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ABSTRACT

Health economic decision modeling is a widely used method to support decision makers in the

health care sector choosing cost-effective interventions. Modeling allows to combine evidence

from various sources and to compare different treatment strategies that exceed the feasible num-

ber of comparators in clinical trials. New, increasingly complex health technologies need to be

reflected by more complex models and need to be informed by more data. Additionally, more

detailed models come with more and new types of uncertainties surrounding model input, model

structure and methodological choices.

The aim of the present dissertation thesis is twofold: First, statistical and data science meth-

ods are explored to deal with the increased data demand of more complex models and to be

applied for the classical forms of uncertainty. The second goal is the exploration of a new source

of uncertainty originating from the heuristic nature of new model types like agent-based model-

ing – namely uncertainty associated with the algorithms used to simulate agent behavior.

The thesis is comprised of eight articles published in international, peer-reviewed journals.

The first six articles are dedicated to the application of statistical and data science methods to

model uncertainties regarding parameters, methodological and structural choices. The publi-

cations show how new methods, for example web-scraping, can be used to inform behavioral,

epidemiological as well as health economic input parameters of models. They also present how

uncertainties can be explored and communicated to decision makers. The last two articles ex-

plore the influence of algorithmic uncertainty in agent-based models used in infectious disease

modeling. The results show the extent in which matching algorithms influence the spread of a

sexually transmitted infection.

The thesis demonstrates that new statistical and data science methods allow the use of more

detailed, complex models to answer very specific research questions. This allows decision mak-

ers to find tailored, cost-effective interventions. However, these new model types also come

with new uncertainties that must be communicated to the decision makers to fully account for

the uncertainty surrounding the model results.

vii



CHAPTER 1

Modeling in Health Technology
Assessment

1.1 Introduction

The World Health Organization (WHO) defines the highest attainable standard of health as a

basic human right. Subsequently, every human being should be able to access the health care

services they need to achieve this health state [1]. While health care and good health are in them-

selves a desirable goal, they are also a necessity for economic growth and prosperity of countries

[2, 3]. From an individual perspective, steadily increasing the private expenditure on health with

increasing income seems rational [4]. For publicly financed health care, however, an optimal

level of health care expenditure might exist, after which additional expenditure might only yield

marginal effects on population health but detrimental effects on economic development [5, 6, 7].

Driven by demographic transition, rising incomes and new technologies, many developed coun-

tries find themselves spending more than this threshold and are consequently under increasing

pressure to contain public spending on health care [8].

The most popular measure to respond to the problem of expanding health care budgets is

Health Technology Assessment (HTA). The first application of a systematic technology ap-

praisal in the health care setting was carried out by the U.S. Office of Technology Assess-

ment (OTA) in 1976 and quickly spread across other countries [9], arriving in Germany in

the 1990s [10]. The basic idea of HTA is that a new technology A – defined as a new pro-

cedure, product or structure/organization in health care provision – should be systematically

1



assessed with regard to it’s medical (i.e., efficacy, safety), economic, ethical, organizational,

socio-cultural and legal dimensions. The new intervention A should be compared against one

(B) or several (B1,B2, . . .) alternatives, representing the current technology or a placebo or “do-

ing nothing" if no comparator exists [11]. Thus, HTA-reports ideally provide decision-makers

with a comprehensive, unbiased overview of the potential impact of a new technology on the

health care system compared to the current status-quo. While usually all domains should be

considered in the decision, the economic domain of HTA is particularly useful restricting health

care expenditure and containing budgets.

HTA relies on modeling as an essential tool to combine different sources of evidence and

to explore many different scenarios. A variety of modeling techniques is available for this task.

But modeling also comes with uncertainties regarding the selection of the correct modeling tech-

nique, the specific layout of the model, the estimation of input parameters and methodological

choices. Not addressing these uncertainties may produce biased or wrong model results and

leads to a non-optimal allocation of resources in a health care system. The aim of this thesis is to

explore methods for dealing with uncertainties in health economic modeling. In the first chap-

ter, the basic principles of economic evaluation, Health Economic Decision Modeling (HEDM)

in general and the different modeling techniques will be described. The main focus of this

chapter lies on the categorization of uncertainties in modeling that can be divided in parame-

ter uncertainty, methodological uncertainty and structural uncertainty. The following chapters

present the results from the single publications comprising the thesis and dealing with parameter

uncertainty (Chapter 2), methodological and structural uncertainty (Chapter 3). Algorithmic un-

certainty (Chapter 4) – as a new, emerging category of uncertainty – is described in the following

chapter. The final chapter summarizes and discusses the main results of the study and concludes

the thesis.

1.2 Health economic decision analysis

Research questions of health economic decision analyses can be split into three categories, re-

garding technical, productive or allocative efficiency [12]. Questions on technical efficiency are

asking if the same or a higher outcome can be achieved by using less of a certain input factor.

For example, a systematic review found that for patients with cystic fibrosis one daily dosis of

intravenous antibiotics shows the same effectiveness as three doses per day [13]. Productive effi-

ciency is also asking whether the same or a higher outcome can be achieved, but not by means of

a reduction of one input factor, but by reducing one input factor at the extent of another. Switch-

ing from a surgical procedure to a medication for the same indication can be seen as an example.
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Finally, allocative efficiency is concerned with distributing health care expenditures – i.e., the

input factors – in such a way, that a general, comprehensive measure of outcome is maximized

across the population or within the health care system.

Irrespective of the type of efficiency underlying the research question, an economic evalu-

ation incorporates both costs (C) and health outcomes (O) (e.g., life-years gained; LYG) of the

new technology compared to a standard technology defined by the current treatment guidelines

[14]. The differences between treatment and intervention costs and health gains of the new inter-

vention and the old intervention are calculated and its quotient is represented as the Incremental

Cost-Effectiveness Ratio (ICER) [15], as shown in equation 1.1:

ICER =
CA −CB

OA −OB
(1.1)

I. e., a new intervention might either be medically superior or inferior to the comparator and

more costly or cost-saving resulting in four possible quadrants on the cost-effectiveness plane

depicted in figure 1.1. While decisions about interventions in the quadrants II and IV are straight-

forward, decisions about interventions in the quadrants I and III need the definition of a maximal

acceptable Willingness-To-Pay (WTP) threshold λ . Only if the ICER is below that threshold,

the intervention should be reimbursed. Whether the value of the ICER directly decides if a new

technology will be reimbursed depends on the country-specific administrative regulations, but it

will at least have some influence on the decision of reimbursement. With λ > 0 the health care

budget will be growing, but the growth can be governed by the absolute value of λ . A λ value of

zero corresponds to a constant budget over time, i.e., new interventions will only be reimbursed

if they are cost-saving. A negative λ will ensure a shrinkage of the health care budget.

It is also possible to calculate the Net Benefit (NB) of an intervention. This can take the

form of the Net Monetary Benefit (NMB) by multiplying the value of the WTP threshold with

the increment in the outcome ∆O = OA−OB and subtracting the costs differences ∆C =CA−CB

[16]. For a WTP threshold of λ , the NMB is thus calculated as

NMB(λ ) = λ∆O−∆C. (1.2)

The Net Health Benefit (NHB) can be calculated accordingly by dividing the incremental costs

∆C by λ and substracting the result from the incremental effects ∆O, i.e.

