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Abstract—Recognition of soft objects is a critical step to tailor 

policy for dexterous manipulation. Deformation property is one of 
the valuable tactile cues for inferring the identities of soft objects, 
especially those having similar appearance features. In this work, 
we implemented tactual grasping for discriminating soft objects 
from the response curves of indentation displacement in relation 
to grasping force. Unlike some existing methods defining certain 
local features from the force-displacement observations, we 
viewed the force-displacement curve as continuous function 
rather than discrete observations. We proposed to use functional 
data analysis for classifying the kind of force-displacement curve 
data. Functional principal component analysis (FPCA) was used 
to extract multivariate features from force-displacement curves. 
Different traditional machine learning models were trained for 
classifying the multivariate features and the best one was selected 
based on cross-validation. Case study demonstrated that our 
method could accurately distinguish eight different soft objects. 
The FPCA based features outperformed those manually defined 
features. We indicated that the force had crucial influence on the 
classification accuracy and proposed how to select the proper 
force for the classification task. Overall, this work provides 
practical guidelines on tactual recognition of soft objects.  
 

Index Terms—Soft object recognition, tactual grasping, 
force-displacement curve, functional data analysis.  
 

I. INTRODUCTION 
HE past decades have witnessed that the robotic 
applications were extended from manufacturing scenario to 
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unstructured everyday life. One challenge for robots working in 
everyday life is that a large part of objects in such environments 
are soft, e.g., linear ropes, planar paper, cloths, and food [1]. 
Due to the objects’ deformation, the complexity of interactions 
between the robot and soft objects increases [2]. In light of this, 
it is crucial to endow robotic systems with the capability of 
distinguishing soft objects so as to devise proper manipulation 
policy [3], [4]. For examples, agricultural robots are expected 
to be built with the ability of discriminating the fruits with 
different levels of ripeness and picking the ripe ones with 
proper contact force. Developing medical robots with 
capability of palpating the lumps in the subcutaneous tissue is 
helpful for diagnosis and treatment. 

As illustrated in Fig. 1(a), deformation property is one of the 
valuable tactile cues that could be leveraged for recognizing 
different soft objects, especially those having similar 
appearance features (e.g., geometry and texture). Previous 
studies typically conducted tactual interactions (e.g., pressing, 
pinching) with an object to explore its deformation property 
under the exerted force. The interaction data such as 
indentation displacement, force, tactile images were collected 
[5-12]. By processing the interaction data, deformation 
property of the soft objects can be learned and classified. For 
example, some existing studies proposed to recognize different 
soft objects (e.g., silicon rubbers) by comparing their hardness, 
which was simply computed by the ratios of the force to the 
indentation displacement [13-18]. Some other approaches used 
regression model to fit the trace of force-displacement 
observations and they used the slope of the regression line as 
one-dimensional feature for classifying different objects 
[19-21]. Chitta et al. [22] also studied the force-position 
profiles and suggested a set of six generic tactile features for 
identifying deformable bottles and cans. While the above 
methods could be easily implemented, the features manually 
defined from the force-displacement curve data might lose 
crucial information and bias the classification result. Apart 
from the force-displacement information, advanced tactile 
images were also exploited [23], [24] for estimating the 
hardness of the soft objects. CNN was used to extract features 
from the raw tactile image sequence and then LSTM net was 
devised for predicting the hardness of silicone samples. 
Bhattacharjee et al. [25] employed LSTM net to handle the 
time-variant tactile sensing data to infer whether the object is 
hard or soft. 
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Fig. 1. Research motivation and tactual recognition scheme. (a) Deformation property is valuable for recognizing soft volumetric objects, especially those with 
similar appearance. (b) An example for illustrating the drawbacks of features that manually defined: ratio feature manually defined from force-displacement curve 
is ineffective for distinguishing the two objects. (c) An example for illustrating the effect of the force: small force results in poor discriminability while large force 
will cause unnecessary object deformation and even damage the object. (d) Scheme for tactual recognition of soft objects from deformation cues. Response curves 
of the indentation displacement in relation to grasping force were collected during the pinch grasping. FPCA was applied on classifying the force-displacement 
curve data. By investigating the classification accuracy in relation to the force, we indicated the guidelines on how to select the proper force to deform objects for 
classification purpose in practical applications. 
 

