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Multi-view Merging for Robot Teleoperation with
Virtual Reality

Dong Wei1, Bidan Huang2†, Qiang Li3

Abstract—In robotic teleoperation, an operator usually needs
to be trained for long hours. One of the factors leading to this
steep learning curve is the quality of telepresence. This paper
proposes a novel and user-friendly telepresence interface for
manipulation. Visual information from different views is merged
and presented to the operator in an intuitive way to facilitate the
task based on state-of-the-art virtual reality technology. Besides
rendering the scene, a virtual robot is also rendered in the
immersive view so that the robot is visible even when it is
occluded. We performed a series of user studies to evaluate
this interface. The results show that the proposed interface
can achieve a better task performance compared to a standard
approach in both the manipulation efficiency and the users’
preferences.

Index Terms—Telerobotics and Teleoperation; Virtual Reality
and Interfaces

I. INTRODUCTION

Building a fully autonomous robot has long been one of
the goals of robotics research. However, even state-of-the-
art autonomous robotic systems fall short in many aspects.
Teleoperation remains a more practical approach, as it em-
powers remote robots with the knowledge and skills of human
operators. A typical teleoperation system is comprised of
a leader device, controlled by the human operator, and a
follower device, which is the remote robot (Fig. 1(a) and (b))i.
Information captured by cameras and sensors on the follower
is relayed back to the leader device, providing the operator
with the necessary feedback to complete tasks such as search
and rescue [1], tunnel inspection and repair [2], as well as
robotic-assisted surgery [3].

A highly immersive and intuitive user interface, capable of
providing multi-modal sensory feedback to the operator with
minimal latency is essential for effective robotic teleopera-
tion. Among other stimuli such as haptics and audio, visual
feedback is arguably the most important sensory feedback for
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Fig. 1: System Design (a) Leader device includes Vive headset and
controller; (b) Robotic follower includes UR5 robot, RG2 gripper,
global and local camera; (c) the VR system in Unity includes global
image plane, virtual robot model and point cloud from local camera.

telepresence, as it enables the operator to localize the robot
and understand the remote environment [4]–[6]. Efforts to
improve the quality of visual feedback has been an important
theme in research. One of the most challenging issues with
visual feedback is the presence of occlusion in a cluttered
environment. This is especially pertinent when cameras on
the remote robot are mounted at a single site, thus restricting
the number of perspectives they can capture. Alternatively,
cameras can be placed on multiple locations of the robot. A
typical multi-camera setup involves global and local cameras,
where a static global camera provides a macroscopic view
of the workspace [7]–[9], while a local camera mounted on
the robot end-effector captures a more detailed local view
[5], [10]. In such a configuration, the way in which multiple
perspectives are presented to the operator will play a critical
role in the user experience.

A common approach for multi-view merging is Picture-
In-Picture (PIP), where video streams from multiple views
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are displayed concurrently and placed next to each other [4],
[11], [12]. While PIP is straightforward to implement, it has
two disadvantages. Firstly, it requires the operator to switch
between multiple 2D views to acquire and understand the
whole 3D scene of the remote site. This could significantly
increase the cognitive burden. Secondly, the local view is
attached to the robot end-effector frame, which moves with
the robot. Operating under a moving frame is not natural for
human.

Another popular technique is to reconstruct the entire 3D
scene from multiple point clouds. This approach necessitates
the use of multiple depth cameras and complex algorithms
to fuse the information together [13], [14]. Rendered to the
user through a Virtual Reality (VR) interface, the rich sense
of depth and color has been shown to improve operation
efficiency in various studies [4], [15]. The downside of this
approach is the huge bandwidth required to transmit multiple
point clouds, as well as the high computational cost to merge
them, resulting in poor real-time performance that impairs the
user experience.