NHB(λ ) = ∆O− ∆C
λ

. (1.3)

If NMB(λ )> 0 or NHB(λ )> 0, the new intervention A should replace the old intervention B.
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Outcome

Costs

III

III IV

medically inferior medically superior

budget expansion

budget constraint

Figure 1.1: Cost-effectiveness plane. (Source: Own figure)

1.3 Decision analytic modeling techniques

Depending on the intervention at question, it might not be feasible or even possible to conduct

studies observing all relevant data on costs and health outcomes and calculating the ICER or

NMB in a timely manner for the decision. In this context modeling can be used to overcome

the shortfalls of economic evaluations carried out alongside clinical trials. Modeling allows to

include all available evidence on the effectiveness of a technology (not only from one clinical

trial), a possible consideration of other comparators (i.e. the standard therapies) or settings not

included in the clinical studies, and an appropriate time horizon [17]. HEDM uses a mathemat-

ical representation of a disease, in which parameters govern the disease activity or progression,

the effectiveness of the interventions as well as costs and health outcomes linked to the disease

states [18]. A wide range of modeling techniques are applied in the context of health economic

evaluation with a more or less common taxonomy [19]. The following properties of models will

be used for their categorization:
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• Entities: The model population might either be modeled as a whole or by sub-groups of

the total population of interest (cohort model) or might model each patient or person of

the model population individually (individual-based model).

• Time: All models should have a defined time-period for which the model is built. But

differences arise with regard to the handling of time, which can be untimed, continuous

time or in discrete time steps. The time steps can be of constant or variable length.

• Interaction: In some models it is necessary to account for possible interactions of entities.

Such dynamic models are either necessary in the modeling of infectious diseases, where

the number of newly infected depends on the number of currently infected, or when enti-

ties compete for constraint resources (e.g., donor organs). In static models, entities have

no influence on the course of the disease, the costs or the outcome of other entities.

• Stochasticity: Stochasticity regards the inclusion of randomness into a model. In deter-

ministic models, parameter values are constant and the model results of two model runs

will be identical. On the contrary, the values of model parameters in stochastic models are

drawn from probability distributions and thus will return a different result for each model

run. Therefore, stochastic models need to be run many times to calculate the expected

(average) result.

Modeling Technique Entities Time Interac-
tion

Stochasticity

Decision Tree Cohort untimed static deterministic

Markov Model Cohort discrete, constant step
length

static deterministic

Differential Equations Cohort continuous dynamic deterministic

Individual Sampling Model Individuals discrete, constant step
length

static stochastic

Discrete Event Simulation Individuals discrete, variable step
length

dynamic stochastic

Agent-based modeling Individuals discrete, constant step
length

dynamic stochastic

Table 1.1: Overview of the different modeling techniques used in the context of health economic
decision modeling.
(Source: Own table, based on Briggs et al. (2006) [18], Buxton et al. 1997 [17], Brennan et
al. (2006) [19], Vynnycky et al. (2010) [20], Petrou et al. (2011) [21], Karnon et al. (2012)
[22] and Gilbert et al. (2011) [23])
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In principle every combination of the properties listed above is possible and even the same

combination might have different names in the published literature. Additionally, mixtures of

model types are applied, further contributing to the difficulty of an unambiguous distinction

between them. However, not all models are used with equal frequency and the most common

model types [21] are shown in Table 1.1 and will be described in more detail below.

Decision trees

The most simplistic model type used in health economics is the decision tree. Within decision

trees the course of a disease is displayed as a hierarchical, one-directional tree starting with a

decision node ( ) and following with either a chance node ( ) or a terminal node ( ) at the

end of each branch (see Figure 1.2). A cohort of patients is followed through the model for

each of the treatment choices, but with no interaction between the patients. Decision trees also

only allow analyses for a fixed time frame, making it inapplicable for patients with diseases of

varying length in a certain health state [19].

Patient

Current treatment

Alive

Dead

New intervention

Alive

Dead

Figure 1.2: Basic structure of a decision tree model. (Source: Own figure)

Markov models

In health economic Markov modeling the course of a disease is described by discrete health

states. Over time, patients of the model cohort move through or between these health states

at the end of a cycle-length with a fixed time interval. The transition probabilities determine

the amount of patients remaining in a health state and the amount of patients moving to other,

connected health states at the end of a cycle. As the assumption that all patients progress exactly

at the end of a cylce might be unjustified, a half cycle correction can be applied that shifts the

time point of disease progression. However, there is no consensus on this method [24]. Markov

models are usually run until all patients of a cohort reached an absorbing state (e.g. death) or
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until a maximum number of cycles. The number of patients over all health states needs to stay

constant in all cycles and patients are only allowed to be in one health state during a cycle [14].

Also there is no interaction modeled between the patients or parts of the cohorts. As the disease

is modeled over health states, data need to be adjusted to accurately represent the clinical course,

the costs and health outcomes at those fixed health states. Figure 1.3 shows two basic layouts

of Markov models: Subfigure a) shows the model graph for a chronic disease, where a healthy

patient who becomes sick cannot return to the healthy state. In the model layout for the acute

disease (Subfigure b) a sick patient might become healthy again.

Gesund Geimpft

Asymptomatisch

COVID-19 Fall

Hospitalisierung Tod

Genesen

7-Tage
Inzidenz

α

(1− α)

7-Tage
Inzidenz

1− (1− α)∗
(1− V ECOV ID)

(1− α)∗
(1− V ECOV ID)

κ ω

# Impfserien

#Impfserien
(kein Check für
pos. PCR-Test

Figure 1.3: Basic structure of a markov model.
(Source: Own figure)

Dynamic transmission models

Markov models are able to model time more accurately than decision trees, bit it’s inability

to account for interactions between patients makes it inappropriate for infectious diseases. A
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model type that still models cohorts but involves interactions between patients is the dynamic

transmission model. This model type uses difference equations or Ordinary Differential Equa-

tions (ODEs) to calculate the number of persons in different health states – called compartments

– over time. As these models are predominantly used to model infectious diseases, a common

taxonomy has evolved that reflects the basic mechanic of the infectious disease. These basic

compartments are “susceptible” (S), “pre-infectious”/“exposed” (E), “infectious” (I) or “recov-

ered” (R) [20]. Depending on the natural history of the infection, model layouts can be described

by combinations of those states, e.g., in a SIRS model healthy persons contract the infection and

become immune for a period of time before they become healthy and susceptible for a new

infection.

S(t) I(t) R(t)
λ(t)S(t) γ(t)I(t)

ν(t)R(t)

Figure 1.4: Basic structure of a dynamic transmission model based on ordinary differential equations.
(Source: Own figure)

The number of new infections at time t is thereby dependent on the number of susceptible

persons and the number of infected in the population at time t and the flow from one compart-

ment to another is governed by corresponding rates as depicted in Figure 1.4. The parameters

γ and ν represent the rate at which people become immune from the disease or become suscep-

tible afterwards, respectively. The interaction between “infected” and “susceptible” is modeled

by calculating the share of contacts of susceptible persons with infected persons. In combination

with the probability of infection per contact, this term is called “the force of infection” (or λ ).

