aσ(k), xk)

]
Φ(x1, . . . , xL)

= (N − L)!L! ∑
1≤l1<...<lL≤N

(−1)l1+...+lL− L(L+1)
2 ∆(l1,...,lL)

N−L (a1, . . . , aN)

×
[

L

∏
k=1

∫
I

dxk f (alk , xk)

]
Φ(x1, . . . , xL) ,

(3.18)

valid for any antisymmetric function Φ(xσ(1), . . . , xσ(L)), and for any function f (x, y) such
that the integrals in the equation above exist.
The formula in Eq. (3.18) enables us to rewrite Eq. (3.15) as

EP

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]
=

(−1)L(L−N)N!
ZN∆M(z1, . . . , zM)

×
[

M

∏
j=1

∫
I′

dtjF(tj, zj)
N

∏
n=1

(tj − an)

]
∆M(t1, . . . , tM)

×
[

L

∏
l=1

∫
I

dxl

(
xl

yl

)N−L ∏M
m=1(zm − xl)

∏L
j=1(yj − xl)

]
∆L(x1, . . . , xL)

× ∑
1≤l1<...<lL≤N

(−1)l1+...+lL− L(L+1)
2 ∆(l1,...,lL)

N−L (a1, . . . , aN)
L

∏
i=1

ϕ(ali , xi)

∏M
j=1(tj − alj)

.

(3.19)
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We note that due to Eq. (A.7) it holds

∆(l1,...,lL)
N−L (a1, . . . , aN)

∆N (a1, . . . , aN)
=

(−1)l1+...+lL+NL∆L (al1 , . . . , alL)
N
∏

n=1
n 6=l1

(al1 − an) . . .
N
∏

n=1
n 6=lL

(alL − an)

.

In addition, we apply the result presented in Eq. (3.10) to eliminate ZN , cancel signs, and
see that the strict ordering of the indices l1 < l2 < . . . < lL can be relaxed,

L! ∑
1≤l1<...<lL≤N

→
N

∑
l1=1
· · ·

N

∑
lL=1

.

Finally, we see that the sum in Eq. (3.19) can be written as contour integrals, because of the
formula

1
2πi

∮
C

du
f (u)

∏N
n=1(u− an)

=
N

∑
l=1

f (al)

∏N
n=1
n 6=l

(al − an)
,

where the contour C encircles the points a1, . . . , aN counter-clockwise. The leads to the for-
mula in the statement of Theorem 3.9.

It is well known that every polynomial ensemble is a determinantal point process, as we
have discussed in chapter 2. For invertible polynomial ensembles (see Definition 3.3) Theo-
rem 3.9 enables us to deduce a double contour integration formula for the correlation kernel.

Proposition 3.12. Consider an invertible polynomial ensemble, i.e. a polynomial ensemble from
Definition 3.1, where the functions ϕl(x) = ϕ(al , x) satisfy the conditions specified in Definition
3.3. The correlation kernel KN(x, y) of this ensemble can be written as

KN(x, y) =
1

2πi

∫
I′

dsF(s, x)
N

∏
n=1

(s− an)
∮
C

du
ϕ(u, y)

(s− u)∏N
n=1 (u− an)

,

where C encircles the points a1, . . ., aN counter-clockwise, and where ϕ(u, y) and F(s, x) are defined
by Eq. (3.8) and Eq. (3.9) correspondingly.

Proof. We use the following fact valid for any polynomial ensemble formed by x1, . . ., xN on
I ⊆ R, see Ref. [65]4. Assume that

EP

(
DN(x)
DN(z)

)
=
∫
I

dv
x− v
z− v

ΦN(x, v) ,

where the function v → ΦN(x, v) is analytic at y, y ∈ I. Then the correlation kernel of the
determinantal process formed by x1, . . . , xN is given by

KN(x, y) = ΦN(x, y).

4Because we take the residue of the right hand side at z = y, any ratio f (v)/ f (z) can be multiplied under the
integral for regular functions f , without changing the values of the kernel, see also Eq. (2.30).
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In our case Theorem 3.9 gives

EP

(
DN(x)
DN(z)

)
=

1
2πi

∫
I

dv
(v

z

)N−1 x− v
z− v

×

∫
I′

dsF(s, x)
N

∏
n=1

(s− an)
∮
C

du
ϕ(u, v)

(s− u)∏N
n=1 (u− an)

 ,

which leads to the formula for the correlation kernel in the statement of the Proposition.

Special cases

In Proposition 3.12 we have used Eq. (3.13) in the case M = L = 1. Another case of interest
is that corresponding to products of characteristic polynomials. In this case L = 0, and we
obtain that only the first set of integrals remains in Eq. (3.13), i.e.

EP

[
M

∏
m=1

DN(zm)

]
=

det[Bi(zj)]
M
i,j=1

∆M(z1, . . . , zM)
,

where

Bi(z) =
∫

I′
dsF(s, z) si−1

N

∏
n=1

(s− an) , (3.20)

after pulling the M integrations over the sj’s into the Vandermonde determinant of size M.
This result also could have been derived directly using Lemma A.2.
As a final special case of interest we look at the ratio of M + 1 characteristic polynomials
over a single one at L = 1. This object is needed in the next chapter to tackle the main
model containing N f massive flavors and temperature dependence as given in Eq. (2.12)
[13]. Theorem 3.9 gives

EP

[
∏M+1

m=1 DN(zm)

DN(y)

]

=
1

∆M+1(z1, . . . , zM+1)

(
M+1

∏
j=1

∫
I′

dsjF(sj, zj)
N

∏
n=1

(sj − an)

)
∆M+1(s1, . . . , sM+1)

×
∫

I
dv
(

v
y

)N−1 ∏M+1
m=1 (zm − v)
(y− v)

∮
C

du
2πi

1

∏N
n=1(u− an)

ϕ(u, v)

∏M+1
j=1 (sj − u)

. (3.21)

Following [65], we may use the Lagrange extrapolation formula

M+1

∏
j=1

1
u− sj

=
M+1

∑
m=1

1
u− sm

M+1

∏
j=1
j 6=m

1
sm − sj

,

to introduce the reduced Vandermonde, see Eq. (A.6) and Lemma A.3, and rewrite

∆M+1(s1, . . . , sM+1)

∏M+1
j=1 (sj − u)

= (−1)M+1
M+1

∑
m=1

(−1)M+1−m

u− sm
∆(m)

M (s1, . . . , sM+1) .
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This leads to the following rewriting of Eq. (3.21)

EP

[
∏M+1

m=1 DN(zm)

DN(y)

]

=
1

∆M+1(z1, . . . , zM+1)

∫
I

dv
(

v
y

)N−1 ∏M+1
m=1 (zm − v)
(y− v)

∮
C

du
2πi

ϕ(u, v)

∏N
n=1(u− an)

×
M+1

∑
m=1

(−1)m

(
M+1

∏
j=1

∫
I′

dsjF(sj, zj)
N

∏
n=1

(sj − an)

)
1

u− sm
∆(m)

M (s1, . . . , sM+1)

=
1

∆M+1(z1, . . . , zM+1)

∫
I

dv
(

v
y

)N−1 ∏M+1
m=1 (zm − v)
(y− v)

∮
C

du
2πi

ϕ(u, v)

∏N
n=1(u− an)

×det


A(z1, u) . . . A(zM+1, u)
B1(z1) . . . B1(zM+1)

... . . .
...

BM(z1) . . . BM(zM+1)

 , (3.22)

where we have defined

A(z, u) =
∫

I′
dsF(s, z)

−1
u− s

N

∏
n=1

(s− an) . (3.23)

In the second step in Eq. (3.22) we have first pulled all the s-integrals except the one over
sm into the Vandermonde determinant ∆(m)

M (s1, . . . , sM+1), leading to a determinant of size
M with matrix elements Bi(zj) from Eq. (3.20). We then recognise that the sum is a Laplace
expansion of a determinant of size M + 1 with respect to the first row, containing the matrix
elements A(zj, u) from Eq. (3.23). This reveals the determinantal form of the corresponding
kernel.

3.3 Reweighting of expectation values

We have seen in the previous section that the computation of expectation values depends
heavily on the matrix elements gk,l . Polynomial ensembles, formed by variables x1, . . . , xN
as in Definition 3.1, are characterised by ϕ-functions such that the constant ZN can be com-
puted, which reduces the problem to the computation of the Gram matrix entries gk,l - see
Eq. (3.2). For certain polynomial ensembles it is possible to derive results for expectation
values of characteristic polynomials by reweighting the expectation value. The idea is to
express the expectation value in terms of other expectation values with respect to simpler
ϕ-type functions. This procedure can be seen as an analogy to the computation of the kernel
for the deformed chGUE(N) via the classical chGUE(N) as demonstrated in chapter 2, see
Eqs. (2.25) and (2.27). Given a polynomial ensemble with ϕl(x) = ϕ(al , x) and

ϕl(x) = ψl(x)

[
M

∏
m=1

(zm − x)

] [
L

∏
l=1

(yl − x)

]−1

(3.24)
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we require that ψl(x) = ψ(al , x) is a non-zero, analytical function with an integral∫
I

dxxk−1ψ(al , x) ,

which has to be finite for all k = 1, 2, . . .. Then we can write the JPDF via Eq. (3.24) in terms
of a new polynomial ensemble:

det [ϕl(xk)]
N
k,l=1 =

(
M

∏
m=1

N

∏
n=1

(zm − xn)

)(
L

∏
l=1

N

∏
n=1

(yl − xn)

)−1

det [ψl(xk)]
N
k,l=1 .

The JPDF with respect to the function ϕ(al , x) is written via Eq. (3.24) as

Pϕ(x1, . . . , xN) =
1

ZN
∆(x1, . . . , xN)det[ψl(xk)]

N
k,l=1

∏M
m=1 DN(zm)

∏L
l=1 DN(yl)

.

The constant ZN corresponding to the ϕ(al , x) functions can be rewritten as follows:

ZN = ZN
Z′N
Z′N

= Z′N

(
N

∏
n=1

∫
I

dxn

)
1

Z′N
∆(x1, . . . , xN)det [ϕl(xk)]

N
k,l=1

= Z′N

(
N

∏
n=1

∫
I

dxn

)
1

Z′N
∆(x1, . . . , xN)det [ψl(xk)]

N
k,l=1

∏M
m=1 DN(zm)

∏L
l=1 DN(yl)

= Z′N Eψ

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]
,

(3.25)

where in the last line the expectation value Eψ is taken with respect to the functions ψ, which
form another polynomial ensemble with the JPDF

Pψ(x1, . . . , xN) =
1

Z′N
∆(x1, . . . , xN)det[ψl(xk)]

N
k,l=1

and constant Z′N = N! det G′, where the entries g′k,l of G′ are given by

g′k,l =
∫

I
dxxk−1ψ(al , x) .

Denoting the expectation value with respect to the polynomial ensemble with ϕ-function by
Eϕ we can prove the following Lemma:

Lemma 3.13. Given a polynomial ensemble via Definition 3.1 with ϕ-functions of the form

ϕl(x) = ψl(x)

[
M

∏
m=1

(zm − x)

] [
L

∏
l=1

(yl − x)

]−1

,

where L ≤ N. Assume that ψl(x) = ψ(al , x) such that another polynomial ensemble with

Pψ(x1, . . . , xN) =
1

Z′N
∆(x1, . . . , xN)det[ψl(xk)]

N
k,l=1
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is formed with constant Z′N given by Z′N = N! det G′, where the Gram matrix G′ has entries g′k,l
given by the finite integrals

g′k,l =
∫

I
dxxk−1ψl(x) .

The expectation value of an arbitary ratio of characteristic polynomials with respect to ϕ can be
rewritten as a product of two expectation values with respect to ψ:

Eϕ

[
∏K

k=1 DN(ak)

∏H
h=1 DN(bl)

]
= Eψ

[
∏K

k=1 DN(ak)

∏H
h=1 DN(bl)

∏M
m=1 DN(zm)

∏L
l=1 DN(yl)

]

×
(

Eψ

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

])−1

.

Proof. The left side of the above equation can be written as

Eϕ

[
∏K

k=1 DN(ak)

∏H
h=1 DN(bl)

]
=

(
N

∏
n=1

∫
I

dxN

)[
∏K

k=1 DN(ak)

∏H
h=1 DN(bl)

]
Pϕ(x1, . . . , xN) .

The JPDF becomes

Pϕ(x1, . . . , xN) =
1

ZN
∆(x1, . . . , xN)det [ϕl(xk)]

N
k,l=1

Eq. (3.25)
=

1
Z′N

∆(x1, . . . , xN)det [ψl(xk)]
N
k,l=1

×
[

∏M
m=1 DN(zm)

∏L
l=1 DN(yl)

](
Eψ

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

])−1

.

This leads to

Eϕ

[
∏K

k=1 DN(ak)

∏H
h=1 DN(bl)

]
=

(
Eψ

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

])−1( N

∏
n=1

∫
I

dxN

)

× 1
Z′N

∆(x1, . . . , xN)det [ψl(xk)]
N
k,l=1

[
∏K

k=1 DN(ak)

∏H
h=1 DN(bl)

] [
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

]

= Eψ

[
∏K

k=1 DN(ak)

∏H
h=1 DN(bl)

∏M
m=1 DN(zm)

∏L
l=1 DN(yl)

](
Eψ

[
∏M

m=1 DN(zm)

∏L
l=1 DN(yl)

])−1

,

which finishes the proof.

The important requirement that needs to be met in Lemma 3.13 is that the original polyno-
mial ensemble features a ϕ-function that consist of characteristic polynomials, or products,
or ratios of characteristic polynomials and another function ψ, which forms a polynomial
ensemble itself. In the context of this thesis this leads to the following Remark.

Remark 3.14. We know that the chGUE(N) with an external source forms an invertible
polynomial ensemble, see Example 3.7. Furthermore, the extension with N f massive flavors
of this model, given in Eq. (2.12), forms also a polynomial ensemble, which fullfills the
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requirements to apply Lemma 3.13 via the identification

ϕ(al , x) = (−1)N f

(
x
al

)ν/2

e−(x+al) Iν (2
√

alx)
N f

∏
f=1

(−m2
f − x)

and by comparing Eq. (2.11) we have

ψ(al , x) =
(

x
al

)ν/2

e−(x+al) Iν (2
√

alx) .

We can express expectation values of the N f massive flavor model in terms of expectation
values of the simpler chGUE(N) with an external source. This becomes important in the
derivation of both correlation kernels in the next chapter.

3.4 Summary

This chapter has been concerned with the impact of characteristic polynomials in polyno-
mial ensembles. We reviewed the definition of polynomial ensembles as a sub-class of de-
terminantal point processes and biorthogonal ensembles introduced by Borodin [109]. We
collected known results for polynomial ensembles and realized how the correlation kernel
KN(x, y) of a polynomial ensemble and additionally the k-point correlation function may
be computed using expectation values of ratios of characteristic polynomials. From chapter
2 we knew that the random matrix models we considered to study the temperature de-
pendence of effective theories of QCD are all part of the class of polynomial ensembles -
the classical chGUE(N) and the deformed chGUE(N) are actually orthogonal polynomial
ensembles, while the chGUE(N) with an external source and the temperature dependent
chGUE(N) with N f massive flavors are both polynomial ensembles, following the Defini-
tion of polynomial ensembles given in Definition 3.1.
Next, we introduced the new notion of invertible polynomial ensembles in Definition 3.3.
For this new sub-class of polynomial ensembles we stated and have proven a multi-contour-
integral formula for the expectation value of an arbitrary ratio of characteristic polynomials,
see Theorem 3.9. The number of integrations in our formula depends on the number of
characteristic polynomials in the ratio: M in the numerator and L in the denominator. Cru-
cially, neither the number of integrations nor the appearing determinants in the integrands
depend on the ensemble size N. This simplifies the large N analysis in chapter 4.
We also showed that the chGUE(N) with an external source is indeed an invertible polyno-
mial ensemble, along with other examples like the Polya ensembles. An open question at
this point in time is how large the class of invertible polynomial ensembles acutally is. In
general, it remains unclear, if it is possible to show that any polynomial ensemble is indeed
invertible.
We proceeded to discuss the reweighting of expectation values allowing us to trace expec-
tation values of a given polynomial ensemble containing ratios characteristic polynomials
in its JPDF back to expectation values of a simpler polynomial ensemble. This allows us to
express the correlation kernel of our main model, the chGUE(N) with temperature depen-
dence and N f massive flavors, in terms of expectation values with respect to the chGUE(N)
with an external source, which is an invertible polynomial ensemble. Thus, our Theorem 3.9
becomes applicable and is used to derive KN(x, y) in the next chapter.
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Chapter 4

Asymptotic Analysis of Correlation
Kernels

In this chapter we take a closer look at the spectral statistics of the random matrix models in-
troduced for effective theories of strong interacting theories like Quantum chromodynamics.
We have derived the joint probability density functions of four chGUE(N)-type models in
chapter 2: We introduced the classical chiral Gaussian Unitary Ensemble, chGUE(N), and its
extension by N f massive flavors. These two ensembles are classical orthogonal polynomial
ensembles with JPDF of ∆2-type. The models have been studied extensively in particular
as models for zero-temperature QCD [8, 9, 58–60, 63]. The correlation kernels and k-point
functions for both ensembles have been known and can be used as comparisons for the main
results for non-zero temperature QCD random matrix models we derive in this chapter.
The two ensembles for non-zero temperature QCD we introduced are the chGUE(N) with
an external source, see Eq. (2.3) and (2.11), and its extension with N f massive flavors in
Eq. (2.5) and (2.12). Both ensembles have been studied in the past using supersymmetry
methods to derive correlation kernels and k-point functions [12, 13] in the large N limit. The
JPDFs are given as

Pext
chGUE(λ1, . . . , λN) =

1

Z(0,T)
N

[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN)

(4.1)

for the chGUE(N) with an external source and

P temp
chGUE(λ1, . . . , λN) =

1

Z
(N f ,T)
N

[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN)

(4.2)

for its extension with N f massive flavors. We will use the notion of polynomial ensembles
introduced in chapter 3 to derive a useful finite N representation of the correlation kernels
for both ensembles in section 4.1.
The large N limit of the random matrix models with and without temperature have to be
compared with the microscopic limit of low-energy effective theories of QCD. The appli-
cation of the random matrix models to the theory of strong interactions is only possible in
this limit. Random matrix models without external parameters are directly comparable to



52 Chapter 4. Asymptotic Analysis of Correlation Kernels

effective theories, like chPT, of QCD at zero temperature in the N → ∞ limit. This com-
parison is no longer clear at non-zero finite temperature. As far as we know, there exists no
direct comparable counterpart on the effect theory level. Nevertheless, we find a structure
of the correlation kernel in the large N-limit that can be identified with the zero-temperature
results of QCD in this limit. The only difference is a rescaling of the order parameter - the
chiral condensate - with respect to temperature.
We discuss the large N asymptotics of the kernels derived in section 4.1 in the two sections
4.2 and 4.3, for N f = 0 and N f 6= 0 respectively.

4.1 Correlation kernels at finite N

The two ensembles describing temperature dependence drawn from the chGUE(N) sym-
metry class introduced in Eq. (4.1) and (4.2) are both polynomial ensembles in the sense of
Definition 3.1. Ensembles of this type are characterised by a function ϕ. For the chGUE(N)
with an external source - Eq. (4.1) - this function can be written as

ϕl(x) = ϕ(al , x) =
(

x
al

)ν/2

e−(x+al) Iν (2
√

alx) ∀ l = 1, . . . , N. (4.3)

For the model extended with N f massive flavors - Eq. (4.2) - the function ϕ becomes

ϕl(x) = ϕ(al , x) =
(

x
al

)ν/2

e−(x+al)
N f

∏
f=1

(x + m2
f ) Iν (2

√
alx) ∀ l = 1, . . . , N.

The goal in this section is to derive the correlation kernels KN(x, y) for both models above.
We make use of the results presented and derived in chapter 3. In particular we know that
for polynomial ensembles the following formula for the correlation kernel holds [65], [26]:

KN(x1, x2) =
1

x1 − x2
Res
y=x2

(
EP

[
DN(x1)

DN(y)

])
, (4.4)

where DN(z) = ∏N
n=1(z− xn) is the characteristic polynomial and the expectation E is taken

with respect to the JPDF denoted by P . It is convenient to replace the index P in the expec-
tation value EP by either 0 or N f . When we consider the chGUE(N) with an external source
we use the index 0 and we use the index N f for the extension with N f flavors. Eq. (4.4) indi-
cates the necessity to compute the expectation value of a ratio of characteristic polynomials.
Moreover, the resulting form of the correlation kernel should be suitable for a following
large N limit analysis. The results of chapter 3, like Theorem 3.9 and Proposition 3.12, can
be applied, if the ensemble considered is an invertible polynomial ensembles following Def-
inition 3.3. Because of Example 3.7 we know that the chGUE(N) with an external source
is indeed an invertible polynomial ensemble with ϕ-function Eq. (4.3). For the chGUE(N)
with an external source we can directly apply Proposition 3.12, which gives us the kernel:1

K(0)
N (x1, x2) =

1
2πi

∫
I′

dsF(s, x1)
N

∏
n=1

(s− an)
∮
C

du
ϕ(u, x2)

(s− u)∏N
n=1 (u− an)

.

1The upper index on K(0)
N (x, y) indicates that we consider the chGUE(N) with an external source without N f

massive flavors.
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We use Eqs. (4.3), (3.12) and I′ = R− = (−∞, 0], namely

ϕ(u, x2) =
( x2

u

)ν/2
e−(x2+u) Iν (2

√
ux2) and F(s, x1) = (−1)ν

(
s

x1

)ν/2

es+x1 Iν (2
√

x1s) .

(4.5)
Via the substitution s→ −s we obtain

K(0)
N (x1, x2) =

(−1)
2πi

(
x2

x1

) ν
2

ex1−x2

∫ ∞

0
dssν/2e−s Jν (2

√
x1s)

N

∏
n=1

(s + an)

×
∮
C

du
u−ν/2e−u Iν(2

√
ux2)

(u + s)∏N
n=1 (an − u)

.

Alternatively, we could apply Theorem 3.9 for one ratio of characteristic polynomials, setting
M = L = 1, and then applying the residue from Eq. (3.6). This leads to the same result and
the calculation can be found in Appendix B. Furthermore, we can remove the prefactors
(x2/x1)

ν/2 ex1−x2 due to the invariance of the kernel discussed in chapter 2, see Eq. (2.30).
We conclude that the kernel for N f = 0 corresponding to the chGUE(N) with an external
source and JPDF given in Eq. (4.1) can be expressed as

K(0)
N (x1, x2) =

−1
2πi

∫ ∞

0
dssν/2e−s Jν(2

√
sx1)

N

∏
n=1

(an + s)

×
∮

C
du

u−ν/2e−u Iν(2
√

ux2)

∏N
n=1(an − u)

1
u + s

(4.6)

with integration contour C, which encircles the points a1, . . . , aN counter-clockwise and
leaves the real number −s outside. This generalises results for quadratic matrices derived
by Fyodorov, Strahov and Grela [25] to rectangular matrices by introducing ν 6= 0.

Adding massive flavors and reweighting of expectation values

For the chGUE(N) with an external source and N f massive flavors - compare Eq. (4.2) -
we cannot directly apply the results for invertible polynomial ensembles from chapter 3,
since we are not able to show that the requirements of Definition 3.3 can be fullfilled for
this ensemble. Instead we can use that this model is an extension with N f characteristic
polynomials of an invertible polynomial ensemble, namely the chGUE(N) with an external
source. This allows us to utilize Remark 3.14 and also Lemma 3.13. In short, we are able to
express the expectation value of a single ratio with respect toPN f in terms of two expectation
values with respect to the invertible polynomial ensemble that we denote as chGUE(N) with
an external source. This is necessary to compute the correlation kernel via Eq. (4.4). With
Remark 3.14 and Lemma 3.13 we can write

EN f

[
DN(x1)

DN(y)

]
= E0

[
DN(x1)

DN(y)

( N f

∏
f=1

DN(−m2
f )

)](
E0

[ N f

∏
f=1

DN(−m2
f )

])−1

. (4.7)

Note that the second expectation value in the line above is independent of the variables x1
and y, which are the original kernel variables on the left-hand side of the equation. Thus, its
resulting form will be a prefactor, which can be computed independently of the first expec-
tation value and the kernel variables.
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The reweighting allows us to use the results from the previous chapter for the two expecta-
tion values on the right-hand side in Eq. (4.7). In particular, we can use Theorem 3.9 and its
special cases from chapter 3. We had for a product of M characteristic polynomials and its
expectation value a formula given in chapter 3, namely

E0

[
M

∏
m=1

DN(zm)

]
=

det[Bi(zj)]
M
i,j=1

∆M(z1, . . . , zM)
,

where

Bi(z) =
∫

I′
dsF(s, z) si−1

N

∏
n=1

(s− an) , (4.8)

which yields for M = N f using Eq. (4.5) the following formula:

Bi(m2
f ) ≡

∫ ∞

0
dssν/2e−s Iν(2

√
m2

f s)si−1
N

∏
n=1

(s + an),

with Bi(−m2
f ) = (−1)N(−1)νm−ν

f e−m2
f (−1)i−1Bi(m2

f )

(4.9)

and overall2

E0

[ N f

∏
f=1

DN(−m2
f )

]
= (−1)NN f (−1)−νN f

( N f

∏
f=1

m−ν
f e−m2

f

)
det[Bi(m2

f )]
N f
i, f=1

∆N f (m
2
1, . . . , m2

N f
)

. (4.10)

The second expectation value

E0

[
DN(x1)

DN(y)

( N f

∏
f=1

DN(−m2
f )

)]

can be treated directly via Theorem 3.9 with L = 1 and M = N f + 1. We have derived a
formula for this special case of a product of N f + 1 over one characteristic polynomial back
in chapter 3, see Eq. (3.22). For zM+1 = x1 and M = N f we obtain

E0

[
∏M+1

m=1 DN(zm)

DN(y)

]
=

1
∆M+1(z1, . . . , zM+1)

∫
I

dx
(

x
y

)N−1 ∏M+1
m=1 (zm − x)
(y− x)

=
∮

C

du
2πi

1

∏N
n=1(u− an)

ϕ(u, x)
w(u)

det


A(z1, u) . . . A(zM+1, u)
B1(z1) . . . B1(zM+1)

... . . .
...

