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Abstract

We investigate the out-of-equilibrium dynamics of heavy-ion collisions by perform-

ing real-time lattice simulations, accompanied by analytical considerations within

the framework of the Color Glass Condensate (CGC) effective theory of QCD. The

central aim of this work is to relax the assumption of boost invariance and to gain

insights into the longitudinal structure of the fireball.

In the first main part of the thesis, we simulate the 3+1 D classical Yang-Mills

dynamics of the collisions of longitudinally extended nuclei, described by eikonal

color charges in the CGC framework. By varying the longitudinal thickness of the

colliding nuclei, we discuss the violations of boost invariance and explore how the

boost invariant high-energy limit is approached. Subsequently, we develop a more

realistic model of the 3 D color charge distributions, and explore the rapidity profiles

and the longitudinal fluctuations that emerges naturally within our framework.

In the second main part, we perform an analytic calculation of the color fields in

heavy-ion collisions, by considering the collision of extended nuclei in the dilute limit

of the Color Glass Condensate effective field theory of high-energy QCD. Based on

general analytic expressions for the color fields in the forward light cone, we evaluate

the rapidity profile of the transverse pressure within a simple specific model of the

nuclear collision geometry and compare our results to 3+1D classical Yang-Mills

simulations.

In the third part of this thesis, we study the rapidity dependence of initial state

momentum correlations and event-by-event geometry in p+Pb collisions at LHC

energies (
√
s = 5.02 TeV) within the 3+1 D IP-Glasma model. We find that the event

geometry is correlated across large rapidity intervals whereas initial state momentum

correlations are relatively short range in rapidity. Based on our results, we discuss

implications for the relevance of both effects in explaining the origin of collective

phenomena in small systems.
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Chapter 1

Introduction

The standard model of particle physics provides a satisfactory picture of the ele-

mentary particles and the interaction between these particles. However, the current

comprehension of the Quantum Chromo Dynamics (QCD), the theory of strong in-

teraction between quarks and gluon, is only partially amenable. Understanding the

properties of QCD at extreme condition is challenging as it would require profound

knowledge into the non-equilibrium dynamics of the system. This work aims to

contribute towards the understanding of non-equilibrium dynamics of QCD which

prevails at a very early stage in heavy-ion collisions.

The heavy-ion collision (HIC) experiment carried out at the Large Hadron Collider

(LHC) at CERN and the Relativistic Heavy Ion Collider (RHIC) at BNL, collide

nuclei at high center of mass energies to create extreme conditions of high temper-

ature and density, in order to understand the theory of QCD beyond the standard

vacuum, and to recreate the universe a few microseconds after the Big Bang. This

miniature version of microsecond old universe creates a new state of matter called

Quark Gluon Plasma (QGP) [2, 3], which consists of quasi-free quarks and gluons.

QGP is a consequence of one of interesting properties of non-Abelian gauge theories,

asymptotic freedom [4, 5], which weakens the interaction between the constituent

partons as the energy scale increases. Understanding the creation and evolution of

QGP is one of motivations behind HIC. The QGP created in HICs behaves as a

nearly perfect fluid for a significant part of its lifetime [6–8]. Since we are interested

in the addressing the out of equilibrium dynamics, we will focus on establishing the

initial condition for QGP formation rather than accessing its properties.
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A pictorial representation of heavy-ion collision is shown in Fig. 1.1 where two

Lorentz contracted nuclei are coming towards each other almost at the speed of light.

Each incident nuclei consists of many quarks (q), anti-quarks (q̄) and gluons, which

due to quantum fluctuations leads to additional qq̄ pairs and gluons. This highly

complex system of partons (quarks and gluons) on passing through each other create

longitudinal fields which then eventually decays to qq̄ and gluons. Clearly, this highly

entropic system is far from local thermal equilibrium and hence the resultant partons

melts to form Quark Gluon Plasma. Now as the two nuclei moves further away from

each other, the QGP expands and cools down. Subsequently, the QGP temperature

falls below the QCD cross over temperature (Tc ' 155 MeV) [9] at which the QGP

falls apart into hadrons, which following a few hadronic re-scatterings, freely streams

towards the detector.