λ varies between infectious diseases and governs the number of susceptible persons becoming

infected per unit of time. Costs and health outcomes of dynamic transmission models might be

directly calculated for each health state or imputed by an additional decision tree or Markov-

model. In the later cases it is important to reflect any changes in the health states – e. g. deaths

– to the dynamic part of the overall model [20]. Advantages of dynamic transmission models

are the ability to model long-term effects, effects resulting from interactions between entities (e.

g. natural or vaccine-induced herd-immunity) and the effects of treatment of subgroups for the

whole population. Disadvantages include the inability to capture the randomness of events and
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allowing analyses for heterogeneity without a high effort [25].

Individual Sampling Models

Individual Sampling Models (ISMs) (or sometimes called microsimulations or patient level sim-

ulations) are basically decision trees or Markov models using single patients instead of cohorts

[21]. Using a decision tree as an example, this means that for every chance node ( ) the cohort

is not split according to the probabilities of the branches following the chance node, but that

for each patient it must be decided which branch he follows. Running the model for many pa-

tients will asymptotically result in the same model output as the cohort model, but ISM have the

advantage that heterogeneity in patients can be integrated more easily. E.g., if the probability

of a complication is linearly increasing with age, this can more easily and appropriately be re-

flected in an ISM compared to a cohort model which would need to include numerous numbers

of subgroups.

Discrete Event Simulation

In contrast to the above described modeling techniques, Discrete Event Simulation (DES) fo-

cuses on the treatment pathway of a patient rather than modeling the course of the disease itself.

Therefore entities (e. g., patients, health care professionals) with certain attributes (e. g., age,

sex) experience certain events (e.g., disease progression, hospital admission) based on their at-

tributes and, thereby, consume resources. An exemplified depiction of a DES can be found in

Figure 1.5. In this example, a patient is diagnosed with a chronic disease for which a series of

treatment options are available. The patient receives “Drug 1” and depending on the effective-

ness stays in “State 1” of the disease for a certain period of time after which the treatment fails

and the disease enters a phase of progression. After progression, the patient reveices “Drug 2”,

which leads to a shorter period until the next progression, and so forth. The patient is followed

until death and outcomes and costs are estimated along the way.

A strong emphasis of DES lies on the modeling of scarce resources and the behavior of en-

tities competing or waiting for the availability of those resources. In this context interactions

between entities can be modeled, as they can form waiting queues and access resources follow-

ing predefined rules. Also, one advantage of DES is its capability of the inclusion of patient

characteristics, thus accounting for heterogeneity [22]. Even though DES is one of the more

advanced methods used in health economic evaluation it still has some disadvantages attached.

Firstly, DES is rather process-oriented leaving out interactions between entities which are not
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Model layer

Treatment Drug 1 Drug 2 . . . Drug n

Disease State 1
Pro-
gres-
sion

State 2
Pro-
gres-
sion

. . . State n Death

Outcome

Costs

Time

Figure 1.5: Basic structure of a discrete event simulation, showing a schematic patient flow without
interaction. (Source: Own figure)

connected to resources, for example social contacts. Secondly, it leaves its entities in a rather

passive role making them flow through the system instead of letting them decide independently

[26].

Agent-based models

The last modeling technique presented here is the category of Agent-Based Models (ABMs). It

has only recently become an option in health economic evaluation [27] while it is an already

established modeling method in many other scientific fields since the 1990s [28]. ABM can

be seen as an extension of DES, where the single persons are not modeled independently and

run through the model subsequently, but all persons of a population are modeled at once, thus

allowing for interactions between them [23]. Heterogeneity of patients can be included via

different characteristics of an agent and conditioning the behavior during the model run on those

characteristics. For example, in the modeling of Sexually Transmitted Diseases (STDs), sexual

activity might depend on the age and the relationship status of the agents. This makes ABMs

the modeling technique of choice if the population of interest consists of many different sub-

groups showing different types of behavior or if a disease is only persistent in a small group of

individuals but occasionally spreads to the general population (so called “bridging”).
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Model environment

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Agent 8

Agent at t0

ID: Agent 1

Age: 32

Sex: Female

Hair: Brown

Suit: Gray

Tie: Red

Partner: 0

Agent behavior

Ageing

Has partner?

Look for
partner?

Partner
search

Do nothing

Stay with
partner?

Split up

yes no

yes no noyes

Agent at t1

ID: Agent 1

Age: 32

Sex: Female

Hair: Brown

Suit: Gray

Tie: Red

Partner: Agent 5

Figure 1.6: Basic structure of a agent-based model used for infectious disease modeling. (Source: Own
figure)

Figure 1.6 shows a schematic depiction of an ABM. The hypothetical model consists of

eight agents who are placed in a model environment with “Agent 3” and “Agent 4” as well as

“Agent 7” and “Agent 8” being in a relationship at the simulation start (represented by the solid

lines). Each agent has a set of characteristics, e.g., age, sex, the color of their hair, suit or tie.

At each model iteration each agent runs through a set of functions – i.e., the agent behavior –

shown in the bottom central of the figure. In this example, the agent ages and has a partner

module where it either looks for a new partner, breaks up with it’s current partner or stays in the

current state (single or in partnership). The agent displayed in this example (“Agent 1” finds a

new partner “Agent 5”, dotted line) that matches her preferences for a new partner (different sex,

same color hair, different color of tie and suit).
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1.4 Uncertainty in decision analytic models

As all models are simplifications of reality, there are a few major uncertainties surrounding the

most adequate way to depict a disease and possible interventions in models. The model results

might be influenced by a number of choices during the process of modeling, ranging from the

choice of the modeling technique itself, the parameter values entered into the model [18], as well

as the layout and construction of the model. All three steps inherit the risk of omitting important

factors biasing the results of the model and making them unsuitable for decision makers. For

example, it may be inappropriate to model a disease with recurrent disease states using a deci-

sion tree, which only allows for one-directional progression through the model. Also, patient

characteristics (e.g., age, socio-economic status) which strongly influence the effectiveness of

interventions may not always be appropriately considered in certain types of models. At last, the

true value of parameters might be unknown or parameter values are based on sample estimates.

Giving these considerations, health economic models need to make allowance for these uncer-

tainties. In the following an overview of the different categories of uncertainty will be given and

the consequences of their dismissal on the model results and decision making will be discussed.