There are numerous works in the literature that try to
achieve good visual experience while keeping computational
requirements manageable. Theofilis et al. [16] proposed a
panoramic reconstruction approach in the VR interface that
incorporates robot head control. Kohn et al. [14] merged
point clouds from only two global external cameras, thus
reducing visual occlusion while remaining computationally
tractable. Omarali et al. [17] proposed to use OctoMap to
generate a lightweight map of the robot’s workspace from
solely in-hand camera data, arguing that global information of
the environment is not essential for task completion. On the
other hand, Chen et al. [18] adopted a brute force approach,
leveraging large servers to achieve real-time 3D reconstruction
from multiple point clouds. It is apparent that despite the many
solutions explored, an intuitive way of rendering multiple
perspectives in real-time with minimal computational power
remains elusive.

In this work, we present a novel telepresence approach to
merge visual information from multiple cameras based on a
VR interface. We utilize a static global stereo camera and
a local RGB-D camera mounted on the end-effector of the
robot. The global view is displayed to the operator as a
stereoscope image, thus negating the need for computational
3D reconstruction. The local view is aligned and superimposed
into the global view as a 3D point cloud, allowing the
operator to view and operate from the same perspective. Our
preliminary work showed that our approach can provide the
operator with essential 3D information for manipulation tasks
across multiple scales [19] while remaining computationally
lightweight.

In this paper, we improved the quality of the multi-view
merging through the use of a dynamic online re-calibration
algorithm. We also conducted a comprehensive user study to
examine the performance of the proposed system qualitatively.
Different telepresence modes were evaluated with respect to
their pros and cons with objective and subjective analysis.
Experimental results showed that the proposed interface out-
performed the existing approaches in efficiency and usability.

The main contributions of this paper are listed as follows:
1) We proposed a lightweight multi-view merging approach

to render multiple viewpoints. Using this approach, the
operator can manipulate with a natural viewpoint and
can “see through” the occlusions. When necessary, the
operator is able to change its view angle to observe the
objects from different perspectives.

2) We implemented an online, dynamic vision-based re-
calibration technique that aligns the global stereo im-
ages, the local point cloud and the robot virtual model
in an immersive environment.

3) We conducted an in-depth efficiency analysis of the user
study in complicated manipulation task and compared
our proposed working modes with the PIP mode in a
teleoperation system.

The rest of the paper is structured as follows. Session II
describes the proposed system. Session III explains the design
of the experiments and Session IV details the user study.
Conclusion and future work are described in Session V.

II. AUGMENTED MULTI-VIEW TELEOPERATION INTERFACE

In this section, we detail the design of the proposed system
which is a multi-view teleoperation interface for manipulation
tasks. As shown in Fig. 1, the follower is a robotic arm with a
fixed global camera and a local camera mounted on the end-
effector, and the leader is a VR system. The human operator
wears the VR headset and controls the robot via the VR
controller (Section II-A).

In this multi-view system, the global camera provides an
overview of the surrounding, and the local camera provides
a close perspective of the manipulation scene. To alleviate
the aforementioned problems of the PIP approach (Fig. 2(a)),
we have developed a novel approach for merging the global
and local views: the Point Cloud Projection (PCP). In PCP,
we render the global stereo view and project the local 3D
point cloud to it, allowing the operator to see them from the
same static perspective. In this way, the operator can be fully
aware of both the global and local situations. Manipulation
can be performed intuitively as all the views are aligned to the
operator’s frame, i.e. the global camera’s frame. As a result,
this creates a “see-through” feeling when the manipulation
scene is occluded by the environment, allowing the operator
to manipulate easily in this difficult situation (Fig. 2(b)).

Rendering the global view with the stereoscopic approach
requires a smaller memory and lower computational costii

comparing to the point cloud based approaches [18]. We only
render the local scene with point cloud to provide the essential
information for manipulation. To work with the PCP, we have
also developed a Point Cloud Inspection mode (PCI). In PCI,
the operator is able to control the view angle and zoom in
and out of the point cloud through natural head movement
(Fig.2(c)). A virtual robot model is also rendered in the view
for the occlusion problem.

To summarize, the visualization of the scene contains four
main components which all need to be integrated into the
system:

iiIn our work, a pair of stereo image is around 2.7MB, while the corre-
sponding point cloud sizes about 28MB.
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(a) (b) (c)

Fig. 2: Three different teleoperation interfaces. (a) Picture in Picture (PIP). (b) Point Cloud Projection (PCP). (c) Point Cloud Inspection
(PCI).

