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Abstract

While a hard parton (gluon or quark) traverses the medium, it loses its energy
as a result of interactions with the medium. In this thesis, we describe the full
in-medium kinetic and chemical equilibration of hard particles, using a linearized
effective kinetic description of QCD at leading order. Since we include 2↔ 2 elastic
processes, collinear radiation, and the back-reaction of the jet constituents onto the
medium, we are able to follow the energy from the hard scales ∼ E all the way to
the medium scales ∼ T .

In the first analysis, we consider the energy evolution only in the longitudinal
direction and describe the elastic processes using the small angle approximation.
After a direct energy deposition into the medium scales due to elastic and radiative
interactions at early times, we find that the energy loss is mainly driven by successive
splittings, which lead to an energy cascade from the hard sector to the medium
scale akin to weak wave turbulence. The turbulent cascade is characterized by a
stationary solution known as the Kolmogorov-Zakharov spectrum, which is recovered
at intermediate energy scales. This Kolmogorov-Zakharov spectrum leads to a scale
invariant energy flux that we investigate in detail.

In the second analysis, we consider the evolution of the distribution in the lon-
gitudinal direction as well as in the polar angle with respect to the initial parton,
which allows us to study the angular structure of the cascade. In order to account
for large angle elastic scatterings, we extend the framework by using the full matrix
element in Hard Thermal Loop approximation. Similarly to the first analysis, the
energy loss is dominated by collinear radiation, which transport energy to the soft
scales. However, the radiation does not transport energy to large angles, rather,
the soft energy equilibrates due to elastic scatterings, which starts already at early
times, and leads to the deposition of energy at large angles.

Recent studies, using the dimensionally reduced theory of QCD on a lattice
(EQCD) valid at high temperature, have obtained non-perturbative contributions
to the collisional broadening kernel [1, 2]. The last part of this work is dedicated to
computing the medium splitting rates using these results. First, since EQCD is an
infrared effective theory of QCD, we employ a matching to supply the correct ultra-
violet behavior to the computed kernel. Second, the non-perturbative kernel being
in impact parameter space is Fourier transformed back to momentum space. We
then compute medium-induced radiation rates in infinite and finite medium lengths
and compare with leading order and next-to-leading order kernels that are usually
used in the literature. We also compare several traditional and novel approximations
to the radiation rates that are commonly used and discuss their range of validity.
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1 Introduction

Throughout scientific history, the pursuit of a better understanding of nature meant
breaking down matter into more and more fundamental pieces. Needless to say, this
quest led us to the discovery of the electrons and nucleons (protons and neutrons)
that make up the atom. Soon afterwards, the success of the parton model [6] alluded
to the fact that nucleons are also made up of even more fundamental particles that
we now know as quarks and gluons and can be studied using the theory of Quantum
Chromodynamics (QCD). QCD is a non-abelian gauge theory that describes how
partons, which carry the color charge, interact with each other via the exchange
of gluon gauge bosons [7]. Although there are further theoretical explorations that
try to go beyond the standard model of particles to explain matter with even more
fundamental objects (e.g., strings), it seems that experimentally we have many years
ahead of us before we can reach beyond QCD, due to the fact that QCD exhibits
a phenomenon known as confinement, which traps all color charged particles inside
color neutral bound states. Concretely, the force holding together the quarks inside
the proton grows linearly when one separates them until the energy required is
large enough to create another pair of quarks in between. Hence, quarks at normal
conditions of pressure and temperature can only be found in bound states, making
it hard to study QCD.

QCD at high energies possess a property known as asymptotic freedom, leading
to weaker interactions as the energy scale increases (or distance decreases) [8, 9].
Consequently, when taken to extreme conditions of high density and temperature,
QCD matter experiences a smooth cross-over transition where the bound states start
overlapping and melt into a soup of effectively free quarks and gluons in a new state
of matter known as the quark-gluon plasma (QGP) [10]. In nature, such densities
can potentially be achieved in very massive and compact neutron stars [11] and are
known to exist in the early Universe microseconds after the Big Bang [12].

On Earth, several collisions have been developed in order to probe very short
distances to attain asymptotic freedom. However, to form a QGP not only high
energy is needed but also a sufficiently large system to form a medium. When two
nuclei collide head-on at high velocities in high energy heavy-ion collisions (HIC),
they can produce high multiplicity of particles. Such high multiplicity events at
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1 Introduction

the Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC), can
reach very high temperatures and densities that a QGP is formed in the laboratory.
QGP formation is manifested by different signatures from the collective behavior
of low energy hadrons to the modification of quarkonia states, as well as enhanced
production of strange particles [13–16]. Additionally, hard collisions at the early
stages produce jets of back-to-back high energy particles that traverse the medium,
losing some of their energy before being detected. Known as jet quenching, this
phenomenon has been a crucial issue of experimental and theoretical studies [17].

The study of jets is not exclusive to HIC, in fact it was essential in the develop-
ment of QCD; starting with the early experiments of electron-positron annihilation
to hadrons e−e+ → hadrons. Due to a hard scattering event, the electron-positron
pair produces a pair of quark (q) and anti-quark (q̄), which travel back-to-back
because of momentum conservation, and as they separate further away from each
other they undergo fragmentation and a parton shower into additional partons end-
ing with a recombination which gives rise to two back-to-back hadronic jets1. For
high energy events, perturbative QCD (pQCD) can be used to study this final state
hadronic jet structure. Aside from representing important evidence of the existence
of three color charges2, the study of this process led to the development of pQCD jet
physics in vacuum and allowed further calculations in more complex processes with
hadronic initial states, such as proton-proton collisions [18–20]. While the physics of
jets in vacuum is well established theoretically, the studies of medium modification
of the parton shower are still ongoing [21–24]. By comparing against the expected
fragmentation in the absence of the medium, one hopes to understand how the jet
loses part of its energy to the medium, and how the presence of the medium modifies
the parton shower.

The full study of jet quenching is an involved task, requiring a theoretical de-
scription of each stage of the evolution from the parton creation to the hadronization
of the parton shower. Nonetheless, we will not attempt to describe such a compre-
hensive picture, instead we focus solely on a highly energetic parton interacting with
the medium. The evolution and equilibration of the hard parton inside the QGP is
characterized by two distinct processes, the elastic collision with the medium giving
rise to many soft scatterings as well as a few hard collisions which lead to para-

1Note that two jets are only the leading order process, additional jets can be obtained with
lower probability.

2One can infer the number of quark colors by computing the famous R-ratio, the ratio between
the cross-section of the hadronic final state to a leptonic one, given by R = σ(e−e+→hadrons)

σ(e−e+→µ+µ−) =
Nc
∑
f Qf , where Qf is the electric charge of the different quark flavors f [7, 18, 19].
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metrically similar energy deposition [25, 26]. Similar to the classic Bremsstrahlung
process, the multiple soft scatterings with the medium induce radiation from the
highly energetic partons which dominate the in-medium energy loss [27, 28]. This
medium cascade has been shown to display a universal behavior akin to a turbulent
cascade [29, 30]. Based on an effective kinetic theory of QCD [31], we will describe
the evolution of highly energetic partons in a thermal QGP medium. As opposed to
earlier studies where they focus on the hard particles [29, 30, 32, 33], we keep track
of the parton energy from the early collisional and radiative energy loss all the way
to the full thermalization into the soft sector. Since the relevant dynamics of energy
loss are similar to the QGP thermalization itself [34–38], we will also investigate to
what extent the physics of near-equilibrium excitations is relevant to the problem of
jet quenching. The main purpose of this thesis is to extract the universal dynamics
and develop a (semi-)analytical understanding of the equilibration of highly ener-
getic partons inside the QGP. Furthermore, since energy loss is dominated by the
radiative splittings, we devote the last chapter to a novel approach of computing
the in-medium splitting using non-perturbative input for describing the multiple
soft scattering with the medium [1, 2]. We further compare different theoretical
approaches to compute the in-medium splitting rates and discuss their respective
range of validity.

The present thesis is structured as follows: chapter 2 provides a short introduc-
tion to the physics at play during heavy-ion collisions, and section 2.3 is used to con-
textualize the present work within the full evolution of jets in HIC. In chapter 3, we
will go on to introduce the effective kinetic theory of QCD used to describe the evo-
lution. We present the relevant QCD processes, discuss the Landau-Pomeranchuk-
Migdal effect in QCD and include in the last section a brief introduction of weak
wave turbulence and a derivation of the Kolmogorov-Zakharov spectrum. The in-
medium energy loss in the longitudinal direction is studied in chapter 4, where we
consider the elastic processes in the small angle approximation, as well as medium-
induced radiation. In chapter 5, we extend the evolution to include the full elastic
processes and angular structure in the polar angle around the initial leading parton.
We dedicate the last chapter 6 to the determination of medium-induced radiation
rates using a new collisional broadening kernel which includes non-perturbative con-
tribution extracted from lattice EQCD. We obtain the rates in both infinite medium
(sec. 6.2) and finite medium (sec. 6.3) and compare our results with a variety of ap-
proximations, either using broadening kernels from perturbative results or by using
a simplified rate. We conclude in Chapter 7 with a brief summary of the most im-
portant findings and discuss possible directions for future work. Furthermore, at the
end of the thesis, we provide appendices for the following derivations: the derivation
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of the small angle approximation of the elastic collision integral is given in App. A,
while the numerical implementation of the kinetic evolution is in App. B. App. C
describes the derivation of the rate equation in the Bethe-Heitler regime and App. D
provides the numerical implementation of the finite medium splitting.

Conventions Throughout this work we will make use of the following standard
high-energy physics conventions :

• We work in natural unit system by setting the Plank constant ~, the speed of
light c and the Boltzmann constant kB to ~ = c = kB = 1.

• Bold letters are used for vector quantities and Minkowski 4-vectors are capi-
talized, e.g., P = (E(p),p), K.

• We will use the metric convention (+,−,−,−).
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2 Primer on heavy-ion collisions

The main topic of this work is the use of jets as tomographic probes to learn more
about the QGP medium. However, the study of jet quenching in heavy-ion collisions
is a broad subject which requires a vast array of phenomena. The purpose of this
chapter is to provide the broader context of our work and justify the approximations
we take.

Starting from a brief presentation of the characteristics of QCD theory, leading
naturally to a discussion about the deconfinement transition to the quark-gluon
plasma. We end the chapter with a description of the different stages of the collision
and the relevance of jets in HIC.

2.1 Basics of Quantum Chromodynamics
QCD is a non-abelian gauge theory based on the special unitary group SU(Nc) with
Nc = 3 color charges, governing the interactions of quarks and gluons. The color
symmetry group admits eight generators (N2

c − 1 = 8) written T a and obey the
commutation relations [40]

[T a, T b] = ifabcT c , (2.1)
where fabc are the structure constants of the group. In the fundamental representa-
tion, T a are represented by 3× 3 Gell-Mann matrices. The quarks ψf are fermionic
fields (spin-1

2 particles) which are observed in nature in six flavors (f = u, d, s, · · · )
with different masses (c.f. table 2.1), in addition to their electromagnetic charge
carry the color charge of QCD and live in its fundamental representation. They

Flavor up (u) down (d) strange (s) charm (c) bottom (b) top (t)
mass ∼ 2.16MeV 2mu 43mu 588mu 1935mu 79981mu

charge 2/3e -1/3 -1/3 2/3 -1/3 2/3

Table 2.1: Different quark flavors with their approximate masses relative to the
quark up mass mu and charge relative to the electron charge e [39].
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2 Primer on heavy-ion collisions

transform according to
ψf (x)→ eigT

aαa(x)ψf , (2.2)

under the local gauge transformation G(x) = eiT
Aαa(x), generated by αa.

The boson fields (Aµ = AaµTa) of QCD are the gluons which, as opposed to photon
in electromagnetism, also carry color charges a and live in the adjoint representation
transforming as

Aaµ → G(x)AµG†(x)− i

g
G(x)∂µG†(x) , (2.3)

where for infinitesimal gauge transformation is written

Aaµ → Aaµ + gfabcA
µ
bαc − ∂µαa . (2.4)

The QCD Lagrangian is written [7]

LQCD =
∑
f

ψ̄f (x)(iγµDµ −m)ψf (x)− 1
4G

a
µνG

µν
a , (2.5)

where γµ are the Dirac gamma matrices. The covariant derivative is defined as

Dµ = ∂µ + igT aAaµ , (2.6)

here g is the dimensionless QCD coupling. The QCD field strength tensor is given
by

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.7)

The quadratic term in the gluon field stems from the non-abelian nature of the
theory and leads to the infamous gluon self-interaction.

The QCD Lagrangian is one of the hardest standard model theory to solve due
to the gluon self-interaction and strong coupling constant. At large energies, one
expects the coupling to be small to be able to employ standard perturbation tech-
niques. Our analysis will rely on weak coupling techniques to describe interactions
of hard partons with the medium at leading order of the QCD coupling constant.

Besides standard perturbative methods, one can use numerical simulation known
as Lattice QCD, where the fields are discretized numerically on a lattice and by
taking the continuum limit one can extract different observables [41–43]. However,
because this discretization requires the evaluation of statistical averages weighted by
the exponential of the QCD action in Euclidean time, when applied to a system with
finite baryon chemical potential or to observables involving real-time calculations
in Minkowski space, it leads to the so-called sign problem where the Euclidean
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action acquires an imaginary contribution which does not correspond to a probability
density [44, 45]. Consequently, Lattice QCD can only be applied for a system with
zero baryon densities1 or static (Euclidean) quantities.

Another approach to QCD is to enact effective theories that make use of the
separation between different scales of the system. One such theory is known as
Electrostatic QCD (EQCD) which describes QCD at high temperature [47, 48].
EQCD is motivated by the infrared (IR) problem of thermal QCD. As first pointed
out by Lindé [49], at high temperatures the perturbative expansion encounters an
IR wall when additional gluon loops are not suppressed with the coupling, because
each loop give rise to the following factor [50]

1
Ep

(
1 + 1

eEp/T − 1

)
∼ T

E2
p

+O
( 1
T

)
. (2.8)

By inserting the soft scale generated by the medium psoft ∼ gT , we find 1
g2T

which
spoils the coupling expansion even for small values of g � 1, as many diagrams
contribute at the same order and thus have to be resummed. EQCD deals with
this problem by making use of the generated hierarchy of scales for QCD at high
temperatures, between a soft scale psoft and a hard scale phard :

psoft = gT � phard = πT , (2.9)
where at high temperature one expects the coupling g to be small. By integrating
out the hard scale and defining effective parameters which account for its effects
[50], it turns out that the only dynamics left in the system is the boson zero mode
as the nonzero modes and the fermionic frequencies are considered hard. EQCD
is then a purely bosonic three-dimensional theory, where the A0 field becomes an
adjoint scalar field which couples to the three-dimensional gauge field Ai. EQCD
can be solved either perturbatively or on a lattice, and it has been successfully
used to determine thermodynamic quantities at higher precision [51, 52]. Recent
studies were able to obtain lattice results for other quantities such as the collisional
broadening kernel and thermal masses [1, 2, 53–55]. We will use the non-perturbative
determined EQCD broadening kernel from [2] to study in-medium splitting rates in
chapter 6.

2.1.1 Quark-Gluon Plasma
Due to the strong confinement of color charges, quarks and gluons at low ener-
gies are only present inside colorless bound states known as hadrons. The only

1Ongoing work studies small baryon density as an expansion around zero [46].
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Figure 2.1: Experimental evidence of the QCD running coupling as a function of
the exchange momentum. Figure from [56].

allowed hadrons are singlet under color transformation leading to the combination
of so-called valence quark-antiquark pairs along with sea quark/antiquarks and glu-
ons as mesons or three valence quarks (antiquarks) together with additional sea
quark/antiquarks and gluons known as baryons.

Nevertheless, the QCD coupling exhibits a property known as the running cou-
pling, which describes how at high energies the coupling constant depends on the
four-momentum exchange Q2. Using perturbative QCD at first order, one writes
the effective coupling as [8, 9, 57]

αs(Q) = g2

4π = 4π
(11− 2

3Nf ) ln(Q2/Λ2
QCD) , (2.10)

with the characteristic infrared scale ΛQCD ∼ 0.22GeV. The running coupling was
confirmed through experiments [56] (c.f. Fig. 2.1) and explains the asymptotic
freedom nature of QCD as it decreases logarithmically at large energies (Q2 �
1GeV).

As illustrated in figure 2.2, when nuclear matter is compressed to high baryon
densities such that hadrons start overlapping, eventually, quarks cannot distin-
guish between neighboring hadrons. Alternatively, if one increases the temperature
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2 Primer on heavy-ion collisions

Figure 2.2: Illustration of QGP formation. When the temperature increases, newly
created quark matter leads to screening of QCD interactions and formation of QGP.
Similar conditions are created for QGP formation, due to high baryon densities.
Figure inspired by [58, 59].

of strong interacting matter to extremes, the creation of additional mesons effec-
tively reduces the distances between color charges giving rise to similar overlapping
hadrons. Due to the short distances at play, quarks interactions are weak thanks to
asymptotic freedom, leading to effectively free color charges interacting in a quark-
gluon plasma (QGP). This transition to a system where color charges can move more
freely over a larger volume is known as the deconfinement transition. The decon-
finement transition has been extensively studied using Lattice QCD which allowed
to extract the equation of state at vanishing baryon chemical potential [43].

In an equilibrium system the pressure is proportional to the degrees of freedom
of the system, the results of [43] depicted in Fig. 2.3 show how at low energies the
equation of state is equivalent to a hadron resonance gas where color charges are
confined in hadrons leading to only few degrees of freedom. When the temperature
increases, a transition occurs, color charges are freed, and the system exhibits a large
number of (colored) degrees of freedom. The transition has been identified by lattice
QCD to be a crossover transition at zero baryon chemical potential at around the
critical temperature Tc ∼ 155MeV for two light flavors and a heavy strange quark
flavor.

We note that color confinement is not actually violated by the QGP, but it is
thanks to color screening that quarks are effectively free [60]. Color screening can be
pictured similarly to screening in electromagnetic plasmas, where the electric charge
is surrounded by a cloud of opposite charges, effectively scaling down the range of
the Coulomb force. Analogously, we anticipate that color charges are screened in
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Figure 2.3: QCD equation of state extracted from lattice calculation by the HotQCD
collaboration [43]. Pressure and energy density as a function of temperature display
a transition from the Hadron Resonance Gas to a quark-gluon plasma.

the QGP. However, partons can still interact between each other as can be seen
in Fig. 2.3, where the non-interacting limit is not reached. Nevertheless, modern
perturbative calculation, based on Hard Thermal Loop perturbation, can achieve
a good description of thermodynamic quantities at temperatures above T & 2Tc
[61–65].

2.2 Heavy-ion collisions
In order to create a QGP on Earth at low baryon densities, one must reach extremely
high temperatures of > 170MeV, which exceeds even what the core of the sun can
reach (1.57 · 107K ∼ 10−3MeV) [66]. Throughout recent history, advancement in
collider technology and dedication from numerous physicists allowed us to create
such conditions in ultra-relativistic heavy-ion collisions. These heavy-ion collision
(HIC) experiments accelerate two nuclei at such high velocities (∼ 99.995%c at
RHIC [67] and ∼ 99.99999c at the LHC [68]) that they almost pass through each
other and only energy is deposited at the collision, creating a fireball with low baryon
density but very high temperatures. However, the fireball is short-lived ∼ 10fm/c,
as soon after its creation it expands and cools down until it eventually turns into a
hadron gas, who’s remnants are detected long after the collision in the experimental
detectors. Consequently, the study of the QGP in HIC is a complex task, and we
can only rely on signatures of QGP formation.
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z 

t

incoming nuclei CGCs

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro/kinetic theory

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

Figure 2.4: Different phases of heavy-ion collisions. Starting with the two incoming
nuclei, which are close to the speed of light and are represented by 45◦ lines in the
lab frame. The nuclei deposit energy in the form of strong gluon fields, which is
modeled by classical dynamics towards an out of equilibrium plasma; the plasma
evolution can be studied using kinetic theories and viscous Hydrodynamics. After
the QGP thermalizes, it follows an ideal Hydrodynamic evolution, cooling down
below the critical temperature when partons are confined in hadrons. The hadron
gas itself expands and loses its kinetic energy towards a kinetic freeze out. Slightly
modified version of a figure in [15].
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Following [15], we will give a brief description of the different stages of the
collision as shown in the schematic illustration in Fig. 2.4. Starting with Lorentz
contracted ions with a high boost factor of nearly γ ∼ 100 at RHIC [67] and γ ∼ 2675
at the LHC [68]. At such high rapidity, QCD matter consists mostly of gluons, which
are modeled by the effective theory of Color Glass Condensate (CGC) [69, 70].

Right after the collision of the two nuclei t ∼ 0, hard processes with large mo-
mentum exchange (Q > 10GeV) occur first, due to the uncertainty principle t ∼ 1/Q
and produce high energy particles such as hard partons, photons, heavy quarks or
vector bosons.

Shortly after, the CGC describes how the bulk of the energy is deposited into a
very dense glasma, i.e., a plasma constituted of mostly highly energetic gluons. This
initial far-from equilibrium state undergoes kinetic and chemical thermalization,
leading to the creation of quarks and antiquarks [34]. This thermalization is referred
to as the bottom-up thermalization scenario [36] and can be studied using effective
kinetic approaches [34, 35, 37, 38, 71–73]. The now formed QGP proceeds to expand
and because the collision is not perfectly head-on, the asymmetric pressures give rise
to an asymmetric expansion in the transverse plane.

Although the system size is small, due to the strong interactions, the system
maintains a state sufficiently close to local thermal equilibrium that it can be suc-
cessfully described by relativistic viscous hydrodynamics [74]. After the system
expands and the temperature reaches below the critical temperature, color is con-
fined once again inside hadrons, leading to an interacting hadron gas described by
kinetic theory. Eventually, the hadron gas also expands to a point when interactions
become weaker than the expansion in a stage known as kinetic freeze-out. Lastly,
the hadrons continue in free streaming until they decay or reach the detector.

The QGP state of matter is only part of the complex evolution of HIC, extracting
information about this medium is certainly challenging and would require a solid
grasp on a lot of different physics characterizing each stage. Nevertheless, in the 80’s
Bjorken suggested that due to the short timescales of hard partonic collisions, the
production of hard particles is not affected by the plasma [17] and can be reliably
calculated using perturbative QCD. The highly energetic partons produced by these
collisions traverse the medium before being detected, by doing so they interact
with the medium and lose their energy in a process known as ‘jet quenching’. By
studying how these hard particles lose their energy, one can infer information about
the medium properties and evolution of the fireball. In the next section, we will
briefly introduce the physics of QCD jets and discuss where exactly our analysis lies
in this context.
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Figure 2.5: Visualization of jet evolution in heavy-ion collisions. We focus on the
in-medium evolution of the partons once they are resolved by the medium.

2.3 Basics of QCD jets
Jets are defined, via a suitable clustering algorithm, as collimated sprays of hadrons
that are produced from a hard collision process. Starting from a highly virtual par-
ton produced in an initial hard scattering, in the vacuum the jet constituents evolve
toward mass-shell following a collinear parton shower (akin to the time-like DGLAP
equation) [75, 76]. In the presence of a QCD medium, the evolution involves addi-
tional processes and different approaches have been used to study the modification
of the jet shower by the medium (see, [23, 24, 77] for a review). One approach con-
sists of a modification of the DGLAP evolution to include medium modifications,
as done in some MonteCarlo event generators [24, 78–80]; a different approach is
to follow the kinematics of hard partons inside the medium and study how the jet
constituents interact with the medium, as e.g., done in [29, 30, 32, 33]. Even though
this work is not intended to provide a comprehensive description of in-medium jet
evolution, we will generally follow the latter approach by studying the energy loss
of hard partons inside a thermal medium.

Besides the scales relevant for vacuum dynamics, the dynamics of jets inside the
medium are sensitive to additional scales emerging from the medium (as discussed
in [23, 81]), including the typical transverse momentum acquired during scatterings
Qs =

√
q̂L where L is the medium size and q̂ is the momentum broadening param-

eter; and the typical inverse size of the jet in the medium r−1
⊥ = (ΘL)−1, where Θ

is the opening angle of the jet [23, 81]. Vacuum-like emissions can be factored out
[82, 83] and degrade the virtuality of the partonic constituents as in the vacuum;
however, individual jet constituents embedded in the medium are only resolved by
the medium when the separation length is larger than the medium resolution scale
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Q−1
s � r⊥, and it is thus useful to define a decoherence time tresolved ∼

(
1

q̂θ2
12

)1/3

[23] where constituents of the jet become resolved by the medium. Subsequently,
the resolved constituents interact with the medium as uncorrelated colored partons,
which undergo elastic and inelastic interactions with the medium leading to energy
loss of the highly energetic partons and energy transfer to the thermal medium.
Throughout the in-medium evolution, vacuum-like emissions at smaller and smaller
angles continue to form, effectively providing a source of partons as they become re-
solved by the medium. Eventually, after a time ∼ L the hard constituents of the jet
leave the medium and the vacuum-like evolution continues outside the medium [83],
until it reaches non-perturbative scales where the constituents confine into hadrons.

Based on this discussion, it is clear that a complete picture of jet evolution in
HIC will have to start from the jet creation all the way to hadronization, as is
schematically illustrated in Fig. 2.5. Since such a description necessarily involves a
variety of different processes at different scales, it is essential to develop a robust
theoretical understanding of each stage, in order to devise suitable observables to
probe e.g., the properties of medium-induced emissions or study connections be-
tween jet quenching and equilibration. We will therefore not attempt to develop a
complete description of in-medium jet evolution, but rather focus on the particular
aspect of the energy loss and equilibrium of highly energetic partons due to inter-
actions with the surrounding medium. While our discussion thus ignores effects of
vacuum-like emissions and the (lack of) color coherence of the vacuum shower, which
are known to be important to describe some experimental observables such as e.g.,
fragmentation functions [83, 84], we anticipate that in a more complete theoretical
description of jet vacuum-like emissions can be absorbed into the initial conditions or
factored out into a source term depending on their decoherence time. By investigat-
ing how uncorrelated colored partons lose their energy and eventually become part
of the medium, our results can therefore be seen as a Green’s function propagating
a single medium-resolved highly energetic parton through the medium. Since the
evolution is linear, more realistic initial conditions including an early vacuum-like
cascade can be implemented by a simple convolution with the corresponding Green’s
function. Vacuum-like splittings could in principle appear at any spacial position
along the path-length of the medium, producing new sources not included in our
approach. However, such vacuum-like emissions inside the medium are sub-leading
in the double log approximation [83]. Even though the complicated interplay of
initial conditions, source terms and in-medium evolution will inevitably modify ob-
servables such as momentum spectra, our qualitative conclusions regarding energy
loss and equilibration mechanism are thus not expected to be modified by such a
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more refined implementation.

2.3.1 Measurement of jets or high-pT particles in heavy-ion
collisions

A number of observables are used to study medium modification of jets or high-pT
particles in HIC, during this section we will provide a brief overview of the current
status of the field (c.f. [22–24] for more extensive reviews).

The main purpose of probing medium modification of hard partons can be
achieved using a class of observables known as the nuclear modification factor RX

AA,
which computes the ratio of the single-particle inclusive spectra in a nucleus-nucleus
collision (AA) to the baseline proton-proton (pp) collisions [85]. For a given particle
species X with inclusive yields NX

AA and NX
pp in AA and pp collisions, respectively,

the ratio is given by

RX
AA(pT , y, φ) ≡ 1

NAA

d2NX
AA

dp2
T dy

d2NX
pp

dp2
T dy

, (2.11)

where NAA is the number of elementary nucleon-nucleon collisions expected at a
given centrally which can be computed using a standard probabilistic Glauber model
[86], and ensures the ratio is 1 if no suppression occurs.

In Fig. 2.6, hadron RAA is shown for different experiments with energies √sNN =
17.3GeV, 200GeV, 2.76TeV for SPS (PbPb), RHIC (AuAu) and LHC (PbPb) respec-
tively, compared to a range of theoretical models [87]. One observes a clear suppres-
sion of high-pT hadrons in the high energy collisions of RHIC and LHC compared
to low energies at SPS where it is absent. We also observe less suppression of high
pT particles at LHC, as they lose less energy because they can escape the medium
[21, 88]. The nuclear modification factor is well described by theoretical models and
constitutes a strong signal for QGP formation at HIC.

While the hadron RAA measures the suppression of only the leading hadron
resulting from the parton cascade, one can also measure the modification of the
complete parton showers. Parton fragmentation at small angles leads to collimated
quarks and gluons, which combine into collimated hadrons, which form jets. How-
ever, whether a particle is considered part of the jet is not clear, one must establish a
jet definition. At the core of jet definition is the jet recombination algorithm, which
uses a set of parameters (e.g., distance R in the rapidity-azimuth (y − φ) plane) to
cluster different hadrons into a jet. Moreover, using a recombination scheme one
obtains the kinematics of the jet from its constituents, for example ‘E-scheme’ sim-
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Figure 2.6: Measurement of the nuclear modification factor RAA by different exper-
iments RHIC, LHC and SPS compared with a range of theoretical models. Figure
from [87].
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Figure from [89].
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ply sums the components of the four-vectors to obtain the jet kinematics. One of
the mostly used jet algorithms at LHC is the anti-kT algorithm, which clusters hard
particles first and successively aggregate soft particles around them until reaching a
distance R away from the jet axis [90–92]. Similarly to the hadron RAA, one defines
a jet suppression

Rjet
AA(pT , y, φ) ≡ 1

〈TAA〉

d2σjet
AA

dp2
T dy

d2σjet
pp

dp2
T dy

, (2.12)

where dσjet is the cross-section of single inclusive jet production [24] and 〈TAA〉 is
the nuclear thickness function, which can also be determined using Glauber model
[86]. We show in Fig. 2.7 the Rjet

AA for a single inclusive jet clustered using anti-kT
algorithm with radius R = 0.4 for different experiments Pb-Pb collisions at ALICE,
ATLAS and CMS. As for the inclusive hadron, We observe a comparable suppression
of jets, which further corroborates medium modification arguments.

Besides the nuclear modification factor, another set of observables are used to
study the jet substructure, which measures how energy-momentum is distributed
within jets. For example, jet fragmentation function, defined as

D(z) ≡ 1
Njet

dNh

dz
, (2.13)

measures the hadrons number Nh distribution as a function of their longitudinal
momentum fraction (z ≡ phT ·p

jet
T

|pjet
T |2

), usually normalized to 1. Interactions with the
medium are expected to modify not only the inclusive yields, but also the substruc-
ture of jets. One can measure modification of the fragmentation function as shown
in Fig. 2.8 for ATLAS experiment for Pb+Pb collisions compared to p+p [93]. In-
terestingly, we observe enhancement both at small and large momentum fractions
which, due to energy conservation, is compensated by a depletion in the interme-
diate scale. Medium-induced radiation by hard partons and medium response can
lead to numerous low pT hadron, which explains the enhancement at small z. While
at large z, the enhancement can be explained by an increase in quark fraction as
gluon jets lose more energy [24, 94, 95].