BM(z1) . . . BM(zM+1)

 ,

where we can apply Eq. (4.5), namely

ϕ(u, x2) =
( x2

u

)ν/2
e−(x2+u) Iν (2

√
ux2) and F(s, x1) = (−1)ν

(
s

x1

)ν/2

es+x1 Iν (2
√

x1s) .

2Note that for the large N analysis in the next section it is convenient to rewrite the determinant. We replace
the monomials si−1 with monic Hermite polynomials hi−1(s).
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With Eq. (3.23), I′ = R− = (−∞, 0] and s→ −s we find

A(z, u) =
∫

I′
dsF(s, z)

−1
u− s

N

∏
n=1

(s− an)

= (−1)N

{
(−1)νm−ν

f e−m2
f A(m2

f , u), for z = −m2
f with f = 1, . . . , N f ,

x−ν/2
1 ex1 Â(x1, u), for z = x1,

where we use the definitions

A(m2
f , u) ≡

∫ ∞

0
dssν/2e−s Iν

(
2
√

m2
f s
) −1

u + s

N

∏
n=1

(s + an) ,

Â(x1, u) ≡
∫ ∞

0
ds(−1)ν(−1)ν/2sν/2e−s Iν(2

√
x1si)︸ ︷︷ ︸

iν Jν(2
√

x1s)

−1
u + s

N

∏
n=1

(s + an) .

The Bi(zm) are given in Eq. (4.8) leading to Eq. (4.9) and a special case, namely

B̂i(x1) ≡
∫ ∞

0
dssν/2e−s Jν (2

√
x1s) si−1

N

∏
n=1

(s + an) ,

with Bi(x1) = (−1)Nx−ν/2
1 ex1(−1)i−1B̂i(x1) .

This leads to3

E0

[
DN(x1)

DN(y)

( N f

∏
f=1

DN(−m2
f )

)]
= (−1)NN f (−1)νN f (−1)N

( N f

∏
f=1

m−ν
f e−m2

f

)
x−ν/2

1 ex1

×
(−1)N f (−1)N

(
∏

N f
f=1(x1 + m2

f )
)−1

∆N f (m
2
1, . . . , m2

N f
)

∫ ∞

0
dv
(

v
y

)N−1 x1 − v
(y− v)

( N f

∏
m=1

(m2
f + v)

)
vν/2e−v

×
∮

C

du
2πi

u−ν/2e−u Iν(2
√

uv)

∏N
n=1(an − u)

det


A(m2

1, u) . . . A(m2
N f

, u) Â(x1, u)
B1(m2

1) . . . B1(m2
N f
) B̂1(x1)

... . . .
...

...
BN f (m

2
1) . . . BN f (m

2
N f
) B̂N f (x1)



= (−1)NN f (−1)νN f

( N f

∏
f=1

m−ν
f e−m2

f

)
x−ν/2

1 ex1

(
∏

N f
f=1(x1 + m2

f )
)−1

∆N f (m
2
1, . . . , m2

N f
)

×
∮

C

du
2πi

u−ν/2e−u

∏N
n=1(an − u)

det


Â(x1, u) A(m2

1, u) . . . A(m2
N f

, u)
B̂1(x1) B1(m2

1) . . . B1(m2
N f
)

...
... . . .

...
B̂N f (x1) BN f (m

2
1) . . . BN f (m

2
N f
)


×
∫ ∞

0
dv
(

v
y

)N−1 x1 − v
(y− v)

( N f

∏
m=1

(m2
f + v)

)
vν/2e−v Iν(2

√
uv) .

3It is always possible to replace si−1 with Hermite polynomials hi−1(s) due to invariance of the determinant.
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Derivation of the kernel with N f flavors and temperature dependence

With this preparation we can write the correlation kernel as follows:

K
(N f )

N (x1, x2) =
1

x1 − x2
Res
y=x2

(
EN f

[
DN(x1)

DN(y)

])

=
1

x1 − x2
Res
y=x2

E0

[
DN(x1)

DN(y)

( N f

∏
f=1

DN(−m2
f )

)](
E0

[ N f

∏
f=1

DN(−m2
f )

])−1
=

1
x1 − x2

(
E0

[ N f

∏
f=1

DN(−m2
f )

])−1

Res
y=x2

(
E0

[
DN(x1)

DN(y)

( N f

∏
f=1

DN(−m2
f )

)])
.

Using Eq. (4.10) and (4.11) we obtain

K
(N f )

N (x1, x2) =
1

x1 − x2

(
det[Bi(m2

f )]
N f
i, f=1

)−1 x−ν/2
1 ex1

2πi

∮
C

du
u−ν/2e−u

∏N
n=1(an − u)

× det


Â(x1, u) A(m2

1, u) . . . A(m2
N f

, u)
B̂1(x1) B1(m2

1) . . . B1(m2
N f
)

...
... . . .

...
B̂N f (x1) BN f (m

2
1) . . . BN f (m

2
N f
)


× Res

y=x2

( ∫ ∞

0
dv
(

v
y

)N−1 x1 − v
y− v

vν/2e−v Iν(2
√

uv)
N f

∏
f=1

m2
f + v

m2
f + x1

)
.

The next step is to evaluate the residue, which is defined via Eq. (3.6). Moreover, we can
apply the following identity(

v
y

)N−1 1
y− v

=
1

y− v
−

N−2

∑
k=0

vk

yk+1 (4.11)

to simplify the evaluation of the residue. This leads to two terms, where the first reads

Res
y=x2

(∫ ∞

0
dv

vν/2e−v

y− v
(x1 − v)Iν(2

√
uv)

N f

∏
f=1

m2
f + v

m2
f + x1

)

= (x1 − x2)xν/2
2 e−x2 Iν(2

√
ux2)

N f

∏
f=1

m2
f + x2

m2
f + x1

,

(4.12)

which follows from Eq. (3.6). The second term reads

Res
y=x2

(∫ ∞

0
dv

vk+ν/2e−v

yk+1 (x1 − v)Iν(2
√

uv)
N f

∏
f=1

m2
f + v

m2
f + x1

)

=
∫ ∞

0
dvvk+ν/2e−v(x1 − v)Iν(2

√
uv)

N f

∏
f=1

m2
f + v

m2
f + x1

Res
y=x2

(
1

yk+1

)
,

(4.13)
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where we used the linearity of the residue. We also use that for all y 6= 0 the above expres-
sion vanishes directly, because the residue is zero by Eq. (3.6). For y = 0 we have a pol of
order k + 1, which leads to

Res
y=x2=0

(
1

yk+1

)
= lim

y→0

1
k!

∂k

∂yk yk+1 1
yk+1 = 0 , (4.14)

and we realize that the contribution of this term is actually always equal to zero.
Combining Eqs. (4.11), (4.12), (4.13) and (4.14), we can write

K
(N f )

N (x1, x2) =
x−ν/2

1 xν/2
2

x1 − x2
ex1−x2

(
det[Bi(m2

f )]
N f
i, f=1

)−1 ∮
C

du
2πi

u−ν/2e−u Iν(2
√

ux2)

∏N
n=1(an − u)

× det


Â(x1, u) A(m2

1, u) . . . A(m2
N f

, u)
B̂1(x1) B1(m2

1) . . . B1(m2
N f
)

...
... . . .

...
B̂N f (x1) BN f (m

2
1) . . . BN f (m

2
N f
)

 (x1 − x2)
N f

∏
f=1

m2
f + x2

m2
f + x1

=

(
x2

x1

)ν/2

ex1−x2

N f

∏
f=1

x2 + m2
f

x1 + m2
f

det


K(0)

N (x1, x2) K̂(0)
N (m2

1, x2) . . . K̂(0)
N (m2

N f
, x2)

B̂1(x1) B1(m2
1) . . . B1(m2

N f
)

...
... . . .

...
B̂N f (x1) BN f (m

2
1) . . . BN f (m

2
N f
)


det[Bi(m2

f )]
N f
i, f=1

.

We can again remove the prefactors, as in the N f = 0 case, and identify the kernel K(0)
N (x1, x2)

as the first entry of the N f + 1 dimensional determinant.

A similar expression is given by K̂(0)
N (m2

f , x2), namely

K̂(0)
N (m2

f , x2) ≡
∫ ∞

0
dssν/2e−s Iν

(
2
√

sm2
f

) N

∏
n=1

(an + s)
∮

C

du
2πi

u−ν/2e−u Iν(2
√

ux2)

∏N
n=1(an − u)

−1
u + s

.

Overall we find a determinantal structure, with dimension N f + 1, of the kernel:4

K
(N f )

N (x1, x2) =

√√√√√∏
N f
f=1(x2 + m2

f )

∏
N f
f=1(x1 + m2

f )

det


K(0)

N (x1, x2) K̂(0)
N (m2

1, x2) . . . K̂(0)
N (m2

N f
, x2)

B̂1(x1) B1(m2
1) . . . B1(m2

N f
)

...
... . . .

...
B̂N f (x1) BN f (m

2
1) . . . BN f (m

2
N f
)


det[Bi(m2

f )]
N f
i, f=1

.

(4.15)

4We keep the factor of

√√√√∏
Nf
f=1(x2+m2

f )

∏
Nf
f=1(x1+m2

f )
to compare with results in chapter 5.
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4.2 Asymptotic analysis for N f = 0

In this section we study the large N limit of the correlation kernel for the chGUE(N) with
an external source, derived in the previous section, see Eq. (4.6). We can state and prove the
following Proposition:

Proposition 4.1. For the chGUE(N) with an external source and JPDF given by Eq. (4.1) the
correlation kernel at finite matrix size N reads (Eq. (4.6)):

K(0)
N (x1, x2) =

−1
2πi

∫ ∞

0
dssν/2e−s Jν(2

√
sx1)

(
N

∏
n=1

(an + s)

) ∮
C

du
u−ν/2e−u Iν(2

√
ux2)

∏N
n=1(an − u)

1
u + s

,

where the complex contour integration is taken counter-clockwise around the real, positive values
a1, . . . , aN and leaving the real value −s outside.
Rescaling the variables x1, x2 as

x1 =
ζ2

a
4NΞ

, and x2 =
ζ2

a
4NΞ

,

where Ξ can be identified with the temperature dependent chiral condensate, leads to the following
large N limit of the kernel:

lim
N→∞

1
2NΞ

K(0)
N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
=

1
2

∫ 1

0
dτ Jν(ζa

√
τ)Jν(ζb

√
τ) . (4.16)

Remark 4.2. The resulting integral in Proposition 4.1 can be evaluated as

1
2

∫ 1

0
dτ Jν(ζa

√
τ)Jν(ζb

√
τ) =

ζa Jν+1(ζa)Jν(ζb)− ζb Jν+1(ζb)Jν(ζa)

ζ2
a − ζ2

b
≡ BJJ(ζa, ζb)

for x1 6= x2.5 Similarly, we find for x1 = x2

1
2

∫ 1

0
dτ Jν(ζa

√
τ)Jν(ζb

√
τ) =

1
2

(
J2
ν(ζa)−

2ν

ζa
Jν(ζa)Jν+1(ζa) + J2

ν+1(ζa)

)
.

We will see this in the following proof of Proposition 4.1 explicitly.

Proof. We rescale the variables s → Ns, u → Nu, an → Nan ∀n = 1, . . . , N and introduce a
rescaled kernel

k(ρ, η) =
1
N

K(0)
N

(
x1 =

ρ

N
, x2 =

η

N

)
.

We introduce L1(u) = u + 1
N ∑N

n=1 log(an − u) to write

e−Nu

(
N

∏
n=1

(an − u)

)−1

= e−Nue−N 1
N ∑N

n=1 log(an−u) = e−NL1(u) .

5The right-hand side of Eq. (4.16) is the well-known Bessel kernel [133], which will be denoted by BJJ(ζa, ζb).
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Similarly, we have

e−Ns

(
N

∏
n=1

(s + an)

)
= e−NseN 1

N ∑N
n=1 log(an+s) = e−NL2(s) ,

where L2(s) = s− 1
N ∑N

n=1 log(an + s). The rescaled kernel takes the form

k(ρ, η) = (−1)
∫ ∞

0
ds sν/2e−NL2(s) Jν (2

√
ρs)

1
2πi

∮
C

du
u−ν/2 Iν

(
2
√

ηu
)

s + u
e−NL1(u) .

To evalutate this kernel as N → ∞, we perform a saddle point approximation of the two
expressions e−NL1(u) and e−NL2(s). Therefore, we do a saddle point analysis and try to find
appropriate saddle points of L1(u) and L2(s). Calculating the derivatives with respect to u
and s respectively yields6

L1(u) = u +
1
N

N

∑
n=1

log(an − u) , and L2(s) = s− 1
N

N

∑
n=1

log(an + s) ,

L′1(u) = 1− 1
N

N

∑
n=1

1
an − u

, and L′2(s) = 1− 1
N

N

∑
n=1

1
an + s

,

L′′1 (u) = −
1
N

N

∑
n=1

1
(an − u)2 , and L′′2 (s) = +

1
N

N

∑
n=1

1
(an + s)2 .

We immediately see the connections7

L1(−x) = −L2(x), and L′1(−x) = L′2(x), and L′′1 (−x) = −L′′2 (x) ,

which implies the following: If s̄ is a saddle point of L2(s), then the value ū is a saddle point
of L1(u).8

We define the critical value

tc ≡
1
N

N

∑
n=1

1
an

.

The temperature encoding values an are positive and real. Thus, we can distinguish between
three cases

I) tc = 1, II) tc < 1, and III) tc > 1 .

Because of the rescaling an → Nan, the rescaled an are drawn from the interval [0, 1) as
N → ∞. Thus, we can estimate in the large N-limit

tc =
1
N

N

∑
n=1

1
an

>
1
N

N

∑
n=1

1 = 1 .

Therefore, tc > 1 (case III)) will always be true and we can neglect the other two cases.

6Note that L1(u) is an analytic function with complex derivative, if we restrict the logarithm log(an − u)
such that the branch cut of the logarithm is on the negative real line and the derivative of log z is 1/z.

7The connection is only valid for u being a real-valued variable. This is in general not the case.
8The saddle point connection ū = −s̄ is valid even if u is a complex variable and s is a real variable.
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The next step is to analyze the saddle points of L2(s). We follow [12, 13] and consider
the function

h(s) = 1− 1
N

N

∑
n=1

1
an + s

.

Using tc as defined above, we have

h(0) = 1− tc < 0, for case III) ⇔ tc > 1 .

The derivative of h(s) is given as

h′(s) =
1
N

N

∑
n=1

1
(an + s)2 > 0, ∀ s ∈ R+ .

As s → ±∞, we obtain h(s) → 1. Thus, we have N real, negative poles of h(s) at the points
−a1, . . . ,−aN . For s ∈ [0, ∞] the function h(s) is smooth, continuous and monotonically
increasing, with limit 1 as s → ∞. Therefore, in case III), there is only one real, positive
zero of h(s) in [0, ∞].9

We denote the real, positive zero of h(s) as s̄ and investigate the derivative of h(s) at that
point:

h′(s̄) =
1
N

N

∑
n=1

1
(an + s̄)2 > 0 ∀ s ∈ R\Ω ,

where Ω = {−a1, . . . ,−aN}. Hence, the second derivative of L2(s) is greater than zero at
the point s̄ and we have found a suitable saddle point for the s-integration. Since all an are
living in the intervall [0, 1), we can also give an upper bound of the derivative of h(s). We
find

h′(s̄) =
1
N

N

∑
n=1

1
(an + s̄)2 <

1
N

N

∑
n=1

1
s̄2 = s̄−2 = const. (4.17)

This implies that the second derivative of L2(s) is bounded from above by s̄.

The analysis of L1(u) is similar. We introduce

g(u) = 1− 1
N

N

∑
n=1

1
an − u

.

Since the contour C encircles the points in the set Ω̃ = {a1, . . . , aN} and leaves −s outside,
g(u) is an analytic function on the contour C. Thus, we can deform the contour such that no
singularities from Ω̃ are crossed and still obtain the same value for the integral. Additionally,
we have

g(0) = 1− tc < 0, for case III) ⇔ tc > 1 .

This leads us to

g′(u) = − 1
N

N

∑
n=1

1
(an − u)2 < 0 ∀ u ∈ R\Ω̃ .

If the variable u takes real values, g(u) is continuous and decreases monotonically with
limu→±∞ g(u) = 1. Since g(u) is analytic and continuous in u with N real poles, we can

9h(s) has N zeros in total. Because h(s) has N real, negative poles, N − 1 zeros must be real and negative by
constitution of h(s). The remaining zero is then determined by the value of tc.
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assume that, without loss of generality, the contour C can be deformed such that the zeros
of g(u) are also real.10 Because of the continuity of g(u) and the positions of the poles on
the real line, there are exactly N − 1 real, positive zeros at all times. Depending on the case
I), II) or III), the last zero is either positive, negative or exactly positioned at zero. In case
III) the zero is real and negative, leading to a maximum of L1(u) instead of a minimum,
which would be required for a sensible saddle point approximation. This problem can be
circumvented and will be addressed later in the proof.

Recall the connection between L1(u) and L2(s) in terms of saddle points: We have seen
that ū = −s̄. We have identified a suitable saddle point s̄ for L2(s) and expand via

s = s̄ +
1√
N

x and ds =
1√
N

dx .

As we have discussed previousely the connected saddle point ū = −s̄ does not imply the re-
quired maximum, if we view u as a real variable. Nevertheless, we can expand for complex
u with a suitable branch cut of the logarithm in L1(u) via

u = ū + i
1√
N

y and du = i
1√
N

dy .

This implies that the integration over u gets rotated onto the real line as N → ∞ and the
maximum we obtained at L1(ū) becomes a minimum as required for the saddle point ex-
pansion. Additionally, these expansions lead to

1
u + s

=

√
N

x + iy
.

After the identification of the saddle points and the introduction of the necessary expansions
of the integration variables, we can compute the integrals. We perfom steps similar to [25].
Recall the kernel

k(ρ, η) = (−1)
∫ ∞

0
ds f2(s)e−NL2(s) I(s) ,

where we have introduced f2(s) = sν/2 Jν(2
√

ρs) and

I(s) =
1

2πi

∮
C

du
f1(u)
u + s

e−NL1(u)

with f1(u) = u−ν/2 Iν(2
√

ηu).
Looking at the contour integration, a deformation through the saddle point ū adds a contri-
bution from the pole at −s, if and only if ū < −s. We include this contribution by writing∮

C
du

f1(u)
u + s

e−NL1(u) =
∮

C̃
du

f1(u)
u + s

e−NL1(u) −
∮

Cs

du Θ(−s− ū)
f1(u)
u + s

e−NL1(u), (4.18)

where C̃ is a contour, which enlarges C by also encircling the pole at −s. In contrast, Cs is
a simple contour encircling only the pole at −s. The function Θ(x) is the Heaviside step
function with argument x, being 1, when x ≥ 0 and zero otherwise. Applying the Basic

10The reader might note: It is feasable to consider to show that g(u) has only real zeros using the fundemental
theorem of algebra.
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Residue Theorem to the second term in the above expression yields

I(s) =
1

2πi

∮
C̃

du
f1(u)
u + s

e−NL1(u) − Θ(−s− ū)
2πi

2πi f1(−s)e−NL1(−s) .

Furthermore, we have L1(−s) = −L2(s) and

f1(−s) = (−1)ν/2s−ν/2 Iν(2
√

sηi) = (−1)ν/2i−ν︸ ︷︷ ︸
=1

s−ν/2 Jν(2
√

ηs) .

The expansion via u = ū + i 1√
N

y yields for the exponential

−NL1(u) = −NL1

(
ū + i

1√
N

y
)
= −N

[
L1(ū) + L′1(ū)

iy√
N

+
1
2
L′′1 (ū)

(
iy√
N

)2

+O(N−3/2)

]

= −NL1(ū) +
1
2
L′′1 (ū)y2 +O(N−1/2) = NL2(s̄)−

1
2
L′′2 (s̄)y2 +O(N−1/2) .

Similarly, we find for the function f1(u):

f1

(
ū + i

1√
N

y
)
= f1(ū) + f ′1(ū)

(
iy√
N

)
+O(N−1)

= f1(ū)
(

1 +
f ′1(ū)
f1(ū)

(
iy√
N

))
+O(N−1) .

The consequence of the line above is that for f1(ū) 6= 0 the second term and also all higher
orders vanish in the large N-limit. Therefore, we obtain

I(s) =
1

2πi

∮
C̃

du
f1(u)
u + s

e−NL1(u) −Θ(−s + s̄) f1(−s)eNL2(s)

=
1

2πi
i√
N

∫ ∞

−∞
dy

f1(−s̄)
ū + i 1√

Ny+s

eNL2(s̄)e−
1
2L′′2 (s̄)y2 −Θ(−s + s̄) f1(−s)eNL2(s) .

This leads to the kernel k(ρ, η) taking the form

k(ρ, η) =

[ ∫ ∞

0
ds f2(s)e−NL2(s) f1(−s)eNL2(s)Θ(s̄− s)

− 1
2π
√

N

∫ ∞

−∞
dy e−

1
2L′′2 (s)y2

∫ ∞

0
ds f2(s)e−NL2(s)eNL2(s̄) f1(s̄)

1
ū + iN−1/2y + s

]
.

The next step is expand the integration over s around s̄. We find

−NL2(s) = −NL2

(
s̄ +

1√
N

x
)
= −N

[
L2(s̄) + L′2(s̄)

x√
N

+
1
2
L′′2 (s̄)

(
x√
N

)2

+O(N−3/2)

]

= −NL2(s̄)−
1
2
L′′2 (s̄)x2 +O(N−1/2)
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and

f2

(
s̄ +

1√
N

x
)
= f2(s̄) + f ′2(s̄)

(
x√
N

)
+O(N−1)

= f2(s̄)
(

1 +
f ′2(s̄)
f2(s̄)

(
x√
N

))
+O(N−1) .

Again all higher order terms vanish for large N and the kernel becomes

k(ρ, η) =

[ ∫ s̄

0
ds f2(s) f1(−s)− 1

2π
√

N
eNL2(s̄) f1(s̄)

∫ ∞

−∞
dy e−

1
2L′′2 (s)y2

×
∫ ∞

−∞
dx

1√
N

f2(s̄)e−NL2(s̄)e−
1
2L′′2 (s̄)x2

√
N

x + iy

]
=

[ ∫ s̄

0
ds f2(s) f1(−s)− 1√

N
1

2π
f2(s̄) f1(s̄)

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−

1
2L′′2 (s̄)y2

e−
1
2L′′2 (s̄)x2 1

x + iy

]
︸ ︷︷ ︸

independent of N

In the last line above we have used the upper bound for L′′2 (s̄) from Eq. (4.17), which implies
that the integration with respect to x and y is always a finite Gaussian integral, independent
of N. Thus, the second term vanishes for large N and we only need to consider the first term
further. For s̄ > 0 we find∫ s̄

0
ds f1(−s) f2(s) =

∫ s̄

0
ds s−ν/2 Jν(2

√
ηs)sν/2 Jν(2

√
ρs) =

∫ s̄

0
ds Jν(2

√
ηs)Jν(2

√
ρs) .

Doing the substitution s = s̄τ we obtain∫ s̄

0
ds Jν(2

√
ηs)Jν(2

√
ρs) = s̄

∫ 1

0
dτ Jν(

√
4ηs̄
√

τ)Jν(
√

4ρs̄
√

τ) .

Using another substitution, namely, ζ2
a = 4s̄ρ and ζ2

b = 4s̄η and setting s̄ = Ξ we can write

k

(
ρ =

ζ2
a

4Ξ
, η =

ζ2
b

4Ξ

)
= Ξ

∫ 1

0
dτ Jν(ζa

√
τ)Jν(ζb

√
τ) .

The above integral can be found in [130]. For a 6= b we find∫ 1

0
dτ Jν(a

√
τ)Jν(b

√
τ) = 2

bJν−1(b)Jν(a)− aJν−1(a)Jν(b)
a2 − b2

and for a = b ∫ 1

0
dτ J2

ν(a
√

τ) = J2
ν(a)− 2ν

a
Jν(a)Jν+1(a) + J2

ν+1(a) .

Together with the known formula for Bessel functions Jν(x),

Jν−1(x) =
2ν

x
Jν(x)− Jν+1(x) ,



64 Chapter 4. Asymptotic Analysis of Correlation Kernels

the rescaled kernel becomes, for ζ2
a 6= ζ2

b ,

k

(
ρ =

ζ2
a

4Ξ
, η =

ζ2
b

4Ξ

)
= 2Ξ

ζa Jν+1(ζa)Jν(ζb)− ζb Jν+1(ζb)Jν(ζa)

ζ2
a − ζ2

b
. (4.19)

For ζ2
a = ζ2

b we find

k

(
ρ =

ζ2
a

4Ξ
, η =

ζ2
b

4Ξ

)
= Ξ

(
J2
ν(ζa)−

2ν

ζa
Jν(ζa)Jν+1(ζa) + J2

ν+1(ζa)

)
. (4.20)

Finally, we obtain for ζ2
a 6= ζ2

b using Eq. (4.19)

lim
N→∞

1
2NΞ

K(0)
N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
= lim

N→∞

1
2Ξ

k

(
ρ =

ζ2
a

4Ξ
, η =

ζ2
b

4Ξ

)

=
ζa Jν+1(ζa)Jν(ζb)− ζb Jν+1(ζb)Jν(ζa)

ζ2
a − ζ2

b

and for ζ2
a = ζ2

b using Eq. (4.20)

lim
N→∞

1
2NΞ

K(0)
N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
= lim

N→∞

1
2Ξ

k

(
ρ =

ζ2
a

4Ξ
, η =

ζ2
b

4Ξ

)

=
1
2

(
J2
ν(ζa)−

2ν

ζa
Jν(ζa)Jν+1(ζa) + J2

ν+1(ζa)

)
,

which finishes the proof.

4.3 Asymptotic analysis for N f 6= 0

In this section we study the large N limit of the correlation kernel of the chGUE(N) with an
external source extended by N f massive flavors. The kernel at finite N was derived in the
previous section, see Eq. (4.15). We can state and prove the following Proposition:

Proposition 4.3. For the chGUE(N) with an external source and N f massive flavors the JPDF was
given by Eq. (4.2). The correlation kernel at finite matrix size N reads (see Eq. (4.15)):

K
(N f )

N (x1, x2) =
(

det[Bi(m2
f )]

N f
i, f=1

)−1

√√√√√∏
N f
f=1(x2 + m2

f )

∏
N f
f=1(x1 + m2

f )

× det


K(0)

N (x1, x2) K̂(0)
N (m2

1, x2) . . . K̂(0)
N (m2

N f
, x2)

B̂1(x1) B1(m2
1) . . . B1(m2

N f
)

...
... . . .