• VR stereo rendering of the global view (Section II-B)
• Virtual robot model (Section II-C)
• PIP rendering of the global and local views (Sec-

tion II-D1)
• 3D PCP rendering of the global and local views (Sec-

tion II-D2)
• 3D PCI rendering of the local view (Section II-D3)

A. System Setup
In this proposed system, the follower (Fig. 1(a)) consists

of a 6 d.o.f robot arm (UR5iii) mounted with a two finger
robot gripper (RG2iv), a global view stereo camera (ZED
miniv) installed on a fixed location related to the robot base
and a local view depth camera (Realsense D415vi) attached
to the wrist of the robot. The relative poses between the
cameras and the robot are firstly estimated via an offline hand-
eye calibration process and fine-tuned online via a dynamic
calibration process detailed in the Section II-D2. We elongate
the robot fingers such that the finger tips can be seen by the
local depth camera, and has a minimum working distance of
11cm.

For the leader (Fig. 1(b)), we use a commercially available
VR system HTC Vive vii. This system consists of a head
mounted display (HMD) and two controllers. The HMD has
two displays, one for each eye. Visual 3D effect can be created
by presenting two images with parallax to each display. The
Vive system tracks the human head movement via sensors on
the HMD and the hand movement via the controllers. The
human operator uses the controllers to control the movement
of robot. The open/close status of robot gripper is coded
in binary and controlled by a button on the controller. To
enhance the user experience, the relative pose between the
global camera and the robot arm mimics the pose between the
human head and the right arm.

We use the Unity game engine for scene rendering and
present the robotic operation scene to the user via the VR
interface. With this engine we are able to provide a high
quality immersive experience to the user through a HTC Vive.

iiihttps://www.universal-robots.com/
ivhttps://onrobot.com/en/products/rg2-gripper
vhttps://www.stereolabs.com/zed-mini/
vihttps://www.intelrealsense.com/depth-camera-d415/
viihttps://www.vive.com

In the VR environment (Fig. 1(c)), a virtual follower system is
firstly built and the main components include the virtual global
and local cameras and a virtual robot model. To resemble the
real system, the virtual global camera and the virtual robot
have fixed locations, and the virtual local camera is fixed to
the frame of the robot wrist. During the teleoperation, the
virtual robot mirrors the real robot motion.

B. VR Rendering of Global View
The global camera ZED mini is a stereo camera, of which

the distance between the left and the right camera follows
closely to the pupillary distance of human. Wearing the HMD,
the operator can have a natural 3D sense of the robot’s
surrounding environment. To this end, the left and right global
images are rendered onto individual frames in front of the
virtual global camera, which are placed at a plane to match
the file-of-view (FOV) of the camera inputs. Each eye is only
able to see the plane that represents the view from the camera
for that eye. An intuitive 3D sense of the operation scene
is hence constructed to the user via the disparity of the two
displayed images.

C. Virtual Robot Model
During teleoperation, the robot arm can be occluded and

this increases the difficulty of operation, especially when the
gripper is out of view. To tackle this, we place a virtual robot
model in the VR to show the occluded parts of the robot. The
URDF model of the robot is imported to Unity with the pose
aligned to the real one.

To render the scene with the correct depth and occlusion
effect, we exploit the depth information. Both the global and
local cameras can provide the depth value on their pixels.
In VR, the physical depth is converted to the screen space
depth of each texels, i.e. the texture pixel. Screen space depth
is a value ranging from zero to one, with a value of zero
representing the smallest distance in front of the camera that
can be rendered and the value of one representing the maxi-
mum distance that will be rendered. This allows the engine to
compute the occlusion and decide what to be displayed to the
user. By having both the scene and the geometric objects in
the same space we can determine which object is occluded in
reality and present the corresponding effect to the user in the
virtual scene. This enables the user to understand the motion
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of the robot as it moves through complex and occluded scene
or handle self-occlusion by the robot during difficult tasks.

