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ABSTRACT: Mobile molecules on surfaces can arrange into
stripes due to directional attractive interactions such as π−π
stacking, hydrogen, or covalent bonding. The structural arrange-
ment of the stripes depends on the underlying substrate lattice and
omnipresent long-range electrostatic interactions. To model the
impact of the interplay of short-range attractive and long-range
interactions on the molecular arrangements, we study a coarse-
grained theoretical approach, where the attractive interaction is
described by an anisotropic Ising model. As for the long-range
electrostatic interaction, we focus on repulsive dipole−dipole
interactions. An efficient Monte Carlo algorithm is developed by
which even stripe patterns with very long stripes can be
equilibrated. Using this algorithm, we assess the limits of a
previously developed mean-field theory, which provides analytical predictions for stripe-to-stripe distance and stripe length
distributions. This theory allows one to extract interaction parameters by fitting respective distributions to experimental data. We
determine the limits of the applicability of the mean-field theory and beyond its limits suggest a combined approach of mean-field
analysis and simulations. The power of this approach is demonstrated by applying it to experimental observed stripe pattern of 3-
hydroxybenzoic acid (3-HBA) on the calcite (10.4) surface.

1. INTRODUCTION

Molecular structures on surfaces in the submonolayer regime
can be designed with tailored properties because the large
variety of functional groups offer many possibilities for steering
molecule−molecule and molecule−substrate interactions.1,2 In
self-assembly of molecules, different types of structures emerge,
such as stripes, ordered two-dimensional arrays, irregularly
distributed islands, and cross-linked networks.3−9

Molecular stripes typically occur due to attractive directional
intermolecular interactions mediated by covalent bonding,
hydrogen bonding, or π−π stacking.1 Such intermolecular
stripe formation mechanisms can be further assisted by a
suitable anchoring to the surface.2 While these mechanisms
have been extensively studied in the past both by experiment
and theory,10−12 less attention has been paid so far to features
of stripe patterns caused by omnipresent electrostatic
interactions between charged molecules, or molecules carrying
a dipole or higher-order multipole moment.5 Multipole
moments can be induced also by molecule−molecule or
surface−molecule charge transfer.13−16 The impact of these
long-range interactions should be particularly pronounced on
inert surfaces where the molecule−surface interactions are not
dominating the structure formation.

To model the stripe formation, we follow a coarse-grained
approach here, where the directional attractive interaction is
described by a nearest-neighbor interaction. Recently, we
developed a mean-field theory17 to predict stripe-to-stripe
distance and stripe length distributions arising from the
interplay between the long-range repulsive and the short-
range attractive interaction. This theory was applied to stripe
formation of 3-hydroxybenzoic acid (3-HBA) molecules on the
calcite (10.4) surface.5 By fitting measured distributions to
analytical expressions, we were able to estimate the strength of
attractive and repulsive interactions.
It can be expected, however, that the mean-field approach

has limits of applicability. For strong attractive and/or
repulsive interactions, pronounced fluctuations and correla-
tions in the spatial arrangement of stripes may lead to
significant deviations from the mean-field predictions. It is,
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therefore, necessary to check the mean-field theory against
simulations. To apply standard simulation procedures based on
moves of single molecules, however, is difficult. Within
acceptable computing time, such procedures do not allow
one to generate equilibrated patterns of stripes with lengths
comparable to that observed in experiments. To overcome this
difficulty, we develop an efficient algorithm, which involves
moves of whole stripes as well as stripe segments. After
introducing the model and parameter specification in Section
2, we describe this algorithm in Section 3. The limits of the
mean-field theory obtained by comparison with simulations are
described in Section 4. Beyond these limits, one can use the
mean-field theory to estimate starting values for the
simulations. A combined procedure of mean-field theory and
simulations can thus be used, and we demonstrate its power by
application to 3-HBA on calcite (10.4).