Type of uncertainty
(other names)

Definition Example Regression
equivalent

Heterogeneity Differences between patients
explainable by observable char-
acteristics

Different effectiveness by age β -coefficient

Variability
(First-order,
Monte Carlo error)

Random differences between
patients identical in observed
characteristics

Different effectiveness between
identical patients

Error term ε

Statistical
(Second-order)

Uncertainty in the estimation of
parameter values from samples

Confidence Interval (CI) of
effectiveness estimate

SE of β

Methodological Differences in model results
explainable by methodological
choices

Value of discount rate Type of regres-
sion

Structural
(Model)

Differences in model results
due to different model struc-
tures

Number of discrete disease
states derived from CD4 cell

count in Human
Immunodeficiency Virus (HIV)

patients

Number of ex-
planatory vari-
ables X

Table 1.2: Overview of the different definitions of uncertainty used in the context of health economic
decision modeling. (Source: Own table, based on Briggs et al. (2006) [18], Briggs et al.
(2012) [29], Bojke et al. (2009) [30] and Bilcke et al. (2011) [31])

The formal categorization of sources of uncertainty differentiates into uncertainty around
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values of input parameters, methodological uncertainty and structural uncertainty, although the

terminology has been evolving over time [31, 29, 18]. A summary of the nomenclature found

in the literature is given in Table 1.2. Parameter uncertainty surrounding modeling in HTA has

been addressed for a relatively long time with the categorization of Briggs et al. (2006) being the

most commonly used notation. The authors categorize parameter uncertainty in health economic

models into heterogeneity, variability and statistical uncertainty. In this context heterogeneity

is defined as the differences in model parameters (e.g., of treatment responses) between patients

that can be explained by different, observable patient characteristics such as age, sex or weight.

In contrast, variability is the influence of unobservable patient characteristics or unexplainable

differences between otherwise identical persons. The term statistical uncertainty is used to

describe the variance of estimated values of model parameters. Usually, mean values are used

for model parameters, but this value might be uncertain as indicated by the CI or Standard

Error (SE) of the estimated value.

This categorization has been amended by methodological uncertainty [31] and structural

uncertainty [30, 29]. The first term refers to the choice of methodological aspects of cost-

effectiveness analysis in general, e.g., the perspective of the analysis or the discount rate, and

is not specific to modeling itself but applicable to all forms of economic evaluation. Structural

uncertainty refers to the choice of the modeling technique as well as the structure or layout of

the model. Different researchers might come to different conclusions which model type to use

and how complex the model structure needs to be to include all relevant features of a disease or

intervention.

g(y) = β0 + β1x1 + β2x2 + . . . + βnxn + ε

Heterogeneity VariabilityStatistical

Methodological Structural

SE

Figure 1.7: Regression analogy of the different types of uncertainty in health economic decision models.
(Source: Own figure, based on Briggs et al. (2006) [18])

To illustrate the differences between the different types of uncertainties, Briggs et al. (2006)

use regression analysis as an analogy. Figure 1.7 shows the different types of uncertainty as

they would present themselves in a regression analysis. Heterogeneity would be the existence of
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observable, explanatory variables X with corresponding β -coefficients. These variables explain

differences in the outcome Y in addition to the intercept β0. The remaining, unexplained vari-

ance of Y would be the variability, usually denoted as the error term ε . The statistical uncertainty

would be the standard errors of all β coefficients or just the intercept β0 if there is no heterogene-

ity. Structural uncertainty would be the number of explanatory variables with a detailed model

including many, but possibly non-relevant, variables. Finally, methodological uncertainty would

correspond to the specific regression used. Depending on the nature of the dependent variable

Y , the type of regression analysis might range from Ordinary Least Squares (OLS) to more

complicated Generalized Linear Models (GLMs) or Generalized Additive Models (GAMs).

The consequences of a failure to address uncertainties in HEDM may lead to the wrong

conclusions by decision makers resulting in the non-optimal allocation of resources. Ignoring

existing heterogeneity may limit the transferability of the results to other populations as the

ICER may be dependent on patient characteristics as – for example – age or sex. It may also

prohibit the most technically efficient use of resources [12], as limiting a new intervention to

certain patient subgroups might prove cost-effective while the intervention would not be cost-

effective for the whole population. Not addressing variability and statistical uncertainty may

suggest a non-existing certainty of the result of the decision analysis to the decision makers.

Failure to address structural uncertainty has several consequences. On the one hand, models

can be too simple to capture all relevant aspects for the evaluation of the competing treatments.

On the other hand, unnecessarily complex models are more difficult to interpret and increase

proneness to coding mistakes and the amount data necessary to avoid assumptions. Lastly, not

acknowledging methodological uncertainty leaves room for possible influence of the modeler on

the model results and also limits the transferability to other settings.

1.5 Existing methods of dealing with uncertainty

There is a variety of methods and approaches available on how to deal with uncertainty in

HEDM, and also how to present the results of decision models avoiding the possible conse-

quences mentioned before. The first step to reduce uncertainties in modeling is the choice of

the appropriate modeling technique. As different techniques might yield different outcomes,

guidelines try to limit the influence of an arbitrary model choice on the results by outlining

the prerequisites for each modeling technique [32]. Figure 1.8 gives an overview of the most

important factors underlying the model choice.

The first important decision for the selection of a modeling technique is whether the model
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Indirect effects

no

Static model

Heterogeneous behavior
or

Many population strata

no

recurrent health states

no

Decision
tree

yes

Markov
model

yes

Treatment sequences
or

Variable disease durations

no

Individual
Sampling

yes

Discrete event
simulation

yes

Dynamic model

Heterogeneous behavior
or

Many population strata

no

Differential
equations

yes

Agent based
model

Figure 1.8: Flow chart depicting the choice of model type for a health economic decision model.
(Source: Own figure, based on Roberts et al. (2012) [32])

should be capable of capturing indirect effects in the context of infectious diseases, i.e., if avoid-

ing one case of a disease by the intervention leads to other cases avoided indirectly. If indirect

effects can be expected, a dynamic model should be chosen. Otherwise a static model is suf-

ficient. The second question is, if the model population shows heterogeneous behavior or if it

consists of many strata, like age groups within different groups of sexual activity. For example,

if disease progression or the intervention effectiveness are highly age-dependent, a cohort model

with a population of average age might produce biased results. For dynamic models, the pres-

ence of heterogeneous behavior favors an ABM as this model can more efficiently incorporate

many subgroups. If an intervention against an infectious disease in a homogeneous population

is to be modeled, ODE-models should be used as they are less data-demanding as ABMs. In

the field of static models the simplest model is a decision tree which is sufficient for a homo-

geneous population and a disease without any recurring health states. For chronic or recurrent

diseases a Markov model is able to capture these disease features. If the course of the disease

is significantly different between many patient groups or if the sequence of treatments or the

infrastructure of health care provision plays a role in the evaluation of a new intervention, an

ISM or a DES might be necessary [22]. There are some cases, in which no clear decision on the
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model characteristics can be made – for example if there is no available evidence on a vaccine

protecting against the carriage of a pathogen, indirect effects may not need to be incorporated

[33]. Ideally, more than one model type is employed in this case, but if research funds are lim-

ited, the more complex model might be favorable as simpler models can be expressed as special

cases of the more complex models.