D. Local View Visualization
In order to provide more information about the operation

scene, a local camera mounted on the robot wrist is used to
capture the scene from a different view. This view is essential
when the operation scene is occluded from the global view.
Since the local camera is close to the gripper, more details
about the robot and the manipulated objects can be observed.
As the robot moves, the local camera moves accordingly to the
gripper and hence the gripper is always in the FOV. The local
camera provides a single RGB image along with the depth
from its infrared cameras. We implemented both the PIP and
the PCP to visualize the local view and conducted user studies
to evaluate their performance. In the following paragraphs, we
detail these two settings.

1) Picture in Picture Mode: PIP is the standard practice to
display the local view. In this mode, the user can see the local
view from a 2D image overlayed at the corner of the global
view (Fig. 2(a)). This picture can be toggled on and off. For
manipulation, a part of the fingertip can be seen and it allows
the user to decide the robot motion. However, when the local
camera moves with the robot, the global-local camera relative
pose changes too. The user hence has to constantly switch
between the global and local views to figure out the global-
local relation. Note that the robot movement direction does
not map the local view moving direction, which can increase
the difficulty of teleoperation (more details in the Section III).

2) Point Cloud Projection Mode: In this mode, the RGB-D
local image is firstly converted to a colored point cloud. The
point cloud is then projected to the global image planes and
allows the user to see the local scene from the global view.
In this approach, the user does not need to switch between
two views but still has a comprehensive understanding of the
whole operation scene. When the local scene is occluded from
the global view, e.g. when picking up an object from a large
box or plugging in a cable to the back of a computer, the
user can effectively see through the obstructions and operate
the robot naturally. This mode maximizes the user’s ability
to understand the scene in terms of depth, color and relative
position.

In the PCP mode, it is essential to align the local view
with the global view so that the objects observed from the
local camera can be correctly displayed and hence it allows
the user to make correct decision. This is to say, the pose
between the local camera and the global camera needs to be
computed precisely in real time during the entire teleoperation.
To this end, we firstly conducted offline hand-eye calibrationviii

to calculate the relative pose between the global camera and
the base of the robot (rHg), the local camera and the robot
end-effector (eeHl). With the robot kinematics we can access
the end-effector pose in the base frame (rHee), and the global-
local camera relative pose (gHl) can be computed as:

gHl = (rHg)
−1 · rHee · eeHl (1)

viiihttp://wiki.ros.org/rc visard/Tutorials/HandEyeCalibration

Algorithm 1 Dynamic Calibration

1: Initialize gHl with Equation 1
2: repeat
3: Read Global left RGB image, Local RGB-D image
4: Detect 2D features Fglobal , Flocal
5: Compute 3D locations Plocal with Flocal
6: Transfer Plocal to global camera base P∗global
7: Project P∗global to 2D feature points F∗global
8: if dist{Fglobal ,F∗global} ≤ thresh then
9: keep Fglobal ,F∗global ,Plocal

10: else
11: remove Fglobal ,F∗global ,Plocal
12: end if
13: gH ′l ← SolvePnP{Fglobal ,Plocal}
14: D′← ∑dist{Fglobal ,F∗global} with gH ′l
15: D← ∑dist{Fglobal ,F∗global} with gHl
16: if D′ ≤ D then
17: gHl ← gH ′l
18: end if
19: until exit

This offline calibration provides us an initial global-local
cameras relative pose. However, in practice we found that gHl
is not always a constant. It is difficult to have a prefect hand-
eye calibration, and the local camera pose eeHl can change
slightly due to the movement of the robot. As a result, the local
view may gradually misalign with the global view over time.
To tackle this, a dynamic calibration process is run during the
teleoperation to adjust the global-local camera relative pose
gHl online and ensure the two views are always aligned.

The dynamic calibration is formulated as a perspective-n-
point (PnP) problem (Algorithm 1). Using the left images on
camera and the local camera 2D image features via SIFT are
detected and matched. We denote the matched feature pairs as
Fglobal and Flocal . The 3D locations of the Flocal are computed
according to their depth images and resulted in a set of 3D
feature points Plocal . With the Fglobal and Plocal , the new global-
local camera relative pose gH ′l is estimated by solvePnPix. We
hence update the local camera pose eeHl by Equ. /citeeqn:pose
with the current end-effector pose rHee and the fixed local
camera pose rHg.