In this work, we aim to recognize soft volumetric objects by 
learning their deformation property under the exerted force. 
Specifically, we explored the deformation properties of soft 
objects by pinching them using a two-finger proprioceptive 
gripper, which was prototyped in our previous studies [29], [30]. 
Response curves of the indentation displacement in relation to 
grasping force were collected for characterizing the 
deformation property of the soft objects. The focus of this work 
was providing a tool to process this type of force-displacement 
curve data for classifying different soft objects. We mainly 
tackled the following two issues: 
(1) It is still an open question what features should be selected 

from raw force-displacement curve data for recognizing 
different soft objects. The prior works usually defined 
certain general characteristics or local features (e.g., ratio, 
slope, or 6D feature) from the force-displacement curve 
data for classification [12-22]. It is apt to lose crucial 
characteristics and bias the classification result. For 
instance, as illustrated in Fig. 1(b), the two objects have 
similar ratios of the force to the indentation displacement. 
Feature manually defined like ratio here has difficulty in 
discriminating them. But apparently, they are two types of 
soft objects with different deformation processes. 

(2) Tactual interaction usually comes with object deformation, 
while few studies discussed how much force would be 
sufficient to deform the object for classification purpose. 
Fig. 1(c) illustrates this concern: insufficient deformation 
(when grasping force is less than iF ) may result in poor 

discriminability; too large grasping force, however, will 
cause unnecessary object deformation and even damage 
the object (when grasping force is larger than kF ). 

Fig. 1(d) illustrates the proposed scheme for tactual 
recognition of soft objects. Our main contributions are 
summarized as following: 
• We looked into the whole deformation process of the soft 

objects and treated the force-displacement curve data as 
continuous function rather than discrete observations. Under 
this perspective, we used functional data analysis for 
classifying the force-displacement curve data. Instead of 
manually defining certain local features from the 
force-displacement curves, we employed FPCA to generate a 
set of orthogonal basis functions for providing optimal 
approximations of the force-deformation curves. The 
coefficients of the basis functions explain the deformation 
behaviors of different objects and formed the multivariate 
features. The performance of classifying these features using 
different machine learning models were evaluated. As far as 
we know, in robotic tactual recognition field, this is the first 
trial to classify the force-displacement curve data under 
functional data analysis framework.  

• The relationship between the classification accuracy and the 
amount of grasping force was investigated. In the case study, 
we indicated practical guidelines on how to select proper 
force to deform the objects and gain sufficient discriminable 
deformation features for classification purpose. 
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II. MODELS AND METHODS  

A. Orthonormal Representation and Feature Extraction for 
Force-displacement Curves 

In this work, we looked into the whole deformation process 
of the soft objects and exploit the force-displacement curve data 
to discriminate objects. We consider the deformation 
observations as noisy sampled curves that realized from a 
smooth force-displacement function. Let ( )ix s  be the 
observation of the deformation curve sample i  at force s : 

 ( ) ( ) ,  1, 2,..., ; [0, ]i i ix s X s i N s Fε= + = ∈  (1) 

where ( )iX s  is the uncontaminated curve, [0,  ]F  is the force 
interval, N  is the number of samples and iε  is white Gaussian 
noise. Using the Karhunen-Loève expansion, we can expand 

( )iX s  by an infinite series of orthogonal basis functions 

{ }( ),k s kφ ∈ Ν : 

 
1

( ) ( ) ( )i X ik k
k

X s s C s
∞

=

= + ∑µ φ  (2) 

where ( )X sµ  is the mean of the curve samples and 

( )0 ( ) ( ) ( )  1F
ik i X kC X s s s ds k= − ≥∫ ，µ φ . In FPCA [26-28], the 

process of mining the orthonormal system of eigenfunctions 
{ }( ),k s kφ ∈ Ν  can be formulated as the following optimization 
problem: 