However, due to fundamental confining property of QCD, the deconfined QGP is

not directly observed and hence one relies on the rapidity and transverse momentum

spectrum of the hadronic remnants of QGP state which helps us in understanding the

creation and evolution of quark-gluon plasma. HICs are multi-messenger experiments

which in addition to typical soft hadron production allow to study e.g. hard probes

(jets), electromagnetic probes (photons, dileptons). As QCD is such a complex

theory [10], characterisation of HICs from a single theory is currently not possible

and hence one calls for the development of effective theories/ models to describe the

formation and evolution of a fireball. In this context, a nucleus-nucleus collision can

be roughly said to go through these three main stages:

(i) Pre-equilibrium: This describes the earliest stage which entails the description

of dense colliding nuclei along with the initial partonic collision that evolves to

provide a state sufficiently close to equilibrium [12]. The system is in this state

for incredibly short time τ ∼ 0.1− 1.0 fm/c.

(ii) Hydrodynamic expansion: This comprises of QGP which being very close to

a perfect fluid, can be described by the relativistic hydrodynamics. Here the

fireball expands rapidly and cools down unless the temperature is below some

critical value, at which the deconfined plasma hadronizes [13]
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Figure 1.1: Different stages of heavy-ion collisions along with the theory used to
study them. This figure is from A Mazeliauskas’ talk [11]

(iii) Hadronic stage & Freeze-out: Here, the system undergoes multiple inelastic

and elastic collision, prior to reaching a state of kinetic freeze-out [14] where

hadrons can no longer interact and then streams towards the detector.

As clearly seen, most of the space-time dynamics of the fireball is dominated by

hydrodynamic expansion which in turn requires the macroscopic properties of initial

state such as energy momentum tensor (T µν), conserved currents (Jµ) as an input.

Therefore we are more interested in studying the pre-equilibrium or the initial stage

of HIC, without which the proper characterisation of QGP properties is not possible.

Although, there are numerous models for the initial state [15–21] which basically re-

lies on the assumption that at a very high energy, collision is boost invariant and

hence the system can be treated as a collision of infinitesimally thin shock waves.

This effectively simplifies the problem to a great detail and helps in understanding

the transverse dynamics of the fireball but the resultant initial condition is construct-

ively 2 + 1D. However, recent observation at RHIC and LHC [22–25] supports the

theoretical understanding that exempting the boost-invariant approximation, will

naturally give rise to the longitudinal dynamics.

Among various models that provide the framework for studying the initial condition,
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the most accepted one is the Color-Glass condensate (CGC) [26, 27], an effective

theory of high energy QCD that describes the dense nuclei prior to the collision and

their initial energy deposition. The underlying idea behind CGC is the separation of

scales at very high energy into hard and soft constituents. The hard constituents like

valence quark or large-x (longitudinal momentum fraction) gluons carries most of the

momentum of the colliding hadron and are frozen due to time dilation. These large-x

partons radiates soft gluons which leads to an increasing gluon density at small-x.

When two such dense nuclei collide at high-energy, a dense state of gluonic matter,

called Glasma [28] is created, and due to large occupation number their dynamics

can be treated classically. The CGC theory and other theoretical and numerical

techniques relevant to this thesis are introduced in Chapter 2

CGC has lead to a development of various successful models like impact-parameter

dependent Glasma (IP-Glasma) [18, 19] and KLN [15, 16], that have revolutionized

our understanding for a broad range of observable at mid-rapidity, like event-by-event

anisotropic flow [29, 30] and charged hadron multiplicity [19, 31] at LHC energies.

Within the CGC framework, various (semi-) analytical studies [32–38] have been

performed in context of characterising the properties of Glasma at very early times.

Despite the substantial improvements in modelling of a realistic nucleus [18] or using

event-by-event viscous hydrodynamics simulations [39, 40], our knowledge is limited

in regards to the longitudinal dynamics of the fireball or the rapidity dependence of

the observable.