Once a decision about the basic modeling technique has been made, the exact layout of the

model needs to be determined. As stated above, structural uncertainty might arise from the

decision of the exact layout of the model. One possible way to incorporate structural uncertainty

is model averaging [34, 35]. This method allows to consider the results of different model layouts

by calculating a weighted average of the single results of the respective layouts. In the method

proposed by Jackson and colleagues (2009) [34], the weighting is achieved within a Bayesian

framework by sampling from a posterior distribution of all models where the sample weight

of each model is given by the Akaike Information Criterion (AIC) or Bayesian Information

Criterion (BIC). This means, that the models with less parameters and better approximation of

the observed data will contribute more to the averaged result. As Bojke et al. (2009) point out,

the approach of model averaging is theoretically sound, but offers no advantages if there is no

real-world data against which the model outputs can be compared [30].

With regard to parameter and methodological uncertainty, the main methodological ap-

proach are sensitivity analyses to incorporate uncertainty in the model [36]. The simplest form

of sensitivity analysis is the Deterministic Sensitivity Analysis (DSA). Using this approach,

values of single parameters, sets of parameters or methodological choices (e.g., discount rates)

are varied within a certain range and the effect of this change on the ICER will be reported.

For single parameters or sets of parameters (e.g., all cost data) the results are usually displayed

as tornado diagrams where decision makers can easily identify and compare the impact of the

changes of the parameter values on the ICER. The ranges of the parameter values are usually the

CIs of the mean or minimum and maximum found in the sample from which the value was esti-

mated. While DSA provides the respective ICERs for the lower and upper bound of parameters

values, it provides no information on how likely those ICER values are. A further disadvantage

is the limited number of combinations of parameters for which value ranges can be explored

before the clarity of the presentation of the results is comprised.

Probabilistic Sensitivity Analysis (PSA) can overcome the weaknesses of DSA by drawing

values for each parameter from an appropriate probability distribution for numerous times [18].

Depending on the distribution, values close to the mean value will be drawn more often and

the extreme values may only occur occasionally. PSA also allows to explore the uncertainty

around all model parameters at once leading to a empirical probability distribution of the ICER
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itself. Another advantage is the inclusion of the covariance of parameters. For example, patients

with high hospitalization costs may also be more likely to have higher costs for medication

and may also show lower utility values. A disadvantage of PSA is the availability of several

distributions with the same support (e.g., Poisson and negative binomial would be available for

count date) and the necessity of detailed information on the distribution parameters (e.g., mean

and variance). Additionally, the covariance of parameters may not always be readily available

[29, 37]. Nevertheless, PSA has become a standard tool in HTA [38].

The presentation of the results of PSA is not as straightforward as for DSA as the recom-

mended number of samples of the ICER is relatively high. Presenting all samples as a scatterplot

on the cost-effectiveness plane as described in Figure 1.1 is providing only little information for

decision makers. As PSA reflects a quasi-Bayesian method, the distribution of the ICER can be

interpreted as a Cumulative Distribution Function (CDF) and thus for a given WTP threshold,

the probability of P(ICER < WT P) can be calculated corresponding to the probability of the

new intervention being cost-effective. This probability can be plotted against a range of WTP-

thresholds resulting in a Cost-Effectiveness Acceptability Curve (CEAC) [39]. In the presence

of more than two alternatives, the probability of an intervention being most likely to be cost-

effective among all interventions can be calculated for a given WTP threshold. Plotting only the

intervention with the highest probability of all interventions against the thresholds of the WTP

is called a Cost-Effectiveness Acceptability Frontier (CEAF). CEAC and CEAF allow decision

makers to see how likely a certain intervention will be cost-effective depending on the WTP

threshold and if the choice of the preferred – i.e., most likely to be cost-effective – intervention

changes with a change in the WTP.

Calculating the net benefit for interventions for each draw in the PSA allows for another

analysis useful for decision makers. For a given WTP threshold, the net benefit of the inter-

vention with the highest probability can be calculated and subtracted from the net benefit of the

maximal net benefit from all other available interventions. This difference is called Expected

Value of Perfect Information (EVPI) and can be interpreted as the opportunity cost of further

research to reduce uncertainty in the model [39]. Given the uncertainty around the model result,

the choice of an intervention at a certain WTP threshold has a probability of having chosen the

less cost-effective strategy as quantified by the CEAC. Decision makers could either go forward,

choosing the intervention with the highest probability of being cost-effective, or they could post-

pone the decision and try to conduct further research to reduce the uncertainty and thus the risk

of a wrong decision. From an economic perspective, decision makers should choose the option

with the lower opportunity costs.
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1.6 Aim and structure of the thesis

With increasing computational power and data availability, scientific models have become more

complex and are thus capable to answer more detailed research questions. This is also true

in HEDM where personalized healthcare (for example, with precision treatments in oncology

[40]), complex interventions and behavioral aspects drive the complexity of health economic

evaluations and models [41]. Complex models also call for methods to inform the increasing

number of parameters with appropriate data. Otherwise, models become prone to be based

on assumptions for the majority of their parameters, thus increasing the risk of bias. Methods

from the emerging discipline of data science may offer possibilities to inform all parameters of

complex health economics models [42].

The application of data science methods in health care can be divided into three main cat-

egories: Descriptive tasks, predictive tasks and causal inference (or counterfactual prediction)

[43]. Description in a health care setting may for example be the estimation of incidence rates or

simple frequencies of health-related behavioral variables. Prediction tries to link two variables

observed in a population, e.g., calculating the risk of retinopathy for diabetic patients. Methods

of causal inference try to estimate the causal relationship between variables, as it is for example

necessary to estimate the effectiveness of interventions. Statistical methods are applied in all

three tasks, e.g., by the calculation of confidence intervals for the corresponding estimators.

The aim of the current thesis is twofold: Firstly, statistical and data science methods will be

explored that allow to incorporate the types of uncertainty described in section 1.4. Secondly,

a new type of uncertainty will be described that arises from the increasing use of complex,

individual-based stochastic model types – e.g., ABM and DES. As these models are not solved

analytically but rather heuristically, the algorithms in those models may influence the model

results. This is not covered by methodological uncertainty, which is dealing with the influence

of normative methodological choices, nor by structural uncertainty, as the structure of the model

(i.e., the layout of the health states) remains identical. Therefore, defining a new category of

algorithmic uncertainty seems necessary for these complex models.

The cumulative part of the dissertation thesis consists of eight publications listed in Table

1.3. The first three publications deal with the classic parameter uncertainty and show how data

for behavior in ABMs can be collected using web-mining, how claims data analysis can provide

stratified cost data including the covariance of several cost categories and how heterogeneity

can be accounted for in a decision model. The second chapter contains three studies that fo-

cus on methodological and structural uncertainty. The first article is a systematic review on the
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Table 1.3: Publications included in the cumulative dissertation thesis.

different modeling techniques used in modeling rheumatoid arthritis. The second publication is

focusing on the effect of different structures and methodological choices for the evaluation of

pneumococcal vaccines. The third publication shows the impact of methodological uncertainty

in the calculation of costs for meningococcal disease. Chapter 4 introduces ”algorithmic uncer-

tainty” as a source of uncertainty in complex ABMs. This is explored in two consecutive papers,

with the first describing different matching algorithms for partner formation in STD modeling,

followed by the second paper on the effect of these algorithms on the epidemiological model

results. The results of all papers are summarized and discussed in Chapter 5. This includes

overarching limitations across the publications and conclusions for the handling of uncertainties

in modeling.
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CHAPTER 5

Discussion

5.1 Summary of main results

The following section summarizes the main results of the eight publications of the cumulative

dissertation. The publications will be put into the context of the respective state of the research

and the contribution of the articles to the topic of uncertainty in health economic modeling will

be highlighted.