 ( )
2

0

2

0( ) 1 1

1max ( ) ( ) ( )
1F

N F

i X
s ds i

X s s s ds
Nφ

µ φ
= =

 −  −∫
∑ ∫  (3) 

Consider the covariance function of ( )X s  

 ( ) ( ), = cov ( ), ( )v s X v X sΓ  (4) 

The maximization problem can be solved by finding a 
sequence of eigenvalue-eigenfunction pairs ( ){ },k k sλ φ  

satisfying the eigenequation 

 ( ) ( ) ( )
0

, ,0 ,
F

k k kv s s ds s v s Fφ λ φΓ = ≤ ≤∫  (5) 

with 1 2 ...λ λ≥ ≥  and eigenfunctions ( )k sφ  are orthogonal, i.e.,

0
( ) ( ) 0

F

m ks s dsφ φ =∫ , if m k≠ . The coefficients ikC  (called 

FPC score) is zero-mean uncorrelated random variable with 
variance kλ  and can be considered as the projection of ( )iX s  

on the eigenfunction ( )k sφ . In practice, a finite number of 
eigenfunctions in Equation (5) are usually used to approximate 

( )iX s . Denoting ( )( )K
iX s  as the approximation of ( )iX s  by 

truncating Equation (2) at the first K  terms, we have 

 ( )

1
( ) ( ) ( )

K
K

i X ik k
k

X s s C s
=

≈ + ∑µ φ  (6) 

Algorithm 1 Extract functional data features { }ic . 

Require: ( ) [ ]{ }, 0, , 1,...,ix s s F i N∈ = . 

Ensure: The functional data features { }ikc . 

1: Choose n , determine the 'sjw , and the 'sjs . 

2: Compute mean curve xµ  and covariance Γ . 
3: for 1:k K=  do 
4:    Compute thk eigenvector ku  of 1/2 1/2W WΓ . 

5:    1/2
k kW uφ −= . 

6:    for 1:i N=  do  

7:       ( )0
= F

ik i x kc x dsµ φ−∫ . 

8:    end for 
9: end for 

 

Here we use integral method to derive the eigenfunctions in 
Equation (6), which was proved to be computationally easy 
[26]. Suppose that the N  sample curves ( )ix s  are obtained 
with preliminary steps such as interpolation. The integral 
method is to discretize the observed curve ( )ix s  to n  equally 
spaced js  spanning the interval [0,  ]F , which yields N n×  

data matrix X . Let = / ( 1)h F n −  be the width of the equal 
interval, the integral equation in Equation (5) can be 
approximated as follows: 

 ( ) ( ) ( ) ( )
0

j
, ,

F

k j k j jv s s ds v s s wφ φΓ ≈ Γ∑∫  (7) 

where the weights jw  are / 2,  ,...,  ,  / 2h h h h . Under the 

orthonormality constraints T
m k mkWφ φ δ= ( mkδ  is the Kronecker 

delta), the eigen analysis problem then can be written as 
equivalent matrix form: 

 k k kWφ λ φΓ =  (8) 

where ( )cov ( ), ( )i js sΓ = X X , ( )1 2, ,..., nW diag w w w= , and 

( ) ( ) ( )( )1 2, ,...,T
k k k k ns s sφ φ φ φ= . 