2. MODEL AND PARAMETER SPECIFICATION
We consider a situation where the placement of molecules on a
substrate reflects the underlying surface lattice. The lattice is
the set of all possible anchoring sites of the molecules, and
occupation numbers ni specify whether the site i is occupied (ni
= 1) or not (ni = 0). For simplicity, this lattice is assumed to be
rectangular with spacing a∥ in the direction parallel to the
stripes, and with spacing a⊥ perpendicular to it. The attractive
interaction between molecules is present only in the parallel
direction and described by a nearest-neighbor interaction J. As
for the long-range repulsive interaction, we consider a dipole
interaction of strength

πε
Γ =

p
a4

2

0
3

(1)

where ε0 is the electric field constant and p is the dipole
moment of the molecules. The energy of the system is given by
the lattice gas Hamiltonian

∑ ∑= − + Γ
H

J
n n

n n
r2 2i j

i j
k l

k l

klNN ,
3

(2)

where the sum over i NN j means the summation over all
nearest-neighbor sites in parallel direction. The summations
over k and l run over all sites in the lattice, and the
dimensionless rkl are the distances between sites k and l in units
of a∥.
The parameters J, Γ, and the aspect ratio a⊥/a∥ are specific

for the molecule and the substrate. If these are given, the
temperature T and coverage θ (mean occupation number) can
be varied to a certain extent while molecular stripe patterns are
forming. As for the interaction parameter J, we will study a
range 0 < βJ < 15 with β = 1/kBT (kB: Boltzmann constant). At
room temperature, this corresponds to 0−0.38 eV, which
covers strengths of hydrogen bonds in organic molecules up to
the medium-size range.18 As for Γ in eq 1, we consider a length
scale a∥ ≃ 1 nm and p of the order of molecular dipole
moments in the range 0−13 D.19,20 The largest dipole moment
corresponds to βΓ ≃ 4 at room temperature.
In our previous modeling of the stripe formation of 3-HBA

on calcite (10.4), we employed our mean-field theory to
estimate the interaction parameters J and Γ from distributions
Ψ(l) of stripe lengths l and distributions Φ(d) of stripe-to-
stripe distances d. These distances d are defined as the nearest-
neighbor spacings of stripes in perpendicular direction, where

the nearest-neighbor condition includes the requirement that
the respective stripes should overlap after a translation in the
perpendicular direction. We found βJ ≈ 12 and βΓ≈ 2, which
lie in the ranges considered above.
The details of the mean-field treatment are given in ref 17.

Here, we list the necessary equations needed for the analysis:
The predicted stripe-to-stripe distance distribution is

βΦ = − [ + ]d
Z

fd U d( )
1

exp( ( ) )mf (3)

where Z =∑d=1
∞ exp(−β[fd + U(d)]) and f is fixed by requiring

the mean distance

∑̅ = Φ
=

∞

d dd ( )
d 1

mf
(4)

to agree with the measured one. The function
Ä

Ç
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(5)

is the interaction between two parallel stripes, which are at
distance d and both have the mean stripe length l.̅ The
predicted stripe length distribution is

i

k
jjjjj

y

{
zzzzz

θ
θ

Ψ =
−

l
C J

C J

C J
( )

( )

( )

( ) l

mf
th eff

eff

eff

(6)

with

ζ= − ΓJ J (3)eff (7)

where ζ(.) is the Riemann zeta function, ζ(3) ≅ 1.20206, and

θ
θ θ

= −
+ − − −

−

β

βC J( )
1 4 (1 )(e 1) 1

2(e 1)

J

J (8)