In practice, the feature matching can result in mis-matches
and reduce the accuracy of gH ′l . To tackle this, we apply extra
steps to improve the feature matching. With the latest global-
local camera relative pose, 3D points Plocal are transferred
to the frame of the global camera (P∗global). Projecting these
points to the global left image gives a set of 2D feature points
F∗global , each of which corresponds to the detected Fglobal . The
2D Euclidean distance between the detected feature locations
and their corresponding projected feature locations are hence
computed. Feature pairs with large distance are considered as
mis-matches and are omitted. The remaining feature pairs are
kept as good matches and their distances are summed to a
total distance D. The corresponding good Fglobal and Plocal
pairs are used for the solvePnP. With the result gH ′l , a new

ixhttps://docs.opencv.org/3.4/d9/d0c/group calib3d.html
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total distance D′ is computed. Finally, the pose is updated to
the new value gH ′l when distance D′ is smaller than the D.
Here, we presume that the difference between gHl and gH ′l in
two consecutive iterations is small, which holds well in our
experiments.

3) Point Cloud Inspection Mode: For fine manipulation, the
user needs to view the scene from different perspectives to
gather more visual information. For example, in a grasping
task the human may need to see the object from the side
view to ensure the robot gripper is aligned. Therefore, we
allow the user to “inspect” the 3D local scene from any angle
and distance (Fig. 2(c)). This is triggered by a gripper button
on controllers and shows only the point cloud from the local
camera. The system tracks the user’s head movement via the
HMD and orientates the point cloud accordingly. When the
user moves towards the point cloud, the view is zoomed in
to present a closer view. The speed of the view changes is
heuristically chosen to give the user a natural and comfortable
view experience. The user is able to switch back to the PCP
when he/she is done with the inspection.

III. EXPERIMENT SETUP

In the system, the robot was remotely controlled by an
operator via a network. The network was composed of two
nodes. One node was running the Unity in a Windows10
machine to collect the operator’s command and another node
was running on ROS (Kinetic) in a Ubuntu 16.04 machine to
receive operator’s command and control UR5 using URscript
language. Two nodes were wirelessly connected via WIFI. The
communication frequency was 125Hz and implemented using
ROS Unity bridge x.

The UR5 was working in the joint servoing mode. Its
desired joint angles were computed incrementally. The desired
angles were equal to the current measured angles plus the
desired joint angles rate multiplied by the control period.
The current measured angles were obtained online, and the
desired joint angles rate was computed from the readout of
HTC Vive controller (the desired twist motion of robot) and
inverse kinematics model of robot. The HTC Vive controller
firstly needed to be calibrated. Via the controller, the operator
can give the desired linear and rotation velocity to carry
out the given task according to his/her intuitive observation
in the virtual scene. The desired twist command was given
according to the local coordinate frame of the robot end-
effector and this can avoid the requirement that operator
remaps the motion command back to global frame in his
memory. Other parameters which is necessary for servoing
joints of UR5 were manually tuned to guarantee the smooth
movements of the robot.

Participants were asked to perform a manipulation task
multiple times using the proposed working modes. The task
included picking up two objects (a ball and a cube) from an
opaque box and putting them on a table. The objects were
occluded by the box and the participants had to carried out
the task based on their observations in different modes, as
shown in Fig. 2.

xhttps://github.com/siemens/ros-shar

Fig. 3: Objective metrics for evaluation of manipulation task.

For data analysis, we recorded the time the users started
to move the robot tS, the time they reached the target tM
(successful touch), and the time when the manipulation was
completed successfully tE based on the kinematics data of
the robot and the environmental parameters. We also recorded
the time tF the users first attempted to grasp an object in
each trial, i.e. their first attempt without any prior or feedback
from the environment. As shown in Fig. 3, we computed the
trajectory of the robot gripper tip based on its parameters and
the kinematics data: P(t), tS < t < tE . The number of attempts
the users tried to manipulate the target object mT was also
measured in each trial.