Defining 1/2
k ku W φ= , we solve the symmetric eigenvalue 

problem of the form 

 1/2 1/2
k k kW W u uλΓ =  (9) 

The vector kφ  can be recomputed via the inverse 
transformation 1/2

k kW uφ −= . Assume we select K  
eigenfunctions 1 2, ,..., Kφ φ φ  to form an orthonormal basis 

system, the corresponding FPC scores ( )1 2, ,...,i i iKc c c  can be 
extracted as the functional features that representing 

[ ]( ), 1, 2,..., , 0,ix s i N s F= ∈ . Algorithm 1 presents the process 
of extracting the functional data features. 
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B. Classification Methods 
After the orthonormal representation, the functional 

force-displacement curve samples are converted to be the 
features in Euclidean space. In order to evaluate the 
effectiveness of the features, we choose five kinds of 
classification methods including support vector machine 
(SVM), K-nearest neighbor (KNN), Gaussian Naïve Bayes, 
multi-layer perceptron (MLP), and decision tree, for classifying 
the features. The classifiers were configured based on 
Scikit-learn (a machine learning library in Python [31]) and 
implemented on a common laptop with Intel Core i7-8550U 
CPU, 12GB RAM, and Intel UHD Graphics 620 in processor 
and Nvidia GeForce MX150. 

SVM constructs a hyperplane to create the boundary 
between the data samples. Internally, the implementation is 
handled by using the library Libsvm. We trained the SVM 
classifiers with four different kernels, including linear kernel, 
radial basis function (RBF) kernel, polynomial kernel, and 
sigmoid kernel. The kernelized SVM was then constructed by 
selecting the kernel with the best classification performance in 
cross-validation. 

KNN predicts the label of the new point from a predefined 
number of the training samples closest in distance. We used 
Euclidean distance and tunes the numbers of K by 
cross-validation. 

Gaussian Naïve Bayes is based on applying Bayes’ theorem 
with the assumption of independence among the features. In 
order to support the Gaussian Naïve Bayes for classification, 
the distribution of the features is assumed to be Gaussian.  

MLP uses multi-layer network structure to learn a mapping 
from the input to output. To train the MLP classifier, one 
hidden layer was taken with ReLu activation function, learning 
rate is kept at 0.01, and the parameters were optimized using the 
Adam algorithm.   

Decision Tree creates a tree structure flowchart with a set of 
if-then-else decision rules for predicting the value of a target 
variable. We implemented the decision tree classifier with 
maximum depth of 5. 

III. CASE STUDY 
In this section, we demonstrate the classification of eight 

different soft objects using the proposed method. Experimental 
setup for sampling the dataset was firstly introduced. 
Preliminary analysis of the dataset was carried out, following 
which we discussed the selection of classifier, the dimension of 
FPC components, and the grasping force. Finally, we compared 
the classification performance using our FPCA based features 
and the features manually defined in prior studies. 
 
 
 
 
 

 
Fig. 2. Eight classes of soft objects with similar appearance but different 
materials or internal structures. From the left to the right column: object labels, 
object sample image, and object section view for illustrating the materials and 
internal structures. 

 
Fig. 3. Experimental exploration of objects’ deformation properties using a 
two-finger robotic gripper. (a) Mechanism of the two-finger robotic gripper. (b) 
Prototype of the two-finger robotic gripper. (c) Pinch grasp exploration of a 
sponge sample. Deformation response of the sponge sample was delineated by 
plotting the indentation displacement of gripper finger as a function of the 
grasping force. 
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Fig. 4. Force-displacement curve data of the eight soft objects observed in grasping trials under controlled force in the range of [0,8.0] (unit: Newton). For each class 
of object, 250 data curves were collected. 

A. Experimental Setup and Data Description 
We applied the proposed technique to classify eight soft 

objects with different physical properties merely by learning 
their deformation process. To avoid the influence of the 
appearance features, these objects were artificially made with 
similar shape, exterior size and color, based on which they 
could not be easily distinguished by computer vision 
techniques. But the interior of the eight soft objects were 
composed of different materials and structures, as illustrated by 
the object section view in Fig. 2. The eight objects were 
respectively labeled as {“M”, “H”, “MEM”, “EPE”, “S0”, 
“S020”, “S10”, “S10H”}: 
(1) object “M” was made of medium density sponge;  
(2) object “H” was made of high density sponge;  
(3) object “MEM” was made of sandwich structure with 

medium density sponge on both sides and expanded 
polyethylene in the middle;  

(4) object “EPE” was made of expanded polyethylene; 
(5) object “S0” was made of Shore A 0 silicon rubber;  
(6) object “S020” was constructed with the outer wall using 

Shore A 0 silicon rubber and the inner core using Shore A 
20 silicon rubber;  

(7) object “S10” was made of Shore A 10 silicon rubber; 
(8) object “S10H” was constructed with the outer wall using 

Shore A 10 silicon rubber and a hollow inner cavity filled 
with air.  