...
B̂N f (x1) BN f (m

2
1) . . . BN f (m

2
N f
)

 .

(4.21)
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The 1 × 1 entry of the matrix in the numerator of the above ratio of determinants is given by an
expression which is equal to the kernel for N f = 0, i.e.

K(0)
N (x1, x2) =

−1
2πi

∫ ∞

0
dssν/2e−s Jν(2

√
sx1)

N

∏
n=1

(an + s)
∮

C
du

u−ν/2e−u Iν(2
√

ux2)

∏N
n=1(an − u)

1
u + s

.

Similarly, the other entries of the first row, K̂(0)
N (m2

f , x2), are given as

K̂(0)
N (m2

f , x2) ≡
−1
2πi

∫ ∞

0
dssν/2e−s Iν

(
2
√

sm2
f

) N

∏
n=1

(an + s)
∮

C
du

u−ν/2e−u Iν(2
√

ux2)

∏N
n=1(an − u)

1
u + s

.

Furthermore, we have for the other entries of the matrix in the numerator:

B̂i(x1) =
∫ ∞

0
dt tν/2e−t Jν(2

√
x1t)

N

∏
n=1

(an + t) ti−1 ,

and Bi(m2
f ) =

∫ ∞

0
dt tν/2e−t Iν

(
2
√

m2
f t
) N

∏
n=1

(an + t) ti−1 .

Rescaling the variables x1, x2 as

x1 =
ζ2

a
4NΞ

, x2 =
ζ2

a
4NΞ

, and m2
f =

µ2
f

4NΞ
,

where Ξ can be identified with the temperature dependent chiral condensate, leads to the following

large N limit of the kernel K
(N f )

N (x1, x2):

lim
N→∞

1
2NΞ

K
(N f )

N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
=

√√√√√∏
N f
f=1(ζ

2
b + µ2

f )

∏
N f
f=1(ζ

2
a + µ2

f )

×

det


BJJ(ζa, ζb) BIJ(µ1, ζb) . . . BIJ(µN f , ζb)

Jν(ζa) Iν(µ1) . . . Iν(µN f )
...

... . . .
...

ζ
N f−1
a Jν+N f−1(ζa) (−µ1)

N f−1 Iν+N f−1(µ1) . . . (−µN f )
N f−1 Iν+N f−1(µN f )


det

[
(−µ f )j−1 Iν+j−1(µ f )

]N f
j, f=1

,

(4.22)

where we have introduced the shorthand notations for the Bessel kernel:

BJJ(ζa, ζb) ≡
ζa Jν+1(ζa)Jν(ζb)− ζb Jν+1(ζb)Jν(ζa)

ζ2
a − ζ2

b
,

BI J(µ f , ζb) ≡
µ f Iν+1(µ f )Jν(ζb) + ζb Jν+1(ζb)Iν(µ f )

µ2
f + ζ2

b
.
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Proof. The given determinantal form of the kernel in Eq. (4.21) indicates that the large N-
limit affects the entries of the matrices directly. The determinantal structure is preserved
in the large N limit. The root prefactor takes the desired form by putting in the rescaled
variables and will be neglected in the analysis until the end of the proof.
Before we start with the entries directly, we use the determinantal structure of the kernel to
replace the monomials ti−1 with monic Herminte polynomials hi−1(t) in the entries B̂(x1)
and B(m2

f ) respectively. This is possible, because we can add and substract rows in the
determinants of the kernel without changing its value. Then, we can consider the large
N-limit of all four different entry-types directly. We have to consider

K(0)
N (x1, x2) =

−1
2πi

∫ ∞

0
dssν/2e−s Jν(2

√
sx1)

N

∏
n=1

(an + s)
∮

C
du

u−ν/2e−u Iν(2
√

ux2)

∏N
n=1(an − u)

1
u + s

,

K̂(0)
N (m2

f , x2) ≡
−1
2πi

∫ ∞

0
dssν/2e−s Iν

(
2
√

sm2
f

) N

∏
n=1

(an + s)
∮

C
du

u−ν/2e−u Iν(2
√

ux2)

∏N
n=1(an − u)

1
u + s

,

B̂i(x1) =
∫ ∞

0
dt tν/2e−t Jν(2

√
x1t)

N

∏
n=1

(an + t) hi−1(t),

Bi(m2
f ) =

∫ ∞

0
dt tν/2e−t Iν

(
2
√

m2
f t
) N

∏
n=1

(an + t) hi−1(t).

The first entry-type is exactly the kernel for N f = 0. Therefore, we can directly apply the
large-N-limit derived in Proposition 4.1, namely

lim
N→∞

1
2NΞ

K(0)
N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
=

ζa Jν+1(ζa)Jν(ζb)− ζb Jν+1(ζb)Jν(ζa)

ζ2
a − ζ2

b

for x1 6= x2, which is equal to BJJ(ζa, ζb). Similarly, we have for x1 = x2:

lim
N→∞

1
2NΞ

K(0)
N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
a

4NΞ

)
=

1
2

(
J2
ν(ζa)−

2ν

ζa
Jν(ζa)Jν+1(ζa) + J2

ν+1(ζa)

)
.

The second entry-type K̂(0)
N (m2

f , x2) differs from K(0)
N (x1, x2) by the change

Jν(2
√

sx1)→ Iν

(
2
√

sm2
f

)
.

Since Iν(x) = i−ν Jν(ix), we can replace m2
f with −x1 and multiply everything with a factor

of i−ν to get from K̂(0)
N (m2

f , x2) to K(0)
N (x1, x2). Thus, the large N-analysis is analogous, if we

rescale the masses by m2
f =

µ2
f

4NΞ . From Proposition 4.1 we obtain with ζa = iµ f

i−ν lim
N→∞

1
2NΞ

K(0)
N

(
x1 = −m2

f , x2

)
= i−ν ζa Jν+1(ζa)Jν(ζb)− ζb Jν+1(ζb)Jν(ζa)

ζ2
a − ζ2

b

=
µ f Iν+1(µ f )Jν(ζb) + ζb Jν+1(ζb)Iν(µ f )

µ2
f + ζ2

b
,
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which can be used to write

lim
N→∞

1
2NΞ

K(0)
N

(
m2

f =
µ2

f

4NΞ
, x2 =

ζ2
b

4NΞ

)
=

µ f Iν+1(µ f )Jν(ζb) + ζb Jν+1(ζb)Iν(µ f )

µ2
f + ζ2

b
.

The right-hand side in the equation above is equal to BI J(µ f , ζB), containing Bessel functions
Jν(z) and Iν(z), as desired.
The remaining two entry-types are also closely related in their large N asymptotics. To
obtain the desired result of the whole correlation kernel, we note that the determinantal
structure of the kernel K

(N f )

N (x1, x2) with its ratio of two determinants allows us to cancel
factors, which appear in both numerator and denominator. This becomes important in the
large N asymptotics of the entries of B̂j and Bj.
First we look at

B̂j(x1) =
∫ ∞

0
dt tν/2e−t Jν(2

√
x1t)

N

∏
n=1

(an + t) hj−1(t) .

The first step is to rescale with11

t→ Nt, an → Nan and x1 =
ζ2

a
4NΞ

.

Additionally, we express the argument of the Hermite polynomial as

t→
√

NL′′2 (Ξ)
2

(t− Ξ) .

The next step is to expand the integration around the saddle point Ξ by

t = Ξ +

√
2

NL′′2
p ,

which leads to

B̂j(x1) =
∫ ∞

0
dt tν/2e−t Jν(2

√
x1t)

N

∏
n=1

(an + t) hj−1(t)

= Nγ

√
2

L′′2 (Ξ)

∫ ∞

−∞
dp

(
Ξ +

√
2

NL′′2 (Ξ)
p

)ν/2

Jν

ζa

√√√√1 +
1
Ξ

√
2

NL′′2 (Ξ)
p


× e−NL2(Ξ)e−p2

e−O(N1/2)hj−1(p) .

The expansion around Ξ in the large N limit leads to subleading contributions in the expo-
nential of the order O(N1/2), which can be omitted as N → ∞ as e−O(N1/2) → 1. Further-
more, we use

hj−1(p) = 21−j(−1)j−1ep2 dj−1

dpj−1 e−p2
.

11For convenience we rescale the Hermite polynomial argument with N by first rephrasing it as a monomial,
then rescaling, and then rewriting it back as a Hermite polynomial.
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Now we do integration by parts (j− 1-times), where we can use that the arising boundary
terms vanish in each step. This leads to

B̂j(x1) = Nγ

√
2

L′′2 (Ξ)
e−NL2(Ξ)21−j

∫ ∞

−∞
dpe−p2

× dj−1

dpj−1

(
Ξ +

√
2

NL′′2 (Ξ)
p

)ν/2

Jν

ζa

√√√√1 +
1
Ξ

√
2

NL′′2 (Ξ)
p

 .

Inserting
(

Ξ
ζ2

a

)ν/2 (
ζ2

a
Ξ

)ν/2
and substituting z =

√
ζ2

a +
ζ2

a
Ξ

√
2

NL′′2 (Ξ)
p gives us

dp =
Ξ
ζ2

a

√
2NL′′2 (Ξ)zdz,

dj−1

dpj−1 =

(
Ξ
ζ2

a

)−j+1 [
2NL′′2 (Ξ)

]−j+1
2

(
d

zdz

)j−1

.

Thus, we obtain

B̂j(x1) = Nγ

√
2

L′′2 (Ξ)
e−NL2(Ξ)21−j

(
Ξ
ζ2

a

)ν/2−j+1 [
2NL′′2 (Ξ)

]−j+1
2

×
∫ ∞

−∞
dpe−p2

(
d

zdz

)j−1

zν Jν(z)

= C̃j(N)ζ
−ν+2(j−1)
a

∫ ∞

−∞
dpe−p2

[
z2ν

(
d

zdz

)j−1

z−ν Jν(z)

+ z−ν Jν(z)
(

d
zdz

)j−1

z2ν

]
.

The prefactor C̃j(N) can be extracted from the determinants in the kernel from each row in
both numerator and denominator, because it appears also in the expansion of the entry-type
Bj(m2

f ), namely

Bj(m2
f ) = Nγ

√
2

L′′2 (Ξ)
e−NL2(Ξ)21−j

(
Ξ
µ2

f

)ν/2(
Ξ
µ2

f

)−j+1 [
2NL′′2 (Ξ)

]−j+1
2

×
∫ ∞

−∞
dpe−p2

(
d

z f dz f

)j−1

zν
f Iν(z f )

= C̃j(N)µ
−ν+2(j−1)
f

∫ ∞

−∞
dpe−p2

[
z2ν

f

(
d

z f dz f

)j−1

z−ν
f Iν(z f )

+ z−ν
f Iν(z f )

(
d

z f dz f

)j−1

z2ν
f

]
.

In the lines above we have used

m f =
µ2

f

4NΞ
, and z f =

√√√√µ2
f +

µ2
f

Ξ

√
2

NL′′2 (Ξ)
p .
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We can now neglect the C̃j(N) factor and apply(
d

zdz

)m

z−ν Jν(z) = (−1)mz−ν−m Jν+m(z),(
d

zdz

)m

z−ν Iν(z) = z−ν−m Iν+m(z),(
d

zdz

)j−1

z2ν =

{
z2ν, for j = 1,

∏
j−1
n=0(2ν− 2n)z2ν−2(j−1), for j > 1.

For j > 1 we can write

B̂j(x1)→ ζ
−ν+2(j−1)
a

∫ ∞

−∞
dpe−p2

[
(−1)j−1zν−(j−1) Jν+j−1(z) +

j−1

∏
n=0

(2ν− 2n)zν−2(j−1) Jν(z)

]
,

Bj(m2
f )→ µ

−ν+2(j−1)
f

∫ ∞

−∞
dpe−p2

[
zν−(j−1)

f Iν+j−1(z f ) +
j−1

∏
n=0

(2ν− 2n)zν−2(j−1)
f Iν(z f )

]
,

and for j = 1 we obtain

B̂1(x1)→ ζ−ν
a

∫ ∞

−∞
dpe−p2

[zν Jν(z) + zν Jν(z)] = 2ζ−ν
a

∫ ∞

−∞
dpe−p2

zν Jν(z),

B1(m2
f )→ µ−ν

f

∫ ∞

−∞
dpe−p2

[
zν

f Iν(z f ) + zν)
f Iν(z f )

]
= 2µ−ν

f

∫ ∞

−∞
dpe−p2

zν
f Iν(z f ).

The factor of 2 can be extracted from the determinants and cancels. Additionally, we see
that for large N z and z f approach α and µ f respectively. Thus, both become independent of
p. Therefore, we write

B̂1(x1)
N→∞→ ζ−ν

a ζν
a Jν(ζa) = Jν(ζa),

B1(m2
f )

N→∞→ µ−ν
f µν

f Iν(µ f ) = Iν(µ f ),

and for j > 1

B̂j(x1)
N→∞→ ζ

−ν+2(j−1)
a

[
(−1)j−1ζ

ν−(j−1)
a Jν+j−1(ζa) +

j−1

∏
n=0

(2ν− 2n)ζν−2(j−1)
a Jν(ζa)

]

= (−1)j−1

[
ζ

j−1
a Jν+j−1(ζa) + (−1)j−1

j−1

∏
n=0

(2ν− 2n)Jν(ζa)

]
,

Bj(m2
f )

N→∞→ µ
−ν+2(j−1)
f

[
µ

ν−(j−1)
f Iν+j−1(µ f ) +

j−1

∏
n=0

(2ν− 2n)µν−2(j−1)
f Iν(µ f )

]

= (−1)j−1

[
(−µ f )

j−1 Iν+j−1(µ f ) + (−1)j−1
j−1

∏
n=0

(2ν− 2n)Iν(µ f )

]
.

The factors (−1)j−1 can be taken out of the determinants in numerator and denominator
of the kernel and can thus be neglected. The second of the two terms in the above expres-
sions of Bj(m2

f ) and B̂j(x1) are multiples of the j = 1 row. By determinantal transformation
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(substracting of rows) we then obtain the final large N result:

lim
N→∞

1
2NΞ

K
(N f )

N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
=

√√√√√∏
N f
f=1(ζ

2
b + µ2

f )

∏
N f
f=1(ζ

2
a + µ2

f )

×

det


BJJ(ζa, ζb) BIJ(µ1, ζb) . . . BIJ(µN f , ζb)

Jν(ζa) Iν(µ1) . . . Iν(µN f )
...

... . . .
...

ζ
N f−1
a Jν+N f−1(ζa) (−µ1)

N f−1 Iν+N f−1(µ1) . . . (−µN f )
N f−1 Iν+N f−1(µN f )


det

[
(−µ f )j−1 Iν+j−1(µ f )

]N f
j, f=1

.

This finishes the proof.

4.4 Summary

This chapter is concerned with the asymptotic behavior of correlation kernels for the chGUE(N)
with an external source and its extension with N f massive flavors. In section 4.1 we derived
a finite N representation of the corresponding correlation kernels. We found a determinan-
tal structure depending on the number of flavors N f , see Eq. (4.15). This representation of
the kernel is particularly suitable for large N analysis, which is needed for comparison with
the microscopic limit of the theory of strong interactions with temperature.
In section 4.2 we performed a saddle point analysis and the large N analysis of the kernel for
the chGUE(N) with an external source, which is equivalent to the quenched approximation
of the effective model for QCD without N f massive flavors. We found that the correlation
kernel of the chGUE(N) with an external source becomes equal to the Bessel kernel in the
large N limit. This is in agreement with the predicted hard edge behaviour of the Marchenko
Pastur distribution close to the origin. Furthermore, this implies that the correlation kernels
at the hard edge for the chGUE(N) with and also without external source belong to the same
universality class. We will discuss this in more detail in chapter 5.
In section 4.3 we extended the large N analysis to the chGUE(N) with external source and
N f massive flavors. The determinantal structure at finite N from section 4.1 carries over to
the large N limit. We find that the matrix entries in the ratio of determinants are either equal
to Bessel kernels or Bessel functions of the first kind, see. Eq. (4.22).
The limiting kernels need to be compared to existing results for both zero and non-zero
temperature to assess questions of universality. This will be done in the next chapter.
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Chapter 5

Universality

In this chapter we discuss how the large N limit results derived in chapter 4 for the corre-
lation kernel can be compared to existing results for zero temperature models [63, 64] and
non-zero temperature models [12, 13]. The large N asymptotic behavior of the correlation
kernel of the deformed chGUE(N) was studied in [63, 64]. The model discussed in both
references does not include temperature in contrast to the chGUE(N) with external source
discussed in chapter 4. The JPDF of the model discussed in [63, 64] is expressed via the
partition function

Z
(N f ,0)
N =

(
N

∏
n=1

∫ ∞

0
dλn w(N f )(λn)

)
∆2

N(λ1, . . . , λN), (5.1)

where the weight function w(N f )(λn) is given as

w(N f )(λ) = e−λ
N f

∏
f=1

(λ + m2
f ) = w(0)(λ)

N f

∏
f=1

(λ + m2
f ). (5.2)

This is a special case of the JPDF of the deformed chGUE(N) given in chapter 2. Setting
ν = 0 in Eq. (2.10) we obtain Eqs. (5.1) and (5.2).
We present a method to compare both results in section 5.1 using the Theorem 2.2 of Ake-
mann and Vernizzi [90] presented in chapter 2, which reads:

Theorem 5.1. Assume we start with a random matrix model given by a partition function ZN of
∆2

N-type, like in Eq. (5.1), with factorizing weight function w(K)(x). Let {vi | i = 1, . . . , M} and
{ui | i = 1, . . . , L} be two sets of numbers which are pairwise distinct among each set. Without
loss of generality we assume M ≥ L, where the empty set with L = 0 is permitted as well. Taking
orthonormal polynomials Pk(x) with respect to the weight w(0)(x) and together with norms hk, the
following statement can be proven:

EP

[
M

∏
i=1

DN(vi)
L

∏
j=1

DN(uj)

]
=

∏N+M−1
i=N

√
hi ∏N+L−1

j=N
√

hj

∆M({v})∆L({u})
det

1≤l,m≤M
[B(vl , um)]

with the definition

B(vl , um) ≡
{

∑N+L−1
i=0 Pi(vl)Pi(um) for m = 1, . . . , L,

PN+m−1(vl) for m = L + 1, . . . , M.

The comparison with our result for the kernel leads to an equivalence, which displays the
universality of the correlation kernel we derived in chapter 4.
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In section 5.2 we connect the results of [63, 64], and consequently our results, with existing
results for the k-point function derived via supersymmetry. The JPDF of the model in [12]
coincides with the chGUE(N) with external source for ν = 0, compare Eq. (2.11)

Pext
chGUE(λ1, . . . , λN) =

1

Z(0,T)
N

(
N

∏
n=1

e−λn

)
det

[
I0

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN). (5.3)

In [13] this model is extended, adding N f massive flavors. The JPDF is comparable to Eq.
(2.12) for ν = 0. Thus, the authors considered

P temp
chGUE(λ1, . . . , λN) =

1

Z
(N f ,T)
N

(
N

∏
n=1

e−λn

)( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)

× det
[

I0

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN).

(5.4)

We show that the representation of the k-point function, in its large N limit, derived in [12]
for N f = 0 and in [13] for N f 6= 0 is equivalent to the k-point function obtained via the
kernel of [63, 64] for the zero-temperature model. This also links our large N result of the
correlation kernel to the results of [12, 13].

5.1 Equivalence with results for zero temperature models

In the references [63, 64] the authors, Damgaard and Nishigaki in [63], as well as Wilke, Guhr
and Wettig in [64], looked at the chGUE(N) with N f massive flavors, without temperature
and topology in the large N limit. Thus, our result from chapter 4 for the correlation kernel
with N f flavors - see Eq. (4.22) - has to be compared to their result, after setting ν = 0 and
an = 0 for all n = 1, . . . , N. This comparison would help to answer the question wether
there exists a universal expression for the correlation kernel of this symmetry class in the
large N limit at the hard edge, which is independent of the influence of external parameters
like temperature in our application.
In the large N limit, as well as for finite N, the k-point correlation funcions of the chGUE(N)
symmetry class form determinantal point processes. Thus, we can write

ρ
(N f )

S (ζ1, . . . , ζk) = lim
N→∞

1
(NΣ)k ρ

(N f )

N

(
ζ1

2NΣ
, . . . ,

ζk

2NΣ

)
=

1
Σk det

1≤a,b≤k

[
K
(N f )

S

(
ζa

2Σ
,

ζb

2Σ

)]
.

(5.5)

Σ denotes the chiral condensate, the order parameter of the chiral phase transition of QCD.
It is used as a rescaling parameter to properly describe the physical ingredients of this model
of QCD in the low-energy, small temperature, regime.
The large N result for the correlation kernel, stated in [63, 64], has a determinantal structure,
as does our result - compare Eq. (4.22). Interestingly, the dimension of the matrices inside
the determinants of [63, 64] are different from our results. In [63, 64] the N f massive flavors
and the 2 variables of the kernel appear as entries of a matrix and its determinant in terms of
Bessel functions. Crucially, the variables do not combine directly to N f = 0 kernels as entries
of the given matrix as was the case in Eq. (4.22) (recall the first row of Eq. (4.22)). This leads
to a determinantal structure of size N f + 2 in contrast to our N f + 1. More precisely, the
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authors of [63, 64] found the following form of the correlation kernel for ν = 01

K
(N f )

S

(
ζa

2Σ
,

ζb

2Σ
;
{

µ f

2Σ

}N f

f=1

)
=
−Σ
√
|ζaζb|

ζ2
a − ζ2

b

×

det



J0(ζa) ζa J1(ζa) . . . ζ
N f +1
a JN f +1(ζa)

J0(ζb) ζb J1(ζb) . . . ζ
N f +1
b JN f +1(ζb)

I0(µ1) −µ1 I1(µ1) . . . (−µ1)
N f +1 IN f +1(µ1)

...
... . . .

...
I0(µN f ) −µN f I1(µN f ) . . . (−µN f )

N f +1 IN f +1(µN f )


∏

N f
f=1

√
(ζ2

a + µ2
f )(ζ

2
b + µ2

f ) det
1≤ f ,g≤N f

[
(−µ f )g−1 Ig−1(µ f )

] .

(5.6)

Recall that the RMT ensemble underlying the analysis in [63, 64] is of the orthogonaly poly-
nomial ensemble class, with two Vandermonde determinants in the JPDF. Thus, orthogonal
polynomials methods are applicable leading to the correlation kernel via the Christoffel-
Darboux formula, which was done in chapter 2. The route via expectation values of charac-
teristic polynomials is also possible and Theorem 5.1 can be applied to obtain many different
expressions of the correlation kernel. This will be the main idea in this section to show the
equivalence of our result - see Proposition 4.3, Eq. (4.22) - with the result obtained in Eq.
(5.6). To make the application of Theorem 5.1 simpler, we use another result for the large N
correlation kernel. It was shown in [57, 58] by Akemann and Damgaard that the correlation
kernel in its large N limit, as well as the k-point correlation functions can be expressed in
terms of finite-volume partition functions

K
(N f )

S

(
ζa, ζb;

{
µ f
}N f

f=1

)
= (−1)ν

√
|ζaζb|

N f

∏
f=1

√
(ζ2

a + µ2
f )(ζ

2
b + µ2

f )

×
Z (N f +2)

ν (µ1, . . . , µN f , iζa, iζb)

Z (N f )
ν (µ1, . . . , mN f )

(5.7)

with k-point correlation functions

ρ
(N f )

S (ζ1, . . . , ζk) = det
1≤a,b≤k

[
K
(N f )

S

(
ζa, ζb; {µ f }

N f
f=1

)]
.

Finite-volume partition functions as limits of RMT partition functions

It is known that the finite-volume partition function of N f massive flavors, given in Eq. (5.7),
can be written as (see for example [80])

Z (N f )
ν (µ1, . . . , µN f ) =

det
1≤a,b≤N f

[
µb−1

a Iν+b−1(µb)

]
∆N f (µ

2
1, . . . , µ2

N f
)

.

1The kernel in [63] is given without the rescaling factor of 2Σ in the arguments of the determinants. We can
include these factors, as they are canceled in the ratio of determinants in Eq. (5.6), when also including the
prefactor Σk in the correlation functions.
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We will demonstrate how the kernel in Eq. (5.6), can be brought into the same form as our
kernel in Eq. (4.22), using the representation of the finite-volume partition function in terms
of the large N-limit of RMT partition functions for zero temperature, i.e.

Z (N f +2k)
ν (µ1, . . . , µN f , {iζm}2k

m=1) = lim
N→∞

Z
(N f +2k,0)
N (m2

1, . . . , m2
N f

, {z2
m}2k

m=1)

C
[N f +2k]
N

,

which we introduced back in chapter 2 - see Eq. (2.29). The constant C
[N f +2k]
N reads

C
[N f +2k]
N = 2(N f +2k)(N f +2k−1)/22ν(N f +2k)

N f +2k

∏
j=1

Γ(j)

( N

∏
j=1

Γ(j + ν)Γ(N f + 2k + j)

)

× N!Nν(N f +2k)

( N f

∏
f=1

µ−ν
f

)
(−1)νk

(
2k

∏
m=1

ζ−ν
m

)
.

(5.8)

Because of Eq. (5.7) and (5.8) we only need to compute Eq. (5.8) for k = 1 to show the
equivalence between the representations Eq. (5.6) and Eq. (4.22).
It is also convenient to recall that, for zero flavors N f = 0, the deformed chGUE(N) con-
sidered in [63, 64], becomes the classical chGUE(N) with weight function w(x) = w(0)(x),
which leads to orthogonal polynomials proportional to the generalized Laguerre polyno-
mials, recall Eq. (2.18). Thus, we obtain the partition function Z(0,0)

N of the chGUE(N) in
terms of norms hn of these orthogonal polynomials. Those norms are simple products of
Γ-functions and we find

Z(0,0)
N = N!