Moreover, one can measure other substructure observables such as jet shape
which measures the momentum distribution transverse to the jet axis, or jet mass
which measures the jet virtuality (c.f. [24] for more details).

Certainly, using suppression factor as a signal for QGP formation in HIC is by
itself essential; nonetheless, one should be able to employ these measurements to
extract information about the medium. Using model fittings, the JET collaboration
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Figure 2.8: Nuclear modification of the jet fragmentation function measured in
ATLAS experiment at different pjet

T ranges using anti-kT clustering algorithm with
R = 0.4. Figure from [93].
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was able to extract the transport coefficients q0 = 2.0 ± 0.25GeV2/fm and 2.9 ±
0.6GeV2/fm at 0 − 5% central Au+Au collision at RHIC (

√
s = 200GeV/n) and

0 − 5% central Pb+Pb collision LHC (
√
s = 2.76TeV/n), respectively [96]. Later

on, JETSCAPE collaboration improved on the analysis using a simultaneous fit in a
multi-dimensional parameter space to multiple data set at RHIC and the LHC [24,
97].
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3 Effective kinetic theory of QCD

At extremely high temperatures, the interactions between quarks and gluons become
weak due to the asymptotic nature of QCD. Therefore, we expect the molecular
chaos hypothesis to hold, such that the timescale between successive collisions is
well separated from the timescale of the collision itself (c.f. [98]). We ignore two
particle correlations before and after each collision, two particle distributions are
then given by the product of one particle distributions, truncating the BBGKY1

hierarchy at the level of one particle distribution, and leading to an effective kinetic
theory that simulates the QGP and treats QCD dynamics perturbatively [31].

Following the arguments of [31], if the QGP temperature T is high, we can
ignore the rest mass of the quarks as the typical momentum p will be of order
T � mu,d. However, due to the interactions with the medium, thermal corrections
will introduce an effective thermal mass mth for both quarks and gluon of order
O(gT ). In perturbative theory the effective masses are given by

m2
∞,g =g2

∫ d3p

(2π)3
1
p

Ncfg(p) +
∑
f

(fqf (p) + fq̄f (p))
 eq= m2

D

2 = g2T 2

2

(
Nc

3 + Nf

6

)
,

(3.1)

m2
∞,q =g2CF

∫ d3p

(2π)3
1
p

2fg(p) +
∑
f

(fqf (p) + fq̄f (p))
 eq= g2T 2

2
CF
4 , (3.2)

where CF = N2
c−1

2Nc is the quadratic Casimir, we provide the result of the masses in
equilibrium computed using the thermal distributions we define in the next section.
Still, for a weak coupling (gT � T ), it is reasonable to approximate the dispersion
relation with

Eg,q(p) =
√

p2 +m2
(g,q),th ∼ p . (3.3)

Hence, we consider partons to be massless and assume that their de Broglie wave-
length is much smaller than their mean free path, we can then define quasi-particles
in the classical sense with a phase-space distribution f(x,p, t) ≡ (2π)3 1

νa
dN

d3xd3p
2

1BBGKY stands for: Bogoliubov–Born–Green–Kirkwood–Yvon.
2We will average over spin degrees of freedom.
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3 Effective kinetic theory of QCD

which represent the number of particles at time t in the phase space volume with
origin (x,p) and radius (d3x, d3p). Certainly, for particles to interact, their wave
function will overlap, albeit, as one considers the collisions to be independent, only
the incoming and outgoing states of the scattering matter and this information can
be incorporated in the transition rate. We also take a coarse-grained time direction
in such a way that the collision timescale are instantaneous. Similar coarse-graining
is applied to positions x as well, such that particles with overlapping wavelengths
are considered to be at the same space point and are allowed to interact. The
phase-space distribution obeys a Boltzmann equation[31]

(
∂t + p

|p|
∇x

)
f(p,x, t) = C[{f}] , (3.4)

where we do not take any external forces. The left-hand side represents the ideal
gas evolution with only kinetic energy and no interactions, while the collision terms
C[{f}] on the right-hand side represent the transition rate, we will see later on that
for leading order in high temperature QCD theory, one should consider two type of
transition rates 2 ↔ 2 and an effective 1 ↔ 2 scattering. The Boltzmann equation
is an integro-differential equation describing the out-of-equilibrium evolution of the
system towards equilibrium stationary solutions, which we will define in the following
sections.

3.1 General framework
Based on an effective kinetic description following the AMY approach [31], we de-
scribe the evolution and equilibration of highly energetic partons inside a thermal
QGP. Both the hard particles and the thermal QGP medium are described by a
phase-space distribution fa(p, x, t) of on-shell partons, with a = g, q, q̄ denoting the
parton species. Throughout this work, we will consider three quark flavors Nf = 3
without distinguishing between them. The time evolution of the phase space distri-
bution functions fa(p, x, t) is governed by the Boltzmann equation

(
∂t + p

|p|
∇
)
fa(p,x, t) = C2↔2

a [{fi}] + C1↔2
a [{fi}] , (3.5)

where at leading order of the coupling constant g, one needs to include number
conserving 2 ↔ 2 processes and effective collinear 1 ↔ 2 processes. By integrating
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over the position x, we then obtain a closed set of evolution equations for the
momentum distributions fa(p, t) =

∫
d3x fa(p,x, t)3 of hard partons

∂tfa(p, t) = C2↔2
a [{fi}]] + C1↔2

a [{fi}] . (3.6)

The free streaming term p
|p|∇xfa(p,x, t) will not play a role once we integrate the

space direction. Since the hard partons are dilute compared to the soft thermal
particles, we can describe the phase-space distribution of the hard partons δfa(p, t)
as a linearized perturbation on top of the static medium and write

fa(p, t) = na(p) + δfa(p, t) , (3.7)

where na(p) is the thermal distribution, i.e., depending on the particle species
ng(p) = 1

ep/T−1 is the Bose-Einstein distribution or nq/q̄(p) = 1
ep/T+1 is the Fermi-

Dirac distribution4. By linearizing Eq. (3.5) around thermal equilibrium, we then
obtain a closed set of evolution equations for the momentum distributions of hard
partons

∂tfa(p, t) = δC2↔2
a [{fi}, {δfi}] + δC1↔2

a [{fi}, {δfi}] , (3.8)

where δCa is the linearized collision operator to be specified below.

3.2 Elastic collision integral
Highly energetic partons inside the thermal bath undergo number conserving (elas-
tic) 2↔ 2 collisions with the thermal bath. In general, the scattering a(P1)+b(P2)↔
c(P3) + d(P4) is described by the usual collision term [31]

C2↔2
a [{fi}] = 1

2|p1|νa
∑
bcd

∫
dΩ2↔2

∣∣∣Mab
cd(p1,p2; p3,p4)

∣∣∣2F(p1,p2; p3,p4) , (3.9)

where νg = 2dA = 16 and νq,q̄ = 2dF = 6 denote the spin and color degeneracy
factors of gluons and quarks. The delta function δ4(P1 + P2 − P3 − P4) ensures
energy and momentum conservation,Mab

cd(p1, p2; p3, p4) is the QCD matrix elements
squared given in table 3.1 and F(p1, p2; p3, p4) is the statistical factor given by

F(p1,p2,p3,p4) =fc(p3) fd(p4) (1±fa(p1)) (1±fb(p2))
− fa(p1) fb(p2) (1±fc(p3)) (1±fd(p4)) . (3.10)

3Although we use the same notation to represent the momentum distributions and the full
phase-space distribution, there should not be any confusion as they come with different arguments.

4We consider vanishing chemical potentials for all quark flavors.
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ab←→ cd
∣∣∣Mab

cd

∣∣∣2
qiqf ←→ qiqf ,
qiq̄f ←→ qiq̄f ,
q̄iqf ←→ q̄iqf ,
q̄iq̄f ←→ q̄iq̄f

8g4 d
2
FC

2
F

dA

(
s2 + u2

t2

)

qiqi ←→ qiqi ,
q̄iq̄i ←→ q̄iq̄i

8g4 d
2
FC

2
F

dA

(
s2 + u2

t2
+ s2 + t2

u2

)
+ 16g4 dFCF

(
CF−

CA

2

)
s2

tu

qiq̄i ←→ qiq̄i 8g4 d
2
FC

2
F

dA

(
s2 + u2

t2
+ t2 + u2

s2

)
+ 16g4 dF CF

(
CF−

CA

2

)
u2

st

qiq̄i ↔ qf q̄f 8g4 d
2
FC

2
F

dA

(
t2 + u2

s2

)

qiq̄i ←→ g g 8g4 dF C
2
F

(
u

t
+ t

u

)
− 8g4 dF CFCA

(
t2 + u2

s2

)

qi g ←→ qi g ,
q̄i g ←→ q̄i g

−8g4 dFC
2
F

(
u

s
+ s

u

)
+ 8g4 dF CFCA

(
s2 + u2

t2

)

g g ↔ g g 16g4 dAC
2
A

(
3− su

t2
− st

u2 −
tu

s2

)

Table 3.1: Different 2 ↔ 2 processes in QCD and their matrix elements squared
[31] written in terms of the Mandelstam variables s = (P1 +P2)2, t = (P1−P3)2 and
u = (P1 − P4)2. For QCD theory with SU(Nc) gauge symmetry, the fundamental
representation has dimension dF = Nc and quadratic Casimir CF = N2

c−1
2Nc , while in

the adjoint representation the dimension is dA = N2
c − 1 and the quadratic Casimir

is CA = Nc.
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The phase-space integration is given by
∫
dΩ2↔2 ≡

∫ d3p2

(2π)3
1

2E2

∫ d3p3

(2π)3
1

2E3

∫ d3p4

(2π)3
1

2E4
(2π)4δ(4)(P1 + P2 − P3 − P4) .

(3.11)

Following the parametrization in [65], one can use the three-dimensional integral
to apply the momentum delta function defining q ≡ p1 − p3 = p4 − p2. While
the energy delta function left is cast into two delta functions, by introducing an
integration over ω ≡ p1 − p3 = p4 − p2 representing the energy exchange. The
phase-space measure becomes

∫
dΩ2↔2 =(2π)

∫ d3p2

(2π)3

∫ d3q

(2π)3

∫
dω

1
8E2E3E4

δ (p1 − ω − |p1 − q|)

δ (p2 + ω − |p2 + q|) . (3.12)

We then write the two delta functions in terms of the angles between (p1,p2) and
q that we denote with (θ1q, θ2q)∫

dΩ2↔2 = (2π)
∫ d3p2

(2π)3

∫ d3q

(2π)3

∫
dω

1
8p1p2

2q
2 Θ(q − |ω|)Θ

(
p1 −

q + ω

2

)

Θ
(
p2 −

q − ω
2

)
δ

(
cosθ1q −

(
ω

q
− ω2 − q2

2p1q

))
δ

(
cosθ2q −

(
ω

q
+ ω2 − q2

2p2q

))
.

(3.13)

We leave the integration as is because for the numerical discretization we will perform
another three-dimensional integral for p1 which will allow us to employ the delta
functions symmetrically between p1 and p2. The elastic collision integral introduced
above will be utilized in two different approach during this thesis, in Chapter 5 we
will apply the small angle approximation to simplify it [99, 100] while in Chapter
6 we will use the full collision integral by only replacing the divergent parts of the
bare matrix elements with a thermal treatment [31, 65].

3.3 Landau-Pomeranchuk-Migdal effect in QCD
In the study of energy loss of highly energetic partons inside the QGP medium,
elastic interactions were historically considered first [25, 26]. However, due to the
multiple soft scattering in the medium, radiation is induced and is further enhanced
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by being nearly collinear. It turns out that this can lead to significantly more energy
loss [27, 101, 102]. The study of radiative energy loss has spurred a lot of interest
in recent years, during this section we will introduce the physics of medium-induced
radiation based on [21, 23, 28, 77, 103–105], and we refer the interested reader to
these reviews for more details.

Multiple soft scattering with the medium will kick the parton slightly off-shell,
which in turn leads to a radiation of a gluon with energy ω and momentum k. Be-
cause of the uncertainty principle, the gluon radiation is not instantaneous, instead
the gluon separation from the parton is given by the uncertainty principle with its
transverse energy

tf E⊥ ∼ 1 , with E⊥ = ω − kz '
k2
⊥

2ω , (3.14)

where we define the formation time tf , the time it takes for the radiated gluon to
form. One finds

tf = 2ω
k2
⊥
, (3.15)

where k⊥ is the transverse momentum of the gluon. The elastic interactions with the
medium are characterized by the momentum broadening coefficient q̂ ∼ m2

D/λmfp,5
which defines the typical transverse momentum squared acquired inside the medium
per mean free path. During the formation of the gluon, the typical transverse
momentum it acquires is k2

⊥ ∼ q̂tf , the formation time can then be written

tf =
√

2ω
q̂
. (3.16)

Let us define the Bethe-Heitler scale ωBH ≡ q̂λ2
mfp. When the gluon energy is much

smaller than this scale ω � ωBH, the formation time is shorter than mean free path
tf � λmfp and the medium cannot resolve the radiated quanta until it is formed,
i.e. the parton does not have time to encounter more than one scattering with the
medium during the formation time.

However, when the gluon energy is larger ω � ωBH, the formation time is longer
than mean free path tf � λmfp and multiple scatterings with the medium act co-
herently leading to interference effects that have to be resummed, giving rise to a
suppression of the radiation of high momentum gluons in the medium. This sup-
pression is known as the Landau-Pomeranchuk-Migdal (LPM) effect, which was first
developed in QED [106, 107] and later on it was extended to QCD [27, 108–111].

5In QCD perturbation theory, the mean free path for small angle scatterings is λmfp ∼ 1
g2T .
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Contrary to QED, in QCD this effects not only the highly energetic parton but also
the radiated gluon, as the gluon itself can scatter with the medium.

One can obtain a resummation of the multiple soft scatterings diagrams into
an effective 1 ↔ 2 rate. We proceed now to give a derivation of the rate equation
following [23, 112]. We take the eikonal approximation of the medium-parton inter-
action, where the light-cone coordinates are p+ = p+pz√

2 � p⊥ and k+ = k+kz√
2 � k⊥.

In the eikonal approximation, the kinematics of the interactions corresponds to a
two-dimensional system of non-relaticistic quantum mechanics [112]; the light-cone
momentum p+ is conserved and will act as a mass. We study the propagation in
terms of the transverse position x = (x1, x2) conjugate to the transverse momen-
tum p⊥, the time direction will be given by the light-cone time t = x0+x3

√
2 . For the

medium field, we take the light-cone gauge A+ = 0; gluon polarization will prop-
agate in the transverse plane, with no spin flip allowed along the trajectory. We
define the background field A−a (x, t) obeying the correlation function

〈A−a (x, t)A−b (x, t)〉 = δabδ(t− t′)γ(x− y) , (3.17)

where the model-dependent correlation function γ(x) is given by the Fourier trans-
form of the collisional broadening kernel C(q) that we will discuss more in Chapter
6

γ(x) =
∫ d2q

(2π)2 e
ix·qC(q) . (3.18)

We will see that the quantity that will play a role in the calculation is in fact the
difference [112]

C(x) = γ(0)− γ(x) =
∫ d2q

(2π)2 (1− eix·q)C(q) . (3.19)

The gluon propagator G(x, t; y, t′) between two light-cone times t and t′ is given by
the Schrödinger equation[

i∂t + ∂2
x

2p+ + gA−(x, t)
]
G(x, t; y, t′) = iδ(t− t′)δ(x− y) , (3.20)

which can be written using the path integral

G(x, t; y, t′) =
∫
Dr ei

p+
2

∫ t′
t
ds ṙ2T exp

[
ig
∫ t

t′
ds A−a (r(s), s)T a

]
, (3.21)

where T is time ordering and the Wilson line is integrated along the trajectory
r(t) = x and r(t′) = y. In order to obtain the in-medium emission spectrum, one
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Figure 3.1: Graphical representation of an example three-point function for an in-
medium gluon splitting [112].

considers the three-point function G(y, t2; x, t1), as shown in Fig. 3.1 and employs
the medium average Eq. 3.17 to find the spectrum [27, 108–111]

z
dIabc(P, z)

dz
= αszPbc(z)

[Pz(1− z)]2 Re
∫ ∞

0
dt2

∫ t2

0
dt1 ∂x∂y [G(y, t2; x, t1)−G0(y, t2; x, t1)] ,

(3.22)

where we define P the momentum of the parent, and z = k
P

the momentum fraction
of the radiated quanta. Pab(z) are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) splitting functions

Pgg(z) = 2CA
[1− z(1− z)]2

z(1− z) , Pqg(z) = CF
1 + (1− z)2

z
,

Pgq(z) = 1
2
(
z2 + (1− z)2

)
. (3.23)

The three-point function is given by the Schrödinger equation[
i∂t + ∂2

x

2Pz(1− z) +Meff + iΓ3(x)
]
G(x, t; y, t1) = iδ(t− t1)δ(2)(x− y) , (3.24)

where we have used the HTL framework to dress the free propagators with thermal
mass by exchanging

∂2
x

2z(1− z)P →
∂2

x

2z(1− z)P +Meff , with Meff = m2
1

2P −
m2
z

2zP −
m2

1−z
2(1− z)P . (3.25)
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The three-body interaction is given in terms of two-body interactions

Γ3(x) =
[
C1C̄(x) + CzC̄(zx) + C1−zC̄((1− z)x)

]
, (3.26)

where C̄(x) ≡ C(x)
CR

is the broadening kernel stripped of its color factor. We
define the factors C1 = 1

2

(
CR
z + CR

1−z − CR
1

)
, Cz = 1

2

(
CR

1−z + CR
1 − CR

z

)
and

C1−z = 1
2

(
CR

1 + CR
z − CR

1−z

)
, using color factor of the species with momentum frac-

tion 1,z and 1−z respectively. C(x) is the zero-substracted Fourier transform of the
collisional broadening kernel (Eq. 3.19) which accounts for elastic collisions with the
medium. We note also that the spectrum is defined with a subtraction of the free
three-point function G0(y, t2; x, t1) to account for only medium-induced radiation
without vacuum splittings.

One can obtain the equation in momentum space as well by employing a Fourier
transformation. First, we define the Fourier transform of the propagator

K(k, t2; pb, t1) =
∫ d2y

(2π)2
d2x

(2π)2 e
ik·ye−ipb·xG(y, t2; x, t1) . (3.27)

After manipulation of the integral using the definition in Eq. (3.19), the three-body
interactions term becomes the following convolution

Γ3 ◦ ψ(p) =
∫

q
C̄(q)

C1

[
ψ(p)− ψ(p− q)

]

+ Cz

[
ψ(p)− ψ(p + zq)

]
+ C1−z

[
ψ(p)− ψ(p + (1− z)q)

] . (3.28)

Derivatives in position space are replaced by ∂x → ipb and the propagator now
satisfies the integro-differential equation

[i∂t − δE(z, P,pb) + iΓ3(x, t)]K(k, t2; pb, t1) = iδ(t− t1)δ(2)(pb − k) , (3.29)

where we define the energy

δE(z, P,pb) = p2
b

2Pz(1− z) −Meff . (3.30)

The spectrum is now given by

z
dIabc(P, z)

dz
= αszPbc(z)

[Pz(1− z)]2 Re
∫ ∞

0
dt2

∫ t2

0
dt1

∫ d2pb
(2π)2

d2k

(2π)2 k · pb

[K(k, t2; pb, t1)−K0(k, t2; pb, t1)] . (3.31)
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By applying a time derivative to the spectrum in Eqns. (3.22-3.31), one obtains
an effective radiation rate which can be incorporated into a Boltzmann evolution.
However, solving the Schrödinger equation is not simple and one must resort to an
approximation that simplify the calculations (see [113] for a review):

• One approximation is to consider the medium length to be infinite taking
t2 → ∞ in the integration as was done by Arnold, Moore and Yaffe (AMY)
[31], taking the HTL computed broadening kernel one can then solve the rate
numerically. We will use this approach for the jet-medium evolution in Chapter
4-5.

• One can also solve the equation perturbatively in the number of scatterings
which is known as the opacity expansion [103] and the first order is known as
the Gyulassy, Levai and Vitev (GLV) approximation [114, 115].

• Another approach is to take the very high energy limit for the collisional
broadening, which corresponds to a diffusion and leads to a Harmonic Oscil-
lator equation [27, 116]. One can also define the HO approximation as the
lowest order of the expansion and compute corrections around it [117–119].

We will compare the different approximations in the study of medium-induced
radiation using the non-perturbative collision kernel in Chapter 6.

3.4 Collinear radiation
We describe now our treatment of collinear radiation when solving the Boltzmann
equation for the jet-medium interactions. Generally, the interplay between vacuum-
like emissions which are tied to the production vertex, and medium-induced emis-
sions which can occur anywhere inside the medium can be rather complicated [116],
and results in an explicit path length L or time t dependence of the medium-induced
radiation rates [82, 116, 120, 121]. Since we are particularly interested in hard par-
tons which lose a large fraction of their energy to the medium, there is, however,
a clear separation of time scales between the initial vacuum-like shower and the
subsequent energy loss of the partons inside the medium. We will therefore not
include the effects of vacuum like emissions, anticipating that they can be absorbed
into initial conditions or source terms for the in-medium evolution. Since we are
particularly interested in the evolution on large time scales, we will also not con-
sider the explicit path length L dependence of the medium-induced radiation rates,
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and instead employ the large L limit of the medium-induced radiation rates, fol-
lowing the approach of AMY [31], where medium-induced radiation is described by
collinear 1 ↔ 2 splittings/mergings with an effective rate dΓabc(p,z)

dz
. Starting from

the nonvacuum part of Eq. 3.22 and apply a time (t2) derivative to the spectrum to
obtain a rate, and by taking the infinite medium length limit (t2 →∞), we find the
AMY in-medium rates

dΓabc(P, z)
dz

= αsPbc(z)
[2Pz(1− z)]2 Re

∫ ∞
0

dt1

∫ d2pb
(2π)2

d2k

(2π)2 4k · pbK(k,∞; pb, t1) . (3.32)

With the definition g(z,P )(pb) =
∫∞

0 dt1
∫ d2k

(2π)2 2kK(k,∞; pb, t1), we can write the
rate as6 [116]

dΓabc(p, z)
dz

= αsPbc(z)
[2Pz(1− z)]2

∫ d2pb
(2π)2 Re

[
2pb · g(z,P )(pb)

]
, (3.33)

where g(z,P ) is a solution to the integral equation

2pb =iδE(z, P,pb)g(z,P )(pb) +
∫ d2q

(2π)2 C̄(q)
{
C1
[
g(z,P )(pb)− g(z,P )(pb − q)

]
+

Cz
[
g(z,P )(pb)− g(z,P )(pb − zq)

]
+ C1−z

[
g(z,P )(pb)− g(z,P )(pb − (1− z)q)

]}
,

(3.34)

derived from Eq. (3.29). For the elastic broadening kernel C̄(q), we use the leading
order expression

C̄(q) = g2Tm2
D

q2(q2 +m2
D) . (3.35)

We solve Eq. (3.33) self-consistently, obtaining a resummation of multiple scatterings
to all orders encompassing the Bethe-Heitler (BH) regime at low energy z(1− z)p .
ωBH ∼ T as well as the Landau-Pomeranchuk-Migdal (LPM) regime at high energy
z(1 − z)p � ωBH ∼ T . Based on this formalism, the effect of medium-induced

6We follow the notation of P. Arnold [116], and refer to [116] for comparison to other notations.
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Energy injection

Viscous dissipation

Figure 3.2: Illustration of Richardson’s energy cascade (taken from [123]). The
diagram demonstrates how energy is democratically and locally divided into smaller
and smaller vortices all the way to the smallest scales.

radiation is then described by the 1↔ 2 collision integral

C1↔2
a [{fi}] =

∑
bc

− 1
2

∫ 1

0
dz
dΓabc(p, z)

dz

[
fa(p)(1± fb(zp))(1± fc(z̄p))

−fb(zp)fc(z̄p)(1± fa(p))
]

+νb
νa

∫ 1

0

dz

z3
dΓbac(p

z
, z)

dz

[
fb

(
p

z

)
(1± fa(p))

(
1± fc

(
z̄

z
p
))

−fa(p)fc
(
z̄

z
p
)(

1± fb
(

p

z

)) ] , (3.36)

where dΓabc(p,z)
dz

is the effective rate for a particle a to split into b and c with energy
zp and z̄p respectively, and we will denote z̄ = 1 − z in the following. We Fourier
transform Eq. (3.33) to impact parameter space, turning the integral equation into
a differential equation, which we solve numerically following a refined version of the
algorithm in [122].
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3 Effective kinetic theory of QCD

3.5 Wave turbulence

Before we go on to discuss the particularity of the medium cascade in the next
chapters, we will use this section to briefly introduce wave turbulence, and we refer
the reader to [123, 124] for more details on the subject.

Usually associated with eddies, turbulence is a complex chaotic motion sensitive
to small changes in initial conditions, which is studied in the context of hydrody-
namics [123, 125, 126]. When interactions occur only between eddies of similar size,
an energy cascade is generated as in the Richardson cascade illustrated in Fig. 3.2.
Out of the microscopic chaos emerges well-defined average quantities that can be
described by the energy flux through scales. In direct energy cascade the energy
is transported from large scales to small ones, e.g., in Richardson cascade, large
vortices are broken up to smaller vortices in a self-similar manner until reaching the
smallest scales which dissipate the energy. A cascade in the opposite direction is
called an inverse cascade.

Wave turbulence is a case of turbulent behavior where the transport is described
by waves instead of eddies. Specifically, for the case of weak wave turbulence where
higher correlations are suppressed, one can describe the evolution using kinetic equa-
tions truncating the BBKGY hierarchy. In a system where waves interact only lo-
cally, the injection of energy at a source (ki) far away from the sink (kf ) (where it is
dissipated), generates a turbulent cascade which transports energy in a self-similar
way from one scale to the next. Due to the large separation of scales in the iner-
tial range far away from the source and sink, the system loses information about
the boundaries and is naturally described by a universal behavior known as the
Kolmogorov-Zakharov spectrum [123, 124]. Although wave turbulence systems are
far-from-equilibrium, the generated Kolmogorov-Zakharov spectrum is a stationary
solution of the kinetic equations in the inertial range, and can be obtained using
analytical analysis.

A wide range of natural phenomenon can be studied using the weak wave tur-
bulence formalism, e.g., capillary waves on water surfaces relevant for weather and
ocean studies (c.f. [127]). Additionally, thermalization in field theory exhibits sim-
ilar behavior [128–131] as well as parton energy loss in QCD medium [29, 30, 32]
which will be relevant to our discussion in chapter 4. In order to illustrate these
properties in the case of parton energy loss, following [32] we model the gluon cas-
cade by considering only radiative emissions using an approximation of the splitting
rates for high energy particles while neglecting elastic interactions and merging with
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Figure 3.3: (left) Evolution of the gluon energy distribution multiplied by
√
x to

emphasize the Kolmogorov-Zakharov spectrum 1√
x
, at different times τ = 0.1 − 1.

(right) Evolution of the energy flux defined in Eq. (3.40), we observe that after time
τ ∼ 0.3 the flux become scale independent in the inertial range x� 1.
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the medium. The evolution equations are given by

∂tD(x, t) = αsNc

πtbr

∫ 1

x
dz K(z)

√
z

x
D
(
x

z
, t
)
− αsNc

πtbr

∫ 1

0
dz K(z) z√

x
D(x, t) , (3.37)

where D(x, t) = xdN
dx

is the gluon energy distribution as a function of the momentum
fraction x = |p|

E
. The kernel K(z) describes the rate of gluon radiation, and the two

terms on the right-hand side represent merging (gg → g) and splitting (g → gg)
processes. The branching time tbr =

√
E
q̂

is the typical time it takes a leading gluon
to undergo a democratic splitting (z = 1

2). The simplicity of Eq. (3.37) allows us to
solve for the distribution analytically if we choose the kernel to be

K(z) = 1
[z(1− z)]3/2 , (3.38)

which displays the same divergences as the physical high energy kernel in sec. 4.2.2.
Starting with an initial condition D(x, t = 0) = δ(1− x), the rate equation is then
solved by [32]

D(x, τ) = τ√
x(1− x)3/2 exp

(
−π τ 2

1− x

)
, (3.39)

with τ = αsNc
t

πtbr
. At early times, the distribution displays a peak at x = 1

associated with the initial gluon energy as seen in Fig. 3.3. Subsequently, the energy
is transported to arbitrary small scales x ∼ 0 and a nonvanishing energy flux is
generated at the origin. We can also compute the energy flux through a momentum
shell x0 as follows

ε(x0) =
∫ 1

x0
dx D(x, τ) , (3.40)

=e−πτ2erfc
(
√
πτ

√
x0

1− x0

)
, (3.41)

where erfc(x) = 1− 2√
π

∫ x
0 dt e

−t2 is the complementary error function. For arbitrary
small scales x0 � 1 the scale dependence drops out, and the energy flux becomes

ε(x0) x0→0−→e−πτ
2
. (3.42)

We see in Fig. 3.3 how the energy flux plateaus at small scales as it exponentially
decays with times. Another way to describe the dynamics in the inertial range is
to search for the stationary solution associated with the scale invariant energy flux.
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Without the use of the analytical solution for the evolution, one can plug the ansatz
D(x) =

(
1
x

)λ
in the evolution equations for the energy flux

∂tε(x0) =
∫ 1

x0
dx

[
αsNc

πtbr

∫ 1

x
dz K(z)

√
z

x

(
z

x

)λ
− αsNc

πtbr

∫ 1

0
dz K(z) z√

x

(1
x

)λ]
.

(3.43)
By changing the order of integration and shifting the integration variable in the first
term we find

∂tε(x0) = αsNc

πtbr

∫ 1

x0
dz zK(z)

∫ 1

x0/z
dx

(1
x

)λ+ 1
2
− αsNc

πtbr

∫ 1

0
dz zK(z)

∫ 1

x0
dx

(1
x

)λ+ 1
2
.