In this experiment, we used a two-finger robotic gripper to 
pinch the eight soft objects for characterizing their deformation 
properties. Fig. 3(a) and Fig. 3(b) respectively presents the 
mechanism and prototype of the gripper, which was 
constructed with six-bar linkages and pneumatically actuated 
by soft linear bellows chambers. By inflating and deflating the 
active bellows, the gripper finger was opened or closed for 
grasping objects. Two pressure sensors (range: -100~300kPa, 
CFSENSOR) were used for respectively monitoring the active 

and passive bellows’ inner pressure. The pressure signals were 
collected and processed by a 32-bit dual-core MCU (EPS32, 
Espressif) for estimating the finger movement and grasping 
force. The estimation accuracies of force and displacement 
were strictly evaluated in our preliminary studies [29], [30]. In 
principle, the approach developed in this work can be used on 
other robot system with joint position measurement and 
calibrated tactile feedback. 

Fig. 3(c) presents the experimental results of pinching a 
sponge. The sponge was symmetrically pinched while the 
indentation displacement of gripper finger and the 
corresponding grasping force were acquired by the MCU with 
sampling rate of 200Hz. After interpolation and plotting the 
observed indentation displacement of gripper finger in relation 
to the grasping force, a force-displacement curve was generated 
for delineating the deformation property of the sponge. The 
dataset for training and testing were acquired in the same 
manner. A total of 2000 grasp trials were carried out on the 
eight soft objects with 250 for each class. The grasping force 
was controlled in the range of [0,8.0] (unit: Newton). To avoid 
biases, the pinching speed was randomized between the 
minimum of 2mm/s and the maximum of 10.5mm/s. Fig. 4 
shows the force-displacement curves of each class of object that 
collected in the grasping trials.  

B. Preliminary Analysis 
Preliminary analysis on the features extracted by FPCA was 

firstly carried out. It took about 8 milliseconds to compute the 
features. Fig. 5(a) reveals the cumulative proportion of 
variation explained by the first fifteen functional principal 
components (FPCs) and the proportion of variation that each 
FPC accounts for. The first three FPCs are plotted in Fig. 5(b). 
Fig 5(c) presents the pairwise scatterplots of the first three FPC 
scores of a training dataset that split in five-fold 
cross-validation.  
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Fig. 5. (a) Cumulative proportion (curve plot) of variation explained by the first 
fifteen FPCs and the proportion (bar plot) of variation explained by each FPC. 
(b) The first three FPCs of the force-displacement curve data. (c) Pairwise 
scatterplots of the first three FPC scores of the training dataset. 

According to Fig. 5(a), the first FPC explained 98.03% of the 
total variation, strongly dominating all other types of variation. 
The overall effect due to the first FPC increased with force 
increasing as shown in Fig. 5(b). It indicated that the object had 
high negative value of the first FPC score (e.g., the sponge 
material-based objects) would display larger deformation in the 
force range and those had high positive scores (e.g., the silicon 
rubber material-based objects) would display smaller 
deformation, as shown in Fig. 5(c). With the constraint of being 
orthogonal to the first FPC, the second FPC represented a mode 
of variation accounting for 1.66% of the total variation. As 
illustrated in Fig. 5(b), the second FPC consisted of negative 
contributions when force was less than about 5.0N, followed by 
a positive contribution. The object had high negative value of 
the second FPC score would display higher deformation rate up 
to 5.0N and later gradually reverted to smaller deformation rate 
(e.g., the “S10H” object). The third FPC explained a very small 
variation with only 0.25%. Objects with high positive values of 
the third FPC score would display higher deformation rate 
within the range of force less than around 2.5N.  