The experiments at RHIC and recent measurements of longitudinal fluctuations at

LHC, have triggered an interest in studying 3D initial state geometry. The rapidity

dependence have been considered in various ways: either by generalising the boost

invariant IP-Glasma model to 3+1D by including the JIMWLK evolution of the

incoming nuclear distribution [41, 42], by introducing source terms that deposits

energy over a range of space-time rapidities [43], or by including correction to eikonal

approximation based on finite width of the target [44, 45]. Although these models

provide some handle in the rapidity direction, still a very limited number of first

principle insight is available beyond the boost invariant approximation.

A natural way to comprehend the longitudinal dynamics of fireball is by relaxing
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the assumption of boost-invariant collision. The Chapter 3 of this thesis deals with

the development of a framework to perform 3+1D classical Yang-Mills simulations

of the initial energy deposition in heavy-ion collisions, which as in [46–48] take into

account the finite longitudinal extent of the colliding nuclei. Within a simple model

of the color charge distribution of each nucleus, we perform a detailed investigation of

the dynamics during and shortly after the collision as a function of the longitudinal

thickness of the colliding nuclei, and contrast our results with the high-energy limit of

infinitely thin shocks. Subsequently, we develop a more physical model that connects

the color charge distributions in the colliding nuclei to parton distributions inside

the nuclei, and we discuss the rapidity profiles and fluctuations that emerge within

this model.

With a framework for incorporating longitudinal dynamics and a realistic model for

heavy-ion collision, we could have done a lot of phenomenology to understand the ini-

tialization of collision at the LHC and RHIC energies. Since the simulations are very

expensive, we gained new analytical insights into the 3+1 D structure in Chapter 4

by investigating the problem perturbatively in the dilute limit. By solving the linear-

ized Yang-Mills equation, we obtain the gauge fields solution in the future light-cone

which can be used to compute the different components of energy momentum tensor.

Within a simple model of color charge distribution, we focus exclusively on transverse

pressure and examine the effectiveness of our analytical results by comparing them

to non-perturbative classical Yang-Mills equations. Subsequently, we obtain further

insights into the dependence of rapidity profiles on various limits of our nuclear

model.

In last few decades, experiments have provided various signature for the QGP form-

ation in the heavy ion collision [49–51], among these the most prominent ones are

anisotropic flow and jet quenching. For a particle with low transverse momenta pT ,

the angular correlation between pseudorapidity ∆η and azimuthal angle ∆φ shows

peak centered around (∆φ = 0), known as ridge. The natural explanation for this

long-range correlation or anisotropic flow in heavy-ion collision is provided by relativ-

istic hydrodynamics where the anisotropy in final state momentum distributions is

explained entirely via the response to the initial state geometry in the transverse
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plane. More recently, similar signals to those in heavy ion collisions have been found

in the produced particle spectra of small collision systems, e.g. p+A, or even p+p

collisions [52–55] where applicability of hydrodynamics is highly debated as the sys-

tem size decreases and gradients become larger [56]. An alternative mechanisms that

could generate the observed anisotropies without requiring the creation of a nearly

perfect fluid, is given by CCG [57–73] where anisotropic momentum distributions

are the result of color correlations in the incoming nuclei’s gluon distributions.

Event geometry and initial state correlations have been invoked as possible explan-

ations of long range azimuthal correlations observed in high multiplicity p-p and

p-Pb collisions. Chapter 5 shows an application of a 3+1D CGC model to the phe-

nomenological study of azimuthal correlations in p+Pb collisions. In order to make

the simulations computationally feasible, we follow the approach of extending the

IP-Glasma model to 3 D using JIMWLK rapidity evolution of the incoming nuclear

gluon distribution [41] and study the rapidity dependence of initial state momentum

correlations and event-by-event geometry in
√
s = 5.02 TeV p+Pb collisions. The

whole new idea is to exploit the longitudinal dependence of the correlations to invest-

igate to what extent the above plausible mechanism could explain the collectivity in

small systems.