For estimating the interaction parameters, the tails of
experimentally determined distributions Φ(d) and Ψ(l) are
fitted to the behavior predicted by eqs 3 and 6. In the tail
regimes, microscopic details at small length scales should
become negligible such that we can expect the description
based on the Hamiltonian in eq 2 to become reliable. In
practice, we first determine the average stripe length l ̅ and
stripe distance d̅. Then, we determine Γ by fitting Φ(d) and
thereafter J by fitting Ψ(l).
The limits of validity and the accuracy of the mean-field

approach have not yet been evaluated. To this end, simulations
must be performed, which is a challenging task because
standard Monte Carlo algorithms with moves of single
molecules fail to generate equilibrated stripe patterns in
reasonable computing time. In the interesting regime, where
stripes with lengths much larger than the lattice spacing form,
the probability of rearranging long stripe sections by moves of
single molecules is very low. What is needed is an efficient
algorithm which allows one to move whole stripe segments in
the simulation procedure. We develop a corresponding
algorithm in Section 3.
Using this simulation procedure, we can generate stripe

patterns in a reasonable computing time. For example, typical
patterns of 3-HBA molecules on calcite (10.4) observed in the
experiment17 (see Figure 1a) can be well reproduced (see
Figure 1b). The interaction parameters used in the simulation
were the ones estimated from the mean-field treatment. We
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now can check also how good these estimates are. More
generally, we evaluate in Section 4 the regime of interaction
parameters where the mean-field theory gives reasonable
results. Outside this regime, the mean-field theory is still useful
to provide starting values for the interaction parameters, which
subsequently are optimized by the simulations. This combined
method provides a powerful theoretical tool to analyze the self-
assembly of molecules into stripe patterns on surfaces.

3. SIMULATION PROCEDURE

The specific algorithm to perform Monte Carlo simulations for
the Hamiltonian in eq 2 applies to the canonical ensemble and
grounds on known general concepts21−23 for factorizing
transition probabilities in attempt and acceptance probabilities.
In presenting this algorithm, we will speak about particles that
can represent different types of molecules. The rectangular
lattice introduced above is used for discussing the algorithm.
Other types of lattices can be treated similarly.
The states s of the system are the possible sets of the

occupation numbers, s = {ni}. We introduce three distinct
classes of state changes, where (1) single particles, (2)
complete stripes, and (3) stripe sections are moved. State
changes of classes 2 and 3 are introduced to overcome the
otherwise low probability of moving long stripes. The class i is
selected with probability χi (∑i = 1

3 χi = 1).
In each class, elementary moves are attempted with a

probability g(s′|s) of changing state s to s′. A transition s→ s′ is
accepted with the acceptance probability a(s′|s). Certain state
changes s → s′ are attempted but always rejected (see below)
and accordingly have an acceptance probability a(s′|s) = 0. The
respective reverse state changes are not attempted in those
cases, i.e., g(s|s′) = 0 [and a(s|s′) is irrelevant]. For a transition
to be realized, it has to be attempted and accepted.
Accordingly, the transition probabilities are given by w(s′|s)
= g(s′|s) a(s′|s).
These transition probabilities are required to fulfill the

detailed balance condition peq(s) w(s′|s) = peq(s′) w(s|s′) to
ensure that the equilibrium Boltzmann distribution peq(s) ∝
exp [− H(s)/kBT] is approached. This can be achieved by an
appropriate choice of the acceptance probabilities. We here
choose the Metropolis form

i

k

jjjjjjj
y

{

zzzzzzz′| =
′ | ′

′|
a s s

p s g s s

p s g s s
( ) min 1,

( ) ( )

( ) ( )
eq

eq (9)

Note that g(s|s′)/g(s′|s) is the ratio between the attempt
probabilities for a transition s→ s′ and its reverse if a(s′|s) ≠ 0.
[For g(s′|s) ≠ 0 and g(s|s′) = 0 (reverse transition not
attempted), a(s′|s) = 0 (transition is rejected).]
We now describe the elementary trial moves in classes 1 to

3, where those belonging to classes 2 and 3 are furthermore
illustrated in Figure 2. When referring to a “random selection”,
we mean a selection with equal probability among units whose
specification becomes clear from the context.