C. Selecting Dimension of FPCs and Classification Results 
Our preliminary analysis indicated that the first two FPCs 

could provide a good approximation of the raw curves since the 
percentage of total variance explained by them was over 99.5%. 
But selecting dimension K  by reference to the proportion of 
variance explained is not geared toward minimizing 
classification error rates. Therefore, we used the five-fold 
cross-validation method to choose the dimension K .  

The five classifiers were respectively trained with different 
numbers of FPCs. All the classifiers could be trained in 1 
second with about 10ms for Decision Tree, about 1000ms for 
MLP, about 11ms for Gaussian Naïve Bayes, about 1.5ms for 
KNN, and less than 80ms for SVM (depended on the kernel 
function). In testing, the execution time of all the trained 
models for predicting the labels were less than 0.5ms.  

 
Fig. 6. (a) Relationship between the classification error rate of the five 
classifiers and the numbers of FPCs. Five-fold cross-validation was used. (b) 
Confusion matrix for evaluating classification accuracy of the best classifier 
(SVM with linear kernel) using the first three FPCs.  

Fig. 6(a) gives the classification error rate of the five 
classifiers in relation to dimension K . The classification error 
rate decreased gradually with dimension K  increasing and 
little improvement was gained after 3K = . Therefore, the first 
three FPCs were used for classification in this work. 
Cross-validation results indicated that SVM classifier (with 
linear kernel) outperformed the other four classifiers with the 
lowest mean classification error rate of 0.7% when 3K = . Fig. 
6(b) presents the classification results of the SVM classifier for 
a testing fold in five-fold cross-validation. According to the 
confusion matrix, all the “MEM”, “EPE”, “S0”, “S10”, “S10H” 
objects were correctly predicted. There were only 4% of “M”, 2% 
of “H”, and 2% of “S020” objects being misclassified. 

D. Selecting Sufficient Force to Gain Discriminable 
Deformation Profile 

We further investigated the relationship between the 
classification performance and the grasping force. The dilemma 
here was that insufficient force might result in poor 
discriminability while too large force might cause unnecessary 
object deformation and even damage the object. As showed in 
Fig. 4, the force-displacement curves of the eight objects 
overlapped at the early force step. With larger force, the 
force-displacement curves of different objects separated and 
the features became more and more distinct. 

Using five-fold cross-validation, we plotted the classification 
error rate of the best classifier in relation to force and the 
numbers of FPCs in Fig. 7. With small force, little improvement 
could be made in the accuracy even more FPCs were used. The 
misclassification rate decreased monotonically with the force 
increasing and level off after =6.0F . When 6.0F > , applying 
more force gained little improvement in classification accuracy. 
This indicated that the availability of deformation observations 
in the force range of [0,6.0]  (unit: Newton) contained adequate 
features to discriminate the eight classes of soft objects. For 
tactual recognition, force 6.0 N is sufficient to gain good 
classification results.  
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Fig. 7. Classification error rate of the best classifier in relation to force and the 
numbers of FPCs. Five-fold cross-validation was used. 

 
Fig. 8. The schematic of the features manually defined in prior works: (a) ratio 
feature; (b) slope feature; (c) 6D feature. 

E. Comparison with Features Manually Defined 
In addition to the FPCA based features, some previous 

studies manually defined features from the force-displacement 
curve data. Those features could be grouped into three 
categories—ratio feature [13-18], slope feature [19-21], and 6D 
feature [22], as illustrated in Fig. 8:  
Ratio feature. This was 1-dimensional feature defined by ratio 
of the displacement change x∆  and force change F∆ .  
Slope feature. By fitting the force-displacement observations 
with linear regression model, the slope of the regression line 
was extracted as 1-dimensional feature.  
6D feature. Chitta et al. [22] extracted 6-dimensional features 
from the sequential force ( )F t  and position ( )x t  observations, 