N

∏
j=1

hj−1 = N!
N

∏
j=1

Γ(j + ν)Γ(j) . (5.9)

By Eqs. (5.7), (5.8) and (5.8) it remains to show that Eq. (5.8) leads to two different deter-
minantal representations for the finite-volume partition function by applying Theorem 5.1.
Taking Eq. (5.8) for k = 1 leads to

Z (N f +2)
ν (µ1, . . . , µN f , iζa, iζb) = lim

N→∞

Z
(N f +2,0)
N (m2

1, . . . , m2
N f

, z2
a, z2

b)

C
[N f +2]
N

(5.10)

with

m2
f =

µ2
f

4N
, for f = 1, . . . , N f , z2

a = −
ζ2

a
4N

, and z2
b = −

ζ2
b

4N
. (5.11)

The constant C
[N f +2]
N reads

C
[N f +2]
N = 2(N f +2)(N f +1)/22ν(N f +2)

(N f +2

∏
j=1

Γ(j)

)(
N

∏
j=1

Γ(j + ν)Γ(N f + 2 + j)

)

× N!Nν(N f +2)

( N f

∏
f=1

µ−ν
f

)
(−1)νζ−ν

a ζ−ν
b .

(5.12)
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Writing partition functions as expectation values

The expression of the expectation value can be expressed in terms of other expectation val-
ues, which we already discussed in chapter 2. In particular, we can apply the following fact:
The partition function Z(M,0)

N of the deformed chGUE(N) can for any number of flavors M
be expressed as an expectation value of M characteristic polynomials, with respect to the
classical chGUE(N) weight function - recall Eq. (2.26):

Z(M,0)
N = (−1)NMZ(0,0)

N E

[
M

∏
f=1

DN(−m2
f )

]
. (5.13)

This helps us to express the finite N partition function in Eq. (5.10) as an expectation value
of N f + 2 characteristic polynomials with respect to the classical chGUE(N), namely2

Z
(N f +2,0)
N (m2

1, . . . , m2
N f

, z2
a, z2

b) =
Z(0,0)

N

(−1)N(N f +2)
E

[ N f

∏
f=1

DN(−m2
f )DN(−z2

a)DN(−z2
b)

]
. (5.14)

The expectation value can be expressed via Proposition 5.1 in many different ways, depend-
ing on how we divide the characteristic polynomials into sets of M and L characteristic
polynomials in the expression above. We need two particular cases of Theorem 5.1 as repre-
sentations for the expectation value. The first is obtained by taking M = N f + 2 and L = 0
and the second by taking M = N f + 1 and L = 1. The first case gives the kernel representa-
tion in Eq. (5.6) and the second case leads to our result in Proposition 4.3, Eq. (4.22).

Kernel representation equivalent to [63, 64]

In the case M = N f + 1 and L = 0 the expectation value in Eq. (5.14) becomes

E

[ N f

∏
f=1

DN(−m2
f )DN(−z2

a)DN(−z2
b)

]
=

(N+N f +1

∏
i=N

√
hi

) det
1≤k,j≤N f +2

[
Ck,j
]

∆N f +2({−m2},−z2
a,−z2

b)

via Theorem 5.1, where

Ck,j =
(−1)N+j−1 (N + j− 1)!√

hN+j−1


Lν

N+j−1(−m2
k), for k = 1, . . . , N f , j = 1, . . . , N f + 2,

Lν
N+j−1(−z2

a), for k = N f + 1, j = 1, . . . , N f + 2,

Lν
N+j−1(−z2

b), for k = N f + 2, j = 1, . . . , N f + 2.
(5.15)

We can extract the prefactors and obtain a determinant of Laguerre polynomials. For these
polynomials we know [130, Eq. 8.971.5]

Lν−1
N (x) = Lν

N(x)− Lν
N−1(x), (5.16)

2Note that we omit the index at the expectation value, which indicates that the underlying JPDF is the sim-
plest model we have introduced, namely the classical chGUE(N) without flavors, so N f = 0.
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which we can use to transform the determinant as

det


Lν

N(−m2
1) Lν

N(−m2
2) . . . Lν

N(−m2
N f
) Lν

N(−z2
a) Lν

N(−z2
b)

Lν
N+1(−m2

1) Lν
N+1(−m2

2) . . . Lν
N+1(−m2

N f
) Lν

N+1(−z2
a) Lν

N+1(−z2
b)

...
... . . .

...
...

...
Lν

N+N f +1(−m2
1) Lν

N+N f +1(−m2
2) . . . Lν

N+N f +1(−m2
N f
) Lν

N+N f +1(−z2
a) Lν

N+N f +1(−z2
b)



= det


Lν

N(−m2
1) . . . Lν

N(−m2
N f
) Lν

N(−z2
a) Lν

N(−z2
b)

Lν−1
N+1(−m2

1) . . . Lν−1
N+1(−m2

N f
) Lν−1

N+1(−z2
a) Lν−1

N+1(−z2
b)

... . . .
...

...
...

L
ν−N f−1
N+N f +1(−m2

1) . . . L
ν−N f−1
N+N f +1(−m2

N f
) L

ν−N f−1
N+N f +1(−z2

a) L
ν−N f−1
N+N f +1(−z2

b)

 ≡ detF .

The expectation value is then equal to

∏
N f +1
i=0

√
hN+i

∏
N f +2
j=1

√
hN+j−1︸ ︷︷ ︸

=1

(−1)N(N f +2)+1

(−1)N f (N f−1)/2

(4N)(N f +2)(N f +1)/2 ∏
N f +2
j=1 (−1)j−1Γ(N + j)detF

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )

= (−1)N(N f +2)
N+N f +2

∏
j=N+1

Γ(j)
2(N f +2)(N f +1)NN f (N f−1)/2N2N f +1 detF

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )
.

To compute the whole partition function in Eq (5.14) we have to include the prefactor,
namely Z(0,0)

N (−1)N(N f +2). The partition function Z(0,0)
N can be computed via norms, i.e.

Z(0)
N = N!

N

∏
j=1

hj−1 = N!
N

∏
j=1

Γ(j + ν)Γ(j) .

We obtain for the partition function Z
(N f +2,0)
N the expression

Z(0,0)
N

N+N f +2

∏
j=N+1

Γ(j)
2(N f +2)(N f +1)NN f (N f−1)/2N2N f +1 detF

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )

= N!
N

∏
j=1

Γ(j + ν)
N+N f +2

∏
j=1

Γ(j)
2(N f +2)(N f +1)NN f (N f−1)/2N2N f +1 detF

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )
.

The constant C
[N f +2]
N , as defined in Eq. (5.12), leads us to

Z
(N f +2)
N (m2

1, . . . , m2
N f

, z2
a, z2

b) =
C
[N f +2]
N

2ν(N f +2)

∏
N f +2
j=1 N−ν+j−1 detF

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )

×
(−1)νζν

a ζν
b

2−(N f +2)(N f +1)/2

( N f

∏
f=1

µν
f

)
.
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Hence, we have

Z (N f +2)
ν (µ1, . . . , µN f , iζa, iζb) =

(−1)νζν
a ζν

b

2ν(N f +2)

2(N f +2)(N f +1)/2
(

∏
N f
f=1 µν

f

)
∆N f ({µ2})(ζ2

a − ζ2
b)∏

N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )

× lim
N→∞

N f +2

∏
j=1

N−ν+j−1 detF .

Thus, the large N limit is reduced to the large N limit of the determinant of the matrix F .
The next step is to apply the large N asymptotics of Laguerre polynomials, namely [130, Eq.
8.978.2]

lim
N→∞

N−pLp
N+j

( z
N

)
= z−p/2 Jp(2

√
z), (5.17)

which is true for any fixed parameter j. Via Eq. (5.11) the determinant of F becomes in the
large N limit:

lim
N→∞

N f +2

∏
j=1

N−ν+j−1 detF =

( N f

∏
f=1

µ−ν
f

)
ζ−ν

a ζ−ν
b 2ν(N f +2)2−(N f +2)(N f +1)/2

det


Iν(µ1) . . . Iν(µN f ) Jν(ζa) Jν(ζb)

µ1 Iν−1(µ1) . . . µN f Iν−1(µN f ) ζa Jν−1(ζa) ζb Jν−1(ζb)
... . . .

...
...

...
µ

N f +1
1 Iν−N f−1(µ1) . . . µ

N f +1
N f

Iν−N f−1(µN f ) ζ
N f +1
a Jν−N f−1(ζa) ζ

N f +1
b Jν−N f−1(ζb)

 .

This means we obtain overall

Z (N f +2)
ν (µ1, . . . , µN f , iζa, iζb) =

(−1)ν

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )

det


Iν(µ1) . . . Iν(µN f ) Jν(ζa) Jν(ζb)

µ1 Iν−1(µ1) . . . µN f Iν−1(µN f ) ζa Jν−1(ζa) ζb Jν−1(ζb)
... . . .

...
...

...
µ

N f +1
1 Iν−N f−1(µ1) . . . µ

N f +1
N f

Iν−N f−1(µN f ) ζ
N f +1
a Jν−N f−1(ζa) ζ

N f +1
b Jν−N f−1(ζb)

 .

The determinant in the second line in the above equation can be transformed by applying
rules for Bessel functions (see [130, Eq. 8.486.1] and [130, Eq. 8.471.1])

zIν−1(z) = 2νIν(z) + zIν+1(z), and zJν−1(z) = 2νJν(z)− zJν+1(z). (5.18)

By iteration of row subtractions in the determinant and using the equation above, the indices
of the Bessel I- and J-functions can be raised from ν − m to ν + m for m = 0, . . . , N f + 1.
Additionally, we obtain powers of −1 for the Bessel J-function entries. These powers can be
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extracted from the determinant and we obtain

Z (N f +2)
ν (µ1, . . . , µN f , iζa, iζb) =

(−1)ν

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )

det


Iν(µ1) . . . Iν(µN f ) Jν(ζa) Jν(ζb)

µ1 Iν+1(µ1) . . . µN f Iν+1(µN f ) −ζa Jν+1(ζa) −ζb Jν+1(ζb)
... . . .

...
...

...
µ

N f +1
1 Iν+N f +1(µ1) . . . µ

N f +1
N f

Iν+N f +1(µN f ) (−ζa)
N f +1 Jν+N f +1(ζa) (−ζb)

N f +1 Jν+N f +1(ζb)


=

(−1)ν(−1)(N f +2)(N f +1)/2

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1(ζ

2
a + µ2

f )(ζ
2
b + µ2

f )

det


Iν(µ1) . . . Iν(µN f ) Jν(ζa) Jν(ζb)

−µ1 Iν+1(µ1) . . . −µN f Iν+1(µN f ) ζa Jν+1(ζa) ζb Jν+1(ζb)
... . . .

...
...

...
(−µ1)

N f +1 Iν+N f +1(µ1) . . . (−µN f )
N f +1 Iν+N f +1(µN f ) ζ

N f +1
a Jν+N f +1(ζa) ζ

N f +1
b Jν+N f +1(ζb)

 .

Putting this representation of the finite-volume partition function into the kernel formula
Eq. (5.7) we obtain with Eq. (5.8)

K
(N f )

S

(
ζa, ζb;

{
µ f
}N f

f=1

)
= (−1)ν

√
|ζaζb|

N f

∏
f=1

√
(ζ2

a + µ2
f )(ζ

2
b + µ2

f )
Z (N f +2)

ν (µ1, . . . , µN f , iζa, iζb)

Z (N f )
ν (µ1, . . . , mN f )

=
√
|ζaζb|

∆N f (µ
2
1, . . . , µ2

N f
)

det
1≤a,b≤N f

[
Ba,b({µ f }

N f
f=1)

] (−1)(−1)N f (N f−1)/2

∆N f ({µ2})(ζ2
a − ζ2

b)∏
N f
f=1

√
(ζ2

a + µ2
f )(ζ

2
b + µ2

f )

det


Iν(µ1) . . . Iν(µN f ) Jν(ζa) Jν(ζb)

−µ1 Iν+1(µ1) . . . −µN f Iν+1(µN f ) ζa Jν+1(ζa) ζb Jν+1(ζb)
... . . .

...
...

...
(−µ1)

N f +1 Iν+N f +1(µ1) . . . (−µN f )
N f +1 Iν+N f +1(µN f ) ζ

N f +1
a Jν+N f +1(ζa) ζ

N f +1
b Jν+N f +1(ζb)


=

−
√
|ζaζb|

(ζ2
a − ζ2

b)∏
N f
f=1

√
(ζ2

a + µ2
f )(ζ

2
b + µ2

f )

[
det

1≤ f ,g≤N f

(
(−µ f )

g−1 Iν+g−1(µ f )
)]−1

det


Iν(µ1) . . . Iν(µN f ) Jν(ζa) Jν(ζb)

−µ1 Iν+1(µ1) . . . −µN f Iν+1(µN f ) ζa Jν+1(ζa) ζb Jν+1(ζb)
... . . .

...
...

...
(−µ1)

N f +1 Iν+N f +1(µ1) . . . (−µN f )
N f +1 Iν+N f +1(µN f ) ζ

N f +1
a Jν+N f +1(ζa) ζ

N f +1
b Jν+N f +1(ζb)

 .

This result is equal to the kernel obtained in [63, 64], if we set ν = 0. The next step is to show
that for the second case, M = N f + 1 and L = 1, we find the expression of our correlation
kernel from Eq. (4.22).
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Kernel representation equivalent to Proposition 4.3

Coming back to Eq. (5.14)

Z
(N f +2,0)
N (m2

1, . . . , m2
N f

, z2
a, z2

b) = Z(0,0)
N (−1)N(N f +2)E

[ N f

∏
f=1

DN(−m2
f )DN(−z2

a)DN(−z2
b)

]
,

we apply Theorem 5.1 for the second case we mentioned, namely taking M = N f + 1 and
L = 1. This leads to

E

[ N f

∏
f=1

DN(−m2
f )DN(−z2

a)DN(−z2
b)

]
=

(N+N f

∏
i=N

√
hi

)√
hN

det
1≤k,j≤N f +1

[
Ck,j
]

∆N f +1({−m2},−z2
a)

, (5.19)

where

Ck,j =



L̂(−m2
j ,−z2

b), for k = 1 , j = 1, . . . , N f ,

L̂(−z2
a,−z2

b), for k = 1 , j = N f + 1,
(−1)N+k−1 (N+k−1)!√

hN+k−1
Lν

N+k−1(−m2
j ), for k = 2, . . . , N f + 1, j = 1, . . . , N f ,

(−1)N+k−1 (N+k−1)!√
hN+k−1

Lν
N+k−1(−z2

a), for k = 2, . . . , N f + 1, j = N f + 1.

(5.20)

The first two cases contain a shorthand notation for the kernel with respect to the orthogonal
polynomials P(x) given via the Christoffel-Darboux formula as

L̂(x, y) =
N

∑
i=0

Pi(x)Pi(y) =

√
hN+1

hN

PN+1(x)PN(y)− PN(x)PN+1(y)
x− y

=

√
hN+1

hN

(−1)N+1(N + 1)!√
hN+1

(−1)N N!√
hN

Lν
N+1(x)Lν

N(y)− Lν
N(x)Lν

N+1(y)
x− y

=
(−1)(N + 1)!
Γ(N + ν + 1)

Lν
N+1(x)Lν

N(y)− Lν
N(x)Lν

N+1(y)
x− y

.

(5.21)

Applying the rescaled variables allows us to write

L̂

(
−

µ2
j

4N
,

ζ2
b

4N

)
=

4N (N + 1)!
Γ(N + ν + 1)

Lν
N+1

(
− µ2

j
4N

)
Lν

N

(
ζ2

b
4N

)
− Lν

N

(
− µ2

j
4N

)
Lν

N+1

(
ζ2

b
4N

)
µ2

j + ζ2
b

=
4N2ν Γ(N + 2)
Γ(N + ν + 1)

N−ν+1Lν−1
N+1

(
− µ2

j
4N

)
N−νLν

N+1

(
ζ2

b
4N

)
− N−νLν

N+1

(
− µ2

j
4N

)
N−ν+1Lν−1

N+1

(
ζ2

b
4N

)
µ2

j + ζ2
b

≡ Γ(N)Nν+1

Γ(N + ν + 1)
Γ(N + 2)
Γ(N)N2 Nν+1 22ν+1µ−ν

j ζ−ν
b L̂N(µj, ζb) .

(5.22)

Using the known asymptotic relation for Γ-functions [130, Eq. 8.328.2]

lim
N→∞

Γ(N + α)

Γ(N)Nα
= 1, (5.23)
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we can neglect the first two terms in the last line of Eq. (5.22). Considering the large N limit
by applying Eq. (5.17), we only have to consider L̂N(µj, ζb). We find

lim
N→∞

L̂N(µj, ζb) = 2−2ν+1
µν

j ζν
b

µ2
j + ζ2

b

(
µ−ν

j 2ν−1µj Iν−1(µj)ζ
−ν
b 2ν Jν(ζb)

− µ−ν
j 2ν Iν(µj)ζ

−ν
b 2ν−1ζb Jν−1(ζb)

)
=

1
µ2

j + ζ2
b

[
µj Iν+1(µj)Jν(ζb) + Iν(µj)ζb Jν+1(ζb)

]
= BIJ(µj, ζb).

(5.24)

Similarly, we have

L̂

(
ζ2

a
4N

,
ζ2

b
4N

)
=

(−1) 4N (N + 1)!
Γ(N + ν + 1)

Lν
N+1

(
ζ2

a
4N

)
Lν

N

(
ζ2

b
4N

)
− Lν

N

(
ζ2

a
4N

)
Lν

N+1

(
ζ2

b
4N

)
ζ2

a − ζ2
b

=
(−1) 4N2ν Γ(N + 2)

Γ(N + ν + 1)

N−ν+1Lν−1
N+1

(
ζ2

a
4N

)
N−νLν

N+1

(
ζ2

b
4N

)
− N−νLν

N+1

(
ζ2

a
4N

)
N−ν+1Lν−1

N+1

(
ζ2

b
4N

)
ζ2

a − ζ2
b

≡ Γ(N)Nν+1

Γ(N + ν + 1)
Γ(N + 2)
Γ(N)N2 Nν+1 22ν+1ζ−ν

a ζ−ν
b L̂N(ζa, ζb) ,

(5.25)

which leads to

lim
N→∞

L̂N(ζa, ζb) = 2−2ν+1 (−1)ζν
a ζν

b
ζ2

a − ζ2
b

(
ζ−ν

a 2ν−1ζa Jν−1(ζa)ζ
−ν
b 2ν Jν(ζb)

− ζ−ν
a 2ν Jν(ζa)ζ

−ν
b 2ν−1ζb Jν−1(ζb)

)
=

1
ζ2

a − ζ2
b

[
ζa Jν+1(ζa)Jν(ζb)− Jν(ζa)ζb Jν+1(ζb)

]
= BJJ(ζa, ζb) .

(5.26)

Note that in the case of equal arguments ζa = ζb we have to apply l’Hospital’s rule to BJJ
and obtain3

BJJ(ζa, ζa) =
1

2ζa

[(
∂

∂ζa

[
ζa Jν+1(ζa)

])
Jν(ζa)−

(
∂

∂ζa
Jν(ζa)

)
ζa Jν+1(ζa)

]
=

1
2ζa

[
ζa J2

ν(ζa)− νJν+1(ζa)Jν(ζa)−
(

∂

∂ζa
Jν(ζa)

)
ζa Jν+1(ζa)

]
=

1
2

[
J2
ν(ζa)−

ν

ζa
Jν+1(ζa)Jν(ζa)−

1
2

Jν+1(ζa) (Jν−1(ζa)− Jν+1(ζa))

]
=

1
2

(
J2
ν(ζa)−

2ν

ζa
Jν(ζa)Jν+1(ζa) + J2

ν+1(ζa)

)
,

(5.27)

where we have used [130, Eq. 8.471.2] and [130, Eq. 8.472.1]. Looking back at Eqs. (5.19),
(5.20) we collect an overall factor of Nν+122ν+1ζ−ν

b from the first row of the matrix Ck,j. The
rest of the calculation is similar to computations we have done previously, so we can be

3The case of BIJ for equal arguments is similar, with µj = iζb.



5.1. Equivalence with results for zero temperature models 81

brief. The rows number 2 to N f + 1 of the matrix Ck,j contain Laguerre polynomials, which
become Bessel functions in the large N limit, as we have demonstrated previously, see Eqs.
(5.15) and (5.17). Hence, we can write

E

[ N f

∏
f=1

DN(−m2
f )DN(−z2

a)DN(−z2
b)

]
=

(N+N f

∏
i=N

√
hi

)√
hN

det
1≤k,j≤N f +1

[
Ck,j
]

∆N f +1({−m2},−z2
a)

=

( N f

∏
i=0

√
hi+N

)√
hN

det
1≤k,j≤N f +1

[
Ck,j
]

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )
(4N)N f (N f +1)/2(−1)N f (N f−1)/2

=

( N f

∏
i=1

√
hi+N

)
hN

(4N)N f (N f +1)/2(−1)N f (N f−1)/2

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )

( N f

∏
j=1

(−1)N+j(N + j)!√
hN+j

)

× Nν+122ν+1ζ−ν
b

( N f

∏
k=1

Nν−k+1

)
det

1≤k,j≤N f +1

[
Ĉk,j
]

,

(5.28)

where we have

Ĉk,j =


µ−ν

j L̂N(µj, ζb), for k = 1 , j = 1, . . . , N f ,

ζ−ν
a L̂N(ζa, ζb), for k = 1 , j = N f + 1,

N−ν+k−2Lν−k+2
N+k−1(−m2

j ), for k = 2, . . . , N f + 1, j = 1, . . . , N f ,

N−ν+k−2Lν−k+2
N+k−1(−z2

a), for k = 2, . . . , N f + 1, j = N f + 1.

Note that we have transformed the rows containing Laguerre polynomials according to Eq.
(5.16), which gives us the correct dependence of the upper index on the corresponding row
k. Furthermore, we have included the necessary powers of N in order to perform the large
N asymptotics of Laguerre polynomials via Eq. (5.17). This leads to

E

[ N f

∏
f=1

DN(−m2
f )DN(−z2

a)DN(−z2
b)

]
= 2N f (N f +1)22ν+1ζ−ν

b

det
1≤k,j≤N f +1

[
Ĉk,j
]

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )

× hN Nν+1N(ν+1)N f N−N f (N f +1)/2NN f (N f +1)/2(−1)N f (N f−1)/2

( N f

∏
j=1

(−1)N+j(N + j)!

)

= N(ν+1)(N f +1)(−1)(N+1)N f hN

( N f

∏
j=1

Γ(N + j + 1)

) 2N f (N f +1)22ν+1ζ−ν
b det

1≤k,j≤N f +1

[
Ĉk,j
]

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )
.

At this point we include the additional factors of Z(0,0)
N and (−1)NN f needed for the compu-

tation of Z
(N f +2,0)
N . This is analogous to Eq. (5.14) and we can organize all prefactors such

that the constant C
[N f +2]
N (see Eq. (5.12)) appears, which is then canceled. As N → ∞ we

obtain the final form of the correlation kernel.
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We have

Z
(N f +2,0)
N (m2

1, . . . , m2
N f

, z2
a, z2

b) = Z(0,0)
N (−1)N(N f +2)E

[ N f

∏
f=1

DN(−m2
f )DN(−z2

a)DN(−z2
b)

]

= (−1)N f N!

(
N

∏
j=1

Γ(j + ν)

)
22νζ−ν

b
Γ(N + ν + 1)

Γ(N)Nν+1 Γ(N) Nν+1 2N f (N f +1)+1

× N(ν+1)(N f +1)

(
N

∏
j=1

Γ(j)

)
Γ(N + 1)

( N f

∏
j=1

Γ(N + j + 1)

) det
1≤k,j≤N f +1

[
Ĉk,j
]

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )

= C
[N f +2]
N (−1)νζν

a

( N f

∏
f=1

µν
f

)
2−(N f +2)(N f +1)/22−νN f (−1)N f 2N f (N f +1)+1

× Γ(N)NN f +2

Γ(N + N f + 2)
Γ(N + ν + 1)

Γ(N)Nν+1

det
1≤k,j≤N f +1

[
Ĉk,j
]

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )
.

In the last line we have two terms, which become unity as N goes to infinity. The finite-
volume partition function becomes

Z (N f +2)
ν (µ1, . . . , µN f , iζa, iζb) = 2−(N f +2)(N f +1)/22−νN f 2N f (N f +1)+1

(−1)νζν
a

(
∏

N f
f=1 µν

f

)
∆N f ({µ2})∏

N f
f=1(ζ

2
a + µ2

f )
(−1)N f lim

N→∞
det

1≤k,j≤N f +1

[
Ĉk,j
]

and the limit of the matrix Ĉk,j is given as

lim
N→∞

Ĉk,j =


µ−ν

j BIJ(µj, ζb), for k = 1 , j = 1, . . . , N f ,

ζ−ν
a BJJ(ζa, ζb), for k = 1 , j = N f + 1,

2ν−k+2µ−ν+k−2
j Iν−k+2(µj), for k = 2, . . . , N f + 1, j = 1, . . . , N f ,

2ν−k+2ζ−ν+k−2
a Jν−k+2(ζa), for k = 2, . . . , N f + 1, j = N f + 1.

The next step is to transform the determinant to bring the indices of the Bessel functions
from ν− k + 2 to ν + k− 2 by applying Eq. (5.18). This leads to a matrix C̃, which contains
powers of (−1) in the ζa column. Pulling out prefactors we obtain

Z (N f +2)
ν (µ1, . . . , µN f , iζa, iζb) = 2−(N f +2)(N f +1)/22N f (N f +1)+1

( N f

∏
k=1

2−k+1

)
(−1)ν

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )
(−1)N f det

1≤k,j≤N f +1

[
C̃k,j

]
.
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The factors of 2 all cancel and we can bring the last column in the determinant to the front.
Taking out the factors of (−1) we find

Z (N f +2)
ν (µ1, . . . , µN f , iζa, iζb) =

(−1)ν

∆N f ({µ2})∏
N f
f=1(ζ

2
a + µ2

f )
(−1)N f (N f−1)/2

det


BJJ(ζa, ζb) BIJ(µ1, ζb) . . . BIJ(µN f , ζb)

Jν(ζa) Iν(µ1) . . . Iν(µN f )
... . . . . . .

...
ζ

N f−1
a Jν+N f−1(ζa) (−µ1)

N f−1 Iν+N f−1(µ1) . . . (−µN f )
N f−1 Iν+N f−1(µN f )

 .

