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Abstract

Pulsars are super dense, highly magnetized, and rapidly rotating neutron stars (NSs) that
emit electromagnetic (EM) radiation from their magnetic poles. Ideally, when the emission
beam sweeps across the Earth, we can detect a pulse of radiation. Due to their short and
stable pulse periods, pulsars can be used for a variety of studies. In particular, a set of the
most stable millisecond pulsars (MSPs) can be used to detect nanohertz gravitational waves
(GWs) produced by super-massive black holes. The eventual detection of these GWs highly
relies on the pulsar timing precision.

In this dissertation, I investigate the timing precision potential of European pulsar timing
array (EPTA) telescopes equipped with the newest back-ends and study the noise floor for
16 pulsars observed by four EPTA telescopes. A practical demonstration is first presented
with three MSPs. Our demonstration shows that data-derived and smoothed templates are
typically preferred to some more commonly applied alternatives; the Fourier-domain with
Markov-chain Monte Carlo (FDM) template-matching algorithm is generally superior to or
competitive with other algorithms. To verify our conclusions, a confirmatory test was then
performed with a larger dataset, data of 13 EPTA MSPs are utilized in this work. Based
on this work, I refined the above-mentioned conclusions. I noticed that for some extreme
cases, such as extremely low S/N or too few TOAs, other combinations may work better. In
addition, the added templates combined with the FDM template-matching method are usually
superior to other possibilities. The effect of pulse phase jitter noise is not a serious factor that
influences the EPTA timing precision, since the jitter levels I derived are far smaller than the
radiometer noise. The system-limited noise floor was shown to be above the jitter-noise level
and it was found to be significantly different between telescopes.

At the end of this thesis, I analyze the low-frequency noise of the selected six pulsar data
obtained with the EPTA telescopes and compare our results with the finalized common-noise
analysis led by the EPTA community. Our results show that data are less discriminant
between the models than the EPTA data. I have a clear detection of red noise, but I cannot
determine if it’s a GWB or timing noise, or both.
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Chapter 1

Introduction

Pulsars are highly magnetized and fast-spinning neutron stars (NSs). A NS is a super dense
star, with its density generally up to 1017 kg m−3. When Baade & Zwicky (1934) first
proposed the idea that a supernova explosion can transform an ordinary star into a NS, almost
no one at that time thought that we could observe them. However, the discovery of NSs
happened by accident after more than 30 years. The first pulsar, PSR J1921+2153, was
discovered by Hewish et al. (1968). Although Pacini (1967) predicted that NSs can radiate
energy through magnetic dipole radiation, he also expected the radiation to be undetectable
due to reflections by the circumstellar gas. It was not until the discoveries of the Vela
(PSR J0813−4510, Large et al., 1968) and the Crab (PSR J0534+2200, Staelin & Reifenstein,
1968) pulsars, both with pulse periods less than 100 ms, that the sources of the periodic
signal were confirmed as rapidly rotating NSs (Gold, 1968).

The discovery of pulsars and confirmation that pulsars are extremely dense, highly
magnetized and fast-rotating NSs soon made pulsars ideal celestial laboratories for a rich
variety of astrophysical experiments, and thus opened the door to pulsar astronomy.

In this chapter, I will give an overview of pulsars, introducing their formation, discovery
history, basic characteristics and their applications in both astronomy and physics. I first
introduce the concept and properties of pulsars in Section 1.1. Section 1.2 discussed how the
interstellar medium affects our observations of pulsars. Finally, Section 1.3 describes how
pulsars can be used in Gravitational Wave (GW) astronomy.

1.1 Pulsars and Millisecond Pulsars

Pulsars are super-dense rapidly spinning remnants from supernova explosions (Baade &
Zwicky, 1934). Their formation is a comprehensive action of several forces. Besides, they
can be divided into different types according to different characteristics. For example, they
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can be classified as optical, radio, X-ray and γ-ray pulsars according to the frequency of
observation. Normally in the radio pulsar timing realm, pulsar can be divided into two
distinct groups: normal pulsars (also referred to as canonical pulsars, pulsars with a spin
period larger than 30 ms) and millisecond pulsars (MSPs, with a spin period less than 30 ms,
Alpar et al., 1982).

In this section, I will introduce the basic properties of pulsars. I will first discuss the
origins of pulsars, followed by the history of the discovery of the first pulsar. Then, several
typical kinds of pulsars will be introduced. Finally, I will give an overview of the properties
of pulsars.

1.1.1 Pulsar Formation

Like the Sun, most of the stars in the Universe are powered by hydrogen. Normally, the main
sequence (MS) star forms a self-regulating system in hydrostatic equilibrium provided by
two opposite forces: the outward radiation pressure due to nuclear fusion (Russell, 1931),
which pushes inner masses up to the surface of the star, and the inward pressure due to
gravity, which attract everything back to the center.

As the star evolves, it continues fusing hydrogen into helium, but along with the consump-
tion of hydrogen, the outward radiation pressure decreases, thus leading to the core gradually
contracting due to gravity. The compression of the core causes the core temperature to rise
and then the core will begin to fuse helium. When an MS star runs out of light nuclei in the
core, and the fusion of heavy nuclei becomes hard and unsustainable, the star will reach its
end of life. But what it could turn to depends on its original mass. Partially, there are three
main types for its destination.

If the mass of the progenitor is not large enough (≤ 8 solar masses, M⊙), the fusion
will stop at carbon and oxygen, the gravitational collapse of the core will be halted due to
electron degeneracy pressure, leading to the formation of a white dwarf (WD). If the star’s
mass beyond 10 M⊙ (Prialnik, 2000), the fusion process will be terminated at iron. Since
fusing iron is no longer exothermic but endothermic, iron cannot be fused into anything
heavier. The core masses of these massive stars will eventually exceed the Chandrasekhar
limit (Chandrasekhar, 1931), of approximately 1.4 M⊙. The core collapse process will not
be halted by the electron degeneracy pressure anymore. Instead, the Fermi energy (Fermi,
1926) of the electrons will increase significantly, enough to combine electrons with protons
to create neutrons (via inverse beta decay). Just as WDs are sustained by electron degeneracy
pressure, a phenomenon described by the Pauli exclusion principle (Pauli, 1925), NSs are
similarly supported against further collapse by the neutron degeneracy pressure. Analogous
to the Chandrasekhar limit for an electron degenerate object, there is also an upper bound
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to the mass of neutron degenerate objects, referred to as the Tolman–Oppenheimer–Volkoff
limit (Oppenheimer & Volkoff, 1939; Tolman, 1939). The most massive stars (≳ 20M⊙) can
break through this limitation and keep on collapsing until forming a black hole (BH). The
gravity near a BH is too strong to let particles and electromagnetic (EM) radiation escape
from it.

As illustrated in Figure 1.1, the generally accepted pulsar geometry model is analogous
to the ‘lighthouse’ model. NSs are born highly energetic, with high angular momentum
retained. Since they also have a quite small radius, they tend to rotate with a very small
period. A beam of radiation is emitted along the magnetic axis of the pulsar, but since the
magnetic axis and the rotation axis are in general misaligned, the beam sweeps through space
like the beam of a lighthouse.

1.1.2 The Discovery of Pulsars

The existence of NSs was first hypothesized by Baade & Zwicky (1934), not long after the
discovery of the neutron. They suspected that after nuclear fusion ends, massive stars will
undergo a supernova explosion and become NSs, which were predicted to be extremely
dense, fast-spinning, with a tiny radius of the order of ∼10 km (Lattimer & Prakash, 2001),
and to possess strong magnetic fields. However, at that time, they thought it was impossible
to detect NSs with Earth-based telescopes. This opinion was revised in 1967 when Pacini
(1967) put forward the concept that fast-rotating NSs with strong magnetic fields could
emit EM radiation (as shown in Figure 1.2). He also suspected that this rotational energy
could be released to a supernova remnant around it. It was not until the first discovery of
PSR B1919+21 (also known as PSR J1921+2153) by Hewish et al. (1968) that astronomers
finally reached an agreement that pulsars are rotating NSs and thus NSs are detectable.

Unlike other targeted scientific discoveries, the discovery of the first pulsar was serendipi-
tous. On November 28, 1967, when Jocelyn Bell was analyzing the interplanetary scintillation
data from the Interplanetary Scintillation Array of the Mullard Radio Astronomy Observa-
tory, she noticed small periodic pulses of radiation when their telescope was looking at a
particular area of the sky. After ruling out man-made radio frequency interference (RFI) and
scintillation effects, still, some periodic “scruff” signals remained. Subsequent observations
and analysis of this source showed that this signal kept sidereal time, suggesting that the
signal originated from an extra-terrestrial source (Hewish et al., 1968). This pulsating source
was later confirmed as a rotating NS and soon opened the prologue of pulsar astronomy. This
first discovered PSR J1921+21531, also known as CP 1919 2, is a NS with a period of 1.3373

1PSR represents “Pulsating Radio Source”
2which stands for Cambridge Pulsar at right ascension 19h 19m
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Figure 1.1 The Pulsar geometry: The magnetic axis is inclined to the rotational axis at an
angle α and an observer views the phenomenon at an angle (α +β ) to the rotation axis.
Figure credit: Fig. 1 of Gueroult et al. (2019).
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seconds and a pulse width of 0.04 seconds. In 1974, due to his decisive role in the discovery
of pulsars, Antony Hewish was awarded the Nobel Prize in Physics.

Figure 1.2 Discovery observations of the first pulsar: B1919+21. (a) The first recording of
PSR B1919+21; the signal resembled radio interference also seen on the same plot. (b) Fast
chart recording showing individual pulses.
Figure credit: Hewish et al. (1968)

The discovery of the first pulsar attracted more efforts on pulsar searches and pulsar
surveys. For example, Pilkington et al. (1968) announced three new pulsars in the same
year. Several hypotheses had been put forward straight after the discovery, such as pulsating
(Hewish et al., 1968), rotating (Gold, 1968; Ostriker, 1968), and orbiting Saslaw et al. (1968)
NSs or WDs. But the pulsating and rotating WDs and NSs hypothese were soon negated
after the discovery of faster-rotating pulsars, i.e. the Vela and the Crab pulsar.

1.1.3 Binary and Millisecond Pulsars

So far, there are 2872 pulsars observed, according to the ATNF Pulsar Catalog (v.1.64,
Manchester et al., 2005). Similar to the Hertzsprung-Russell diagram, the P− Ṗ diagram is
commonly adopted in pulsar astronomy to demonstrate the evolution of NSs. The majority of
the pulsar population is classified as ‘normal’ pulsar, usually with a spin period, P, between
0.1-10 s, the first derivative of the spin period, Ṗ > 10−17s−1, and magnetic field strengths of
Bs ∼ 1010−13 G.

Among the huge number of discovered pulsars, in the lower-left part of figure 1.3, there
is one typical kind of pulsar, which is commonly a binary pulsar. As can be seen from
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Figure 1.3 P− Ṗ Diagram created of all known pulsars available in the ATNF pulsar cataloga

(PSRCAT v1.64; Manchester et al., 2005). In addition, pulsars in binary system are presented
with red circles, magnetars listed in the McGill Online Magnetar Catalogb are shown with
green stars and RRATs listed in the RRATalogc are plotted with blue triangles. Inclined
dotted lines represent the characteristic age (τc) of the pulsars, the dashed lines show the
surface magnetic field strength (Bs) and the pulsar death line proposed by Chen & Ruderman
(1993) is shown ass a solid line.

ahttp://www.atnf.csiro.au/research/pulsar/psrcat
bhttp://www.physics.mcgill.ca/~pulsar/magnetar/main.html
chttp://astro.phys.wvu.edu/rratalog

http://www.atnf.csiro.au/research/pulsar/psrcat
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
http://astro.phys.wvu.edu/rratalog
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their name, binary pulsars are pulsars in binary systems, usually accompanied by a WD,
another NS, or even less likely, another pulsar. Binary pulsars are ideal laboratories that
allow physicists and astronomers to test general relativity (GR) due to the strong gravitational
fields involved. The first binary pulsar PSR J1915+1606 (also known as PSR B1913+16) was
discovered by Hulse & Taylor (1975). It is a pulsar accompanied by another NS, the orbital
period of this binary system is 7.75 hours long and both of these two stars are determined to
have approximately equal mass, that is 1.4 M⊙ (Weisberg et al., 2010).

In 1916, Albert Einstein first predicted the existence of GWs in his GR theory. GWs are
generated by accelerated masses and propagate outward in waveform with the speed of light.
There are many cataclysmic events in the universe, such as BHs coalescing, massive stars
exploding (supernovae) and NS mergers, all of which could produce strong GWs. As BHs
and NSs are normally far away from the Earth, the amplitude of these waves is too tiny to be
detected. However, things changed after the discovery of the binary pulsar: PSR B1913+16.
Einstein’s GR predicts that the binary system will lose mass due to the orbit around the
common center of mass. The lost energy will be emitted away in the form of GWs. After a
high precision pulsar timing analysis of PSR B1913+16, it can be noticed that their orbital
period is decaying in precise agreement with that predicted from the GW emission model
described by Einstein’s GR (Hulse & Taylor, 1975; Weisberg et al., 2010).

Another special kind of pulsars are MSPs. Just as their name implies, MSPs are usually
pulsars that have been spun up or “recycled” to rotational periods shorter than ∼30 millisec-
onds through the accretion of matter from their binary companion star (Alpar et al., 1982;
Bhattacharya & van den Heuvel, 1991).

In 1982, the first MSP, PSR B1937+21 (also called PSR J1939+2134) was discovered
by Backer et al. (1982). This pulsar, located in the sky a few degrees away from the first
discovered pulsar, PSR B1919+21, spins around 641 times per second which equals a
rotational period of 1.56 ms. The fastest-spinning pulsar is PSR J1748−2446ad, an MSP
spinning 716 times per second (Hessels et al., 2006). However, it is believed that there should
be an upper limit to the spin rate. It is deduced that pulsars would be flung apart by the
centrifugal force if they spun at a rate of 1000-1500 rotations per second (Chakrabarty et al.,
2003; Cook et al., 1994; Miller & Miller, 2015; Patruno et al., 2017).

The most noticeable property of MSPs is their spin stability, which is comparable to
atomic clocks over a longer period of time. By using these high-precision timekeepers, we
can investigate stellar evolution, the ionized interstellar medium (IISM), and even the essence
of space-time. Since the pulses emitted from the pulsars are so reliable, a tiny deviation of
the pulses’ arrival time, their intensity, or profile variations could help us to understand the



8 Introduction

details as well as the changes around the pulsar or the IISM environment between the pulsar
and the Earth.

According to recent research (e.g. Alpar et al., 1982; Bhattacharya & van den Heuvel,
1991), MSPs are referred to as recycled pulsars because they are created by the recycling of
an old, slowly rotating and even dead pulsar via accretion of mass and angular momentum
from its binary companion (Alpar et al., 1982; Radhakrishnan & Srinivasan, 1981). That’s
to say, MSPs usually evolved in a binary system, some isolated MSPs may have lost their
companions due to its violent supernova explosion (Fruchter et al., 1988; Tauris & Takens,
1998). Most of the known binary MSPs have either WDs or smaller companions. If the
angular momentum gain from the accretion is larger than the energy lost due to the emission
process, the pulsar will spin up (Bhattacharya & van den Heuvel, 1991). This recycling
process will also result in the decrease of strength of the pulsar’s magnetic field and the
period derivative (Bhadra, 2002; Shibazaki et al., 1989).

In addition to the two kinds of pulsars mentioned above, there are several other kinds of
extreme neutron stars, such as Rotating Radio Transients (RRATs) and magnetars. RRATs
are generally considered as a type of pulsar that emits radio bursts with irregular intervals,
and they were first discovered by McLaughlin et al. (2006). Magnetars are thought to be
NSs with an extremely strong magnetic field (1014 − 1015 G) and a long rotation period
(Duncan & Thompson, 1992; Kaspi & Beloborodov, 2017). Most magnetars are discovered
through their short X-ray bursts. According to recent research (e.g., Bochenek et al., 2020;
CHIME/FRB Collaboration et al., 2020; Zhang, 2020), magnetars are associated with fast
radio bursts (Lorimer et al., 2007).

Since MSPs have extremely stable spin periods, various efforts have been take to test
fundamental physics through pulsar timing research.

1.1.4 Pulsar Properties

Research on pulsars has flourished since their discovery in 1967. Pulsars have been found
to be observable in all EM spectral bands, but the typical frequencies we can observe with
ground-based telescopes are between 1 GHz and 2 GHz, at radio wavelengths. Throughout
this thesis, I will only discuss radio pulsars, which constitute the overwhelming majority
of all pulsars. As introduced above, pulsars are super-dense core remnants of supernova
explosions and are in a state of equilibrium between outward pressure and inward gravity.
Since the fast-spinning pulsars are emitting radiation from their magnetic poles and this
radiation can be detected with telescopes, we can study some fundamental properties, and
a full understanding of the properties would be of great use for exploring the mysterious
universe. In this section, I will discuss some of these properties, namely pulse profiles, the
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spin-down energy loss rate and the characteristic age, characteristic surface magnetic field
strength, and flux density.

1.1.4.1 Pulse Profiles

Pulsar signals are very weak EM radiation. Although there are some bright pulsars or giant
pulses of normal pulsars which are easily detectable, for most pulsars, the individual pulses
are too weak to be detected or distinguished from noise. For the detectable single pulses,
the individual pulses also vary noticeably. A detailed understanding of the pulsar emission
mechanism can be obtained by investigating single pulses and their behaviors over time and
frequency. Due to the single pulse profile variation, we can investigate the pulse profile
stochastic variability in both amplitude and phase: stochastic wide-band impulse modulated
self-noise (SWIMS Osłowski et al., 2011), giant pulses (Knight et al., 2006), mode changing
(Backer, 1970), nulling (Wang et al., 2007) and drifting (Drake & Craft, 1968).

For most pulsars, single-pulse studies are unrealistic. But one remarkable thing about
pulse profiles is that the integrated profiles, produced through the addition of thousands of
single pulses, are stable and much easier to be detected (Liu et al., 2012). The stability of
this “integrated” profile is of great importance to pulsar timing and nanohertz GW detection.
Also, the integrated profile is a unique identifier of pulsars, since the integrated profile is a
fingerprint of the pulsar emission mechanism, influenced by the pulsar’s magnetosphere and
the IISM it passed through. We can identify a pulsar by just looking at its integrated profile.

While the shape of the integrated pulse profiles is extremely stable at specific frequencies,
in some cases we can still notice temporal variations as well as frequency-dependent pulse
shape evolution. The temporal variations are thought to be caused by either mode changes,
where the integrated profile switches between two or more quasi-stable modes, or the
relativistic effect of geodetic precession, which occurs in one component of a binary system
when the spin angular momentum vector of that component is misaligned with the orbital
angular momentum vector (Bailes, 1988). Mode changing, first discovered by Backer (1970)
in PSR B1237+25, is a broad-band change in the emission process. Although it has not yet
been fully understood, some concepts to interpret this have been put forward (for details, see
Lyne et al., 2010).

1.1.4.2 Spin Down Energy Loss Rate and Characteristic Age

Although I previously mentioned that pulsars have extremely stable spin periods, one typical
property of pulsars is the gradual increase of the spin period, which is mainly related to the
emission of EM waves. If we simply consider the pulsar as a rotating dipole magnet and
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expect that the pulsar is undergoing a steady loss of rotational kinetic energy which slows the
pulsar down slowly over time, the spin−down loss rate of rotational kinetic energy, which is
known as “spin-down luminosity”, can be defined as,

Ėrot =−d(IΩ2/2)
dt

=−IΩΩ̇ = 4π
2IṖP−3, (1.1)

where I = kMpR2 is the moment of inertia, with typically k ≃ 0.4 is the inertia constant,
and Mp = 1.4 M⊙ and R = 10 km are the mass and the radius of the pulsar respectively.
Ω = 2π/P is the rotational angular velocity, with P the spin period of the pulsar and Ṗ is the
first spin period derivative.

In accordance with classical electrodynamics (Jackson, 1962), if we assume that the loss
of rotational energy is only due to magnetic dipole radiation, a rotating dipole magnet with
dipole magnetic moment |m| will emit EM waves at its rotation frequency, and the emitted
radiation power Ėdipole can be defined as,

Ėdipole =
2

3c3 |m|2Ω
4sin2

α, (1.2)

where α is the magnetic inclination angle, the angle between the magnetic moment and
rotational axis and c is the speed of light. We can then combine Equations 1.1 and 1.2 to
obtain the evolution of the rotational angular velocity Ω̇ given by,

Ω̇ =−2|m|2sin2
α

3Ic3 Ω
3. (1.3)

However, magnetic dipole radiation is not the only contribution to the loss of kinetic
energy in reality, as shown by the fact that the index of the power-law dependency between Ω

and Ω̇ is usually not 3 (e.g. Kaspi & Helfand, 2002). Kramer et al. (2006a) demonstrated that
angular momentum can be lost through relativistic winds of outflowing particles as well. For
this reason, the rotational frequency is usually expressed in a more general way in accordance
with the pulsar rotational frequency ν = 1/P,

ν̇ =−Kν
n, (1.4)

where K is a constant while n is known as the braking index. The pure magnetic dipole
radiation model generally predicts n = 3. By further taking the time derivative of Equation
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1.4 and eliminating the constant K, we can derive the value of the braking index as,

n =
νν̈

ν̇2 , (1.5)

where ν̈ is the second derivative of the spin frequency. Theoretically, based on Equation
1.5, we can obtain the braking index by measuring the pulsar’s spin frequency as well as
its first and second derivatives. However, this approach is always hard to realize since it
is dominated by timing noise. Only for the youngest pulsars, especially with large ν̈ , can
we measure the braking index on a human timescale. So far, only 10 pulsars of the more
than 2800 known pulsars have measured braking indices (Kim & An, 2019), with braking
index values typically ranging from 0.9±0.2 (Espinoza et al., 2011; Lyne et al., 2015) to
3.15±0.03 (Archibald et al., 2016).

One of the most important applications of spin-down and the braking index is to measure
pulsars’ characteristic age, τc. Except for very few exceptions that we can observe its
supernova event, it is nearly impossible to directly observe a pulsar’s age.

Equation 1.4 can be expressed in terms of P and Ṗ as:

Ṗ = KP2−n. (1.6)

To calculate τc, I firstly take K as a constant and assuming n ̸= 1, then we can integrate
Equation 1.5 to derived the characteristic age of a pulsar as

τc =
∫ P

P0

Pn−2dP =
P

(n−1)Ṗ

[
1−

(
P0

P

)n−1
]
, (1.7)

where P0 is the pulsar’s initial spin period. Assuming that magnetic dipole radiation is the
only cause of kinetic energy loss and that the spin-down is sufficient, thus (P0

P )2 ≪ 1, the
characteristic age can be derived,

τc =
P

2Ṗ
≃ 15.8Myr

(
P
s

)(
Ṗ

10−15

)−1

, (1.8)

which is only determined by P and Ṗ. But the thing that has to be noticed is, as I mentioned
above in the aforementioned assumptions, it is just a rough estimate of a pulsar’s real age, in
particular, it doesn’t work well for very young pulsars and MSPs.
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1.1.4.3 Characteristic Surface Magnetic Field Strength

Another important application of spin-down and the braking index is to measure pulsars’
characteristic surface magnetic field strength. Since it is also impossible to measure the
magnetic field strength directly, we can merely estimate it by assuming that the spin-down
process is purely due to dipole braking. Lorimer & Kramer (2005) have shown that the
characteristic magnitude of the magnetic field at the surface of the pulsar with distance
r, from the magnetic moment as associated with the field strength by B ≈ |m|/r3, can be
derived as

Bs =

√
3c3

8π2
I

R6sin2
α

PṖ, (1.9)

where α is the angle between the dipole moment and the rotation axis. For typical pulsars,
assuming α = 90, R = 10 km, I = 1045 gcm2, the characteristic magnetic field can be
obtained with P and Ṗ in the expression of:

Bs = 3.2×1019G
√

PṖ. (1.10)

1.1.4.4 Flux Density

Pulsars are very weak celestial sources. Assuming a pulsar’s radiation passing through a
surface dσ in time dt at the frequency of f within the solid angle dω on a ray which points
an angle θ away from the surface (Figure 1.4), we can then define the energy received as
follows:

dEf = If cosθdσdf dωdt, (1.11)

where I f is the specific intensity3 of radiation at the frequency f in the direction of the solid
angle. Then, we can derive the power, dP, received by the receiver as:

dP =
dEf

dt
= If cosθdσdf dω. (1.12)

Thus the quantitative definition of specific intensity will be:

If =
dP

cosθdσdf dω
. (1.13)

3also known as spectral intensity, spectral brightness or brightness
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The total intensity I can be obtained by integrating over all frequencies, described in the
following form:

I =
∫

∞

0
If df . (1.14)

d σ

θ

dω

Figure 1.4 A sketch of the definition of flux density. Figure Credit: Palmer & Davenhall
(2001).