Class 1: One particle is randomly picked and moved to
another site randomly selected from all vacant sites. Note that
the particle in its initial state can be isolated or part of a stripe.
Class 2: One complete stripe with length l ≥ 2 is randomly

picked and moved to another randomly chosen position. The
restriction l ≥ 2 excludes single-particle moves already
considered in class 1. If the stripe at the new position overlaps
with at least one particle, the move is rejected. The move is
also rejected if both end members of the stripe in the target
state have nearest neighbors. This would imply that the stripe
is closing a gap between two other stripes, as indicated by the
crossed-out move attempt in Figure 2a. As we do not allow for
the reverse process in such a case, the rejection is required to
fulfill the detailed balance condition.
Class 3: One stripe of length l ≥ 3 together with one of its

ends is randomly selected. The restriction l ≥ 3 excludes
moves already considered in classes 1 and 2. A section of
random length k ∈ {2, ..., l − 1} from the selected stripe end is
then taken and moved to another position. As for the moves in
class 2, the move is rejected if it leads to an overlap with
another particle or to a gap-filling between stripes.
The ratio g(s|s′)/g(s′|s) in eq 9 is always equal to 1 except

for three cases which need special consideration. To specify the
respective ratios for these three cases, we first introduce two
further probabilities in a state s: the probability γ2(s) of
selecting a certain stripe, and the probability γ3(s, l) of picking
a certain stripe with length l ≥ 3 and a section k ∈ {2, ..., l − 2}
from this stripe. The probability γ2(s) is given by

Figure 1. (a) Section of an atomic force microscopy (AFM)
topography (zp) image of 3-hydroxybenzoic acid (3-HBA) molecules
on the calcite surface (10.4) at temperature 290 K and coverage θ =
0.11 (complete image has 5 × 103 stripes). (b) Stripe pattern
generated based on the Hamiltonian in eq 2 with interaction
parameters J = 12.3 and Γ = 1.85 (in units of thermal energy) for the
same coverage and temperature as in the experiment (the size of the
pattern corresponds to about 105 anchoring sites of 3-HBA dimers).

Figure 2. Possible moves (a) in class 2, where whole stripes are
displaced, and (b) in class 3, where section of stripes are moved to
another position. The particles marked in blue are at the initial
position, and the particles marked in red are at a new position after a
move. At their new positions, the displaced stripes in (a) and
displaced stripe sections in (b) have zero, one, or two occupied
particles as nearest neighbors at their ends, which are marked in gray.
In the cases of two occupied nearest neighbors, the moves are rejected
as indicated by the crossing out of the respective arrows.
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γ =
≥

s
N s

( )
1

( )2
2 (10)

where N≥2(s) [N≥j(s)] is the number of stripes with length l ≥
2 [l ≥ j]. The probability γ3(s) is equal to 1/N≥3(s) (random
selection of stripe with length l ≥ 3) times 1/2 (a section of
length k ∈ {2, ..., l − 2} is chosen from either one of the stripe
ends) times 1/(l−2) (there are (l−2) possibilities for k)

γ =
− ≥

s l
l N s

( , )
1

2( 2) ( )3
3 (11)

Having specified γ2(s) and γ3(s,l), the three state changes s →
s′ with g(s|s′)/g(s′|s) ≠ 1 are:

(i) If a stripe with length l1 ≥ 2 is attempted to move and to
be attached to another stripe with length l2 ≥ 2 [class 2
move for s → s′ and class 3 move for s′ → s], it holds

χ γ
χ γ

χ
χ

| ′
′|

=
′ +

=
+ − ′

≥

≥

g s s
g s s

s l l

s

N s
l l N s

( )
( )

( , )

( )

( )
2( 2) ( )

3 3 1 2

2 2

3

2

2

1 2 3 (12)

(ii) If a section of length k ∈ {2, ..., l − 2} from a stripe with
length l ≥ 3 is moved to a free position where it becomes
a new stripe of length k [class 3 move for s → s′ and
class 2 move for s′ → s], it holds

χ γ
χ γ

χ
χ

| ′
′|

=
′

=
−

′
≥

≥

g s s
g s s

s
s l

l N s
N s

( )
( )

( )

( , )
2( 2) ( )

( )
2 2

3 3

2

3

3

2 (13)