(3.44)
Combining the integrals we can write

∂tε(x0) = −αsNc

πtbr

∫ 1

x0
dz zK(z)

∫ x0/z

x0
dx

(1
x

)λ+ 1
2
−αsNc

πtbr

∫ x0

0
dz zK(z)

∫ 1

x0
dx

(1
x

)λ+ 1
2
,

(3.45)
for arbitrary small scales x0 → 0, we have

∂tε(x0) x0→0−→ −αsNc

πtbr

∫ 1

0
dz zK(z)

∫ x0/z

x0
dx

(1
x

)λ+ 1
2
. (3.46)

The only way to recover a scale invariant energy flux will be to take λ + 1
2 = 1,

meaning λ = 1/2 which is exactly the spectrum we see in left panel of Fig. 3.3 as
well as in the analytical solution in Eq. 3.39. Although we found this spectrum using
only a simplistic model for the cascade, this is the Kolmogorov-Zakharov spectrum
for the in-medium cascade, which we will encounter in a more physical system in
Chapter 4. That is because the existence of such spectrum does not depend on the
detailed behavior of the splitting kernel, instead, it stems from the characteristic
(1/
√
x) dependence of the rate on the momentum fraction [30].

36



4 Longitudinal energy loss

Recent studies revealed that hard partons lose their energy in the medium following
an inverse energy cascade driven by successive radiative branchings [29, 30, 32].
These studies feature a description of the evolution which focuses solely on the
hard constituents and do not properly take into account the equilibration of soft
fragments and energy balance with the medium. We improve on these studies, by
using the full medium-induced radiation kernel (computed in the infinite medium),
and include elastic energy loss and medium recoils in the small angle approximation,
allowing us to follow the jet evolution from high energies (∼ E) all the way to the
soft medium sector (∼ T ).

Based on the effective kinetic description introduced in the previous chapter,
which parallels earlier studies in the context of jet quenching [29, 30, 32, 33] and
thermalization of the QGP [34–38], we follow the in-medium energy loss of highly en-
ergetic partons starting from early collisional and radiative energy loss all the way
to complete equilibration of jets inside the medium. We establish three different
regimes corresponding to initial elastic and radiative energy loss, turbulent energy
loss via multiple successive branchings and equilibration, and provide detailed ana-
lytical discussions of the underlying physics mechanisms in each regime. Since our
evolution includes the full equilibration of the partons, we end our analysis by in-
vestigating to what extent the physics of near-equilibrium excitations is relevant to
the problem of jet quenching.

4.1 Kinetic description
When investigating the in-medium evolution of the parton shower, we find it more
convenient to study the re-distribution of energy, which can be quantified in terms
of

Da(x, t) ≡ x
dNa

dx
= νa

∫ d3p

(2π)3
|p|
E

δ
( |p|
E
− x

)
δfa(p, t) , (4.1)

where E is the total energy of the energy distribution and x ≡ |p|
E

is the energy
fraction carried by each parton in the energy distribution. The number of degrees of
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4 Longitudinal energy loss

freedom are νg = 2(Nc2−1) and νq = 2Nc. We note that the distribution Da(x, t) to
some extent analogous to a fragmentation function in the vacuum [30]; in particular
the distributions satisfy the following sum rules, related to energy E and charge
(Qf ) conservation

∑
a

∫
dx Da(x, t) = 1 ,

∫ dx

x

(
Dqf (x, t)−Dq̄f (x, t)

)
= Qf . (4.2)

Based on Eq. (3.8), the evolution of the momentum/energy distributions of par-
tons Da(x, t) is entirely driven by interactions with the medium constituents,

∂tDa(x, t) = C2↔2
a [{Di}] + C1↔2

a [{Di}] , (4.3)

where as in Eq. (4.1) we have defined Ca[{Di}] ≡ νa
∫ d3p

(2π)3
|p|
E

δ
(
|p|
E
−

x
)
Ca[{fi}, {δfi}].

4.1.1 Small angle approximation
Contributions to the collision integrals for elastic 2↔ 2 scattering processes can be
further separated into large-angle scatterings and small-angle scatterings

C2↔2
a [{fi}] = C large

a [{fi}] + Csmall
a [{fi}] , (4.4)

by introducing a cut-off µ on the energy-momentum transfer in the t and u channels
[99, 100]. When the infrared cutoff for the large-angle scattering is matched with
the ultraviolet cutoff for the small-angle scattering, it can be shown that the cut-off
dependence cancels, and one recovers the full in-medium matrix elements at leading
and next-to-leading order [100]. Since large-angle elastic scatterings exhibit the same
parametric dependencies as small angle processes [31, 34, 71], we will only consider
small-angle scatterings in this chapter and leave the large angle scatterings for the
next one. We then solve numerically the Boltzmann equation

∂tDa(x, t) = Csmall
a [{Di}] + C1↔2

a [{Di}] . (4.5)

By considering the limit of small momentum transfer, the collision integral for
small angle 2 ↔ 2 scatterings reduces to a Fokker-Planck equation [99, 100] (c.f.
App. A)

Csmall
a [{fi}] = −∇pJa + Sa , (4.6)
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which features two distinct contributions, associated with drag and momentum dif-
fusion (−∇pJa) and conversion between quark and gluon degrees of freedom (Sa).
Drag and momentum diffusion arise from soft u, t-channel gluon exchanges, and can
be characterized by the momentum currents

Jg =− CA
4

[
ˆ̄q∇pfg(p) + η̄D

p

|p|
fg(p)(1 + fg(p))

]
, (4.7)

Jqf =− CF
4

[
ˆ̄q∇pfqf (p) + η̄D

p

|p|
fqf (p)(1− fqf (p))

]
, (4.8)

Jq̄f =− CF
4

[
ˆ̄q∇pfq̄f (p) + η̄D

p

|p|
fq̄f (p)(1− fq̄f (p))

]
, (4.9)

where ˆ̄q and η̄D are the momentum diffusion constant and the drag coefficient
stripped of their respective color factor. One finds that at leading order

ˆ̄q ≡g
4

π
L
∫ d3k

(2π)3 {CAfg(k)(1 + fg(k))

+1
2
∑
f

[
fqf (k)(1− fqf (k)) + fq̄f (k)(1− fq̄f (k))

] , (4.10)

η̄D ≡
g4

π
L
∫ d3k

(2π)3
2
|k|

CAfg(k) + 1
2
∑
f

[
fqf (k) + fq̄f (k)

] , (4.11)

where L =
∫ µ
mD

dq
q

denotes the logarithmic phase-space for small angle scatterings,
which we will take to be of order unity setting L = 1 in our analysis.

Similarly, conversion terms in Eq. (4.6) stem from soft u-channel quark exchanges
in the gq ↔ gq, gq̄ ↔ gq̄ and gg ↔ qq̄ processes, which effectively convert between
particle flavors without significantly affecting their momenta. By following [99, 100],
we find that the corresponding terms in the Fokker-Planck equation can be written
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as

Sg = 1
8|p|

∑
f

([
fqf (p)(1 + fg(p))− fg(p)(1− fq̄f (p))

]
Iq̄f

+
[
fq̄f (p)(1 + fg(p))− fg(p)(1− fqf (p))

]
Iqf

)
, (4.12)

Sqf =νg
νq

1
8|p|

fg(p)(1− fqf (p))Iqf − fqf (p)(1 + fg(p))Iq̄f

 , (4.13)

Sq̄f =νg
νq

1
8|p|

fg(p)(1− fq̄f (p))Iq̄f − fq̄f (p)(1 + fg(p))Iqf

 , (4.14)

where Iqf and Iq̄f are given by the following moments of the phase-space distribution

Iqf =g
4CFL
π

∫ d3k

(2π)3
1
|k|

[
fqf (k)(1 + fg(k)) + fg(k)(1− fq̄f (k))

]
, (4.15)

Iq̄f =g
4CFL
π

∫ d3k

(2π)3
1
|k|

[
fq̄f (k)(1 + fg(k)) + fg(k)(1− fqf (k))

]
. (4.16)

We note that while the conversion terms in Eq. (4.6), affect the chemistry of the
QGP, they do not directly contribute to the redistribution of energy as the relevant
linear combination

νgSg + νq
∑
f

(Sqf + Sq̄f ) = 0 , (4.17)

vanishes identically.
Based on the collision integrals for small angle scattering processes in Eq. (4.6),

we then proceed with the linearization around the static homogenous equilibrium
background.1 When linearizing the momentum current (Ja) around the equilibrium
distribution, one obtains two distinct types of contributions, which can be associated
with changes of the phase-space density in Eqns. (4.7,4.8,4.9) or respectively with
the changes of the momentum diffusion constant ˆ̄q and the drag coefficient η̄D in
Eq. (4.10,4.11). Physically, the first part Ja[{Di}] acts primarily on the hard sector,
diffusing the particle momentum and dragging it to the infrared. Conversely, the
second part δJa[{Di}], associated with the changes of ˆ̄q and η̄D, corresponds to the

1Evidently the collision integral vanishes for the equilibrium background due to detailed balance.
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recoil response of the medium, and describes how the energy lost from the hard
sector is deposited into the softer medium particles.

Expressing the result in terms of the energy distribution Da(x, t), the hard par-
ticles currents −∇pJa[{Di}] are given by

−∇pJg[{Di}] =CA ˆ̄qeq

4T 2 x

T 2

E2∂xx
2∂x + T

E
∂xx

2(1 + 2nB(xE))
Dg(x)

x3 , (4.18)

−∇pJqf [{Di}] =CF ˆ̄qeq

4T 2 x∂x

T 2

E2∂xx
2∂x + T

E
∂xx

2(1− 2nF (xE))
Dqf (x)

x3 , (4.19)

−∇pJq̄f [{Di}] =CF ˆ̄qeq

4T 2 x∂x

T 2

E2

(
∂xx

2∂x
)

+ T

E
∂xx

2(1− 2nF (xE))
Dq̄f (x)

x3 , (4.20)

where ˆ̄qeq is the equilibrium momentum diffusion constant

ˆ̄qeq =g
4

π

∫ d3p

(2π)3

CAnB(p)(1 + nB(p)) +NfnF (p)(1− nF (p))
 ,

=g
4

π

T 3

2

(
Nc

3 + Nf

6

)
, (4.21)

and we have made use of the Einstein relation η̄D = ˆ̄qeq/T to eliminate the drag
coefficient from Eqns. (4.18,4.19,4.20). Similarly, the recoil terms δJa[{Di}] are
written as

−∇pδJg[{Di}] =CA ˆ̄qeq

4T 2
Tδη̄D − δ ˆ̄q

ˆ̄qeq

νg
2π2

T

E
x∂xx

2nB(xE)(1 + nB(xE)) , (4.22)

−∇pδJqf/q̄f [{Di}] =CF
ˆ̄qeq

4T 2
Tδη̄D − δ ˆ̄q

ˆ̄qeq

νq
2π2

T

E
x∂xx

2nF (xE)(1− nF (xE)) , (4.23)

where the recoil coefficients are given by

δ ˆ̄q =g
4

π
E3

∫
dx

1
x

CAν
−1
g Dg(x)(1 + 2nB(xE))

+ 1
2
∑
f

ν−1
q (Dqf (x) +Dq̄f (x))(1− 2nF (xE))

 , (4.24)

δη̄D =g
4

π
E2

∫
dx

2
x2

[
CAν

−1
g Dg(x) + 1

2
∑
f

ν−1
q (Dqf (x) +Dq̄f (x))

]
. (4.25)
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Since δ ˆ̄q and δη̄D are determined by the non-equilibrium contributions from the
energy distribution, they do not satisfy an Einstein relation, i.e. δη̄D 6= δ ˆ̄q/T , giving
rise to a finite recoil contribution in Eqns. (4.22,4.23).

Similarly, when linearizing the conversion terms around equilibrium, one finds
that the contributions can be separated into conversions of hard particles Sa[{Di}]
and (recoil) conversions of thermal constituents δSa[{Di}] in an analogous fashion.
Evaluating the action of conversions on the hard particles, one finds

Sg[{Di}] =

νg
Ieq
qf

8T 2
T

xE

∑
f

{
ν−1
q

[
Dqf (x) +Dq̄f (x)

]
(1 + 2nB(xE))− 2ν−1

g Dg(x)(1− 2nF (xE))
}
,

(4.26)

Sqf ,q̄f [{Di}] = νg
Ieq
qf

8T 2
T

xE

{
ν−1
g Dg(x)(1− 2nF (xE))− ν−1

q Dqf ,q̄f (x)(1 + 2nB(xE))
}
,

(4.27)

where in accordance with Eqns. (4.15,4.16), we denote

Ieq
qf

= Ieq
q̄f = g4CFLT 2

8π , (4.28)

for a charge neutral plasma. Due to the identity nF (p)(1 + nB(p)) = nB(p)(1 +
nF (p)) one finds that the recoil contribution to the source term Sg in Eq. (4.12)
vanishes identically,

δSg[{Di}] =0 , (4.29)

and only the quark and antiquark channels acquire a recoil contribution given by

δSqf [{Di}] = νg
2π2

x2

8E
(
δIqf − δIq̄f

)
nB(xE)(1− nF (xE)) , (4.30)

δSq̄f [{Di}] = νg
2π2

x2

8E
(
δIq̄f − δIqf

)
nB(xE)(1− nF (xE)) , (4.31)

where δIqf and δIq̄f are the linearization of the integrals in Eqns. (4.15,4.16), whose
difference is given by(

δIq̄f − δIqf
)

= g4CFL
π

E2
∫

dx
1
x2 (1 + 2nB(xE)) ν−1

q

(
Dqf (x)−Dq̄f (x)

)
.

(4.32)
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Since ∑a δSa[{Di}] = 0, the conversions of thermal constituents do not affect the
energy distribution of parton fragments ∑aDa(x, t). However, for charged partons,
they do affect the distribution of valence charge, as described by the charge distri-
butions 1

x
(Dqf (x, t)−Dq̄f (x, t)).

4.1.2 Collinear radiation
We linearize the collision integral defined in Eq. 3.36, and express the contributions
to the evolution equation for the energy distribution. Starting with the contributions
to the evolution of the gluon distribution Dg(x, t) given by the sum of g → gg,
q → qg, q̄ → q̄g and g → qq̄ processes

Cg↔gg
g [{Di}] =

∫ 1

0
dz
dΓggg(

(
xE
z

)
, z)

dz

Dg

(
x

z

)(
1 + nB(xE) + nB

(
z̄xE

z

))

+ Dg(x)
z3

(
nB

(
xE

z

)
− nB

(
z̄xE

z

))
+
Dg

(
z̄xE
z

)
z̄3

(
nB

(
xE

z

)
− nB(xE)

)
− 1

2

∫ 1

0
dz
dΓggg(xE, z)

dz

Dg(x)(1 + nB(zxE) + nB(z̄xE))

+ Dg(zx)
z3 (nB(xE)− nB(z̄xE)) + Dg(z̄x)

z̄3 (nB(xE)− nB(zxE))
 , (4.33)

Cq↔qg
g [{Di}] =

∑
f

∫ 1

0
dz
dΓqgq

(
xE
z
, z
)

dz

Dqf

(
x

z

)(
1 + nB(xE)− nF

(
z̄xE

z

))

+νq
νg

Dg(x)
z3

(
nF

(
xE

z

)
− nF

(
z̄xE

z

))
−
Dqf

(
z̄x
z

)
z̄3

(
nF

(
xE

z

)
+ nB(xE)

) ,
(4.34)

C q̄↔q̄g
g [{Di}] =

∑
f

∫ 1

0
dz
dΓqgq

(
xE
z
, z
)

dz

Dq̄f

(
x

z

)(
1 + nB(xE)− nF

(
z̄xE

z

))

+νq
νg

Dg(x)
z3

(
nF

(
xE

z

)
− nF

(
z̄xE

z

))
−
Dq̄f

(
z̄x
z

)
z̄3

(
nF

(
xE

z

)
+ nB(xE)

) ,
(4.35)
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Cg↔qq̄
g [{Di}] = −

∑
f

∫ 1

0
dz
dΓgqq̄(xE, z)

dz

Dg(x)(1− nF (zxE)− nF (z̄xE))

−νg
νq

Dqf (zx)
z3 (nB(xE) + nF (z̄xE))− νg

νq

Dq̄f (z̄x)
z̄3 (nB(xE) + nF (zxE))

 . (4.36)

where both 1 → 2 and inverse 2 → 1 processes are included along with the appro-
priate final state Bose enhancement and Fermi suppression, such that the above also
include the (linearized) back-reaction of the high energy particles onto the medium
and automatically satisfy energy-momentum conservation. Similarly, the contribu-
tions to the evolution of the energy distribution of quarks and anti-quarks Dq(x, t)
and Dq̄(x, t) are given by the sum of q → qg or respectively q̄ → q̄g, and g → qq̄
processes, which take the form

Cq↔qg
qf

[{Di}] = −
∫ 1

0
dz
dΓqgq(xE, z)

dz

Dqf (x)(1 + nB(zxE)− nF (z̄xE))

+νq
νg

Dg(zx)
z3 (nF (xE)− nF (z̄xE))−

Dqf (z̄x)
z̄3 (nF (xE) + nB(xE))


+
∫ 1

0
dz
dΓqgq

(
xE
z
, z̄
)

dz

Dqf

(
x

z

)(
1 + nB

(
z̄xE

z

)
− nF (xE)

)

+νq
νg

Dg

(
z̄x
z

)
z3

(
nF

(
x

z

)
− nF

(
xE

z

))
−
Dqf (x)
z̄3

(
nF

(
xE

z

)
+ nB

(
z̄xE

z

)) ,
(4.37)

Cg↔qq̄
qf

[{Di}] =
∫ 1

0
dz
dΓgqq̄

(
xE
z
, z
)

dz

Dg

(
x

z

)(
1− nF (xE)− nF

(
z̄xE

z

))

−νg
νq

Dqf (x)
z3

(
nB

(
xE

z

)
+ nF

(
z̄xE

z

))
− νg
νq

Dq̄f

(
z̄x
z

)
z̄3

(
nB

(
xE

z

)
+ nF (xE)

) .
(4.38)

and similarly for anti-quarks, with qf replaced by q̄f in the above expressions.
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4.1.3 Conservation laws and scaling
Before we proceed to our analysis of the evolution of the energy distribution, we
briefly note that by explicitly taking into account the back-reaction of the highly
energetic particles on the thermal QGP constituents, the above evolution equations
satisfy the following sum rules

∂t
∑
a

∫ ∞
0

dxDa(x, t) = 0 , ∂t

∫ ∞
0

dx
1
x

(
Dqf (x, t)−Dq̄f (x, t)

)
= 0 , (4.39)

associated with energy (E) and net charge (Qf ) conservation. While for typical
excitations with energies ω = xE ∼ T of the order of the temperature of the
QGP, all contributions of elastic and inelastic processes to the collision integrals are
parametrically of the same order ∼ g4T [31, 71], the situation is markedly different
for high-momentum particles with ω = xE � T , where the various contributions to
the collision integrals behave parametrically as

C inelastic
a ∼ g4T

√
T

xE
Da(x, t) , (4.40)

CDrag
a ∼ g4T

(
T

xE

)
x∂xDa(x, t) , (4.41)

CConversion
a ∼ g4T

T

xE
Da(x, t) , (4.42)

CDiffusion
a ∼ g4T

(
T

xE

)2
(x∂x)2Da(x, t) , (4.43)

indicating that the evolution of high-momentum particles x � T/E will be domi-
nated by inelastic processes, with power suppressed contributions from elastic pro-
cesses. Nevertheless, including the effects of all leading order processes is important
to study the evolution of softer fragments of the energy distribution all the way to
the temperature scale x ∼ T/E, where elastic and inelastic contributions eventually
become comparable in magnitude [31].

4.2 Energy loss and equilibration
We study the energy loss and equilibrium of hard partons inside a thermal QGP,
starting from an initial condition, where the initial energy distribution of partons
Da(x, t) is given by a narrow Gaussian of width σ/E = 10−3/

√
2 centered around

the energy E, which is normalized to
∫
dx
∑
aDa(x, 0) = 1. Since the evolution
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equations are linear, the evolution of a general solution can be decomposed into a
basis set of excitations. We choose the initial condition as a Gaussian profile, which
is transparent to the physics. With regard to the chemical composition, we will
consider two types of initial conditions, corresponding to highly energetic gluon and
quark where initially all the energy is stored either in the gluon or quark distribution
respectively, Although we will refer to these two initial condition as gluon/quark jet,
we would like to emphasize that they do not correspond to the usual jet definitions
as this requires definitions of cones sizes which are aspects beyond the scope of this
study. For a gluon jet

Dg−jet
g (x, 0) = 2e−

(xE−E)2

2σ2

√
2πσ/E

(
erf
(

E√
2σ

)
+ 1

) , Dg−jet
q (x, 0) = 0 ,

Dg−jet
q̄ (x, 0) = 0 , (4.44)

whereas for a quark jet

Dq−jet
g (x, 0) = 0 , Dq−jet

q (x, 0) = 2e−
(xE−E)2

2σ2

√
2πσ/E

(
erf
(

E√
2σ

)
+ 1

) ,
Dq−jet
q̄ (x, 0) = 0 , (4.45)

where the error function is given by erf(x) = 2√
π

∫ x
0 dt e

−t2 .
If not stated otherwise, we will present results for the evolution of jets with

energy E = 1000T , and express all time scales in terms of the dimensionless time
variable

τ = t

tsplit(E) = g4T

√
T

E
t . (4.46)

Since tsplit(E) = 1
g4T

√
E
T

corresponds to the typical timescale for an initial hard
parton to undergo a quasi-democratic (z ∼ 1/2) splitting,2 which will ultimately
dictate the energy loss [29, 34, 36, 71], we can expect that this normalization takes
into account the leading dependence on the jet energy. We will further address the
jet energy dependence in Sec. 4.2.2, where we compare results for different values of
E/T = 10, 30, 100, 1000.

2Note that due to LPM suppression, the timescale tsplit(E) is enhanced by a factor
√

E
T relative

to the typical mean free path or relaxation time ∼ 1
g4T of near-thermal excitations.
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With regard to the quark distributions, it is convenient to decompose the energy
distributions Dqf (x) and Dq̄f (x) into flavor singlet (S) and valence (V) distributions,
which are obtained by the following linear combinations

DS(x) =
∑
f

Dqf (x) +Dq̄f (x), DVf (x) = Dqf (x)−Dq̄f (x), (4.47)

such that the singlet distribution DS(x) characterizes the energy distribution of
quarks inside the jet, whereas the valence distribution describes the distribution
of valence charge inside the jet. By careful inspection of the evolution equations,
one finds that at the linearized level, the evolution of DVf (x) decouples from the
evolution of DS(x) and Dg(x), indicating that different mechanisms will ultimately
be responsible for the equilibration of energy and valence charge of the jet.

Since our effective kinetic description explicitly takes into account the medium
response, the total energy E as well as the set of all valence charges Qf are explicitly
conserved. Nevertheless, over the course of the evolution, jet energy and valence
charge are re-distributed from high-energy (ω ∼ E) to low energy (ω ∼ T ), where the
soft constituents of the jet will eventually thermalize with the surrounding medium.
Hence, in order to analyze jet energy loss, we define a cut-off scale µ = 2πT , such
that the hard constituents with ω > µ are to be considered as part of the jet,
whereas the soft constituents with ω < µ are considered as part of the equilibrated
medium.3 Based on this procedure, the individual contributions of each species to
the jet energy and valence charge is then evaluated as

Ei =
∫ ∞
µ/E

dx Di(x), Qf =
∫ ∞
µ/E

dx

x
DVf (x). (4.48)

We present our results for jet energy loss in Fig. 4.1, where the two upper panels
show the evolution of the different contributions to the energy for quark and gluon
jets. Different curves ES, Eg in each panel, show the individual contributions of
hard quarks and gluons, as well as the total energy of hard constituents Etot. While
initially quarks(gluons) dominate the energy budget of quark (gluon) jets, strong
changes in the chemical composition of the jet take place over the course of the
evolution. Eventually, by the time τ & 20 the chemical composition of quark and
gluon jets becomes nearly identical; however, at this point the jet has already lost a
significant fraction of its energy to the thermal medium.

By taking the time derivatives of the total energy of hard constituents Etot, we
can further compare the differential energy loss rate dE/dτ for quarks and gluon

3We note that in thermal equilibrium, around ∼ 75% of the total energy are contained in the
energy range [0, 2πT ].
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Figure 4.1: (top) Evolution of the energy carried by particles with momentum p >
2πT for quark (left) and gluon (right) jets with E = 1000T . Different curves labeled
Eg,S,jet represent the energy fraction of gluons (g), quarks plus anti-quarks (S) and
the sum of all species (jet). (bottom) Differential energy loss rate dEjet/dτ divided
by the corresponding Casimir factor (CR = CA = Nc for gluons jets and CR = CF =
N2
c−1

2Nc for quark jets).
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jets, which are presented in the lower panel of Fig. 4.1. Starting from a small but
non-zero energy loss rate at very early times τ ' 0, the energy loss rate dE/dτ
exhibits an approximately linear increase with evolution time τ , which follows the
expected Casimir scaling such that 1

CF
dE/dτ |q−jet ≈ 1

CA
dE/dτ |g−jet at early times

τ . 3. Subsequently, as the hard constituents of the jet start to be significantly
affected by the presence of the medium, the energy loss rate experiences a broad
maximum and the Casimir scaling of the energy loss breaks down. Eventually, the
energy loss rate dE/dτ decays exponentially at very late times, as the few remaining
constituents equilibrate with the thermal medium.

Based on the behavior observed in Fig. 4.1, we find that the in-medium evolution
of the jet can be roughly divided into three distinct stages, characterized by direct
energy loss, inverse turbulent cascade, and the eventual approach to equilibrium,
which we will now discuss in more detail.

4.2.1 Early stages of the evolution
During the early stages of in-medium jet evolution, elastic and inelastic processes
give rise to (longitudinal) momentum broadening of the hard components of the jet,
as can be seen from the widening of the distribution peak around x ∼ 1 in Figs. 4.2
and 4.3, where we present the evolution of the energy distributions Dg(x), DS(x) and
DV (x) at early times. Even though these processes initially have a small effect on
the hard (x ∼ 1) components of the jet, they can still lead to a sizeable deposition of
energy into soft (x ∼ T/E) modes due to the emission of soft radiation and recoil of
the thermal medium. In order to further quantify the energy loss at early times, we
can compute the energy deposition below the scale µ perturbatively, i.e. assuming
that at early times τ � 1 the distributions Di(x) of hard fragments are unmodified.
By inserting the initial conditions in Eqns. (4.44, 4.45) into the evolution equations
(4.22-4.25, 4.33-4.38) for the energy distribution and integrating over momentum
fractions x up to the cut-off scale µ/E � 1, one finds an approximately constant
energy loss at early times

dE

dτ

∣∣∣∣∣
τ�1

= γsoft−radiation + γrecoil , (4.49)

where γsoft−radiation is the contribution from the emission of soft radiation and γrecoil

describes the contribution from elastic recoils.
Evaluating the inelastic contributions in the limit x � 1, one finds that Bose-

enhancement and Fermi-suppresion factors cancel between gain and loss terms, such
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Figure 4.2: Early time behavior of the energy distribution for a quark jet (left) and
a gluon jet (right). Gray dashed lines represent single splitting as written in Eqns.
(4.50-4.51) and (4.52-4.53), while the green dashed lines represent the same splitting
plus the elastic recoil terms from Eqns. (4.61-4.62).
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Figure 4.3: Early time behavior of the valence distribution for a quark jet. Gray
dashed lines represent single splitting as written in Eqns. (4.50-4.51) and (4.52-4.53),
while the green dashed lines represent the same splitting plus the elastic recoil terms
from Eqns. (4.61-4.62).

that for x � 1 the radiative contributions to the energy distributions are approxi-
mately given by

gluon jet: Dsoft−radiation
g (x, t) =xt

dΓggg(E, z)
dz

∣∣∣∣∣
z=x

, (4.50)

Dsoft−radiation
S (x, t) =xtNf

dΓgqq̄(E, z)
dz

∣∣∣∣∣
z=x

, (4.51)

quark jet: Dsoft−radiation
g (x, t) =xt

dΓqgq(E, z)
dz

∣∣∣∣∣
z=x

, (4.52)

Dsoft−radiation
S (x, t) =Dsoft−radiation

V (x, t) = xt
dΓqgq(E, z)

dz

∣∣∣∣∣
z=1−x

,

(4.53)

which is indicated in Figs. 4.2 and 4.3 by a gray dashed line for the earliest three
times. Based on the above expressions, the resulting contributions to energy loss
evaluate to

γsoft−radiation
g−jet = 1

tsplit(E)

∫ µ

0
dx x

[
dΓggg(E, z)

dz

∣∣∣∣∣
z=x

+Nf

dΓgqq̄(E, z)
dz

∣∣∣∣∣
z=x

]
, (4.54)

=(0.0072︸ ︷︷ ︸
g→gg

+ 1.16 10−6︸ ︷︷ ︸
g→qq̄

Nf ) ,
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γsoft−radiation
q−jet = 1

tsplit(E)

∫ µ

0
dx x

[
dΓqgq(E, z)

dz

∣∣∣∣∣
z=x

+
dΓqgq(E, z)

dz

∣∣∣∣∣
z=1−x

]
, (4.55)

= 0.0038︸ ︷︷ ︸
q↔gq

,

where the quoted values correspond to numerical evaluations for E = 1000T and
µ = 2πT as usual.

Similarly, from Eq.(4.22) and (4.23) we can estimate the effect of the elastic
recoil at early times as

γrecoil = 1
tsplit(E)

∑
i

∫ µ

0
dx δJi[{Di}] '

1
tsplit(E)

2dA
4TE4

ˆ̄q
(g4/π)

[
δ ˆ̄q − Tδη̄D

]
, (4.56)

where in the last step we have approximated
∫ 2π

0 dx x2na(xE)(1 ± na(xE)) '∫∞
0 dx x2na(xE)(1± na(xE)). Evaluating the contributions to δ ˆ̄q and δη̄D based on

the initial conditions for gluon and quark jets in Eq. (4.44) and (4.45), one finds
that

gluon jet: δ ˆ̄q = g4

π
ν−1
g CAE

3 , δη̄D = g4

π
2ν−1

g CAE
2 , (4.57)

quark jet: δ ˆ̄q = g4

π

ν−1
q E3

2 , δη̄D = g4

π

2ν−1
q E2

2 , (4.58)

(4.59)

such that

γrecoil = 1
tsplit(E)

ˆ̄qeqCR
4E

[ 1
T
− 2
E

]
'

ˆ̄qeqCR
4TE , (4.60)

where CR corresponds to the particle carrying all the energy in the initial condition.
We also provide the behavior of the recoil contribution to the energy distribution at
the early times

Drecoil
g (x, t) '

ˆ̄qeqCA
4TE x2t nB(xE)(1 + nB(xE)) , (4.61)

Drecoil
S (x, t) '2

ˆ̄qeqCF
4TE x2t nF (xE)(1− nF (xE)) . (4.62)

which is indicated in Fig. 4.2 by a green dashed line for the earliest three times.
While the sum of soft radiation and recoil contributions provides an excellent de-
scription of the evolution of the energy distributions in Figs. 4.2-4.3 and the initial
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energy loss rate in Fig. 4.1 at very early times, clear deviations of the spectrum
at small x . T/E and intermediate scales T/E � x � 1 start to develop rather
quickly, especially in the flavor singlet quark channel (DS). Similarly, the early-time
estimate in Eq. (4.49), also fails to explain the linear rise of the energy loss rate seen
in Figs. 4.2-4.3, which as we will discuss now can be attributed to multiple successive
splittings, which ultimately provide a more efficient energy loss mechanism [29, 34,
36, 132].