Finally, in Chapter 6 we have summarized our important results and given an over-

view of the future expansion of the work done.
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Chapter 2

Theoretical Background

In this chapter, we introduce the fundamental concepts that are needed in the later

chapters. We start by summarizing the basics of QCD in Section 2.1 and then give

a broad overview of CGC along with the introduction of a model for high energy

description of a nucleus in Section 2.2. For this simple model, we derive the evolution

equation for the boost invariant Glasma in Section 2.3 and later layout the technique

for solving these equations on lattice in Section 2.4. Before we embark on a journey

into 3+1 D, we try to summarise some of the salient features of boost-invariant

Glasma in Section 2.5 and then briefly introduce the JIMWLK equation in Section

2.6

2.1 Preliminary Quantum Chromodynamics

Before we start, we would like to emphasise that throughout this thesis, we will be

working in natural units i.e ~ = 1 and c = 1, and unless stated we will employ the

Minkowski coordinate xµ = (t, x, y, z) with space-time metric defined as

gµν = diag(+1,−1,−1,−1)

QCD – the theory of strong interaction of colored quarks and gluons, is a non-Abelian

gauge theory based on SU(3) symmetry group. The QCD Lagrangian is given as

LQCD =
∫
d4x

(
− 1

4F
a
µν(x)F µνa(x)−

∑
ψ̄āf (x)

(
i /D

āb̄ −mfδāb̄
)
ψb̄f (x)

)
(2.1)
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where ψ̄f are the fermion fields with flavoured index f characterising the different

quark species u, d, s, c, b, t, with different mass and electric charge. The quarks are

considered in fundamental representation such that the color indices ā, b̄ runs from

1 to Nc = 3. The operator /D
āb̄ ≡ γµDāb̄

µ involves the Dirac γ-matrices and the

covariant derivative which acts on the fermion field as

Dāb̄
µ ψb̄ = ∂µψ

ā − ig(Aµ)āb̄ψb̄ (2.2)

where g is the coupling constant. The carriers of the interaction are the gluons fields

Aµ(x) which themselves are coloured and hence self interacting. For a local gauge

transformation G(x) ∈ SU(Nc) with

GG† = 1 = G†G

det G = 1

the gauge fields transforms under adjoint representation of the SU(Nc) group as

A(G)
µ (x) = G(x)Aµ(x)G†(x) + i

g
G(x)∂µG†(x) (2.3)

The algebra element Aµ can be expressed in terms of its color components as

Aµ(x) = Aaµ(x)ta (2.4)

where the color index a runs from 1 to N2
c − 1. The generators ta of the su(Nc) Lie

algebra in the fundamental representation are Nc ×Nc traceless Hermitian matrices

with normalization

Tr[ta, tb] = 1
2δ

ab (2.5)

The generators in SU(2) gauge group are related to Pauli Matrices by ta = σa/2

whereas in SU(3) are related to Gell-Mann matrices λa by ta = λa/2. The commut-

ation relation of generators

[ta, tb] = ifabctc (2.6)
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involves antisymmetric structure constants fabc which for the SU(2) gauge group are

given in terms of Levi-Civita symbol as fabc = εabc. The anti-commutators of the

generators are related to symmetric structure constant dabc

{ta, tb} = 1
Nc

δab + dabctc (2.7)

The component of field strength tensor Fµν = F a
µνt

a in Eq. (2.1) is given as

F a
µν(x) = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.8)

We note that the non-Abelian nature of QCD leads to non-linear term in the above

equation. By using the transformation of the gauge fields Eq. (2.3), one can easily

show that the fields strength tensor transforms as

F (G)
µν (x) = G(x)Fµν(x)G†(x) (2.9)

The above construction manifests the invariance of QCD Lagrangian under a local

SU(3) gauge transformation. The two terms in Eq. (2.1) are individually referred

as Yang-Mills fields and the matter fields. For rest of the dissertation, we will only

consider the Yang-Mills part of the Lagrangian and the coupling of the fermionic

field with the bosonic field will be replaced by the source terms of the form JµA
µ.