We propose the following four objective metrics to evaluate
the performance of teleoperation with different working modes
: efficiency/speed to reach the target (Ereach, Sreach), effi-
ciency/speed to complete a fetch task (E f etch, S f etch), number
of attempts of grasp(mT ), first grasp distance(dF ).

A. Efficiency/Speed to Reach the Target (Ereach/Sreach)

In experiments, the users may tend to get as close to the
objects as possible before grasping them. Smoothly approach-
ing and touching the target in the reaching phase was the key
to successful grasps. We utilized the speed and efficiency to
describe teleoperation’s performance in the reaching phase.
Ereach and Sreach are defined as:

Ereach =
‖P(tM)−P(tS)‖

tM− tS
,Sreach =

∫ tM
tS

√
1+ Ṗ(t)2

tM− tS
(2)

The norm of the vector from the robot gripper to the target
was used as a measure of distance in tasks. The length of the
trajectory in the reaching phase was computed by integrating
the speed measurement.

B. Efficiency/Speed to Complete a Fetch Task (E f etch/S f etch)

Similarly, we also described teleoperation’s performance in
the whole fetch task (reach, grasp and return) by speed(S f etch)
and efficiency(E f etch), which are defined as:

E f etch =
‖P(tM)−P(tS)‖+‖P(tE)−P(tM)‖

tE − tS

S f etch =

∫ tE
tS

√
1+ Ṗ(t)2

tE − tS

(3)
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C. Attempts of grasp(mT )
The operators may try different poses of robot for grasping

after they have located the target. We counted the number
of attempts in grasping (mT ) until they successfully picked
the target up . mT is a direct indicator of the performance in
grasping targets; the more attempts users made to grasp the
target, the less the efficiency they demonstrated in the grasping
phase.

D. First Grasp Distance(dF )
With the assistance of different AR interfaces, the users

established their sense of the environment in the occluded view
so that they can approach and grasp objects. dF , defined as
the distance to the target in the first manipulation attempt, is
a indicator of the accuracy of the sense of environment:

dF = ‖P(tM)−P(tF)‖ (4)

In the first attempt, the users usually believed that robot
have reached the target and could start grasping it with the
pose, without feedback of the real pose of the gripper. Smaller
dF indicates a higher accuracy of the sense of environment
established by AR.

The whole experimental procedure was defined as follows:
1) Complete the consent form (user study only) and pre-

experiment survey.
2) Complete the training of picking up objects and putting

them on the other side of table, in three working modes
(PIP, PCP, PCI) and repeated multiple times.

3) Pick up two objects (a cube and a ball) from a box with
occluded view and put them on a table, with PIP,PCP
and PCI in a random order.

4) Complete the NASA Task Load Index [20] questionnaire
(TLX) and answer several supplementary questions after
each trial (three times).

5) Complete the post-experiment survey for the task.
6) Conduct an informal interview.
The post-experiment survey includes: i) self-reporting rat-

ings on intuitiveness, ease of use and future prospect for
three interfaces(1-7), ii) preference of the three teleoperation
interfaces (0-1) and the reasons. The supplementary questions
in the forth stage include: i) whether the FOV, smoothness,
latency, quality of the rendered point cloud, accuracy of the
virtual overlay or any other factors limit the current application
(Y/N), and which is the most limiting factor, ii) whether the
inspection mode helps in the experiment (Y/N) (PCI mode
only).

All the related data was recorded in every trials, including
the objective data, live video, TLX questionnaire and post-
experiment survey. All data were timestamped in millisecond.

IV. USER STUDY

A. Subjects and experiments
We conducted a user study with a total of 20 subjects from

the local community (14 male, 6 female, ages 20 to 40), all
have their inform consent forms signed. Three of them had
experience with VR, but none of them had any experience
of robotic teleoperation. To reduce the inconsistency of users’

Fig. 4: Ratings for subjective metrics. (a) Preference. (b) Intuitiveness,
Ease of use and Future prospect. (c) Results of TLX questionnaire.
(“*” indicates a significant difference, p <0.05; “**” indicates that
p <0.01; “***” indicates that p <0.001).