4.2.2 Successive splittings & evolution at intermediate
scales

Besides contributing to the energy loss, radiative emissions from the original hard
partons in Eqns. (4.50,4.51,4.52,4.53) also establish a spectrum of intermediate en-
ergy particles, as is clearly seen from Figs. 4.2-4.3, where all intermediate scales
are populated starting at early times. Such radiated quanta at intermediate energy
scales T/E � x� 1 typically have a higher interaction rate, and they can therefore
undergo subsequent interactions with the thermal medium to lose their energy.

Based on the parametric estimates in Eqns. (4.40-4.43), one expects the evolution
at scales T/E � x � 1, to be dominated by inelastic scatterings and one can
therefore approximate the collision integrals as follows

Cg[{Di}] =
∫ 1

0
dz

dΓggg
(
xE
z
, z
)

dz
Dg

(
x

z

)
− 1

2
dΓggg(xE, z)

dz
Dg(x)

+
∫ 1

0
dz

dΓqgq
(
xE
z
, z
)

dz
DS

(
x

z

)
−Nf

∫ 1

0
dz

dΓgqq̄(xE, z)
dz

Dg(x) , (4.63)

CS[{Di}] =
∫ 1

0
dz

dΓqgq
(
xE
z
, z̄
)

dz
DS

(
x

z

)
−
dΓqgq(xE, z)

dz
DS(x)

+ 2Nf

∫ 1

0
dz

dΓgqq̄
(
xE
z
, z
)

dz
Dg

(
x

z

)
, (4.64)

CV [{Di}] =
∫ 1

0
dz

dΓqgq
(
xE
z
, z̄
)

dz
DV

(
x

z

)
−
dΓqgq(xE, z)

dz
DV (x) , (4.65)

where we neglected the contributions from Bose enhancement and Fermi suppression,
which are exponentially suppressed for energies xE � T . Since at sufficiently high
jet energies the relevant splitting rates Γabc are in the deep LPM regime [116, 133],
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they can further be approximated by the leading-log solutions [30, 116]4

dΓggg(xE, z)
dz

' 1√
x
Kgg(z) = αs

2πPgg(z)
√

ˆ̄q(xE)
xE

√√√√(1− z)CA + z2CA
z(1− z) , (4.66)

dΓqgq(xE, z)
dz

' 1√
x
Kgq(z) = αs

2πPqg(z)
√

ˆ̄q(xE)
xE

√√√√(1− z)CA + z2CF
z(1− z) , (4.67)

dΓgqq̄(xE, z)
dz

' 1√
x
Kqg(z) = αs

2πPgq(z)
√

ˆ̄q(xE)
xE

√√√√CF − z(1− z)CA
z(1− z) , (4.68)

where in the above expressions ˆ̄q(xE) should be fixed to match the full splitting
kernel at the relevant energy scale (see Appendix B for a comparison). Based on the
above expressions for the splitting rates, and the initial conditions in Eqns. (4.44)
and (4.45) the single emission spectrum then takes the approximate form

Dg(x, t) '
G(t)√
x
, (4.69)

DS(x, t) ' S(t)
√
x , (4.70)

featuring the characteristic 1/
√
x and

√
x power laws in the gluon and singlet quark

channels with linearly rising amplitudes G(t) and S(t) given by

gluon jet: G(t) = C
3/2
A

αs
2π

√
ˆ̄q(E)
E

t , S(t) = 2C1/2
F NfTR

αs
2π

√
ˆ̄q(E)
E

t , (4.71)

quark jet: G(t) = CFC
1/2
A

αs
2π

√
ˆ̄q(E)
E

t , S(t) = C
3/2
F

αs
2π

√
ˆ̄q(E)
E

t . (4.72)

Beyond early times, the perturbative description in Eq. (4.71) breaks down, as
the radiated quanta undergo successive splittings; the spectrum at intermediate
scales T/E � x� 1 no longer follows the single emission spectra from hard (x ∼ 1)
primaries, but is instead determined by the dynamics of multiple successive branch-
ings of semi-hard (T/E � x� 1) fragments with a continuous influx of energy and
valence charge due to continued emissions from the hard (x ∼ 1) primaries.

In this context, it is important to point out that the set of evolution equa-
tions for multiple successive branchings of semi-hard (T/E � x� 1) fragments in

4Note that this approximation is also commonly referred to as harmonic oscillator approxima-
tion, and that the functions Kij agree with the definitions in [30].

54
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Eqns. (4.63-4.65) features a stationary solution of the form

Dg(x) = G√
x
, DS = S√

x
, DV = V

√
x , (4.73)

which following earlier works [29, 30] corresponds to the Kolmogorov-Zhakarov (KZ)
spectrum of weak-wave turbulence, and is associated with the stationary transport
of energy and valence charge towards lower energies, i.e. an inverse energy and
respectively particle cascade. Despite the fact that the spectral shape ∝ 1/

√
x of

the stationary gluon spectrum in Eq. (4.73) agrees with that of single gluon emission
spectra in Eq. (4.71), this agreement is to some extent accidental, as the spectral
shape of the KZ spectrum is determined by the characteristic energy x-dependence
of the splitting rates Γ(xE, z) ∼

√
ˆ̄q
xE

in Eq. (4.66) rather than the specific z-
dependence of the splitting functions [30, 32, 123, 124]. Similarly, the stationary
Kolmogorov-Zakharov spectrum for the singlet quark distribution, also features the
same ∝ 1/

√
x behavior as the gluon distribution, with the ratio quark and gluon

distributions DS(x)
Dg(x) = S

G
determined by the (local) balance of g → qq̄ and q → qq

processes[30]

S

G
= 2Nf

∫
dz z Kqg(z)∫

dz z Kgq(z) ≈ 0.07× 2Nf (4.74)

which is in sharp contrast to the single emission spectra in Eq.(4.71), where quark
emission is power suppressed compared to gluon emission at small x.

Numerical results for the evolution of the in-medium energy distributions at
intermediate times τ are presented in Fig. 4.4, where the different panels show the
distributions Dg(x), DS(x) and DV (x) for quarks jets (left column) and gluon jets
(right column). Despite the fact that the numerical results include both elastic
and radiative processes with full in-medium splitting rates, the turbulent spectra
in Eq. (4.73) are clearly visible at intermediate energy scales and persist over the
entire range of evolution times shown in Fig. 4.4. Especially in the subdominant
channels, i.e., for the singlet quark distribution inside a gluon jet, or the gluon
distribution inside a quark jet, the turbulent spectrum persists over a large range
of energy fractions 0.02 . x . 0.5 while for the dominant channels, it is not as
prominent due to the additional contributions from the jet peak around x ∼ 1.
Strong deviations from the turbulent spectrum also emerge at small x ∼ T/E,
where the effective description in Eqns. (4.73) breaks down, as other contributions
from elastic and inelastic processes become equally important and ultimately lead
to the thermalization of the soft fragments.
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Figure 4.4: Evolution of the energy distribution at intermediate times for a quark jet
(left) and a gluon jet (right). One clearly observes the Kolmogorov-Zakhrov spectra
in Eq. (4.73) at intermediate energies T/E � x� 1.
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Clearly, the onset of turbulence has important consequences for the jet energy
loss [29, 30, 34, 36, 132]. Since semi-hard fragments with T/E � x � 1 can
efficiently lose energy to the thermal bath via multiple successive quasi-democratic
(z ∼ 1/2) splittings, the energy that is injected into the cascade due to semi-hard
(T/E � x � 1) primary emissions is efficiently transferred all the way to the
scale of the thermal medium x ∼ T/E, thus providing a highly efficient energy loss
mechanism. One characteristic feature of this turbulent transport is the fact that it
can be described by an energy flux

dE

dτ
(Λ) =

∑
i

∫ ∞
Λ/E

dx ∂τDi(x) . (4.75)

from high-momenta (x ∼ 1) to low momenta (x ∼ T/E), which is independent of
the momentum scale Λ where the energy flux is evaluated. Numerical results for
the energy flux dE

dτ
(Λ) are presented in Fig. 4.5, where we show the dependence of

dE
dτ

(Λ) on the momentum scale Λ for three different jet energies E = 10, 100, 1000T
at various stages of the evolution. When the separation of scales between the jet
energy E and the medium temperature T is large, we clearly see a plateau in the
energy flux, which is virtually constant within an inertial range of momenta between
the jet energy and the medium temperature. Such scale invariance of the energy
flux ensures the energy injected into the cascade is transported from high-energy
(x ∼ 1) to low-energy (x ∼ T/E) fragments, without an accumulation of energy at
any intermediate scale. Conversely, the variations of the energy flux with the scale
Λ indicate the regions where energy is dissipated from the hard components of the
jet (x ∼ 1) and accumulated at the scale of the medium temperature x ∼ T/E. By
comparing the behavior for different jet energies in Fig. 4.5, we find that even for jets
with moderately high energies, E = 100T , there is still a sizeable momentum range
where an approximately scale invariant energy flux is formed at intermediate times,
during which the jet loses most of its energy to the thermal medium. However, for
very low energy jets, E = 10T , the energy flux strongly varies with the momentum
scale Λ, indicating that without a significant separation of scales the energy of the
jet is directly transferred to the medium without resorting to a turbulent energy
cascade.

Based on the approximate form of the kinetic equations for T/E � x� E, we
can estimate the energy loss dE

dτ
in the turbulent regime as the scale invariant energy
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Figure 4.5: Evolution of the energy flux in Eq. 4.75 for quark (left) and a gluon
(right) jets with different initial energies E = 1000, 100, 10T from top to bottom.
Different curves in each panel show the energy flux at different times with gray lines
corresponding to intermediate times.
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flux, which can be computed as

dE

dτ
=
∫ 1

µ/E
dx

∫ 1

x
dz [Kgg(z) + 2NfKqg(z)]

√
z

x
Dg

(
x

z

)
−
∫ 1

µ/E
dx

∫ 1

0
dz [Kgg(z) + 2NfKqg(z)] z√

x
Dg(x) ,

+
∫ 1

µ/E
dx

∫ 1

x
dz [Kgq(z) +Kgq(1− z)]

√
z

x
DS

(
x

z

)
−
∫ 1

µ/E
dx

∫ 1

0
dz Kgq(z) 1√

x
DS(x) , (4.76)

By changing the order of integration and performing a change of variable x→ x/z
to combine the gain and loss terms, the energy flux can be re-expressed as [30]

dE

dτ
=−

∫ 1

µ/E
dz z[Kgg(z) + 2NfKqg(z)]

∫ µ/zE

µ/E
dx

Dg(x)√
x

−
∫ µ/E

0
dz z[Kgg(z) + 2NfKqg(z)]

∫ 1

µ/E
dx

Dg(x)√
x

−
∫ 1

µ/E
dz 2z [Kgq(z) +Kgq(1− z)]

∫ µ/zE

µ/E
dx

DS(x)√
x

−
∫ µ/E

0
dz 2z[Kgq(z) +Kgq(1− z)]

∫ 1

µ/E
dx

DS(x)√
x

. (4.77)

Such that upon making use of the explicit form of the Kolmogorov-Zhakarov spec-
trum in Eq. (4.73), one obtains the scale invariant energy flux in the limit µ/E � 1
as

dE

dτ
= γ̃gG+ γ̃qS , (4.78)

with the flux constants

γ̃g =
∫ 1

0
dz z[Kgg(z) + 2NfKqg(z)] log(z) = αs

2π

√
ˆ̄q(
√
TE)
E

(25.78 + 2Nf0.177) ,
(4.79)

γ̃q =
∫ 1

0
dz 2z[Kgq(z) +Kqq(z)] log(z) = αs

2π

√
ˆ̄q(
√
TE)
E

(11.595) , (4.80)

where we chose to evaluate ˆ̄q(
√
TE) at an intermediate scale between the jet energy

E and the medium temperature T . While the splitting functions in Eq. (4.66)
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Figure 4.6: Quark to gluon ratio DS(x)/2NfDg(x) at different times as a function
of the momentum fraction x. Different curves in each panel correspond to a quark
jet (solid lines) and a gluon jet (dashed lines), at evolution times indicated by
the amount of energy that the jet has lost. Horizontal lines correspond to the
equilibrium ratio DS(x)/2NfDg(x) = νq/νg which is approached at small x, and the
universal Kolmogorov ratio in Eq. (4.74) which is approached at intermediate values
of T/E � x� 1 for a transient period of time.

exhibit a singular behavior for soft emissions (z, 1− z → 0), it is important to point
out that the energy flux in Eqns. (4.78) is in fact dominated by quasi-democratic
(z ∼ 1/2) splittings, and we refer the interested reader to [30] for further discussion
and additional details of the above calculation.

By making the amplitude G(τ) time dependent, in order to account for the
injection of energy into the cascade due to radiation from the hard (x ∼ 1) primaries
as in Eq. (4.69), and adding the contributions from soft-radiation and recoil, the
energy loss in the turbulent regime can then be estimated as

dE

dτ
= γsoft−radiation + γrecoil +

(
γ̃g + S

G
γ̃q

)
G(τ) , (4.81)

which is shown in Fig. 4.1 as a gray dashed line and provides an excellent description
of the numerical results up to times τ . 5 where jets have deposited about 30% of
their energy to the thermal medium.

One striking prediction of the turbulent energy loss mechanism, is the universal
ratio of quark and gluon energy distributions DS(x)/Dg(x) in Eq. (4.74) within an
inertial range of energy T/E � x� 1. Now, in order to verify to what extent this
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behavior can be realized over the course of the jet medium evolution, we present our
numerical results for the quark to gluon ratio in Fig. 4.6, which includes all effects
due to elastic and in-elastic interactions as described in Sec. 4.1. Different curves in
Fig. 4.6, show the results for DS(x)/2NfDg(x) for quark (solid lines) and gluon jets
(dashed lines), at various stages of the evolution. Indeed, one finds that starting
around the time when the jet has lost about 20% of its total energy, the quark
to gluon ratio at intermediate values of 0.02 . x . 0.1 is rather well described
by the universal Kolmogorov ratio in Eq. (4.74) indicated by a solid orange line
in Fig.4.6. Vice versa, for small momentum fractions x ∼ T/E on the order of
the medium temperature, the quark to gluon ratio approaches its equilibrium value
of DS(x)/2NfDg(x) = νq

νg
indicating that the soft fragments of the jet have had

sufficient time to undergo chemical equilibration. While at early times the large x
components of the jet are dominated by the primary jet peak, and the jet chemistry
is dominated by the primary species, i.e., by gluons for gluon jets and by quarks for
quark jets, the situation is different at late times when the jet has lost a significant
amount of its energy. Due to the fact that hard gluons lose their energy more
efficiently compared to hard quarks, one finds that the medium effectively acts as
a chemical filter, such that even for gluon jets, the hardest constituents of strongly
quenched jets are more likely to be quarks, as can be inferred from the steep rise of
the quark to gluon ratio in the right panel of Fig. 4.6.

4.2.3 Evolution towards equilibrium
Eventually, the hard fragments of the jet have had sufficient time to undergo multiple
successive quasi-democratic branchings to deposit a significant amount of their initial
energy into the thermal medium. During this last stage of the evolution depicted
in Fig. 4.7, the few remaining hard fragments continue to lose energy and valence
charge thereby heating up the thermal bath and doping it with the valence charge.
We find that in this regime, the in-medium jet evolution follows the characteristic
pattern of “bottom-up” thermalization [34–36, 72], where the low energy part of the
distribution (x ∼ T/E) is well described by the (linearized) equilibrium distributions

Deq
g (x) = νgδT ∂TnB(xE) , (4.82)

Deq
S (x) = 2NfνqδT ∂TnF (xE) , (4.83)

Deq
Vf

(x) = νqδµf ∂µnF (xE)|µ=0 . (4.84)

with increasing temperature δT and chemical potential δµf as a function of time,
which eventually approach their final equilibrium values, indicated by the dashed
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Figure 4.7: Evolution of the energy distributions at late times for quark (left) and
gluon (right) jets. Dashed lines in each panel represent the asymptotic equilibrium
distributions in Eq. (4.82-4.84).
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lines in Fig. 4.7. While the soft sector is already thermalized, the evolution of
the hard components of the distribution continues to be well described by the
Kolmogorov-Zhakarov spectra in Eq. (4.73) up to the highest available momen-
tum fractions at each instant of time; as the hard components continue to lose their
energy to the thermal bath, this cascade proceeds towards lower and lower energies,
in a fashion that is characteristic of decaying turbulence [29, 30, 123, 124].

Clearly, the final stages of kinetic and chemical equilibration of jets closely resem-
ble the thermalization patterns previously observed in the context of thermalization
of the QGP at early times in heavy-ion collisions [34, 37, 72]. We will now further
investigate to what extent the kinetic and chemical equilibration of jets is similar
to the typical excitations of the medium, encoded e.g., in the transport properties
of the QGP [134]. Based on our effective kinetic description of in-medium jet evo-
lution, the evolution of small perturbations around equilibrium can be compactly
expressed as

∂tDa(x, t) =
∫

dz δCab(x, z)Db(z, t) (4.85)

indicating that the long time behavior of the distributions Da(x, t) is determined by
the low-lying spectrum of the linearized collision operator δCab(x, z), as quantified
by the following eigenvalue equation∫

dz δCab(x, z)Db(z, t) = λ(k)D
(k)
b (x, t) (4.86)

We provide a compact summary of our findings in Figs. 4.8 where we show the
spectrum of the low-lying eigenvalues λ(k) along with the corresponding eigenfunc-
tions D(k)

a (x, t), determined by numerical diagonalization of the discretized collision
operator5.

Since the effective kinetic description in Sec.4.1, exactly conserves the energy
E and valence charges Qf , there is a total of Nf + 1 zero modes λ(k) = 0 of the
collision operator, whose eigenfunctions correspond to the equilibrium solutions in
Eq. (4.82), and are correctly reproduced by our numerical analysis in Figs. 4.8. Due
to the fact that energy and valence charge evolution decouple from each other in
the linearized kinetic description, the linearized collision operator is block diagonal
and one can further distinguish between the spectrum of modes λ(E)

(k) in the energy
sector, spanned by the distributions (Dg, DS), and the Nf -fold degenerate spectrum
of modes λ(V )

(k) in the valence charge sector (DVf ). Based on our analysis, we find

5We have checked explicitly that varying the discretization does not significantly alter the
results.
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Figure 4.8: Spectrum of the linearized collision operator. Different panels show
the low-lying eigenvalues (top left) as well as the associated eigenfunctions in the
gluon (top right), singlet (bottom left) and valence charge (bottom right) channels.
Eigenfunctions have been normalized according to

∫
dx Dg(x)2 +DS(x)2 = 1 in the

energy sector and
∫
dx DV (x)2 = 1 in the valence charge sector.
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that both energy and charge sector feature a discrete low-lying spectrum with low-
lying eigenvalues λ(V )

1,2 and λ
(E)
1,2 of similar magnitude, which in accordance with our

discussion determine the relaxation rates for energy and charge equilibration close
to equilibrium. We also find that the corresponding eigenfunctions are localized at
low energies p/T , in the sense that they decay exponentially [135] at large energies
as can be inferred from Fig. 4.8.

Now that we have determined the near-equilibrium relaxation rates for energy
and charge equilibrium, it is insightful to revisit the evolution of the jet energy (E)
and valence charge (Qf ) loss rates. Numerical results for the time evolution of the
energy and valence charge loss rates are presented in Fig. 4.9, which compactly sum-
marize our results for quark (dashed lines) and gluon jets (solid lines), with initial
energies E = 30, 100, 300, 1000T . By comparing the results for different energies in
the top panels, which shows the rates 1

CR
dE/dτ and dQf/dτ as a function of the nat-

ural timescale τ = t/tsplit(E) for jet evolution, one finds that the leading jet energy
dependence is indeed determined by the timescale for hard splittings tsplit(E) and
correctly captured by the scaling variable. Nevertheless, with decreasing jet energy
one observes a gradual change in the energy loss pattern, where the constant energy
and valence charge loss due to soft radiation and recoil starts to become increasingly
important compared to the turbulent jet energy loss mechanism. Bottom panels of
Fig. 4.9 show the same data for energy and valence charge loss, but now in units of
the natural medium timescale 1/g4T of the thermal medium. Based on our above
discussion, one ultimately expects that at asymptotically late times, the in-medium
evolution of the jet will be governed by the near-equilibrium relaxation rates, corre-
sponding to the lowest eigenvalues λ(E)

1 and λ(V )
1 of the linearized collision operator.

While for low energy jets, E = 30T , such an exponential decay is clearly visible
at late times, as indicated by the gray dashed lines in Fig. 4.9 which represent fits
of the form dE

dt
∝ eλ

(E)
1 t and dQ

dt
∝ eλ

(V )
1 t, it is important to note that the jets have

already lost nearly all of their energy by the time that this near-equilibrium linear
response treatment becomes applicable. We therefore conclude that the in-medium
evolution of high-energy jets should be considered as a genuine far-from-equilibrium
probe of the QGP, whose space-time dynamics can not be directly related to that of
near-equilibrium excitations and generally requires a detailed microscopic descrip-
tion.
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Figure 4.9: Comparison of energy and valence charge loss rates for quark (full
lines) and a gluon (dashed lines) jets, with different initial jet energies E =
30, 100, 300, 1000. Dashed lines in the lower panel represent fits to an exponen-
tial decay using the first nonzero eigenvalues as the decay constant.
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4.3 Discussion
Based on an effective kinetic description of hard partons in a thermal medium, we
established a comprehensive picture of in-medium hard parton evolution, from the
earliest stages of elastic and radiative energy loss all the way towards kinetic and
chemical equilibration of hard partons inside the medium. By including the lead-
ing order small angle elastic and inelastic processes, that ensure energy and charge
conservation and allow us to follow the evolution of the parton shower all the way to-
wards equilibrium, we confirm earlier findings [29, 30] that the energy loss of highly
energetic partons is dominated by a turbulent cascade due to successive radiative
branchings. By investigating the energy flux along the cascade, we explicitly demon-
strated that the turbulent cascade transports energy all the way from the energy
scale of the jet x ∼ 1 to the temperature of the thermal medium x ∼ T/E, where all
leading order kinetic processes become of comparable importance. Due to multiple
successive branchings, the in-medium energy distributions become insensitive to the
hard structure of the jet and display universal turbulent features in an inertial range
of energy fractions T/E � x� 1, while the soft fragments of the distribution with
x . T/E rapidly thermalize inside the medium.

Even though the in-medium evolution of hard particles closely resembles the
thermalization patterns observed in previous studies of the thermalization of the
QGP at early times [34, 37, 72], it turns out that the dominant mechanism under-
lying jet quenching is quite different from the typical relaxation of near-equilibrium
modes, indicating that highly energetic partons or jets & 30T should really be con-
sidered as genuine non-equilibrium probes of the QGP. Conversely, the in-medium
evolution of less energetic partons or jets . 30T , is more sensitive to the physics at
the scale of the QGP medium.
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5 Out-of-cone energy loss

While the study of longitudinal energy loss in the medium allowed us to extract
important dynamics and discuss the universal behavior of the cascade, our study
lacked the angular structure of the evolution, which is important for the study of the
out-of-cone energy loss. In this section, we proceed to extend our study to include
the polar angular structure of the cascade. We keep the same treatment for the
collinear cascade, but we consider the full QCD matrix element at leading order
for the elastic interactions in order to follow the fragmentation all the way to large
angles.

5.1 Kinetic description
Following the same approach as the last chapter, we study the re-distribution of
energy, but we now take it as a function of the polar angle as well, which can be
quantified in terms of

Da(x, cos θ, t) ≡ x
dNa

dxdcos θ = νa

∫ d3p

(2π)3
|p|
E

δ
( |p|
E
− x

)
δ
(

p · ~ez
p
− cos θ

)
δfa(p, t) ,

(5.1)
where θ is the angle between the parton’s momentum and the axis ~ez which defines
the direction of the initial parton’s momentum. We note that the sum rules related
to energy E, longitudinal momentum pz and charge (Qf ) conservation, are now
given by∑
a

∫ 1

−1
dcos θ

∫
dx Da(x, cos θ, t) = 1 ,

∑
a

∫ 1

−1
dcos θ

∫
dx cos θDa(x, cos θ, t) = 1 ,

(5.2)∫ 1

−1
dcos θ

∫ dx

x

(
Dqf (x, t)−Dq̄f (x, t)

)
= Qf . (5.3)

Based on Eq. (3.8), the evolution of the momentum/energy distributions of partons
Da(x, cos θ, t) is entirely driven by interactions with the medium constituents,

∂tDa(x, cos θ, t) = C2↔2
a [{Di}] + C1↔2

a [{Di}] , (5.4)
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where as in Eq. (5.1) we have defined

Ca[{Di}] ≡ νa

∫ d3p1

(2π)3
|p1|
E

δ
( |p1|
E
− x

)
δ
(

p1 · ~ez
p1

− cos θ
)
Ca[{fi}, {δfi}] . (5.5)

Since we consider the radiation processes to be collinear, they are described by
exactly the same equations from section 3.4 by only including the angular depen-
dence of the distribution. However, for the treatment of elastic processes, we will
consider the full matrix element as we describe in the following section.

5.1.1 Elastic scatterings

In order to account for both small and large angle scatterings, in this chapter we
will use the full collision integral in Eq. 3.9 which we linearize as follows

C2↔2
a [{fi}] = 1

2|p1|νa
∑
bcd

∫
dΩ2↔2

∣∣∣Mab
cd(p1,p2; p3,p4)

∣∣∣2 δF(p1,p2; p3,p4) , (5.6)

where the statistical factor δF(p1,p2,p3,p4) is now

δF(p1,p2,p3,p4) = δfa(p1) [±anc(p3)nd(p4)− nb(p2)(1± nc(p3)± nd(p4))]
+ δfb(p2) [±bnc(p3)nd(p4)− nb(p1)(1± nc(p3)± nd(p4))]
− δfc(p3) [±cna(p1)nb(p2)− nb(p4)(1± na(p1)± nb(p2))]
− δfd(p4) [±dna(p1)nb(p2)− nb(p3)(1± na(p1)± nb(p2))] ,

(5.7)

where ±i is plus if particle i is a boson and minus for a fermion. Since we consider
the phase-space distribution to be isotropic in the azimuth angle of momentum, we
write

δfa(p) =
∫ dpφ

(2π) δfa(p) = (2π)2Da(x, cos θ)
νa(xE)3 . (5.8)
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The statistical factor in terms of the energy distribution is given by

D(1, 2; 3, 4) =δF(p1,p2,p3,p4) , (5.9)

= Da(x1, cos θ1)
νax3

1E
2 [±anc(p3)nd(p4)− nb(p2)(1± nc(p3)± nd(p4))]

+ Db(x2, cos θ2)
νbx3

2E
2 [±bnc(p3)nd(p4)− nb(p1)(1± nc(p3)± nd(p4))]

− Dc(x3, cos θ3)
νcx3

3E
2 [±cna(p1)nb(p2)− nb(p4)(1± na(p1)± nb(p2))]

− Dd(x4, cos θ4)
νdx3

4E
2 [±dna(p1)nb(p2)− nb(p3)(1± na(p1)± nb(p2))] ,

(5.10)

where xi = pi
E

and cos θi = pi·~ez
pi

. The collision integral for the energy distribution is
then given by

C2↔2
a [{Di}] =

∑
bcd

∫ d3p

(2π)3
|p|
E

δ
( |p|
E
− x

)
δ
(

p · ~ez
p
− cos θ

)
1

2p1

∫
dΩ2↔2

∣∣∣Mab
cd(1, 2; 3, 4)

∣∣∣2D(1, 2; 3, 4) . (5.11)

The discretization of this collision integral is described in Appendix B, in the follow-
ing sections we will outline our treatment of the matrix element using Hard thermal
loop (HTL) propagators.

Hard thermal loop matrix element

The matrix elements in Tab. 3.1 are for particles in vacuum, which leads to an
infrared divergence in the momentum exchange in the t- and u-channels1. For a
proper treatment using thermal propagators, the divergences are cut off by the self-
energies. However, as the authors of [31] argue, medium-dependent effects are only
important for small angle scatterings corresponding to the regions where −t or −u
are of the order of the thermal mass squared and the modification of the other terms
can be neglected. In this section, we will follow the AMY approach [31, 65, 136] in
order to re-write the divergent terms using the retarded self-energy, which cuts off
the divergence.

1The mixed channels s2/(tu) and u2/(st) also generate divergences, but these cancel between
the gain and loss term [31].
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Gluon exchange: We apply the rewriting for the following t- and u-channel gluon
exchange processes: gg ↔ gg, qiqj ↔ qiqj, qiq̄j ↔ qiq̄j, q̄iq̄j ↔ q̄iq̄j and qig ↔ qig.
The matrix elements in terms of Mandelstam variables can be rewritten as

s2 + u2

t2
= 1

2 + 1
2

(s− u)2

t2
,

su

t2
= 1

4 −
1
4

(s− u)2

t2
, (5.12)

s2 + t2

u2 = 1
2 + 1

2
(s− t)2

u2 ,
st

u2 = 1
4 −

1
4

(s− t)2

u2 . (5.13)

Using thermal propagators amounts to the replacement [65]

(s− u)2

t2
−→ |Gµν(P1 − P3)(P1 + P3)µ(P2 + P4)ν |2 , (5.14)

(s− t)2

u2 −→ |Gµν(P1 − P4)(P1 + P4)µ(P2 + P3)ν |2 , (5.15)

where Gµν(P1−P3) is the retarded thermal gluon propagator, computed in the HTL
approximation. In the Coulomb gauge, it is given by

Gµν(ω, q) = −1
q2 + Π00(ω, q) , Gij(ω, q) =

δij − qiqj
q2

q2 − ω2 + ΠT (ω, q) , (5.16)

Gi0(ω, q) =G0i(ω, q) = 0 . (5.17)

The transverse and longitudinal gluon self-energies are given by

Π00(ω, q) =m2
D

[
1− ω

2q

(
ln
(
q + ω

q − ω

)
− iπ

)]
, (5.18)

ΠT (ω, q) =m2
D

[
ω2

q2 + ω(q2 − ω2)
4q3

(
ln
(
q + ω

q − ω

)
− iπ

)]
, (5.19)

here for the t- and u-channels, the propagator with 4-momentum Q = (ω, q) is
space-like (i.e., |ω| < q) and the logarithm is well-behaved.