The correlation kernel reads

K
(N f )

S

(
ζa, ζb;

{
µ f
}N f

f=1

)
= (−1)ν

√
|ζaζb|

N f

∏
f=1

√
(ζ2

a + µ2
f )(ζ

2
b + µ2

f )
Z (N f +2)

ν (µ1, . . . , µN f , iζa, iζb)

Z (N f )
ν (µ1, . . . , mN f )

=
√
|ζaζb|

√√√√√∏
N f
f=1(ζ

2
b + µ2

f )

∏
N f
f=1(ζ

2
a + µ2

f )

∆N f (µ
2
1, . . . , µ2

N f
)

det
1≤a,b≤N f

[
Ba,b({µ f }

N f
f=1)

] (−1)N f (N f−1)/2

∆N f (µ
2
1, . . . , µ2

N f
)∏

N f
f=1(ζ

2
a + µ2

f )

det


BJJ(ζa, ζb) BIJ(µ1, ζb) . . . BIJ(µN f , ζb)

Jν(ζa) Iν(µ1) . . . Iν(µN f )
... . . . . . .

...
ζ

N f−1
a Jν+N f−1(ζa) (−µ1)

N f−1 Iν+N f−1(µ1) . . . (−µN f )
N f−1 Iν+N f−1(µN f )


=
√
|ζaζb|

√√√√√∏
N f
f=1(ζ

2
b + µ2

f )

∏
N f
f=1(ζ

2
a + µ2

f )

(
det

1≤a,b≤N f

[
(−µa)

b−1 Iν+b−1(µa)
])−1

det


BJJ(ζa, ζb) BIJ(µ1, ζb) . . . BIJ(µN f , ζb)

Jν(ζa) Iν(µ1) . . . Iν(µN f )
... . . . . . .

...
ζ

N f−1
a Jν+N f−1(ζa) (−µ1)

N f−1 Iν+N f−1(µ1) . . . (−µN f )
N f−1 Iν+N f−1(µN f )

 .

This is indeed the form of our correlation kernel obtained in chapter 4.

The consequence of the above computation is the following: The correlation kernel obtained
in chapter 4 for the chGUE(N) with N f massive flavors and temperature dependence be-
comes universal in the large N limit with respect to its temperature dependence. In particu-
lar, it is equivalent to one representation of the kernel of the chGUE(N) without temperature
in the presence of N f massive flavors considered in [63, 64]. What does this mean physically?
The effect of temperature, in microscopic limit of QCD, is reduced to the replacement of the
chiral condensate Σ by the temperature dependent chiral condensate Ξ, which contains the
information of the temperature singular values an. Otherwise the form of the correlation
kernel is universal.
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5.2 Equivalence with results obtained via SUSY techniques

In [12] Guhr and Wettig considered a random matrix ensemble for QCD with temperature
in the quenched approximation without topology. Thus, they considered a version of the
chGUE(N) with an external source, with JPDF given by Eq. (5.3). They derived the k-point
correlation functions in the large N limit via supersymmetry and found

ρ
(0)
S (ζ1, . . . , ζk) = lim

N→∞

1
(2NΞ)k det

1≤a,b≤k

[
K(0)

N (ζa, ζb)
]

,

with kernel K(0)
N (ζa, ζb) given by

K(0)
N (ζa, ζb) = 2NΞζa

ζa J1(ζa)J0(ζb)− ζb J1(ζb)J0(ζa)

ζ2
a − ζ2

b
= 2NΞζaBJJ(ζa, ζb) .

This is the standard Bessel kernel [133] for ν = 04 and leads to correlation functions

ρ
(0)
S (ζ1, . . . , ζk) =

(
k

∏
j=1
|ζ j|
)

det
1≤a,b≤k

[BJJ(ζa, ζb)] .

In comparison, we found in Proposition 4.1 and in particular Eq. (4.16), that the correlation
kernel for the chGUE(N) with an external source and ν 6= 0 in the large N limit is given as

lim
N→∞

1
2NΞ

K(0)
N

(
x1 =

ζ2
a

4NΞ
, x2 =

ζ2
b

4NΞ

)
=

ζa Jν+1(ζa)Jν(ζb)− ζb Jν+1(ζb)Jν(ζa)

ζ2
a − ζ2

b
.

Thus, we can see immediately, that our results is equal to the result of Guhr and Wettig in
[12], when ν is set to zero.
In [13] Seif, Guhr and Wettig extended the ensemble of [12] to N f massive flavors and used
supersymmmetry to obtain the microscopic limit of the k-point correlation functions. Their
result reads

ρ
(N f )

S (ζ1, . . . , ζk) =

(
k

∏
j=1
|ζ j|
) det

1≤a,b≤N f +k
[Aa,b]

det
1≤a,b≤N f

[Ba,b]
, (5.29)

with

Aa,b =


BJJ(ζb, ζa), for 1 ≤ a,b ≤ k,
BIJ(µb−k, ζa), for 1 ≤ a ≤ k,k + 1 ≤ b ≤ k + N f ,
ζa−k−1

b Ja−k−1(ζb), for k + 1 ≤ a ≤ k + N f ,1 ≤ b ≤ k,
(−µb−k)

a−k−1 Ia−k−1(µb−k), for k + 1 ≤ a,b ≤ k + N f ,

and Ba,b = (−µb)
a−1 Ia−1(µb), for 1 ≤ a, b ≤ N f .

The ensemble considered in [13] is comparable to the extension of the chGUE(N) with an
external source by N f massive flavors we introduced in chapter 2, if we assume again ν = 0.
The underlying JPDF of this special case is given in Eq. (5.4). Because the model we consid-
ered in chapter 4 in the large N limit is equal to the ensemble of Seif, Guhr and Wettig for

4We do not distinguish between ν = 0 and ν 6= 0 in the short-hand notation BJJ(ζa, ζb).
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ν = 0, the determinantal representation for the microscopic k-point correlation function de-
rived in [13] should in principle be representable as a determinant of a matrix of dimension
k× k of the correlation kernel. The kernel itself should be in a determinantal representation,
similar to the result we derived in the large N limit in chapter 4. The question in this section
is how we can relate those two results. The problem is that it is unclear how to rewrite the
k× k determinant of our kernel, which is a ratio of a determinant of a (N f + 1)× (N f + 1)
matrix over a determinant of a N f × N f matrix, to obtain the result of Seif, Guhr and Wettig
[13], whose representation of the k-point correlation function is a ratio of determinant of a
(N f + k)× (N f + k) matrix over a determinant of a N f × N f matrix. The fact that the un-
derlying ensemble is basically the same hints at the existence of a kind of master formula,
which is know for ensembles without temperature, such as [63, 64]. Unfortunately, we were
not able to derive such a master formula. Instead we will demonstrate that the k-point cor-
relations functions of the chGUE(N) ensemble, independent of temperature, studied in [63,
64] can be represented not only in terms of a determinantal point process of a correlation
kernel, see Eq. (5.5) and (5.6), but also in the determinantal form of [13], see Eq. (5.29).
Hence, we will show the equivalence of the results of section 5.1 [63, 64] and the results of
Seif, Guhr and Wettig [13]. By the equivalence shown in the previous section, this shows the
equivalence of our results with the results of Seif, Guhr and Wettig [13].

Expressing correlation functions as ratios of finite-volume partition functions

We recall a result derived in [59, 60] for the microscopic k-point correlation function, namely5

ρ
(N f )

S (ζ1, . . . , ζk) = (−1)kν

(
k

∏
j=1
|ζ j|

N f

∏
f=1

(ζ2
j + µ2

f )

)
∆2

k
(
ζ2

1, . . . , ζ2
k
)

×
Z (N f +2k)

ν (µ1, . . . , µN f , {iζ1}, . . . , {iζk})

Z (N f )
ν (µ1, . . . , mN f )

.

(5.30)

The finite-volume partition functions can be expressed in terms of limits of finite N RMT
partition functions. This was used extensively in the previous section, in particular, via
Eq. (5.8) and (5.8). The above representation of the microscopic k-point correlation function
must be equal to the representation given in Eq. (5.5)

ρ
(N f )

S (ζ1, . . . , ζk) = lim
N→∞

1
(NΣ)k ρ

(N f )

N

(
ζ1

2NΣ
, . . . ,

ζk

2NΣ

)
=

1
Σk det

1≤a,b≤k

[
K
(N f )

S

(
ζa

2Σ
,

ζb

2Σ

)]
,

where the kernel can be written as (compare Eq. (5.6) or (5.7))

K
(N f )

S

(
ζa, ζb;

{
µ f
}N f

f=1

)
=
√
|ζaζb|

N f

∏
f=1

√
(ζ2

a + µ2
f )(ζ

2
b + µ2

f )
Z (N f +2)

ν (µ1, . . . , µN f , iζa, iζb)

(−1)νZ (N f )
ν (µ1, . . . , mN f )

.

The equality of the two representations of microscopic k-point correlation functions was
shown for the classical chGUE(N) and its deformation with N f massive flavors - see [59, 60,
134]. This observation is crucial for the equivalence we want to demonstrate in this section,
since the ensembles considered in [63, 64] are exactly these two chGUE(N)-type ensembles.

5The bracket notation {iζ j} implies that each ζ is 2-fold degenerate.
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From the equivalence shown in the previous section we can conclude that the representa-
tions of the microscopic k-point correlation functions is then also true for the chGUE(N)
with an external source and its extension with N f flavors. Those two ensembles coincide
with the ensembles of [12, 13], if ν = 0. Thus, we can use Eq. (5.7) and Theorem 5.1 to obtain

different representations for the finite-volume partition function Z (N f +2k)
ν (µ1, . . . , µN f ) also

in the setting of [12, 13]. This allows us to show the equivalence of the results of [63, 64] with
[12, 13] and consequently also our results from chapter 4.

We will use Eq. (5.8), but this time we will take k to be general, i.e.

Z (N f +2k)
ν (µ1, . . . , µN f , {iζm}2k

m=1) = lim
N→∞

Z
(N f +2k,0)
N (m2

1, . . . , m2
N f

, {z2
m}2k

m=1)

C
[N f +2k]
N

with k variables ζ, which each are 2-fold degenerate.6 With the rescaling scheme

µ2
f =

µ2
f

4N
, z2

m =
(iζm)2

4N
, for m = 1, . . . , k, z2

m =
(iζm−k)

2

4N
, for m = k + 1, . . . , 2k,

we obtain determinantal representations of the finite-volume partition function Z (N f +2k)
ν .

We will find a determinant of a N f + k dimensional matrix with k rows containing Bessel
kernels and N f rows containing Bessel-J- and Bessel-I-functions.

Expectation values of characteristic polynomials for k variables

To derive the needed representation of the finite-volume partition function, we need the

expression of the finite N-partition function Z
(N f +2k,0)
N as an expectation value of N f + 2k

characteristic polynomials, i.e.

Z
(N f +2k,0)
N (m2

1, . . . , m2
N f

, {zm}2k
m=1) = Z(0,0)

N (−1)NN f E

[( N f

∏
f=1

DN(−m2
f )

)(
2k

∏
m=1

DN(−z2
m)

)]
.

We divide the N f + 2k characteristic polynomials into to sets, the first containing M = N f + k
and the second containing L = k characteristic polynomials. This circumvents the degener-
acy of the ζ j variables and we obtain a N f + k dimensional determinantal representation of
the finite N partition function via Theorem 5.1

E

[( N f

∏
f=1

DN

(
−

µ2
f

4N

)
k

∏
m=1

DN

(
ζ2

m
4N

))( k

∏
m=1

DN

(
ζ2

m
4N

))]
=

N+N f +k−1

∏
i=N

√
hi

N+k−1

∏
j=N

√
hj

× (−1)N f (N f−1)/2(4N)(N f +k)(N f +k−1)/2(4N)k(k−1)/2

∆N f (µ
2
1, . . . , µ2

N f
)
(

∏
N f
f=1 ∏k

m=1(ζ
2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)
det

1≤i,j≤N f +k

[
Ci,j
]

.

6The degeneracy is not problematic in our calculations due to the special determinantal representation of the
finite-volume partition function we will derive by using Theorem 5.1.
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The matrix Ci,j is given as

Ci,j =



L̂(−m2
j ,−z2

i ), for i = 1, . . . , k , j = 1, . . . , N f ,

L̂(−z2
j−N f

,−z2
i ), for i = 1, . . . , k , j = N f + 1, . . . , N f + k,

(−1)N+i−1 (N+i−1)!√
hN+i−1

Lν
N+i−1(−m2

j ), for i = k + 1, . . . , N f + k , j = 1, . . . , N f ,

(−1)N+i−1 (N+i−1)!√
hN+i−1

Lν
N+i−1(−z2

j−N f
), for i = k + 1, . . . , N f + k , j = N f + 1, . . . , N f + k.

Here we have used the generalized Laguerre polynomials according to Eq. (2.18). The
quantity L̂(x, y) can be written similar to Eq. (5.21), namely

L̂(x, y) =
N+k−1

∑
i=0

Pi(x)Pi(y) =

√
hN+k

hN+k−1

PN+k(x)PN+k−1(y)− PN+k−1(x)PN+k(y)
x− y

=
(−1)(N + k)!
Γ(N + k + ν)

Lν
N+k(x)Lν

N+k−1(y)− Lν
N+k−1(x)Lν

N+k(y)
x− y

,

which leads to results similar to Eq. (5.22) and (5.25) using the Laguerre polynomials and
their properties given in Eq. (5.16). We find

L̂

(
−

µ2
j

4N
,

ζ2
i

4N

)
=

4N (N + k)!
Γ(N + k + ν)

Lν
N+k

(
− µ2

j
4N

)
Lν

N+k−1

(
ζ2

i
4N

)
− Lν

N+k−1

(
− µ2

j
4N

)
Lν

N+k

(
ζ2

i
4N

)
µ2

j + ζ2
i

=
4N (N + k)!
Γ(N + k + ν)

1
µ2

j + ζ2
i

[
Lν−1

N+k

(
−

µ2
j

4N

)
Lν

N+k

(
ζ2

i
4N

)
− Lν

N+k

(
−

µ2
j

4N

)
Lν−1

N+k

(
ζ2

i
4N

)]

≡ Γ(N)Nk+ν

Γ(N + k + ν)

Γ(N + k + 1)
Γ(N)Nk+1 Nν+1 22ν+1µ−ν

j ζ−ν
i L̂N(µj, ζi)

and

L̂

(
ζ2

j

4N
,

ζ2
i

4N

)
=

(−1) 4N (N + k)!
Γ(N + k + ν)

Lν
N+k

(
ζ2

j
4N

)
Lν

N+k−1

(
ζ2

i
4N

)
− Lν

N+k−1

(
ζ2

j
4N

)
Lν

N+k

(
ζ2

i
4N

)
ζ2

j − ζ2
i

=
(−1) 4N (N + k)!

Γ(N + k + ν)

1
ζ2

j − ζ2
i

[
Lν−1

N+k

(
ζ2

j

4N

)
Lν

N+k

(
ζ2

i
4N

)
− Lν

N+k

(
ζ2

j

4N

)
Lν−1

N+k

(
ζ2

i
4N

)]

≡ Γ(N)Nk+ν

Γ(N + k + ν)

Γ(N + k + 1)
Γ(N)Nk+1 Nν+1 22ν+1ζ−ν

j ζ−ν
i L̂N(ζ j, ζi) .

Doing the same asymptotics for L̂N as we did in the previous section, we obtain again Bessel
kernels given in Eqs. (5.24) and (5.26). The case ζ j = ζi leads to the kernel obtained in Eq.
(5.27) as before. Hence, we arrive at the following expression for the expectation value,
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which is comparable to Eq. (5.28)

E

[( N f

∏
f=1

DN

(
−

µ2
f

4N

)
k

∏
m=1

DN

(
ζ2

m
4N

))( k

∏
m=1

DN

(
ζ2

m
4N

))]
=

N f +k−1

∏
i=0

√
hi+N

k−1

∏
j=0

√
hj+N

(−1)N f (N f−1)/2(4N)(N f +k)(N f +k−1)/2(4N)k(k−1)/2

∆N f (µ
2
1, . . . , µ2

N f
)
(

∏
N f
f=1 ∏k

m=1(ζ
2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)
det

1≤i,j≤N f +k

[
Ci,j
]

=
(−1)N f (N+k)2(N f +2k)(N f +2k−1)2−2k(N f +k)2(2ν+1)kN(N f +k)(N f +k−1)/2Nk(k−1)/2

∆N f (µ
2
1, . . . , µ2

N f
)
(

∏
N f
f=1 ∏k

m=1(ζ
2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)

×
( N f

∏
f=1

Γ(N + k + f )

)(
k−1

∏
j=0

hj+N

)
N(ν+1)k

(
k

∏
i=1

ζ−ν
i

)( N f

∏
j=1

Nν−j+1

)
det

1≤i,j≤N f +k

[
Ĉi,j
]

,

(5.31)

where the matrix Ĉi,j is given as

Ĉi,j =


µ−ν

j L̂N(µj, ζi), for i = 1, . . . , k , j = 1, . . . , N f ,

ζ−ν
j−N f
L̂N(ζ j−N f , ζi), for i = 1, . . . , k , j = N f + 1, . . . , N f + k,

N−ν+i−k−1Lν−i+k+1
N+i−1 (−m2

j ), for i = k + 1, . . . , N f + k , j = 1, . . . , N f ,

N−ν+i−k−1Lν−i+k+1
N+i−1 (−z2

j−N f
), for i = k + 1, . . . , N f + k , j = N f + 1, . . . , N f + k.

The non-determinantal prefactors in front of the expectation value in Eq. (5.31) can be
rewritten using the norms of Laguerre polynomials from Eq. (5.9) and the asymptotics of
Γ-function in Eq. (5.23). We find

(−1)N f k2(N f +2k)(N f +2k−1)2−2k(N f +k)2(2ν+1)k

( N f

∏
f=1

Γ(N + k + f )
Γ(N)Nk+ f

)

×
(

k

∏
i=1

ζ−ν
i

)
N!

(
N

∏
j=1

Γ(j + ν)Γ(j)

)(
k

∏
j=1

Γ(N + j)Γ(N + j + ν)

[Γ(N)]2N2j+ν

)
[Γ(N)]N f +2k

× N(N f +k)(N f +k−1)/2Nk(k−1)/2NνkNk(k+1)N(ν+1)kNνN f N−N f (N f−1)/2NN f kNN f (N f +1)/2

= C
[N f +2k]
N

(
k

∏
i=1

ζν
i

)( N f

∏
f=1

µν
f

)
(−1)kν(−1)N f k2−νN f +k2(N f +2k)(N f +2k−1)/22−2k(N f +k) .

In the last line we have neglected terms that become unity in the large N limit. Therefore,
we can write7

Z
(N f +2k)
N (m2

1, . . . , m2
N f

, {zm}2k
m=1) = C

[N f +2k]
N

(
k

∏
i=1

ζν
i

)( N f

∏
f=1

µν
f

)
(−1)kν(−1)N f k

× 2−νN f +k2(N f +2k)(N f +2k−1)/22−2k(N f +k)

∆N f (µ
2
1, . . . , µ2

N f
)
(

∏
N f
f=1 ∏k

m=1(ζ
2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)
det

1≤i,j≤N f +k

[
Ĉi,j
]

.

7Note that we omit the terms, which become equal to unity in the large N limit.
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Correlation functions equivalent to [13]

The finite volume partition function reads

Z (N f +2k)
ν (µ1, . . . , µN f , {iζm}2k

m=1) = lim
N→∞

Z
(N f +2k)
N (m2

1, . . . , m2
N f

, {z2
m}2k

m=1)

C
[N f +2k]
N

=
2−νN f +k2(N f +2k)(N f +2k−1)/22−2k(N f +k)

∆N f (µ
2
1, . . . , µ2

N f
)
(

∏
N f
f=1 ∏k

m=1(ζ
2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)

×
(

k

∏
i=1

ζν
i

)( N f

∏
f=1

µν
f

)
(−1)kν(−1)N f k det

1≤i,j≤N f +k

[
lim

N→∞
Ĉi,j

]

and the limit of the matrix Ĉi,j is given as

lim
N→∞

Ĉi,j =


µ−ν

j BIJ(µj, ζi), for i = 1, . . . , k , j = 1, . . . , N f ,

ζ−ν
j−N f
BJJ(ζ j−N f , ζi), for i = 1, . . . , k , j = N f + 1, . . . , N f + k,

2ν−i+k+1µ−ν+i−k−1
j Iν−i+k+1(µj), for i = k + 1, . . . , N f + k , j = 1, . . . , N f ,

2ν−i+k+1ζ−ν+i−k−1
j−N f

Jν−i+k+1(ζ j−N f ), for i = k + 1, . . . , N f + k , j = N f + 1, . . . , N f + k.

We can extract the factors of 2 from the determinant. This leads to

Z (N f +2k)
ν (µ1, . . . , µN f , {iζm}2k

m=1) =

(−1)kν(−1)N f k det
1≤i,j≤N f +k

[
C̃i,j

]
∆N f (µ

2
1, . . . , µ2

N f
)
(

∏
N f
f=1 ∏k

m=1(ζ
2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)

×
( N f

∏
j=1

2ν−j+1

)
2(N f +2k)(N f +2k−1)/22−2k(N f +k)2−νN f +k

and all factors of 2 cancel. Using the factor (−1)N f k to permute the last k columns with
the first N f columns and applying Eq. (5.30) leads to the microscopic k-point correlation
function

ρ
(N f )

S (ζ1, . . . , ζk) =

(
k

∏
j=1
|ζ j|

N f

∏
f=1

(ζ2
j + µ2

f )

)
∆2

k({ζ2})
Z (N f +2k)

ν (µ1, . . . , µN f , {iζ1}, . . . , {iζk})

(−1)kνZ (N f )
ν (µ1, . . . , mN f )

=

(
∏k

j=1 |ζ j|
) (

∏k
m=1 ∏

N f
f=1(ζ

2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)

∆N f (µ
2
1, . . . , µ2

N f
)
(

∏
N f
f=1 ∏k

m=1(ζ
2
m + µ2

f )
)

∆2
k(ζ

2
1, . . . , ζ2

k)
(−1)kν

× (−1)kν
∆N f (µ

2
1, . . . , µ2

N f
)

det
1≤a,b≤N f

[Ba,b]
det

1≤a,b≤N f +k
[Aa,b]

=

(
k

∏
j=1
|ζ j|
) det

1≤a,b≤N f +k
[Aa,b]

det
1≤a,b≤N f

[Ba,b]
.
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This is exactly the representation of the microscopic k-point correlation function found by
Seif, Guhr and Wettig [13] for ν = 0. Thus, the equivalence of the correlation functions for
the classical chGUE(N) and the deformed chGUE(N) on one hand and the chGUE(N) with
an external source and its extension with N f flavors on the other hand is shown. Our results
from chapter 4 are equivalent to the results of [63, 64], as we have seen in the previous
section. Now we have demonstrated that the results of [63, 64] are equivalent to the result of
Seif, Guhr and Wettig [12, 13]. Thus, we conclude that our results also have to be equivalent
to the results of Seif, Guhr and Wettig, provided that we set ν = 0 in our results of chapter
4. Furthermore, we have shown that the equivalence also holds for ν 6= 0, which itself is a
new result.

5.3 Summary

This chapter is concerned with the assessment of universality of the correlation kernels for
the chGUE(N) with an external source and its extension with N f massive flavors. The ex-
ternal source describes temperature effects in the comparison of the random matrix model
with an effective field theory model of the theory of strong interactions (QCD). In the large
N limit the correlation kernel derived in chapter 4 is compared to zero-temperature results
of [63, 64]. We find that the determinantal structures of our kernel and the kernel derived in
[63, 64] are equivalent in section 5.1. Thus, we showed universality of the correlation kernel
and correlation function formulae derived in chapter 4. The only change is the scale with
respect to temperature obtained via the replacement of the chiral condensate Σ → Ξ. Note
that both models operate in the low-energy, small temperature, regime below the critical
temperature. This hints at an analytical phase transition in the QCD phase diagram along
the temperature axis.
In section 5.2 we discuss how results for the k-point function using supersymmetry meth-
ods for the non-zero temperature models derived in [12, 13] can be compared to the zero-
temperature results of [63, 64]. We showed that the results of both sources are equivalent,
which was conjectured in [13]. This also connects our result to the results of [12, 13] via the
equivalence show in section 5.1. The equivalence we showed holds for arbitary number of
zero modes ν, including ν = 0, which represents a new result beyond the conjecture of [13].
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Chapter 6

Concluding Remarks and Outlook

Characteristic polynomials play an important role in Random Matrix Theory (RMT), in par-
ticular as observables linked to correlation functions of random matrices with real spectra.
Random matrices form ensembles characterized and classified by global symmetries. There-
fore, the ensembles can be used to describe physical and statistical systems in the same
symmetry class, which is due to the concept of universality. From the many different ap-
plications of RMT we focused on the application to the theory of strong interactions, whose
quantum field theory is called Quantum chromodynamics (QCD). In particular, we looked
at the microscopic spectrum of the QCD Dirac operator in the low-energy regime, where
chiral symmetry breaking is the predominant factor determining the spectral statistics. The
random matrix ensembles we considered in this thesis share the symmetries of the Dirac
operator, in particular its chiral symmetry and consist of random matrices with entries dis-
tributed according to a Gaussian distribution. This leads to the name chiral Gaussian Uni-
tary Ensemble - chGUE(N). The random matrix models allow analytical computation of
spectral statistics of eigenvalues and eigenvectors. Thus, in the low-energy regime of QCD
we may use spectral results of small eigenvalues of the RMT Dirac operator, instead of its
quantum field theory version, to understand the spectrum.
Our discussions were made on models drawn from the chGUE(N) symmetry class, in par-
ticular those with external sources, which are used to model temperature effects. The exter-
nal sources in our models appear as finite-rank matrix perturbations of the eigenvalues in
the joint probability density function (JPDF) of the respective random matrix model. In ab-
sence of external sources we considered the chGUE(N) and its deformation by N f massive
flavors. Those ensembles have known correlation functions both at finite matrix size N and
in its large N limit both on the macroscopic and microscopic scales.
The large N limit at the hard edge is of interest, since this limit corresponds to the micro-
scopic spectrum of the QCD Dirac operator close to the origin - the spectral region, where
random matrices match the Dirac operator and its statistics. The equivalence of results of
ensembles for zero [63, 64] and non-zero temperature [12, 13] was conjectured in [13], and
one of the reasons to redo the analysis on a more refined level. Hence, we also allowed the
number of zero-modes ν to be non-zero in our calculations, which only slightly changed the
results. In any case, the JPDF of the chGUE(N) (and its deformation with N f flavors) con-
tains two Vandermonde determinants allowing the application of orthogonal polynomials
to derive the correlation functions and leads to the notion of orthogonal polynomial ensem-
bles. The addition of external sources breaks the underlying unitary bi-invariance and one
Vandermonde determinant becomes a general determinant leading to the more general no-
tion of polynomial ensembles.
We have discussed several results within the class of polynomial ensembles. We introduced
the notion of invertible polynomial ensembles in chapter 3 and identified several ensem-
bles that belong to this subclass - most notably the chGUE(N) with an external source. We
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derived a multi-integral representation of the expectation value of an arbitrary ratio of char-
acteristic polynomials for general invertible polynomial ensembles. Crucially, the number
of integrations and sizes of determinants in our resulting formula - Theorem 3.9 - are both
independent of N, making the result a suitable object to study in the large N limit. Before
the statement of Theorem 3.9 we generalized existing results of [25, 65, 124, 132] in chapter
3. We also derived an integral representation of the correlation kernel for general invert-
ible polynomial ensembles in Proposition 3.12. In preparation of the large N analysis of
the chGUE(N) ensembles with external sources introduced in chapter 2 we also considered
special cases of Theorem 3.9, leading to explizit formulae for the expectation value of i) a
product of M characteristic polymomials and ii) a ratio of M characteristic polynomials over
one single characteristic polynomial.
An open problem that we consider worthy of further investigation is wether the notion of
invertibility introduced in Definition 3.3 can be extended to more involved random matrix
ensembles, or even extended to ensembles on the complex plane. This may include Segal-
Bargmann transforms and poses a mathematical challenge without physical application, as
far as we know.