Fig. 5: Results for objective metrics. (a) Efficiency/speed in reaching
phase. (b) Efficiency/speed in fetching phase. (c) Attempts of grasp.
(d) First grasp distance.
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understanding of questionnaires, all the subjects had technical
background.

Before the manipulation task, each participant was given a
thorough explanation on the experiment setup, the robot, and
the procedure. In our experiment, we only displayed the virtual
robot gripper fingers as they were the most important part for
the manipulation in the experiment. Extra markers were also
used in the scene to increase the number of feature points for
alignment.

All the subjects completed repetitions of three interfaces,
and the order of the three trials was generated randomly to
minimize the effect of prior knowledge. Among different trials
in a task, the pose of objects was reset manually by the
assistants. We timed the duration of each trial and asked the
participants to complete the TLX questionnaire and the post-
experiment survey about their impression of each interface. In
the last stage, we recorded users’ experience in trials and their
suggestions for the whole system in the interview.

B. Results and analysis
1) Subjective results: In questionnaire and interview, par-

ticipants rated their experiences of the experiment in several
aspects. We found a significant effect of our interface design
on users’ favor working in occluded environment with robot.

As shown in Fig. 4(a), users were more inclined to utilize
PCI mode with the preference 0.632 higher than that of the
PIP mode (M = 0.158 , p = 2.05×10−3) and the PCP mode
(M = 0.211 , p= 7.60×10−3). The most stated reasons for the
tendencies were: “the mode shows a fascinating ‘perspective’
effect and shows the local pose of objects precisely, PIP always
misses the depth information from the overlook perspective
(the same reason for PCP)”. Other reasons for PCI are:
“allowing users to observe locally at close range” and “enables
the users to concentrate on the task”, etc. Reasons for those
choosing PIP were consistent: “a more familiar way to me and
easy to use”, although many of them were quite interested
to PCP and PCI in interview. It is worth mentioning that 4
subjects preferred PCP and they thought that PCP put all the
information together which was more promising.

As shown in Fig. 4(b), the average rating for intuitiveness in
PCI mode was 6.05, which was significantly higher compared
to that of the PCP mode (M = 4.95 , p = 3.21× 10−3) and
the PIP mode (M = 4.84 , p = 3.43×10−2). Meanwhile, the
users thought that the PCI mode (M = 6.11, p = 6.04×10−4))
and the PCP mode (M = 5.47 , p = 3.66× 10−3) had better
future prospect compared to that of the PIP mode (M = 4.16)
significantly. For the ease of use, the average rating for the
three modes were relatively close and the t-tests among them
were not statistically significant: 5.16 for PIP mode, 5.11
for PCI mode and 4.74 for PCP mode. Results of TLX
questionnaire is shown in Fig. 4(c), the average ratings for
PIP mode were: 2.7 (mental demand), 2.9 (physical demand),
3.9 (temporal demand), 2.9 (performance), 3.1 (effort) and 2.6
(frustration). For PCP mode, their average ratings were 3.1,
2.9, 4.1, 2.2, 3.3 and 1.5. For PCI mode, their average ratings
were 2.8, 2.6, 3.7, 1.7, 2.9 and 1.4. It is interesting to notice
that “ease of use” is similar but “intuitiveness” is different
across the modes. It suggests that a part of users felt PCI

helped them to understand the scene better but was less helpful
in manipulation. They considered that PIP is a more familiar
mode and they could do a good job in this mode. This can
be caused by the fact that the depth information provided by
the point cloud is useful for understanding, but it’s accuracy is
not good enough for manipulation. This could also explain the
insignificance of the TLX results in mental/physical/temporal
loads and efforts across the different modes.

As for the limitation of the system, the loss of depth
information ranked first (12 subjects) in trials using PIP
interface. Quality of the rendered point cloud was cited the
most (11&9 subjects) in trials using PCP and PCI interfaces,
which was consistent with our assumption in the objective
analysis. The majority of the users considered the inspection
function was helpful in the experiments, and they thought that
the mode provided more detailed perspectives which helped
grasping objects firmly, allowed them to focus on the task
itself.