(iii) If a section of length k ∈ {2, ..., l1 − 2} from a stripe with
length l1 ≥ 3 is moved and attached to another stripe (or
single particle) with length l2 ≥ 1 [class 3 move for both
s → s′ and s′ → s], it holds

γ
γ

| ′
′|

=
′ +

=
−

+ − ′
≥

≥

g s s
g s s

s k l

s l
l N s

k l N s
( )
( )

( , )

( , )
( 2) ( )

( 2) ( )
3 2

3 1

1 3

2 3

(14)

For the moves in classes 1−3 as well as the interaction
between particles, we applied periodic boundary conditions,
and in all simulations, we chose χi = 1/3.
Representative equilibrated stripe patterns for varying

interaction parameters J and Γ generated with the algorithm
are shown in Figures 3 and 4. When decreasing J and/or
increasing Γ, the stripes become shorter until essentially only
single particles are left and one can no longer speak about a
stripe pattern. The dipole−dipole interaction was calculated
using the minimum image convention.22

To control the equilibration, we have checked that the
system's energy, mean stripe-to-stripe distance and mean stripe
length, as well as the second- and third-order cumulants of the
stripe-to-stripe distance and stripe length distributions were
fluctuating around constant values. We also checked that our
findings were the same for different starting configurations.

4. DETERMINING INTERACTION PARAMETERS FROM
STRIPE PATTERNS
4.1. Limits of the Mean-Field Theory. With the efficient

algorithm presented in Section 3, we are now able to assess the
accuracy of the mean-field theory and to determine its limits.

To that end, we will apply the mean-field approach to
distributions Φ(d) and Ψ(l) generated from simulations. We
focus here on the modeling of stripe patterns formed by 3-
HBA molecules on calcite (10.4) around a coverage θ = 0.1,
where experimental data have been measured. These stripes
consist of rows of 3-HBA dimers with a width of 2 nm and a
periodicity of 0.8 nm in stripe direction. The dimers are treated
as particles in our algorithm and occupy anchoring sites of a

Figure 3. Equilibrated stripe patterns for fixed Γ = 1 and four different
values of (a) J = 3, (b) J = 6, (c) J = 8, and (d) J = 12 (all energies in
units of kBT). The simulations were performed for a coverage of θ =
0.1 and a lattice of size N⊥ × N∥ = 100 × 100 with an aspect ratio of
lattice constants a⊥/a∥ = 2.5.

Figure 4. Equilibrated stripe patterns for fixed J = 1 and four different
values of (a) Γ = 3, (b) Γ = 6, (c) Γ = 8, and (d) Γ = 12 (all energies
in units of kBT). Other simulation parameters are as in Figure 3.
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rectangular lattice with an aspect ratio a⊥/a∥ = 2 nm/0.8 nm =
2.5.
As the stripe distances are short while the stripes can

become very long, we chose an asymmetric simulation
geometry with a total number of N⊥ × N∥ = 100 × 2500
anchoring sites. We found this size to be sufficient for our
results to be unaffected by finite size effects for the parameter
regimes 0 < J < 15 and 0 < Γ < 4, where here and in the
following we use kBT as the energy unit. The coverage is θ =
0.1 for all results referring to the evaluation of the mean-field
theory. When modeling distributions sampled from the
experiments in Sections 4.2 and 4.3, the simulations are
carried out for the coverage θ = 0.11 of the experiment.
Figure 5 shows the simulated Φ(d) and Ψ(l) (gray bars) for