Parameter Uncertainty

The first article reports on the population size, the self-reported characteristics and the sexual

preferences of Men-who-have-Sex-with-Men (MSM) in Germany. For many reported Sexually

Transmitted Infections (STIs) in Europe, MSM show an increasingly higher share of case num-

bers compared to Men-who-have-Sex-with-Women-only (MSW) since the beginning of the mil-

lennium [44]. However, knowing the size of the MSM population is crucial in order to correctly

calculate standardized incidence or prevalence measures of diseases. In the context of MSM, this

has been called the "denominator problem" [45]. Because of the increased risk of STIs, MSM

are also of special interest to epidemiological and behavioral research and infectious disease

modeling. Surveys focusing on MSM have been carried out repeatedly [46, 47], but stratifying

sexual behavior data by age groups or regions within the group of MSM is difficult with the

current sample sizes. Additionally, it is unclear to which extent survey participants reflect a

self-selected group of persons with a high interest in sexual health, possibly leading to biased

results.
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The paper uses a novel approach to gather information from a website serving as an online

dating portal and social network for MSM in Germany. Data from the website was publicly

accessible and could be retrieved using the data science method of web scraping [48, 49]. Also

called data mining, this method allows to retrieve seemingly unstructured information from a

website and to transform it into machine-readable data-sets. The results of the study allow to

incorporate a high level of heterogeneity in the behavioral aspects of infectious disease mod-

eling, thus reducing the uncertainty of the effect of the behavior of different subgroups of the

MSM population. The study results on the (marginal) distribution of MSM across federal state,

age and sexual behavior provide crucial information for behavioral apects of STI modeling. The

additional benefit of the analysis presented in this paper is the provision of the joint distribu-

tion of all these characteristics. E.g., the data-set allows to estimate the proportion of MSM

between age 24 to 26 in Berlin who identify as bisexual, who prefer to be "more bottom" during

intercourse and who are never performing safer sex. Having this highly stratified information

available for modeling, allows to incorporate a very high degree of heterogeneity in a model and

to find the optimal target group within the MSM community for interventions. This example

also highlights the possible benefits of applying data science methods to make use of data from

social networks and other internet sources, especially for populations which are otherwise hard

to reach or where surveys are at risk of a sampling bias.

The second paper is also presenting an analysis in the field of infectious diseases and –

in contrast to the behavioral aspects of the first paper – focuses on epidemiological aspects,

resource use and costs. As already outlined in the section 1.3, the health economic evaluation

of interventions against infectious diseases needs to incorporate indirect effects to fully account

for the effectiveness of an intervention. In the evaluation of vaccines, finding the optimal target

group for vaccination strategies becomes an increasingly important task. Vaccination campaigns

are usually costly and for some diseases the subgroups of a population with the highest disease

burden may not coincide with the subgroups with the highest incidence. This is the case for

influenza, where children are affected by the highest incidence and hospital admission rates

while the elderly and persons with comorbidities show the highest mortality [50]. The estimation

of the cost-effectiveness of influenza immunization strategies therefore needs to be based on

subgroup-specific data.

The analyses from this article take the above-mentioned issues into account and provide

estimates for epidemiological and health economic model parameters from claims data of the

largest German Statutory Health Insurance (SHI) covering the period from 2012 to 2014. The

stratified analysis of the epidemiology and costs of influenza makes it possible to reduce un-

certainty around costs and complication rates that is related to age. The study results cover the
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full range of heterogeneity of the population with regard to age-specific complication rates and

costs between different age-groups. The results from this paper have directly been used to esti-

mate the cost-effectiveness of possible childhood vaccination strategies in Germany [51]. Due

to the great sample size of the claims data-set, it was possible to incorporate detailed informa-

tion for children and adolescents and to compare the cost-effectiveness of childhood influenza

vaccination for multiple target groups, finding the technically most efficient vaccination strategy.

The paper shows how epidemiological and health economic model parameters can be estimated

for complex decision analytic models. The availability of the large claims data base allowed

not only to address heterogeneity by stratifying the analyses by subgroups. It also allowed to

quantify the variability by estimating not only the mean values but the complete probability dis-

tribution of the model parameters. Additionally, dependencies between model parameters could

be quantified by the calculation of covariance matrices for the parameters values.

The last paper dealing with parameter uncertainty presents the results of a modeling study

on the cost-effectiveness of an Exclusive Human Milk Diet (EHMD) for very low birth-weight

newborns. Pre-term babies are at an increased risk of several complications including sepsis,

Necrotizing Enterocolitis (NEC) or Broncho-Pulmonary Dysplasia (BPD). Recent studies have

shown that substituting bovine milk-based products with human milk-based products in the

feeding of very low birth-weight newborns has a protective effect against those complications

[52, 53, 54, 55]. This may not only lead to a reduced life-long burden caused by the complica-

tions but may also reduce the treatment costs of pre-term babies.

The model consists of a decision tree where the treatment options are either a standard,

bovine-based feeding or one of three different feeding strategies using an EHMD. The results of

the cost-effectiveness analysis show the importance of the incorporation of heterogeneity: While

the feeding strategy with EHMD for the overall population of very low birth-weight newborns

is cost-effective, there is a strong difference in the ICER estimates for the different birth weight

groups. The ICER is C15,293 for the lowest birth weight group of ”<500gr” and increases

with increasing birth weight up to the birth weight group ”1250-1499gr” with a corresponding

ICER of C72,402/Life-Year Gained (LYG). Using 1x the Gross Domestic Product (GDP) per

capita as the WTP-threshold, including heterogeneity into the analysis results in EHMD to be a

cost-effective intervention only for pre-term newborns with a birth-weight below 1000gr. The

model also shows the usefulness of PSA to cover the other two types of parameter uncertainty,

namely variability and stochasticity. Using appropriate probability distributions for the input

parameters allows not only to calculate the probability of an ICER estimate but also supports

decision makers in the allocation of research funds through the EVPI analysis.
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Methodological and structural uncertainty

The first paper from chapter 3 is a model-based costing study for Invasive Meningococcal Dis-

ease (IMD) caused by serogroup B in Germany. IMD is a serious disease with a high mor-

tality, leading to long-term physiological, neurological and psychological impairments among

survivors [56, 57]. The incidence of IMD over all serogroups in Germany is 0.35 cases per

100,000 persons in 2017, thus qualifying for a rare disease [58]. The severity of the disease and

it’s low incidence pose challenges for the evaluation of vaccination programmes against IMD

with regard to data collection: On the one hand high costs can be expected for a case, but the

estimation of those costs using claims data is difficult as even large SHIs have only a few cases

among their insured. On the other hand substantial parts of the resource consumption and the

health effects may occur outside the period of data availability of claims data. One possible

solution is the application of a model-based costing of a ”typical” patient.