If a source is discrete, the spectral flux density4, S f , can be defined as:

S f =
∫

source
I f dΩ. (1.15)

For most pulsars, their flux density at a frequency of 1 GHz is typically < 10 mJy5

(Lorimer & Kramer, 2005). Flux density measurements are essential for further analysis of
pulsar emission properties and the influences in the transmission process. Furthermore, we
can also have a prediction of the NS birth rate and their distribution in the Galactic disk if we
take into consideration pulsar beaming models and telescope sensitivity. Pulsars are typically
steep-spectrum sources and their flux density spectra can be represented by a power law:

S f ∝ f α , (1.16)

4Notice that various authors define flux and flux density differently. Here I consider flux as the power
received per unit area while flux density is the power received per unit area per unit frequency parallel to the
line of sight (LOS). In other words, flux is the integral of flux density with respect to frequency.

51 Jy = 10−26 Wm−2 Hz−1
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with α the spectral index. The flux density spectrum is observed to be diverse, with α spread
from 0 to −4, with the average spectral index α estimated by Bates et al. (2013) to be −1.41
± 0.06. For the majority of known pulsars, a single power-law can represent the mean
flux density distribution very well. However, there are a minority of pulsars that need two
components or even more complex power-law slopes at low and high-frequency ranges. The
low-frequency ‘turn-over’ and high-frequency ‘cut-off’ was first reported by Sieber (1973).
The spectral turn-over, which usually occurs at around 100 MHz (Lorimer et al., 1995a),
turns the power-law slope to become positive. However, there are also a small group of
pulsars that show turn-over at high frequencies and are referred to as the gigahertz peaked
spectrum pulsars (Blake, 1970). A detailed analysis of spectral turn-overs in 194 pulsars at
low frequencies can be found in Bilous et al. (2016).

1.2 Effects of the Ionized Interstellar Medium

The radiation emitted from a pulsar’s magnetic pole has to pass through the IISM before
being observed by our telescopes. The IISM, which mainly consists of cold, ionized plasma,
fills interstellar space. The interaction between pulsar radiation and the IISM can be regarded
as two properties: homogenous by considering the IISM with an average electron density
(e.g., dispersion and Faraday rotation) and inhomogeneous by considering the IISM with fluc-
tuating electron density (e.g., scattering and scintillation). All these effects could introduce
perturbations when we are timing the pulsars and thus will decrease the timing precision. A
comprehensive and in-depth understanding of the IISM and these distinct propagation effects
will speed up the detection of nano-Hertz GWs.

1.2.1 Dispersion

In the idealized vacuum environment, the EM signal would propagate unencumbered, which
means that the signal will travel at the same speed of light c regardless of its frequency.
However, interstellar space is not an absolute vacuum, instead, it consists of ionized plasma
and neutral gas. When pulsar emission travels through the IISM, its group velocity (νg)
would be reduced by a frequency-dependent factor (Lorimer & Kramer, 2005), which is
called the refractive index, µ:

νg = cµ = c

√
1− (

fp

f
)2, (1.17)
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where f is the observing frequency and fp is the plasma frequency, which is defined as:

fp =

√
e2ne

πme
≈ 8.97kHz

√
ne

cm−3 , (1.18)

where ne is the electron density along the LOS, e and me are the charge and the mass of the
electron respectively.

As shown in Figure 1.5, signals at higher frequencies arrive earlier than at lower frequen-
cies. For broadband emission between a lower frequency fl and higher frequency fh (both in
MHz), the time delay across this bandwidth then becomes:

∆t =
e2

2πmec
× ( f−2

l − f−2
h )×DM

= 4.15×10−6 ms× ( f−2
l − f−2

h )×DM,

(1.19)

where DM is the dispersion measure of the pulsar, defined as the electron column density
along the LOS over a distance l:

DM =
∫ l

0
ne ds cm−3 pc. (1.20)

One practical use of DM is to estimate the distance to the pulsar. Through observing
the dispersive delay with a broadband receiver, the corresponding DM can be measured
using Equation 1.19. Once the DM is acquired for a pulsar, it is possible to estimate the
distance between the pulsar and the Earth by integrating Equation 1.20 with a Galactic
electron number density model, such as the “NE2001” model (Cordes & Lazio, 2002) or
more recently the “YMW16” model (based on pulsar distance and DM measurements, Yao
et al., 2017). These models perform very well in terms of modeling the large-scale structure
of the Galactic electron distribution (Schnitzeler, 2012), but may easily fail with small-scale
structures due to the lack of enough measurements to accurately constrain them.

1.2.2 Faraday Rotation

Within a magnetic field, free electrons are forced to move circularly due to the Lorentz force.
When EM wave goes through a magnetic field, the magnetic field will produce a rotation
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Figure 1.5 Uncorrected dispersive delays for a pulsar observation over a bandwidth of
160 MHz (64 channels of 2.5 MHz width each), centered at 1380 MHz. The delays wrap
since the data are folded (i.e. averaged) modulo the pulse period.

of the plane of polarization (Faraday, 1844). This rotation, known as Faraday rotation, is
proportional to the component of the magnetic field in the direction of light propagation.

The IISM is weakly magnetized. As EM radiation emitted from a pulsar passes through
the IISM, with the component of the interstellar magnetic field in the direction of propagation,
B∥, the cyclotron frequency ( fB) associated with the ionized IISM is:

fB =
eB∥

2πmec
. (1.21)

Since B∥ typically equals a micro-Gauss, fB is usually a few Hz. The electrons in the
right and left hand circularly polarized waves thereby oscillate with frequencies f + fB and
f − fB, respectively. After propagation through the plasma over a distance l, the Faraday
rotation effect will rotate the linear polarization position angle Ψ by

Ψ =
∫ l

0
kds, (1.22)



1.2 Effects of the Ionized Interstellar Medium 17

with k = 2π/λ the wave number and λ the wavelength of the signal. For a cold magnetized
plasma with cyclotron frequency fB and plasma frequency fp, since f ≫ fp and f ≫ fB, we
can then express k with the refractive index, µ , introduced in Equation 1.17, as

k( f ) =
2π

c
f µ =

2π f
c

√
1−

f 2
p

f 2 ∓
f 2
p fB

f 3 , (1.23)

where the “-” and “+” signs are for left-hand and right-hand circularly polarized waves
respectively. Since a linear polarization can be regarded as a superposition of left-hand kL

and right-hand kR circularly polarized wave components of equal amplitude, the net angular
shift can be expressed as,

∆Ψ =
1
2

∫ l

0
(kR − kL)ds =

e3

2πm2
ec2f 2

∫ l

0
neB∥ds

≡ λ
2RM,

(1.24)

where

RM =
e3

2πm2
ec4

∫ l

0
neB∥ds, (1.25)

is the rotation measure, ne is the density of electrons at each point along the path, B∥ is the
component of the interstellar magnetic field in the direction of propagation at each point
along the path while e and me are the electron charge and mass respectively.

As we can see from Equation 1.25, RM is a constant value for a given pulsar and thus
∆Ψ varies with frequency. Once we measured the angle shift at different frequencies, it is
possible to estimate the magnetic field B∥ of the galaxy by

B∥ =

∫ l
0 neB∥ds∫ l

0 neds
= 1.23µG(

RM
rad m−2 )(

DM
cm−3pc

). (1.26)

However, because magnetic fields can experience direction reversals within the inter-
vening medium, this method only gives us an upper limit on the interstellar magnetic field
strength in the LOS direction.
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1.2.3 Scattering

Even though I assumed that the IISM was a homogeneous and stationary medium and has
a uniform average magnetic field strength, the fact is that the electron density often shows
irregularities and turbulence (Armstrong et al., 1995), in other words, the IISM is neither
uniform nor isotropic. When pulsar signals traverse through the turbulent IISM, the signal
will get scattered, which will lead to multipath propagation effects. While the majority of the
signal propagates along a straight line, still scattered and delayed signals can be received.
The radiation that arrives later causes a strongly frequency-dependent effect on the pulse
profile shape, producing an exponential tail (referred to as a scattering tail) characterized by
a scattering timescale τsc.

Although the structure and dynamics of the IISM fluctuations are not fully understood,
the effects of the IISM have been described by several scattering screen models: 1) a thin
screen; 2) a thick screen; 3) multiple screens. Among the three models, the thin screen
model (as shown in Figure 1.6), put forward by Scheuer (1968) is the simplest but provides
us a useful first-order approximation of the scattering effect. In the thin screen model, the
scattering medium is modeled as a thin screen at one single location along the LOS between
the pulsar and the Earth.

Figure 1.6 A sketch of the thin screen model. Small-angle deviations are caused by inhomo-
geneities in the IISM. Figure credit: Lorimer & Kramer (2005)

The scattering time delay τsc is given by

τsc =
θ 2

0 l(l −a)
2ac

, (1.27)
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where l is the distance to the pulsar, a is the distance between the pulsar and the scattering
screen and c is the speed of light while θ0 is the root mean square scattering angle.

For simplicity, if we model a Gaussian distribution of the IISM inhomogeneities (Lee &
Jokipii, 1975; Salmona, 1967), the scattering time scale τsc can be described with

τsc ∝ l2 f−4. (1.28)

However, some other research (e.g. Lee & Jokipii, 1976; Rickett, 1977) suggests that the
turbulence of the IISM is more likely to follow the Kolmogorov spectrum, and thus leads to
τsc ∝ f−4.4.

Due to the frequency-dependent scatter-broadening effect shown above, sharp pulse
profiles will be smeared into an exponential function at the observing site. A distinct pulse
profile could therefore become completely submerged into the noise.

1.2.4 Scintillation

Another effect that is caused by the inhomogeneous IISM is scintillation, which is very
similar to the twinkling star phenomenon caused by turbulence in the Earth’s atmosphere.
Scintillation can produce pulse intensity variations as a function of time and frequency due
to the interference effects of the IISM.

Since the phase differences caused by passage through interstellar inhomogeneities
are frequency-dependent and the phase difference defines whether interacting waves will
constructively or destructively interfere, pulsars will exhibit constructive interference (i.e.
bright patches usually referred to as “scintles”) with a characteristic bandwidth ∆ f , which
relates to the scattering time delay τsc as follows (Lorimer & Kramer, 2005):

2π∆ f τsc ∼ 1, (1.29)

which indicates that the scintillation bandwidth ∆ f ∝ 1/τsc ∝ f 4. Since scintillation could
produce intensity variations in both the frequency and time domain, these scintles can be
measured in a two-dimensional plot of pulse intensity as a function of time and frequency, a
so-called dynamic spectrum.
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1.3 Pulsar Applications and Gravitational Wave Astron-
omy

As one of the most important predictions of GR, GWs, originating from accelerated masses,
are ripples in the curvature of space-time and propagate with the speed of light. The GW
stretches and squeezes the actual fabric of space simultaneously in the orthogonal directions.
Although Einstein (1916) predicted the existence of GWs, he thought GWs are too weak
to be detectable with the technology at that time. However, things changed on 11 February
2016 when the LIGO collaboration declared the first detection of GWs (Abbott et al., 2016).
This detection raised the curtain of GW Astronomy. For many centuries, astronomers have
only been able to work with visible light. After Maxwell (1865) described the existence of
EM waves, astronomers started to observe the universe with other frequency bands, from
radio waves to ultraviolet waves, X-rays, and γ-rays. The use of each frequency band of EM
waves has broadened our horizon of the universe and led to plenty of new findings. In the
same way, GWs have the potential to show us new features of cosmic objects, or rather, new
cosmic objects that are largely invisible in EM waves.

1.3.1 Gravitational Waves

It was in 1916 that Albert Einstein published his landmark work, the theory of GR, which
reshaped modern physics. The GR theory refined Isaac Newtown’s classical physics of
gravitation and introduced a more generally applicable concept. Instead of taking space and
time as two absolute and independent concepts (as in Newton’s classical physics), Einstein
linked these two concepts together with the field equations:

Gµν ≡ Rµν −
1
2

gµνR =
8πG
c4 Tµν , (1.30)

where Gµν is the Einstein tensor, Rµν is the Ricci curvature tensor, gµν is the metric tensor
that determines the space-time interval between two points, R is the Ricci scalar curvature, G
is Newton’s universal gravitational constant, c is the speed of light in vacuum, and Tµν is the
stress-energy-momentum tensor. According to this equation, space and time are interwoven
and form a geometric property called space-time. Mass and energy cause space-time to
curve.

Based on this concept, several predictions were made, such as the BH, gravitational
lensing, and gravitational time dilation. Many of them had been proven over time. Among
them, GWs are a key prediction of GR since they are directly related to the evolution and
death of massive stars. Objects that possess mass would warp space-time, and the effect a



1.3 Pulsar Applications and Gravitational Wave Astronomy 21

warp has on other objects is what we observe as gravity. That means space-time is curved
around every object that has mass. When a massive object speeds up, it would disrupt
space-time and hence generate GWs propagating outward.

GWs are extremely weak signals and even the strongest waves radiated by the most
violent and catastrophic events, like supermassive BHs colliding or supernovae, the GW
signals arriving on the Earth are so weak to be detected. So for a long time, it was thought
that the GWs were undetectable by us. GWs do cause space-time warping and thus lead to
the EM signals arriving earlier or later. Detection of this tiny wiggle could prove the passage
of GWs.

One primary goal of detecting continuous GWs is to observe NSs in a completely new
way as we are observing pulsars now. It is predicted that there will be millions of NSs in
the Milky Way Galaxy, but only less than 3000 of them have been detected by us. GWs
perhaps could provide us a new method of observing the large amount of “nonluminous stars”
and have a deeper understanding of their internal structure, composition, and evolutionary
mechanism.

1.3.2 Gravitational Wave Sources

In theory, masses that accelerate produce GWs. So, everywhere in the Universe, even the
Earth is filled with GWs. But the GWs produced by a planet and the masses and accelerations
available to us are too weak to be detected with our instruments. Luckily, the Universe is filled
with extremely massive objects that undergo rapid accelerations and the GWs produced by
them could be detected by us. Examples of such things are interacting BHs, or massive stars
blowing up, such as supernovae. Observing GW signals and modeling them will significantly
expand our view of the Universe. In Figure 1.7, I present several typical GW sources and
strain sensitivity as a function of frequency for several GW detectors. In this subsection, I
will turn our attention to sources of gravitational radiation.

Continuous GWs: Continuous GWs refer to long-lasting and nearly monochromatic
waves that are thought to be produced by orbiting binary systems of NSs or BHs (long
before merger), Other systems, such as rotating deformed (non-axisymmetric) NSs could also
produce continuous GWs (Bildsten, 1998). However, in order to be continuous, the orbital
separation of a binary system has to be relatively large, which means that the signals would
be too weak to detect. The study of continuous GWs would yield knowledge on coalescing
binaries at early stages or NS structure.

Inspiral GWs: Inspiral GWs are generated by orbiting pairs of massive and dense
objects like NSs or BHs. Two massive objects in a binary system are mutually locked by
gravity and will draw each other closer and closer in a runaway accelerating in a spiraling
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Figure 1.7 GW sources and strain sensitivity as a function of frequency for GW detection
with PTAs, LISA, TIANQIN, aVIRGO and aLIGO.
Credit: (Moore et al., 2015).
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embrace. During the inspiral process, their orbital separation decreases while their speed
increases. This process is similar to the continuous GWs, except that the GW frequency
changes with time. Inspiraling binary systems can emit copious amounts of gravitational
radiation, and at the end of their life, the binary companions would merge. Coalescence of
compact binary systems could generate huge GWs, with the wave frequency increasing with
the orbital frequency until the two masses collide and merge into one dense body. The largest
amplitude of GWs occurs at the merger phase.

Burst GWs: Among the most violent events known to astronomy, the merging phase of
coalescing binary dense stars (Finn & Lommen, 2010) and supernovae are sources to create
burst GWs, a kind of GW that comes from short-duration (lasting a few milliseconds) violent
events. When the core of an asymmetric massive star collapses, hydrodynamical oscillation
of the protoneutron star core would emit strong GWs (Ott et al., 2006). Although supernovae
outside the Galaxy are less likely detectable due to a small fraction of the mass transformed
into gravitational radiation and the long distance, the rate of core-collapse supernovae within
the Galaxy is promising.

Stochastic GWs: Stochastic GWs (also GWB) are small, random gravitational-wave
signals that spread all over the Universe all the time and are mixed. These waves are thought
to arise from a superposition of incoherent sources and are thus random both in amplitude
and directions. The most likely detected GWB would be from SMBHBs (Begelman et al.,
1980). This GWB will teach us about Galaxy evolution since these SMBHBs are supposed to
form as a consequence of galaxy mergers, i.e., it will help us to constrain the merging history
of galaxies in the Universe. In addition, primordial GWs originating from the Big Bang are
another potential source. Detection of these relic GWs (Boyle & Buonanno, 2008; Grishchuk,
2005) from the Big Bang will allow us to understand the early Universe. Besides, another
possible source is from “cosmic strings” (Caldwell et al., 1996; Damour & Vilenkin, 2005),
which are hypothesized to be one-dimensional topological defects. However, a detection of a
GWB from cosmic strings would have a profound impact on cosmology.

1.3.3 Pulsars as Gravitational Wave Detectors

To detect GWs directly is one of the most challenging feats of astronomy and astrophysics in
the 21st century. Depending on the GW frequency, several kinds of GW detectors have been
set up, both ground-based and space-based. However, the principles are almost identical:
GWs cause tiny variations in the distance between point masses and we can detect GWs by
measuring the light travel time between these points, called the ‘arms’ of the detector.

Some of the detectors adopted an interferometric method to detect the deviations of
the light travel time of laser arms, like the ground-based detector, the Advanced Laser
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Interferometer Gravitational-Wave Observatory (aLIGO, LIGO Collaboration et al., 2015),
and the space-based detector the Evolved Laser Interferometer Space Antenna (eLISA). The
ground-based detectors, which are limited by the length of their arms, are designed to detect
the high-frequency (∼ Hz level) GWs. There are several built or planned ground-based
detectors that aim to search for high-frequency GWs, such as aLIGO, aVIRGO (Acernese
et al., 2015), TAMA (Ando & TAMA Collaboration, 2002), and GEO (Affeldt et al., 2014).
And in space, a bunch of GW detectors to detect µHz GWs are on the way, such as the
eLISA (Amaro-Seoane et al., 2013), TIANQIN (Luo et al., 2016), the Big Bang Observer
(BBO, Harry et al., 2006), and the Deci-Hertz Interferometer GW Observatory (DECIGO,
Kawamura et al., 2011).

However, to detect nanohertz GWs, longer arms are needed. Pulsars are excellent
candidates, with the “arm” in this case being the path between the Earth and the pulsar. Any
fractional change in the length of the arms can be precisely measured through pulsar timing,
which allows us to search for tiny perturbations due to GWs.

A promising application of this trait is to use them to detect GWs. As Romani (1989) and
Foster & Backer (1990) suggested, an array of MSPs that are distributed uniformly across
the sky can be used to detecte low-frequency (with frequencies between 10−6 and 10−9

Hz) GWs through correlations between the pulsars. As I stated above, GWs are ripples in
space-time, and they could therefore cause time variations of pulses’ times of arrival (TOAs)
and the amplitude of these variations is calculated to be around a few tens to hundreds of
nanoseconds.

GWs travel between Earth and pulsars distorting the intervening space-time and thus
causing pulses to arrive earlier or later than the modeled TOAs. Besides, the effects of
GWs are correlated on all pulsars. We can search for this imprinted correlation to confirm
the existence of GWs. This correlation is known as the Hellings-Downs (HD) correlation
(Hellings & Downs, 1983). Rather than systematic clock and ephemeris errors that have
monopolar and dipolar spatial correlations on the timing residuals, the HD curve (presented
in Figure 1.8) reflects the quadrupolar nature of GWs.

Currently, three major PTAs are working on GW detections at nanohertz frequency,
namely the European Pulsar Timing Array (EPTA, Desvignes et al., 2016), the North
American Nanohertz Observatory for GWs (NANOGrav, Arzoumanian et al., 2016), and the
Parkes Pulsar Timing Array (PPTA, Reardon et al., 2016). Together, these three PTAs form
an international collaboration, the International PTA (IPTA, Verbiest et al., 2016). The EPTA
is a multinational European collaboration, which consists of the Netherlands Institute for
Radio Astronomy (ASTRON), the National Institute for Astrophysics/Cagliari Observatory,
the Max-Planck Institute for Radio Astronomy, the Paris Observatory/Nançay, the University
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Figure 1.8 The HD curve, which shows the correlation of timing residuals with respect to the
angular separation between pairs of pulsars.

of Manchester, the University of Birmingham, the University of Cambridge and Bielefeld
University. Five of the largest European radio telescopes are used to observe the MSPs,
namely the Effelsberg Radio Telescope (EFF), the Lovell Radio Telescope at the Jodrell Bank
Observatory (JBO), the Nançay Radio Telescope (NCY), the Westerbork Synthesis Radio
Telescope (WSRT) and the Sardinia Radio Telescope (SRT). The PPTA was built in 2004 as
a collaboration between the Commonwealth Scientific and Industrial Research Organization
(CSIRO) and Swinburne University of Technology and mainly use the Parkes telescopes
while NANOGrav uses the Green Bank and Arecibo radio telescopes.

1.4 Synopsis

This dissertation presents the result of efforts to improve the pulsar timing precision of the
EPTA dataset, by optimizing several key aspects of basic pulsar-timing analysis in detail,
based on a real and diverse PTA data set which contains all the intricacies and complications
full PTA analyses have to deal with. While a full quantitative study of the impact from
each optimization choice on the sensitivity to GWs would be computationally prohibitive, I
demonstrate the overall sensitivity improvement to GW-like signals which our work provides,
by comparing the results from a standard red-noise analysis, applied to the same data set
analyzed both according to our standardized and optimized approach and according to the
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standard EPTA analysis routine. I furthermore discuss how an optimal, observatory- and
pulsar-specific pipeline can be constructed, in an effort to harmonize and uniformize the
analysis procedures in a global PTA context like the IPTA. The structure of this thesis is as
follows:

In Chapter 2 I begin with a brief introduction to the EPTA dataset obtained with the newest
EPTA receivers. An overview of the data reduction methods used in the data pre-processing
is then presented, followed by a clarification about why if one wants high precision pulsar
timing results for a pulsar array, one must investigate the optimal pre-processing methods on
various pulsars. Finally, I identify and describe the pulsar timing issues that investigate and
illustrate our motivation and expectation through this research.