J = 12.3 and Γ = 1.85, which were found before as estimates

from applying the mean-field theory to the experiment (see
also Figure 1). The dashed lines refer to the theoretical mean-
field distributions Φmf

th (d) and Ψmf
th (l) from eqs 3 and 6, if the

interaction parameters were already known. As can be seen in
Figure 5b, the predicted stripe length distribution is close to
the simulated one, while pronounced differences can be seen
between Φmf

th (d) and Φ(d) in Figure 5a.
Of course, when applying the mean-field theory, J and Γ are

not known and estimates Jmf and Γmf must be determined by
applying the tail-fitting procedure described in Section 2.
When looking at the simulated stripe-to-stripe distance
distribution in Figure 5a, we consider the tail region to start
at a distance 10% larger than that d, where Φ(d) has its
maximum. The best fit to lnΦ(d) according to the method of
least-squares gives our mean-field estimate Γmf . The stripe
length distribution Ψ(l) in Figure 5b can be fitted to eq 6 over
the full range of l values. The asymptotic decay Ψmf(l) ∼ e−l/l0,
l0 = a∥/ln(θ/C(Jeff)) [see eq (6)], gives Jeff = Jmf − ζ(3) Γmf
and hence Jmf .
We obtain Jmf ≃ 11.26 and Γmf ≃ 1.17 as estimates. The

corresponding distributions are indicated by the solid lines in
Figure 5a,b. The estimated parameter Jmf is close to the true
value J = 12.3, while Γmf underestimates Γ = 1.85. To
conclude, the mean-field theory for J = 12.3 and Γ = 1.85 can
be used to obtain a first rough estimate for the interaction

parameters, but additional simulations should be carried out to
determine more accurate values.
To assess the mean-field approach more generally, we have

performed a large number of simulations in a wide parameter
regime of J and Γ, and determined Jmf and Γmf in the same way
as in Figure 5. Our results for Γ = 1 and Γ = 2 and various J in
the range 1−14 are shown in Figure 6. As expected, we observe

larger deviations at higher interaction parameters. Note that
the regime Γ > J is not of interest as there is no stripe
formation (mean stripe length becomes of the order of 1).
For Γ = 1, Jmf is close to J. At larger Γ ≳ 2, we find Jmf < J for

large J, see Figure 6c. The Jmf values are accurate only in a
limited interval for small J, with the interval narrowing with
increasing Γ. As for the Γmf values, these are less well predicted
by the mean-field theory. As a rule, based on a 20% deviation,
Γmf yields a reasonable estimate in the parameter range J = 2 −
10 and Γ ≲ 2.

4.2. Improvement of Interaction Parameter Estimates
by Simulations. Beyond the limits of the mean-field theory,
simulations should be performed with the algorithm described
in Section 3, with the mean-field estimates Jmf and Γmf as
starting values. This combined approach is now demonstrated
for the experiment based on the previously measured data of 3-
HBA on calcite (10.4).17

We performed simulations in the regimes bounded by Jmf ±
4 and Γmf ± 2 and compared the asymptotic decays of the
simulated distributions Φsim(d) and Ψsim(l) with the decays of
the experimental distributions Φ(d) and Ψ(l). Looking at
these experimental distributions in Figure 7, the tail regions
were considered to start at d = 17.5 and l = 50. A best fit to an
exponential decay in Figure 7b gives a decay length l0 = 70.
This value, however, needs to be considered with caution
because the statistical accuracy for Ψ(l) is limited as the stripes
are rather long (see Figure 1) and thus relatively small in

Figure 5. Simulated results for (a) the distribution Φ(d) of stripe-to-
stripe distances and (b) the distribution Ψ(l) of stripe lengths at a
coverage θ = 0.1, and interaction parameters J = 12.3 and Γ = 1.85 (in
units of kBT). The dashed black lines mark the theoretical mean-field
predictions for Φmf

th (d) and Ψmf
th (l) according to eqs 3 and 6. The solid

black lines indicate Φmf(d) and Ψmf(l) for interaction parameters Jmf =
11.26 and Γmf = 1.17 that are obtained by fitting the tails of the
simulated distributions (see text). The simulation was carried out for
a lattice of N⊥ × N∥ = 100 × 2500 sites with an aspect ratio of lattice
constants a⊥/a∥ = 2.5.