The paper follows this approach and uses public sources, expert opinion and published lit-

erature to estimate the cost input for the health economic evaluation of a vaccine against IMD

caused by serogroup B. Direct and indirect costs are estimated along a hypothetical treatment

pathway following 18 age groups of an average cohort of IMD patients between 2001 an 2016 in

Germany. The article highlights the possible influence of methodological uncertainty on direct

and indirect costs in health economic evaluation, especially in the case of long-term or life-

long resource use or health effects. As the results on costs of IMD show, especially indirect

costs are strongly influenced by the different approaches for the calculation of the productivity

losses. Changing the method for the calculation of indirect costs from the friction cost approach

to the human capital approach leads to almost triple the costs at a three percent discount rate.

Additionally changing the discount rate to zero percent leads to costs of C365,000 (using the

human capital approach) representing an increase of factor 6.4. As these differences between

the estimates show, different methodological choices can have a strong influence on the cost-

effectiveness results. Scenario analyses – as presented in this paper – are therefore crucial to

illustrate the consequences of those normative decisions to the decision makers.

The second paper of chapter 3 is a systematic literature review on the use of different mod-

eling techniques in the field of Rheumatoid Arthritis (RA). The treatment of RA has been one of

the most competitive areas for the development of new drugs, with treatment options including

conventional Disease-Modifying Antirheumatic Drugs (DMARDs), biological and biosimiliar

DMARDs, targeted synthetic DMARDs or glucocorticoid therapy [59]. As most treatments

tend to loose their effectiveness in a patient over time, patients usually switch from one medi-

cation to the next. The high incidence of this chronic disease [60] in combination with the high
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costs for the new medications lead to numerous cost-effectiveness studies. In this context, re-

search questions of health economic models not only include the choice between the different

treatment alternatives but also the possible treatment sequences of different medications.

The results presented in this article show the range of dealing with structural uncertainty

in the literature, i.e., the variety of modeling techniques that are applied with a common aim in

the context of cost-effectiveness modeling for treatment options against RA. While no direct

conclusions can be made about the effect of the choice of the modeling technique on the ICER,

the results of the review show the different depths of the analyses that are possible with the

different model types: Decision trees are not capable to integrate the treatment sequences into

the cost-effectiveness analysis. Markov models and ISM offer more possibilities of including

questions around the timing of the different treatment options, but are to some extent limited

by their fixed cycle length to account for the differences in the response times of the different

medications. Only DES allows to fully incorporate different treatment sequences and patient

characteristics into the cost-effectiveness analysis, thus allowing to answer detailed questions

about the most cost-effective way of treating RA in different groups of patients.

The last paper of the chapter on methodological and structural uncertainty is a systematic re-

view on the influence of methodological and structural assumptions on the cost-effectiveness

results of health economic models for pneumococcal vaccination for the elderly. Pneumo-

coccal disease can be caused by an infection with Streptococcus pneumoniae and leads to ei-

ther Invasive Pneumococcal Disease (IPD) in the form of bacteremia or meningitis or to Non-

Bacteremic Pneumococcal Pneumonia (NBPP). As with influenza, an important issue around

the cost-effectiveness of pneumococcal vaccination strategies are indirect effects between chil-

dren and the elderly. Routine childhood vaccination is in place in most developed countries

mostly using Pneumococcal Conjugate Vaccines (PCVs) and is regarded an effective measure

against pneumococcal infections [61]. Current health economic evaluations are looking at the

cost-effectiveness of an additional vaccination programme for the elderly using either PCV or

Pneumococcal Poly-Saccharide Vaccines (PPSVs), however with conflicting results.

The aim of the systematic review was to explain the differences in the results from the cost-

effectiveness models with a focus on the methodological and structural choices made in those

models. This included the assumptions made about the vaccine effectiveness – consisting of the

absolute effectiveness estimate and the waning of the effectiveness over time – and the incidence

of S. pneumoniae assumed for the evaluation of the elderly vaccination. This paper contributes

to handling structural uncertainty by introducing a measure (i.e., the Expected Vaccine Protec-

tion Over Time (EVPOT)) that allows quantifying and comparing different structural choices

regarding the vaccine effectiveness in models evaluating vaccine strategies. It also highlights
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the importance of epidemiological assumptions, as unrealistic incidence rates in the base line

scenario – especially for infectious diseases – might overestimate the potential impact of new

interventions. Including these two aspects of structural uncertainty in the systematic review

leads to a different conclusion with regard to the cost-effectiveness of an elderly pneumococcal

vaccination programme than in a previous review, that did not include structural aspects and had

found the elderly vaccination to be cost-effective [62].

Algorithmic uncertainty

The last two papers of the cumulative dissertation are part of the same project on the effect of

the choice of the matching algorithm on the model results in ABMs modeling STIs. As already

described in section 1.3, ABMs simulate single entities representing individual members of a

society in contrast to the stratification of the population in compartments in ODE models. While

in the latter, the number of contacts for disease transmission is calculated by simply multiplying

each compartment with the contact matrix (i.e., the number of contacts of a compartment with

every other compartment), ABMs need algorithms that specify explicitly which in-silico person

had contact with which other in-silico persons at each model iteration. Ideally, the characteristics

of agents (e.g., age, sex, sexual orientation) are incorporated in the algorithms and have an

influence on who has contact with whom. As disease transmission is governed by these single

contacts, the matching procedure is a core feature of the model with a significant impact on

the spread of diseases. It is also important from a computational point of view. The matching

procedure in an infectious disease ABM will be executed at each iteration and will usually

involve the majority of agents, having a significant influence on the run-time of the simulation.

Thus, having computationally efficient algorithms that effectively match agents according to

their characteristics is a crucial part of an ABM.

The first of the two articles in this section describes the functioning of the six different al-

gorithms. Two simulation experiments are conducted that compare the speed and the quality of

the matches between agents. A distance function is defined to measure the quality of a possible

match between two agents. For example, if persons would want a partner with the same age as

themselves, the distance becomes greater as the age difference between the agents increases. An

additional measure of effectiveness is the rank of the actual match of an agent among all possible

agents. I.e., if an agent was matched with another agent but there would have been four agents

(who were already matched with someone else) that would have had a lower distance, the rank

for this agent is five. The mean and median rank over all agents was used as another quality

measure. The aim of the second article was to analyze how the matching algorithms from the

169



first article translate into results of epidemiological infectious disease models. Additionally, the

influence of multiple other decisions regarding the model structure on the model results were

analyzed, including the population size, the influence of observable and unobservable charac-

teristics on sexual behavior (i.e, heterogeneity and variability as described in section 1.4) and

disabling the matching of agents who have formerly been in a relationship. To explore the influ-

ence of these design decisions, simulations were started with a fixed share of infected persons in

the population and the spread of the infection was analyzed over time.