Quark exchange: The other t- and u-channel processes that require a rewriting
are the quark exchange processes: qiq̄i ↔ gg and qg ↔ qg. The matrix elements are
computed using the following replacement for the four-momentum exchange,

Qµ → Qµ ≡ Qµ − Σµ(Q) , (5.20)
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where the quark self-energy in the Coulomb gauge is given by

Σ0(Q) =m
2
F

2q

[
ln
(
q + ω

q − ω

)
− iπ

]
, (5.21)

Σ(Q) =− q
m2
F

q2

[
1− ω

2q ln
(
q + ω

q − ω

)
− iπ

]
. (5.22)

The relevant matrix elements become
u

t
−→ 4Re[(P1 · Q)(P2 · Q∗)]− sQ · Q∗

|Q · Q|2

∣∣∣∣∣
Qµ=Pµ1 −P

µ
3 −Σµ(P1−P3)

, (5.23)

t

u
−→ 4Re[(P1 · Q)(P2 · Q∗)]− sQ · Q∗

|Q · Q|2

∣∣∣∣∣
Qµ=Pµ1 −P

µ
4 −Σµ(P1−P4)

, (5.24)

s

u
−→ −4Re[(P1 · Q)(P3 · Q∗)]− tQ · Q∗

|Q · Q|2

∣∣∣∣∣
Qµ=Pµ1 −P

µ
4 −Σµ(P1−P4)

. (5.25)

All allowed processes in Tab. 3.1 are summed numerically to obtain the full
elastic collision integral (C2↔2

a [{Di}]) which together with the collinear radiation
(C1↔2

a [{Di}]) will describe the evolution of the energy distribution.

5.2 Energy loss and equilibration
Similarly to Chapter 4, we follow the energy loss and equilibrium of hard partons
inside a thermal QGP, starting from an initial condition, where the initial energy
distribution of partons Da(x, t) is given by a narrow Gaussian of width σ/E =
10−3/

√
2 centered around the momentum along the z-axis (taking p = pz = E),

which is normalized to
∫
dx
∫
dcos θ∑aDa(x, cos θ, 0) = 1. We will also consider

two types of initial conditions, corresponding to a highly energetic gluon or quark,
respectively. For a gluon jet

Dg−jet
g (x, cos θ, 0) = 1

N
exp

{
−(xE − E)2 + x2E2(1− cos θ2)

2σ2

}
, (5.26)

Dg−jet
q (x, cos θ, 0) = 0 , Dg−jet

q̄ (x, cos θ, 0) = 0 , (5.27)
whereas for a quark jet

Dq−jet
q (x, cos θ, 0) = 1

N
exp

{
−(xE − E)2 + x2E2(1− cos θ2)

2σ2

}
, (5.28)

Dq−jet
g (x, cos θ, 0) = 0 , Dq−jet

q̄ (x, cos θ, 0) = 0 , (5.29)
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Figure 5.1: Evolution of the distributions of all species D(x, cos θ) = ∑
aDa(x, cos θ)

for a gluon jet at different times t = 0.54, 2, 3fm/c and the equilibrium distribution
as a function of momentum fraction x = p

E
and angle θ. (The white lines represent

constant angles from small to large θ = 0.11, 0.16, 0.32, 0.62.)
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where the normalization factor is given by N =
∫ 1
−1 dcos θ

∫
dx e−

(xE−E)2+x2E2(1−cos θ2)
2σ2 .

If not stated otherwise, throughout this chapter, we will present results for the
evolution of jets with energy E = 100T and take the coupling g = 2 which cor-
responds to αs ' 0.31. The time scale will be expressed in terms of both the
dimensionless time variable as in the previous chapter

τ = g4T

√
T

E
t , (5.30)

and the physical time units fm/c, where we use a thermal medium with temperature
T = 200MeV to set the physical scale. However, the physical time should be regarded
as only an indication, since our evolution does not include relevant effects for a
phenomenological study (e.g. the splitting rates are considered in an infinite medium
size).

We present the evolution of the total energy distribution of all species
D(x, cos θ) = ∑

aDa(x, cos θ) in figure 5.1 for a gluon jet at different times t =
0.54, 2, 6.8fm/c and the equilibrium distribution as a function of momentum frac-
tion x = p

E
and polar angle θ. At early times one identifies the leading parton peak

at momentum fraction x ∼ 1 and angle θ ∼ 0, which is only marginally broadened.
The collinear radiation spectrum, already starts to populate the intermediate scales
between the jet energy (x ∼ 1) and the medium (x ∼ T/E) but mainly in the
collinear region (θ ∼ 0). In this region of small angles, the conclusions are very
similar to the previous chapter where we studied the longitudinal energy loss, we
observe that the energy loss follows an inverse energy cascade with a scale indepen-
dent energy flux. At intermediate times, the energy starts to be transferred to large
angles, but only in the low momentum sector, while in the large momentum region
most of the energy is collinear (θ . 0.3). We observe that the elastic interactions
play a marginal role for the broadening of the hard partons, instead, the energy is
first transferred collinearlly from the jet peak to the soft scale, before it broadens to
large angles due to equilibration via elastic interactions. As the soft sector equilibra-
tion is rather quick, this process starts from early times and continues throughout
the evolution until the energy is depleted. At late times, the peak hast lost most
of its energy and the near-equilibrium sector deposits the remainder of its energy in
the medium. One notes that the equilibrium distribution features a negative contri-
bution which accounts for the medium particles that are kicked in the jet direction
ensuring momentum conservation (c.f. sec. 5.2.3).

We can explore further the structure of the energy distribution by looking at the
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Figure 5.2: Evolution of the energy distribution as a function of the momentum
fractions x = p

E
with a decomposition into different angular regions as described in

Eq. (5.31). The height of each shaded region in the lower panel represents the ratio
to the full distribution, displaying how the energy is distributed in different angular
regions.
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5 Out-of-cone energy loss

angular integrated energy distribution

D(x)|θmax
θmin =

∫ cos θmax

cos θmin
dcos θ D(x, cos θ) . (5.31)

We show in Fig. 5.2 the full distribution D(x)|Full ≡ D(x)|π0 together
with distributions at different angular bins D(x)|θmax

θmin with (θmin, θmax) =
(0, 0.11, 0.16, 0.32, 0.62, π). The lower panel represents how the full distribution is
decomposed into the different angular regions, where the height of each shaded area
corresponds to the ratio D(x)|θmax

θmin
D(x)|Full . Overall, the full energy distribution follows a sim-

ilar behavior as in the previous chapter, albeit here the elastic scatterings are better
represented using the full matrix element. The turbulent spectrum is recovered in
the intermediate scales, not only in the full distribution but also in the small angle
region where most of the collinear radiation happens. At early times, the jet peak
sits at x ∼ 1 and already energy is directly deposited in the medium at small angles,
which broadens rather quickly to large angles later on. This can be seen in the lower
panels, where the dark green region accounts for ∼ 25% of the distribution in the
soft scales (x ∼ T/E) at t = 0.25fm/c and dies away (. 10%) already in the follow-
ing time step. The large angle region in bright green displays a negative behavior, as
the direct collinear energy loss boosts the medium constituents. Afterwards, equi-
libration mechanisms re-distribute the momentum of the soft partons leading to a
positive distribution, we will describe how energy is distributed in equilibrium in
Eq. (5.40).

5.2.1 Comparison with the small angle approximation
In order to investigate the angular structure of the energy distribution, we show
in Fig. 5.3 the angular distribution by integrating over the momentum fraction as
follows

D(cos θ)|xmax
xmin =

∫ xmax

xmin
dx D(x, cos θ) . (5.32)

We compare with an evolution using the small angle approximation denoted by
‘Diffusion’ where we used the same procedure as the previous chapter except we
also include angular diffusion mechanisms described in Appendix A. We show three
different scales: large momentum sector (xE ≤ 90T ) in the left panel, intermediate
scales (10T ≤ xE ≤ 90T ) in the middle and soft scales (xE ≤ 10T ) in the right. The
momentum broadening coefficient q̂ used in the diffusion evolution is the equilibrium
one where we take the logarithmic scale dependence to be 1 as done in the previous
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Figure 5.3: Evolution of the angular distribution in different momentum regions as
described by Eq. (5.32). The dashed lines represent an evolution using only the small
angle approximation by taking the logarithmic dependence to be 1 as in Chapter 4.

chapter, we recall the definition from Eq. (4.21)

q̂ = g4T 3CR
2π

(
Nc

3 + Nf

6

)
. (5.33)

We observe a small broadening of the hard particles which is much slower than
their depletion due to the collinear cascade, while the soft particles broaden much
more quickly and are distributed over the full range of angles even at early times.
We note here once more the negative contribution at the away side (θ > 1) due to
momentum conservation. Evidently, using a scale independent q̂, the broadening
cannot simultaneously account for both the broadening of the hard scale and the
soft scale. We find that the equilibrium q̂ in Fig. 5.3 can account fairly well for the
hard particle broadening but breaks down at medium scales.

Furthermore, rare hard scattering can take the particle out to large angles –
as discussed by Molière theory for QED [137], it was also shown that such events
dominate the large transverse momentum region in QCD [132]. The rare hard
scatterings are described by a power-law tail known as the Molière tail, to find the
exponent of the power-law we can investigate the behavior of the elastic scattering
rate for highly energetic partons which has been worked out for HTL propagators
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‘Diffusion’ approximation, taking the momentum broadening coefficient to be either
q̂ or q̂

4 .

as function of the transverse momentum q⊥ acquired, and is given by [138]

dΓel

d2q⊥
= g2Tm2

D

q2
⊥(q2
⊥ +m2

D) . (5.34)

Taking transverse momentum to be large (q⊥ � 1) leads to dΓel

d2q⊥
∼ 1/q4

⊥ behavior,
and since q⊥ = |q⊥| sin θ in our evolution the distribution should go as 1/ sin4 θ ∼
1/θ4 for θ � 1. Because the small angle scatterings lead to momentum broadening
which exponentially decays at large angles, we expect the power law to dominate
the large angle region. We note this behavior in the middle panel of Fig. 5.3, and
it is even more apparent at the early stages of the collision in Fig. 5.4 where the
absence of the power law in the ‘Diffusion’ approximation is more clear since the
broadening is still small.

We now further explore how well ‘Diffusion’ can approximate the full matrix
element, by comparing the energy loss as a function of cone size R. The fraction of
energy remaining inside the cone (θ ≤ R) is given by

E(R, τ) =
∫
dx

∫ 1

cosR
D(x, cos θ, τ) . (5.35)
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5 Out-of-cone energy loss

For the ‘Diffusion’ approximation, the logarithmic dependence of the momentum
broadening coefficient will affect the momentum broadening and consequently out-
of-cone energy loss. In the full matrix element evolution this effect is scale depen-
dent, however, in our ‘Diffusion’ simulation we do not set up a scale dependent q̂,
therefore, we will compare our results with two different values for q̂, either taking
the equilibrium value in Eq. (5.34) or taking a quarter of it (q̂ → q̂

4). We find that
these two values provide a large enough separation to describe the range of cone de-
pendence of the energy loss we focus on in Fig. 5.5. First, we see that, as expected,
the evolution using q̂

4 loses energy slower than for q̂. Likewise, how quickly energy is
lost is also dependent on the cone size, where narrower cone sizes lose energy more
quickly. Comparing with the full matrix element evolution, we observe how the hard
particles with narrow cones R ∼ 0.11 are better described by q̂ while for larger cone
sizes when softer particles are more relevant the evolution is closer to q̂

4 , confirming
our earlier conclusion that a scale independent q̂ cannot describe the broadening at
all scales. We note also that the late time limits of the different curves display the
energy inside each cone size in the equilibrium distribution.

5.2.2 Energy loss

We study the effect of the soft sector on how the energy is lost out of cone, comparing
the full energy inside the cone in Eq. (5.35) with the energy in the high momentum
fraction region (xE ≥ 2πT ) as follows

E2π(R, τ) =
∫ ∞

2πT/E
dx

∫ 1

cosR
D(x, cos θ, τ) . (5.36)

Our results are shown in Fig. 5.6, we note that for narrow cones (R ≤ 0.2) the
soft sector does not play a major role and the energy loss is very similar in both
momentum regions. While for larger cone sizes, a transition occurs where the soft
sector not only carries a substantial fraction of the equilibrated energy at late times
but also the early time energy loss diverges.

We can also study the dependence on the initial parton’s energy as shown in
Fig. 5.7 for two cone sizes R = 0.32, 0.62. We find that by taking the evolution time
in terms of the splitting time tsplit, the energy loss from inside narrow cones follows
scaling behavior, which is less prominent at larger cones as medium effects start to
play a role.
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5.2.3 Equilibration
Eventually, the hard particles lose all their energy to the medium and become part
of the thermal bath. Since our description relies on a linearization over a static
equilibrium background, the thermal bath does not change, rather the linear per-
turbation will reach an equilibrium state as a perturbation over the thermal bath.
This equilibrium distribution can be obtained as a small deviation of the equilibrium
distribution na(p) written

Deq(x, cos θ) = x3δT∂Tna(xE) + x3 δPz
E
∂βna(xE(1− βcos θ))

∣∣∣∣
β→0

. (5.37)

Since we start with a narrow Gaussian around ~p = E~ez, the energy and momentum
are both normalized to one (E = Pz = 1), using this normalization condition we
find

Deq
a (x, cos θ) = x4

N

(
1 + 3cos θ

)
na(xE)(1± na(xE)) , (5.38)

where N = 2
∫
dx x4na(xE)(1±na(xE)) is a normalization integral. When integrat-

ing the distribution over angle we recover the same longitudinal distribution from
chapter 4 in Eq. (4.82-4.84).

The equilibrium distribution is recovered at late times as shown in Figs. 5.1-5.2.
Specifically in Fig. 5.2, we see that most of the energy sits at large angles. In fact,
thermalization of the soft sector is fast enough that as soon as energy is deposited, it
starts to thermalize, as can be seen in the right panel of Fig. 5.3, where the angular
structure is very close to the equilibrium (1 + 3cos θ) behavior; the same happens in
the momentum distribution in Fig. 5.2. We can also compute the energy inside the
cone for the equilibrium distribution

Eeq(R, ) =
∫
dx

∫ 1

cosR
Deq(x, cos θ) , (5.39)

=1
2(5 + 3 cosR) sin2 R

2 . (5.40)

For small cone sizes R � 1, we have Eeq(R) ' R2 which describes fairly well the
late time behavior in Fig. 5.5.

We note that due to momentum conservation, the equilibrium distribution is
negative at the away side (θ & 1.91). Because the background equilibrium is static,
this negative side reduces particles from the medium static distribution, which are
then supplied back into the parton’s direction. We end up with a slightly boosted
medium distribution along the z direction with momentum δPz given by

f eq
a (p) = na(p) +Deq

a (x, cos θ) . (5.41)
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Figure 5.8: (left) Hadron quenching factor as a function of initial parton energy.
(right) Jet quenching factor for a gluon jet with momentum fraction x ≥ 0 (dashed)
or x ≥ 2πT/E (solid) and different cone sizes R = 0.62, 0.32, 0.11 at t = 1fm/c. We
take the medium temperature T = 200MeV.

5.3 Quenching factors
We stress that our evolution lacks the effects of vacuum like emissions and path
length dependence of the in-medium radiation rates. While these aspects are im-
portant for phenomenological studies, we still think it is interesting to explore jet
quenching using our model.

Firstly, we consider the yield of the inclusive hadron spectrum after passing
through the medium which can be obtained as a convolution of the energy distribu-
tion for a given starting energy pinT with the initial parton spectrum2 [33, 84, 139,
140]

d2σAA
dp2

T

(pT ) =
∫ ∞

0
d2pinT

∫ 1

0

dx

x

∫ 1

−1
dcos θ δ2(pT − xpinT )

D
(
x, θ, τ ≡ g4T

√
T/pinT t

)
d2σ0

d2pinT
(pinT ) , (5.42)

2We assume parton-hadron duality, i.e., the fragmentation does not alter the leading parton so
much that each leading parton leads to a high-pT hadron in the final state.

85



5 Out-of-cone energy loss

where we make use of the rescaled the time τ [33] in order to account for the initial
parton energy, which we showed to work fairly well for the hard partons in Fig. 5.7.
Dividing by the vacuum spectrum, which can be approximated by a power-law
d2σ0
dp2
T

(pinT ) ∝ p−1−n
T , we define the inclusive hadron quenching factor

Qh
AA(pT ) =

d2σAA
dp2
T

d2σ0
dp2
T

=
∫ 1

0
dx
∫ 1

−1
d cos θ D

(
x, θ,

√
xq̂/pT t

)(1
x

)2−n
. (5.43)

Secondly, we define a cone-size dependent inclusive spectrum, which can be re-
garded as a rough approximation to the jet spectrum. Starting with the following
definition of the energy remaining inside a cone of radius R as a function of the
initial parton energy pinT :

pT,rem(R, pinT ) = pinT

∫ 1

cos(R)
dcos(θ)

∫
dx D(x, θ, pinT ) . (5.44)

We define the cone-size dependent jet spectrum as a convolution between a Dirac
delta function peak at energy pT = pT,rem(R, pin

T ), representing the remaining energy
inside the cone with radius R, and the vacuum spectrum evaluated at the initial
parton energy as given by

d2σ

d2pT
(R) =

∫
d2pinT δ2

(
pT − pT,rem(R, pinT )

) d2σ0

d2pinT
. (5.45)

Dividing by the vacuum spectrum, we obtain

Qjet
AA(pT , R) =

∫
d2pinT δ2

(
E − pT,rem(R, pin

T )
) (

pin
T

pT

)−n
, (5.46)

=
∣∣∣∣∣dpT,rem(R, pin

T )
dpin

T

∣∣∣∣∣
−1

pin
T (pT ,R)

(
pinT

pT,rem(R, pin
T )

)−n∣∣∣∣∣∣
pinT (pT ,R)

, (5.47)

which we will call the jet quenching factor. One can easily see that in the case
of no quenching where pT,rem(R, pinT ) = pinT , we have no suppression (Qjet

AA(E,R) =
1), and a fully quenched jet with pT,rem(R, pinT ) = 0 will lead to full suppression
(Qjet

AA(E,R) = 0 since n > 0).
Following [94], we take ng = 5.66 and nq = 4.19 for gluon and quark jets,

respectively. The resulting quenching factors are shown in Fig. 5.8, where on the
left we show the hadron quenching factor at different times t = 1, 2, 3, 5fm/c and for
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both gluon and quark jets, while on the right we show the jet quenching factor for
a gluon jet at t = 1fm/c, for different cone sizes R = 0.62, 0.32, 0.11 and by either
taking the full range of momentum fraction (x ≥ 0) in dashed lines or only the hard
sector (x ≥ 2πT/E) in full lines. We will not directly compare with experimental
data, still we observe a similar qualitative behavior to the suppression RAA discussed
in chapter 2. Both quenching factors display a suppression (Q < 1) in the full range
of energy pT = 100− 1000T , where higher energies are less suppressed as expected.
However, since we treat medium-induced splitting in the infinite medium limit which
tends to overestimate the rates, the quenching factor we obtain at comparable times
of heavy-ion collisions (t ∼ 5fm/c) is much more suppressed than experimental
results. Hence, other effects such as medium length and vacuum-like emissions
are important to reproduce experimental observables. Nevertheless, we observe
interesting features, e.g., we find that quark jets are far more suppressed than gluon
jets in the hadron quenching factor, which is explained by the fact that gluons lose
their energy much faster than quarks. Additionally, since 2 − n < 1, the hadron
quenching factor measures particles with a given energy, and heavily depends on
the hard sector constituents which mostly sit at small angle and large momentum
fraction. On the other hand, the jet quenching factor measures energy inside a cone
(R), and displays a large soft sector dependence when taking wider cone sizes, while
for a narrow cone size the soft sector does not significantly alter the quenching.
We conclude that jet suppression depends on the soft sector which renders it much
harder to compute, while hadron quenching is more sensitive to the leading parton
which stays collinear and its energy loss is mainly due to the in-medium cascade.

5.4 Discussion
During this chapter, we have successfully implemented a full angular medium cas-
cade within an effective kinetic theory of QCD following the AMY approach [31]. By
extending our formalism in chapter 4 to include the full matrix elements containing
both small and large angle scatterings, allowing us to study the angular structure
of the energy loss in the polar angle with respect to the initial parton. Given that
medium-induced radiation, which is collinear, dominates the energy loss and leads
to a much faster depletion than elastic interactions with the medium, we find that
the main mechanism driving the energy to large angles is the equilibration of the
radiated energy in the soft sector. Therefore, while for large cone sizes the energy
inside the cone is sensitive to the soft sector, hard fragments make up almost all
energy inside the cone at small angles θ ≤ 0.2. Additionally, we compared the full
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evolution against using the small angle approximation for the elastic interactions,
as was done in the previous chapter. We find, as expected, that a scale indepen-
dent broadening coefficient cannot simultaneously describe both the broadening at
large momentum fraction and the equilibration in the soft scale. We also computed
quenching factors for leading hadron and jets, where we concluded that while the
hadron quenching factor depends mostly on the hard constituents, the jet quenching
factor recovers energy from the soft sector when taking larger cone sizes. Conse-
quently, hadron quenching can be used as observable to study in-medium splittings,
however, to study jet quenching one must also establish a good grasp on medium
response physics.
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6 Non-perturbative in-medium
splitting rates

Throughout the other studies, we concluded that medium energy loss of a highly en-
ergetic parton is dominated by radiative branchings. Therefore, in order to develop a
better estimation for the energy loss, certainly one needs to improve the in-medium
radiation rate calculation. There exist several formalisms in the literature that are
used to compute the rate of medium-induced radiation [103, 114, 115, 121, 136,
140–142], each method differs in their assumptions and simplifications as well as in
the treatment of the interactions with the medium (c.f. [113] for a comparison). In
all the different formalisms the medium interactions are described by the collisional
broadening kernel

C(q⊥) ≡ (2π)2d3Γ
d2q⊥ dL , (6.1)

which defines the rate per unit path length and q⊥ range to exchange transverse
momentum q⊥ with the medium. One can also define the zero-subtracted Fourier
transform1

C(b⊥) ≡
∫ d2q⊥

(2π)2

(
1− eiq⊥·b⊥

)
C(q⊥) . (6.2)

The three main treatments of the medium used in the literature are:

• Many random, static, screened color centers [114, 143]: C(q⊥) ∝ 1
(q2
⊥+m2

D)2 .

• Dynamical moving charges at lowest order in perturbation theory [138]:
C(q⊥) ∝ 1

q2
⊥(q2
⊥+m2

D) .

• Many individually small scatterings, leading to transverse momentum diffusion
[116]: C(b⊥) = q̂ b2

⊥/4.
1During this chapter, we will refer to the space dimension (x) from chapter 3 as impact param-

eter space and use b⊥ to denote it.
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Although these kernels are simple compact formulas that have successfully been used
in phenomenological studies to predict high pT and jet observables (see [23] for a
review), they either stem from low-order perturbative calculations or from approxi-
mations. However, due to the infamous infrared problem of finite temperature QCD,
perturbative calculations can receive large non-perturbative contributions even at
small coupling [49]. One can use effective theories coupled with lattice calculations
to evade the IR problem [144]. For that sake, it was shown that the Fourier transform
of the momentum broadening kernel in Eq. (6.2) can be defined in terms of certain
light-like Wilson loops [145], and for temperatures well above the critical temper-
ature Tc these light-like Wilson loops can be recast in the dimensionally reduced
long-distance effective theory for QCD, 3D Electrostatic QCD [146]. Using earlier
studies [1, 53, 54], G. D. Moore and N. Schlusser were able to obtain continuum-
extrapolated results for the broadening kernel in EQCD from lattice calculations
[2]. However, because EQCD is long-distance effective theory of QCD the kernel
obtained in EQCD theory is not directly the expected result for QCD at all scales,
and a matching still needs to be done to obtain the right short-distance kernel.

During this chapter, we will use the lattice EQCD results [2] to construct a
full broadening kernel in QCD, and we will then use it to compute the medium-
induced radiation in infinite medium. Subsequently, we will Fourier transform the
kernel back to momentum space, which will allow us to extend the calculation of
medium-induced radiation to finite medium length, and we discuss our results.

6.1 Collisional broadening kernel

C(b⊥)
g2

s

∣∣∣Nf=3

250 MeV
C(b⊥)
g2

s

∣∣∣Nf=3

500 MeV

g2 3.725027 2.763516
q̂0/g

6T 3 0.1465(78) 0.185(10)

Table 6.1: Coupling constant and the constant momentum broadening coefficient
for the non-perturbative kernels.

In order to obtain the full QCD broadening kernel from the EQCD lattice results
in [2], following [147] we need to subtract the wrong EQCD short-distance2behavior
and supply the right QCD behavior as follows

CQCD(b⊥) ≈
(
Cpert

QCD(b⊥)− Cpert
EQCD(b⊥)

)
+ C latt

EQCD(b⊥) . (6.3)
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6 Non-perturbative in-medium splitting rates

The leading order perturbative QCD contribution for q⊥ � mD is known in
momentum space as [148]

Cpert
QCD(q⊥) = g4

sT
3CR

q4
⊥

∫ d3p

(2π)3
p− pz
p

[2CAnB(p) (1+nB(p′)) + 4NfTf nF(p) (1−nF(p′))] .

(6.4)
For the EQCD subtraction, we only need the large momentum part

Cpert
EQCD(q⊥) q⊥�mD−−−−−→ Cpert

subtr(q⊥) = CRg
2
sTm

2
D

q4
⊥

− CRCAg
4
sT

2

16 q3
⊥

, (6.5)

where the first term subtracts the IR behavior of the QCD kernel, while the second
one will cancel the UV limit of the lattice extracted result. We obtain a fully matched
kernel, however, since the lattice numerical computation is expensive, the numerical
data and its errors are sparse and only exist in a finite range. Additional information
about the behavior of the kernel in the range of impact parameter space not covered
by the data is needed in order to compute the in-medium splitting. In the following
subsections, we proceed to provide such limiting behaviors of the kernel.

Long-distance limit of the kernel

At long-distances the Wilson loop follows an area-law behavior [149] with asymptotic
corrections which are important for smoothening the transition to the numerical data
values
CQCD

g2
s

(b⊥) b⊥� 1/g2
s−−−−−→ A+ σEQCD

g4
3d

g2
3db⊥ + g4

sCR

π

[
y

4

(1
6 −

1
π2

)
+ CA

8π2g2
s

]
log(g2

3db⊥) ,

(6.6)
where σEQCD is known as the string tension of EQCD and A is a constant fitted to
the data.

Short-distance limit of the kernel

At short-distances which translate to the UV limit in momentum space, the rate
follow a similar behavior to the leading order QCD rate
CQCD

g2
s

(b⊥) b⊥� 1/mD−−−−−−→ −CR

8π
ζ(3)
ζ(2)

(
− 1

2g2
s

+ 3y
2

)
(g2

3db⊥)2 log(g2
3db⊥) + 1

4
q̂0

g6
3d

(g2
3db⊥)2 .

(6.7)
2We will refer to the small q⊥ limit as ultraviolet and large q⊥ as infrared IR, while in impact

parameter space we will use short/long distance for small/large b⊥.
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Figure 6.1: Non-perturbative elastic broadening kernel interpolation spline in the
short-distance (left) and large-distance (right) regimes. We compare to both the
short-distance limit from Eq. (6.7) and the long-distance limit from Eq. (6.6).

We find that to obtain q̂0 it is better to perform a fit to the data-points at short-
distances for the non-matched lattice-EQCD-data (C latt

EQCD(b⊥)) and the correction
(
(
Cpert

QCD − C
pert
subtr

)
(b⊥)) separately. We quote the QCD result in Tab. 6.1, while for

the non-matched lattice-EQCD-data it is given in [2].

6.1.1 Interpolation of lattice data
Next, in order to compute radiative rates, we construct a spline interpolation for
the momentum broadening kernel. Guided by the limiting behaviors of CQCD(b⊥),
we compute several splines by varying where we switch to the asymptotic short and
long distance behavior and requiring each spline to be within a standard deviation
of the data points. By taking the average of the different splines we obtain the
smooth spline in Fig. 6.1 for the two different temperatures T = 250, 500MeV, while
the gray band represents the spread of the different splines obtained. We note that
the data sets for the two different temperatures show a very similar behavior when
the broadening kernel CQCD(b⊥) and impact parameter b⊥ are measured in units of
[g2

sT ] and [gsT ]−1, respectively, which ultimately leads to similar radiative emission
rates discussed in the next section.

6.1.2 Perturbative kernel in EQCD
In addition to the non-perturbative broadening kernel, we will compare our results
with the ones using broadening kernels obtained from perturbative calculations in
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6 Non-perturbative in-medium splitting rates

EQCD theory. At leading order (LO) O(g4
s ), the QCD collisional broadening kernel

can be expressed in momentum space (q⊥) [148] as

CLO
QCD(q⊥) = g4

sCR

q2
⊥(q2
⊥ +m2

D)

∫ d3p

(2π)3
p− pz
p

[2CAnB(p)(1 + nB(p′))

+4NfTfnF(p)(1− nF(p′))] , (6.8)

with p′ = p+ q2
⊥+2q⊥·p
2(p−pz) . The kernel displays the following asymptotic behaviors:

CLO
QCD(q⊥) = g2

sTCR


m2

D−g
2
s T

2CA
q⊥
16T

q2
⊥(q2
⊥+m2

D) , q⊥ � gsT ,

g2
s T

2

q4
⊥

ζ(3)
ζ(2)

(
1 + Nf

4

)
, q⊥ � gsT .