Figure 6. Interaction parameters Jmf and Γmf (circles) extracted by
applying the mean-field theory to the simulated distributions in
comparison with the input parameters J and Γ of the simulations
(indicated by the black lines). In (a) and (b), Jmf and Γmf are
displayed as a function of J for Γ = 1, respectively. In (c) and (d), Jmf
and Γmf are shown for Γ = 2. All parameters are given in units of kBT.
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number. In total, 5 × 103 stripe lengths were sampled from the
AFM image, which is much smaller than the total number of 4
× 105 of sampled stripe distances d. In view of this, we apply
the following procedure for finding the optimal pair of J and Γ
values:
R2 values (coefficient of determination) were calculated with

respect to the residuals [lnΦ(d) − lnΦsim(d)], corresponding
to the representation in Figure 5b on a semilogarithmic scale.
The optimal pair of interaction parameters is the one with the
highest R2 value under the constraint that the decay length l0

sim

of Ψsim(l) does not deviate by more than 15% from l0. This
gives Γ = 3.4 (yielding R2 = 0.989) and J = 14.8. The
corresponding Φsim(d) and Ψsim(l) are shown in Figure 7 as
solid lines. We note that the data of Ψsim(l) were renormalized
to match the asymptotic decay of Ψ(l) and the length
distributions were determined using bins of varying size with
approximately equal amounts of events in each bin.
Our simulations hence yield the more accurate estimates J =

14.8 and Γ = 3.4 in comparison to the values Jmf = 12.3 and Γmf
= 1.85 formerly predicted by applying the mean-field theory
only. For the estimated dipole moment, we obtain the
modified value p = 8.4 D (former value was p = 6.1 D).
4.3. Distributions of Stripe Distances between

Second and Third Nearest-Neighbor Stripes. The
procedure of determining optimal values of J and Γ from the
simulations could be refined by a more detailed analysis of the
information contained in the stripe distances in the
perpendicular direction, where the experimental data exhibit
higher statistical accuracy. We tried to include information on
the distribution of distances between stripes beyond nearest-
neighbor ones.
For this purpose, we investigated the distribution Φ2(d) of

distances between second nearest-neighbor stripes (orthogonal
to the stripe direction). In the absence of correlations, i.e.,
when successive distances between stripes are independent of
each other, this distribution is given by the convolution Φ2

0 =
Φ*Φ. This means that we can quantify correlation effects by
the differences [Φ2(d) − Φ2

0], where Φ2(d) is the
experimentally observed distribution for the second nearest-
neighbor distances.

Surprisingly, as shown in Figure 8a, no significant differences
can be found between Φ2(d) and Φ2

0. This implies that we

cannot utilize information on stripe distances beyond nearest
neighbors to improve our procedure for estimating J and Γ in
the present case. The fact that corresponding correlation
effects are negligible is confirmed by our simulations; see
Figure 8b, where we furthermore compare simulated results for
the distribution Φ3 of third nearest-neighbor stripe distances
with Φ3

0 = Φ*Φ*Φ.

5. CONCLUSIONS
In summary, we have studied the formation of stripe patterns
based on a coarse-grained lattice model with competing short-
range attractive and long-range repulsive interactions between
the molecules. The short-range attractive interaction was
described by an anisotropic Ising model, which can account
effectively for covalent bonding, hydrogen bonding, or π−π
stacking. As for the long-range repulsive interactions, we
focused on dipole−dipole interactions as a typical case of the
omnipresent electrostatic interactions.
We presented a Monte Carlo algorithm by which

equilibrated stripe patterns could be generated in reasonable
computing time for even very long stripes composed of 103

molecular units and more. Using this algorithm, we evaluated a
previously developed mean-field theory,17 which allows one to
determine interaction parameters from stripe-to-stripe distance
and stripe length distributions Φ(d) and Ψ(l), respectively. It
turned out that the predictive power of the mean-field theory is
limited to weak dipole−dipole interactions (dipole moment
not larger than about ≃ 6 D) and weak to moderate short-
range attractive interaction. To improve the accuracy, we
proposed a combined procedure of mean-field theory and
Monte Carlo simulation and applied it to reevaluate
experimental data for 3-HBA molecules forming stripes on
the calcite (10.4) surface.
As for the coverage θ of the substrate by the molecules, we

have concentrated here on θ = 0.1, which is a typical value
where stripe formation is seen in experiments. Generally, the
range of coverage is limited as for small θ only single particles
and very short chains appear, while at high θ, coalescence
events and/or island growth in the direction perpendicular to
the substrate become relevant. Our combined procedure, of