The results of this project contribute in two ways to the knowledge and methods of uncer-

tainty in disease modeling. Firstly, the results provide information on the influence of behav-

ioral heterogeneity and variability on the epidemiological model output of ABMs. As outlined

in section 1.3, ABMs allow a more detailed, explicit modeling of behavior driving the spread of

infectious diseases. In this context, it is important to analyze the necessary level of detail in the

agents’ behavior and the influence on the model results. Secondly, the studies provide insides

on a new type of uncertainty arising from the use of the novel approach of ABMs in infectious

disease modeling. As it is no longer possible to incorporate contacts between individuals in an

abstract, implicit way as it is done in ODE models, more explicit ways of matching agents need

to be employed. This can be done in several ways, creating uncertainty around the choice of the

matching algorithm. Researchers should be aware of this algorithmic uncertainty and reduce the

uncertainty of their choice of algorithm by sensitivity analyses using different algorithms.

5.2 Limitations

The results included in this dissertation need to be seen in light of several restrictions. As the

limitations of each single study are discussed at length within the articles, the following section

presents overall issues concerning the generalization and the transferability of the results.

One overarching limitation of the thesis as a whole is that the different aspects of uncertainty

have not all been addressed in a single project or rather one model. This makes it difficult to

quantify the absolute or relative impact that different types of uncertainty have on the model

results. However, as there are many model types and countless fields of applications, it is not

possible to cover all aspects of uncertainty within a single model. For example, uncertainties

surrounding behavioral aspects play a major role in infectious disease modeling. On the contrary,

behavioral aspects are widely disregarded in cost-effectiveness analyses of new therapeutics for

non-communicable diseases. In most cases, it is only indirectly included via the efficacy of

new, behavioral interventions like smoking cessation or weight-loss, but not modeled explicitly.
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Furthermore, with eight articles included, the thesis covers a broad range of diseases and model

types.

The data science methods presented in the first two articles of the first chapter are able

to provide data for a high level of heterogeneity in decision models. However, the access to

databases – e.g., online social networks or claims data – is not always available or may be

restricted. It is not allowed to scrape data from websites if the terms and conditions of the

website prohibit the use of scripts and if the data of interest is only accessible for registered

and logged-in users. Furthermore, there are unresolved legal issues around the usage of web-

scraping to download structured or unstructured information from websites [63, 64]. However,

more and more websites are providing Application Program Interfaces (APIs) giving users and

scientists controlled access to their data (e.g., Twitter provides an API [65]). Big social networks

also increasingly employ their own research teams allowing other researchers to cooperate and

to use their data. Researchers nevertheless need to be careful of self-selection biases in social

networks. These biases might limit the representativeness of the extracted data [66].

A limitation with regard to claims data of SHI in Germany is, that data from social secu-

rity institutions are under strict data-protection regulations [67]. But SHI data are in principle

available for research purposes if a researcher finds a SHI which is willing to provide the data

[68]. As the client structure of each of the SHIs is historically grown there might be a sys-

tematic difference between the members of the different SHIs leading to a potential bias when

using only the data from one SHI. This might be avoidable in the future, as efforts have been

undertaken from a political side to increase the accessibility of claims data to researchers by cre-

ating a central institution providing access to the data of all SHIs [69]. Furthermore, claims data

come with a series of shortcomings as they are not primarily collected for research purposes.

Among those disadvantages are the unspecific documentation of outpatient diagnoses [70], the

missing clinical information, no information on services which are not reimbursable [71] as well

as up-coding and incomplete documentation. Another limitation is the difference of the insured

between the different SHI and the difference between the statutorily insured and the privately

insured population [72, 73].

5.3 Conclusions

The topic of the dissertation is the identification and the handling of uncertainties in decision

analytic modeling. In chapter 1 the necessity of HTA and the role of modeling within HTA were

established and categories of uncertainties surrounding HEDM have been defined. Also, exist-
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ing methods have been described that allow the quantification and illustration of uncertainties in

health economic models to decision makers. Chapter 2 presented three articles with the subject

of the three parameter uncertainties heterogeneity, variability and statistical uncertainty. The

employed data science methods present a novel approach for generating input parameters for

behavioral aspects as well as for epidemiological and health economic parts of decision mod-

els. Especially web-scraping can be seen as an useful, novel tool to generate data in the area

of health economic evaluation. The impact of methodological and structural uncertainty was

shown in Chapter 3. The presented results made it apparent how important sensitivity analyses

are to quantify the impact of normative decisions on the study results. The publications also

showed the relevance of structural uncertainty with regard to the range of modeling techniques

applied to the same research question and the influence of the choices of the model layout using

the same modeling technique. In the last Chapter 4, two articles were presented highlighting

the possible impact of a new type of uncertainty – the algorithmic uncertainty – emerging in

complex, individual-based models.

As models are moving from cohort models towards individual-based models, model results

cannot be calculated directly and analytical solutions are replaced by heuristic algorithms. For

many of these heuristic tasks, a variety of algorithms is available [74, 75] (for example, there are

43 different algorithms available for the simple task of “sorting” an array). This opens up a new

category of uncertainty as the model structure remains the same and methodological uncertainty

covers only normative decisions about the methods of economic evaluations. The results of this

thesis offer a first insight on algorithmic uncertainty and shows the influence of the choice of the

matching algorithm in the field of infectious disease modeling. Further research is necessary to

explore the extent of algorithmic uncertainty in other models and disease areas.

Health care systems in developed and developing countries are confronted with more com-

plex questions on how to distribute resources and provide tailored health care services in an effi-

cient way. HEDM needs to reflect the complexity of those questions if it wants to remain a useful

tool to guide decision makers on these issues. For example, vaccine-hesitant or anti-vaccine be-

havior is listed as one of the ten greatest threads to human health by WHO [76]. Models on the

cost-effectiveness of vaccines need to incorporate this phenomenon to correctly model outbreaks

of non-endemic diseases like measles. In contrast to “classical” observable characteristics like

age or sex, vaccine hesitancy is an unobservable characteristic. Therefore new models need to

be developed, which are able to incorporate such personal preferences. Modeling HIV and other

STIs in the MSM community is another example for the need of more complex models. Two

factors have changed the sexual behavior of parts of the MSM community: The availability of

Pre-Exposure Prophylaxis (PrEP) reduces the risk of infection with HIV during unprotected sex
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and online dating allows persons to find sexual partners with the same HIV-status. Both factors

make condom use for the protection against HIV obsolete, but other STDs – e.g., syphilis – show

an increase in their incidence [77]. Modeling these interactions between the treatment of one

disease (i.e., HIV) and the incidence of other diseases (i.e., syphilis) in a specific community

(i.e., MSM) cannot be done with “classical” Markov models or decision trees. Rather, applying

more complex ABMs and using data sources like online social networks allows to adequately

model the cost-effectiveness of PrEP. Scientists need to analyze the uncertainties arising from

new modeling techniques as well as the limitations of new data sources and need to properly

communicate these shortcomings to decision makers. This dissertation provides a first step into

this direction and shows how to deal with uncertainty in modeling using statistical and data

science methods.
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