In Chapter 3 I investigate and present a comprehensive comparison of TOA creation
algorithms, specifically focusing on the creation of timing templates, TOA determination
algorithms, and TOA bandwidth.

In Chapter 4 I present a detailed analysis of a large sample of datasets from thirteen EPTA
MSPs, I refined the conclusions described in Chapter 3.

In Chapter 5 I analyze the red noise in a selected set of six pulsars, analyzed according to
our method and according to the standard EPTA analysis routines. Subsequently I search for
a common red noise, such as the GWB, in these two data sets and compare the sensitivity of
the two analysis methods to such a signal.

Finally, in Chapter 6 I conclude this dissertation with an overview and discussion of the
results presented above and summarize the current status and future perspectives in this field.
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Pulsar Timing Method

As rotating NSs, pulsars are usually detected through radio emissions produced by the
lighthouse effect. Their emission beams originate from their magnetic poles and sweep
the Earth regularly as a result of misalignment between their magnetic and rotational axes.
In most cases, single pulses are either too weak to observe or vary significantly in pulse
shape. However, adding many hundreds or even thousands of consecutive pulses ‘in-phase’
could yield a stable average profile. One primary usage of this stable average profile is to
derive pulsar rotational parameters through the pulsar timing technique. Pulsar timing is the
technique where we need to precisely measuring TOAs of the radio pulses and comparing
them with predicted TOA derived from the timing model, which includes the astrometric, spin,
and binary (if applies) parameters of a pulsar. The differences between the observed TOAs
and predicted TOAs are known as timing residuals. In this chapter, I describe the process of
pulsar timing and introduce the parameters from which timing models are constructed.

2.1 Data Acquisition

Pulsar single pulses are usually very weak, easily submerged in a noisy environment. To
obtain the signals and maximize the signal-to-noise ratio (S/N), a kind of state-of-art instru-
ment, radio telescopes, are usually required. A radio telescope requires a very large reflector
area to collect enough radio energy and bring it to a focus, an extremely sensitive receiver,
an amplifier to boost the signal, and a recorder to digitize and record the signal for real-time
or offline analysis. In this section, I introduce the data acquisition system, which is mainly
constituted with dish reflector, front-end, and back-end as described below.
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2.1.1 Dish Reflector

The radio telescope is the basic instrument for observing and studying radio waves from
celestial bodies. It consists of a reflective surface, directional antennas that collect radio
waves, high-sensitivity receivers that amplify radio signals, information recording, and a
processing system.

The basic principle of a radio telescope is simple. The incident electromagnetic waves
are reflected by a precise reflecting surface and reach the common focus in phase. The most
visible part of a single-dish radio telescope tends to be the dish reflector. There are many
types of it, including parabolic, spherical and cylindrical reflectors etc. The most commonly
used is the parabolic dish. Paraboloid reflectors allow us to design/control the point at which
the reflected rays are focused and make it easier to achieve in-phase focus. Therefore, many
radio telescope dishes are parabolic.

The two main parameters that characterize the performance of radio telescopes are
resolution and sensitivity. The former reflects the ability to distinguish two radio point
sources close to each other on the celestial sphere. The higher the resolution, the stronger the
ability to distinguish two close radio sources. The latter reflects the ability to detect weak
radio sources. The higher the sensitivity, the more dim sources that can be detected.

It is convenient to express the sensitivity in terms of the system equivalent flux density
(SEFD; units of Jy), which is defined as (Lyubarsky & Kirk, 2001),

SEFD =
2kTsys

Ae
, (2.1)

where k is Boltzmann’s constant, Tsys the system temperature, Ae is the effective area of the
telescope.

More generally, We can also defined the ideal radiometer equation to determine the
sensitivity in terms of flux density,

σT =
2kTsys

Ae
√

∆ f t
=

SEFD√
∆ f t

, (2.2)

where ∆ f is the total bandwidth and t is the integration time.
From Equations 2.1 and 2.2, we know that the increase in sensitivity mainly depends on

the effective collection area of the telescope, the effective aperture of the parabolic antenna
or synthetic aperture radio telescope, the observation time length, and the noise of the entire
system (including the noise of the receiving system).
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2.1.2 Front-end

The Front-end of the receiver system is one of the most sensitive and crucial elements in
the astronomical data acquisition system. The front-end, also referred to as the receiver,
mainly accomplishes two important objectives, amplifying the signal and converting the
radio frequency (RF) signals to lower intermediate frequency (IF) signals. An overview of
the front-end is shown in figure 2.1. The RF radio signals collected by the large dish are
concentrated onto a horn antenna, which is also known as feed-horn, where the RF signal
is captured and channelized into the receiver. The role of a feed-horn is to transform the
signal from free-space electromagnetic waves to orthogonal (linear or circular) polarizations
electric voltages. The induced electric voltages are then fed into a Low-Noise Amplifier
(LNA) to amplify the signals and filtered to improve the S/N.
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Figure 2.1 Schematic illustration of a front-end.

The LNA plays a vital role in the overall performance of a receiver system. The typical
requirement for an LNA in radio astronomy is that the noise temperature, which reflects the
level of noise power (for details, please refer to Lorimer & Kramer, 2005), is as low as 50 K
and the gain is 20−25 dB (Crossno et al., 2015) . To minimize the potential influence from
the electronics thermal noise, the LNA system is traditionally cryogenically cooled to below
20 K. After that, the RF signal will be filtered by a bandpass filter (BPF). Since all stray
and source frequencies are pass into the feedhorn, the BPF is specially designed to remove
signals from unwanted frequencies. Ideally, the frequency response function of the LNA
would be an ideal top-hat function with the desired gain height centered on the observation
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frequency, and the unwanted frequencies would be perfectly removed. The range of passable
frequency is known as the bandwidth of the receiver. For example, the newly installed UBB
receiver at the Effelsberg telescope covers a frequency range from 600−3000 MHz, has a
bandwidth of 2.4 GHz (Liu et al., 2014).

From the BPF, the signal is then converted to lower frequencies in the mixer. The mixer
blends in the RF signal νRF with a monochromatic sinusoidal wave νLO produced by the local
oscillator (LO). The RF signal is down-converted using the technique of super-heterodyning
(Tiuri, 1964). The output signal consists of the sum and the difference between these two
frequencies. But the target signal νIF at a lower intermediate frequency (IF),

νIF = νRF −νLO, (2.3)

can be accessed by applying another BPF, which only allows the target signal at the frequency
of νIF , Before sending the IF signal to the back-end, additional amplifiers are usually applied
to reach the desired gain.

2.1.3 Back-end

As an essential ingredient of the radio telescope, the back-end system takes the radio signal
amplified by the receiver as input. The main function of the back-end is to realize the
digitization and basic signal processing of the IF signal and send the processed data to the
storage device. The direct current voltage transmitted from the front-end is analog, which can
not be directly processed and analyzed by computers. Usually, the signals are converted from
analog to digital format via Analog-to-Digital Converters (ADCs) before being passed onto
the computers. The sampling rate of the back-end follows the Nyquist-Shannon sampling
theorem (Nyquist, 1928; Shannon, 1949).

The back-ends particularly designed for pulsar-related observation, known as pulsar
back-ends, are working in various modes. For pulsar searching purposes, the ‘raw’ data is
either stored for later processing or analyzed in real-time. In the case of observing known
pulsars with timing mode, since the parameters of the pulsar have been already determined,
the incoming sub-bands are usually dedispersed and synchronously averaged (folded) over
time with the pulsar’s spin period and the spin-down rate. I am only interested in the pulsar
timing analysis in this work, so only timing modes are described in this chapter.
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2.1.4 De-dispersion and Folding

As I described in Section 1.2, the received pulsar signal is significantly affected when
propagation through the IISM, leading to phenomena such as phase shift, amplitude reduction,
and pulse profile broadening in the time domain pulse, and thus deteriorates the TOA
measurement. Therefore, it is vital to dedisperse the received pulsar signals before measuring
TOAs.

De-dispersion intends to eliminate the dispersive effect in the signal frequency band.
At present, there are two approaches: incoherent and coherent de-dispersion. Incoherent
de-dispersion is based on time series, channelize the signals with filter banks, and eliminate
dispersion by shifting each channel according to the delay time relative to the reference
channel.

The process of incoherent de-dispersion is to first divide the time domain signal with the
observation bandwidth into several narrow channels by the filter bank, and then shift each
channel signal in the time domain by an appropriate amount of time delay, and finally align
the pulses. The signal amplitudes of all channels are accumulated to obtain the time domain
signal sequence after de-dispersion. The advantage of incoherent de-dispersion is that both
the data volume and the computation requirements are small. However, the defects are also
obvious: the dispersion within each channel is not eliminated, and some phase information
would lost in the process.

By comparison, coherent de-dispersion makes use of the transfer function (chirp function)
of the interstellar medium in the frequency domain. The dispersive effect of the interstellar
medium is equivalent to a function of the phase shifter (Hankins & Rickett, 1975). The phase
shifter can be characterized by a transfer function H( f ) (Lorimer & Kramer, 2005):

H( f0 + f ) = exp
[

i2π Df 2

f 2
0 (f0 + f )

DM
]
, (2.4)

where i=
√
−1, f0 is the central frequency, D= 4.15×103 MHz2 pc−1 cm3 s is the dispersion

measure constant and DM is the dispersion measure defined in Equation 1.20. From the
transfer function H( f ), it can be seen that the original signal can be completely dedispersed
by applying the complex conjugate H(− f ) to eliminate the dispersive effect in the Fourier
domain.

Among the discovered 2000 pulsars, most of them are too weak to be direct observed
within a single pulse. However, since pulsars have an extremely stable rotation period, the
S/N can be improved by periodic folding, which synchronously averaging the data at the
pulse period (See Section 7.1 of Lorimer & Kramer, 2005, for a detailed step to fold) . The
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yield averaged pulse profile represents the average emission from the pulsars as a function of
its rotational phase. We know that noise and signal have different properties. The addition of
two signals with the same intensity will increase the signal by a factor of 2, while the sum of
two noises of comparable levels only increases its intensity by about 1.4 times. Folding the
signals in cycles and adding them together can increase the intensity of S/N.

2.2 Data Pre-Processing

The first step I take with the origin data is to combine sub-integrations and sub-bands data
to obtain integrated data with a stable average profile and high S/N. For each observation,
I adding the sub-integrations and sub-bands, after aligning them using a timing ephemeris
to predict the pulse phases. Next, polarization calibration, as well as flux calibration, are
performed if possible. Meanwhile, the RFI excision process is applied to the data. The details
in calibration and RFI excision steps are described below.

2.2.1 Polarization Calibration

Generally, Pulsars are highly polarized sources. Pulsar emissions are usually strongly linearly
polarized, sometimes with a small amount of circular polarization (Han et al., 1998). In
addition, there are also a small number of pulsars, such as PSR B1702−19, that have
strong circular polarization characteristics (Gould & Lyne, 1998). Through the polarization
measurement of the pulsar, we can obtain the pulsar radiation details and the influence of the
interstellar medium during its propagation. However, during pulsar observation, the pulsar
signal is usually affected by many factors, such as the Faraday rotation effect of IISM and
instrument measurement errors, which will change the polarization characteristics of the
transmitted signal. The uncalibrated observation signal will cause variation in the intensity
and phase of the pulsar’s pulse profile, leading to the generation of incorrect TOA, and
then the generation of incorrect fitting parameters. Therefore, it is particularly important to
perform polarization calibration before generating TOA.

The polarized direction and components vary systematically with the pulse phase. They
can be quantified by four Stokes parameters. The Stokes vector (I,Q,U,V ) is a linear
combination of the power measured in orthogonal polarization, where I represents the
total power of the incident radiation, which can be obtained by sampling two orthogonal
polarizations, Q and U are used to describe linear polarization, and V represents circular
polarization. By using these four Stokes parameters, we can completely describe the specific
characteristics of polarized waves.
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In order to calibrate the polarization, we usually express the influence of the instrument
as a Mueller matrix, M, which acts as the transfer function between the measured Stokes
vector Smeasured of the pulsar and the real Stokes parameter Strue by:

Smeasure = M × Strue. (2.5)

Through calibrating the observation instruments, M, can be determined, and thus we can
obtain Strue. The most common practice to calibrate polarization caused by the observation
system is making use of artificial signals also referred to as noise diodes, which are usually
observed with the same instrumental set-up just before or after each pulsar observation.
Ideally, the noise diode provides a purely linearly polarized reference source contains both
on and off states, usually a square wave with a 50% duty cycle. The Mueller matrix can
then measured by tracking the gain and parallactic angles. Besides that, van Straten (2013)
put forward a measurement equation method, which uses observations of pulsars with well-
known polarization properties as reference observations to determine the Mueller matrix for
a telescope and thus, the polarimetric response of that system.

2.2.2 Radio Frequency Interference Excision

In radio astronomy, RFI refers to radio signals generated due to human production activities
and life, which is consists of the cellular communication signal, FM radio transmission,
global positioning system (GPS) aircraft navigation radar signal, etc. It has a significant
impact on the reception of weak astronomical signals, resulting in data loss and reduction of
data quality. To reduce RFI, radio telescopes are usually located at radio quiet zone areas
that are rarely affected by RFI. However, as the sensitivity of radio astronomy instruments
improved significantly in the past decades, accompanied by more diverse sources of RFI,
interference from non-astronomical signals has become more and more obvious. Therefore,
after completing astronomical observations to obtain data, the most important step is to
eliminate RFI first.

Two main approaches of RFI excision techniques are applied in this study. The first
step I take with the dataset is to perform automated RFI mitigation using a script, clean.py
from the COASTGUARD1 pipeline (Lazarus et al., 2016). This script contains four distinct
algorithms to clean corrupted data, but within our process, only the surgical option is
adopted. In principle, this algorithm distinguishes RFI from four metrics computed for each
sub-integration/channel pair, namely the standard deviation, the mean, the range, and the
maximum amplitude of the Fourier transform of the mean-subtracted residual. Frequency

1https://github.com/plazar/coast_guard/

https://github.com/plazar/coast_guard/
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channels and time sub-integrations with two or more metrics are 5σ away from the median
will be identified as RFI and thus zero weighted. The archive files are then re-checked with
the psrplot tool from PSRCHIVE2 (Hotan et al., 2004a) package, any noticeable remaining
RFI is identified by eye and removed by PSRCHIVE/pazi. Meanwhile, the PSRCHIVE/paz
routine is also applied at this step to the sub-band edge.

2.3 Times of Arrival and Residuals

As described at the beginning of this chapter, pulsar timing analysis are mainly based on the
determination of observed TOAs, Tobs. In addition, through measured the difference between
Tobs and the model predict TOAs Tpred, we can obtain the timing residuals. In this section,
a comprehensive introduction of the Tobs determination process and models used to predict
Tpred are presented.

2.3.1 Time of Arrival Determination

Determination of TOAs with the highest possible precision is one of the primary steps in
pulsar timing analysis. These TOAs are defined as the timestamps that each pulse emission
arrives at the telescope. The TOA that corresponds to the chosen reference point, also know
as the fiducial point of the profile (usually the zeroth phase bin of the pulse), is typically
recorded in the Modified Julian Date (MJD) format. TOAs can be created precisely by
determining the phase offset between each observed pulse profile and a reference profile
using cross-correlation algorithms. The reference profile is known as a template and is
usually derived by combining several pulses with high S/N or using an analytic profile
produced from fitting a high S/N profile with several Gaussian functions (Foster et al., 1991;
Kramer et al., 1994), or a smoothed noise-free templates of a high S/N profile produced with
PSRCHIVE/psrsmooth (Demorest et al., 2013) script. Each of the observed pulses can be
cross-correlated with a template using another PSRCHIVE routine, pat, to yield the TOAs.
Several algorithms can be used, among them, the Fourier domain with Markov chain Monte
Carlo (FDM) and the Fourier phase gradient (PGS, Taylor, 1992) PGS are often adopted.

As stated above, the reason we adopt integrated profiles is based on their morphological
stability compared to single pulses which are highly influenced by IISM and intrinsic noise
inherited from the pulsars’ spin irregularity. Assuming that the intensity of the profile of an
individuals pulse, P(t) is a shifted and scaled version of the template, T (t), plus a radiometer

2http://psrchive.sourceforge.net/

http://psrchive.sourceforge.net/
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noise N(t) (for details, see Taylor, 1990):

P(t) = a+bT (t − τ)+N(t), (2.6)

which can be expressed either in the time or in the phase domain within one folding period.
a is an arbitrary intensity shift while b is the intensity scaling factor. The time or phase
offset between the templates and observation profile, τ , defines the topocentric TOA or
site-arrival-time (SAT). Several algorithms can calculate the offset between their fiducial
points, either in the time domain or frequency domain. If the template matching process is
carried out in the time domain, the precision will be limited by the sampling bins. A more
common way to determine the TOAs in the frequency domain with the PGS algorithm or the
FDM algorithm. The phase shift can be converted back to the time domain by multiplying it
with the pulsar period. With those two frequency domain algorithms, the timing precision
can be smaller than a tenth of the sampling bin size.

The error in the TOA determination process is approximately the ratio of the pulse width,
W, to the S/N, which is defined as the ratio of the power of a signal to the noise fluctuations.
Based on the of Equation 2.2 (Dicke, 1946), the TOA uncertainty can be expressed as:

τTOA ≈ W
S/N

∝
Ssys√
tobs∆ f

1
Smean

W√
P
, (2.7)

where Ssys and Smean is the system equivalent and pulsar’s mean flux density, respectively.
Here, tobs is the integration time, ∆ f is the bandwidth and P the spin period of the pulsar.

During this process, a very stable local frequency standard is used to time-stamp the
observations. This clock is usually a hydrogen maser clock, which utilizing the intrinsic
properties of the hydrogen atom at a frequency of 1420 MHz to provide a sharp and constant
oscillating signal. Hydrogen maser clocks are generally well behaved and reliable in a short
time scale, but these deviate significantly on longer time scales (months to years). However,
these can be corrected to UTC using information obtained via the GPS (for details, please
refer to Hobbs et al., 2006).

2.3.2 Timing Model

The pulsar timing model is an extensive theoretical framework to predict the pulse TOAs.
To model the rotational behavior of the pulsar correctly, we generally require TOAs to be
detected at an inertial point. Thus the TOAs generated by the topocentric telescopes have to
transform to a corresponding proper pulse emission time at the pulsar. This transformation
must take into account the effects of propagation through the IISM, as well as massive
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bodies and companion stars influences both in the solar system and the pulsar side. First, the
topocentric TOAs (known as site arrival time, SAT) can be transformed to the Solar System
barycentre (SSB), which can be regarded as an inertial system. The TOAs at barycentre,
(known as the barycentric arrival time, BAT) can be expressed Taylor (1992) in the form:

TSSB = tSAT − t0 +∆clk −D/ f 2 +(∆R⊙+∆E⊙−∆S⊙)− (∆R +∆E +∆S +∆A), (2.8)

where t0 is a reference TOA; ∆clk represent the offset between the telescope clock and the
terrestrial time standard; since observations are usually carried out at large bandwidth, a
dispersion delay D/ f 2 due to pulse propagation through IISM at frequency f is also included
in the timing model; ∆R⊙, ∆E⊙, ∆S⊙ terms are the Römer, Einstein, and Shapiro delay,
respectively, which are used to describe the corrections within the solar system of converting
topocentric TOAs to barycentric TOAs; ∆R, ∆E and ∆S are similar terms corresponding to
binary pulsar’s orbital motion; the last term, ∆A is the aberration effects in the pulsar orbit.

2.3.2.1 Barycentering Terms

The TOAs measured in the Earth frame are topocentric and are easily affected by the tiny
irregularity of spin and orbital due to the elliptical motion of the Earth and the influence
of other planets in the Solar system. In this case, we selected the inertial point, the Solar
System barycentre, as a reference point and modeled all the factors to correct the time error
between BAT and SAT. The transformation from SAT to BAT requires precise knowledge of
the location of the Solar System Barycentre, predicted using a Solar System Ephemerides.

Initially, the TOAs measured with the hydrogen maser clock at the observatory are
constantly compared to the GPS based Coordinated Universal Time (UTC), a time standard
that is measured by the US National Institute of Standard and Technology (NIST). UTC is
determined based on the International Atomic Time (TAI), a weighted average of the time
kept by more than 400 atomic clocks in over 50 national laboratories around the world. The
difference between UTC and TAI is an algebraic sum of leap seconds:

UTC = TAI+1.000s×n , (2.9)

where n is the leap times and is now 37 since 1 January 2017. Once published by the Bureau
International des Poids et Mesures (BIPM3), TAI itself has never revised again. However,
the TAI can be further converted to a smooth running time standard called Terrestrial Time

3https://www.bipm.org

https://www.bipm.org
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(TT) in the format of :

TT = TAI+32.184s . (2.10)

This theoretical time standard is published by BIMP yearly and can be considered as the
time of an ideal atomic clock on the Earth’s geoid.

Thus TOAs measured in the observatory frame are translated to the TT frame. However,
as we stated above, the TOAs measured at the observatory have to be transferred to the
SSB format due to the non-inertial movement of the Earth in the Solar system. During the
transformation, we have to take the Römer delay and relativistic effects of Shapiro delay and
Einstein delay into consideration. In this section, I will only introduce delays in the Solar
system and assuming that the pulsar is solitary. A detailed introduction of those delays in the
binary system will be presented in the following section. Ignoring the effects in the binary
system, Equation 2.8 can be simplified as:

TSSB = tSAT +∆clk −D/ f 2 +(∆R⊙+∆E⊙−∆S⊙). (2.11)

Here, ∆clk terms represent the transformation of the local observatory H-maser clock
time to the TT time standard I state above. The D/ f 2 terms are the frequency correction and
describe the delay introduced by propagation delay caused by interstellar dispersion.

The Römer delay, ∆R⊙, is the geometric delay that accounts for the differences between
the arrival time at the observatory and SSB, which is due to the annual orbital motion of
the Earth and its daily spin motion. Since this effect has annual variations in the pulse
arrival times, precise positions of the Earth, as well as other masses within the Solar system
are required. This precise ephemeris of the Solar system is published by Jet Propulsion
Laboratory (JPL) regularly with several models, like JPL DE 405. The Einstein delay, ∆E⊙,
occurs due to the time dilation associated with the orbital acceleration of the Earth, and
gravitational red-shift within the Solar system. To calculate these delays, accurate information
of masses and positions of all the significant objects in the Solar system are needed. The last
term, Shapiro delay, ∆S⊙, is a relativistic delay caused by the curvature of space-time when
light travels through a region with massive bodies in the Solar System. That’s to say, the
largest delays are coming from the Sun and the Jupiter, with a maximum delay of around
120 µs and 200 ns respectively.

2.3.2.2 Ionized Interstellar Medium Terms

As I mentioned in Section 1.2, the pulsar signals will be affected by a dispersion effect
when propagating through the IISM. While we consider dispersion models as arising from a
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homogeneous and stationary environment, there are do exist turbulence in the IISM, and this
turbulence can cause DM variations. A precise model of the DM variation is extremely crucial
for improving the timing precision. Since the IISM effects are frequency-dependent (Keith
et al., 2013), a possible method to correct these variations is multi-wavelength observing and
timing. A DM model based on this multi-wavelength observation method can be created and
added in the ephemeris for correcting this DM variation.