We note that the Yang-Mills Lagrangian due to the self-interacting nature of gluons

already gives rise to cubic and quartic order terms. The reason for neglecting the

quark degree of freedom will become more obvious from the following section where

we will see that the out-of-equilibrium study of heavy-ion collision is dominated by

gluonic contribution. Moreover, at weak coupling, the large occupation numbers

of partons leads to classical-statistical approximation, but fermions due to Pauli

exclusion principle wouldn’t fit into the classical description and hence the lattice

discretization of fermions will be significantly more challenging [74, 75] and therefore,

beyond the scope of present work.
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2.2 Color Glass Condensate

We note that for further discussion, we will be using light-cone coordinates (LC)

(x+, x−,x⊥) which can be expressed in terms of Minkowski coordinate

x± = t+ z√
2

x⊥ = x⊥ (2.10)

and the corresponding metric is given as:

gµν =



0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1


(2.11)

The partonic content of the nucleus is an important element in the study of a hadronic

collision and is explored via Deep Inelastic Scattering (DIS) experiment where in or-

der to be visible in the scattering process, the timescale of the interaction should

be greater than the inverse of the resolution of the probe i.e the virtuality of the

photon (Q). Besides the valence quantum numbers of nucleons, one observes fluc-

tuations of sea quarks and additional gluons in a DIS experiment [76]. Intuitively,

the observation at DIS can be pictured as in Fig. 2.1 where on probing the hadron

at higher energies, one resolves more and more short lived fluctuations. The time

dilation affects the lifetime of the fluctuation and also ceases the interaction of the

partons, due to which they appear to be asymptotically free during the hadronic

collision, whereas Lorentz contraction compresses the geometry of the nucleon. The

repercussion of these two effects have been observed at HERA [77, 78] in terms of

an increase in gluon distribution number which mainly outnumbers the distribution

measurement of any other partons like sea quarks.

As partonic content increases, calculating scattering amplitude becomes quite com-

plicated with the perturbation theory as one has to keep track of fairly large number

of Feynman diagrams. Therefore, despite the weak coupling, this regime of high

parton density is treated non-perturbatively.
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Figure 2.1: Fluctuations encountered in a highly boosted nucleon represented by
wavy lines. Thick lines are the valence quarks. This figure is adapted from [27]

One may think, if gluon keeps on increasing, wouldn’t it lead to an infinite cross

section? The bound in the total cross section is provided by a dynamical scale

known as saturation momentum Qs which is much larger than the non-perturbative

scale ΛQCD where QCD becomes strongly coupled and intrinsically non-perturbative.

When the gluon density becomes large as x→ 0, non linear effects like recombination

of gluon becomes important. The saturation momentum measures the strength of

the non-linear interaction among the gluons. To summarise, we start with x such

that the momentum of virtual photon is much larger than the saturation momentum

(Q� Qs). As x decreases the number of gluons increases and eventually there comes

a time when Q < Qs, in which case, the rise in the number of gluons becomes slow

[79]. This is termed as saturation as the cross-section saturates [80, 81] because the

number of the gluons stops growing.

An effective theory, Color Glass Condensate is used to study the processes in the

saturation regime [26, 82]. CGC is based on the assumption that both projectile and

target are in infinite momentum frame (IMF) i.e travelling at the speed of the light.

In an IMF, x+ is equivalent to time and the corresponding conjugate variable, p−

plays the role of energy. Now, if we consider a nucleus moving in +z direction with

a large line cone momentum P+, then with the help of uncertainty principle we can

deduce the temporal extent of the parton as

τ = 2xP+

k2
⊥

(2.12)
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where x = p+/P+ is the parton momentum fraction and p+ is the momentum of

parton. Similarly, the longitudinal extent is given as

∆x− = 1
xP+ (2.13)

This points to the fact that there is a separation of scale between the soft gluon

(x � 1) and hard partons (x ∼ 1). As clear from above, small-x partons have a

large longitudinal extent and therefore can resolve a lot of color charges. Similarly

one finds

τ |x�1 � τ |x'1 (2.14)

In the high energy limit of a hadronic matter, time dilation ceases the evolution of

hard or the large-x partons. Thus soft gluons (wee partons) sees the valence partons

as frozen, infinitely thin sources of color charges. These large-x partons are then

considered as an eikonal currents, moving along the light cone and are described by

a color charge density ρa(x) which retrieves the information of the color current. For

a nucleus moving in +z direction, the color current is given as

Jµa (x) = δµ+ρa(x−,x⊥) (2.15)

where x⊥ = x, y denotes the transverse Lorentz indices and a = 1, .., N2
c − 1 are the

color index. Since the valence partons are assumed to be static, the x+ dependency

no longer persists. The other components are not that relevant because of the choice

of the frame which enhances the J+ current by a Lorentz factor. The highly boosted

nuclei will have a very narrow support along the x− direction and hence in the

ultra-relativistic limit, we can write

ρa(x−,x⊥) = δ(x−)ρa(x⊥) (2.16)