In the second part of this thesis we derived a finite N representation of the correlation
kernel for two models of the chGUE(N) symmetry class, featuring external sources - the
chGUEN(N) with an external source and its extension with N f massive flavors. The exter-
nal source models the effect of temperature on the spectrum of the random matrix.
Using the results of chapter 3, we were able to express the correlation kernel through expec-
tation values of ratios of characteristic polynomials leading to multi-integral representations
via Theorem 3.9. By allowing ν 6= 0 zero modes in our models, the results obtained in chap-
ter 4 generalize exisiting results of [25, 65] and [12, 13]. We also performed a saddle point
analysis to obtain an expression of the correlation kernels in the large N limit, which gives
us insight into the non-zero temperature regime of the random matrix ensemble and thus is
also comparable to the Dirac spectrum along the temperature axis.
We found a determinantal representation of size N f + 1 of the correlation kernel combining
Bessel kernels and Bessel functions. This result is compared to existing results [12, 13, 63,
64] in chapter 5. It is known that for zero-temperature models like the classical chGUE(N)
the order parameter of chiral symmetry breaking, the chiral condensate Σ, only enters the
large N limit result of the correlation kernel as a rescaling parameter [63, 64]. For models
containing the external sources we find that the order parameter Σ is replaced by a tempera-
ture depending version Σ(T) = Ξ, where Ξ is determined as the saddle point in the large N
analysis. This Ξ contains the effects of the external sources in our models and crucially this
is the only dependence of the limiting kernels on the external sources. Thus, we conclude
that the limiting kernel we obtain is universal on the random matrix level.
In chapter 5 we compared the limiting kernels derived in chapter 4 with existing results of
random matrix models without external sources [63, 64] and with external sources [12, 13].
We demonstrated how to obtain equivalent expressions for our correlation kernel that agree
with the results of both [63, 64] using zero-temperature models, and [12, 13] using non-zero
temperature models. Physically, the results derived in chapter 3 and 4 may also be appli-
cable in other fields extending on the applications in the work of Fyodorov, Strahov and
Grela [25]. In particular, the analysis of expectation values of ratios of characteristic poly-
nomials may be useful in the analysis of eigenvector statistics for certain rectangular matrix
ensembles, as indicated in [25].
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Appendix A

Properties of Vandermonde
Determinants

In this appendix we collect properties of the Vandermonde determinant, which we define
in various equivalent ways. We give formulae for extending the number of variables in the
Vandermonde determinant and also for reducing the number of variables. The properties
presented here can also be found in [1].

Definition A.1. The Vandermonde determinant of N pairwise distinct variables x1, . . . , xN is de-
noted by ∆N(x1, . . . , xN) and can be represented in the following equivalent ways:

∆N(x1, . . . , xN) = det
[

xi−1
j

]N

i,j=1
= ∏

1≤i<j≤N
(xj − xi) =

∣∣∣∣∣∣∣∣∣
1 . . . 1
x1 . . . xN
...

...
...

xN−1
1 . . . xN−1

N

∣∣∣∣∣∣∣∣∣
= (−1)N(N−1)/2 det

[
xN−i

j

]N

i,j=1
.

(A.1)

For N = 1 it follows that ∆1(x1) = 1, and we also set ∆0 = 1.

The Vandermonde determinant can be extended from N to N + M variables, when we mul-
tiply by M characteristic polynomials. We call the larger Vandermonde the extended Van-
dermonde determinant and find the following statement:

Lemma A.2. The following extension formula holds for a Vandermonde determinant of size N. Let
the M parameters {z1, . . . , zM} be pairwise distinct. Then it holds that

M

∏
m=1

N

∏
n=1

(zm − xn)∆N(x1, . . . , xN) =
∆N+M(x1, . . . , xN , z1, . . . , zM)

∆M(z1, . . . , zM)
. (A.2)

Proof. We perform an induction over M. Defining z1 ≡ xN+1, the M = 1 case can seen from
inserting the definition of the Vandermonde, Eq. (A.1), in product form, namely

N

∏
n=1

(z1 − xn)∆(x1, . . . , xN) =
N

∏
n=1

(xN+1 − xn) ∏
1≤i<j≤N

(xj − xi) = ∏
1≤i<j≤N+1

(xj − xi)

= ∆N+1(x1, . . . , xN , z1) .

(A.3)
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We now assume that Eq. (A.2) is valid for any M. The induction step M → M + 1 is
straightforward:

M+1

∏
m=1

N

∏
n=1

(zm − xn)∆N(x1, . . . , xN) =
N

∏
n=1

(zM+1 − xn)
∆N+M(x1, . . . , xN , z1, . . . , zM)

∆M(z1, . . . , zM)

=
∆N+M+1(x1, . . . , xN , z1, . . . , zM+1)

∆M+1(z1, . . . , zM+1)
.

(A.4)

Using the induction assumption, multiplying by a factor of unity ∏M
l=1(zM+1−zl)

∏M
l=1(zM+1−zl)

and using the

definition from Eq. (A.1) in product form, the formula in Eq. (A.2) for M + 1 follows.

For extended Vandermonde determinants we can permute entries, i.e.

∆N+M(x1, . . . , xN , z1, . . . , zM) = (−1)NM∆N+M(z1, . . . , zM, x1, . . . , xN) . (A.5)

This is achieved by permuting rows in the determinant form in Eq. (A.1).
Next we introduce a notation for the Vandermonde determinant with a reduced number of
indices. For L ≤ N ordered indices l1, . . . , lL we define the reduced Vandermonde determi-
nant of size N − L by

∆(l1,...,lL)
N−L (x1, . . . , xN) ≡ ∆N−L(x1, . . . , xl1−1, xl1+1, . . . , xlL−1, xlL+1, . . . , xN) , (A.6)

where the parameters xj with j = l1, . . . , lL are absent. From the Definition A.1 we obtain
that for L = N both sides are equal to unity. Furthermore the reduced Vandermonde can be
obtained from the product of two Vandermonde determinants by the following Lemma.

Lemma A.3. For L ≤ N the Vandermonde determinant of size N − L obtained by removing the
variables xlj with 1 ≤ l1 < . . . < lL ≤ N from the variables x1, . . . , xN is given via

∆(l1,...,lL)
N−L (x1, . . . , xN) =

L

∏
j=1

(−1)N−lj
∆N(x1, . . . , xN)∆L(xl1 , . . . , xlL)

∏L
j=1 ∏N

n=1
n 6=lj

(xlj − xn)
. (A.7)

Proof. The proof is again done by induction. For L = 1 we have for the right hand side of
Eq. (A.7)1

(−1)N−l1 ∆N(x1, . . . , xN)

∏N
n=1
n 6=l1

(xl1 − xn)
=

l1−1

∏
n=1

1
(xl1 − xn)

N

∏
n=l1+1

−1
(xl1 − xn)

∏
1≤i<j≤N

(xj − xi)

= ∏
1≤i<j≤N

i,j 6=l1

(xj − xi) = ∆(l1)
N−1(x1, . . . , xN) .

(A.8)

For the induction step we assume that Eq. (A.7) holds for any N > L ≥ 1. From the
definition of the reduced Vandermonde in Eq. (A.6), which can be expressed as a product,

1Note: Our conventions imply that empty products are equal to unity.
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we see that

∆(l1,...,lL)
N−L (x1, . . . , xN) = (−1)N−lL+1

N

∏
n=1

n 6=l1...,lL+1

(xlL+1 − xn) ∆(l1,...,lL+1)
N−L−1 (x1, . . . , xN)

=
N

∏
n=1

n 6=lL+1

(xlL+1 − xn)
(−1)N−lL+1

∏L
j=1(xlL+1 − xlj)

∆(l1,...,lL+1)
N−L−1 (x1, . . . , xN) .

(A.9)

Using the induction assumption for the left hand side and solving this equation for the
reduced Vandermonde determinant of size N − L− 1 on the right hand side, we obtain

∆(l1,...,lL+1)
N−(L+1) (x1, . . . , xN) =

(−1)N−lL+1 ∏L
j=1(xlL+1 − xlj)

∏N
1=n 6=lL+1

(xlL+1 − xn)

∆N(x1, . . . , xN)∆L(xl1 , . . . , xlL)

∏L
j=1(−1)N−lj ∏N

n=1
n 6=lj

(xlj − xn)

=
L+1

∏
j=1

(−1)N−lj
∆N(x1, . . . , xN)∆L+1(xl1 , . . . , xlL+1)

∏L+1
j=1 ∏N

n=1
n 6=lj

(xlj − xn)
,

(A.10)

which finishes the proof.

Rewriting Vandermonde determinants

We now demonstrate how to use orthogonal polynomials to rewrite Vandermonde deter-
minants. This is particularly useful in chapter 2, where we introduced the random matrix
models of the chGUE(N) symmetry class. The main objective is to obtain the correlation
kernel for these models, who belong to the class of determinantal point processes, meaning
that their correlation functions can be expressed through a determinant over a single object,
which is called correlation kernel.

One of the important features of the chGUE(N) and the deformed chGUE(N) is that the
JPDF contains two Vandermonde determinants. This key feature can be used to introduce
orthogonal polynomials in a way presented in [135, chapter 10]. We also refer to [24, 32, 76,
84, 136, 137] for further information. The starting point is the Vandermonde determinant
∆N(λ1, . . . , λN), which remains invariant under addition and substraction of multiples of
rows and columns, which can be seen easily from Definition A.1. Hence, we can replace the
monomials λk inside the Vandermonde determinant with monic polynomials πk(λ) - which
can, but need not, be chosen orthogonal to a weight function - i.e.

∆N(λ1, . . . , λN) = det
(
πk−1(λj)

)N
k,j=1 . (A.11)

Choosing the polynomials to satisfy orthogonality with respect to the scalar product in Eq.
(2.14) allows us to compute the normalization constant ZN with respect to the weight func-
tions w(λ).
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Setting πn(λ) = pn(λ) we find for the classical chGUE(N), or the deformed chGUE(N) [32]

ZN =

(
N

∏
n=1

∫
dλnw(λn)

)
∆2

N(λ1, . . . , λN) =

(
N

∏
n=1

∫
dλnw(λn)

)(
det [pn−1(λk)]

N
n,k=1

)2

= ∑
σ,σ′∈SN

N

∏
n=1

∫
dλnw(λn)pσ(n)−1(λn)pσ′(n)−1(λn)

=
N

∏
n=1

hn−1 ∑
σ∈SN

1 = N!
N

∏
n=1

hN−1 .

(A.12)

In a first step we have applied the expansion of determinants into sums over permutations
and then in a second step the orthogonality of the polynomials leading to a product over
norms.

Starting again from Eq. (A.11) we can include the norms hn by

∏N−1
n=0
√

hn

∏N−1
n=0
√

hn
det

(
pk−1(λj)

)N
k,j=1 =

N−1

∏
n=0

√
hn det

(
pk−1(λj)√

hk−1

)N

k,j=1

. (A.13)

This becomes useful, because of the following general relation for a matrix A = (anm)N
n,m=1:

(det A)2 = det A det A = det(AT A) = det

(
N

∑
k=1

aknakm

)
. (A.14)

Thus, we write2

∆2
N(λ1, . . . , λN) =

N−1

∏
n=0

hn det

[
N−1

∑
k=0

pk(λn)pk(λm)

hk

]N

m,n=1

. (A.15)

The expression above can be used to compute the correlation kernel KN(λ, λ′) via the or-
thogonal polynomials pn(λ). Additionally, the expression inside the determinant on the
right-hand-side can be rewritten, such that one term of the sum remains. The resulting
expression inside the determinant is given in Eq. (2.17) and is known as the Christoffel-
Darboux formula.

2We have shifted the index: k→ k− 1.
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Appendix B

Determinantal Formulae for
Characteristic Polynomials

In this appendix we give determinantal formulae for products of normal and inverse char-
acteristic polynomials as well as special ratios of characteristic polynomials for polynomial
ensembles. Some of these formulae were derived previously in the literature, see for exam-
ple [25, 65, 124, 125]. We extended on some of the existing results in preparation for the
principal publication [1]. New results and their proofs not included in [1] are therefore col-
lected in this appendix. We start with the definition of polynomial ensembles from chapter
3 - see Definition 3.1.

Definition B.1. Consider a set of real random variables x1, . . . , xN ∈ I defined by the joint proba-
bility density function (JPDF) P(x1, . . . , xN), where I ⊂ R is an interval. The variables x1, . . . , xN
form a polynomial ensemble [123], if their JPDF takes the form

P(x1, . . . , xN) =
1

ZN
∆N(x1, . . . , xN)det[ϕl(xk)]

N
k,l=1,

where ∆N(x1, . . . , xN) = ∏j>i(xj − xi) is the Vandermonde determinant of N variables. The
ϕ1, . . . ϕN are certain integrable, real-valued functions on I, such that the normalisation constant

ZN =

(
N

∏
n=1

∫
I

dxn

)
∆N(x1, . . . , xN)det[ϕl(xk)]

N
k,l=1 = N! det G (B.1)

exists and is non-zero. The matrix entries gk,l are supposed to be finite and can be computed via

gk,l =
∫

I
dxxk−1ϕl(x), (B.2)

such that the Gram matrix G = (gi,j)
N
i,j=1 is non-singular.

With this definition we can state and prove some determinantal formulae for expectation
values of characteristic polynomials.

Recall the analog of the Heine formula for polynomial ensembles, see Eq. (3.4):

Proposition B.2. Consider a general polynomial ensemble from Definition B.1, then the following
formula holds:

EP [DN(z)] =
1

det G

∣∣∣∣∣∣∣∣∣
g1,1 . . . g1,N η1(z)
g2,1 . . . g2,N η2(z)

...
...

...
...

gN+1,1 . . . gN+1,N ηN+1(z)

∣∣∣∣∣∣∣∣∣ .
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Proof. This result was stated and proven in [65, Prop. 2] and [124, Prop. 2.5].

Remark. The extension to an arbitrary number of characteristic polynomials is immediate.
We can look at the expectation value of M characteristic polynomials, i.e.

EP

[
M

∏
m=1

DN(zm)

]
.

The resulting determinantal formulae is stated (and proven) in the Corollary below.

Corollary B.3. Consider a general polynomial ensemble from Definition B.1, then the following
formula holds:

EP

[
M

∏
m=1

DN(zm)

]
=

1
∆M(z1, . . . , zM)

1
det G

∣∣∣∣∣∣∣∣∣
g1,1 . . . g1,N z0

1 . . . z0
M

g2,1 . . . g2,N z1
1 . . . z1

M
...

...
...

...
...

...
gN+M,1 . . . gN+M,N zN+M−1

1 . . . zN+M−1
M

∣∣∣∣∣∣∣∣∣
Proof. Starting with the definition of the expectation value we can write

EP

[
M

∏
m=1

DN(zm)

]
=

(
N

∏
n=1

∫
I

dxn

)
P(x1, . . . , xN)

M

∏
m=1

N

∏
n=1

(zm − xn)

=
1

ZN

(
N

∏
n=1

∫
I

dxn

)
M

∏
k=1

N

∏
n=1

(zk − xn)∆N(x1, . . . , xN)det [ϕl(xk)]
N
k,l=1 .

We extend the Vandermonde determinant via Lemma A.2 using the additional characteristic
polynomials. We also apply Eq. (B.1) to rewrite ZN . This gives us

EP

[
M

∏
m=1

DN(zm)

]
=

1
∆M(z1, . . . , zM)

1
N! det G

×
(

N

∏
n=1

∫
I

dxn

)
∆M(x1, . . . , xN , z1, . . . , zM)det [ϕl(xk)]

N
k,l=1 .

In our next step we permute rows of the Vandermonde determinant such that the zj become
the first M variables, meaning

∆M+N(x1, . . . , xN , z1, . . . , zM) = (−1)NM∆M+N(z1, . . . , zM, x1, . . . , xN)

= (−1)NM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z1 . . . zN+M−1
1

...
...

...
1 zM . . . zN+M−1

M
−− −− −− −−−−

1 x1 . . . xN+M−1
1

...
...

...
...

1 xN . . . xN+M−1
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we need to apply the extended Andreief formula - recall Proposition 2.3.
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Proposition B.4. We consider the N-fold integration over two determinants of different sizes (N +
k)× (N + k) and (N + l)× (N + l) with block structure, such that

N

∏
n=1

∫
I

dxn det

[
Ra,b |1≤b≤N+k

1≤a≤k
ηb(xa) |1≤b≤N+k

1≤a≤N

]
det

[
Sb,a |1≤a≤l

1≤b≤N+l ϕb(xa) |1≤a≤N
1≤b≤N+l

]
= (−1)kl N! det

[
0k×l Ra,b |1≤b≤N+k

1≤a≤k
Sb,a |1≤a≤l

1≤b≤N+l

∫
I dxϕb(x)ηa(x) |1≤a≤N+k

1≤b≤N+l

]
.

The functions η and ϕ are given such that the integrals on both sides are convergent. Apart from this
they can be chosen arbitrarily.

Proof. See [111].

We apply the Proposition for determinants of sizes (N + M) × (N + M) and N × N. To-
gether with the definition of the G-matrix entries in Eq. (B.2) this leads to(

N

∏
n=1

∫
I

dxn

)
∆M+N(x1, . . . , xN , z1, . . . , zM)det [ϕl(xk)]

N
k,l=1

= (−1)NMN! det



1 z1 . . . zN+M−1
1

...
...

...
1 zM . . . zN+M−1

M
−− −− −− −−−−
g1,1 g2,1 . . . gN+M,1

...
...

...
...

g1,N g2,N . . . gN+M,N



= N! det


g1,1 g1,2 . . . g1,N z0

1 z0
2 . . . z0

M
g2,1 g2,2 . . . g2,N z1

1 z1
2 . . . z1

M
...

...
...

...
...

...
...

...
gN+M,1 gN+M,2 . . . gN+M,N zN+M−1

1 zN+M−1
2 . . . zN+M−1

M

 .

This finishes the proof.

We also recall the result derived for one inverse characteristic polynomial - see Eq. (3.5):

Proposition B.5. Consider a general polynomial ensemble from Definition B.1, then the following
formula holds:

EP
[

D−1
N (y)

]
=

1
det G

∣∣∣∣∣∣∣∣∣∣
g1,1 g1,2 . . . g1,N

...
...

. . .
...

gN−1,1 gN−1,2 . . . gN−1,N∫
I du ϕ1(u)

y−u

∫
I du ϕ2(u)

y−u . . .
∫

I du ϕN(u)
y−u

∣∣∣∣∣∣∣∣∣∣
. (B.3)

Proof. This result was stated and proven in [65, Prop. 2] and [124, Prop. 2.5].

We can also show an equivalent determinantal formula for this particular case of one inverse
characteristic polynomial. The following Proposition holds:



100 Appendix B. Determinantal Formulae for Characteristic Polynomials

Proposition B.6. Consider a general polynomial ensemble from Definition B.1, then the following
formula holds:

EP
[

D−1
N (y)

]
=

1
det G

∣∣∣∣∣∣∣∣∣∣

g1,1 . . . g1,N
...

. . . . . .
gN−1,1 . . . gN−1,N∫

I
duϕ1(u)

y−u

(
u
y

)N−1
. . .

∫
I

duϕN(u)
y−u

(
u
y

)N−1

∣∣∣∣∣∣∣∣∣∣
=

∫
I

du
y− u

(
u
y

)N−1 N

∑
j=1

cN,j ϕj(u) , (B.4)

where C is the inverse of the N × N moment matrix G, and ci,j are the matrix elements of CT.

Proof. Eq. (B.4) was stated in [25] following [65, 124], without the factors of (u/y)N−1 lead-
ing to Eq. (B.3) and Proposition B.5. The equivalence of Proposition B.6 and Proposition B.5
can be seen as follows. Expanding the geometric series inside the determinant without these
factors we have

1
det G

∣∣∣∣∣∣∣∣∣∣
g1,1 . . . g1,N

...
. . .

...
gN−1,1 . . . gN−1,N∫

I duϕ1(u)∑∞
j=0

uj

yJ+1 . . .
∫

I duϕN(u)∑∞
j=0

uj

yJ+1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
g1,1 . . . g1,N

...
. . .

...
gN−1,1 . . . gN−1,N

∑∞
j=N

gj,1

yJ+1 . . . ∑∞
j=N

gj,N

yJ+1

∣∣∣∣∣∣∣∣∣det[ci,j]
N
i,j=1 .

If we perform the integrals in the last row we obtain an infinite series over generalised
moment matrix entries gk,l . The first N − 1 of these can be removed by subtraction of the
upper N − 1 rows. Rewriting the last row as integrals and resumming the series we arrive
at the first line of Eq. (B.4).
The second line in Eq. (B.4) is obtained as follows. Using that det[ci,j]

N
i,j=1 = 1/ZN and then

multiplying the matrix C with the matrix inside the determinant from the right, this leads to
an identity matrix, except for the last row, as C is the inverse of the finite, N×N dimensional
matrix. Laplace expanding with respect to the last column leads to the desired result.

Remark. As for the analog of the Heine formula, the extension to an arbitrary number of
inverse characteristic polynomials can be done. For L inverse characteristic polynomials the
expectation value

EP

[
L

∏
l=1

D−1
N (yl)

]
can be evaluated. The result is stated in the following Proposition.
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Proposition B.7. Consider a general polynomial ensemble from Definition B.1, then the following
formula holds:

EP

[
L

∏
l=1

D−1
N (yl)

]
=

1
∆L(y1, . . . , yL)

1
det G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1,1 . . . g1,N
g2,1 . . . g2,N

...
...

...
gN−L,1 . . . gN−L,N

ψ1,1 . . . ψ1,N
ψ2,1 . . . ψ2,N

...
...

...
ψL,1 . . . ψL,N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

ψl,m ≡
∫

I
dx

ϕm(x)
yl − x

.

Proof. We start the proof with a closer look at the JPDF of a polynomial ensemble, which we
can write as follows:

P(x1, . . . , xN) =
1

ZN
∆N(x1, . . . , xN)det [ϕl(xk)]

N
k,l=1

=
1

ZN
∆L(x1, . . . , xL)∆N−L(xL+1, . . . , xN)

(
L

∏
i=1

N

∏
j=L+1

(xj − xi)

)
det [ϕl(xk)]

N
k,l=1 .

(B.5)

From the above equation we can deduce two things: Firstly, the JPDF is symmetric under
permutations, which will be very helpful later. Secondly, we can decompose the Vander-
monde such that the first L integration variables xl are separated from the last N − L vari-
ables. This will help us to compute the L inverse characteristic polynomials. To do this, we
utilise a Lemma introduced in chapter 3, namely Lemma 3.10 from [132]:

Lemma B.8. Let L be an integer with 1 ≤ L ≤ N, and let x1, . . . , xN and y1, . . . , yL denote two
sets of parameters that are pairwise distinct. Then the following identity holds:

L

∏
l=1

yN−L
l

∏N
n=1(yl − xn)

= ∑
σ∈SN/(SN−L×SL)

∆L(xσ(1), . . . , xσ(L))∆N−L(xσ(L+1), . . . , xσ(N))∏L
n=1 xN−L

σ(n)

∆N(xσ(1), . . . , xσ(N))∏L
n,l=1(yl − xσ(n))(−1)L(L−N)

on the coset of the permutation group.

With this Lemma we can write the expectation value over L inverse characteristic polyno-
mials as follows

EP

[
L

∏
l=1

D−1
N (yl)

]
=

(
N

∏
n=1

∫
I

dxn

)[
P(x1, . . . , xN)

∏L
l=1 ∏N

n=1(yl − xn)

]

=

(
N

∏
n=1

∫
I

dxn

)
P(x1, . . . , xN) ∑

σ∈SN/(SN−L×SL)

(−1)L(L−N)

(
L

∏
n=1

xN−L
σ(n)

yN−L
n

)
(

1

∏L
l=1 ∏L

n=1(yl − xσ(n))

)
∆L(xσ(1), . . . , xσ(L))∆N−L(xσ(L+1), . . . , xσ(N))

∆N(xσ(1), . . . , xσ(N))
.

(B.6)
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Since the JPDF is invariant under permutations, we can replace the sum over the permuta-
tion group SN/(SN−L × SL) by its cardinality and drop the permutation dependence. Fur-
thermore, we can write the Vandermonde determinants inside the sum as follows:

∆L(x1, . . . , xL)∆N−L(xL+1, . . . , xN)

∆N(x1, . . . , xN)
=

1

∏L
i=1 ∏N

j=L+1(xj − xi)
.

Using the above equation and Eq. (B.5) in Eq. (B.6) we get

EP

[
L

∏
l=1

D−1
N (yl)

]
=

N!
(N − L)!L!