Besides that, another effect called Doppler Shift also has a significant influence on TOAs
determination. Doppler shift could be caused by the Earth’s orbit motion which can introduce
a frequency shift between the frequency observed in the telescope reference frame and the
SSB frame. The Doppler Shift effect can be precisely measured and corrected by using an
accurate Solar System Ephemeris (SSE).

2.3.2.3 Binary Terms

Section 2.3.2.1 and Section 2.3.2.2 introduce the effects of the IISM and the Solar system,
assuming that the pulsar has no companions. The correction terms mentioned above can well
describe the TOAs precisely. However, for a pulsar in a binary system, additional parameters
need to be taken into consideration. As in Equation 2.8, the last four components described
the extra offset in time delays cased by a binary system. These terms, which describe the
motion of pulsar as it orbits the common center of mass of the binary system, follow the same
concept in the SSB model. Like precise SSE needs to correct BAT delays, the Keplerian
parameters are required to correct the delays in the binary system. These parameters are:

Pb, the orbital period of the binary, measured in days;
ωp, the longitude of periastron, is the angle measured from the ascending node to the

periastron in the direction of motion of the pulsar;
e the orbital eccentricity, which between 0 and 1, given a semi-major axis ap and a

semi-minor axis bp:

e =

√
1− (

bp

ap
)2. (2.12)

T0, the epoch of periastron passage, a reference epoch when the pulsar passed through
periastron and is given as MJD;

xp = ap sin i/c, the projected semi-major axis, measured in light-seconds. Here ap is the
semi-major axis of the pulsar orbit along the LOS and i is the angle of orbital inclination.

For simplicity, if relativistic effects can be ignored, the binary motion of the pulsar can
be sufficiently described with the above five parameters within a purely Newtonian classical
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model. These five parameters can be obtained through the pulsar timing method. However,
the inclination angle between the orbital plane and the plane of the sky is unknown, unless
the Shapiro delay effect on the TOAs can be measured. A standard practice we normally use
is to consider the inclination angle as a random distribution, a 90% confidence interval for i
is between 26◦ and 90◦, based on that and Kepler’s third law, we can obtain the binary mass
function

fmass =
4π2

G
x3

p

P2
b
=

(Mc sin i)3

(Mp +Mc)2 , (2.13)

where Mp and Mc are the masses of the pulsar and its orbiting companion respectively while
G is Newton’s gravitational constant. We can put a limit on the pulsar’s mass with this
function. If the mass of the companion can be measured through other methods, we can then
determine the pulsar mass with Shapiro delay.

As I previously mentioned, the formulae described above have ignored the relativistic
effects. Even though some of the pulsars can be sufficiently described with Kepler’s laws,
some of the pulsars in the binary system require an extra series of “post-Keplerian” (PK)
parameters:

The rate of relativistic advance of periastron, ω̇ , is the rate which the orientation of the
orbit rotates through space and is predicted by GR to be:

ω̇ = 3(
2π

Pb
)5/3(

G(Mp +Mc)

c3 )2/3 1
1− e2 , (2.14)

The orbital decay due to GW emission, Ṗb. The predicted size of this effect is given in
GR by:

Ṗb =−192π

5c5 (
2πG

pb
)5/3 1+(73/24)e2 +(37/96)e4

(1− e2)7/2

MpMc

(Mp +Mc)1/3 . (2.15)

However, one thing that needs to be emphasized is that this is only part of the contribution
to the orbital period derivative we observed.

The Shapiro delay, first proposed by Shapiro (1964) for test GR in the Solar system, has
two components: the amplitude of the effect (also the range), r and the evolution (also the
shape), s. These two relativistic parameters are given by

r =
GM
c3 , (2.16)
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s = sin i =
cxG−1/3

Mc
(
2πM

Pb
)2/3. (2.17)

These two parameters can describe the delay in the pulses to travel through the curved
space-time region.

The last parameter, the transverse Doppler and gravitational red-shift parameter, γ ,
which is also referred as the Einstein delay, is caused by the pulsar orbital acceleration and
gravitational shift:

γ =
G2/3e

c2 (
Pb

2π
)1/3 Mc(M+Mc)

M4/3 . (2.18)

For a relativistic system, if two GR effects are measured in addition to the Keplerian
parameters, we can determine all other parameters easily.

2.3.3 Timing Residuals

Once the TOAs have been determined, several pulsar timing packages can be adopted to
calculate and fit the timing residuals, such as TEMPO4, TEMPO25 (Hobbs et al., 2006)
and PINT6. Among them, TEMPO2 is the widely-used one. All the required ephemeris are
included and effects such as propagation are implemented at ∼ 1 ns precision. The main
goal of all these packages is to compare the observed TOAs against the theoretical values
predicted by the timing model, to generate timing residuals with the lowest root mean square
(RMS) by minimizing the reduced chi-squared vaules, χ2

r , such that these two quantities
effectively describe the goodness of fit of the model. The quality of the timing model and the
fitting results can be described by the χ2

r (e.g. Taylor & Weisberg, 1989):

χr
2 =

1
NTOA −Npar −1

NTOA

∑
i=1

(
φi(obs)−φi(pred)

σi
)2 , (2.19)

where NTOA and Npar is the number of TOAs and number of model parameters fitted re-
spectively, φi(obs) and φi(pred) represent the ith TOA of from detected pulse and predicted
models separately, and σi is the uncertainty of the ith TOA. If the timing model is correct and
good enough to predict the TOAs within the uncertainties, we would expect to get χ2

r = 1,

4http://tempo.sourceforge.net
5https://bitbucket.org/psrsoft/tempo2
6https://github.com/nanograv/PINT

http://tempo.sourceforge.net
https://bitbucket.org/psrsoft/tempo2
https://github.com/nanograv/PINT
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which also means that the post-fit timing residuals would have a Gaussian distribution with
zero means.

However, we commonly obtain χ2
r > 1, This case mainly comes from or underestimation

of TOA uncertainties or extra non-Gaussian noise that was not modeled or scaled properly.
After all the supported terms have been added to the timing model, if the χ2

r remains high,
this can be sometimes attributed to under-estimated uncertainty. To settle this issue down,
two factors can be added into the timing model: EFAC and EQUAD. The EFAC parameter
accounts for incorrect scaling of TOA uncertainty and correct it through increasing the
uncertainty by some amount: σ2 = EFAC2 ×σ2

TOA, while EQUAD accounts for unmodeled
sources of noise and will add additional uncertainty (in µs) to X (in µs) in quadrature:
σ2 = EQUAD2 +σ2

TOA.
Even after fitting the residuals with an optimal ephemeris, the RMS of the residuals are

still very high and the timing precision does not correspond with our expectations. That’s to
say, there is still extra noise, perhaps red (power spectrum are frequency-dependent) or white
(a flat spectrum at all spectral frequencies), that cannot be explained by the timing model.
Since the causes of those noises are still under investigation, I will introduce some of the
widely recognized noise that could exist in the timing results.

Among the noises, the predominant red noise originates from DM variation. Several
factors could cause DM variations. For example, turbulent spatial variations and eclipses
in binary systems could create DM variation. Reardon et al. (2016) find evidence for linear
trends and sinusoidal, annual variations in the pulsar data obtained with Parkes telescopes.
The magnitude of variations in some of the pulsars observed with Parkes surpass the value
predicted in the models used (Petroff et al., 2013). The DM variation is only apparent on
long time scales, while for short-term timing observation, it can be considered as too small to
detect. However, for GW detection with pulsar timing arrays, we usually need high precision
timing data at more than ten years scale. The DM variations in this scale are negligible in this
period and could only be mitigated through multi-frequency observations. While pulsars are
renowned for their capacity of high time stability, they do exhibit intrinsic spin noise that is
caused by sustained, random fluctuations of the rotational spin rate of the pulsars. This spin
noise could come from changes in internal structure or magnetosphere torque. Moreover,
there is also evidence that glitches are also covariant with timing noise model (Lower et al.,
2020). Since the spin noise could be highly correlated with the GW stochastic background
(Lentati et al., 2016), we need more pulsars to be included in the current PTA regime.
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The radiometer noise is the main contribution to the white noise and comes from the
radiometer process. According to Equation 2.2, radiometer noise is given by

σrm ∝
Tsys

npt∆ f
, (2.20)

where Tsys is the system noise temperature, np is the number of polarisations, t is the
integration time and ∆ f is the observing bandwidth. According to this formula, we can see
that the influence of radiometer noise can be mitigated through increasing the integration
time and observing with larger and more sensitive telescopes. The second source of white
noise is SWIMS (Osłowski et al., 2011), which is also referred to as pulse-phase jitter noise
(Cordes, 1993). SWIMS being stochastic noise, affect the pulse shape and thus influence
the determination of TOAs and their uncertainties. As radiometer noise can be reduced by
wide-band receivers, and observing with large dish telescopes, the SWIMS will play an
increasingly visible role in limiting the timing precision. Assuming that the pulse profile is
Gaussian shape and the Gaussian probability density function (PDF) for pulse phase jitter is
defined as, according to Cordes & Shannon (2010),

σ j = 0.28µs(
Wi

1 ms
)(

N
106 )

−1/2(
f j

1/3
)(

1+m2
I

2
)1/2, (2.21)

where Wi is the intrinsic pulse width, N is the number of pulses, fJ is the dimensionless jitter
parameter and for most pulsars, fJ is from 1/3 to 1/2, mI is the amplitude modulation index.

2.4 Outliers in Pulsar Timing Array Datasets

Ideally, the probabilistic model of TOA residuals for a well-timed pulsar should follow a
Gaussian distribution with zero means. However, in the presence of non-Gaussian noise,
the Gaussian model is sensitive to outliers. Outliers in the timing residuals always show
significant deviations from zero and therefore lead to incorrect estimation of timing and noise
parameters, and procrastinate the detection of nano-Hertz GW.

In the following sections, an outlier rejection scheme is presented for the TOAs derived
from Frequency-resolved templates as well as our EPTA dataset. I introduced several criteria
in our algorithms and compared this algorithm with other three different methods and criterion
threshold. I then compared these algorithms and apply an optimal combination to our dataset.
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2.4.1 Outlier Origin

Outlier TOAs are typically produced due to corruption of the pulsar data by the addition of
spurious signals or through effects that introduce additional delays, as described below.

2.4.1.1 Radio Frequency Interference

enables the discovery and regular observation of faint pulsars, on the other, it makes radio
astronomy much more sensitive to man-made RFI. RFI in radio astronomy observations
mainly results from the unwanted electromagnetic signal from wireless electronics, digital
and analog terrestrial and satellite communication, radar signals, etc. These signals could
very significant with frequency and time during each observation.

As a precision experiment, pulsar timing is naturally susceptible to the effects of these
man-made signals. Although plenty of RFI mitigation algorithms, both hardware, and
software-based, have been put forward and applied in the pulsar data analysis, inevitably,
some low-level RFI is not removed automatically. The presence of the remaining RFI could
make the data useless. Since the pulsar signal itself is weak and the current pulsar timing
analysis is in high precision, a small amount of RFI could easily distort the integrated pulse
profile, resulting in unpredictable errors in the measured TOAs and their related uncertainties.
Some of the seriously affected TOAs will behavior as outliers in the timing residuals. As I
describe above, outliers mainly come from the low-S/N regime, we can also identify outliers
with the S/N criterion. Arzoumanian et al. (2015) carefully investigated the signal-to-noise
cutoff criterion and decided to remove TOAs obtained from profiles S/N less than 8. After
that, manual identification was carried out to remove remaining outliers caused by very
low-level RFI, instrumental errors, etc by inspecting the original archives. In this work, I
adopt this approach and manually eliminated outliers after removing TOAs with profiles S/N
less than 8.

2.4.1.2 Scintillation

As described in section 1.2.4, pulsars will show large flux density variations due to the
interstellar scintillation. Scintillation causes pulsar radiation to vary as a function of frequency
and time, causing interference, the interference maxima in the dynamic spectrum, known as
scintles. The characteristic bandwidths and timescales of scintles at L-band are typically on
the order of hundreds of MHz and hours, but since broadband receivers are now widely used,
the pulse profile could be dominated by the scintles at either the top or the bottom of the
observing band i.e. 2.2, leading to frequency-averaged pulse shape variation with frequency
and time due to this random weighting.
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In the frequency-resolved data, some sub-bands or channels could become very weak and
dominated by noise. During the RFI mitigation step, these sub-bands and channels are not
removed, this causes certain sub-band to produce outliers in the frequency-resolved timing.
These outliers could significantly influence the timing results and must be removed before
further timing analysis.
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Figure 2.2 An illustration of the outliers in sub-band, the top band is due to band edge
reflection while the middle band is significantly influenced by scintillation. Data for this
example is from J1744-1134 observed with Effelsberg telescope.

2.4.1.3 Facility Error

Uncorrected instrumental effects also cause profile variability. Bad calibration of the polariza-
tion will cause distortions in the pulse shape. The main goal of polarization calibration is to
recover the pulsar profile properly, regardless of the influence of IISM. Some pulsar sources,
such as PSR J1022+1001 point by van Straten (2013) require a high level of polarization
calibration to reach the best timing precision.

Another facility factor that could produce outliers in timing residuals is clock error.
Unknown discrete time-offsets would also lead the whole observation to act as an outlier. For
example, Asterix back-end at Effelsberg has experienced several discrete time-offsets while
the corrections are only preliminary determined.
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Besides, as shown on the top band of Figure 2.2, the effect of band edge reflection, also
known as a ghost image, would lead to the appearance of excess power at the edges of each
channel. The ghost artifact signal is mainly due to the imperfect ADCs sampling process
(Kurosawa et al., 2001; Verbiest & Shaifullah, 2018).

2.4.1.4 Solar Wind

The solar wind (SW) is a stream of plasma and particles flowing outward from the upper
atmosphere of the Sun to space. This plasma and particles is a mix of electrons and ions and
alpha particles. Similar to the IISM, the SW could introduce a characteristic dispersive delay
to many of the Galaxy pulsars.

Under current PTA precision, it is possible to timing some MSPs to a precision close
to 100 ns over ten years. However, there are several major factors, such as the SW, that
could cause significant time delays. For instance, Lyne et al. (1988) investigated several
observations of the Crab pulsar (PSR B0531+21) within 5 degrees from the Sun and found
that the time delay as a result of the SW could reach as much as 500 µs at 610 MHz. You
et al. (2007a) studied observations of PPTA pulsars with small ecliptic latitude at 1400 MHz
and show that the SW effect can contribute TOA errors of 100 ns when the LOS to the pulsar
passes within around 60 degrees of the Sun. Tiburzi et al. (2019, 2021) also demonstrated
the SW effects depend strongly on the LOS angle to the Sun and can become extremely large
when the LOS to pulsars at a small solar angle.

There are several ways to mitigated the SW influence on pulsar timing. Generally, The
TEMPO2 is equipped with several models to account for the SW. The default model is
based on the assumption of a constant, spherically symmetric model that is only determined
by the electron density at 1 au and the angle between the LOS to the pulsar and the Sun.
Alternatively, due to the fact the SW variability induces DM variations, You et al. (2007b) and
Keith et al. (2013) demonstrated two models to measure the DM changes due to the SW using
the Wilcox Solar Observatory and multi-frequency observation respectively. In addition,
(Madison et al., 2019) presented a technique to filter out long-timescale DM variations due
to IISM and extract the imprint of the SW from the full collection of DM measurements.

However, since the SW is a very complicated phenomenon and many features are not
well understood, it is difficult to eliminate the impact thoroughly. Normally, owing to few
observations at extremely small solar angles, the PTA experiments just remove observations
taken within a certain angle from the Sun. In this work, I adopt this practice and removed the
observations with a solar angle smaller than 10 degrees.
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2.4.2 Outlier Rejection Scheme

The existence of outliers will significantly affect the precision of pulsar timing, especially
in the frequency-resolved timing framework of faint pulsars, the ratio of outliers may be as
high as 20%, which makes it difficult to manually identify and eliminate outliers, so in this
subsection, I will briefly introduce several commonly used outlier elimination algorithms.

According to Hotan et al. (2005), the normally used cross-correlation method used during
the template matching process will turn unreliable in the low S/N regime and thus yield
underestimated TOA uncertainties. Besides, the distribution of Normalized residuals in this
regime will also fail to fit the Gaussian curve in this condition.

To evaluate the quality of the observation-to-template matching process, a standard
reduced chi-squared for the goodness-of-fit (GOF) is returned along with the TOA estimation
(Verbiest et al., 2016). GOF is the total squared difference between observation and template
normalized by the statistical degrees of freedom. But the GOF could only be obtained at the
‘FDM’ algorithm with PSRCHIVE/pat package. Another method, however, is based on the
median absolute deviation. For example, TOAs that located three times away from a robust
linear fit for f−2 through Huber regression (Huber, 1964; Wang et al., 2017) will be identified
as outliers and eliminated (Tiburzi et al., 2019). However, this method is inapplicable in the
case which has limited TOAs.

As I describe above, outliers mainly come from the low-S/N regime, we can also identify
outliers with the S/N criterion. Arzoumanian et al. (2015) carefully investigated the signal-
to-noise cutoff criterion and decided to remove TOAs obtained from profiles S/N less than 8.
After that, manual identification was carried out to remove remaining outliers caused by very
low-level RFI, instrumental errors, etc by inspecting the original archives. In this work, I
adopt this approach and manually eliminated outliers after removing TOAs with profiles S/N
less than 8. After that, manual identification was carried out to remove remaining outliers
caused by very low-level RFI, instrumental errors, etc by inspecting the original archives.



Chapter 3

A Comparative Analysis of TOA
Creation Methods

This chapter was also submitted for publication as a research article to Astronomy &
Astrophysics.

Abstract: Extracting precise pulse times of arrival (TOAs) and their uncertainties is the
first and most fundamental step in high-precision pulsar timing. The creation of TOAs is a
complex and multi-faceted enterprise. In addition, there is some diversity in the practices
used around the world.In this paper, we present a comprehensive comparison of TOA creation
algorithms, specifically focusing on the creation of timing templates, TOA determination
algorithms and TOA bandwidth. We compare the value of data-derived template profiles as
compared to analytic profiles and evaluate the three most commonly used template-matching
algorithms. Finally, we study the relation between timing precision and TOA bandwidth
to identify any potential breaks in that relationship. As a practical demonstration, we ap-
ply our selected methods to European Pulsar Timing Array data on the three test pulsars
PSRs J0218+4232, J1713+0747 and J2145−0750. Our demonstration shows that data-
derived and smoothed templates are typically preferred to some more commonly applied
alternatives; the Fourier-domain with Markov-chain Monte Carlo (FDM) template-matching
algorithm is generally superior to or competitive with other algorithms; and while the opti-
mal TOA bandwidth is strongly dependent on pulsar brightness, telescope sensitivity and
scintillation properties, some significant frequency averaging seems required for the data we
investigated.
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3.1 Introduction

Millisecond pulsars (MSPs, first discovered by Backer et al., 1982) are neutron stars which
have been spun up or “recycled” to rotation periods shorter than ∼30 ms through accretion
of matter from a binary companion star (Alpar et al., 1982; Bhattacharya & van den Heuvel,
1991). Their extremely stable rotation periods make MSPs ideal laboratories to test a diversity
of extreme astrophysical phenomena that cannot be accessed on Earth. Their applications
include investigating the interstellar medium (Demorest, 2011; Keith et al., 2013), testing
relativistic gravity (Kramer et al., 2006b; Taylor & Weisberg, 1982), building a pulsar-based
time standard (Hobbs et al., 2019), constraining masses in the Solar System (Caballero et al.,
2018) and detecting gravitational radiation (e.g., Shannon et al., 2015).

Detecting nano-Hertz gravitational waves (GWs) using pulsar timing is one of the main
foci in pulsar-timing research at present (see the recent reviews by Burke-Spolaor et al.,
2019; Tiburzi, 2018). It had been predicted (Jenet et al., 2005) that a detection can be
achieved by monthly observations of 20 to 40 MSPs over five to ten years if these sources
are characterized by white timing residuals with a root-mean-square (RMS) of ∼ 100 ns. In
order to achieve this ambition, three major Pulsar Timing Arrays (PTAs, see Foster & Backer,
1990; Romani, 1989) were constructed: the Parkes Pulsar Timing Array (PPTA, Manchester
et al., 2013), the European Pulsar Timing Array (EPTA, Desvignes et al., 2016; Janssen et al.,
2008) and the North-American Nanohertz Observatory for Gravitational waves (NANOGrav,
Demorest et al., 2013). These three were subsequently combined in the International Pulsar
Timing Array (Perera et al., 2019; Verbiest et al., 2016). Even though substantial progress
has been achieved in improving timing precision and sensitivity in subsequent data releases,
both at the regional and global level, a detection has so far not been achieved, primarily due
to two limiting factors. Firstly, even the most up-to-date and highest-quality data sets (like,
e.g., the NANOGrav data set from Alam et al., 2021a,b) have too few pulsars with timing
precision below or at the 100-ns level. Secondly, there are a number of corrupting effects,
whose impact on timing precision requires careful consideration (Shannon & Cordes, 2012;
Verbiest & Shaifullah, 2018). One example of recent progress in that regard, is the influence
of the Solar-System Ephemerides, which was known to affect GW experiments (Tiburzi et al.,
2016), but it was not properly taken into account until more recently (e.g., Arzoumanian et al.,
2018b). Beyond this, several fundamental aspects of pulsar-timing analyses were identified
as potential targets for optimization and harmonisation efforts during the first global PTA
data combination (Verbiest et al., 2016). Three particular recommendations from that work
will be described below and investigated in detail throughout this paper.

Firstly, all standard pulsar-timing analyses are based on matching a so-called template or
“standard” profile to the observations. There are, however, several different ways in which
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such template profiles can be constructed. As outlined by Lorimer & Kramer (2005), tradi-
tionally template profiles are constructed through addition of a large number of observations,
thereby resulting in a pulse profile with a far higher signal-to-noise ratio (S/N) than any given
observation. Such templates have the advantage that they by definition fully resemble the
actual pulse shape, but the noise of the original observations is also contained in the template
and hence may cause inaccurate correlations commonly referred to as “self-standarding”
(Hotan et al., 2005). Three strategies have been devised to mitigate this issue: firstly, the
template profile can be smoothed; secondly the template can be restricted to contain only
the single brightest observation (which is then removed from the subsequent timing analysis
and only used as template profile); and thirdly the template can be modeled with noise-free
analytic functions (Lorimer & Kramer, 2005). As can be seen in, e.g., Demorest et al. (2013);
Desvignes et al. (2016); Kerr et al. (2020) several of the above-mentioned approaches are
presently in use, but no comprehensive comparison of the various template-creation options
has been published.

Secondly, after a template profile has been created, the time of arrival (TOA) of a given
observation is derived from the cross-correlation between the observation and the template.
Traditionally this has been done in the Fourier domain, by fitting the phase-gradient of the
cross-power spectrum of the template and the observation (Taylor, 1992), commonly referred
to as the Phase Gradient Scheme (“PGS”) method. However, the standard implementation of
this approach has often been found to report underestimated uncertainties. One suggested
solution determines the TOAs in the same way, but derives the TOA uncertainties from a
Monte-Carlo analysis (referred to as the “FDM” algorithm). This latter solution has been
suggested (Verbiest et al., 2016) as being superior. Furthermore, Hotan et al. (2005) proposed
a Gaussian-interpolation (“GIS”) cross-correlation algorithm (CCA) in the time-domain,
which is supposedly better suited to low-S/N data sets. While recent pulsar-timing efforts
have increasingly adopted the FDM algorithm, usage of the PGS method is still widespread
(Desvignes et al., 2016), in some cases (Demorest et al., 2013) with lower bounds imposed
on the pulse S/Ns in order to avoid the worst underestimation of TOA uncertainties. Here
too a comprehensive, comparative evaluation of the possible alternatives has so far not been
undertaken.