(6.9)

Next-to-leading order (NLO) corrections are of g5
s order, they arise from infrared

corrections that are suppressed by an additional factor of mD ∼ gs and can be
calculated within EQCD [146]. Similarly to the treatment of the non-perturbative
kernel, the NLO broadening kernel is computed using perturbative results for the
soft contributions from EQCD and supplying the hard contribution by the matching
(6.4) [146]. Specifically,

CNLO
QCD(q⊥) = CLO

EQCD(q⊥) + CNLO
EQCD(q⊥) + Cpert

QCD(q⊥)− Cpert
subtr(q⊥) , (6.10)

where the leading and next-to-leading order contributions from soft modes are given
by

CLO
EQCD(q⊥) = CRg

2
sT

m2
D

q2
⊥(q2
⊥ +m2

D) , (6.11)

CNLO
EQCD(q⊥)

g4
sT

2CRCA
= 7

32q3
⊥

+
−mD − 2 q

2
⊥−m

2
D

q⊥
tan−1

(
q⊥
mD

)
4π(q2

⊥+m2
D)2 +

mD −
q2
⊥+4m2

D
2q⊥

tan−1
(
q⊥

2mD

)
8πq4

⊥

−
tan−1

(
q⊥
mD

)
2πq⊥(q2

⊥ +m2
D) +

tan−1
(
q⊥

2mD

)
2πq3

⊥

+ mD

4π(q2
⊥+m2

D)

[
3

q2
⊥+4m2

D
− 2

(q2
⊥+m2

D) −
1
q2
⊥

]
. (6.12)

Cpert
subtr(q⊥) from (6.5) cancels the IR divergence of the hard contribution and the UV

behavior of the soft NLO contribution.
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We display the different broadening kernels CQCD(b⊥) in Fig. 6.1. For the per-
turbative kernels we use the same coupling as the one for T = 500MeV in Tab 6.1.
One notes that the leading order in Eq. (6.8) is recovered by the extrapolated spline
at very short-distances gsTb⊥. The NLO Eq. (6.10) result features a significantly
larger value of q̂ but has the same qualitative behavior at long-distances as the non-
perturbatively determined CQCD(b⊥) except the difference in the string tension, i.e.
the slope of the curve at large distances gTb⊥ � 1.

6.2 Infinite medium splitting rates

Before we present our results for the in-medium splitting rates, we will briefly intro-
duce two approximations which can be used to obtain the rate at the two extremes
of energy.

6.2.1 Bethe-Heitler regime

When the typical momentum of the splitting is small (Pz(1−z) � ωBH ∼ T ), the
formation time of the radiation is small and interference between scatterings can
be neglected. In this so-called Bethe-Heitler regime, one can then solve the rate
Eq. (3.33) in an opacity expansion, corresponding to an expansion in the number of
elastic scatterings with the medium. By considering the limit of a single scattering,
we obtain the following semi-analytic expressions for the rates (c.f. Appendix C)

dΓBHg→gg
dz (P, z) =g4

sTPgg(z)
[
CA
2 Q

(
µ̃2
g→gg(z)

)
(6.13)

+CA

2 Q
(
µ̃2
g→gg(z)/z2

)
+ CA

2 Q
(
µ̃2
g→gg(z)/z̄2

)]
,

dΓBHq→gq
dz

(P, z) =g4
sTPqg(z)

[
CA

2 Q
(
µ̃2
q→gq(z)

)
+(CF −

CA

2 )Q
(
µ̃2
q→gq(z)/z2

)
+ CA

2 Q
(
µ̃2
q→gq(z)/z̄2

)]
,

dΓBHg→qq̄
dz (P, z) =g4

sTPgq(z)
[
(CF −

CA

2 )Q
(
µ̃2
g→qq̄(z)

)
+CA

2 Q
(
µ̃2
g→gq(z)/z2

)
+ CA

2 Q
(
µ̃2
q→gq(z)/z̄2

)]
,
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where, denoting a = m2
∞,q/m

2
D, one has

µ̃2
g→gg(z) = 1− z(1−z)

2 , µ̃2
q→gq(z) = z

2 + a(1−z)2 , µ̃2
g→qq̄(z) = 2a− z(1−z)

2 ,

(6.14)

and

Q(µ̃2) = m2
D

2πg2
sT

∫ d2p⊥
(2π)2

∫ d2q⊥
(2π)2 C̄(mDq⊥)

[
p⊥

p2
⊥ + µ̃2 −

(p⊥ − q⊥)
(p⊥ − q⊥)2 + µ̃2

]2

.

(6.15)

While the above relation is formulated in momentum space, the integral defining
Q(µ̃2) in Eq. (6.15) can also be evaluated using the kernel in position space as show
in Appendix C.

6.2.2 Deep LPM regime
Conversely, in the limit of a very high-energy parton (P � T ) traversing a
thick medium, the typical number of rescatterings within the formation time of
bremsstrahlung can be large, indicating that interferences between many soft scat-
terings which contribute to the total transverse momentum transfer during the for-
mation of the radiation need to be considered. Simplifications occur in the limit
Pz(1−z) � ωBH ∼ T , where the splitting probes the small b⊥ behavior of the
momentum broadening kernel, which can be expressed as

C(b⊥) = −g
4
sT

3

16π N b
2
⊥ log(ξm2

Db
2
⊥/4) (6.16)

where N = ζ(3)
ζ(2)

(
1 + Nf

4

)
. In accordance with the discussion in Sec. 6.1, the coeffi-

cient g4
s T

2

16π N b
2
⊥ gives the leading logarithmic behavior b⊥ log(b2

⊥) and the coefficient
ξ captures the b2

⊥ behavior. Specifically for the LO kernel ξLO = e2γE−2 ' 0.429313
can be determined analytically, while for the NLO and non-perturbative kernels, we
obtain ξNLO ' 1.355 · 10−3 and ξNP = 4g4

s T
2

m2
D
e
−4π q̂0

g4
s T3N ' 0.1702 from a fit of the

small b⊥ behavior. Following [133], the rate equation can be solved iteratively in an
inverse logarithmic expansion to obtain

dΓa→bc
dz (P, z) = g2

s

16π2
√

2Pz(1− z)
Pab(z) m2

Dµ
2
⊥(P, z) , (6.17)
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Figure 6.2: Splitting rate for process g → gg at T = 250MeV (dashed blue lines) and
T = 500MeV (full purple lines). Different columns correspond to parent energies
p = 10T (left) and p = 100T (right). We compare with rates computed using
the perturbative leading order (orange) and next-to-leading order (green) elastic
broadening kernels. The Bethe-Heitler rates and LPM rates are shown with dashed
lines and circles, respectively, using the color of the corresponding kernel.

where µ2
⊥(P, z) is self-consistently determined from

µ2
⊥(P, z) =g

2
sT

2N
m2

D

gsT

mD

( 2
π
z(1−z)P

T

)1/2 (
C1 log

(
αµ2
⊥
ξ

)

+Czz
2 log

(
αµ2
⊥

ξz2

)
+ C1−z(1− z)2 log

(
αµ2
⊥

ξ(1−z)2

))1/2

, (6.18)

with α = eγe+π/4.

6.2.3 Results
We solve the full in-medium rate equation in the infinite medium length approxima-
tion as described in Chapter 3 in Eq. (3.33), where we replace the Debye screened
potential with different broadening kernels in the last section. We present our re-
sults in Figs. 6.2-6.4, where we show the rates for the non-perturbative broadening
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Figure 6.3: Splitting rate for process q → gq using the same color scheme as Fig. 6.2.
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Figure 6.4: Splitting rate for the process g → qq̄ using the same color scheme as
Fig. 6.2.
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Figure 6.5: Momentum dependence of the splitting rate at T = 500MeV (dashed
blue lines) for the processes g → gg (top left), q → gq (top right), g → qq̄ (bottom).
Dashed lines and open circles correspond to the approximate rates in Bethe-Heitler
regime (6.13) and the deep LPM regime (6.17).
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kernel CQCD(b⊥) at T = 250, 500MeV (left/right columns), along with the corre-
sponding results obtained for the leading order (CLO

QCD(b⊥)) and next-to-leading or-
der (CNLO

QCD(b⊥)) determinations of the collisional broadening kernel. Fig. 6.2, 6.3
and 6.4 show the rates for the g → gg,q → qg and g → qq̄ processes respectively,
for different parton energies p = 10T (left) and p = 100T (right). The momen-
tum dependence of the rate is shown in Fig. 6.5, for the non-perturbative kernel at
T = 500MeV, using the color palette in a logarithmic scale to distinguish between
different momentum of the parent particle p = 10− 1000T . In both figures, we also
show the Bethe-Heitler rates in Eq. (6.13) (dashed lines) and the deep LPM rates
(circles) Eq. (6.17).

Starting with the rates in Figs. 6.2-6.4, one observes that the non-perturbatively
determined splitting rates for the two different temperatures do not display any
remarkable difference, leading to essentially the same emission rates in units of
[g4T ]. As expected, the momentum dependence of the rate clearly displays LPM
suppression at large typical momentum Pz(1−z) � T as well as an unsuppressed
Bethe-Heitler rate in the other limit Pz(1−z)� T seen in Fig. 6.5. We also observe
that at low energy z(1−z)E � T where the large impact parameter (small momen-
tum transfer) is more important, the non-perturbative result is closer to the NLO
rate as they both have a similar behavior at large impact parameter, but there exists
a quantitative difference due to their different string tensions. Conversely, in the
LPM suppressed regime at high energy z(1−z)E � T , where small impact parame-
ter (large momentum transfer) is relevant, the non-perturbative rate is closer to the
LO rate which again agrees with the behavior of the elastic kernel (cf. Fig. 6.1).

6.3 Finite medium splitting rates

Beyond the infinite medium length limit, one can compute medium-induced radia-
tion rates in more physical finite medium length. It turns out that, as opposed to the
infinite medium limit where the calculation simplifies in impact parameter space,
for finite medium, it is easier to work in momentum space where one integrates
an integro-differential equation to obtain the rate [120, 121]. During this section,
we will transform the broadening kernel spline to momentum space and use it to
compute medium-induced radiation rate in a medium with finite length.
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Figure 6.6: (left) Space derivative of the broadening kernel spline for T = 500MeV
and its asymptotic behavior. (right) Elastic broadening kernel in momentum space
for both T = 250, 500MeV, where the blue and red bands represent the error for
250MeV and 500MeV respectively. We compare to both the UV limit from Eq. (6.23)
and the IR limit from Eq. (6.22).

6.3.1 Broadening kernel in momentum space
In this section we will proceed to Fourier transform the resulting spline from section
6.1.1 back to momentum space. We found that it is best to transform dC(b⊥)

db⊥
, the

coordinate space derivative of C(b⊥), using Eq. (6.2) one finds
dC(b⊥)

db⊥
=

∫ d2q⊥
(2π)2 e−iq⊥· b⊥

[
iq⊥ · b⊥
b⊥

C(q⊥)
]
. (6.19)

Exploiting the fact that C(q⊥) does not depend on angle leads to the following
Hankel transform

dC(b⊥)
db⊥

=
∫ ∞

0

dq⊥
(2π) q⊥J1(b⊥ q⊥) [q⊥C(q⊥)] , (6.20)

where J1(x) is the Bessel function of the first kind of order 1. Using an inverse
Hankel transform, one obtains the broadening kernel in momentum space

C(q⊥) = 2π
q⊥

∫ ∞
0

db⊥ b⊥J1(b⊥ q⊥)dC(b⊥)
db⊥

. (6.21)

We proceed now to transform the limiting behaviors of the kernel in order to con-
struct a picture of the momentum broadening kernel at all scales.
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IR limit of C(q⊥): We transform each term of the IR limit from Eq. (6.6): the
constant term does not contribute, the linear term leads to 1/q3

⊥ behavior3 and
the sub-leading logarithmic term leads to a 1/q2

⊥ behavior4. Collecting the terms
together, one obtains the following expression in momentum space

CIR(q⊥) = 2π
q3
⊥

σEQCD

g2
3d

+ g4CR

π

[
y

4

(1
6 −

1
π2

)
+ CA

8π2g2
s

]
2π
q2
⊥
. (6.22)

UV limit of C(q⊥): The UV limit of the non-perturbative rate in Eq. (6.7) follows
the same behavior as the perturbative case, one obtains the same 1/q4

⊥ in q-space

CUV(q⊥) = CR

8π
ζ(3)
ζ(2)

(
− 1

2g2
s

+ 3y
2

)
8π
q4
⊥
. (6.23)

Transforming the spline: In order to ensure numerical convergence, we subtract
the IR limit from the derivative of the rate depicted in the left panel of Fig. 6.6 as
follows

d
db⊥

∆CNP(b⊥) = dCNP(b⊥)
db⊥

− dCIR(b⊥)
db⊥

. (6.24)

We then compute the following Hankel transform numerically

∆CNP(q⊥) =2π
q⊥

∫ ∞
0

db⊥ b⊥J1(b⊥ q⊥) d

db⊥
∆CNP(b⊥) , (6.25)

and the result is supplied with the analytical transform of the IR limit

CNP(q⊥) = ∆CNP(q⊥) + CIR(q⊥) . (6.26)

We obtain the rate in momentum space, shown in right panel of Fig. 6.6, where the
bands represent the transformation of the different splines in the band from Fig. 6.1.
We also show the limiting behaviors computed above, as well as the LO and NLO
kernels. Both the data points T = 250, 500MeV display very similar behavior. As
expected, in the IR the rate follows a (1/q3

⊥) behavior similar to the NLO kernel,
however they differ by a prefactor due to the difference in the string tension. In the
UV limit, all the different kernels display the same (1/q4

⊥) behavior, associated with
the hard scattering contributions.

3One can obtain the integration using simple contour integral.
4To obtain this behavior we make use of the definition in Eq. (6.21).
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6.3.2 Full rate calculation
With the broadening kernel in momentum space at hand, we proceed to compute
the rate of medium-induced radiation. Starting point of the rate calculation is the
formal expression obtained by employing a time derivative to Eq. (3.31) [121]
dΓabc
dz

(P, z, t) = g2P a
bc(z)

4πP 2z2(1− z)2 Re
∫ ∞
t

dt1

∫
p,q

q.p[K(t, q; t1,p)− (vac)] , (6.27)

where K(t, q; t1,p) is the propagator satisfying the evolution Eq. (3.29). Following
[121], we use an integration by part to perform the rearrangement∫ ∞

t1
dt2 K(t2, q; t1,p)

=
∫ ∞
t1

dt2

[
d

dt2

(
e−iδE(q)t2

−iδE(q)

)]
e−iδE(q)t2K(t2, q; t1,p) , (6.28)

= 1
−iδE(q) [K(∞, q; t1,p)−K(t1, q; t1,p)]

−
∫ ∞
t1

dt2
1

−iδE(q) [−iδE(q) + ∂t2 ]K(t2, q; t1,p) . (6.29)

Using the evolution equation for the propagator, we simplify to obtain∫ ∞
t1

dt2 K(t2, q; t1,p)

= 1
−iδE(q) [K(∞, q; t1,p)−K(t1, q; t1,p)]

+
∫ ∞
t1

dt2
i

δE(q)Γ3(t2) ◦K(t2, q; t1,p) . (6.30)

As argued by [121], the first term is rapidly oscillating and cancels due to a converg-
ing factor e−εt; the second term is related to vacuum radiation, and can be canceled
it against the vacuum expression. The rate is now expressed as

dΓabc
dz

(P, z, t) = g2P a
bc(z)

4πP 2z2(1− z)2 Re
∫ t

0
dt1

∫
p,q

iq.p

δE(q)Γ3 ◦K(t, q; t1,p) . (6.31)

Expressing the rate using wave function

To simplify our analysis, we now re-express the rate as follows
dΓabc
dz

(P, z, t) = g2P a
bc(z)

4πP 2z2(1− z)2 Re
∫ t

0
d∆t

∫
p

p · ~ψ(p,∆t) , (6.32)
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where we introduce the wave function

~ψ(p,∆t = |t1 − t|) =
∫

q

iq

δE(q)Γ3 ◦K(t, q; t1,p) (6.33)

which follows the evolution equation

[∂∆t + δE(p) + Γ3◦] ~ψ(p,∆t) =0 , (6.34)

with the initial condition

~ψ(p,∆t = 0) =
∫

q

iq

δE(q)Γ3 ◦ (2π)2δ2(p− q) , (6.35)

=Γ3 ◦
ip

δE(p) . (6.36)

We proceed to factor out the physical scales by defining the dimensionless variables

∆t̃ = m2
D

2Pz(1− z)∆t , q̃ = q

mD

, p̃ = p

mD

. (6.37)

The energy becomes

δẼ(p̃) =2Pz(1− z)
m2
D

δE(p) . (6.38)

The wave function can be written as

~ψ(p,∆t) =g2T
2Pz(1− z)

mD

~̃ψ(p̃,∆t̃) . (6.39)

If we factor out the collision integral by writing the broadening kernel as C̃(q̃) =
m2
D

g2T
C̄(q), we find

Γ3 ◦ ψ(p) =(g2T )2 2Pz(1− z)
mD

∫
q̃
C̃(q̃)

C1

[
~̃ψ(p̃)− ~̃ψ(p̃− q̃)

]

+ Cz

[
~̃ψ(p̃)− ~̃ψ(p̃ + zq̃)

]
+ C1−z

[
~̃ψ(p̃)− ~̃ψ(p̃ + (1− z)q̃)

] , (6.40)

=(g2T )2 2Pz(1− z)
mD

Γ̃3(t) ◦ ~̃ψ(p̃) . (6.41)
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The evolution equation for the dimensionless wave function is written[
∂∆t̃ + δẼ(p̃) + Λ Γ̃3(t)◦

]
~̃ψ(p̃,∆t̃) =0 , (6.42)

where Λ = g2T 2Pz(1−z)
mD

, with the initial condition

~̃ψ(p̃,∆t̃ = 0) =Γ̃3(t) ◦ ip̃

δẼ(p̃)
. (6.43)

The splitting rate becomes

dΓabc
dz

(P, z, t̃) =g
4TP a

bc(z)
π

Re
∫ t̃

0
d∆t̃

∫
p̃

p̃ · ~̃ψ(p̃,∆t̃) . (6.44)

Although the solution of the rate should work at all scales for a highly energetic
parton, one can get away with using approximations in certain ranges which sim-
plifies the calculation drastically and can speed up simulation where these rates are
used. Numerous approximation have been developed in the literature [108] [109]
[117–119] [120], during the following sections we will review the latest developments
together with some traditional approximations, which we will compare to the full
rate in figure. 6.9.

6.3.3 Opacity expansion
In the region where the medium length is thin, the hard particles do not encounter
many medium particles. The rate can be computed in the same way as we discussed
in sec. 6.2.1. In finite medium, this expansion is also known as the Gyulassy, Levai
and Vitev (GLV) approximation5 [114, 115]. It is easier to compute the expansion
in the interaction picture introduced in Appendix D, the wave function for the first
order (N = 1) is directly the initial condition defined in Eq. (D.4) as we already
take one scattering in the definition of the wave function

ψ̃
(1)
I (p̃) = p̃ · Γ̃3 ◦

ip̃

δẼ(p̃)
. (6.45)

Inserting the wave function in the definition in Eq. D.5, we write

dΓabc
dz

∣∣∣∣∣
N=1

(P, z, t̃) =g
4TP a

bc(z)
π

Re
∫ t̃

0
d∆t̃

∫
p̃
e−iδẼ(p̃)∆t̃p̃ · Γ̃3 ◦

ip̃

δẼ(p̃)
. (6.46)

5As opposed to the GLV approximation we will not neglect thermal masses, and we will not
take the soft gluon approximation.
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The time integration can be done analytically and one finds

dΓabc
dz

∣∣∣∣∣
N=1

(P, z, t̃) = g4TP a
bc(z)
π

∫
p̃

1− cos
(
−δẼ(p̃)t̃

)
δẼ(p̃)

p̃ · Γ̃3 ◦
ip̃

δẼ(p̃)
. (6.47)

When we take the limit t̃→∞ which corresponds to neglecting the oscillatory factor
cos

(
−δẼ(p̃)t̃

)
, we recover the Bethe-Heitler rate as in Eqns. (6.13) for the infinite

medium case.

6.3.4 Resummed opacity expansion
Besides the straight opacity expansion, the authors of [150] developed a resummation
that tries to capture additional re-scatterings with the medium. During this section
we will present this procedure, starting with the second order (N = 2) wave function
which obeys the following evolution equation

∂∆t̃ψ̃
(2)
I (p̃, s) = −Λ eiδẼ(p̃)sp̃ · Γ̃3 ◦ e−iδẼ(p̃)s p̃

p̃2 ψ̃
(1)
I (p̃) , (6.48)

with initial condition ψ̃
(2)
I (p̃,∆t̃ = 0) = ψ̃

(1)
I (p̃). Integrating the time direction, we

find

ψ̃
(2)
I (p̃,∆t̃) = ψ̃

(1)
I (p̃)− Λ

∫ ∆t̃

0
ds eiδẼ(p̃)sp̃ · Γ̃3 ◦ e−iδẼ(p̃)s p̃

p̃2 ψ̃
(1)
I (p̃) . (6.49)

Explicitly, the correction is given by

ψ̃
(2)
I (p̃,∆t̃)− ψ̃(1)

I (p̃) = −Λ
∫ ∆t̃

0
ds eiδẼ(p̃)sp̃ · Γ̃3 ◦ e−iδẼ(p̃)s p̃

p̃2 ψ̃
(1)
I (p̃) (6.50)

= −Λ
∫ ∆t̃

0
ds eiδẼ(p̃)sp̃·

∫
q̃
C̃(q̃)

C1

[
e−iδẼ(p̃)s p̃

p̃2 ψ̃
(1)
I (p̃)− e−iδẼ(p̃−q̃)s p̃− q̃

|p̃− q̃|2
ψ̃

(1)
I (p̃− q̃)

]

+ Cz

[
e−iδẼ(p̃)s p̃

p̃2 ψ̃
(1)
I (p̃)− e−iδẼ(p̃+zq̃)s p̃ + zq̃

|p̃ + zq̃|2
ψ̃

(1)
I (p̃+ zq̃)

]

+ C1−z

[
e−iδẼ(p̃)s p̃

p̃2 ψ̃
(1)
I (p̃)− e−iδẼ(p̃+(1−z)q̃)s p̃ + (1− z)q̃

|p̃ + (1− z)q̃|2 ψ̃
(1)
I (p̃+ (1− z)q̃)

] .

(6.51)
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Let us focus on the first term which can be written as

− Λ
∫ ∆t̃

0
ds

∫
q̃
C̃(q̃)C1

[
ψ̃

(1)
I (p̃)− ei(δẼ(p̃)−δẼ(p̃−q̃))s p̃− p̃ · q̃

|p̃− q̃|2
ψ̃

(1)
I (p̃− q̃)

]
. (6.52)

For small q̃ the different terms cancel each other, while for large q̃ the phase factor
oscillate rapidly and does not contribute to the integral. If we introduce a cutoff
scale M2 for the momentum integral and define

Σ(M2) =
∫

q̃2>M2
C̃(q̃) , (6.53)

one can then write

− Λ
∫ ∆t̃

0
ds

∫
q̃
C̃(q̃)C1

[
ψ̃

(1)
I (p̃)− ei(δẼ(p̃)−δẼ(p̃−q̃))s p̃− p̃ · q̃

|p̃− q̃|2
ψ̃

(1)
I (p̃− q̃)

]

= −Λ
∫ ∆t̃

0
ds ψ̃

(1)
I (p̃)Σ(M2) . (6.54)

Using the same procedure for the other terms, the full correction will be written

ψ̃
(2)
I (p̃,∆t̃)− ψ̃(1)

I (p̃) = −Λ
∫ ∆t̃

0
ds ψ̃

(1)
I (p̃)Σ3(M2) , (6.55)

with

Σ3(M2) =
[
C1Σ(M2) + CzΣ(M2/z2) + C1−zΣ(M2/(1− z)2)

]
. (6.56)

The expansion of the splitting rate is now given by

dΓabc
dz

∣∣∣∣∣
N=X

(P, z, t̃) =g
4TP a

bc(z)
π

Re
∫ t̃

0
d∆t̃

∫
p̃
e−iδẼ(p̃)∆t̃ψ̃

(1)
I (p̃)

+ g4TP a
bc(z)
π

Re
∫ t̃

0
d∆t̃

∫ ∆t̃

0
ds

∫
p̃
e−iδẼ(p̃)∆t̃ψ̃

(1)
I (p̃)

(
−ΛΣ3(M2)

)
+ · · · . (6.57)

After performing the time integral (ds), we find

dΓabc
dz

∣∣∣∣∣
N=X

(P, z, t̃) =g
4TP a

bc(z)
π

Re
∫ t̃

0
d∆t̃

∫
p̃
e−iδẼ(p̃)∆t̃ψ̃

(1)
I (p̃)

+ g4TP a
bc(z)
π

Re
∫ t̃

0
d∆t̃

∫
p̃
e−iδẼ(p̃)∆t̃ψ̃

(1)
I (p̃)

(
−ΛΣ3(M2)∆t̃

)
+ · · · . (6.58)
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One notices that subsequent terms with additional time integration will exponentiate
to obtain

dΓabc
dz

∣∣∣∣∣
N=X

(P, z, t̃) =g
4TP a

bc(z)
π

Re
∫ t̃

0
d∆t̃

∫
p̃
e−(iδẼ(p̃)+ΛΣ3(p̃2))∆t̃ψ̃

(1)
I (p̃) , (6.59)

where we defined the cutoff scale M2 = p̃2 following [150].

6.3.5 Improved harmonic oscillator approximation
Analogously to the deep LPM regime we introduced in sec. 6.2.2, one can find an
equivalent expression for finite medium [109]. Rather than using this approximation
only, we will make use of recent calculations which try to go beyond this simple
harmonic oscillator limit by including corrections perturbatively [117–119] (we will
only compute the first correction).

Using the short-distance behavior defined in Eq. (6.16), one can define a scale
Q2 to evaluate the logarithm and separate it as follows

C(b⊥) =g
4
sT

3

16π N b
2
⊥ ln

(
4Q2

ξm2
D

)
+ g4

sT
3

16π N b
2
⊥ ln

(
1

Q2b2
⊥

)
= CHO(b⊥) + Cpert(b⊥) ,

(6.60)

where the Harmonic oscillator kernel is defined

CHO(b⊥) =g
4
sT

3

16π N b
2
⊥ ln

(
4Q2

ξm2
D

)
. (6.61)

Instead of using only the short-distance limit Cpert(b⊥) = g4
s T

3

16π N b
2
⊥ ln

(
1

Q2b2
⊥

)
, we

find that it is better if we define the correction to the kernel as the difference

Cpert(b⊥) = C(b⊥)− CHO(b⊥) , (6.62)

where we use the full definition of C(b⊥), i.e. the numerical spline. The radiation
spectrum will also be separate to the sum of the HO and the first correction

dINLO

dz
(P, z, t) = dIHO

dz
(P, z, t) + dI(1)

dz
(P, z, t) , (6.63)

where the correction is computed using a first order opacity expansion with the
kernel Cpert(b⊥). Following [117–119], the scale Q2 is the typical momentum of the
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radiated quanta defined self-consistently by using

Q2(P, z) =
√
Pz(1− z)q̂3(Q2) , (6.64)

q̂eff(Q2) =g
4
sT

3

4π N
[
C1 + Czz

2 + C1−z(1− z)2
]

ln
(

4Q2

ξm2
D

)
, (6.65)

where q̂eff(Q2) is the coefficient of the three-body interaction term Γ3, obtained by
plugging CHO(b⊥) in Eq. (3.26).

Leading Order

Using CHO(b⊥) the rate equations can be solved analytically [27, 109, 110], histori-
cally the result was computed in terms of the spectrum

dIHO

dz
(P, z, t) = g2

4π2 ln | cos Ωt| , (6.66)

where we define the frequency

Ω = 1− i
2

√√√√ q̂eff(Q2)
Pz(1− z) . (6.67)

After applying a time derivative [121], we obtain the rate
dΓHO
dz

(P, z, t) = − g2

4π2 Re Ω tan Ωt . (6.68)

Next to Leading order

While the leading order HO term can be seen as a resummation of multiple soft
scatterings with the medium, the next-to-leading order correction introduces the
effect of one ‘hard’ scattering with the medium in an opacity expansion approach.
One obtain the correction by making use of the separation in Eq. (6.63), which
translates to a separation of the propagators

G(t, b⊥; t1,p) = GHO(t, b⊥; t1,y) +G(1)(t, b⊥; t1,y) . (6.69)

By inserting the full propagator into Eq. (3.24), and using the fact that the propa-
gator GHO(t, q; t1,p) is solution to the equation[
i∂t +

∂2
b⊥

2Pz(1− z) +Meff + iΓHO3 (b⊥)
]
GHO(b⊥, t; y, t1) = iδ(t− t1)δ(2)(b⊥ − y) .

(6.70)
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One finds the evolution equation of the next-to-leading order propagator
G(1)(t, b⊥; t1,y)[

i∂t +
∂2

b⊥

2Pz(1− z) +Meff + iΓHO3 (b⊥)
]
G(b⊥, t; y, t1)

= −iΓpert
3 (b⊥)GHO(b⊥, t; y, t1) , (6.71)

where we neglect the terms with Γpert
3 (b⊥)G(b⊥, t; y, t1). Strikingly, the evolution

equation can be solved analytically to obtain the spectrum [117–119]

dI(1)

dz
(P, z, t)

= g2

4π2 Re
∫ t

0
ds

∫ ∞
0

2du
u

[
C1C

pert(u) + CzC
pert(zu) + C1−zC

pert((1− z)u)
]
ek

2(s)u2
,

(6.72)

= g2

4π2 Re
∫ t

0
ds

∫ 2du
u
Cpert(u)

[
C1e

k2(s)u2 + Cze
k2(s)
z2 u2 + C1−ze

k2(s)
(1−z)2 u

2
]
, (6.73)

where we define

k2(s) = iPz(1− z)Ω
2 [cot Ωs− tan Ω(t− s)] . (6.74)

We integrate the spectrum and perform a numerical derivative to obtain the rate
shown in Fig. 6.9.

6.3.6 Results
We obtain numerically the full in-medium radiation rate as described in App. D
using different broadening kernels. We present our results for the medium-induced
radiation of a gluon by a parent quark of energy P = 300T in an equilibrium
medium with temperature T = 500MeV and present the comparison in two figures
(6.7-6.8). Firstly, we present the full rates as a function of the evolution time t
with three gluon momentum fractions z = 0.05, 0.25, 0.5 in Fig. 6.7, as well as at a
fixed time for a range of momentum fractions in Fig. 6.8. The lower panel of each
graphic displays the ratio to the LO results. We present results for both temperature
T = 250, 500MeV, while for the perturbative kernels, we use the same parameters
as the T = 500MeV data point given in Tab. 6.1. Similarly to the previous section,
there is only a small difference between the two temperatures, the rate for 250MeV is
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Figure 6.7: Medium-induced radiation of a gluon from a parent quark with energy
P = 300T in an equilibrium medium with temperature T = 250, 500MeV as a
function of the evolution time t, each panel represent a different gluon momentum
fraction z = 0.05, 0.25, 0.5. We compare calculation done using the different colli-
sional broadening kernel as shown in Fig. 6.6 (the temperature and coupling constant
for the perturbative results are matched to the T = 500MeV data in Tab. 6.1). The
lower panel of each plot displays the ratio to the LO results.
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Figure 6.8: The splitting rate of a parent quark with energy P = 300T in an
equilibrium medium with temperature T = 500MeV as a function of momentum
fraction of the radiated gluon z at fixed times t = 0.15, 0.4, 1, 4fm/c. The lower
panel of each plot shows the ratio to the finite medium splitting rate computed
using the LO broadening kernel.
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Figure 6.9: Medium-induced radiation of a gluon from a parent quark with energy
P = 300T in an equilibrium medium with temperature T = 500MeV as a function
of the evolution time t, each panel represent a different gluon momentum fraction
z = 0.05, 0.25, 0.5. We compare calculation done using the different approximation of
the in-medium splitting rate: Opacity expansion at N = 1 Eq.(6.47), the resummed
opacity rate of Eq. (6.59) and the NLO expansion around the Harmonic Oscillator
Eq. (6.63) to the full result. The lower panel of each plot displays the ratio to the
full rate.
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only slightly shifted to the right in the time axis due to the temperature difference.
Firstly, we note that all the different rates recover their respective AMY results
at late times, which for the non-perturbative kernel is a nice confirmation for our
Fourier transformation to momentum space. Comparing to the perturbative results,
we observe that the non-perturbative result starts lower than the LO rates before
it settles above the LO and below the NLO. Notably, the non-perturbative kernel
does not depart from a band of ±50% around LO, while the NLO result becomes
over 2× larger than the LO.