(
N

∏
n=1

∫
I

dxn

)
(−1)L(L−N)

(
L

∏
n=1

xN−L
n

yN−L
n

)[
L

∏
l=1

L

∏
n=1

(yl − xn)

]−1 [ L

∏
i=1

N

∏
j=L+1

(xj − xi)

]−1

det [ϕn(xk)]
N
k,n=1

1
ZN

∆L(x1, . . . , xL)∆N−L(xL+1, . . . , LN)

[
L

∏
i=1

N

∏
j=L+1

(xj − xi)

]
.

The above equation shows that the first L of the N variables decouple from the last N − L
variables. Recalling the extended Andreief integral formula given in Proposition B.4, we
can rewrite the integration over the N − L variables xL+1, . . . , xN using the Vandermonde
∆(xL+1, . . . , xN) and the determinant over the ϕ-functions, det[ϕn(xk)]. This leads to(

N

∏
n=L+1

∫
I

dxn

)
∆N−L(xL+1, . . . , xN)det

[
ϕj(xk)

]N
k,j=1

= (N − L)! det



ϕ1(x1) . . . ϕN(x1)
...

...
...

ϕ1(xL) . . . ϕN(xL)
−− −− −−
g1,1 . . . g1,N

...
...

...
gN−L,1 . . . gN−L,N


≡ (N − L)! detQ ,

where we have used the definition of the G-matrix entries from Eq. (B.2). Together with
ZN = N! det G we obtain

EP

[
L

∏
l=1

D−1
N (yl)

]
=

(−1)L(L−N)

L! det G

(
L

∏
n=1

∫
I

dxn

)(
L

∏
n=1

xN−L
n

yN−L
n

)
∆L(x1, . . . , xL)[

∏L
l=1 ∏L

n=1(yl − xn)
] detQ

=
(−1)L(L−N)

L! det G

(
L

∏
l=1

yL−N
l

)(
L

∏
n=1

∫
I

dxn

)[
L

∏
l=1

L

∏
n=1

xN−L
n

yl − xn

]
∆L(x1, . . . , xL)︸ ︷︷ ︸

=det[Φi(xj)]
L

i,j=1

detQ ,
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where we have introduced the function

Φi(xj) ≡
xN−L

j xi−1
j

∏L
l=1(yl − xj)

. (B.7)

From [132] we take the identity

det
[
Φi(xj)

]L
i,j=1 =

1
∆L(y1, . . . , xL)

det

[
xN−L

i
yj − xi

]L

i,j=1

, (B.8)

which enables us to apply Andreiefs formula for the remaining L variables, after we permute
the rows in the matrix Q to bring the L rows containing ϕ-functions to be the last L rows of
Q. We obtain

EP

[
L

∏
l=1

D−1
N (yl)

]
=

1
L! det G

(
L

∏
l=1

yL−N
l

)
1

∆L(y1, . . . , yL)

(
L

∏
n=1

∫ ∞

0
dxn

)
det

[
xN−L

i
yj − xi

]L

i,j=1

det



g1,1 . . . g1,N
...

...
...

gN−L,1 . . . gN−L,N
−− −− −−

ϕ1(x1) . . . ϕN(x1)
...

...
...

ϕ1(xL) . . . ϕN(xL)



=
1

∆L(y1, . . . , yL)det G

(
L

∏
l=1

yL−N
l

)
det



g1,1 . . . g1,N
...

...
...

gN−L,1 . . . gN−L,N
−− −− −−
ψ̂1,1 . . . ψ̂N,1

...
...

...
ψ̂1,L . . . ψ̂N,L


,

where we have introduced new functions

ψ̂l,m ≡
∫

I
dx

xN−L

yl − x
ϕm(x) .

We can rewrite the integrand of ψ̂l,m as follows:

xN−L

yl − x
ϕm(x) =

(
yN−L

l
yl − x

+
xN−L − yN−L

l
yl − x

)
ϕm(x) .

This allows us to write

ψ̂l,m = yN−L
l

∫
I

dx
ϕm(x)
yl − x︸ ︷︷ ︸

=ψl,m

+
∫

I
dx

xN−L − yN−L
l

yl − x
ϕm(x) .
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We can use the binomial theorem for the second term, i.e.

∫
I

dx
xN−L − yN−L

l
yl − x

ϕm(x) = −
N−L−1

∑
k=1

yN−L−k−1
l

∫
I

dxxk ϕm(x)︸ ︷︷ ︸
=gk+1,m

.

We can get rid of this term by subtracting the first N − L rows from the determinant with
suitable prefactors. The determinant is invariant under such transformations and we obtain

det



g1,1 . . . g1,N
...

...
...

gN−L,1 . . . gN−L,N
−− −− −−
ψ̂1,1 . . . ψ̂N,1

...
...

...
ψ̂1,L . . . ψ̂N,L


= det



g1,1 . . . g1,N
...

...
...

gN−L,1 . . . gN−L,N
−− −− −−

yN−L
1 ψ1,1 . . . yN−L

1 ψN,1
...

...
...

yN−L
L ψ1,L . . . yN−L

L ψN,L


.

Taking out the prefactors in the last L rows of the determinant yields an overall factor of(
L

∏
l=1

yN−L
l

)
, (B.9)

which cancels the corresponding prefactor in the expectation value and we obtain the de-
sired result:

EP

[
L

∏
l=1

D−1
N (yl)

]
=

1
∆L(y1, . . . , yL)

1
det G

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1,1 . . . g1,N
g2,1 . . . g2,N

...
...

...
gN−L,1 . . . gN−L,N

ψ1,1 . . . ψ1,N
ψ2,1 . . . ψ2,N

...
...

...
ψL,1 . . . ψL,N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The next step is to consider ratios of characteristic polynomials. The simplest ratio contains
one characteristic polynomials in both numerator and denominator. The Proposition below
follows.

Proposition B.9. Consider a general polynomial ensemble from Definition B.1, then the following
formula holds:

EP

[
DN(z)
DN(y)

]
=

(−1)
det G

∣∣∣∣∣∣∣∣∣∣∣

g1,1 . . . g1,N z0

g2,1 . . . g2,N z1

...
...

...
...

gN,1 . . . gN,N zN−1∫
I du z−u

y−u ϕ1(u) . . .
∫

I du z−u
y−u ϕN(u) 0

∣∣∣∣∣∣∣∣∣∣∣
.
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Proof. In [25] it was stated that in principle the ratio of two characteristic polynomials is
given by the following formula - see [25, Prop. 5.2]:

EP

[
DN(z)
DN(y)

]
=
∫

I

du
det G

z− u
y− u

N

∑
j=1

ϕj(u)

∣∣∣∣∣∣∣∣∣
g1,1 . . . g1,i−1 z0 g1,i+1 . . . g1,N
g2,1 . . . g2,i−1 z1 g2,i+1 . . . g2,N

...
...

...
...

...
...

...
gN,1 . . . gN,i−1 zN−1 gN,i+1 . . . gN,N

∣∣∣∣∣∣∣∣∣ .

This equation can be derived by the procedure described in [65, Prop. 2]. To obtain the
desired result we have to rewrite the right-hand side of the above equation by shifting the
column containing the powers of z to the last column of the determinant. This leads to

(−1)
det G

N

∑
j=1

(−1)N+1−j
∫

I
du

z− u
y− u

ϕj(u)

∣∣∣∣∣∣∣∣∣
g1,1 . . . g1,i−1 g1,i+1 . . . g1,N z0

g2,1 . . . g2,i−1 g2,i+1 . . . g2,N z1

...
...

...
...

...
...

...
gN,1 . . . gN,i−1 gN,i+1 . . . gN,N zN−1

∣∣∣∣∣∣∣∣∣

=
(−1)
det G

∣∣∣∣∣∣∣∣∣∣∣

g1,1 . . . g1,N z0

g2,1 . . . g2,N z1

...
...

...
...

gN,1 . . . gN,N zN−1∫
I du z−u

y−u ϕ1(u) . . .
∫

I du z−u
y−u ϕN(u) 0

∣∣∣∣∣∣∣∣∣∣∣
.

This concludes the proof.

Remark. As an extension of a single ratio of characteristic polynomials, we can consider the
product of M characteristic polynomials over one single characteristic polynomial, i.e.

EP

[
∏M

m=1 DN(zm)

DN(y)

]
.

The result is stated in the following Proposition.

Proposition B.10. Consider a general polynomial ensemble from Definition B.1, then the following
formula holds:

EP

[
∏M

m=1 DN(zm)

DN(y)

]
=

1
∆M(z1, . . . , zM)

(−1)M

det G

×

∣∣∣∣∣∣∣∣∣∣∣

g1,1 . . . g1,N z0
1 . . . z0

M
g2,1 . . . g2,N z1

1 . . . z1
M

...
...

...
...

...
...

gN+M−1,1 . . . gN+M−1,N zN+M−1
1 . . . zN+M−1

M
ψ1(y) . . . ψN(y) 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣
,

where we have used the notation

ψl(y) ≡
∫

I
du ∏M

m=1(zm − u)
y− u

ϕl(u) . (B.10)
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Proof. The following algebraic identity holds true [65]

1

∏N
n=1(y− xn)

=
N

∑
n=1

1
y− xn

N

∏
p=1
p 6=n

1
xn − xp

.

Recall the reduced Vandermonde determinant and its properties, in particular Lemma A.3
and Eqs. (A.6), (A.7). Then we can always write

∆N(x1, . . . , xN) = (−1)N−l∆(l)
N−1(x1, . . . , xN)

N

∏
p=1
p 6=l

(xl − xp) .

This leads to
∆N(x1, . . . , xN)

∏N
n=1(y− xn)

=
N

∑
j=1

(−1)N−j∆(j)
N−1(x1, . . . , xN)

y− xj
. (B.11)

Looking at the expectation value we find

EP

[
∏M

m=1 DN(zm)

DN(y)

]
=

(
N

∏
n=1

∫
I

dxn

)
P(x1, . . . , xN)

∏M
m=1 ∏N

n=1(zm − xn)

∏N
j=1(y− xn)

=
1

ZN

(
N

∏
n=1

∫
I

dxn

)
det [ϕl(xk)]

N
k,l=1

∆(x1, . . . , xN)∏M
k=1 ∏N

j=1(zk − xj)

∏N
j=1(y− xj)

.

With Eq. (B.11) and using ZN = N! det G we obtain

EP

[
∏M

m=1 DN(zm)

DN(y)

]
=

1
N! det G

N

∑
l=1

(−1)N−l

(
N

∏
n=1

∫
I

dxn

)

× det [ϕm(xk)]
N
k,m=1

∆(l)
N−1(x1, . . . , xN)∏M

k=1 ∏N
j=1(zk − xj)

y− xl

=
1

∆M(z1, . . . , zM)N! det G

N

∑
l=1

(−1)N−l

(
N

∏
n=1

∫
I

dxn

)
det [ϕm(xk)]

N
k,m=1

× ∏M
k=1(zk − xl)

y− xl
∆(l)

N−1(x1, . . . , xN , z1, . . . , zM)

=
(−1)(N−1)M

∆M(z1, . . . , zM)N! det G

N

∑
l=1

(−1)N−l

 N

∏
n=1
n 6=l

∫
I

dxn

∆(l)
N−1(z1, . . . , zM, x1, . . . , xN)

×
∫

I
dxl

∏M
k=1(zk − xl)

y− xl
det [ϕm(xk)]

N
k,m=1 .

The reduced Vandermonde determinant can be rewritten such that the zk variables are the
first M variables, leading to a prefactor (−1)(N−1)M. Then we pull the integration over xl
as well as the factors ∏M

k=1(zk − xl) and 1
(y−xl)

into the l-th row of the ϕ-determinant, which
contains the xl variable. Additionally, we identify the entries in that row with the functions
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ψl(y) via Eq. (B.10). Consequently, we obtain a determinant of the form

det



ϕ1(x1) . . . ϕN(x1)
...

...
...

ϕ1(xl−1) . . . ϕN(xl−1)
ψ1(y) . . . ψN(y)

ϕ1(xl+1) . . . ϕN(xl+1)
...

...
...

ϕ1(xN) . . . ϕN(xN)


= (−1)l−1 det



ψ1(y) . . . ψN(y)
ϕ1(x1) . . . ϕN(x1)

...
...

...
ϕ1(xl−1) . . . ϕN(xl−1)
ϕ1(xl+1) . . . ϕN(xl+1)

...
...

...
ϕ1(xN) . . . ϕN(xN)



= (−1)l−1 det


ψ1(y) ϕ1(x1) . . . ϕ1(xl−1) ϕ1(xl−1) . . . ϕ1(xN)
ψ2(y) ϕ2(x1) . . . ϕ2(xl−1) ϕ2(xl−1) . . . ϕ2(xN)

...
...

...
...

...
...

...
ψN(y) ϕN(x1) . . . ϕN(xl−1) ϕN(xl−1) . . . ϕN(xN)

 .

Applying Andreief’s integration formula - Proposition B.4 - for the remaining N − 1 inte-
grations over the remaining x variables, we combine the two determinants and make use of
the definition of the G-matrix entries. We find

(−1)(N−1)M

∆M(z1, . . . , zM)N! det G

N

∑
l=1

(−1)N−l

 N

∏
j=1
j 6=l

∫ ∞

0
dxj

∆(l)
N+M−1(z1, . . . , zM, x1, . . . , xN)

(−1)l−1 det


ψ1(y) ϕ1(x1) . . . ϕ1(xl−1) ϕ1(xl−1) . . . ϕ1(xN)
ψ2(y) ϕ2(x1) . . . ϕ2(xl−1) ϕ2(xl−1) . . . ϕ2(xN)

...
...

...
...

...
...

...
ψN(y) ϕN(x1) . . . ϕN(xl−1) ϕN(xl−1) . . . ϕN(xN)



=
(−1)(N−1)M(−1)N−1

∆M(z1, . . . , zM)N! det G

N

∑
l=1

(N − 1)!(−1)M det



0 z0
1 z1

1 . . . zN+M−1
1

...
...

...
...

...
0 z0

M z1
M . . . zN+M−1

M
ψ1(y) g1,1 g2,1 . . . gN+M−1,1

...
...

...
...

...
ψN(y) g1,N g2,N . . . gN+M−1,N



=
(−1)M(−1)(N−1)(M+1)

∆M(z1, . . . , zM)det G
det


z0

1 . . . z0
M g1,1 . . . g1,N

...
...

...
...

...
...

zN+M−1
1 . . . zN+M−1

M gN+M−1,1 . . . gN+M−1,N
0 . . . 0 ψ1(y) . . . ψN(y)

 .

In the last step we have transposed the matrix, then switched the first row to last and used
the fact, that the summation over l gives an additional factor of N.
The next step is to rearrange the columns again, bringing the columns containing the G-
matrix entries to the front, which yields a factor of (−1)NM. Managing all the powers of
(−1) yields

(−1)NM(−1)(N−1)(M+1) = (−1)NM(−1)2M(−1)−NM = 1.
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Overall we find

EP

[
∏M

m=1 DN(zm)

DN(y)

]
=

(−1)M

∆M(z1, . . . , zM)det G

× det


g1,1 . . . g1,N z0

1 . . . z0
M

...
...

...
...

...
...

gN+M−1,1 . . . gN+M−1,N zN+M−1
1 . . . zN+M−1

M
ψ1(y) . . . ψN(y) 0 . . . 0

 ,

which concludes the proof.

Alternative derivation of the correlation kernel for N f = 0

In this section we want to derive the correlation kernel of the chGUE(N) with an external
source for finite N using an alternative approach to chapter 4. We know from chapter 3,
that the chGUE(N) with an external source forms an invertible polynomial ensemble, which
allows us to use the Theorem 3.9 and also Proposition 3.12. In chapter 4 we used Proposition
3.12 directly via Eq. (4.3). Alternatively, we can apply Theorem 3.9, in the case M = L = 1,
leading to:1

EP

[
DN(x1)

DN(y)

]
=
∫

I′
dsF(s, x1)

N

∏
n=1

(s− an)
∫

I
dv
(

v
y

)N−1 x1 − v
y− v

×
[∮

C

du
2πi

1

∏N
n=1(u− an)

ϕ(u, v)
s− u

]
.

This expression is useful to derive the kernel, because of Eq. (3.7), i.e.

KN(x1, x2) =
1

x1 − x2
Res
y=x2

(
EP

[
DN(x1)

DN(y)

])
, (B.12)

where the residue is defined via - see Eq. (3.6):

f (x) ≡ Res
z=x

∫
I

dt
f (t)

z− t
. (B.13)

Looking at the chGUE(N) with an external source, we find for general N f the ϕ-function

ϕ(al , x) =
(

x
al

) ν
2

e−(x+al) Iν (2
√

alx) ∀l = 1, . . . , N, (B.14)

which was also given in Eq. (4.3). Additionally, we have

I = R+ , I′ = R− , and F(s, x1) = (−1)ν

(
s

x1

)ν/2

es+x1 Iν (2
√

x1s) , (B.15)

1The equation has to be compared to Eq. (3.13) for M = L = 1
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which allows us to write

EP

[
DN(x1)

DN(y)

]
= x−ν/2

1 ex1

∫ ∞

0
ds(−1)ν(−1)ν/2sν/2e−s Iν(2i

√
x1s)︸ ︷︷ ︸

=(−1)ν/2 Jν(2
√

x1s)

(−1)N+1
N

∏
n=1

(s + an)

×
∫ ∞

0
dv
(

v
y

)N−1 (x1 − v)
(y− v)

∮
C

du
2πi

u−ν/2e−u

∏N
n=1(u− an)

vν/2e−v Iν(2
√

uv)
s + u

=(−1)x−ν/2
1 ex1

∫ ∞

0
dttν/2e−t Jν(2

√
x1t)

N

∏
n=1

(t + an)

×
∫ ∞

0
dx
(

x
y

)N−1 (x1 − x)
(y− x)

∮
C

du
2πi

u−ν/2e−u

∏N
n=1(an − u)

xν/2e−x Iν(2
√

ux)
t + u

,

with a contour C, which encircles the points a1, . . . , aN counter-clockwise and leaves the real
number −t outside.
Now we use the following identity:(

x
y

)N−1 1
y− x

=
1

y− x
−

N−2

∑
k=0

xk

yk+1 .

With this identity we can write

EP

[
DN(x1)

DN(y)

]
=(−1)x−ν/2

1 ex1

∫ ∞

0
dssν/2e−s Jν(2

√
x1s)

N

∏
n=1

(s + an)

×
∫ ∞

0
dv
(

v
y

)N−1 (x1 − v)
(y− v)

∮
C

du
2πi

u−ν/2e−u

∏N
n=1(an − u)

vν/2e−v Iν(2
√

uv)
s + u

=x−ν/2
1 ex1

∫ ∞

0
dssν/2e−s Jν(2

√
x1s)

N

∏
n=1

(s + an)

× (−1)
2πi

∮
C

du
u−ν/2e−u

(s + u)∏N
n=1(an − u)

[ ∫ ∞

0
dv

vν/2e−v

y− v
(x1 − v)Iν(2

√
uv)

−
N−2

∑
k=0

∫ ∞

0
dv

vk+ν/2e−v

yk+1 (x1 − v)Iν(2
√

uv)
]

.

(B.16)

The kernel is then obtained via Eq. (B.12) by applying the residue. The residue is taken with
respect to the variable y, which is coupled only to the v-integration. Since the residue is per
definition a linear operation, we can permute it with all the other integrations. Therefore,
we need to evaluate only the following two expressions:

Res
y=x2

(∫ ∞

0
dv

vν/2e−v

y− v
(x1 − v)Iν(2

√
uv)
)

,

Res
y=x2

(∫ ∞

0
dv

xk+ν/2e−v

yk+1 (x1 − v)Iν(2
√

uv)
)
=
∫ ∞

0
dvvk+ν/2e−v(x1 − v)Iν(2

√
uv)Res

y=x2

(
1

yk+1

)
.
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The first expression can be evaluated with Eq. (B.13) to be

Res
y=x2

(∫ ∞

0
dv

vν/2e−v

y− v
(x1 − v)Iν(2

√
uv)
)
= (x1 − x2)xν/2

2 e−x2 Iν(2
√

ux2) .

The second expression vanishes for all y 6= 0, since the residue of y−k−1 is zero. For y = 0
we have a pol of order k + 1, which leads to the formula

Res
y=x2=0

(
1

yk+1

)
= lim

y→0

1
k!

∂k

∂yk yk+1 1
yk+1 = 0 .

This implies that the second expression is always equal to zero. Hence, the terms in the sum
in Eq. (B.16) all vanish when we apply the residue. Thus, we are left with

K(0)
N (x1, x2) =

1
x1 − x2

(−1)x−ν/2
1 ex1

2πi

∫ ∞

0
dssν/2e−s Jν(2

√
sx1)

N

∏
n=1

(s + an)

×
∮

C
du

u−ν/2e−u

(s + u)∏N
n=1(an − u)

Res
y=x2

(∫ ∞

0
dx

x1 − x
y− x

xν/2e−x Iν(2
√

ux)
)

=
1

x1 − x2

(−1)x−ν/2
1 ex1

2πi

∫ ∞

0
dssν/2e−s Jν(2

√
sx1)

N

∏
n=1

(s + an)

×
∮

C
du

u−ν/2e−u

(s + u)∏N
n=1(an − u)

(x1 − x2)xν/2
2 e−x2 Iν(2

√
ux2)

=
−1
2πi

(
x2

x1

)ν/2

ex1−x2

∫ ∞

0
dssν/2e−s Jν (2

√
sx1)

N

∏
n=1

(s + an)

×
∮

C
du

u−ν/2e−u

(s + u)∏N
n=1(an − u)

Iν(2
√

ux2) .

Omitting the prefactors (
x2

x1

)ν/2

ex1−x2 ,

we obtain the same result as in chapter 4. This is possible, because the kernel is invariant
under such transformations.
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Appendix C

Derivation of Joint Probability
Density Functions

In this appendix we provide additional information on how to derive the joint probability
density functions (JPDF) for the random matrix models introduced in chapter 2. In partic-
ular, we consider the classical chGUE(N) [2] and the deformed chGUE(N) with N f mas-
sive flavors [9], see also [135, chapter 13] and [138] for an overview. We also consider the
chGUE(N) with an external source [67–71] and its extension with N f massive flavors [10–
13], see also [139–141] for additional information on external source models. We have intro-
duced all four matrix models via the matrix-valued density P(W), the partition function ZN
and the measure dW. For the simplest model, the classical chGUE(N) we had in Eq. (2.2):

ZchGUE
N =

∫
PchGUE(W)dW, where PchGUE(W) =

1
N0

exp
(
−Tr WW†

)
. (C.1)

For the deformed chGUE(N) the matrix-valued density P(W) was given in Eq. (2.4):

Pdeformed
chGUE (W) =

1
Ndef

N f

∏
f=1

det(D + m f ) exp
(
−Tr WW†

)

=
1
Ndef

N f

∏
f=1

det
(

m f 11N iW
iW† m f 11N+ν

)
exp

(
−Tr WW†

)
.

(C.2)

For the models with external sources T we also stated the densities P(W) in chapter 2. For
the chGUE(N) with an external source we had (compare Eq. (2.3)):

Pext
chGUE(W) =

1
Next

exp
(
−Tr (W − T)(W† − T†)

)
. (C.3)

The extension of the chGUE(N) with an external source by N f massive flavors has a density
of the form:

Ptemp
chGUE(W) =

1
N

N f

∏
f=1

det(Dtemp + m f ) exp
(
−Tr WW†

)

=
1
N

N f

∏
f=1

det
(

m f 11N i(W + T)
i(W† + T†) m f 11N+ν

)
exp

(
−Tr WW†

)
,

(C.4)

which was given in Eq. (2.5).



112 Appendix C. Derivation of Joint Probability Density Functions

The matrix-valued function P(W) for the chGUE(N) is supposed to be a density, since the
matrices are random variables. This means that we have to meet the requirement of nor-
malization to some constant with respect to the measure dW. This normalization is further
specified by the fact that P(W) is a probability density. Thus, the combination P(W)dW has
to form a probability measure, i.e. it has to be normalized to unity under integration

1 =
∫

dWP(W) . (C.5)

The fact that both WW† and W in our model are random variables carries over to their
entries and eigenvalues. Hence, normalization with respect to the measure dW has to also
carry over to the measure over the squared singular values of W. The question is: How can
we ensure that this connection is well-defined, when the measure decomposes as we have
seen in Eq. (2.6)? We get

dW =
N

∏
n=1

N+ν

∏
m=1

dReWnmdImWnm ,

which implies that the decomposition contains parts depending solely on the eigenvectors,
and parts depending solely on the singular values. Any observableO(W) in our model that
we impose on the matrix-variable-level would have to be checked wether and how it de-
composes in terms of the singular value decomposition. We need this information in order
to determine how O(W) affects the pure eigenvalue statistics and how it affects the eigen-
vector statistics. This is a general problem in Random Matrix Theory and can only be solved
for explicitly given observables.
In this thesis we are focusing on the eigenvalue statistics of the Dirac operator. This means
we consider only observables O(W) that are purely depending on the non-zero eigenval-
ues of WW† and not on the eigenvectors. That implies that we impose an invariance with
respect to unitary matrices U, V, i.e. O(W) = O(UWV). Any observable or ensemble that
fullfills this invariant is called unitary bi-invariant. Consequently, we assume that O(W) =
O(λ1, . . . , λN) can be ensured by the existence of a suitable JPDF of the squared sinuglar
values of W. This assumption can be quantified by introducing the expectation value of the
observable O(W):

EP [O(W)] =
∫

dWP(W)O(W) =

(
N

∏
n=1

∫
dλn

)
P(λ1, . . . , λN)O(λ1, . . . , λN) , (C.6)

where the quantity P(λ1, . . . , λN) is the required JPDF of the squared singular values. The
integration over the squared singular values λn, n = 1, . . . , N, is over the positive real half-
line R+, since the eigenvalues of WW† are supposed to be real and positive. The normaliza-
tion in Eq. (C.5) then leads to the normalization property of the JPDF

1 =

(
N

∏
n=1

∫
dλn

)
P(λ1, . . . , λN) .