Lastly, potential corruptions in the derived TOAs can arise from the usage of data-
recording systems with large (⪆0.3) fractional bandwidths (Verbiest & Shaifullah, 2018).
This is particularly the case if the pulse-profile changes shape across the band and the
scintillation bandwidth is of the same order as (or slightly smaller than) the observing
bandwidth. Both of these conditions appear to be likely if the fractional bandwidth is
large (Dai et al., 2015; Levin et al., 2016), causing the frequency-averaged profile shape to
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vary from one observation to the next. If the TOAs are derived from frequency-averaged
observations and template, then the aforementioned variations will be reflected in the TOAs
and in the TOA uncertainties, worsening the overall timing precision. One solution to this
problem is to carry out two-dimensional template matching where both observation and
template have frequency resolution and where in addition to the phase offset (or TOA) a
frequency drift (or dispersion measure) is determined (Liu et al., 2014; Pennucci et al., 2014a).
An alternative solution is to derive multiple TOAs across the bandwidth of the observation
(Arzoumanian et al., 2015; Demorest et al., 2013), either against a frequency-averaged
template or through matching each channel of the observation against the corresponding
channel in the template. In all of this, it is an unsolved question which TOA bandwidth
would be optimal: too narrow a bandwidth would leave little signal and create TOAs that
have high levels of radiometer noise, too wide a bandwidth and the scintillation effects risk
becoming significant – the optimal TOA bandwidth is likely strongly pulsar dependent.

To date, PTAs either fully frequency averaged their TOAs (Desvignes et al., 2016), used
timing-model extensions to correct for profile-shape variations (Demorest et al., 2013) or
have carried out a mixed approach where both frequency-averaged and frequency-resolved
TOAs have been derived (Kerr et al., 2020).

The three detailed aspects of TOA creation outlined above are investigated in this paper.
Specifically in Section 3.2 we introduce the data and pulsars we use to test and compare
the aforementioned aspects of timing on these data; in Section 3.3 we describe the various
analysis methods that were compared: template creation is discussed in Section 3.3.1,
template matching algorithms in Section 3.3.2 and optimal TOA bandwidth determination in
Section 3.3.3. We discuss our findings on the three test pulsars in Section 3.4 and summarize
of our findings in Section 3.5.

3.2 Observations

Our analysis is based on data from the newest generation of data recorders at four of the radio
telescopes that constitute the EPTA: the Effelsberg radio telescope (designated as EFF), the
Jodrell Bank Lovell radio telescope (JBO), the Nançay decimetric radio telescope (NCY) and
the Westerbork synthesis radio telescope (WSRT). Details on the observing systems used at
each of these observatories are given below. The pulsars used for this initial investigation are
PSRs J0218+4232, J1713+0747 and J2145−0750. These three pulsars were chosen because
they represent a variety of characteristics. Specifically, PSR J1713+0747 is very bright, with
a small duty cycle, and is one of the most precisely timed MSPs in PTAs. PSR J0218+4232
has a relatively high dispersion measure (DM), is fainter and consequently not as well timed.
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Table 3.1 Basic parameters for the pulsars in our sample. Parameters are merely indicative
and have been rounded. As an indication of the timing precision, the weighted RMS residual
is quoted for the IPTA combination that provided the best timing precision for the given
pulsar, rounded to one significant digit. ECORR refers to the mean “frequency-averaged
EQUAD parameter” (Arzoumanian et al., 2014) and is a measure for the strength of SWIMS
present in a given pulsar.

Parameter J0218+4232 J1713+0747 J2145−0750 References
Period (ms) 2.3 4.6 16.1 Bailes et al. (1994); Foster et al. (1993); Navarro et al. (1995)
DM (cm/pc3) 61 16 9 Bailes et al. (1994); Foster et al. (1993); Navarro et al. (1995)
Orbital Period (days) 2.0 67.8 6.8 Arzoumanian et al. (2018a); Desvignes et al. (2016)
Flux density S1400 (mJy) 0.9 9.1 10.3 Dai et al. (2015); Kramer et al. (1998)
Pulse Width W50 (%) 43 2.4 2.1 Manchester et al. (2013); Stairs et al. (1999)
IPTA Timing RMS (µs) 7 0.2 1 Perera et al. (2019); Verbiest et al. (2016)
IPTA ECORR – 0.16 1.3 Perera et al. (2019)

Table 3.2 Description of the observational set-up for the data used in this paper. Given
are the telescope identifier (see text), the name of the data recording device (referred to as
“back-end”), the centre frequency fc of the observations, the observing bandwidth BW (not
considering RFI or band-edge removal), the number of frequency channels Nchan and the
number of phase bins across the profile Nbin. Note that for our analysis the number of phase
bins was in all cases reduced to 256.

Telescope back-end fc BW Nchan Nbin
(MHz) (MHz)

EFF PSRIX 1347.5 200 128 1024
JBO Roach 1532 400 400/1600 2048
NCY NUPPI 1484 512 128 2048

WSRT PuMa II 1380 160 512 512

PSR J2145−0750 is in between the other two in terms of brightness and timing precision,
but has a significantly longer spin period and appears to have more significant stochastic
wide-band impulse-modulated self-noise (or SWIMS, Osłowski et al., 2011, commonly also
known as pulse-phase jitter).

Some basic properties for these three pulsars are given in Table 3.1; the observatory-
specific details of the observations used are given in Table 3.2 and the number and date
ranges of the observations are given in Table 3.3.

In addition to the telescope-specific RFI-mitigation strategies described below, all data
were visually inspected through the software suite PSRCHIVE (Hotan et al., 2004a; van
Straten et al., 2012) before TOAs were derived as described in Section 3.3. Specifically,
since the data near the edge of each sub-band are corrupted by aliasing and spectral leakage
problems, these channels are excised with the PAZ program.
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Table 3.3 Summary of observations used in this paper. For each pulsar-telescope combination
the number of observations Nobs, MJD range and observing time span T is given.

PSR Tel ID Nobs MJD T (yrs)
J0218+4232 EFF 53 55600–57705 5.8

JBO 128 55666–58559 7.9
NCY 467 55854–58558 7.4
WSRT 65 54775–57131 6.5

J1713+0747 EFF 96 55633–58713 8.4
JBO 301 55905–58610 7.4
NCY 368 55800–58558 7.6
WSRT 112 54155–57195 8.3

J2145−0750 EFF 62 55633–57733 5.7
JBO 122 55880–58495 7.2
NCY 265 55803–58555 7.5
WSRT 85 54520–57135 7.2

3.2.1 Effelsberg Radio Telescope

The Effelsberg radio telescope is a homological Gregorian design with a 100-m paraboloidal
primary reflector and a 6.5-m ellipsoidal secondary reflector, which makes the Effelsberg
radio telescope the world’s second-largest fully movable telescope. It operates at wavelengths
from about 90 cm to 3.5 mm (i.e. observing frequencies from 300 MHz to 90 GHz).

The data from Effelsberg presented in this research were acquired with a typical cadence
of 3–4 weeks between 2011 and 2019 with an integration time per source of about 30 min per
observation. The data recorder (henceforth referred to as “back-end”) used was the PSRIX
pulsar-timing system (Lazarus et al., 2016), which is based on ROACH boards and carries
out coherent de-dispersion on CPUs using the DSPSR (van Straten & Bailes, 2011) package.
The observations were taken with the P-217 and P-200 receivers, centered at 1.3475 GHz
in a frequency-multiplexing mode where eight 25-MHz-wide sub-bands are independently
dedispersed and written to disk. This results in observations with a total of 200 MHz of
bandwidth, 128 frequency channels, 1024 phase bins of 4.47 µs width, 10-second integrations
and full polarization information.

These data were combined in time and frequency with the PSRADD command of the
PSRCHIVE package (Hotan et al., 2004a; van Straten et al., 2012). Subsequently radio-
frequency interference (RFI) was removed automatically with CLEAN.PY, the RFI excision
script of the COASTGUARD package (Lazarus et al., 2016), using the “surgical” algorithm.
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3.2.2 Lovell Radio Telescope

At Jodrell Bank Observatory the 76-m Lovell telescope is used in a regular pulsar-monitoring
program, from which the observations used here were taken. Specifically, these observations
were taken at 1.532 GHz centre frequency over a time-span of ∼7.5 years with a typical
cadence of three weeks and typical integration time of 15 minutes. For PSR J1713+0747 the
cadence was closer to one week. The back-end used for these observations was a ROACH-
based back-end very similar to the one used at the Effelsberg observatory and described by
Lazarus et al. (2016), and using the DSPSR package (van Straten & Bailes, 2011) for real-time
coherent de-dispersion.

The JBO observations have an effective bandwidth of 400 MHz split over 25 16-MHz-
wide sub-bands, each channelized into 1 or 0.25 MHz wide frequency channels. The number
of phase bins varies between 256 and 2048 depending on the pulsar observed.

To remove the RFI, the spectral kurtosis method for real-time RFI removal (Nita et al.,
2007) was applied during the DSPSR pre-processing, after which the data were run through
some basic RFI-removal scripts and finally were visually inspected for excluding the remain-
ing RFI.

3.2.3 Nançay Decimetric Radio Telescope

Built in 1965, the Nançay Decimetric Radio Telescope (NCY) is a Kraus-type telescope
with a collecting area of 6912 m2, equivalent to a 94-m parabolic dish. Since 2011, NCY
observations of pulsars are done with the ROACH-based NUPPI back-end (Cognard et al.,
2013), a version of the Green Bank Ultimate Pulsar Processing Instrument (DuPlain et al.,
2008) designed for Nançay. With a total bandwidth of 512 MHz, the NUPPI back-end splits
the full bandwidth into 128 channels, each channel with 4 MHz bandwidth. The observations
used here were centered at 1484 MHz and were coherently dedispersed in real-time on GPU
units that are part of the NUPPI system.

The pulsars were observed with NUPPI since 2011 with a cadence that varied between
five and ten days and with an integration time between 45 and 60 minutes per observation.
Various automated RFI excision schemes were applied in post-processing offline.

3.2.4 Westerbork Synthesis Radio Telescope

The Westerbork Synthesis Radio Telescope (WSRT), located in the Netherlands and operated
by the Netherlands Institute for Radio Astronomy (ASTRON), is an east-west interferometric
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array with 14 25-m parabolic dishes, which in terms of collecting area is equivalent to a 94-m
single telescope.

Pulsar monitoring at the WSRT has been carried out at 350 MHz, 1.38 GHz and 2.27 GHz
with the Pulsar Machine II (PuMaII) back-end (Karuppusamy et al., 2008). Pulsar obser-
vations are recorded in eight 20-MHz-wide sub-bands, for a total observing bandwidth of
160 MHz with 512 (= 8× 64) frequency channels. Coherent de-dispersion is performed
offline with the DSPSR package.

The observations used in this paper were taken at a centre frequency of 1380 MHz, had a
cadence of roughly one month and a total integration time of about 30 minutes.

3.3 Data Processing Techniques

In this section we describe the different algorithms and methods we use and compare.
Specifically, the template creation methods are described in Section 3.3.1, the template-
matching algorithms are outlined in Section 3.3.2 and the analysis to determine the optimal
TOA bandwidth is described in Section 3.3.3. All of these algorithms and methods make use
of the PSRCHIVE and TEMPO2 (Hobbs et al., 2006) software packages.

3.3.1 Template Creation and Comparison

The ideal template describes the pulse profile shape in perfect detail, without additive noise.
A vital and complicating aspect in this regard is the fact that the achievable timing precision
for a given profile shape is a strong function of the higher-frequency components present in
the profile shape, i.e. of sharp features in the profile (e.g., van Straten, 2006). Consequently,
depending on the pulsar in question, noise-mitigation methods like smoothing or modeling
of template profiles may require particular care in order to prevent negative impacts on the
timing potential of a given pulsar.

Common approaches towards template generation were already discussed in the introduc-
tion, thus here we summarize the four different methods we compare:

Single-brightest observation (henceforth “single”): Here we take the observation with
the highest S/N for use as a template and remove it from the observations to be timed.
This approach has the advantage that all true features of the pulse profile are present in
the template, but the disadvantage that the template tends to have higher noise levels
than in alternative approaches. While this approach is convenient for pulsars that have
large variations in S/N since the noise present in the template for such pulsars may
be negligible in comparison to the noise present in the typical observation. However,
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Figure 3.1 Peak-normalized added template profile and profile differences for
PSR J2145−0750 data from the NCY.

in the case that the dataset is composed of a limited number of observations, it can
be disadvantageous to exclude the most valuable (i.e. brightest) observation from the
timing.

All observations added (henceforth “added”) : This approach also has the advantage that
by definition all true profile features are present in the template; and particularly for
pulsars with stable S/Ns the added template profile would have a much higher S/N than
the single template. The main disadvantage is the risk of self-standarding (Hotan et al.,
2005), which is typically expected to be significant for profiles that are comprised of
less than multiple hundreds of observations. For pulsars that scintillate significantly,
the increase in S/N will be less dramatic and even larger numbers of observations may
be required to avoid the issue of self-standarding.

Added with smoothing (henceforth “smoothed”): Here the added profile is taken as a
basis and a smoothing filter is applied subsequently. Specifically in the following
we will use templates smoothed with the default wavelet-based smoothing algorithm
(Demorest et al., 2013), i.e. with a Daubechies wavelet with factor 8. Limited testing
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with variations of the smoothing parameters and wavelets used indicated that these
generally did not result in significantly different results for our analysis. The advantage
of this approach is that the self-standarding issue should be removed as the noise
in the template is largely suppressed, but this comes at the cost of a potential loss
or suppression of sharp features in the pulse profile. An added complication is that
smoothing algorithms can introduce artefacts in the template. The precise application
of the smoothing algorithm could in itself be expanded to a far more extensive study,
as results may also depend on the number of phase bins across a profile (i.e. the extent
to which high-frequency profile features are resolved or not), but for the present work
we restrict ourselves to the most standard application of this method, in order to limit
the dimensionality of our optimization problem.

Analytic profile (henceforth “analytic”): For this profile, von Mises functions were fitted
to the added profile. Given the high S/N of the added profiles, a large number of
components was typically required. Components were added and fitted interactively to
avoid overfitting and to ensure as good a template profile as possible. This method has
the clear advantage that the template profile is truly noise-free, but often not all sharp
features may be represented in the profile, either because they are mis-identified as
noise or because the analytic function cannot be indefinitely extended without affecting
the stability and convergence of the least-squares fit. Consequently self-standarding is
of no concern, but timing precision may be compromised. Another advantage of as
analytic template (do with Gaussians) is that it can be scaled to any profile resolution,
e.g., same template for different set ups.

An illustration of how the different methods compare is included in Figure 3.1 which
shows the profile shape of the added template for the NCY data of PSR J2145−0750 and
the profile differences of the added template with the other three templates. As expected the
difference with the single and smoothed templates is primarily white noise. Some apparently
non-white variation is noticeable (at the 0.2% RMS as integrated level) in the single-pulse
difference plot towards the end of the pulse profile, which may be due to calibration errors
that would average out in the added profile but which may affect individual observations more
significantly, or due to the fact that the frequency-averaged pulse profile can vary because
of scintillation. The profile difference with the smoothed template consists purely of white
noise that is independent of pulse phase; and the difference with the analytic profile shows
how in this particular case this approach does not succeed in accurately describing the profile,
leaving some high-frequency profile-shape differences particularly in the vicinity of the pulse
edges. It is noteworthy that many of the features that are removed in the wavelet smoothing,
are also removed by the analytic modeling. In other words, the difference profiles of the
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smoothed and of the analytic templates show a significant number of matching features,
particularly in the off-pulse phase range. Furthermore the difference between the single
and added profile is also significant and not merely consistent of noise. This is likely due
a combination of profile evolution across the bandwidth and scintillation. While the added
profile would have scintillation effects mostly averaged out (hence showing the profile shape
averaged across the bandwidth), the single-brightest observation is severely affected by a
scintle at the bottom of the band.

Note that throughout the presented work the aforementioned templates are used only
in their frequency-averaged form, except for the analysis focused on the optimal TOA
bandwidth. In that case the single, added and smoothed templates were also created in
frequency-resolved form1.

3.3.2 Time of Arrival Determination Algorithms

After creation of a template profile, the TOA of a given observation can be determined by
matching the observation to this template. Specifically, the observation O can be related to
the template T as (Taylor, 1992):

O (φ) = a+bT (φ + τ)+n(φ) ,

where φ is the rotational phase, a is an arbitrary offset, b is a scale factor, τ is the phase offset
between observation and template and n(φ) is a noise term. In order to solve for τ , a variety
of possible algorithms have been proposed. We will compare three of the more commonly
used algorithms, described briefly below.

Fourier Phase-Gradient (PGS): The most common template-matching algorithm used to
date (and the default algorithm used in the PSRCHIVE software package) is the so-
called PGS algorithm described in detail by Taylor (1992). Based on the Fourier shift
theorem, it matches the template to the observation by fitting for a slope in the Fourier
space. A clear advantage of this approach is that the result does not depend on the phase
resolution of the data and as such can result in significantly more precise measurements
than time-domain cross-correlation methods (which, according to Taylor, 1992, are
limited to a precision about ten times smaller than the data’s resolution). The main
disadvantage of this method is that in the low-S/N regime it underestimates the TOA

1A comparative analysis of frequency-resolved analytic templates (as developed by Liu et al., 2014; Pennucci
et al., 2014b) is deferred to a separate study, given the inherent complexity and multi-dimensional analysis
necessary for such work. The comparison of frequency-averaged data-derived, analytic and smoothed templates
which we present here will meaningfully inform such a future frequency-resolved analysis



58 A Comparative Analysis of TOA Creation Methods

uncertainty since the TOA distribution no longer follows a Gaussian distribution (see
the discussion in Arzoumanian et al., 2015, Appendix B.).

Fourier-Domain with Markov-Chain Monte-Carlo (FDM): One proposed solution to the
underestimation of low-S/N TOA uncertainties is to probe the likelihood–phase shift
dependence with a one-dimensional Markov-Chain Monte-Carlo, from which the TOA
variance can be derived. This results in TOA values that are identical to those of the
PGS algorithm, but TOA uncertainties that are more realistic (i.e. larger), particularly
for low-S/N observations.

Gaussian Interpolation Shift (GIS): This algorithm carries out a standard cross-correlation
of the template and observation in the time domain; and determines the phase offset
by fitting a Gaussian to the cross-correlation function, whereby the centroid of the
resulting Gaussian is defined as the TOA; the offset required to double the χ2 of
the template-observation comparison is defined as the TOA uncertainty (Hotan et al.,
2005). As mentioned above, this time-domain method has limited precision, but it was
proposed as a more robust TOA determination method in the low-S/N regime.

The application of a Gaussian in determining the peak position of the cross-correlation
function should result in timing precision exceeding 10% of a phase bin, although this
likely depends on the exact pulse shape.

3.3.3 Time of Arrival Bandwidth and Jitter Noise

As receiver systems for pulsar timing have had an exponential growth in their observational
bandwidth, the traditional approach of using frequency averaging observations to create total
profiles (and TOAs) has become sub-optimal. The primary reason for this is the potential
for making the derived TOAs less precise due to the combined effects of scintillation and
frequency evolution of the pulse profile shapes.

At the other extreme, TOAs determined using native frequency resolution (referred to
hereafter as “fully frequency-resolved TOAs”) significantly decreases the S/N, occasionally
leading to the low-S/N regime where some template-matching algorithms don’t provide
reliable uncertainties anymore. Consequently, there must be an optimal TOA bandwidth
which maximizes the TOA precision by limiting the deleterious effects of both low S/N in
fine frequency channels and those due to scintillation and profile evolution.

Here we have investigated such an optimal TOA bandwidth for a set of pulsar and
back-end combinations, by quantifying the achievable timing precision as a function of
the TOA bandwidth. To do so, we combined the best template-matching algorithm with a
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frequency-resolved version of the optimal template profile, and then carried out the timing
of each pulsar and back-end combination of our test dataset for a range of possible TOA
bandwidths. This allowed us to investigate the improvement in the goodness of fit via the
reduced chi-squared of the linearized least squares fit and the RMS of the timing residuals,
as well as the number of TOAs that remain after removing TOAs corresponding to total
intensity profiles with S/N less than 8, following Arzoumanian et al. (2015).

Since radiometer noise is proportional to the square root of the TOA bandwidth while
jitter noise or SWIMS (Cordes & Downs, 1985; Liu et al., 2012; Osłowski et al., 2011)
behaves as a constant noise term, added in quadrature to the radiometer noise to achieve the
timing RMS, the expected result of the analysis is that the RMS converges to a constant value
as the TOA bandwidth increases:

σres =

√
C

T B
+σ2

J , (3.1)

Here σres is the residual RMS of the post-fit residuals, C is a constant defined by the
radiometer equation, T is the integration time of the TOAs, B is the bandwidth of the TOAs
and σJ is the RMS introduced by SWIMS. This last term is proportional to 1/N ∝ 1/T , with
N being the number of pulses contained in each TOA2.

Although the above analysis could be used to accurately determine the SWIMS amplitude
for the observed pulsars, several complications prevent precise determination of σJ. Firstly,
RFI removal leads to a variable effective bandwidth for a significant number of TOAs.
Secondly, at small bandwidths many TOAs have very large error bars and artificially reduce
the RMS as the models then become over-specified. Finally, not all observations have the
same length, implying that any value derived for σJ from a formal fit of Equation 3.1 to a
sequence of σres (B) measurements is related to an ill-defined integration length. Finally, in
cases where the scintillation bandwidth is significantly larger than a single frequency channel,
but smaller than the observing bandwidth, unweighted frequency-averaging of data will
result in enhanced timing RMS for TOA bandwidths that are smaller than the scintillation
bandwidths, as TOAs within scintles will continue to improve their uncertainties with the
square root of the TOA bandwidth, but once the TOA bandwidth exceeds the scintillation
bandwidth, data from channels away from scintles will dampen the TOA precision. This will
result in an artificial worsening of the timing residual RMS for TOA bandwidths beyond
the scintillation bandwidth; and consequently will lead to an overestimate of the SWIMS
amplitude σJ. An example of this latter phenomenon is shown in Figure 3.2.

2For the relatively limited fractional bandwidths considered in this work, this term is unrelated to the TOA
bandwidth (Sallmen et al., 1999)
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Figure 3.2 A sketch of the dependence of σres on TOA bandwidth, for an idealized dataset.
The black dots represent RMS values, the blue dashed line indicates the median scintillation
bandwidth and the red line is a fit of Equation 3.1. The black line is for the case of pure
radiometer noise, i.e., with no jitter noise noise (σ j = 0) and for a unity radiometer constant
(C=1).
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While the above considerations prevent a meaningful connection to the physical phe-
nomenon of SWIMS, our analysis does allow a phenomenological determination of which
TOA bandwidth optimally balances the various effects that impact the final timing RMS.

3.4 Results and Discussion

To evaluate the timing precision as a function of the choice of template and CCA described
in Sections 3.3.1 and 3.3.2, we adopted the relevant timing models presented in Desvignes
et al. (2016). Those timing models were updated by combining the TOAs presented there, as
well as the data utilized in this work.

For each combination of the templates and CCAs described in Section 3.3, we then
perform a TEMPO2 (Edwards et al., 2006; Hobbs et al., 2006) analysis, fitting now only for
the pulsar spin and its first derivative as well as position and proper motion parameters. For
each fit, the reduced χ2 and the residual RMS value were recorded.