In figure 6.9 we compare the different approximations to the in-medium splitting
rates, here we only use the non-perturbative broadening kernel at T = 500MeV,
and show again the same three gluon momentum fractions z = 0.05, 0.25, 0.5; the
lower panel represent the ratio to the full medium splitting rate. We see that the
opacity expansion works well at early times when the parton does not have time
to re-scatter with the medium, but soon after it over-estimates the rate at late
times. On the other hand, the NLO expansion around the NLO-HO can work fairly
well at all times if one considers hard splittings (z ∼ 1/2), while the resummed
opacity expansion works better for soft splittings (z � 0.5). We conclude that for
a sophisticated numerical simulation, one can reconstruct the full rate to obtain
precise results; while for (semi-)analytical calculations where one is interested in
different regimes to approximate parton splittings, a combination of the resummed
opacity and NLO-HO rates is sufficient.

6.4 Discussion
Using recent results of the broadening kernel calculated using EQCD on a lattice,
we obtained the QCD broadening kernel by matching the right short-distance be-
havior. Providing the right limiting behaviors we constructed a continuous spline
for the full range of impact parameter space which allowed us to compute medium-
induced radiation rates in the infinite medium size limit. Comparing our results to
ones computed using perturbative results which are used in the literature, we see a
substantial difference with the non-perturbative rates. Beyond the infinite medium
calculation, we were able to successfully Fourier transform our resulting kernel to
momentum space in order to compute the rate in a physical medium with finite size.
We find that the Leading order perturbative rates do not depart from a band of
±50% from the non-perturbative rates. We also compared against different approx-
imation in the literature. The NLO Harmonic Oscillator approximation manages
better for hard splitting (z ∼ 1

2), while the resummed opacity expansion works for
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6 Non-perturbative in-medium splitting rates

soft splittings (z � 1
2). Although the full radiation rate is more accurate at all

scales, computing it at a large range of scales could become taxing numerically, we
conclude that it would be sufficient to employ a combination of these approximations
for the limiting cases to obtain reasonable (semi-)analytical estimates.

In the literature, jet quenching is commonly studied using weak coupling tech-
niques, while due to the IR problem we believe that perturbative calculations will
break down in thermal field theories. The genuine non-perturbative results we pre-
sented will be of utmost importance to test how well the weak coupling techniques
hold and pin down the physics of jet quenching. Naturally, the obtained rates can
then be incorporated into a jet study either using a kinetic approach as in the previ-
ous chapters [3, 30, 33] or with a MonteCarlo simulations [151–154]. Moreover, one
can also utilize the same broadening kernel to include non-perturbative contribu-
tions to the elastic scatterings. What is more, a recent study using the same EQCD
setting obtained non-perturbative contributions to the thermal masses [55], and it
would be interesting to investigate their impact on the rate calculation specifically
and jet quenching in general.
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In this chapter, we provide an overall summary of the main results and an outlook
on the direction of future investigations.

In recent years, heavy-ion collisions have proven to be a crucial laboratory to
study QCD matter. The formation of the QGP during the collision provides an
unparalleled opportunity to study the microscopic and macroscopic aspects of QCD
matter in collider experiments. Hard partons that are produced at the early stages
of the collision, follow an in-medium evolution, leading to modifications of their
properties as well as of the medium. Certainly, by studying the modification of hard
partons, they can be used as tomographic probes to extract information about the
evolution of the plasma and its properties.

The main concern of this study was the evolution and equilibration of highly
energetic partons in a static thermal QGP, we were able to investigate the dynamics
using a linearized effective theory of QCD at leading order following the AMY
approach [31]. Contrary to usual studies in the literature, we were careful in our
formulation to keep both Bose enhancement and Fermi suppression in order to follow
the energy from high momentum scales all the way to the medium sector, and
understand the back-reaction of the hard particles onto the medium. The two main
interactions that have to be considered at leading order are the number conserving
elastic (2 ↔ 2) scatterings and multiple soft scatterings with the medium induce
collinear radiation, which was resummed in an effective (1↔ 2) scattering rate.

First, in chapter 4, we focused on the longitudinal energy loss where we used
the small angle approximation for the elastic interactions and extracted important
dynamics of the evolution. Most notably, we confirm earlier findings that the energy
loss is governed by an inverse energy cascade from high energies towards the medium
scale [29, 30] akin to weak wave turbulence [124]. Driven by successive splittings,
this energy cascade is associated with a scale invariant energy flux, transporting en-
ergy from the hard sector all the way to the medium scale without any deposition in
intermediate scales. Due to the turbulent nature of the cascade, the inertial range is
insensitive to the hard and soft scales and displays a universal Kolmogorov-Zakharov
spectrum that was discussed. Although the mechanisms underlying hard particle
energy loss are equivalent to the ones that thermalizes the QGP [34, 37, 72], we find
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that the late time energy loss is negligible when considering the evolution of a highly
energetic parton E & 30T , which probe far from equilibrium dynamics. While low
energetic partons E . 30T are more sensitive to the QGP medium scale, and may be
used to understand QGP thermalization using jet quenching studies in present and
future experiments. Measurements of the correlation between jets and their recoil
partner can be used to extract information about such strongly quenched jets. For
example, by measuring a recoil high-pT hadron, a recent experimental study [155]
has developed a method to subtract the background and reconstruct the highly
quenched jet on the away side of the hadron. These studies are of the utmost im-
portance to explain the physics of the sPHENIX collaboration [156], which focuses
on jet studies at RHIC where, unlike the LHC, the hard scattering pT spectrum
does not reach very high energies and are more sensitive to medium modifications of
the parton shower. Moreover, the interactions of jets with the medium constituents
lead to interesting changes of the chemical composition of medium modified jets
(see also [30]), which should have experimentally observable consequences, e.g., in
ratios of identified particles (K/π, Λ/π, D0/π, Λc/π, ...) inside/around heavy-ion
jets. Of course, to provide detailed predictions for any such observables, one also
has to include the effects of vacuum like emissions and hadronization, and it will be
interesting to further explore these aspects within suitable Monte-Carlo implemen-
tations of jet evolution in heavy-ion collisions [151–154], which can also account for
vacuum like emissions and potentially important effects due to fluctuations of the
jet shower and the medium.

Second, in chapter 5, we upgraded our formalism to account for the angular
structure of the polar angle around the initial parton. We used the same formal-
ism as the previous chapter for the inelastic interactions, however, for the elastic
interactions, we used the full matrix element computed in the HTL approximation
to describe energy depletion at small and large angles. At early times the jet peak,
which sits at high energy and small angle (p ∼ E~ez) slowly broadens due to multiple
soft scatterings with the medium, while collinear radiation leads to much faster en-
ergy depletion. Additionally, rare hard scatterings with the medium lead to a power
law tail in the angular distribution at large momentum fraction, which drops as θ−4

[132]. Consequently, most of the energy is lost due to an inverse energy cascade,
which deposits energy at narrow angles and soft momentum scales. This energy is
quickly equilibrated and transported to large angles, while the away side is negative
as the equilibrium distribution is slightly boosted in the parton direction to account
for momentum conservation. We concluded that while at high energies the distri-
bution is mostly collinear, the energy at large angles (θ > 0.2) is mainly sensitive to
the soft scales. Eventually, all the initial equilibrates and the resulting equilibrium
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distribution is then boosted in the parton’s direction due to momentum conserva-
tion. Using our evolution results, we computed an analogue to hadron quenching
and jet quenching. While for hadrons, we found that the quenching is more sensitive
to the longitudinal energy cascade, which is mainly due to the multiple successive
splittings and can be used to study these medium-induced splittings. However, en-
ergy loss out of the jet cone is more sensitive to soft physics, making it difficult to
extract; nonetheless, it will be important to explore this angular structure using jet
observables, e.g., jet shapes, which measure the momentum distribution transverse
to the jet axis. For that sake, it will be crucial to study the evolution in a more
dynamical background medium by including expansion [33], or using a viscous Hy-
drodynamic evolution [95], in order to understand how the energy deposited in the
medium modifies these soft scales, and by going to large cone sizes the fragmentation
functions can recover the energy of highly quenched jets experimentally [155].

Since the in-medium energy loss is dominated by radiative processes driving the
energy cascade, it is only natural to strive to improve the calculation of in-medium
splitting rates. Using a novel broadening kernel, which incorporate non-perturbative
contributions computed using a dimensionally reduced theory of QCD on a lattice
[1, 2], in chapter 6 we computed medium-induced radiation in both infinite and
finite size medium lengths. We have found a sizable difference with the results
using perturbative rates that are usually employed in the literature, which hints at
interesting physics to investigate. Lattice EQCD methods have proven to be crucial
tools for studying high temperature QCD [49, 50, 54, 144]; new computations are
on going to extract non-perturbative contributions to the thermal masses [55]. It
will be important to incorporate these studies as well, to investigate their effect.

Although our study was able to extract the important dynamics of energy loss
and equilibration with the medium, there are several aspects that can be improved.
Firstly, since we established a framework that can easily employ the small/large
angle separation of the elastic scatterings, which is very handy when one needs to
extend the formalism to Next-to-Leading order (NLO) introduced in [100, 157]. Al-
ternatively, one can instead directly employ the non-perturbative elastic collisional
broadening kernel for the elastic interactions with the medium as well as for comput-
ing medium-induced radiation rates. It would be important to investigate these two
approaches together with the LO method we employed here, in order to compare to
what extent the physics at LO is relevant for more realistic models.

Another aspect we can further improve is the treatment of radiative interac-
tions. Since we mainly focused on the energy loss of partons on large timescales,
where they lose a significant amount of their energy, we were able to approximate
the radiative emission rates by considering an infinite medium length. However, one
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must explicitly include the path length dependence of the medium-induced radiation
rates to study parton energy loss on shorter timescales. Besides, because the evo-
lution is linear, we argued that our results can be interpreted as a Green’s function
propagating a single medium-resolved highly energetic parton. Building on this, it
would be important to include vacuum-like emissions as source terms to account for
additional fragmentation that will be relevant to explore in-medium evolution of jet
shapes. Using this effective kinetic theory framework, both soft and hard fragment
evolution can be studied [30, 33, 34, 37, 72]. That being so, the long term goals
of these studies would be to construct a unified description of the full energy loss
picture and the back-reaction of the QGP.
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A Derivation of the small-angle
approximation

In this appendix, we shall explain how one finds the diffusion approximation to the
elastic 2↔ 2 QCD scatterings. We start from the following collision integral [100]

Ca[f ] = 1
2|p1|νa

∑
bcd

∫
dΩ2↔2

∣∣∣Mab
cd(p1,p2; p3,p4)

∣∣∣2F(p1,p2; p3,p4) , (A.1)

where Mab
cd(p1, p2; p3, p4) is the QCD matrix element and F(p1, p2; p3, p4) is the sta-

tistical factor given by

F(p1,p2,p3,p4) =fc(p3) fd(p4) (1±fa(p1)) (1±fb(p2))
− fa(p1) fb(p2) (1±fc(p3)) (1±fd(p4)) . (A.2)

A.1 Phase-space parametrization
Using the phase-space measure for 2↔ 2 scatterings we obtained in Eq. (3.13) which
we recall∫

dΩ2↔2 = (2π)
∫ d3p2

(2π)3

∫ d3q

(2π)3

∫
dω

1
8p1p2

2q
2 Θ(q − |ω|)Θ

(
p1 −

q + ω

2

)

Θ
(
p2 −

q − ω
2

)
δ

(
cosθ1q −

(
ω

q
− ω2 − q2

2p1q

))
δ

(
cosθ2q −

(
ω

q
+ ω2 − q2

2p2q

))
.

(A.3)

Within this parametrization, the Mandelstam variables are given by

t =ω2 − q2 , s = −2p1p2(1− cos θ12) , u = −t− s , (A.4)

where θ12 is the angle between p1 and p2. Note that here a t-channel parametriza-
tion has been used, while the u-channel can be obtained by exchanging p3 ↔ p4
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momentum and s-channel diagrams are neglected because of the divergent nature of
the t- and u-channels for small momentum exchange.

To perform the three-dimensional q integration, we write the different compo-
nents in the following orthonormal basis,

~e+
~e−
~e3

 =


~e1+~e2√

2+2 cos θ12
~e1−~e2√

2−2 cos θ12
~e1×~e2
|~e1×~e2|

 , q ≡

q+
q−
q⊥

 =


q(cos θ1q+cos θ2q)√

2+2 cos θ12

q(cos θ1q−cos θ2q)√
2−2 cos θ12

±
√
q2 − q2

1 − q2
2

 , (A.5)

where θ1q/θ2q are the angles between p1/p2 and q. We perform a change of integra-
tion variables from (q+, q−, q⊥) to (cos θ1q, cos θ2q, q), and combine the range of q⊥
integration as follows∫ qmax

−qmax
dq⊥ f(q⊥) =

∫ qmax

0
dq⊥ f(|q⊥|) + f(−|q⊥|) , (A.6)

We then use the two delta functions to perform two integrations, obtaining∫
dΩ2↔2 =

2(2π)
∫ d3p2

(2π)3

∫ dq

(2π)3

∫
dω

1
8p1p2

2q
2

q3

|q⊥|
√

1− cos2 θ12
Θ
(

1−
∣∣∣∣∣q+

q

∣∣∣∣∣
)

Θ
(

1−
∣∣∣∣∣q−q

∣∣∣∣∣
)
,

(A.7)

for q, w � p1, p2 we can neglect earlier Θ functions restraining p1 and p2 integrations.
We also symmetrize the integrand giving rise to a factor 2 and canceling all odd
integrand of q⊥.

The components of the vector q in the new parametrization are written as follows

q+ =
2ω − ω2−q2

2

(
1
p1
− 1

p2

)
√

2 + 2 cos θ12
, q− = −

ω2−q2

2

(
1
p1

+ 1
p2

)
√

2− 2 cos θ12
. (A.8)

Since the QCD matrix element favors small angle exchange, we expand the different
contributions to the integrand in powers of q and ω in the following sections, and
we use the leading order of q to perform the integral.

A.2 Expansion of statistical terms
Before expanding the statistical term, we note that the t-channel diagrams can be
written either with interaction due to a gluon exchange giving rise to the current
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term in the Fokker-Planck equation these require a and c to be the same species
and likewise for b and d, which cancels the 0-th order in q of the statistical term.
The matrix elements for these diagrams are proportional to s2

t2
∝ q−4 necessitating

expansion of the statistical term up to second order

FCurrent(p1,p2, q) = qi
{
−fa(p2)(1± fb(p2))∂ip1fa(p1) + fa(p1)(1± fa(p1))∂ip2fb(p2)

}
+ qiqj

2
{
fb(p2)(1± fb(p2))∂ip1∂

j
p1fa(p1) + fa(p1)(1± fa(p1))∂ip2∂

j
p2fb(p2)

− ∂jp2fb(p2)∂ip1fa(p1)(1± fa(p1))− ∂jp1fa(p1)∂ip2fb(p2)(1± fb(p2))
 . (A.9)

Whereas the diagrams where a quark exchange takes place, give rise to the conversion
processes and require a and d to be the same species instead, likewise for b and c.
The matrix elements for these diagrams are proportional to s

t
∝ q−2, which only

require to take the 0-th order expansion of the statistical term

FConversion(p1,p2, q) =fb(p1) fa(p2) (1±fa(p1)) (1±fb(p2))
− fa(p1) fb(p2) (1±fb(p1)) (1±fa(p2)) . (A.10)

A.3 Evaluation of small angle matrix elements
By combining the statistical terms with the matrix element one finds for the current
contributions

CCurrent
a = 2(2π)

∫ d3p2

(2π)3

Bi

{
−fb(p2)(1± fb(p2))∂ip1fa(p1) + fa(p1)(1± fa(p1))∂ip2fb(p2)

}
+ Bij

2
{
fb(p2)(1± fb(p2))∂ip1∂

j
p1fa(p1) + fa(p1)(1± fa(p1))∂ip2∂

j
p2fb(p2)

−∂jp2fb(p2)∂ip1fa(p1)(1± fa(p1))− ∂jp1fa(p1)∂ip2fb(p2)(1± fb(p2))
} ,

(A.11)

and the conversion contributions can be expressed as

CConversion
a =2(2π)

∫ d3p2

(2π)3 B {fb(p1) fa(p2) (1±fa(p1)) (1±fb(p2))

−fa(p1) fb(p2) (1±fb(p1)) (1±fa(p2))} . (A.12)
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The above equations give rise to the three following integrals

B ≡
∫ dq

2π2

∫ q+

−q+
dω

1
8p1p2

2q
2

q3

|q⊥|
√

1− cos2 θ12

s

t
, (A.13)

Bi ≡
∫ dq

2π2

∫ q+

−q+
dω

1
8p1p2

2q
2

q3

|q⊥|
√

1− cos2 θ12
qi
s2

t2
, (A.14)

Bij ≡
∫ dq

2π2

∫ q+

−q+
dω

1
8p1p2

2q
2

q3

|q⊥|
√

1− cos2 θ12

qiqj

2
s2

t2
. (A.15)

(A.16)

Taking the integration, we find at lowest order of q

B =
∫ dq

q

1
8πp2

, Bi =
∫ dq

q

p1

8π

(
~e1

p2
− ~e2

p1

)
, (A.17)

Bij =
∫ dq

q

p1

16π

(
δij(1− cos θ12) + pi1

p1

pj2
p2

+ pj1
p1

pi2
p2

)
. (A.18)

A.4 Collision integrals in small angle approxima-
tion

After combining the integrals with the statistical term, we obtain the different col-
lision integrals. We define the current term in the gluon channel as

CCurrent
g [f ] = Cgg

g←→gg
g [f ] +

∑
f

(
Cgqf

g←→gqf
g [f ] + Cgq̄f

g←→gq̄f
g [f ]

)
, (A.19)
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where we only take the gluon exchange contribution of the (anti-)quark/gluon scat-
terings denoted by g←→. The different collision integrals are written,

Cgg
g←→gg

g [f ] =g
4CAL
4π ∂ip1

∫ d3p2

(2π)3CAfg(p2)(1 + fg(p2))∂ip1fg(p1)

+ CA
2fg(p2)
p2

pi1
p1
fg(p1)(1 + fg(p1)) , (A.20)

Cgqf
g←→gqf

g [f ] =g
4CAL
4π ∂ip1

∫ d3p2

(2π)3fqf (p2)(1− fqf (p2))∂ip1fg(p1)

+
2fqf (p2)

p2

pi1
p1
fg(p1)(1 + fg(p1)) , (A.21)

Cgq̄f
g←→gq̄f

g [f ] =g
4CAL
4π ∂ip1

∫ d3p2

(2π)3fq̄f (p2)(1− fq̄f (p2))∂ip1fg(p1)

+
2fq̄f (p2)

p2

pi1
p1
fg(p1)(1 + fg(p1)) , (A.22)

where we define the logarithmic enhancement L =
∫ µ
mD

dq
q

.
Conversely, the quark exchange contribution to the scattering lead to the con-

version terms

CConversion
g [f ] =

∑
f

(
Cgqf

q←→gqf
g [f ] + Cgq̄f

q←→gq̄f
g [f ] + Cgg

q←→qf q̄f
g [f ]

)
, (A.23)

= 1
8|p|

∑
f

[
fqf (p1)(1 + fg(p1))− fg(p1)(1− fq̄f )

]
Iqf

+
[
fq̄f (p1)(1 + fg(p1))− fg(p1)(1− fqf )

]
Iq̄f , (A.24)

where Iqf and Iq̄f are given by the following moments of the phase-space distribution

Iqf =g
4CFL
π

∫ d3k

(2π)3
1
|k|

[
fqf (k)(1 + fg(k)) + fg(k)(1− fq̄f (k))

]
, (A.25)

Iq̄f =g
4CFL
π

∫ d3k

(2π)3
1
|k|

[
fq̄f (k)(1 + fg(k)) + fg(k)(1− fqf (k))

]
. (A.26)

Similarly, for the quark channel using only the gluon exchange part of the scatterings
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we write the current term

CCurrent
qf

[f ] =Cqfg
g←→qfg

qf
[f ] +

∑
i

(
Cqf qi←→qf qi
qf

[f ] + Cqf q̄i←→qf q̄i
qf

[f ]
)
, (A.27)

Cqfg
g←→qfg

qf
[f ] =g

4CFL
4π ∂ip1

∫ d3p2

(2π)3CAfg(p2)(1 + fg(p2))∂ip1fqf (p1)

+ CA
2fg(p2)
p2

pi1
p1
fqf (p1)(1 + fg(p1)) , (A.28)

Cqf qi←→qf qi
qf

[f ] =g
4CFL
8π ∂ip1

∫ d3p2

(2π)3fqi(p2)(1− fqi(p2))∂ip1fqf (p1)

+ 2fqi(p2)
p2

pi1
p1
fqf (p1)(1− fqf (p1)) , (A.29)

Cqf q̄i←→qf q̄i
qf

[f ] =g
4CFL
8π ∂ip1

∫ d3p2

(2π)3fq̄i(p2)(1− fq̄i(p2))∂ip1fqf (p1)

+ 2fq̄i(p2)
p2

pi1
p1
fqf (p1)(1− fqf (p1)) , (A.30)

and using the quark exchange part of the scatterings we write the conversion term

CConversion
qf

[f ] =Cqfg
q←→qfg

qf
[f ] + Cqf q̄f

q←→gg
qf

[f ] , (A.31)

=g
4C2

FL
4π

∑
f

∫ d3p2

(2π)3fqf (p1)(1 + fg(p1))Iqf − fg(p1)(1− fqf )Iq̄f .

(A.32)

The same quark collision integrals apply to the antiquark channel after exchange
of qf with q̄f and vice-versa. After summing the different contributions for each
channel, one recovers the Fokker-Planck equation in section 4.1.

A.5 Angular dependent case

We will compare the medium cascade of the full matrix elements with one where we
take only the diffusion approximation. Since we are considering an angle differential
cascade, during this section, we will upgrade the evolution equation of the energy
distribution from Chapter 3 to account for angle. Only the current term and its
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A Derivation of the small-angle approximation

recoil counter-part have to be modified. For the direct diffusion, we have

−∇pJg[{Di}] =CA ˆ̄qeq

4T 2 x

T 2

E2

(
∂xx

2∂x + ∂cos θ(1− cos θ2)∂cos θ
)

+ T

E
∂xx

2(1 + 2nB(xE))
Dg(x, cos θ)

x3 , (A.33)

−∇pJqf [{Di}] =CF ˆ̄qeq

4T 2 x∂x

T 2

E2

(
∂xx

2∂x + ∂cos θ(1− cos θ2)∂cos θ
)

+ T

E
∂xx

2(1− 2nF (xE))
Dqf (x, cos θ)

x3 , (A.34)

−∇pJq̄f [{Di}] =CF ˆ̄qeq

4T 2 x∂x

T 2

E2

(
∂xx

2∂x + ∂cos θ(1− cos θ2)∂cos θ
)

+ T

E
∂xx

2(1− 2nF (xE))
Dq̄f (x, cos θ)

x3 . (A.35)

In addition to the recoil contribution that we had before in Eqns. (4.18-4.20), an
angle dependent contribution is obtained

−∇pδJ ‖g [{Di}] =CA ˆ̄qeq

4T 2
Tδη̄

‖
D

2ˆ̄qeq

νg
2π2

T

E
x3cos θ ∂xnB(xE)(1 + nB(xE)), (A.36)

−∇pδJ ‖qf/q̄f [{Di}] =CF
ˆ̄qeq

4T 2
Tδη̄

‖
D

2ˆ̄qeq

νq
2π2

T

E
x3cos θ ∂xnF (xE)(1− nF (xE)) , (A.37)

where the recoil coefficient is given by

δη̄
‖
D = g4

π
E2

∫ 1

−1
dcos θ

∫
dx

2cos θ
x2

[
CAν

−1
g Dg(x, cos θ)

+1
2
∑
f

ν−1
q (Dqf (x, cos θ) +Dq̄f (x, cos θ))

]
. (A.38)
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B Numerical implementation of
the Boltzmann equation

Below, we provide details on the numerical implementation of the effective kinetic
theory.

B.1 Basic formalism
Following the discrete-momentum method introduced in [158], we discretize the
distribution using “wedge” functions basis

Na
i (τ) =

∫
dx wi(x)Da(x, τ)

x
, (B.1)

where Na
i is the wedge coefficient for the number of particle moment for the species

a = {g, qf , q̄f} and wi(x) is the wedge function defined as

wi(x) =


x−xi−1
xi−xi−1

, xi−1 < x < xi
xi+1−x
xi+1−xi , xi ≤ x < xi+1

0 , x > xi+1 or x < xi−1

(B.2)

with {xi} the discrete node points spanning the region of interest (∼ [0, 2]). We
note that the wedge functions display the following summation properties∑

i

wi(x) = Θ(xmax − x)Θ(x− xmin) , (B.3)∑
i

xiwi(x) = xΘ(xmax − x)Θ(x− xmin) . (B.4)

By use of these properties, one finds simple relations for the number of particles and
energy,

na(τ) =
∑
i

Na
i (τ) , Ea(τ) =

∑
i

xiN
a
i (τ) , (B.5)
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allowing us to keep track of these quantities up to machine precision.
The collision integral is expanded in the same basis

Ca
i (τ) =

∫
dx wi(x)Ca(x, τ)

x
. (B.6)

Because the collision integral Ca(x, τ) is linear in terms of the distribution of each
species one can write Ca

i (τ) as a matrix vector product

Ca
i (τ) =

∑
j

δCab
ij N

b
j (τ) =δC̄ab ~N b(τ) , (B.7)

by constructing the vector ~N and matrix C̄ from the coefficients and matrices of the
different species

~N(τ) ≡


~N g(τ)
~N qf (τ)
~N q̄f (τ)

 , C̄(τ) ≡ δCa
i (τ)

δN b
j (τ) =

 C̄gg(τ) C̄ggf (τ) C̄gq̄f (τ)
C̄qfg(τ) C̄qf qf (τ) C̄qf q̄f (τ)
C̄q̄fg(τ) C̄q̄f qf (τ) C̄q̄f q̄f (τ)

 . (B.8)

The matrices C̄ab(τ) characterize the contribution of the distribution of species b to
the collision integral of species a. Although C̄(τ) will not depend on N b

i (τ) because
Ca(τ) is linear in N b

i (τ), we will still keep track of N b
j (τ) when we write the matrices

in the following sections.
In order to recover the full distribution from the discrete values Na

i (τ), we ap-
proximate the coefficient integral by taking Da(x,τ)

Deq
a (x)exE/T to be constant between node

points

Na
i (τ) =

∫
dx wi(x) Da(x, τ)

x Deq
a (x)exE/TD

eq
a (x)exE/T , (B.9)

= Da(x, τ)
Deq
a (x)exE/T A

a
i , (B.10)

where Aai is the area defined as

Aai ≡
∫ dx

x
wi(x)Deq

a (x)exE/T . (B.11)

We now can write the value of the distribution at the node points, and using a linear
interpolation, one can write the full distribution as

Da(x, τ) =
∑
i

wi(x)Na
i (τ)D

eq
a (x)exE/T
Aai

, (B.12)

=
∑
i

xKi(x)Na
i (τ) , (B.13)
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we introduced the “cardinal” function Ka
i (x) ≡ wi(x)D

eq
a (x)exE/T
xAai

in the last line.

Lastly, as the basis function is constant in time, the evolution of the coefficients
~N(τ) are obtained directly from the discrete collision integral as follows,

∂τ ~N(τ) =C̄ ~N(τ) , (B.14)

which admits the solution

~N(τ) =eτC̄ ~N(τ = 0) , (B.15)

where eτC̄ is a matrix exponentiation.

The integration in Eq. (B.6) is done numerically using a Monte Carlo integration
scheme, where at each step we update all elements of the matrix Cij, which ensures
charge and energy conservation thanks to Eq. (B.3) and (B.4). Writing the collision
integral as a matrix also allows us to compute the eigenvalues and eigenfunctions
discussed in Section 4.2. In the following sections, we will provide the different
matrices corresponding to each process from Section 4.1.

B.2 Discretization of small angle elastic collision
integrals

It is straight forward to write the hard part of the current term in Eqns. (4.18-4.20)
using this discretization formalism. One only needs to introduce the wedge function
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integration and replace the distribution by its discrete form, we obtain

−∇pJ g
ij =

N g
j (τ)CA

q̂eq

4T 2

∫
dx wi(x)

T 2

E2 (∂xx2∂x)
Kj(x)
x2

T

E
(∂xx2)Kj(x)

x2 (1± 2na(xE))
 ,

(B.16)
−∇pJ

qf
ij =

N
qf
j (τ)CF

q̂eq

4T 2

∫
dx wi(x)

T 2

E2 (∂xx2∂x)
Kj(x)
x2 + T

E
(∂xx2)Kj(x)

x2 (1± 2na(xE))
 ,

(B.17)
−∇pJ

q̄f
ij =

N
q̄f
j (τ)CF

q̂eq

4T 2

∫
dx wi(x)

T 2

E2 (∂xx2∂x)
Kj(x)
x2 + T

E
(∂xx2)Kj(x)

x2 (1± 2na(xE))
 ,

(B.18)

for the quark/antiquark to ensure stability at the boundaries, we employ an inte-
gration by parts, inspired by the “weak” form of differential equations [159], and set
the term fully integrated to zero according to the boundary conditions.