Figure 7. (a) Stripe-to-stripe distance distribution Φ(d) and (b)
stripe length distribution Ψ(l) for stripe patterns formed by 3-HBA
molecules on the calcite (10.4) surface at temperature 290 K and
coverage θ = 0.11 [see Figure 1a]. The solid lines refer to simulated
distributions of equilibrated stripe patterns based on the Hamiltonian
in eq 2 for the optimal interaction parameters J = 14.8 and Γ = 3.4 (in
units of kBT). The simulated distribution in (b) was renormalized to
match the asymptotic decay of Ψ(l). For obtaining Ψ(l), bins of
varying size were used with approximately equal amounts of sampled
stripe lengths in each bin.

Figure 8. (a) Stripe-to-stripe distance distribution Φ(d) from Figure
7a and distribution Φ2(d) of distances between second nearest-
neighbor 3-HBA stripes in comparison with Φ2

0(d) = (Φ*Φ)(d). (b)
Simulated stripe-to-stripe distance distribution Φsim(d) from Figure
7a, and second and third nearest-neighbor distance distributions
Φsim,2(d) and Φsim,3(d) in comparison with Φsim,2

0 (d) and Φsim,3
0 (d)

obtained by convolving Φsim(d).
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course, is not limited to particular values of the coverage in the
regime of stripe formation.
There is also no restriction regarding the lattice symmetry.

We here investigated a rectangular lattice with a specific ratio
a∥/a⊥ of lattice constants in and perpendicular to the stripe
direction. This choice was taken to apply the procedure to the
available data for stripe formation of 3-HBA molecules on
calcite (10.4). The algorithm can be straightforwardly modified
or extended to simulate other lattice symmetries.
Improvements of the analysis are possible by including other

information than provided by Φ(d) and Ψ(l). In practice,
experimental information on quantities sensitive to the
perpendicular direction of stripe formation will be accessible
with much higher statistical accuracy. This is because the
number of distances in the perpendicular direction is typically
much larger than in the parallel direction (if the mean stripe
distance is much smaller than the mean stripe length). The
stripe pattern in Figure 1 represents an example of this typical
situation.
We suggest to examine also the distributions between

second and third nearest-neighbor stripe distances in the
perpendicular direction. In the absence of correlations between
successive stripe distances, these distributions of distances
between second (or higher)-order nearest neighbors are given
by convolutions of Φ(d). Accordingly, correlation effects can
be identified by comparison with the respective convolutions.
For the stripe formation of 3-HBA molecules on the calcite
(10.4) surface, we could not identify any such correlations, in
agreement also with our simulated data. Accordingly, we could
not improve the accuracy of our analysis for this system. This
does not preclude that a corresponding analysis would not be
informative for other systems of stripe-forming molecules on
surfaces. In the case of stripe formation of 3-HBA molecules on
calcite, our results show that fluctuation effects must be the
primary cause for the differences found between mean-field
theory and simulations.
In our modeling, we have assumed a constant dipole

moment of the 3-HBA molecules. Alternatively, the dipole
moment could arise from a molecular polarizability. The
strength of the dipole moment of each molecule would then
depend on its local environment, i.e., where it is located within
a stripe and how stripes in the environment are positioned. An
approach with a molecular polarizability could also be
successful in modeling the experimentally observed stripe-to-
stripe distance and stripe length distributions. The question
whether a constant dipole is present could be answered by
checking if the experimental findings for other coverages and
temperatures can be described by the same values of the dipole
moment p and attractive interaction J (given in temperature-
independent units).
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