For this work, we do not model any red noise processes, while the DM models employed
are similar to those presented in the analysis of Desvignes et al. (2016), since the aim is
limited to comparing the performance of the templates and CCAs given a fixed model.

For each of these TOA sets we also recorded the resulting timing residuals.
Figures 3.3 and 3.4 demonstrates that the GIS scheme is the least reliable, typically

leading to heavily underestimated error-bars. As the pulsar brightness increases, the GIS
derived TOAs appear to perform slightly better (although this algorithm was developed to
be more effective on low S/N observations), but still does not perform as good as either the
PGS or FDM methods. Further, the “single” templates perform poorly, leading to TOA sets
with the greatest variance as well as, the least precise TOAs. “Added” templates generally
lead to the best TOA sets for the brighter sources while for the low S/N PSR J0218+4232
“analytical” or “smoothed” templates are preferred

Figure 3.3 presents a pulsar and telescope-wise analysis of the timing performance. Here
the poor performance of the GIS TOAs is clearly visible, across all systems. Further, it is
evident that FDM and PGS results often cluster for the two stronger sources, with FDM
results generally leading to almost identical reduced χ2 and RMS values, independently on
the template creation method. This shows that the effect of template choice can be somewhat
mitigated for such sources when these CCAs are used. Finally, the PGS and FDM clusters
appear to trade places in terms of the reduced χ2.

The timing residuals for each of the TOA sets were further assessed to check for the pres-
ence of a large unmodelled signal. Using a 2-tailed Kolmogorov-Smirnov test we compared
the distribution of these residuals against those expected for residuals containing a purely
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Gaussian or power-law signals or, a combination of both. We find that the timing residuals
for all TOA sets are Gaussian or a Gaussian and power-law mixed distributions, suggesting
that the updated timing models are sufficient given our data. As a result, the residuals have
close to normal distributions as shown in Figure 3.4a, except for PSR J0218+4232 when the
GIS CCA is used with the added template. Further, the kurtosis of the residual distributions
(see Figure 3.4b) shows that while FDM TOA always produce thin-tailed distributions, in
the case of stronger in-band profile evolution as shown by PSR J2145−0750 the PGS CCA
can lead to a fat-tailed distribution (having a non-zero kurtosis value), i.e. leading to some
TOAs appearing to be significantly offset. Such TOAs limit any automated outlier removal
procedures and thus FDM TOAs are preferred for large, automaticaly generated datasets
even if the overall timing RMS is not minimised.

For each pulsar, the timing performance as a function of the TOA bandwidth was assessed
using TOAs created with the ‘added’ template with the FDM CCA, by splitting the archives
into multiple channels. The exact choice of the number of channels is specific to the
telescope to accommodate for the different bandwidths. At Effelsberg, the NCY and WSRT
the archives were either fully scrunched in frequency or split into channels in multiple of
two up to maximum of 32. Due to a different native resolution at Jodrell Bank, the data were
either scrunched in frequency or split into five or multiples of ten, up to a maximum of forty
channels.

Following the method described in section 3.3.3, for each choice of number of channels,
a standard TEMPO2 timing analysis was carried out, fitting for the same timing parameters
as in Section 3.3 and the resultant RMS for each pulsar and telescope is plotted in Fig. 3.5.

From these plots, it is evident that the telescope dependent, achievable RMS decreases
asymptotically as a function of the TOA BW, as shown by the fit lines in Fig. 3.5. While the
lower telescope gain for JBO clearly limits this achievable, for the other three telescopes a
combination of factors influence the final limit on the minimum RMS.

For PSR J0218+4232, where the overall S/N of the profile continuously increases with
greater channel bandwidth, the overall timing RMS also continuously decreases. However,
beyond ∼500 MHz, the RMS starts to be limited by the system noise. Although J0218+4232
is known to exhibit “Large Amplitude Pulses” (Joshi et al., 2004), we do not find a significant
influence of those pulses in our data because of the extended integration lengths which imply
averaging over several million pulses for each TOA.

For PSRs J1713+0747 and J2145−0750, we find that the asymptotic RMS limit lies
close to a TOA BW of about 1 GHz, with there being only a marginal improvement in the
minimum RMS after 500 MHz for PSR J2145−0750, while for PSR J1713+0747 that limit
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Figure 3.3 Reduced χ2 and residual RMS for the three pulsars as a function of the selected
CCA and template and the different telescopes.
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Figure 3.4 Properties of the post-fit residuals obtained for each CCA and template combina-
tion. The symbols and colours are identical to those in Fig. 3.3. † The skew measure reported
above is the adjusted Fisher–Pearson standardized moment coefficient.
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lies at around 100 MHz for the Effelsberg, Jodrell Bank and Westerbork telescopes whilst for
the Nançay Radio Telescope this limit moves to ∼500 MHz.

As described in Section 3.3.3, these limiting RMS (henceforth “system limited noise
floor”; SLNF) include a measurement of the system and band noise, as defined in e.g.,
Lentati et al. (2016). Even though this limits the possibility of measuring the intrinsic
SWIMS contribution, we still find that for all TOA BWs less than or equal to the scintillation
bandwidth for a given pulsar (i.e., the gray bands plotted for Figs. 3.5b and 3.5c) the SLNF
is artificially boosted. However, at TOA BWs greater than twice the scintillation BW, the
SLNF rapidly falls to its minimum for a given system.

3.5 Conclusions

With regards to the choice of the template generation scheme, we find that the single brightest
observation leads to the worst timing performance. For the brighter pulsars the added,
smoothed and analytic templates lead to comparable, minimum timing RMS and red. χ2, but
for the lower S/N PSR J0218+4232 added templates can perform worse than the smoothed
and analytical templates.

The analysis presented above also upholds the recommendation of Verbiest et al. (2016);
the CCA of choice for high precision PTA work being the FDM algorithm. In all pulsar,
telescope and back-end combinations tested above, we find that FDM TOAs lead to the most
reliable TOAs, simultaneously improving the average timing residual and at the same time
leading to a more realistic estimate of the ‘system limited timing noise’.

However, we also find that in the case of bright pulsars, PGS derived TOAs can perform
similarly. Especially for archival data, where PGS might have already been employed, we
suggest that those TOAs may be retained, if recreation of the TOAs using FDM is not
possible. However, PGS derived TOAs appear to produce a larger amount of outliers, which
places limits on any automated outlier rejection. Further, in almost all combinations, while
PGS TOAs lead to a decreased timing RMS, the model fits appear to be worse (i.e., the red.
χ2 is increased) relative to the corresponding values for FDM TOA sets.

In addition, we find the GIS derived TOAs are not suitable for high-precision timing,
leading to conservative timing models and a loss of model parameter sensitivity.

Using the FDM CCA with added templates, we find that the optimal TOA bandwidth for
minimizing the achievable timing residual RMS is at least twice the scintillation bandwidth
for a given system.
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(b) ‘System limited’ timing noise estimates of J1713+0747.
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(c) ‘System limited’ timing noise estimates of J2145−0750.

Figure 3.5 System limited noise floor (SLNF) estimates for the three pulsars, when using the
added template with the FDM CCA to generate TOA with the available bandwidth at each
telescope divided into the respective number of channels. The shaded regions along the fitted
curves are the interquartile ranges for the fit, representing the error bounds on the estimated
SLNF. The gray vertical bands show the expected scintillation bandwidth, estimated from
the same dataset as we present here (Liu et al, in preparation).



Chapter 4

Improving Pulsar Timing Precision
through Optimal TOA Creation

This chapter is going to be submitted for publication as a research article to Astronomy &
Astrophysics.

Abstract: The measurement of pulsar pulse time of arrivals (TOAs) can be done through
template-matching of each pulse profile with a standard template. While there are several
combinations of templates and cross correlation algorithms (CCAs) that can be adopted
to determine TOAs and their uncertainties, utilizing different combinations may lead to
inconsistent results. In the previous chapter, using a subsample of pulsars to reflect the
different signal-to-noise regimes typical for pulsar timing array (PTA) data, we demonstrated
that data-derived templates combined with the FDM cross-correlation algorithm are usually
superior except for a few extreme cases. We now extend this analysis to thirteen MSPs, using
more than ten years of data from the European PTA (EPTA). Utilizing the frequency-resolved
templates, we assess the system-limited noise floor (SLNF) for each pulsar at various tele-
scopes in the band centered around 1.4 GHz. With this method, we also investigate the
optimal TOA bandwidth which can balance the radiometer noise and phase-jitter noise. We
conclude that the effect of pulse phase jitter noise is not the limiting factor for EPTA timing
precision, since the jitter levels we derive are far smaller than the radiometer noise.
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4.1 Introduction

Since their discovery, the short spin periods and extremely stable rotation characteristics of
Millisecond pulsars (MSPs, Backer et al., 1982) have enabled myriad applications in testing
fundamental physics. These applications include high-precision tests of general reality (GR,
Freire et al., 2012; Kramer et al., 2006b; Weisberg et al., 2010; Zhu et al., 2015), exploration
of the ionized interstellar medium (IISM, Keith et al., 2013; You et al., 2007a), development
of pulsar-based timescales (Hobbs et al., 2012), constraints on the equations-of-state for
neutron stars (Demorest et al., 2010; Lattimer & Prakash, 2007), measurement of the model-
independent properties of the pulsar itself (Verbiest et al., 2008), etc. However, one of
the most significant applications of regular pulsar timing observations is the detection and
characterization of low-frequency (nano-Hertz) gravitational waves (GWs, see e.g. Hobbs
et al., 2010; Verbiest et al., 2009), i.e. fluctuations in the fabric of space-time due to the
propagation of GWs, predicted by the theory of GR (Misner et al., 1973, see e.g.,). Due to
the extended distance between pulsars and the earth, PTAs, which are composed of an array
of MSPs, is most sensitive to low-frequency GW signals (Perera et al., 2019; Verbiest et al.,
2016). The potential sources of GWs in this band are likely an ensemble of SMBHBs, whose
combined, stochastic signal gives rise to the GWB. GWs have a unique quadrupolar signature
in the pulsar timing residuals, and a method based on the correlation between pulsar pairs on
the sky, as a function of the angular separation, known as the “Hellings and Downs” curve
(Hellings & Downs, 1983) can be used for identifying the signature of GWs.

Pulsar timing analysis determines the differences, also known as timing residuals, be-
tween the observed TOAs and the predicted TOAs, based on models for the astrometry and
ephemeris of the MSPs in the array. An accurate and detailed model would yield precise
timing residuals. However, the timing precision, which is quantified by the value of RMS of
the timing residuals, is limited by several categories of noise rooted either in the pulsar itself,
propagation path, or the observing system. To improve the timing precision and maximize
the probability of GW detection, various analysis methods, as well as hardware upgrades,
have been investigated and employed in PTA observations and the data analysis process.
However, the influence of different data analysis pipelines in disparate telescopes has not
been well investigated. Chapter 3 (Wang et al., 2021) demonstrated a method to compare the
influence of diverse template possibilities and CCAs with three pulsars, and concluded that
the data-derived and smoothed templates are typically preferred while the Fourier-domain
with Markov-chain Monte Carlo (FDM) template-matching algorithm is generally superior
to other algorithms. However, due to the limited number of pulsars in chapter 3 (Wang et
al., 2021), these results need to be inspected and verified with a larger sample of the EPTA
pulsars.
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In this paper, we verify the results present in Chapter 3 (Wang et al., 2021) with thirteen
MSPs observed with the EPTA telescopes. The selection of these pulsars has followed the
significance of EPTA pulsars (see Figure 4.1)as determined by Babak et al. (2016). Thus we
inspect the achieved timing precision as a function of the chosen templates and CCAs. In
addition, the timing floor of each pulsar in the four EPTA telescopes is also examined. This
chapter is organized in the following manner. In Section 4.2, we present an overview of the
observations and data reduction methodologies we used in this research. We describe the
timing result pulsar by pulsar in Section 4.3. Finally, we discuss these results in detail and
briefly summarize our conclusions in Section 4.4.

Figure 4.1 Cumulative normalized (S/N)2 from the most constraining pulsar to the least
constraining. The plot shows the cumulative S/N square over the total S/N square. The
ranking reveals that the pulsar timing array is significantly dominated by the six most
precisely timed pulsars. The other pulsars in the array, i.e. PSR J1640+2224 and subsequent,
contribute a far lower degree of sensitivity to the Hellings-Down correlated signal.
Image Credit: Babak et al. (2016)

4.2 Observations and Analysis Procedure

This paper reports on observations of an array of MSPs at L-band 1 from four EPTA telescopes
made over a 13-year span from 2007 to 2020. The EPTA is a multinational European

1L-band refers to the frequency range of 1–2 GHz in the radio spectrum.
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Table 4.1 Details of the observing set-ups of the different EPTA telescopes relevant to this
research.

Telescopes EFF JBO NRT WSRT
Pulsar back-end PSRIX ROACH NUPPI PuMa II

Frequency (MHz) 1347.5 1532 1484 1380
Bandwidth (MHz) 200 400 512 160

Average length (min) 30 20 50 30
Number of channels 128 400 128 512

Number of phase-bins 1024 512 1024 512

collaboration formed with the primary ambition of the direct detection of low-frequency
GWs. The concept and aim of this organization is first described in detail by Stappers et al.
(2006) and a more detailed overview of EPTA telescopes, the observing system as well as
the primary sources list are described by Desvignes et al. (2016).

The data set described in this paper is collected at EFF, JBO, NRT and WSRT with the
newest generation of instruments, respectively; the PSRIX (Lazarus et al., 2016), ROACH
(Bassa et al., 2016), NUPPI (Cognard et al., 2013; Liu et al., 2014), and PuMa II (Karup-
pusamy et al., 2008). All thirteen of the sources investigated in this paper were observed at
weekly to monthly intervals for the EPTA program, with the exception of NRT, which ob-
serves more frequently. At EFF, the observations were recorded across 200 MHz bandwidth
with a centre frequency of 1347.5 MHz. Data collected from both of the multi-beam and
single-pixel 21 cm receivers were used for this work. Typically, each pulsar is observed once
a month with an integration time of approximately 30 minutes. The pulsars observed with the
Lovell telescope at JBO were recorded using the ROACH back-end with a center frequency
of 1532 MHz across a total bandwidth of 400 MHz. The NRT observations span around
10 years, from 2011 to 2020, with an average cadence of about 5 to 10 days. Data were
recorded at the NRT with a centre frequency of 1484 MHz. The total 512 MHz bandwidth
id channelized into 128 channels and coherently de-dispersed. The WSRT observations
were carried out at a centre frequency of 1380 MHz across a bandwidth of 160 MHz. At
WSRT the pulsars were observed fo ∼ 30 minutes each time and with a interval of around
one month. The details of the bandwidths, frequency, and average length of the observations
in each telescopes are given in table 4.1.

In tables 4.2 and 4.3, we summarize the details of the pulsars, MJD range as well as the
number of observations retained after the preliminary data quality inspection.

The timing models used in this research are mostly based on Desvignes et al. (2016), but
with the reference clock and the Solar system ephemeris updated to “TT(BIPM2019)” and
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Table 4.2 Overview of the pulsars’ properties and observations.

PSR
EFF JBO NRT WSRT Data span

MJD Range Nobs MJD Range Nobs MJD Range Nobs MJD Range Nobs (yr)

J0030+0451 55633-58859 55 56095-58495 101 55803-59152 706 56080-57113 35 9.6

J0613−0200 55600-58620 91 56253-58494 83 55817-58851 318 54337-57096 101 12.4

J1022+1001 55660-58769 109 55600-58131 184 55839-58853 280 54154-57153 80 12.9

J1012+5307 55633-59083 103 55655-58495 144 55816-59288 799 54165-57153 83 14.0

J1024−0719 55633-59223 79 55674-59120 158 55891-59153 393 54287-57118 75 13.3

J1600−3053 55661-58621 60 56255-58559 84 55809-58852 624 54155-57131 62 12.9

J1640+2224 55633-58620 94 55653-58467 95 55826-58850 369 54155-57101 86 12.9

J1744−1134 55628-59161 87 55670-58560 94 55805-59212 213 55792-57154 52 9.4

J1857+0943 55633-58824 64 56011-58559 121 55800-58837 235 54337-57177 81 12.4

J1909−3744 - - - - 55812-59277 515 - - 9.5

J1918−0642 55633-59223 76 55652-58838 86 55874-59138 169 54490-57190 86 13.0

J2010−1323 56206-59223 34 55657-58494 96 55850-59149 298 54492-57148 75 13.0

J2317+1439 55633-58824 58 55662-58495 83 55850-58849 701 54490-57117 78 11.9

“DE438”, respectively. Since we do not intend to investigate the parameters of the timing
model, only the rotational frequency and its first derivative are fitted for in the study of
templates and CCAs. But as the dispersion measure at different sub-bands varies, we fitted
the DM, and also its first and second derivatives when possible, for the system limited noise
floor (SLNF) investigation.

Before any further processing, the data should first have any radio-frequency interference
(RFI) excised. All data, except those from JBO, were initially processed with the clean.py
tool from the COASTGUARD package (Lazarus et al., 2016) to excise polluted channel-
subintegration combinations. Any remaining RFI was then manually and interactively
removed by visual examination with the PSRCHIVE (Hotan et al., 2004a) pazi/paz tools. For
JBO data, a newly developed python package CLFD (Morello et al., 2019), which identifies
and zero-weights RFI with Tukey’s rule (Tukey, 1977) in a three dimensional feature space
(standard deviation, peak-to-peak difference and absolute value of the second bin of the
profile’s Fourier transform), is automatically applied.

4.3 Results

In this section, we describe the individual results for the 13 pulsars in our sample and
assess the impact of template and CCA choice for data from the different EPTA telescopes.
In addition, we illustrate the system limited noise floor analysis as well as optimal TOA
bandwidth determination. We first discuss individual pulsars with distinct results. For pulsars
with common results, we describe them together at the end of this section.
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Table 4.3 Overview of the pulsars’ properties.

PSR P (ms) Ṗ(10−20) Pb (day) DM (cm−3 pc) S1.4 (mJy) Ref.

J0030+0451 4.865 1.02 - 4.33 0.6 Lommen et al. (2000); Verbiest et al. (2016)

J0613−0200 3.062 0.96 1.20 38.79 1.7 Lorimer et al. (1995b); Verbiest et al. (2016)

J1012+5307 5.26 1.71 0.60 9.02 2.8 Lange et al. (2001); Nicastro et al. (1995)

J1022+1001 16.453 4.33 7.81 10.25 6.1 Camilo et al. (1996); Desvignes et al. (2016)

J1024−0719 5.162 1.86 - 6.49 1.5 Bailes et al. (1997); Manchester et al. (2013)

J1600−3053 3.598 0.95 14.35 52.33 2.5 Jacoby et al. (2007); Manchester et al. (2013); Ord et al. (2006)

J1640+2224 3.163 0.28 175.46 18.43 0.4 Desvignes et al. (2016); Foster et al. (1995)

J1744−1134 4.075 0.86 - 3.14 1.0 Bailes et al. (1997)

J1857+0943 5.362 1.78 12.33 13.30 3.3 Segelstein et al. (1986); Verbiest et al. (2016)

J1909−3744 2.95 1.40 1.53 10.39 1.0 Desvignes et al. (2016); Jacoby et al. (2003)

J1918−0642 7.646 2.57 10.91 26.55 0.6 Edwards & Bailes (2001b); Janssen et al. (2010)

J2010−1323 5.223 0.48 - 22.16 1.6 Jacoby et al. (2007)

J2317+1439 3.445 0.24 2.46 21.90 4.0 Camilo et al. (1993); Verbiest et al. (2016)

While we have already demonstrated the poor behavior of the templates from the single
brightest observation, as well as the GIS CCA in Chapter 3 (Wang et al., 2021); we recover
the same result for the majority of our current sample. Thus we will skip the comparison
and description of the single template and GIS CCA analysis in the following text unless a
unique result is obtained for a given pulsar, telescope and back-end combination.

4.3.1 PSRs J0030+0451 and J2010−1323

PSRs J0030+0451 and J2010−1323 are two isolated MSPs among our sources. PSR J0030+0451
is one of the nearest known MSPs in the Galaxy, with a distance of ∼325 pc (Arzoumanian
et al., 2018a). Its pulsed emission can be detected at various EM frequencies, including
X-ray (Becker et al., 2000), radio (Lommen et al., 2000) and γ-ray (Abdo et al., 2009). Since
the pulsar is likely to be influenced strongly by the Solar Wind (SW) at low solar angles,
the observations taken when the angular separation from the Sun is less than 10 degrees are
excluded in our analysis (Tiburzi et al., 2021). PSR J2010−1323 was discovered by Jacoby
et al. (2007) during the high galactic latitude survey. At some of the EPTA telescopes only
a small number of observations were made of these two pulsars and thus our results must
be interpreted with care for those datasets. PSR J0030+0451 was only observed 35 times
at WSRT while PSR J2010−1323 had 34 observations. In addition, both of these pulsars
possess extremely low S/N, with a mean S/N of 25.30 and 50.02, respectively. This limited
number of observations and low mean S/N have a significant impact on the timing analysis
and SLNF fitting. These problems are worsened by the outlier rejection scheme as shown in
Chapter 3 (Wang et al., 2021), which works primarily on the basis of S/N criterion.
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For the extreme cases with EFF and WSRT, the results of template and CCA choices
return two completely opposite directions. For PSR J0030+0451 at WSRT, the added
templates combined with PGS present an almost halved RMS compared with FDM, and both
of these two possibilities are significantly superior than other combinations. However, the
situation for PSR J2010−1323 at EFF is totally inversed, where the added template combined
with PGS yields an almost doubled RMS compared with FDM, while other combinations
present consistent and reasonable results.

Concerning the SLNF analysis, the fitting of these two special cases fail due to the low
S/N, since for the small TOA bandwidth cases, a larger proportion of TOAs are removed by
our outlier rejection scheme, leading to biased RMS values.

Except the specific cases mentioned above, these two pulsars, when observed with the
other telescopes, lead to results in accordance with the conclusions drawn in chapter 3 (Wang
et al., 2021): added and smoothed templates are typically preferred to some more commonly
applied alternatives, and the FDM template-matching algorithm is generally superior to or
competitive with other algorithms. The RMS values obtained with NCY decrease more
quickly than other telescopes as a function of TOA bandwidth, and the asymptotic RMS limit
appers to be reached with a TOA bandwidth of about 1 GHz.

4.3.2 PSR J1012+5307

PSR J1012+5307 was found by Nicastro et al. (1995) in a 14.5-hour binary system, with
an extremely low-mass helium-core white dwarf, ∼ 0.16M⊙, companion (Callanan et al.,
1998; van Kerkwijk et al., 1996). Making use of data from EFF and JBO, Lange et al.
(2001) presented a precision timing model of PSR J1012+5307 and determined the detailed
3D velocity motion for this binary system with a combination of radio timing and optical
observations. Lazaridis et al. (2009) revisited PSR J1012+5307 and improved the 3D velocity
information with 15 years of EPTA data. One of the noticeable results is the obtaining of a
new intrinsic eccentricity upper-limit of < 8.4×10−7, making it one of the smallest values
for a binary system.