Using the same approach, the recoil contribution in Eqns. (4.22-4.23) are given
by

−∇pδJ g
ij =CA ˆ̄qeq

4T 2
Tδη̄jD − δ ˆ̄qj

ˆ̄qeq

νg
2π2

T

E

∫ dx

2π2wi(x)∂xx2na(xE)(1± na(xE)) ,

(B.19)

−∇pδJ
qf/q̄f
ij =CF ˆ̄qeq

4T 2
Tδη̄jD − δ ˆ̄qj

ˆ̄qeq

νg
2π2

T

E

∫ dx

2π2wi(x)∂xx2na(xE)(1± na(xE)) ,

(B.20)
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where the recoil coefficients are now represented by vectors written as

δ ˆ̄qj =g
4

π
E3

∫
dx

CAν
−1
g N g

j (τ)Kj(x)(1 + 2nB(xE))

+ 1
2
∑
f

ν−1
q (N qf

j (τ)Kj(x) +N
q̄f
j (τ)Kj(x))(1− 2nF (xE))

 , (B.21)

δη̄jD =g
4

π
E2

∫
dx

2
x

[
CAν

−1
g N g

j (τ)Kj(x) + 1
2
∑
f

ν−1
q (N qf

j (τ)Kj(x) +N
q̄f
j (τ)Kj(x))

]
.

(B.22)

Similarly for the conversion term from Eqns. (4.26,4.27) we obtain

Sgij =νg
Ieq
qf

8T 2

∫
dx

T

xE
wi(x)

∑
f

{
ν−1
q

[
N
qf
j (τ)Kj(x) +N

q̄f
j (τ)Kj(x)

]
(1 + 2nB(xE))

−2ν−1
g N g

j (τ)Kj(x)(1− 2nF (xE))
}
, (B.23)

S
qf ,q̄f
ij =νg

Ieq
qf

8T 2

∫
dx

T

xE
wi(x)

{
ν−1
g N g

j (τ)Kj(x)(1− 2nF (xE))

−ν−1
q N

qf ,q̄f
j (τ)Kj(x)(x)(1 + 2nB(xE))

}
, (B.24)

and the corresponding recoil contributions are given by

δS
qf
ij = νg

2π2

∫
dx wi(x) x8E

(
δIqfj − δI

q̄f
j

)
nB(xE)(1− nF (xE)) , (B.25)

δS
q̄f
ij = νg

2π2

∫
dx wi(x) x8E

(
δI q̄fj − δI

qf
j

)
nB(xE)(1− nF (xE)) , (B.26)

where the difference of δIqfj and δI q̄fj is given by(
δI q̄fj − δI

qf
j

)
=

g4CFL
π

E2
∫

dx
1
x

(1 + 2nB(xE)) ν−1
q

(
N
qf
j (τ)Kj(x)−N q̄f

j (τ)Kj(x)
)
. (B.27)

B.3 Discretization of inelastic collision integrals
Before discretizing the radiative collision integrals, we will combine both merging
and splitting processes in Eqns. (4.33-4.38) by introducing a delta function. Apply-
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ing this to a general 1↔ 2 processes, one finds

C1↔2
a =− 1

2

∫ 1

0
dz
dΓabc(xE, z)

dz

[
Da(x)(1± nb(zxE)± nc(z̄xE))

± Db(zx)
z3 (na(xE)∓b nc(z̄xE))± Dc(z̄x)

z̄3 (na(xE)∓c nb(zxE))
]

+ νb
νa

∫ 1

0
dz

1
z

dΓbac(xEz , z)
dz

[
Db(

x

z
)(1± na(xE)± nc(

z̄

z
xE))

± Da(x)
z3 (nb(

xE

z
)∓a nc(

z̄

z
xE))± Da(x)

z̄3 (nb(
xE

z
)∓c na(

xE

z
))
]

(B.28)

=
∫
dy

∫ 1

0
dz
dΓekc(yE, z)

dz

[
De(y)(1± nk(zyE)± nc(z̄yE))

± Dk(zy)
z3 (ne(yE)∓k nc(z̄yE))± Dc(z̄y)

z̄3 (ne(yE)∓c nk(zyE))
]

×

νb
νa
zδ(x− zy)δe,bk,a −

1
2δ(x− y)δe,ak,b

 , (B.29)

where we used ∓a to represent either a minus if particle a is a Boson or a plus if
particle a is a fermion. After employing the discretization scheme, one finds for the
gluon collision integrals

Cg↔gg
g,ij =1

2

∫
dx

∫ 1

0
dz
dΓggg(xE, z)

dz

N g
j (τ)Kj(x)(1 + nB(zxE) + nB(z̄xE))

+
N g
j (τ)Kj(zx)

z2 (nB(xE)− nB(z̄xE))

+
N g
j (τ)Kj(z̄x)

z̄2 (nB(xE)− nB(zxE))
 [wi(z̄x) + wi(zx)− wi(x)] ,

(B.30)

Cq↔qg
g,ij =

∑
f

∫ 1

0
dz
dΓqgg

(
xE
z
, z
)

dz

N qf
j (τ)Kj(x) (1 + nB(zxE)− nF (z̄xE))

+ νq
νg

N g
j (τ)Kj(zx)

z2 (nF (xE)− nF (z̄xE))

−
N
qf
j (τ)Kj(z̄x)

z̄2 (nF (xE) + nB(zxE))
wi(zx) , (B.31)
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C q̄↔q̄g
g,ij =

∑
f

∫ 1

0
dz
dΓqgq

(
xE
z
, z
)

dz

N q̄f
j (τ)Kj(x) (1 + nB(zxE)− nF (z̄xE))

+ νq
νg

N g
j (τ)Kj(zx)

z2 (nF (xE)− nF (z̄xE))

−
N
q̄f
j (τ)Kj(z̄x)

z̄2 (nF (xE) + nB(zxE))
wi(zx) , (B.32)

Cg↔qq̄
g,ij = −

∑
f

∫ 1

0
dz
dΓgqq̄(xE, z)

dz

N g
j (τ)Kj(x)(1− nF (zxE)− nF (z̄xE))

− νg
νq

N
qf
j (τ)Kj(zx)

z2 (nB(xE) + nF (z̄xE))− νg
νq

N
q̄f
j (τ)Kj(z̄x)

z̄2 (nB(xE) + nF (zxE))


× wi(x) , (B.33)

where for the symmetric g ↔ gg and g ↔ qq̄ processes, we symmetrized the inte-
grand by change of variable z → z̄.

Similarly, the quark collision integrals are given by

Cq↔qg
qf ,ij

=
∑
f

∫ 1

0
dz
dΓqgq

(
xE
z
, z
)

dz

N qf
j (τ)Kj(x) (1 + nB(zxE)− nF (z̄xE))

+ νq
νg

N g
j (τ)Kj(zx)

z2 (nF (xE)− nF (z̄xE))

−
N
qf
j (τ)Kj(z̄x)

z̄2 (nF (xE) + nB(zxE))
 [wi(z̄x)− wi(x)] , (B.34)

Cg↔qq̄
qf ,ij

=
∑
f

∫ 1

0
dz
dΓgqq̄(xE, z)

dz

N g
j (τ)Kj(x)(1− nF (zxE)− nF (z̄xE))

− νg
νq

N
qf
j (τ)Kj(zx)

z2 (nB(xE) + nF (z̄xE))

− νg
νq

N
q̄f
j (τ)Kj(z̄x)

z̄2 (nB(xE) + nF (zxE))
wi(zx) . (B.35)
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For the antiquark channel the q̄ ↔ q̄g process is the same as the quark by exchange
of qf with q̄f , while the g ↔ qq̄ process is given by

Cg↔qq̄
q̄f ,ij

=
∑
f

∫ 1

0
dz
dΓgqq̄(xE, z)

dz

N g
j (τ)Kj(x)(1− nF (zxE)− nF (z̄xE))

− νg
νq

N
qf
j (τ)Kj(zx)

z2 (nB(xE) + nF (z̄xE))

− νg
νq

N
q̄f
j (τ)Kj(z̄x)

z̄2 (nB(xE) + nF (zxE))
wi(z̄x) . (B.36)

Using the properties of the wedge function, one can easily find that charge is con-
served because ∑

i

Cg↔qq̄
qf ,ij

− Cg↔qq̄
q̄f ,ij

∝
∑
i

wi(zx)− wi(z̄x) = 0 , (B.37)
∑
i

C
(q/q̄f )↔(q/q̄f )g
(qf/q̄f ),ij ∝

∑
i

wi(z̄x)− wi(x) = 0 , (B.38)

and analogously for energy conservation, we have∑
i

xi[wi(zx) + wi(z̄x)− wi(x)] =0 , (B.39)

for all allowed configurations of the splitting.

B.3.1 Comparison of the in-medium splitting rate to
leading-log approximation

For highly energetic parent particles the radiation rate in Eq. (3.33) is in the deep
LPM regime, which can be approximated by the Harmonic Oscillator (HO) rate
[116]. In order to match the HO rate, one has to choose a sensible value of ˆ̄q. For
the early time behavior in Eqns. (4.71-4.72) we consider the parent particle to be
of energy E and fit ˆ̄q(E) to match, as shown in the left panel of Fig. B.1. In the
same figure we show the rate in the Bethe-Heitler regime [34] which describes the
splitting to soft fragments, one can see clearly how the full splitting rate interpolate
between the leading-log rate for highly energetic fragments and the BH regime for
soft fragments. Conversely, for the successive branchings in Eqns. (4.79-4.80) we
approximate the parent particle energy by the geometric mean between the jet
energy E and the temperature T and fit the value of ˆ̄q(

√
TE) as shown in right

panel of Fig. B.1.
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Figure B.1: Comparison of the matching of the leading-log splitting rate (blue line)
to the full effective rate (red dot) for g ↔ gg process. We also show the Bethe-
Heitler rate (green) relevant for soft radiation. On the left panel we show for a
parent particle with energy E = 1000T , and on the right panel for a parent particle
with energy E =

√
1000T .

B.4 Discretization of the angular cascade
The wedge function discretization can also be employed for two-dimensional func-
tions using double wedges, the discretization is written

Na
k (τ) =

∫
dx

∫
dcos θ wi(x)wj(cos θ)Da(x, cos θ, τ)

x
, (B.40)

here and throughout this section we will use k = j + iNcos θ. Conservation of the
number of particles, energy and momentum is now given by

na(τ) =
∑
k

Na
k (τ) , Ea(τ) =

∑
k

xiN
a
k (τ) , Pa(τ) =

∑
k

xicos θjNa
k (τ) . (B.41)

Similarly, the collision integral is expanded

Ca
k (τ) =

∫
dx

∫
dcos θ wi(x)wj(cos θ)Ca(x, cos θ, τ)

x
. (B.42)

The vector Ca
k (τ) can again be written as a matrix vector product

Ca
k (τ) =

∑
j

δCab
kjN

b
j (τ) =δC̄ab ~N b(τ) , (B.43)
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using the same construction as in Eq. (B.8).
Now, to reconstruct the distribution function, we use the analogous procedure

as before

Na
k (τ) =

∫
dx

∫
dcos θ wi(x)wj(cos θ)Da(x, cos θ, τ)

x Deq
a (x)exE/TD

eq
a (x)exE/T , (B.44)

=Da(x, cos θ, τ)
Deq
a (x)exE/T A

a
k , (B.45)

except the area Aak becomes the double integral

Aak ≡
∫
dx

∫
dcos θ wi(x)wj(cos θ)Deq

a (x)exE/T . (B.46)

We now can write the value of the distribution at the node points, and using a linear
interpolation, one can write the full distribution as

Da(x, cos θ, τ) =
∑
k

wi(x)wj(x)Na
k (τ)D

eq
a (x)exE/T
Aak

, (B.47)

=
∑
k

xKk(x, cos θ)Na
k (τ) , (B.48)

where the “cardinal” function is now Ka
k (x, cos θ) ≡ wi(x)wj(cos θ)D

eq
a (x)exE/T
xAa

k
.

B.4.1 Elastic scatterings

Using the discretization introduced above, we can write the 2 ↔ 2 elastic integral,
we will focus on the process gg ↔ gg given by

Cgg↔gg
g [{Di}] =

∫ d3p1

(2π)3
p1

E
δ
(
p1

E
− x

)
δ
(

p1 · ~ez
p1

− cos θ
)

1
2p1

∫
dΩ2↔2

∣∣∣Mgg
gg(1, 2; 3, 4)

∣∣∣2D(1, 2; 3, 4) . (B.49)
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Reconstruction of the statistical factor using Eq. (B.48) is straight forward, yielding

D(1, 2; 3, 4) =
∑
k


N g
k (τ)x1K

g
k(x1, cos θ1)
νgx3

1E
2 [nB(p3)nB(p4)− nB(p2)(1 + nB(p3) + nB(p4))]

+N q
k (τ)x2K

g
k(x2, cos θ2)
νgx3

2E
2 [nB(p3)nB(p4)− nB(p1)(1 + nB(p3) + nB(p4))]

−N g
k (τ)x3K

g
k(x3, cos θ3)
νgx3

3E
2 [nB(p1)nB(p2)− nB(p4)(1 + nB(p1) + nB(p2))]

−N q
k (τ)x4K

g
k(x4, cos θ4)
νgx3

4E
2 [nB(p1)nB(p2)− nB(p3)(1 + nB(p1) + nB(p2))]

 ,

(B.50)

here and throughout this section, we will use xi and cos θi interchangeably with pi
E

and pi·~ez
pi

. The discrete collision integral is defined as

Cg
k(τ) =

∫
dx

∫
dcos θ wi(x)wj(cos θ)Cg(x, cos θ, τ)

x
. (B.51)

We can employ the delta functions in Eq. (B.49) to obtain

Cg
k(τ) =

∫ d3p

(2π)3 wi(x1)wj(cos θ1) 1
2p1

∫
dΩ2↔2

∣∣∣Mgg
gg(1, 2; 3, 4)

∣∣∣2D(1, 2; 3, 4) .

(B.52)

Using the symmetry of the system, we can rename the different momentum integra-
tions as follows

Cg
k(τ) =1

4

∫
dΩ̃2↔2

[
wi(x1)wj(cos θ1) + wi(x2)wj(cos θ2)

− wi(x3)wj(cos θ3)− wi(x4)wj(cos θ4)
]

∣∣∣Mgg
gg(1, 2; 3, 4)

∣∣∣2D(1, 2; 3, 4) , (B.53)
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where the integral measure is now∫
dΩ̃2↔2 = (2π)

∫ d3q

(2π)3

∫ d3p1

(2π)3

∫ d3p2

(2π)3

∫
dω

1
16p2

1p
2
2q

2 Θ(q − |ω|)Θ
(
p1 −

q + ω

2

)

Θ
(
p2 −

q − ω
2

)
δ

(
cosθ1q −

(
ω

q
− ω2 − q2

2p1q

))
δ

(
cosθ2q −

(
ω

q
+ ω2 − q2

2p2q

))
.

(B.54)

Before we proceed, we note that particle number, energy and momentum are con-
served up to machine precision thanks to the sum rules in Eqns. (B.3-B.4), which
leads to∑

k

[
wi(x1)wj(cos θ1) + wi(x2)wj(cos θ2)− wi(x3)wj(cos θ3)− wi(x4)wj(cos θ4)

]
= 0 , (B.55)∑
k

xi

[
wi(x1)wj(cos θ1) + wi(x2)wj(cos θ2)− wi(x3)wj(cos θ3)− wi(x4)wj(cos θ4)

]
= x1 + x2 − x3 − x4 = 0 , (B.56)∑
k

xicos θi
[
wi(x1)wj(cos θ1) + wi(x2)wj(cos θ2)− wi(x3)wj(cos θ3)

− wi(x4)wj(cos θ4)
]

= x1cos θ1 + x2cos θ2 − x3cos θ3 − x4cos θ4 = 0 . (B.57)

We can measure the vectors p1 and p2 using q as the z-axis of spherical coordinates
and employ their polar angle integrations to set

cosθ1q =
(
ω

q
− ω2 − q2

2p1q

)
, cosθ2q =

(
ω

q
+ ω2 − q2

2p2q

)
. (B.58)

We are left with the following integration∫
dΩ̃2↔2 = (2π)

∫ d3q

(2π)3

∫ q

−q
dω

∫
q+ω

2

dp1dφ1

(2π)3

∫
q−ω

2

dp2dφ2

(2π)3
1

16q2 . (B.59)

In the following, we provide the definitions employed to perform the integral numer-
ically. Starting with the outgoing particles energies and momenta given by

p3 = p1 − q , p4 = p2 + q , (B.60)
p3 = p1 − ω , p4 = p2 + ω . (B.61)
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The Mandelstam variables are

t = ω2 − q2, s = 2p1p2(1− cos θ12), u = −t− s. (B.62)

In order to obtain the different angles, we define the basis (~e1, ~e2, ~e3)

~e1 = ~eq = q
q
, ~e2 = ~ez − cos(θq)~eq

|~ez − cos(θq)~eq|
= ~ez − cos(θq)~eq

sin θq
, (B.63)

~e3 = ~eq × ~ez
|~eq × ~ez|

= ~eq × ~ez
| sin(θq)|

, (B.64)

where cos θq = ~eq · ~ez. In this basis, the momenta are given by

p1 = p1 [cos θ1q~e1 + sin θ1q(cosφ1~e2 + sinφ1~e3)] , (B.65)
p2 = p2 [cos θ2q~e1 + sin θ2q(cosφ2~e2 + sinφ2~e3)] , (B.66)

The angles with the initial momentum axis (i.e., θ1,2) are given by

cos θ1 = p1z

p1
= [cos θ1q cos θq + sin θ1q cosφ1 sin θq] , (B.67)

cos θ2 = p2z

p2
= [cos θ2q cos θq + sin θ2q cosφ2 sin θq] . (B.68)

We also need the following angles
p1 · p2

p1p2
= cos θ12 = cos θ1q cos θ2q + cos(φ1 − φ2) sin θ1q sin θ2q , (B.69)

p3z

p3
= cos θ3 = p1 cos θ1 − q cos θq

p1 − ω
, (B.70)

p4z

p4
= cos θ4 = p2 cos θ2 + q cos θq

p2 + ω
. (B.71)

We follow the same procedure for all the different processes in Tab. 3.1 to obtain
the different collision terms which are used for the evolution in Chapter 5.
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C Bethe-Heitler regime at infinite
medium

We solve Eq. (3.34) perturbatively following an opacity expansion in the number of
elastic scatterings, such that at leading order

g(0)
(z,P )(p⊥) = −2ip⊥

δE(z, P,p⊥) = −4ip⊥Pz(1−z)
p2
⊥ + µ(z)2 , (C.1)

µ(z)2 = (1−z)m2
∞,(z) + zm2

∞,(1−z) − z(1−z)m2
∞,(1) , (C.2)

which is entirely imaginary and thus does not contribute to the splitting rate. Hence,
the first non-trivial contribution comes from

2p⊥g(1)
(z,P )(p⊥) = 2ip⊥

δE(z, P,p⊥)

∫ d2q⊥
(2π)2 C̄(q⊥)

{
C1
[
g0

(z,P )(p⊥)− g0
(z,P )(p⊥−q⊥)

]
(C.3)

+ Cz
[
g0

(z,P )(p⊥)− g0
(z,P )(p⊥−zq⊥)

]
+ C1−z

[
g0

(z,P )(p⊥)− g0
(z,P )(p⊥−z̄q⊥)

]}
.

By plugging in the leading order one finds

2p⊥g(1)
(z,P )(p⊥) =16P 2z2(1−z)2

∫ d2q⊥
(2π)2 C̄(q⊥) 1

p2
⊥ + µ2(z)×{

C1

[
p2
⊥

p2
⊥ + µ(z)2 −

p⊥(p⊥ − q⊥)
(p⊥ − q⊥)2 + µ(z)2

]

+ Cz

[
p2
⊥

p2
⊥ + µ(z)2 −

p⊥(p⊥ − zq⊥)
(p⊥ − zq⊥)2 + µ(z)2

]

+C1−z

[
p2
⊥

p2
⊥ + µ(z)2 −

p⊥(p⊥ − z̄q⊥)
(p⊥ − z̄q⊥)2 + µ(z)2

]}
, (C.4)
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such that the rate is given by

dΓBHij
dz (P, z) = g4

sTPij(z) 1
π

∫ d2p⊥
(2π)2

∫ d2q⊥
(2π)2

1
g2

sT
C̄(q⊥) 1

p2
⊥ + µ(z)2

×
{
C1

[
p2
⊥

p2
⊥ + µ(z)2 −

p⊥(p⊥ − q⊥)
(p⊥ − q⊥)2 + µ(z)2

]

+Cz

[
p2
⊥

p2
⊥ + µ(z)2 −

p⊥(p⊥ − zq⊥)
(p⊥ − zq⊥)2 + µ(z)2

]

+C1−z

[
p2
⊥

p2
⊥ + µ(z)2 −

p⊥(p⊥ − z̄q⊥)
(p⊥ − z̄q⊥)2 + µ(z)2

]}
. (C.5)

We perform the re-arrangement
∫ d2p⊥

(2π)2
1

p2
⊥ + µ2(z)

[
p2
⊥

p2
⊥ + µ(z)2 −

p⊥(p⊥ − q⊥)
(p⊥ − q⊥)2 + µ(z)2

]
(C.6)

= 1
2

∫ d2p⊥
(2π)2

(
p⊥

p2
⊥ + µ(z)2 −

(p⊥ − q⊥)
(p⊥ − q⊥)2 + µ(z)2

)2

. (C.7)

To re-write the terms in a manifestly positive definite form, we can re-express the
rate as

dΓBHij
dz (P, z) = g4

sTPij(z) QBH(z,m2
D,m

2
∞) , (C.8)

where QBH(z,m2
D,m

2
∞) is a dimensionless integral given by

QBH(z,m2
D,m

2
∞) = m2

D
2πg2

sT

∫ d2p⊥
(2π)2

∫ d2q⊥
(2π)2 C̄(mDq⊥)

×

C1

[
p⊥

p2
⊥ + µ̃(z)2 −

(p⊥ − q⊥)
(p⊥ − q⊥)2 + µ̃(z)2

]2

+Cz

[
p⊥

p2
⊥ + µ̃(z)2 −

(p⊥ − zq⊥)
(p⊥ − zq⊥)2 + µ̃(z)2

]2

+C1−z

[
p⊥

p2
⊥ + µ̃(z)2 −

(p⊥ − z̄q⊥)
(p⊥ − z̄q⊥)2 + µ̃(z)2

]2
 ,

(C.9)
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with µ̃(z)2 = µ(z)2/m2
D. By re-scaling p⊥ in the second and third term, the three

terms can be expressed in terms of a single integral

QBH(z,m2
D,m

2
∞) = C1Q

(
µ̃2(z)

)
+ CzQ

(
µ̃2(z)
z2

)
+ CzQ

(
µ̃2(z)

(1−z)2

)
, (C.10)

where

Q(µ̃2) = m2
D

2πg2
sT

∫ d2p⊥
(2π)2

∫ d2q⊥
(2π)2 C̄(mDq⊥)

[
p⊥

p2
⊥ + µ̃2 −

(p⊥ − q⊥)
(p⊥ − q⊥)2 + µ̃2

]2

.(C.11)

Now evaluating µ̃(z)2 for the different channels, we get

µ̃2
g→gg(z) = (1−z)

m2
∞,(g)

m2
D

+ z
m2
∞,(g)

m2
D
− z(1−z)

m2
∞,(g)

m2
D

= 1− z(1−z)
2 , (C.12)

µ̃2
q→gq(z) = (1−z)

m2
∞,(g)

m2
D

+ z
m2
∞,(q)

m2
D
− z(1−z)

m2
∞,(q)

m2
D

= 1− z
2 + az2 , (C.13)

µ̃2
g→qq̄(z) = (1−z)

m2
∞,(q)

m2
D

+ z
m2
∞,(q)

m2
D
− z(1−z)

m2
∞,(g)

m2
D

= 2a− z(1−z)
2 , (C.14)

where a = m2
∞,q/m

2
D, such that the rates can be compactly expressed as

dΓBHg→gg
dz (P, z) = g4

sTPg→gg(z)× (C.15)[
CA
2 Q

(
1− z(1−z)

2

)
+ CA

2 Q

(
1− z(1−z)

2z2

)
+ CA

2 Q

(
1− z(1−z)

2(1−z)2

)]
,

dΓBHq→gq
dz

(P, z) = g4
sTPq→gq(z)×[

CA

2 Q

(
1− z + 2az2

2

)
+
(
CF −

CA

2

)
Q

(
1− z + 2az2

2z2

)
+ CA

2 Q

(
1− z + 2az2

2(1−z)2

)]
,

dΓBHg→qq̄
dz

(P, z) = g4
sTPg→qq̄(z)×[(

CF −
CA

2

)
Q

(
2a− z(1−z)

2

)
+ CA

2 Q

(
2a− z(1−z)

2z2

)
+ CA

2 Q

(
2a− z(1−z)

2(1−z)2

)]
.
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C.1 Evaluating the integral in impact-parameter
space

In this section, we show how to compute the Q(µ̃2) integral in b⊥-space. We start
by rewriting the integral in Eq. (C.11) as follows:

Q(µ̃2) = 1
g2

sT

∫ d2p⊥
(2π)2

~ψ(p⊥)
∫ d2q⊥

(2π)2 C̄(q⊥)
(
~ψ(p⊥)− ~ψ(p⊥ − q⊥)

)
, (C.16)

where we introduce the function ~ψ(p⊥) = p⊥
p2
⊥+µ̃2 . Its Fourier transform is given by,

~ψ(b⊥) =
∫ d2q⊥

(2π)2 e
−iq⊥·b⊥ ~ψ(q⊥) = − i

2π µ̃K1(µ̃b⊥)b⊥
b⊥

, (C.17)

where K1(x) is the modified Bessel function of the second kind. Inserting the Fourier
transform to the Q(µ̃2) integral and using the definition of the broadening kernel in
Eq. (6.2) we obtain

Q(µ̃2) = 1
g2

sT

∫
d2b⊥

∫ d2p⊥
(2π)2

~ψ(p⊥)
∫ d2q⊥

(2π)2 C̄(q⊥)eip⊥·b⊥
(
1− e−ib⊥·q⊥

)
~ψ(b⊥)

= 1
g2

sT

∫
d2b⊥

∫ d2p⊥
(2π)2

~ψ(p⊥) C̄(b⊥)eip⊥·b⊥ ~ψ(b⊥)

= 1
g2

sT

∫
d2b⊥ C̄(b⊥)~ψ(−b⊥) · ~ψ(b⊥)

= 1
g2

sT

∫ ∞
0

db⊥
2π C̄(b⊥) b⊥µ̃2K1(µ̃b⊥)2 . (C.18)

This last integral is equivalent to Eq. (C.11). However, being in position space, we
can use it to obtain the rate in the Bethe-Heitler regime for the non-perturbative
kernel without a Fourier transformation.
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D Finite medium splitting rate
calculation

Following the approach of [121], we show in this appendix how we obtain the finite
medium rate numerically.

D.1 Interaction picture
We take the wave function defined in Eq. (6.43) to be isotropic and define the
interaction picture wave function and the inverse, as follows

ψ̃I(p̃,∆t̃) =eiδẼ(p̃)∆t̃p̃ · ~̃ψ(|p̃|,∆t̃) , (D.1)
~̃ψ(|p̃|,∆t̃) =e−iδẼ(p̃)∆t̃ p̃

p̃2 ψ̃I(p̃,∆t̃) , (D.2)

which follows the evolution equation[
∂∆t̃ + Λ eiδẼ(p̃)∆t̃p̃ · Γ̃3 ◦ e−iδẼ(p̃)∆t̃ p̃

p̃2

]
ψ̃I(p̃,∆t̃) =0 , (D.3)

with the initial condition

ψ̃I(p̃,∆t̃ = 0) = p̃ · Γ̃3 ◦
ip̃

δẼ(p̃)
. (D.4)

The splitting rate is now given by

dΓabc
dz

=g
4TP a

bc(z)
π

Re
∫ t̃

0
d∆t̃

∫
p̃
e−iδẼ(p̃)∆t̃ψ̃I(p̃,∆t̃) . (D.5)

Using a standard Euler solver, we evolve the wave function from ∆t̃ = 0 to ∆t̃ = t̃
with the differential equation (D.3) and use our results to perform the integral in
Eq. (D.5).
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D.2 Separating the soft scale

When solving the evolution equation using the NLO and non-perturbative broaden-
ing kernels, we find that the 1/q3 behavior at small momentum leads to numerical
instabilities. In order to stabilize this evolution, we will consider the soft interac-
tions in the collision integral separately. By introducing an intermediate cut in the
momentum exchange q, the collision integral is separated to hard and soft interac-
tions

C[ψ̃I ] = Chard[ψ̃I ] + Csoft[ψ̃I ] . (D.6)

The soft interaction can be treated in a diffusion approximation using an expansion
in momentum exchange q. We specifically expand the following term from Eq. (D.3)
of the collision integral

p̃2 − p̃ · q̃
|p̃− q̃|2

ψ̃I(p̃,∆t̃) = ψ̃(p̃) + q cos θ
p̃

[
ψ̃(p̃)− p̃ψ̃′(p̃)

]
+ q2

2p̃2

[
(4 cos2 θ − 2)ψ̃(p̃) + (p̃− 3p̃ cos2 θ)ψ̃′(p̃) + p̃2 cos2 θψ̃′′(p̃)

]
, (D.7)

where θ is the angle between p̃ and q̃. Plugging the expansion to the collision
integral and performing the angular integral, we find

Csoft[ψ̃I ] = ψ̃(p)
(
I

(0)
1 (p)− I(2)

1 (p) + I2(p) + 2I3(p)
)

+ p

2 ψ̃
′
I(p)

(
I

(2)
1 (p)− 2I2(p)− 3I3(p)

)
+ p2

2 ψ̃
′′
I (p)I3(p) , (D.8)
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where Ii are the following integral moments

I
(0)
1 (p) =

∫ q∗

0
dq q n

[
C1C(q) + Cz

z2 C
(
q

z

)
+ C1−z

1− zC
(

q

1− z

)]
[
1− e−i∆t

q2
2Pz(1−z)J0

(
∆t pq

Pz(1− z)

)]
, (D.9)

I
(2)
1 (p) =

∫ q∗

0
dq [..]q

2

p2 e
−i∆t q2

2Pz(1−z)J0

(
∆t pq

Pz(1− z)

)
, (D.10)

I2(p) =
∫ q∗

0
dq [..]q

p
ie−i∆t

q2
2Pz(1−z)J1

(
∆t pq

Pz(1− z)

)
, (D.11)

I3(p) =
∫ q∗

0
dq [..]q

2

p2 e
−i∆t q2

2Pz(1−z)

[
Pz(1− z)

∆tpq J1

(
∆t pq

Pz(1− z)

)

−J2

(
∆t pq

Pz(1− z)

)]
. (D.12)

These integrals are then performed numerically and together with the hard compo-
nent will make up the full collision integral in Eq. D.3, which can be used to evolve
the wave function.
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