We would like to emphasise that these assumptions Eqs. (2.15) and (2.16) makes

the system invariant under boosts. The main aim of the thesis is to add correction

to this leading order eikonal approximation by taking finite nuclear thickness into
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account.1 With this source current, we can determine the pre-collision gauge field of

the single nucleus using classical Yang-Mills equation

[Dµ, F
µν ] = Jν (2.17)

We chose axial gauge A− = A+ = 0 along with a solution of the form Aµ(x−,x⊥)

based on the assumption that sources don’t have any x+ dependency. The F µ−

component of the field strength tensor vanishes because A− = 0 and the ansatz has

no x+ dependence . The Yang-Mills equations then reads:

[D−, F−+] + [Di, F
i+] = J+ (2.18)

[D+, F
+−] + [Di, F

i−] = 0 (2.19)

[D+, F
+i] + [D−, F−i] + [Dj, F

ji] = 0 (2.20)

The second equation is trivial as both the terms are zero. Now in order to solve

Eqs. (2.18) and (2.20), we adopt the additional gauge choice Ai = 0, which makes

Eq. (2.20) trivial, while Eq. (2.18) becomes

∂i∂
iA+(x−,x⊥) = ρ(x−,x⊥) (2.21)

To summarise, the overall solution of a single nucleus moving in right direction is

given as

A− = Ai = 0, A+(x−,x⊥) = − 1
∇2
⊥
ρ(x−,x⊥) (2.22)

We see that this choice of gauge also preserves the current conservation equation

[Dµ, J
µ] = ∂+J

+ − ig[A+, J
+] = 0 (2.23)

Using Fourier transformation, we can explicitly solve the 2-dimensional Poisson equa-

tion appearing in Eq. (2.22).

A+
a (x−,x⊥) =

∫ d2k⊥
(2π)2

ρ̃a(x−,k⊥)
k2
⊥

eik⊥x⊥ (2.24)

1Other sub-eikonal correction like x± dependence of color currents is beyond the scope of present
work.
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where we have defined the Fourier transform of the color charge density as

ρ̃a(x−,k⊥) =
∫
d2x⊥ρa(x−,x⊥)e−ik⊥x⊥ (2.25)

It is clear from the above equations that the profile of function ρ sets the shape of

the color field A+. Even though the solution turns out to be quite simple in the

Lorentz gauge, it turns out that light-cone (A± = 0) or the axial gauge (A0 = 0)

turns out to more convenient for practical purposes. Hence, we need to find a gauge

transformation V (x) which eliminates the A+ fields. Using gauge transformation

properties

Aµ(x)→ V (x)Aµ(x)V †(x) + i

g
V (x)∂µV †(x) (2.26)

we find that this can be achieved by an x+ independent gauge transformation of the

form V (x) = V (x−,x⊥), such that it satisfies

∂+V †(x−,x⊥) = igA+(x−,x⊥)V †(x−,x⊥) (2.27)

The above equation has a following path-ordered solution

V (x−,x⊥) = P exp
(
− ig

∫ x−

−∞
dy−A+(y−,x⊥)

)
(2.28)

and we use the following convention for path ordering: Aµ(x)Aµ(y) = Aµ(x)Aµ(y)

if x > y, i.e x comes later. The gauge transformation V (x−,x⊥) is termed as light-

like Wilson line and is realized as the re-summation of multiple gluon interaction.