2) Objective results: To understand the results in subjective
metrics in depth, we have analyzed the objective data by the
detailed metrics. Normality tests were performed before the
analysis of whether the data satisfy the normal distribution
assumption. T-tests were conducted for the metrics to justify
the statistical differences between three AR interfaces. A p-
value<0.05 was considered significant.

Fig. 5(a) shows that when approaching the first object, the
efficiency in reaching phase for PCP (M = 0.0118) increased
significantly (p = 2.56×10−4) by 87% , for PCI (p = 6.62×
10−3) increased by 51% (M = 0.0095 ), compared to the
traditional PIP mode (M = 0.0063). For the reaching speed,
users moved the robot with 2.57cm/s in PCP mode, which was
significantly (p = 1.83×10−2) higher than the velocity in PIP
mode (M = 1.97cm/s). PIP did not show statistical difference
with PCI in reaching speed. When reaching the second object,
the efficiency for PIP (M = 0.0082) was significantly lower
than the PCP (M = 0.0125, p = 1.24× 10−2) and PCI mode
(M = 0.0110, p = 1.41×10−2), the results of reaching speed
in the process were not statistically difference.

Fig. 5(b) shows the results of the efficiency and speed in
the whole tasks. When fetching the two objects, efficiency
in PCP(M1 = 0.0121, p1 = 7.24× 10−3, M2 = 0.0140, p2 =
2.96× 10−2) and PCI(M1 = 0.0112, p1 = 1.48× 10−2, M2 =
0.0134, p2 = 1.12×10−2) mode were significantly higher than
that of PIP(M1 = 0.0083, M2 = 0.0102). The results of speed
in the whole tasks were not statistically difference.

As shown in Fig. 5(c), the attempts of grasping the first
object significantly (p = 2.67× 10−3) reduced by 34% and
37.5%, from 1.9 times in PIP and 2 times in PCP to 1.25
in PCI mode. When trying to picking up the second object,
the number of attempts were not significant. In summary, the
total number of grasping trials show similar tendencies as the
number of trials to pick up the first object. (MPIP = 3.55times,
MPCP = 3.3times, MPCI = 2.6times)

The results of dF , the distance to the target at the first grasp
attempt, are shown in Fig. 5d. The mean dF reduced from
4.41cm in PIP mode to 2.12cm in PCP mode (p = 1.32×
10−4), and 1.87cm in PCI mode (p = 2.85× 10−5) by 52%
and 58% significantly. PCP and PCI did not show statistical
difference in t-test.
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In summary, PCP and PCI showed higher efficiency than
PIP in the reaching stage and the whole task, they also
outperformed PIP significantly in the smaller first grasp dis-
tance, which indicates a better telepresence. According to the
efficiency in grasping attempts, PCI showed significantly better
performance than PCP and PIP.

It is worth mention that PCP and PCI performed relatively
better in reaching phase than in the whole task compared to
PIP. One potential reason may be that the users spent more
time in two modes than in PIP in adjusting pose to grasp
firmly after they have reached the target, due to the missing
part of the rendered point cloud. The problem will be solved
in future by mounting another local camera on the other side
of the gripper to complete the point cloud.

V. CONCLUSION AND FUTURE WORK

In this paper, we develop an intuitive augmented reality
interface based on multi-view fusion and dynamic calibration
approach to endow people with immersive experience. We
conducted a user study with 20 inexperienced users and
collected experimental data. The results showed that our
proposed approach can benefit users by improving efficiency in
manipulation task, especially in the reaching stage comparing
with traditional PIP approach.

In the interview, many users gave many perspicacious
suggestions. They are summarized as following:
• Reducing the latency of perception and control
• Adjusting the flexibility of inspection mode to make

sensitive users more comfortable.
• Adapting the transparency of the point cloud to make all

the objects visible in different scenarios.
• Merging point clouds locally with two cameras mounted

on the end-effector for better quality.
• Identifying operator’s intention with machine learning

algorithms to “intelligently” shared control the robot
instead of operator’s fully direct control.

These suggestions will be taken into consideration in our
future works.
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