PSR J1012+5307 is one of the most frequently observed pulsars within the EPTA,
especially with the NCY telescope. While this pulsar is being observed once per month at
EFF, JBO, and WSRT, NCY observes this pulsar roughly every four days. For the EFF data,
this pulsar shows a dramatically high χ2

r which is likely caused by profile variations due
to uncalibrated polarization (see Figure 4.2). Except for that telescope, the conclusions are
uniform. The combination of added template and FDM yields more reliable and precise
TOAs. PGS may result in slightly better RMS but would increase the χ2

r dramatically.
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Through the SLNF fitting in Figure 4.11, it is clear that EFF does not perform well with this
pulsar, and increasing the TOA bandwidth does not significantly lower the RMS.
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Figure 4.2 Profile variations of PSR J1012+5307 at EFF. The leading component of the main
pulse is zoomed in at the subplot. These variations are not found in other telescopes, and
thus we attribute these variations to instrumental problems specific to EFF, especially issues
with polarization calibration.

4.3.3 PSR J1022+1001

The averaged pulse profile of PSR J1022+1001 at L-band is characterized by two prominent
peaks. While the trailing peak component is highly linearly polarized, the leading component
does not show strong polarization (Hotan et al., 2004b). The pulse profile of PSR J1022+1001
is observed to show strong intrinsic variations with frequency, e.g. see Figure 4.3, (Liu et al.,
2015; Ramachandran & Kramer, 2003). Since the pulsar also strongly scintillates at L-band,
the intensity ratio of its leading and trailing peaks varies distinctly with time. While Kramer
et al. (1999) assert that the profile variations in the integrated pulse profile cannot be the
result of instrumental and propagation effects, van Straten (2013) find that instrumental
polarization artifacts are the main contribution to the profile instability. van Straten (2013)
put forward a new polarimetric calibration method, referred to as Measurement Equation
Template Matching (METM), to resolve this instability. Based on this new method, timing
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results from 7.2 years of data of this pulsar from the Parkes radio telescope show that the
standard deviation of arrival time residuals derived from METM-calibrated data is two times
smaller than with conventional calibration methods.

Besides the profile variation, this pulsar also has a very low ecliptic latitude (as low as
-0.06 deg), which indicates that the pulsar signals could be significantly influenced by the SW.
Generally, the SW contribution could induce DM fluctuations and an incomplete model of
that variation could introduce up to a few microseconds of delay in the TOAs (Tiburzi et al.,
2021). However, since only a tiny fraction of the observations were taken within 10 degrees
in solar elongation and no special SW corrections are applied to the data, we excluded the
observations taken when the Solar elongation is less than 10 degrees.

Within our data set, we noticed significant profile variations within the observed frequency
band as well, especially in EFF, JBO, and NCY data. In WSRT data, the profile variations
are still noticeable (presumably due to the narrow bandwidth), but not as obvious as other
telescopes. Also due to the loss of calibrator files, the observations of this pulsar obtained
with EFF are not polarization calibrated, the EFF TOAs consequently show a high χ2

r -value.
Accounting for the high χ2

r due to the variations, the timing precision at all telescopes
consistent with each other, this can be expected due to the extremely strong radiation of this
pulsar.
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Figure 4.3 An example of profile variation of PSR J1022+1001 at NCY as a function of
frequency. The data were polarization calibrated.
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For this pulsar, the WSRT data possesses the lowest SLNF, and the RMS decreases as
a function of TOA bandwidth, similar to JBO and NCY. However, the EFF data behaves
differently. The increase of TOA bandwidth does not improve the RMS as dramatically as
others, which is attributable to the lack of calibration for those data.

4.3.4 PSR J1600−3053

PSR J1600−3053 is a relatively bright MSP considering its large dispersion measure as
shown in Table 4.3. This binary MSP was discovered in the Swinburne high galactic latitude
pulsar survey (Jacoby et al., 2007). Since then, the pulsar has been well timed at very high
precision due to its intrinsically narrow pulse profile and high brightness.

During our analysis, we noticed that this pulsar is affected by strong DM variations
from the end of 2014 onwards. Figure 4.4 shows the DM time series for PSR J1600−3053
determined with the NCY dataset. We calculated the DM offset with the method described
in Donner et al. (2020) and introduced the ‘-dmo’ flag in the TOA files to correct for this
variation. After correcting the DM variation effects, the templates and CCAs results are
shown in Figure 4.7. We notice that for this pulsar, the added template works very well. The
most dramatic improvement appears on WSRT data, where added template accompanied
with the PGS method decrease the RMS significantly and the χ2

r value becomes consistent
compared with other telescope data.

For this pulsar, the profile difference (see Figure 4.7), between the added and smoothed
analytic templates are obvious, especially with the NCY data. Alternative smoothing func-
tions or fitting with more Gaussians did not remove these features, which may account for
the slight worsening of the smoothed and analytic templates behaviors.

As for the SLNF, it is clear that the RMS decreases considerably as the TOA bandwidth
keeps increasing, thus the timing precision of this pulsar at EFF would improve significantly
with the use of the new 400-MHz bandwidth back-end. Another obvious phenomenon is that
the SLNF fit for WSRT data failed with this pulsar, which we attribute to the extremely low
S/N (with a mean S/N of ∼ 20.46) of the observations. Low S/Ns of observations would
lead to underestimated TOA uncertainties and extra outliers, especially at frequency-resolved
timing where the S/N would be reduced with the decrease of TOA bandwidth. In addition,
low S/N would also lead to many TOAs being removed by the outlier rejection scheme, more
than 40% TOAs are removed at TOA bandwidth of 20 MHz or less.



4.3 Results 77

56000 56500 57000 57500 58000 58500 59000
MJD

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

D
M

(1
0

3
cm

3
pc

)

DM offset
DM offset uncertainty

Figure 4.4 DM time series for PSR J1600−3053 that was obtained with NCY data, with a
reference DM of 52.321 cm−3 pc.

4.3.5 PSR J1909−3744

With a spin-period of 2.95 ms in a 1.53-day binary system, PSR J1909−3744 is the fastest
spinning MSP in our data set. Thanks to its extremely stable pulse profile and narrow peak
with a small pulse duty cycle (∼ 1.5%), this pulsar remains the most precisely timed pulsar for
PTA purposes (Perera et al., 2019; Verbiest et al., 2016). However, due to its low declination,
it is only observed by the NCY telescope within the EPTA. Using data from NCY, Liu et al.
(2020) managed to achieve a timing precision of approximately 100 ns on a 15-year time
scale. Shannon et al. (2014) and Lentati & Shannon (2015) demonstrated that this pulsar
presents a surprisingly low level of jitter noise (∼10 ns), which indicates enormous potential
in improving the timing precision.

Due to the existence of achromatic red noise and DM noise components (Liu et al., 2020,
and Chalumeau et al, in preparation), the original RMS and χ2

r are as high as 0.241 ms and
∼ 25 respectively. In this case, we adopted the red noise model determined in Liu et al.
(2020) and the improvements of the timing solution are dramatic. From Figure 4.5, we can
see that for this extremely precisely timed pulsar, we did not find any noticeable improvement
after trying several combinations of templates and CCAs. In addition, we found that the
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difference between the mean error bars is also negligible. With regard to the TOA bandwidth
analysis, the noise fitting curve, as shown in Figure 4.6, fits the RMS as a function of TOA
bandwidth perfectly. The fitting also indicates that increasing the TOA bandwidth of the
NCY back-end alone would not significantly improve the timing precision. The SLNF we
estimated for this pulsar is ∼ 54ns.
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J1909-3744 at NCY

Figure 4.5 χ2
r and residual RMS for PSR J1909−3744 at NCY as a function of the selected

CCA and template.

4.3.6 PSR J1918−0642

PSR J1918−0642, a 7.65-ms MSP in a 10.91-day binary system, was discovered by Edwards
& Bailes (2001a) in an intermediate Galactic latitude survey. Janssen et al. (2010) studied
this pulsar with 7.5-year EPTA observations and updated the timing model. One notice-
able phenomenon they found is that the flux density of PSR J1918−0642 shows extensive
modulation due to refractive and diffractive scintillation.

Desvignes et al. (2016) and Fonseca et al. (2016) revisited this pulsar with 12.5-year
EPTA and NANOGrav 9-year data, respectively, and detected the Shapiro delay in this
system.

With regard to our analysis of PSR J1918-0642, while results yielded from JBO data
are in conformity with the conclusions of Chapter 3 (Wang et al., 2021), EFF, NCY and
WSRT TOAs imply that while added templates combined with the FDM template-matching
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Figure 4.6 SLNF estimates for PSR J1909−3744.

method are consistent with smoothed and analytic templates, they all obtained around 10%
higher RMS compared with PGS and added template combination. The most noticeable
result shows up at WSRT, where PGS has a 15% lower RMS and χ2

r .

4.3.7 Other Pulsars

The results from the remaining six pulsars in our data set are identical to the conclusions
drawn in Chapter 3 (Wang et al., 2021). It is clear that the FDM algorithm is always superior
to or competitive with other algorithms. The added, smoothed and analytic templates are
comparable and typically preferred in high precision timing analysis. In some cases, such as
PSR J0613−0200, the PGS method combined with added templates would yield a slightly
lower RMS, but at the expense of increased χ2

r . That is to say, for PSR J0613−0200,
PGS tends to underestimate the TOA uncertainty. More clearly, PSRs J1640+2224 and
J2317+1439 show that the added template combined with PGS cannot determine the TOAs
and their uncertainties correctly as both RMS and χ2

r values are noticeably higher than other
possibilities.

For PSRs J1024−0719, J1744−1134 and J1857−0642, the results agree exactly with the
results in Chapter 3 (Wang et al., 2021).
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4.4 Conclusions

This work reports on the impact of template and CCA choice on timing precision. We
targeted a large sample of EPTA pulsars and our investigations clearly show that the GIS
method is not suitable for high precision timing at all. No matter which template was applied,
GIS generally yielded fairly high levels of RMS. Also, it is noticeable that the GIS method
would overestimate the TOA uncertainties, leading to over-fitted timing residuals. FDM is
generally superior to the PGS algorithms, although some exceptions exist in our data, but
they are typically either due to the limited number of TOAs (i.e. PSR J0030+0451 at WSRT
and PSR J2010−0719 at EFF) or unreliable TOA uncertainties (e.g. PSRs J1640+2224 and
J2317+1439). Based on the results presented above, we conclude that FDM should be used
by default for high precision pulsar timing analysis.

With regard to the template, data-derived and smoothed templates are recommended.
Although such templates are at the risk of ‘self-standarding’ as described by Hotan et al.
(2005), we did not find any evidence in our templates for this issue. We noticed that in
Hotan et al. (2005) the ‘self-standarding’ problem diminishes when the S/N is larger than
25. Since most of our observations have high S/N, it does not have a big impact on our
investigation. In addition, with the increase of hardware upgrades and development of RFI
mitigation algorithms, ‘self-standarding’ does not continue to be a big issue for PTA analysis.
Therefore, we suggest that the added templates should be used by default for current and
future PTA TOA determination.

If we group the templates and CCAs by telescope, a few conclusions are very easy to
make. First of all, all the templates and CCAs work very stable with NCY data such that
the RMS values or the χ2

r values are all consistent and the differences can be neglected. In
other words, it makes little difference on how we select a template or CCA for NCY data.
JBO is similar with NCY, except that PGS combined with added templates is sometimes
unstable, especially for PSRs J0030+0451 J1640+2224 and J2317+1439, which tend to have
significantly high χ2

r . Apart from the added template, analytic and smoothed templates are
consistent on WSRT data. While PGS combined with added template tends to result in high
χ2

r on most pulsars, PSRs J0030+0451 and J1600−3053 have dramatic improvements of
RMS with the added template. For EFF, the added template combined with FDM is preferred
since they tend to yield either better RMS and χ2

r or consistent results. However, there are
two exceptions, PSRs J1744−1134 and J2010−1323, where smoothed and analytic templates
have better and consistent timing results.

On the whole, we think that for the currently timed pulsars for the PTA purposes, template
and CCA choices will have smaller impacts with the improvement of telescope sensitivity.
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But for the moment, we should pay great attention to CCA and template selection, especially
for telescopes with low sensitivity.
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Figure 4.7 Pulsar profiles of the added templates and profile differences between added and
single, analytic, smoothed templates. From top to bottom, PSRs J0030+0451, J0613−0200,
J1012+5307, J1022+1001, J1600−3053 and J1024−0719. Within each subplot, the profile
of each pulsar and the difference between added and single, smoothed and analytic templates
are shown from top to bottom respectively. In each row, the EFF, JBO, NCY and WSRT are
shown from left to right.
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Figure 4.8 Pulsar profiles from added templates and profile differences between added,
analytic and smoothed templates.
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Figure 4.9 χ2
r and residual RMS for the three pulsars as a function of the selected CCA and

template and the different telescopes.
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Figure 4.10 χ2
r and residual RMS for the three pulsars as a function of the selected CCA and

template and the different telescopes.
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Figure 4.11 SLNF estimates for the 12 pulsars.



Chapter 5

Noise Analysis of Six Pulsars and a Limit
on the Gravitational Wave Background

The direct detection of ultra-low frequency GWs utilizing PTAs approaches is a major
application of MSPs. The first detection of GWs in the nano-Hertz regime will likely be an
isotropic stochastic GWB created by the superposition of GWs from coalescing SMBHB
mergers. In this chapter, I analyze the low-frequency noise of data on six selected pulsars
obtained with the EPTA telescopes and compare our results with the finalized common-noise
analysis carried out by the EPTA community.

5.1 Introduction

The 21st century astronomy belongs to multi-messenger observations (Kelley et al., 2019).
Although EM observations have singularly dominated astronomy in the past centuries and
yielded many achievements, ranging from the historical observations of constellations in
the night sky, Lunar phases, Sun-spots and, the discovery of the outer belt gas giants
and their moons to the modern era of mapping the heliosphere, the local bubble (Cox &
Reynolds, 1987) and the galaxy, the cosmic microwave background (Penzias & Wilson,
1965), observations of gravitational lensing of EM radiation and even the discovery of pulsars
(Hewish et al., 1968). However, some extreme objects, such as BHs, cannot be directly
observed by EM observations since EM radiation cannot escape their gravitational fields,
although secondary emission from regions very close to the BH can arise from a number
of processes. Multi-messenger astronomy, which combines signals from EM radiation,
GW emission, and cosmic particles (neutrinos and cosmic rays) allows us to observe these
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super-dense and massive objects or the most violent and energetic events often associated
with the formation or destruction of these objects simultaneously.

The newest of the observed messengers, GWs are disturbances in the curvature of space-
time which could be generated by any accelerated masses, but due to the small associated
amplitudes or large distances, only the radiation from massive stars and catastrophic events
can be detected by us. As counterparts of the ground-based detectors (e.g. LIGO, Abbott
et al., 2004) and space-based detectors (e.g. LISA, Gianolio et al., 2004), PTAs (Foster
& Backer, 1990; Romani, 1989) are most sensitive to the low-frequency (10−9 −10−6 Hz)
GW signals, thanks to their ultra-long ‘arms’ which are effectively the distances between
pulsars and the Earth. PTAs utilize an array of the most stable MSPs (Alpar et al., 1982;
Backer et al., 1982) to detect correlated signals in pulsar timing residuals (see Chapter 2).
As they propagate through space-time, GWs will introduce a quadrupolar correlation in the
timing residuals of the pulsars in the PTA that is distinct from noise induced by local clocks
errors, improper polarization calibration, defective SSE, etc. (Verbiest et al., 2016). This
quadrupolar signature, known as the “Hellings and Downs” curve, depends only on the sky
angular separation between the pulsar pairs (Hellings & Downs, 1983).

Currently, there are three major PTA collaborations involved in low-frequency GW
detection: the EPTA (Desvignes et al., 2016; Janssen et al., 2008), the PPTA (Manchester
et al., 2013), and the NANOGrav (Demorest et al., 2013). These three PTAs also work
together as the International PTA (IPTA, Perera et al., 2019; Verbiest et al., 2016) to
maximize the sensitivity. More recently, the Indian PTA (InPTA, Joshi et al., 2018) joined
the IPTA community in March 2021. In addition, a number of burgeoning communities,
such as the Chinese PTA (CPTA, Lee, 2016), and the South African PTA are beginning to
organize themselves.

It is generally accepted that the stochastic GWB, generated from the entire population
of inspiraling SMBHBs, cosmic strings, and the primordial background relic (Saito &
Yokoyama, 2009; Sanidas et al., 2012), is likely to provide the first detection (Ravi et al.,
2015; Rosado et al., 2015). While no detection has been made yet, the PTAs are continuously
towards developing increasingly sensitive algorithms and datasets. In a significant step
forward, Lentati et al. (2013) laid out a model-independent Bayesian method to estimate the
spectral properties of GWB. More recently, a hybrid frequentist-Bayesian statistic method
has also been developed (Vigeland et al., 2018). Along with rapid algorithms and methods
developments, PTAs have been able to place increasingly constraining upper limits on the
GWB. The NANOGrav constraints on the stochastic GWB amplitude have evolved from
1.1×10−14 (Demorest et al., 2013) to 1.92×10−15 (95%) (Arzoumanian et al., 2020) for a
fiducial f−2/3 power-law spectrum. With 18 years of observations of six pulsars, the EPTA
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constrain the upper limit of strain amplitude A < 3.0× 10−15 at a spectral index of 13/3
(Lentati et al., 2015), while the PPTA using a selected sample of its pulsars has been able to
provide an upper limit on the strain amplitude of A < 1.0×10−15 (Shannon et al., 2015). A
summary of the various limits is shown in Figure 5.1.
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Figure 5.1 Summary of the different upper limits on the GWB from the different PTAs. The
dash markers show the limits for the GWB from successive publications by the different
PTAs, rescaled to a frequency of yr−1, following (Sesana et al., 2016). The shaded regions
shows the expected 1,2 and 3-σ likelihood ranges of the GWB from Shankar et al. (2016).
The references are as follows: (jhv+06): Jenet et al. (2006), (vlj+11): van Haasteren et al.
(2011), (dfg+13): Demorest et al. (2013), (src+13): Shannon et al. (2013), (ltm+15): Lentati
et al. (2015), (srl+15): Shannon et al. (2015), (vlh+16): Verbiest et al. (2016), (abb+16):
Arzoumanian et al. (2016), (abb+18): Arzoumanian et al. (2018a), (abb+20): Arzoumanian
et al. (2020)

The primary aim of this chapter is to measure the impact of our improved data processing
and TOA generation and selection methods on the pulsar timing data and quantify the
improvement in the sensitivity to a possible GWB or other common signals. To this end,
I select the same pulsars as those which appear in the forthcoming 6-pulsar dataset (The
EPTA collaboration, in preparation). Using a very simple noise modeling approach for the
individual pulsars, I test models for DM and red noise, as described in Section 5.4.
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This chapter is organized as follows. Section 5.2 briefly interpret noise model, GWB
model and Bayesian analysis method of PTA data. I detail the single pulsar analysis and
common noise analysis methods in Section 5.3, after which, in Section 5.4, I present results
of single pulsar analysis and common noise analysis and compared with EPTA dataset. I
finally test the sensitivity of both datasets to any common signals, in Section 5.5.

5.2 Data Model and Analysis Method

The TOAs present in this chapter are determined with method described in Chapters 3 and 4.
For this work, the TOAs determined with the added template along with the FDM algorithm
are used. Depending on the telescope sensitivity, observations were frequency-averaged into
sub-bands with bandwidths between 128 and 200 MHz. Therefore, for archives from EFF
and WSRT, I averaged the pulses over the entire band, while for the broad-band JBO and
NCY data, the averaging was performed to remain two and four sub-bands respectively.

5.2.1 Noise Model

The noise model used in this work is based on the model described in Lentati et al. (2015,
and references therein), where the stochastic noise of pulse TOAs is assumed to be composed
of two components: Uncorrelated noise (also referred to as white noise) and time-correlated
noise (red noise). The former component is usually determined through cross-correlation of
pulsar pulse profiles and a template. The template-fitting TOA uncertainties (also known as
error bars, σ ) are regarded as an estimate of white noise, however, the calculated uncertainties
would usually underestimate the white noise level due to the existence of other white noise
sources, such as the jitter noise and improper polarimetric calibration. In order to account
for the neglected noise, two corrective white noise parameters are introduced in the noise
model, namely EFAC, which is a multiplicative scale factor applied to the template-fitting
uncertainties, and EQUAD, which adds uncertainties in quadrature. The revised TOA
uncertainties, σ̂ can be expressed as:

σ̂ =
√

(EFAC · σ)2 + EQUAD2. (5.1)

In addition to white noise, the timing residuals for each pulsar contain low-frequency
red noise which can be roughly decomposed into two components: chromatic (frequency-
dependent) such as DM variations, and achromatic (frequency-independent) red noise (RN)
such as intrinsic pulsar spin noise and GW noise. The spin noise is thought to be associated
with rotational irregularities of the pulsar itself while the DM-induced red noise is related to
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changes of the electron density distribution in the ionized interstellar medium between the
Earth and the pulsar. The DM noise model can be further split into two components, a long
term process corresponding to the bulk changes in the IISM moving across the LOS, which I
fit using a Gaussian process (GP) model, DMGP and an annual component arising due to the
effect of the motion of the LOS due to the Earth’s orbital motion, DMannual which I test for
but do not find any support for in our data. Thus our total noise model can be represented as:

s = DMGP +RN (5.2)

5.2.2 Gravitational Wave Background Model

Sazhin (1978) and Detweiler (1979) first suggested that GWs can be detected through pulsar
timing methods as GWs would induce an extra red noise in the timing residuals. The PTA
concept was then put forward to separate and analyze this GW-induced noise (Foster &
Backer, 1990). However, since the GW-induced noise is immersed in other sources of noise,
e.g. spin noise and DM variations, characterizing and minimizing all other sources of noise,
especially the spin noise in each pulsar is critical for a robust GW detection. In this section,
I describe the spectral model of a GWB-induced stochastic noise process with a peculiar
correlation between pulsar pairs (Hellings & Downs, 1983).

Generally, GWB sources can be described with a power-law characteristic strain spectrum
hc( f ), expressed as:

hc( f ) = AGWB

(
f

yr−1

)α

, (5.3)

where AGWB is a dimensionless strain amplitude at a GW characteristic frequency f of 1
yr−1, α is the slope of the spectrum and it varies depending on the origin of the GWB. For a
GWB composed of inspiraling SMBHBs, α is equal to -2/3 (Jaffe & Backer, 2003; Phinney,
2001). In addition, another quantity that is normally used to describe GWB sources is the
GWB energy density ΩGWB, which is described as:

ΩGWB =
2π2

3H2
0

f 2h2
c( f ), (5.4)

where H0 is the Hubble constant. Finally, the observed timing residuals due to the GWB are
described by the one-sided power spectral density S( f ), as given by

S( f ) =
1

12π2 f 3 h2
c( f ) =

A2
GWB

12π2

(
f

yr−1

)−γ

yr3, (5.5)
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where γ = 3−2α , and for the spiraling SMBHBs model, γ = 13/3.
GW signals, which will appear as achromatic noise in the timing residuals, are a

temporally-correlated stochastic process. Unlike other noise components that are either
monopolar or bipolar or fully uncorrelated, the GW signal is the only quadrupolar signal we
expect and thus can be separated through determination of the angular correlation between
pulsar pairs (Hellings & Downs, 1983). To account for the red noise in the pulsar timing
dataset, both the chromatic and achromatic processes are described with single power-law
spectra as,

Sr( f ) ∝ A2
r f−γr , (5.6)

where Ar is the amplitude of the red noise and γr is the spectral index for the red noise. The
parameters of both the chromatic and achromatic process can be estimated with a Bayesian
inference method described in Section 5.2.3.