The fields and the currents in the new gauge are obtained after applying the gauge

transformation. The gauge fields reads

A±LC = 0 AiLC(x−,x⊥) = i

g
V (x−,x⊥)∂iV †(x−,x⊥) (2.29)

where the subscript LC denotes the light cone gauge. The currents are given by

J+
LC(x−,x⊥) = V (x−,x⊥)ρ(x−,x⊥)V †(x−,x⊥) J−LC = J iLC = 0 (2.30)
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One can obtain an explicit expression for the transverse fields as

AiLC(x−,x⊥) = −
∫ x−

−∞
dy−V (x−,x⊥)∂iA+(y−,x⊥)V †(x−,x⊥) (2.31)

We notice that in order to determine the color field, one must specify the form of

color charge density ρ(x). Thus, the CGC framework must include the description

of the color charge density.

This idea of specifying the color charge along with treating them classically originates

from the McLerran-Venugopalan (MV) model [83, 84]. The main argument that

goes in the development of the model is that for small-x or large nucleus with atomic

mass A, the density of valence quark degree of freedom per unit transverse area is

very high and scales as A1/3. As these color sources are associated with different

nucleons, they must be uncorrelated in the longitudinal as well as the transverse

direction for two different points in the transverse plane. Now since we are summing

the contribution of many uncorrelated color charges, the central limit theorem states

that the distribution functional W [ρ] should be Gaussian

W [ρ] = 1
Z

exp
(
−
∫
dx−d2x⊥

ρa(x−,x⊥)ρa(x−,x⊥)
2g2µ2(x−)

)
(2.32)

where Z is a normalization constant and µ2 – the only dimensionful parameter of the

model, corresponds to the density of charge squared fluctuation per unit transverse

area in between the slices x− and x− + dx− and

∫
dx−µ2(x−) ∼ A1/3 (2.33)

Based on a given distribution, the expectation value of an observable O is obtained

by averaging over different realization of color charges as:

〈O〉 =
∫
Dρ O[ρ] W [ρ] (2.34)

We can complete the description of the MV model by specifying the form of color
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charges, which are viewed as a stochastic fluctuation, and therefore can be expressed

in terms of the following correlation functions:

〈ρa(x−,x⊥)〉 = 0 (2.35)

〈ρa(x−,x⊥)ρb(y−,y⊥)〉 = g2µ2(x−)δabδ(x− − y−)δ(2)(x⊥ − y⊥) (2.36)

where the one point function reflects color neutrality whereas the two point function

assumes large nucleus to be thin but with finite longitudinal support and transversely

homogeneous color charges.

The MV model with the finite longitudinal support can be pictured as an ensemble

of infinitesimal sheets of fluctuating color charges. For numerical simulations, one

usually considers a heavy nucleus as N 2-dimensional sheets of uncorrelated color

charges stacked on top of each other. Due to the path ordering involved in the

definition of light-like Wilson line, one should be very careful in dealing with the

MV model. This model due to its simplified assumption provides a good description

for a heavy nucleus and helps in a better understanding of the small-x behaviour

based on underlying principles of QCD.

With this, we can collect all the results for a single nucleus moving either in positive-z

or negative-z direction. The color current and the gauge field in the covariant gauge

is given as

Jµ,aR,L(x) = δµ±ρaR,L(x∓,x⊥) (2.37)

A±,aR,L(x∓,x⊥) = − 1
∇2
⊥
ρaR,L(x∓,x⊥) (2.38)

Using Fourier transformation, we can rewrite the above solution as

A±,aR,L(x∓,x⊥) =
∫ d2k⊥

(2π)2
ρ̃aR,L(x∓,x⊥)

k2
⊥

eik⊥·x⊥ (2.39)

where the subscript R,L is used to denote the right (+z) and the left (−z) direction.
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The corresponding solution of the gauge field in the LC or the axial gauge A± =

A0 = 0 is given by

Ai,aR,L(x∓,x⊥) = i

g
VR,L(x∓,x⊥)∂iV †R,L(x∓,x⊥) (2.40)

with the light-like Wilson line defined as

VR,L(x∓,x⊥) = P exp
(
− ig

∫ x∓

−∞
dy∓A±R,L(y∓,x⊥)

)
(2.41)

The color charge density which goes in the above expression is taken to be a stochastic

variable which fluctuates locally and is given by the MV model as

〈ρaR,L(x∓,x⊥)〉 = 0 (2.42)

〈ρaR,L(x∓,x⊥)ρbR,L(y∓,y⊥)〉 = g2µ2δabδ(x∓ − y∓)δ(2)(x⊥ − y⊥) (2.43)