i.e., ( )0 , , , , ,s sa x x F t x t F t= ∆ ∆ ∆ ∆ ∆ .  
For comparative purposes, we manually extracted these three 

categories of features from the force-displacement curve 
dataset. The five classifiers were trained and the best one was 
selected for classifying each type of feature respectively. Fig. 
9(a) compares the classification performance of the best 
classifier of different features at every force step. Overall, the 
FPC feature outperformed the other three features. The ratio 
and 6D feature had similar performance, followed by the slope 
feature. To show the advantages of the FPC feature over the 
features manually defined, we go into the details of the 
classification results of the four features-based methods for a 
testing fold under the force range of [0, 6.0] (unit: Newton). As 
shown in Fig. 9(b), the force-displacement curves of the “M”, 
“MEM”, and “H” objects seriously overlapped each other over 
the whole force range. The “S0”, “S020”, and “S10H” objects 
also behaved with similar deformation response over the whole 
force range. This made it a challenging task to deliver the 
classification boundaries. 

 
Fig. 9. (a) Classification error rate of the best classifiers of different features at 
every force step. Five-fold cross-validation was used. (b) A testing fold in 
five-fold cross-validation with force-displacement curves in the force range of 
[0, 6.0] (unit: Newton). 

 
Fig. 10. Confusion matrix for evaluating the performance of the best classifiers 
of different features under the force range of [0,6.0] (unit: Newton): (a) FPC 
feature-KNN; (b) slope feature-Gaussian Naïve Bayes; (c) ratio feature-Decision 
Tree; (d) 6D feature-SVM (linear kernel). 

Fig. 10 presents the performance of the best classifiers of the 
four types of features under the force range of [0,6.0]. The FPC 
feature (best classifier is KNN) succeeded in solving this 
challenging task of distinguishing among different sponge 
material objects (“M”, “MEM”, and “H”) and among different 
silicon material objects (“S0”, “S020”, and “S10H”) with only 
4% of “H” and 4% of “S020” objects being misclassified. 
However, the three types of manually defined features showed 
poor discriminability. Based on the slope feature (best classifier 
is Gaussian Naïve Bayes), 72% of “H”, 12% of “MEM”, 22% 
of “S0”, and 22% of “S020” were misclassified. There were 
over 30% of “H”, 12% of “MEM”, around 15% of “S020”, and 
20% of “S10H” being incorrectly classified based on the ratio 
feature (best classifier is Decision Tree) or the 6D feature (best 
classifier is SVM with linear kernel). 

The above results indicated us some guidelines: (1) sufficient 
deformation was required so as to gain evidently discriminable 
features for recognition purpose; (2) a proper feature extraction 
method helped capture the discriminant information in the 
deformation data. 
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IV. CONCLUSION 
In this work, we provided a tactual scheme to enable robotic 

system to recognize soft objects based on their deformation 
properties. The deformation properties of the soft objects were 
explored by grasping and characterized by the response curves 
of the indentation displacement in relation to grasping force. 
We handled the force-displacement curve data as continuous 
function rather than discrete observations. FPCA was used to 
project the force-displacement curve data to multivariate 
features. To discriminate the multivariate features, different 
classifiers were built and the best one was selected based on 
cross-validation. Case study demonstrated that our method 
achieved high classification accuracy in discriminating eight 
different soft objects with similar geometry but different 
materials and internal structures. In comparison to those 
features manually defined in prior works, our FPCA based 
features could achieve better classification performance. 
Furthermore, we gave proposals on how to select proper 
grasping force to obtain good classification accuracy and 
efficiency. 

In the future research, the object properties such as hysteresis 
and anisotropy observed in tactual exploration could also be 
leveraged for recognizing soft objects. In addition to the 
information of physical state, other tactile cues such as shape or 
texture may also be considered in the future. The current 
method may need to be improved for dealing with multiple 
dimensional input. Another interesting direction that could be 
examined is to use FPCA based method for estimating the 
magnitude of the softness of the soft objects. 
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