From Eq. (C.6) we see that unitary bi-invariance ofO(W) is required to ensure that the JPDF
indeed only depends on the squared singular values. If the invariance is broken by P(W),
which is the case when an external source T is introduced to the model, then in general the
preferred eigenspaces of O(W) would impact the JPDF and also the pure eigenvalue statis-
tics of the underlying physical system. There are some instances however, where we can still
find a JPDF of squared singular values, despite the breaking of unitary bi-invariance. This
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becomes possible by performing the integration with respect to the Haar-measures dµ(U)
and dµ(V) explicitly and thus, integrating out the dependence on the eigenvectors. We will
showcase this for the models considered in the Eqs. (C.1), (C.3), (C.2) and (C.4).

The Jacobian originating from the change of measure was already given in Eq. (2.7) and
reads

dW = c

(
N

∏
n=1

λν
n

)
|∆N(λ1, . . . , λN)|2

(
N

∏
n=1

dλn

)
dµ(UW)dµ(VW) .

The Jacobian has to be included in the JPDF P(λ1, . . . , λN). This also applies to the integra-
tion over the Haar measures dµ(U), dµ(V). For the simplest model, the classical chGUE(N),
with matrix-valued density P(W) given in Eq. (C.1), the unitary bi-invariance is unbroken
and we obtain

P(W)dW = P(UWWDV†
W)c∆2

N(λ1, . . . λN)

(
N

∏
n=1

λν
n

)
dµ(UW)dµ(V†

W)

(
N

∏
n=1

dλn

)

=
c
N0

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
n

)
dµ(UW)dµ(V†

W)

× exp
(
−Tr (UWWDV†

W)(UWWDV†
W)†

)( N

∏
n=1

dλn

)

= PchGUE(λ1, . . . , λN)

(
N

∏
n=1

dλn

)
.

Taking a closer look at the exponential term, and using the invariance of the trace under
cyclic permutation, we can write

exp
(
−Tr (UWWDV†

W)(UWWDV†
W)†

)
= exp

(
−Tr WDW†

D

)
= exp

(
−Tr Λ2

W
)

= exp

(
−

N

∑
n=1

w2
n

)
=

N

∏
n=1

e−λn .

Note that the dependence on UW and V†
W has dropped out completely. Hence, the integra-

tion over the Haar measure yields an integral I(U, V) = c′, where c′ is a constant, which
does not depend on the singular values. Therefore, we can write the JPDF for the classical
chGUE(N) as

PchGUE(λ1, . . . , λN) =
c · c′
N0

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

)
.

From a physical standpoint the normalization is realized in terms of a partition function

Z
(N f ,T)
N , which depends on the deformation by dynamical, massive flavors N f and the influ-

ence of temperature T. This can be reconciled with the probabilistic approach of Random

Matrix Theory by choosing the constantN0 to be Z(0,0)
N
cc′ for the classical chGUE(N), since this

model does not contain temperature (T = 0) and has no flavors (N f = 0). The partition
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function Z(0,0)
N is written as the integral over the unnormalized JPDF we obtained above, i.e.

Z(0,0)
N =

(
N

∏
n=1

∫
dλn

)
∆2

N(λ1, . . . , λN)

(
N

∏
n=1

λν
ne−λn

)
.

The final form of the JPDF of the chGUE(N) then reads

PchGUE(λ1, . . . , λN) =
1

Z(0,0)
N

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

)
.

The deformed chGUE(N), with density P(W) given in Eq. (C.2), is another example, where
the decomposition into squared singular values does not break the unitary bi-invariance. By
comparing Eqs. (C.1) and (C.2), we find that the deformation with N f fermion determinants
is invariant with respect to the singular value decomposition, due to

N f

∏
f=1

det(D + m f 112N+ν) =
N f

∏
f=1

det(m f 11N+ν)det(m f 11N + m−1
f WW†)

=

( N f

∏
f=1

mν
f

)( N f

∏
f=1

det(m2
f 11n + (UWWDV†

W)(UWWDV†
W)†)

)

=

( N f

∏
f=1

mν
f

)( N f

∏
f=1

det(m2
f 11n + WDW†

D)

)

=

( N f

∏
f=1

mν
f

)( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)
.

(C.7)

We choose the constant Ndef as follows:

Ndef =
Z
(N f ,0)
N
cc′

( N f

∏
f=1

mν
f

)
.

This leads us to

Pdeformed
chGUE (λ1, . . . , λN) =

1

Z
(N f ,0)
N

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

N f

∏
f=1

(m2
f + λn)

)

=
Z(0)

N

Z
(N f )

N

( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)
PchGUE(λ1, . . . , λN) .

The parition function Z
(N f ,0)
N does not depend on temperature (T = 0) but on the N f massive

flavors (N f 6= 0). The partition function is of the form

Z
(N f ,0)
N =

(
N

∏
n=1

∫
dλn

)
∆2

N(λ1, . . . , λN)

(
N

∏
n=1

λν
ne−λn

)( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)
.

The complete factorisation of the eigenvectors and singular values, as we have seen in the
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two ensembles above, is also known for other ensembles such as the GOE(N), GUE(N) and
GSE(N). These three classical ensembles where studied in this sense by Hua [75]. Further
information can also be found in classical literature, for example [23, 24, 75].
One important consequence of the factorisation is that methods of orthogonal polynomials
become applicable to the eigenvalue (and singular value) statistics. We discussed some im-
portant features and results from this field in section 2.3.

Adding external sources, like T in the models of Eqs. (C.3) and (C.4), breaks the unitary
bi-invariance, i.e. P(W) 6= P(UWV†). We obtain group integrals with respect to the Haar
measures that are a priori non-trivial and not necessarily constant with respect to the singu-
lar values. For example, the density given for the classical chGUE with an external source,
Eq. (C.3), becomes

P(W)dW = P(UWWDV†
W) c ∆2

N(λ1, . . . λN)

(
N

∏
n=1

λν
n

)
dµ(UW)dµ(V†

W)

(
N

∏
n=1

dλn

)

=
c
Next

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
n

)
dµ(UW)dµ(V†

W)

× exp
(
−Tr (W − T)(W† − T†)

)( N

∏
n=1

dλn

)

=
c
Next

∆2
N(λ1, . . . λN)

(
N

∏
n=1

λν
n

)
exp

(
−Tr WW†

)
exp

(
−Tr TT†

)
× exp

(
Tr (WT† + TW†)

)
dµ(UW)dµ(V†

W)

(
N

∏
n=1

dλn

)
.

The problem is how to proceed with the exponential term in the last line above, especially
the mixed term in the exponential containing WT† + TW†. The solution is to do a singular
value composition for W as before, and another for T at the same time, namely

T =
1
2

UTTDV†
T , where TD =

(
ΛT 0N×ν

)
and ΛT =


t1 0 0 . . . 0
0 t2 0 . . . 0
... 0

. . .
...

...
... 0

0 0 . . . 0 tN

 .

This allows us to write the mixed term as

exp
(

Tr (WT† + TW†)
)
= exp

(
1
2

Tr (UWWDV†
WVTT†

DU†
T + UTTDV†

T VWW†
DU†

W)

)
= exp

(
1
2

Tr (U†
TUWWDV†T†

D + U†
WUTTDVW†

D)

)
= exp

(
1
2

Tr (UWDV†T†
D + U†TDVW†

D)

)
= exp

(
1
2

Tr (UWDV†T†
D + (UWDV†T†

D)
†)

)
= exp

(
ReTr

(
UWDV†T†

D

))
.



116 Appendix C. Derivation of Joint Probability Density Functions

In the last line we have used that 2Re z = z + z̄ holds for any complex number z and that
Tr AT = Tr A holds for any square matrix A. Furthermore, we can make use of the invariance
of the Haar measure, allowing us to write U = U†

TUW - without changing the value of
dµ(UW) = dµ(U) - and similarly for V†. We also have

exp
(
−Tr TT†

)
= exp

(
−1

4
Tr TDT†

D

)
= exp

(
−1

4

N

∑
n=1

t2
n

)
=

N

∏
n=1

e−an ,

where we have used the substitution 4an = t2
n for all n = 1, . . . , N in the last step. Combining

everything we have learned so far yields

P(W)dW =
c
Next

(
∏
n=1

Ne−an

)
∆2

N(λ1, . . . λN)

(
N

∏
n=1

λν
ne−λn

)

× dµ(UW)dµ(V†
W) exp

(
ReTr

(
UWDV†T†

D

))( N

∏
n=1

dλn

)
.

Thus, the resulting group integral I(U, V) we have to compute is

I(U, V) =
∫

U (N)
dµ(U)

∫
U (N+ν)

dµ(V) exp
(

ReTr
(

UWDV†T†
D

))
. (C.8)

Integrals of this form are usually called Berezin-Karpelevich-type integrals [79]. The solu-
tion to the specific integral in Eq. (C.8) reads [65]

I(U, V) =
∫

U (N)
dµ(U)

∫
U (N+ν)

dµ(V) exp
(

ReTr
(

UWDV†T†
D

))
= C ∏N

n=1(anλn)−
ν
2

∆N(a1, . . . , aN)

det[Iν(2
√

aiλj)]
N
i,j=1

∆N(λ1, . . . , λN)
,

where we have introduced the modified Bessel function of the first kind Iν(x) with argument
x, which has the series expansion [130]

x−
ν
2 Iν

(
2
√

x
)
=

∞

∑
n=0

xn

n!(n + ν)!
.

The proportionality constant C of the integral I(U, V) can be found in [80] and is of no
further interest to us. Gathering all knowledge obtained so far allows us to write down the
JPDF for the chGUE(N) with external source as

Pext
chGUE(λ1, . . . , λN) =

c · C
Next

∏N
n=1 a−

ν
2

n e−an

∆N(a1, . . . , aN)

(
N

∏
n=1

λν/2
n e−λn

)

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN) ,

which allows us to set

Next =
Z(0,T)

N
c · C

1
∆N(a1, . . . , aN)

.
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Finally, we arrive at

Pext
chGUE(λ1, . . . , λN) =

1

Z(0,T)
N

[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN) ,

(C.9)

with a partition function now depending on temperature (T 6= 0), but not on dynamical
flavors (N f = 0), i.e.

Z(0,T)
N =

( N f

∏
n=1

∫
dλn

)[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN) .

The remaining model we have to consider is the combination of external source and defor-
mation with N f flavors, given in Eq. (C.4). Note that T is a deterministic matrix, which
means we can shift W → W − T and keep the measure dW invariant at the same time. This
allows us to write the density Ptemp

chGUE(W) as

Ptemp
chGUE(W) =

1
N

N f

∏
f=1

det(D + m f 112N+ν) exp
[
−Tr (W − T)(W† − T†)

]

=
Next

N

N f

∏
f=1

det(D + m f 112N+ν)Pext
chGUE(W) ,

(C.10)

where we have the temperature independent Dirac operator D given by

D = i
(

0N W
W† 0N+ν

)
.

This operator was introduced in Eq. (2.1) back in chapter 2. From the second line in Eq.
(C.10) we see that the difference to the simpler, external source model from before is the
addition of N f fermion determinants. After the shift W → W − T these are T independent.
Additionally, we know from Eq. (C.7) that they are also unitary bi-invariant with respect to
the singular value decomposition of W. This implies that we can take the result of Eq. (C.9)
and upgrade it with Eq. (C.7). This leads us to the result for the JPDF, i.e.

P temp
chGUE(λ1, . . . , λN) =

c · C
N

∏N
n=1 a−

ν
2

n e−an

∆N(a1, . . . , aN)

(
N

∏
n=1

λν/2
n e−λn

)( N f

∏
f=1

mν
f

)

×
( N f

∏
f=1

N

∏
n=1

(m2
f 11n + λn)

)
det

[
Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN) .
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We can set the constant N to be

N =
Z
(N f ,T)
N
c · C

1
∆N(a1, . . . , aN)

( N f

∏
f=1

mν
f

)
. (C.11)

Consequently, we obtain

P temp
chGUE(λ1, . . . , λN) =

1

Z
(N f ,T)
N

[
N

∏
n=1

(
λn

an

)ν/2

e−(λn+an)

]( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)

× det
[

Iν

(
2
√

aiλj

)]N

i,j=1
∆N(λ1, . . . λN)

=
Z(0,T)

N

Z
(N f ,T)
N

( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)
Pext

chGUE(λ1, . . . , λN)

=
Z
(N f ,0)
N

Z
(N f ,T)
N

(
N

∏
n=1

(λnan)
− ν

2 e−an

)
det

[
Iν

(
2
√

aiλj
)]N

i,j=1

∆N(λ1, . . . , λN)

×Pdeformed
chGUE (λ1, . . . , λN)

=
Z(0,0)

N

Z
(N f ,T)
N

(
N

∏
n=1

(λnan)
− ν

2 e−an

)
det

[
Iν

(
2
√

aiλj
)]N

i,j=1

∆N(λ1, . . . , λN)

×
( N f

∏
f=1

N

∏
n=1

(m2
f + λn)

)
PchGUE(λ1, . . . , λN) .

Setting N f = 0, but keeping T 6= 0, yields the JPDF of the chGUE(N) with external source
as is indicated in the third line above, as the fermion determinants are absent in this case.
Setting N f 6= 0 and T = 0 yields the JPDF of the deformed chGUE(N) with N f fermion
determinants, since the group integral I(U, V) behaves as I(U, V) → c′ in the limit an → 0
for all n = 1, . . . , N. This is indicated in the second to last line above and equivalent to
saying that the ratio of determinants and partition functions is a constant equaling unity
in this limit. The case N f = 0 and T = 0 yields, in combination, the JPDF of the classical
chGUE(N) in the last line above.
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Appendix D

Polynomial Ensembles as Giambelli
compatible Point Processes

In this appendix we collect result presented in [1] regarding a sub-class of determinantal
point processes. The ensembles we consider share what is called the Giambelli compatabil-
ity property, which is defined below. We show that any polynomial ensemble, as defined
in chapter 3, has this property and becomes a Giambelli compatible point process. Following
[129] this leads to a certain determinantal representation of the expectation value of a ra-
tio of characteristic polynomials, where both numerator and denominator feature an equal
number of characteristic polynomials. In contrast to the rest of this thesis we use a different
convention for the Vandermonde determinant. We follow the notation in [1]. We also adopt
notation and definitions from Macdonald [142].

Let Λ be the algebra of symmetric functions. The Schur functions sλ indexed by Young
diagrams λ form an orthonormal basis in Λ. Recall that Young diagrams can be written in
the Frobenius notation, namely

λ = (p1, . . . , pd|q1, . . . , qd) ,

where d equals the number of boxes on the diagonal of λ, pj with j = 1, . . . , d denotes the
number of boxes in the j-th row of λ to the right of the diagonal, and ql with l = 1, . . . , d
denotes the number of boxes in the l-th column of λ below the diagonal. The Schur functions
satisfy the Giambelli formula:

s(p1,...,pd|q1,...,qd) = det
[
s(pi |qj)

]d

i,j=1
.

The Schur polynomial sλ (x1, . . . , xN) is the specialization of sλ to the variables x1, . . ., xN .
The Schur polynomial sλ (x1, . . . , xN) corresponding to the Young diagram λ with l(λ) ≤ N
rows of lengths λ1 ≥ ... ≥ λl(λ) > 0, can be defined by

sλ(x1, . . . , xN) =
1

∆N(x1, . . . , xN)
det

[
x

λj+N−j
i

]N

i,j=1
. (D.1)

If l(λ) > N, then sλ(x1, . . . , xN) ≡ 0 (by definition).

The Giambelli compatible point processes form a class of point processes whose different prob-
abilistic quantities of interest can be studied using the Schur symmetric functions. This class
of point processes was introduced by Borodin, Olshanski, and Strahov in [129] to prove de-
terminantal identities for averages of analogs of characteristic polynomials for ensembles
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originating from Random Matrix Theory, the theory of random partitions, and from repre-
sentation theory of the infinite symmetric group. In the context of random point processes
formed by N-point random configurations on a subset of R the Giambelli compatible point
processes can be defined as follows.

Definition D.1. Assume that a point process is formed by an N-point configuration
(x1, . . . , xN) on I ⊆ R. If the Giambelli formula

s(p1,...,pd|q1,...,qd)(x1, . . . , xN) = det
[
s(pi |qj)(x1, . . . , xN)

]d

i,j=1
,

which is valid for the Schur polynomial sλ(x1, . . . , xN) parameterized by an arbitrary Young diagram
λ (p1, . . . , pd|q1, . . . , qd), can be extended to averages, i.e.

E
[
s(p1,...,pd|q1,...,qd)(x1, . . . , xN)

]
= det

[
E
[
s(pi |qj)(x1, . . . , xN)

]]d

i,j=1
,

then the random point process is called Giambelli compatible point process.

What we show next is that polynomial ensembles introduced in chapter 3 can be understood
as Giambelli compatible point processes. Namely, the following Theorem holds true.

Theorem D.2. Any polynomial ensemble in the sense of Definition 3.1 is a Giambelli compatible
point process.

As it is explained by Borodin, Olshanski, and Strahov in [129] the Giambelli compatibility
of point processes implies determinantal formulas for averages of ratios of characteristic
polynomials. Namely, we obtain

Theorem D.3. Assume that x1, . . . , xN form a polynomial ensemble. Let u1, . . . , uM ∈ C\R and
z1, . . . , zM ∈ C for any M ∈N be pairwise distinct variables. Then

E

[
M

∏
m=1

DN(zm)

DN(um)

]
=

[
det

(
1

ui − zj

)M

i,j=1

]−1

det
[

1
ui − zj

E

(
DN(zj)

DN(ui)

)]M

i,j=1
, (D.2)

where DN(z) = ∏N
n=1(z − xn) denotes the characteristic polynomial associated with the random

variables x1, . . ., xN .

Proof of Theorem D.2

Let x1, . . ., xN form a polynomial ensemble on IN , where I ⊆ R. The probability density
function of this ensemble is given in Definition 3.1. Denote by s̃λ the expectation of the
Schur polynomial sλ (x1, . . . , xN) with respect to this ensemble,

s̃λ = E (sλ (x1, . . . , xN)) . (D.3)

Our aim is to show that s̃λ satisfies the Giambelli formula, i.e.

s̃λ = det
[
s̃(pi |qj)

]d

i,j=1
, (D.4)

where λ is an arbitrary Young diagram, λ = (p1, . . . , pd|q1, . . . , qd) in the Frobenius coor-
dinates. According to Definition D.1 this will mean that the polynomial ensemble under
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considerations is a Giambelli compatible point process.
The proof of Eq. (D.4) below is based on the following general fact due to Macdonald, see
Macdonald [142], Example I.3.21.

Proposition D.4. Let {hr,s} with integer r ∈ Z and non-negative integer s ∈ N be a collection of
commuting indeterminates such that we have

∀s ∈N : h0,s = 1 and ∀r < 0 hr,s = 0 , (D.5)

and set
s̃λ = det

[
hλi−i+j,j−1

]k
i,j=1 ,

where k is any number such that k ≥ l(λ). Then we have

s̃λ = det
[
s̃(pi |qj)

]d

i,j=1
,

where λ is an arbitrary Young diagram, λ = (p1, . . . , pd|q1, . . . , qd) in the Frobenius coordinates.

Clearly, in order to apply Proposition D.4 to s̃λ defined by Eq. (D.3) we need to construct a
collection of indeterminates {hr,s} such that

E (sλ (x1, . . . , xN)) = det
[
hλi−i+j,j−1

]k
i,j=1 (D.6)

will hold true for an arbitrary Young diagram λ, for an arbitrary k ≥ l(λ), and such that the
condition in Eq. (D.5) will be satisfied.
By Andréiéf’s integration formula given in Proposition 2.3 and the expression for the nor-
malisation constant ZN in Eq. (3.1) we can write1

E [sλ(x1, . . . , xN)] =
det

[∫
I dxxλi+N−i ϕj(x)

]N
i,j=1

det
[∫

I dxxN−i ϕj(x)
]N

i,j=1

, (D.7)

where we used Eq. (A.1) and Eq. (D.1). Notice that at this point it matters that we consider
polynomial ensembles and not more general bi-orthogonal ensembles. In the latter case the
Vandermonde determinant in the denominator of the Schur function in Eq. (D.1) would not
cancel, the Andréiéf formula would not apply and we would not know how to compute
such expectation values. Set

An,m =
∫

I
dxxn ϕm(x); n = 0, 1, . . . ; m = 1, . . . , N,

and denote by Q =
(
Qi,j
)N

i,j=1 the inverse2 of G̃ =
(

g̃i,j
)N

i,j=1, where g̃i,j =
∫

I dxxN−i ϕj(x).
With this notation we can rewrite Eq. (D.7) as

E (sλ(x1, . . . , xN)) = det

[
N

∑
ν=1

Aλi+N−i,νQν,j

]N

i,j=1

. (D.8)

1Due to the difference in notation with respect to the Vandermonde in this Appendix and Appendix A we
have a monomial of degree xN−i and not xi−1 in both numerator and denominator.

2Notice that due to Eq. (3.2) we have det[G] = (−1)N(N−1)/2 det[G̃]. Again due to the different convention
of the Vandermonde determinant.
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Since Q is the inverse of G̃, we have

N

∑
j=1

g̃i,jQj,k = δi,k, 1 ≤ i, k ≤ N,

or
N

∑
j=1

AN−i,jQj,k = δi,k, 1 ≤ i, k ≤ N. (D.9)

The following Proposition will imply Theorem D.2.

Proposition D.5. Let {hr,s}, with integer r ∈ Z and non-negative integer s ∈ Z≥0, be a collection
of indeterminates defined by

hr,s ≡


∑N

ν=1 AN+r−s−1,νQν,s+1, s ∈ {0, 1, . . . , N − 1}, r ≥ 0,
δr,0, s ≥ N, r ≥ 0,
0, s ≥ 0, r < 0.

(D.10)

The collection of indeterminates {hr,s} satisfies the condition in Eq. (D.5). Moreover, with this
collection of indeterminates {hr,s} formula in Eq. (D.6) holds true for an arbitrary Young diagram
λ, and for an arbitrary k ≥ l(λ).

Proof. We divide the proof of into several steps. First, the collection of indeterminates {hr,s}
defined by Eq. (D.10) is shown to satisfy the condition in Eq. (D.5). Next, we prove that Eq.
(D.6) holds true for an arbitrary Young diagram λ, and for an arbitrary k ≥ l(λ).
Step 1. First, we want to show that

det
[
hλi−i+j,j−1

]k
i,j=1 = det

[
hλi−i+j,j−1

]l(λ)
i,j=1 , (D.11)

for any k ≥ l(λ).
Let λ be an arbitrary Young diagram, and assume that k > l(λ). Consider the diagonal
entries of the k× k matrix (

hλi−i+j,j−1
)k

i,j=1

for i = j ∈ {l(λ) + 1, . . . , k}. By definition of the hr,s these entries are all equal to 1, since
λi = 0 for i ∈ {l(λ) + 1, . . . , k} implying h0,s = 1 by Eq. (D.5). For r < 0 we have hr,s = 0
(see Eq. (D.10)) and the matrix

(
hλi−i+j,j−1

)k
i,j=1 has the form

? . . . ? | ? . . . . . . . . . ?
...

. . .
... |

...
. . . . . . . . .

...
? . . . ? | ? . . . . . . . . . ?
−− −− −− −− −− −− −− −− −−

0 . . . 0 | 1 ? . . . . . . ?
...

... | 0 1 ? . . . ?
...

. . .
... |

...
. . . . . . . . .

...
...

... |
...

. . . . . . ?
0 . . . 0 | 0 . . . . . . 0 1


,
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where the first row from the top with zeros has the label l(λ) + 1, and the first column from
the left with ones has the label l(λ) + 1. The determinant of such a block matrix reduces to
the product of the determinants of the blocks, which gives the relation in Eq. (D.11).

Step 2. Assume now that l(λ) > N. Then it trivially holds that

E (sλ(x1, . . . , xN)) = 0 ,

by the very definition of the Schur polynomials. Here, we would like to show that it equally
holds that

det
[
hλi−i+j,j−1

]l(λ)
i,j=1 = 0 ,

if l(λ) > N.
We have hr,s = δr,0 for s ≥ N and r ≥ 0. This implies that the matrix

(
hλi−i+j,j−1

)l(λ)
i,j=1, which

we can write out as

hλ1,0 ? . . . ? | hλ1+N,N . . . . . . hλ1−1+l(λ),l(λ)−1

? hλ2,1
. . .

... |
...

...
...

. . . . . . ? |
...

...
? . . . ? hλN ,N−1 | hλN+1,N . . . . . . hλN−N+l(λ),l(λ)−1
−− −− −− −− −− −− −− −− −−
? . . . . . . ? | hλN+1,N . . . . . . hλN+1−N−1+l(λ),l(λ)−1
...

... | ?
. . .

...
...

... |
...

. . . . . .
...

? . . . . . . ? | ? . . . ? hλl(λ),l(λ)−1


has the form 

hλ1,0 ? . . . ? | 0 . . . . . . 0

? hλ2,1
. . .

... |
...

...
...

. . . . . . ? |
...

...
? . . . ? hλN ,N−1 | 0 . . . . . . 0
−− −− −− −− −− −− −− −− −−
? . . . . . . ? | 0 . . . . . . 0
...

... | ?
. . .

...
...

... |
...

. . . . . .
...

? . . . . . . ? | ? . . . ? 0


.

Thus, we can again apply the formula for determinants of block matrices to obtain

det
[
hλi−i+j,j−1

]l(λ)
i,j=1 = det

[
hλi−i+j,j−1

]N
i,j=1 · 0 = 0,

which is true for any l(λ) > N and therefore the condition in Eq. (D.6) is satisfied in this
case.
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Step 3. Now we wish to prove that

N

∑
ν=1

AN−i+λi ,νQν,j = hλi−i+j,j−1 (D.12)

is valid for any Young diagram with l(λ) ≤ N, and for 1 ≤ i, j ≤ N. Assume that λi− i+ j ≥
0. Then Eq. (D.12) turns into the first equation in Eq. (D.10) with r = λi − i + j, s = j− 1.
Assume that λi − i + j < 0. Then i− λi > j. Clearly, i− λi ∈ {1, . . . , N} in this case, and we
have

N

∑
ν=1

AN−i+λi ,νQν,j = δi−λi ,j = 0,

where we have used Eq. (D.9). Also, if λi − i + j < 0, and 1 ≤ i, j ≤ N, then hλi−i+j,j−1 = 0
as it follows from Eq. (D.10). We conclude that Eq. (D.12) holds true for λi − i + j < 0 as
well.
Finally, the results obtained in Step 1-Step 3 together with the formula in Eq. (D.8) give the
desired result of Eq. (D.6).
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