5.2.3 Bayesian Analysis of Pulsar Timing Array Data

McHugh et al. (1996) initially used a Bayesian technique to produce upper limits on the GWB
with PSR B1855+09. Later, van Haasteren et al. (2009) developed a Bayesian algorithm to
constrain the GWB amplitude and thus first placed a upper limit on A of 6×10−15 with PTA
data (van Haasteren et al., 2011). In this work, I only selected Bayesian inference as a tool
to determine the strength of the low-frequency noise. Given a set of data d, the posterior
distribution for the model parameters is defined by Bayes theorem as

p(θ |d,M) =
p(θ |M)p(d|θ ,M)

p(d|M)
, (5.7)

where θ = {θ1,θ2, ....θn} is the set of parameters, M is the model, also known as the
hypothesis. The term on the left-hand side is the posterior probability distribution of the
parameters given the observed data and model, p(d|M)≡ Z is the Bayesian evidence, while
p(θ |M)≡ π(θ) is the prior probability distribution (the initial hypothesis of the probability
distribution) of the parameters and p(d|θ ,M) ≡ L(θ) is the likelihood (probability of the
data provided by a given model).

When performing parameter estimation, the Bayesian evidence, Z, which is independent
of the parameters θ , can be treated as a normalization constant and ignored. Therefore, the
estimation of Bayesian inference can be directly obtained by sampling the unnormalized
posterior distribution. Generally, a standard MCMC sampling algorithm is used to obtain
random samples drawn from a posterior probability distribution.
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However, in contrast to the parameter estimation process, the Bayesian evidence Z is
crucial in the model selection process. Model selection is performed based on the evidence or
Bayes factors of different models. The evidence, sometimes also referred to as the marginal
likelihood, can be obtained by integrating over all possible parameters θ in the set of model
M, as

Z =
∫

L(θ)π(θ)dn
θ (5.8)

where n is the dimensionality of the parameter space. In the case of two models, Mi and M j

for the observed data, model selection can be performed by computing the posterior odds,
the ratio R of the two models’ probabilities given the observed data:

R =
p(Mi|d)
p(M j|d)

=
p(d|Mi)

p((d|M j))

p(Mi)

p(M j)
=

Zi

Z j

p(Mi)

p(M j)
(5.9)

where p(Mi) and p(M j) are prior probabilities of the two models respectively, p(d|Mi)
p(d|M j)

≡ B is

the Bayes factor between the models Mi and M j, while p(Mi)
p(M j)

is the a prior probability ratio.

5.3 Comparing Datasets within a Bayesian Pulsar Timing
Array Analysis

In order to minimize the computational cost of the Bayesian analysis and remain consistent
with the EPTA 6-pulsar analysis (EPTA et al. 2021, in preparation), I analyze the same
“restricted dataset” of six best pulsars proposed in Babak et al. (2016). These pulsars, namely,
PSRs J0613−0200, J1012+5307, J1600−3053, J1713+0747, J1744−1134 and J1909−3744,
dominate the S/N and provide ∼90% of the total EPTA sensitivity to GWs (see Figure 4.1).

The data utilized for this work were generated as part of the sample of 16 pulsars analyzed
for Chapters 3 & 4 and the details are presented there. The pulsar timing models are identical
to those utilized for the EPTA 6-pulsar analysis, derived using the linear least squares
marginalization routines of Tempo2 (Edwards et al., 2006; Hobbs et al., 2006).

To compare the possible improvement, I use a portion of the dataset the appears in the
forthcoming EPTA 6-pulsar analysis, by restricting it to the data from the same telescopes
and back-ends as ours which I call the EPTA six-pulsar dataset for brevity. To make the
comparison more uniform I restrict our dataset to have the same frequency resolution as the
EPTA 6-pulsar analysis.
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The main issue I address here is the possible improvement in the sensitivity to the GWB as
a result of the improved processing introduced in chapters 3 & 4. However, it must be pointed
out that in the case of a multivariate Bayesian analysis model-selection is a well-established
technique (using Bayes factors, Bayesian evidences or odds ratios). However, there are no
straight-forward, bias-free means to compare the performance of different datasets given a
model. To enable a comparison, I therefore chose a restricted model for the single pulsar
noise modeling, as well as for the search for a correlated signal in the 6-pulsar PTA formed
from the chosen pulsars.

This implies that our model is chosen to be generic and somewhat sub-optimal and thus
the overall sensitivity of our dataset might in fact be greater than the results presented below
might imply. At the same time, more rigorous (and informed) single pulsar modeling would
also improve the overall PTA sensitivity.

5.3.1 Single Pulsar Analysis & Searching for Common Signals

For the purposes of the single pulsar noise modeling, I marginalized analytically over the
Tempo2 derived timing model, following Lentati et al. (2015) and others. For each pulsar I
included a single time-stationary red noise model and a DM power-law model, as described
in Section 5.2.1, with both models fitted using 30 frequency bins. Although I also searched
for annual DM variations (see e.g., Lam et al., 2016) in our single pulsar dataset, I are not
able to find meaningful constraints on these terms and hence I leave out these terms from our
final single pulsar noise models. For PSR J1713+0747, I also include a model for DM events
as described below.

PSR J1713+0747 is one of the most precisely timed MSPs by all of the main PTA
telescopes. However, this pulsar has shown significant discrete DM variations, known as DM
events. DM events lead to a sudden discrete change in timing residual. So far, two DM events
have been reported. The first event, which was detected by the PTA community (Demorest
et al., 2013; Desvignes et al., 2016; Keith et al., 2013), started at approximately MJD 54750
and lasted more than 100 days before the DM reverted back to the prevent level. This period
lies outside our dataset and thus I do not investigate it in this work. However, Lam et al.
(2018) observed the second DM event that started from approximately MJD 57510. Since
DM events are non-stationary, they cannot be accounted for by the long-term DM variation
power-law spectrum. In order to model the second DM event, I thus add an exponentially
recovering step change to account for it. This introduces three more parameters; the epoch at
which the DM event started, the maximum change in the DM and the time required for the
DM to recover to the pre-event level, modelled as an exponential recovery.
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I performed the single pulsar analysis using the ENTERPRISE (Ellis et al., 2020) using
the Parallel Tempering MCMC (PTMCMC) sampler (Ellis & van Haasteren, 2017).

For the search for common signals, I utilize the single pulsar noise models derived in
the step above, using these as input values for a PTA analysis with ENTERPRISE. For this
step I also utilize the hyper-model analysis (Hee et al., 2016) to compute the Bayes Factor,
approximated via the Savage-Dickey density ratio (Dickey, 1971), to compare the evidence
for a model with no spatial correlations with that for a model with a Hellings & Downs
(1983) type correlation.

5.4 Results

In this section, I first present the results of the single pulsar noise analysis, which shows the
amplitude and spectral index of both the chromatic and achromatic noise processes. The
single pulsar noise models are then utilized in the search for common signals in the six-pulsar
PTA.

Figure 5.2 presents a comparison of the one- and two-dimensional posterior distributions
for models of red noise and DM variations. The blue histograms represent results obtained
with the EPTA six-pulsar dataset while the green histograms show the results obtained with
the reprocessed TOAs. The maximum likelihood values for the power-law DM and red-noise
parameters for the individual pulsars are tabulated in Table 5.1.

I find that while the results are broadly consistent between the EPTA 6-pulsar dataset
and our dataset, the reprocessed data typically lead to improved constraints on both the
DM and red-noise models. The two-dimensional likelihood plots in Figure 5.2 furthermore
demonstrate the significant reduction of correlation between DM and red-noise model
parameters that the reprocessed data achieve. While improved ToA precision may be partly
the cause of this, superior treatment of RFI or improved template-profile reliability may also
have significant impacts on the ability of the data set to distinguish between chromatic and
achromatic red noise. A full comparative analysis to identify the relative impact of the various
measures in our reprocessing analysis would require substantial time and computational
resources and is as such outside the scope of this thesis, but these results do demonstrate the
overall impact on the reliability of red-noise modeling efforts.

For the DM event of PSR J1713+0747 identified by Lam et al. (2018), the reprocessed
dataset yields an amplitude of log10A =−5.9+0.14

−0.07, a recovery timescale of log10τ = 1.4+0.2
−0.1,

i.e., ∼ 25+14.69
−5.16 days and the start epoch to be ∼ 57510.63 MJD, respectively, although I am

not able to constrain the start MJD (identified to be ∼57510 from Lam et al., 2018) of the
event due to limited observations in our dataset around that date.
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Pulsar Dataset DMgp γ DMgp log10 A RN γ RN log10 A

J0613-0200
Reprocessed 3.79+0.87

−0.61 -13.24+0.17
−0.22 0.82 -17.76+2.84

−0.21

EPTA 6-psr 3.20+2.22
−1.70 -13.86+0.43

−1.98 3.16 -14.19

J1012+5307
Reprocessed 4.48+1.19

−1.06 -14.07+0.47
−0.43 1.98+0.31

−0.61 -12.93+0.06
−0.06

EPTA 6-psr 4.74 -14.55+0.71
−0.88 0.89+0.35

−0.42 -12.95+0.06
−0.05

J1600-3053
Reprocessed 5.51+0.70

−0.43 -12.54+0.08
−0.08 5.22+0.41

−0.43 -12.43+0.06
−0.07

EPTA 6-psr 2.85+0.39
−0.27 -13.30+0.10

−0.10 0.02+3.68
0.0 -13.54

J1713+0747
Reprocessed 1.64+1.82

−0.34 -13.33 0.02+0.62
0.0 -13.50+0.27

−0.46

EPTA 6-psr 2.22+0.92
−0.77 -13.74+0.17

−0.25 1.32+1.53
−1.30 -13.82

J1744-1134
Reprocessed 2.78+1.95

−0.65 -13.27 2.53 -13.32+0.21
−0.70

EPTA 6-psr 0.59+0.85
−0.56 -13.37+0.23

−0.29 0.35 -13.42

J1909-3744
Reprocessed 1.90+0.27

−0.47 -12.15+0.04
−0.05 2.46+0.44

−0.39 -13.09+0.07
−0.09

EPTA 6-psr 2.06 -13.71 0.29+2.60
−0.26 -13.91

Table 5.1 Summary of the DM and red-noise (RN) models derived from the EPTA six-
pulsar and the reprocessed datasets. The numbers quoted above are the maximum likelihood
values, with 1-σ errors. Numbers without error bars imply the posterior was not sufficiently
constrained and only the peak value is supplied.

5.4.1 Gravitational Wave Analysis

The 1D marginalized common spectrum amplitude posterior with a fixed spectral index
γ = 13/3, obtained from both our dataset and the EPTA dataset obtained from the six pulsars
are shown in Figure 5.3.

I found that our noise analysis yields a clear detection of a common red noise signal with
a power-law amplitude A = 2.34+0.75

−1.32 ×10−15 at fixed γ = 13/3. While for the EPTA TOAs,
I only obtain an upper limit of A = 2.26×10−15 at a fixed γ = 13/3. Using the hyper-model
analysis of Hee et al. (2016), I find that a model with a Hellings-Down correlated signal
shows no significant preference over a model with no spatial correlations, with a Bayes factor
of 1.06. I note that the EPTA six-pulsar dataset, when using the same models, returns a
Bayes factor of 0.96, although with such small Bayes factors, any interpretation for or against
these models is difficult. Our results are in general agreement with the NANOGrav result
presented in Arzoumanian et al. (2020) which shows a common spectrum process with a
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amplitude posterior of 1.92+0.75
−0.55 ×10−15 with 90% confidence interval, based on a 12.5-year

data set containing 45 pulsars. This red signal detected with our dataset indicates that using
the optimal TOA creation method does significantly improve our sensitivity to common red
noise.

Although our analysis of six pulsars shows clear evidence for a stochastic red signal, I
cannot confirm whether this signal arises from GWs or other unmodeled origins. There are
several potential sources of noise that are not isolated in this work, such as SSE errors and
the SW. To disentangle this issue, further research of a larger sample of uniformly distributed
pulsars with longer observational baselines would be needed.

5.5 Summary and Conclusion

In this work, I have analyzed a six-pulsar subset of the EPTA data set, obtained from the
newest back-ends of four EPTA telescopes. Our timing results included optimized TOAs
obtained with the approaches as described in the preceding chapters. In parallel with the
EPTA six-pulsar analysis, I analyzed the same pulsars and determined the low-frequency
noise in the data set obtained with only the newest-generation back-ends. I performed a
Bayesian analysis of the low-frequency noise and DM variations with the ENTERPRISE
package. In addition, I also compared our results for a common red noise process in all six
pulsars’ timing residuals. According to our work, I have a clear detection of red noise, but
I cannot determine if it is due to the GWB or timing noise or even both. In the meantime,
I noticed that the EPTA six-pulsar analysis also presents strong evidence for common red
noise. With regard to the GWB detection, no measurement can be confirmed due to the
limited number of pulsars. However, as the EPTA community is preparing for a larger dataset
that would be composed of more than 20 pulsars with a time span of up to 25 years, the
detection of the GWB would be possible in the coming years, especially if the optimization
steps demonstrated in our work are included as part of the analysis.
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Figure 5.2 The comparison of one- and two-dimensional marginalized posterior distributions
for the log-amplitude and spectral index of the power-law model for the red noise and
DM variations for the six pulsars dataset observed with EPTA telescopes. Blue histograms
indicate posterior distributions obtained with the EPTA six-pulsar dataset while the green
histograms indicate the results obtained with TOAs derived in Chapter 4
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Chapter 6

Conclusions and Future Research

The discovery of pulsars and especially MSPs has enabled hybrid applications in astrophysics.
One of the most anticipated goals related to pulsars is the detection of nano-Hertz GWs that
mainly originate from coalescing SMBHBs. With this purpose, several PTAs that time an
array of MSPs regularly, have been formed. High-precision pulsar timing can guarantee such
a detection: theoretical calculations have shown that this detection can be made through the
timing of ∼ 20 MSPs with timing precision at a level of ∼100 ns with regular cadence over
time spans of five years to a decade (Jenet et al., 2005). However, up till now, only a few
MSPs have achieved this precision. Although Siemens et al. (2013) conclude that increasing
the number of pulsars in the array would be the best strategy while the cadence and the
RMS of the pulsar timing residuals are less important under the current regime, it is still
necessary to keep on improving the timing precision. Here are several reasons why I carry
on investigating the improvement of the timing precision. First of all, expanding the number
of regularly observed pulsars would present a huge challenge for the current telescopes’ time
allocation, especially for the newly added faint pulsars, which may require more integration
time than usual. Secondly, expanding the array beyond the 20 pulsars or so as considered
by Jenet et al. (2005), would imply adding much fainter (add consequently less precisely
timed) pulsars, which would require timing precision improvements without a doubt. Third,
Siemens et al. (2013) regard all pulsars as equal contributions to a GWB detection, but this is
not realistic at all. The most precise pulsars usually provide the most significant contributions
to the GWB detection sensitivity.

There are several directions to improve the timing precision of MSPs, such as hardware
upgrades, noise mitigation, and algorithm optimization. The goal of this thesis is to investigate
the influence on timing precision of templates, CCAs, and TOA bandwidth selection, leading
to a standardized and unified timing process. Due to the fact that various templates, CCAs,
and TOA bandwidths are adopted inconsistently by different researchers and PTAs, TOAs
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obtained by different people can show significantly different results. This inconsistency could
also have a significant influence on parameter estimation and searches for GWs. In this thesis,
I mainly focus our analysis on comparison and investigation of templates and CCA selection.
In addition, I also put forward a new method to investigate the system-limited noise floor and
optimal TOA bandwidth. In this chapter, a brief summary of our most important conclusions
from previous sections will be given below, followed by a discussion of promising future
lines of research that follow from our work.

6.1 Summary

Generally, the precision of pulsar timing is quantified by the RMS of TOA residuals. Once
the TOAs and their uncertainties are obtained, a least-squares fitting procedure is usually
employed to estimate the timing-model parameters. To assess the quality of the fit and of
the TOA uncertainties, the reduced chi-squared value, χ2

r , is evaluated. Ideally the value
of χ2

r is close to unity, indicating a perfect match between the model and the observations
at the precision predicted by the measurement uncertainties. However, the χ2

r is often far
from unity. A χ2

r value lower than unity indicates the measurement uncertainties have been
overestimated while a χ2

r value larger than unity indicates the measurement uncertainties
have underestimated the noise or that the timing model is incomplete or incorrect.

There could be several reasons why the χ2
r value does not equal unity. For example the

determination of the TOA uncertainties could be corrupted by the existence of jitter noise
(Cordes & Shannon, 2010; Osłowski et al., 2011), or the timing model could be incomplete
and lead to the existence of red noise (Coles et al., 2011; Lentati & Shannon, 2015). Both of
these noise sources contribute to a high χ2

r if they are not properly accounted for.
In this thesis, I mainly focus on the RMS and χ2

r values of 16 MSPs (see Figure 6.1
for the distribution of the MSPs) based on analyses with the various templates and CCA
combinations. In Chapter 2 of this thesis, I presented an overview of high-precision pulsar
timing techniques. In addition, an outlier rejection scheme is presented to remove non-
informative (noise-dominated) TOAs from our data in an objective and reproducible way.

In Chapter 3, I started the investigation of the impact of template and CCA selections
and TOA bandwidth. Here I mainly compared four template possibilities, namely the single-
brightest observation (referred to as single), all observations added template (added), added
with smoothing template (smoothed), as well as the analytic profile (analytic), and three
CCAs, namely, PGS, FDM, and GIS. As a practical demonstration, I apply our selected meth-
ods to EPTA data on the three test pulsars PSRs J0218+4232, J1713+0747, and J2145−0750.
Based on our analysis of these three selected pulsars, I found the following:
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• Data-derived and smoothed templates are typically preferred to more commonly
applied alternatives (Section 3.3.1).

• The FDM template-matching algorithm is generally superior to, or competitive with,
other algorithms (Section 3.3.2).

• The optimal TOA bandwidth is strongly dependent on pulsar brightness, telescope
sensitivity and scintillation properties (Section 3.3.3).

• Generally significant averaging of TOAs across frequency is recommended (Sec-
tion 3.4).

A further investigation and validation of the results are presented in Chapter 4. We
performed a detailed analysis of thirteen MSPs from around ten years of EPTA observations.
Based on this work, I refined the above-mentioned conclusions as follows:

• The added templates combined with the FDM template-matching method are usually
superior to other possibilities (Section 4.3.7).

• For some extreme cases, such as extremely low S/N or too few TOAs, other combina-
tions of template and CCA may work better (Section 4.3.1).

• The effect of pulse phase jitter noise is not a serious factor that influences the EPTA
timing precision, since the jitter levels I derived are far smaller than the radiometer
noise (Section 4.3.7).

• SLNF was shown to be above the jitter-noise level and was found to be significantly
different between telescopes (Section 4.4).

Finally, I searched for red noise based on six pulsars in Chapter 5. I firstly performed a
single-pulsar analysis with the Bayesian pipeline ENTERPRISE to obtain the stochastic
noise parameters for each pulsar. Then I also investigated the common noise (i.e. a possible
GWB) within our dataset. Our results show a clear detection of common red noise with a
power-law amplitude log10A = 2.34+0.75

−1.32×10−15 at fixed γ = 13/3. This result is a lot more
constraining than the result obtained with the same data, analyzed according to the standard
EPTA methodology. Also, our result is fully consistent and similarly constraining as the
result published earlier by the NANOGrav collaboration (Arzoumanian et al., 2020) even
though the number of pulsars is fewer and the length of the data set is substantially shorter
in our case. I could not confirm whether the signal is from a GWB or not, since six pulsars
are insufficient to constrain spatial correlations. I also showed noticeable improvement of
our dataset compared with the EPTA work, particularly in terms of breaking correlations
between chromatic and achromatic noise.
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Figure 6.1 Pulsar distribution in the Galactic coordinate system in Aitoff projection. All
known pulsars are presented with red dots, and the 16 pulsars investigated in this thesis are
plotted with blue stars.
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6.2 Further Work

Although the work presented in this thesis is comprehensive and complete, some additional
aspects can be investigated to improve future timing precision. Increasingly, wide-band
receivers are being built, allowing observations across much wider bandwidths than analyzed
in this thesis. This makes it increasingly likely that the template-matching methods investi-
gated in this thesis will be unable to adequately deal with profile evolution and DM changes
properly or optimally. Here, while I managed to determine the impact of template and CCA
selection on timing precision, I was unable to investigate the optimal strategies in dealing
with such wide-band data, especially the 2D (frequency and phase) analytic template method
(Liu et al., 2014; Pennucci et al., 2014a), which can be used to measure the pulse phase
and also the DM simultaneously. I notice that the 2D template method will be necessary in
future high-precision pulsar timing analysis. More work, such as investigating approaches to
improving the accuracy of DM measurements, can be undertaken with the mentioned 2D
template. The traditional method that determines TOAs through frequency-averaged pulse
profiles ignores profile evolution. In addition, the data’s frequency information would be lost
when performing frequency averaging. The usage of 2D templates would not only mitigate
the scintillation effects, but also simplify the timing procedures that are usually needed for
describing the profile variation.

As is often the case, solving problems provokes further questions. Our TOA bandwidth
analysis method provides another path to investigate the jitter noise. According to the system-
limited noise floor analysis, I am unable to determine the optimal TOA bandwidth as well
as the jitter noise in our dataset due to the interrelation between system-limited white noise,
jitter noise, and EQUADs/ECORRs. However, our investigation shows that system-limited
noise floors are clearly telescope-dependent, and the strength is noticeably higher than jitter
noise derived with current models (e.g., Lam et al., 2019). These results indicate a hardware
problem and need to be investigated in detail to fully capitalize upon their abilities. Several
attempts have already started to work toward this direction. For example, Verbiest et al.
(2016) derived EQUAD and ECORR values that were inconsistent with some of the jitter
noise levels published (e.g., Lam et al., 2019; Shannon et al., 2014), indicating that the noise
and TOAs correlation sources may be ill-defined or poorly understood. Here, this SLNF
analysis provides one more piece of these problems: by now comparing different instruments
from the same telescopes, or by testing different bandwidths or frequency bands, further
insights may be gained. Simultaneous observations like those being undertaken during the
LEAP runs could also play a key role in this work. A detailed and careful comparison
of the single-telescope data from a wide-band LEAP-like system is bound to identify the
differences between arrival times at different telescopes, which is our best hope yet to close
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in on systematic variations in particular telescopes. In addition, closer investigations of
polarization purity and profile consistencies between the different telescopes (particularly for
simultaneous observations) could provide another powerful tool to assess inconsistencies
caused by non-astronomical corrupting effects.

Finally, it would be possible to search for a GWB with our current dataset. Although it
was predicted that GWs would be detected by PTAs as early as 2010, only upper limits have
been made and no significant detection has been made yet. The detection of GWs requires
high precision TOAs, with the TOAs obtained with the optimal TOA creation pipeline, it
is more likely to yield more precise and better-constrained upper limits, and even a real
detection.

6.3 Closing Remarks

It has been a great opportunity for me to work as a member of the EPTA, and make my
contributions to pulsar astronomy. As pulsar timing precision improves along with the
development of new techniques and algorithms, successful detection of nano-Hertz GWs
will be realized in the foreseeable future. On that day, our knowledge and understanding of
the Universe would be expanded significantly. In the 20th century, the utilization of the full
frequency band of EM waves broadened our horizons considerably, so will the GWs in the
21st century. Compared to EM radiation, the information of the radiation source emitting the
GW is not subject to various variations or turbulence when passing through the interstellar
space, this is a qualitative difference. Through this new method of observing physical objects
and phenomena, GWs will truly open a new window on the universe, greatly increase our
understanding of the essence of the universe and understanding of time and space itself.
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Appendix A

Pulsar Profiles

Figure A.1 Profiles of pulsars presented in this thesis.
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