So far everything looks good but Eq. (2.39), which blows up for small values of trans-

verse momentum k⊥. One possible way to treat this divergence is by excluding the

zero transverse momentum mode but usually it is cured by introducing an infrared

regulator m in the denominator as in [18, 85]

A±,aR,L(x∓,x⊥) =
∫ d2k⊥

(2π)2
ρ̃aR,L(x∓,x⊥)
k2
⊥ +m2 eik⊥·x⊥ (2.44)

This regulator is of the same order as of the non-perturbative scale ΛQCD and nu-

merical simulation strongly depend on it. One way to think of this infrared regulator

is that it chops off the long Coulomb tails generated by the charge density of the

nucleus. In simple words it is equivalent to Debye mass which sets scale for screening

of the color charges. In order to keep the form of Eq. (2.38) as it is, we modify the

charge density by introducing the infrared regulator as

ρ̃aR,L(x∓,k⊥)→ k2
⊥

k2
⊥ +m2 ρ̃

a
R,L(x∓,k⊥) (2.45)

Since, we are working in the LC gauge, it is straightforward to see that the only
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non-zero field strength tensors in Minkowski space are F i0 and F iz. Using this we

can determine the transverse electric and magnetic field of the nucleus as

Ei = F 0i = ∂0Ai (2.46)

Bi = −1
2ε

ijkFjk = εijz∂zAj (2.47)

We note that the fields are orthogonal to each other and to the direction of propaga-

tion of nucleus, and only lives on the 2-dimensional sheet where the charges exist.

These fields can be interpreted as the QCD analogue of the Lienard-Wiechert fields,

which are the electromagnetic fields of the moving point charge.

2.3 Collision of ultra-relativistic hadrons

So far we have accustomed ourselves to the solution of single nucleus moving at the

speed of light. With this information in hand, we can describe the ultra-relativistic

collision as the collision of two coloured glass sheets as discussed in more details in

[86]

In Fig. 2.2 the space-time diagram of the collision is shown which consists of four

well-defined regions. In the backward light cone i.e region I, the solution is trivial

and is given as Aµ = 0. Unless the two sheets pass through each other, the resultant

solution in region II and III is given in terms of the pure gauge fields of the incoming

nuclei. Overall we have color charges present on the boundary of light cone with

static fields behind them. Now for the region IV which is in the casual contact with

the collision point, one has to solve the equations of motion with sources on the

boundary of light cone. Since it is not possible to solve the Yang-Mills equation

by simultaneously taking charges on the both the edges and then obtaining a single

gauge transform which would result in a pure gauge solution in the forward light

cone, a matter is produced which is called Glasma [86]. This is different from abelian

analogue where solution in forward light cone is given as a sum of two pure gauge,

and classically, no matter is produced.

Now in order to determine the gauge fields in the forward light-cone, we have to
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Figure 2.2: Space-time diagram for the collision of two infinitesimally thin CGC
sheets moving at the speed of light, shown along with the transverse electric and
magnetic field of the sheets. The solution in the region II and III is given by the
pure gauge solution of the single sheets whereas the solution in the region IV is
determined numerically or (semi-) analytically.
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solve the source-less Yang Mill equation along with the boundary condition present

at the edges of light cone. The combined color current and the solution from the

region II and III is

Jµ(x) = δµ+δ(x−)ρL(x⊥) + δµ−δ(x+)ρR(x⊥) (2.48)

A± = 0 Ai = Θ(x−)(−x+)AiR(x⊥) + Θ(x+)(−x−)AiL(x⊥) (2.49)

Now since the source currents are only restricted to the boundary of the light cone,

the solution in the forward light-cone ought to be boost-invariant. Hence it would

be convenient to work in the τ − η coordinate system

τ =
√

2x+x−, η = 1
2ln

[x+

x−
]

(2.50)

with gauge fields given as

Aτ = 1
τ

(
x+A− + x−A+

)
(2.51)

Aη = 1
τ 2

(
x−A+ − x+A−

)
(2.52)

For Aτ = 0 gauge, the solution in the forward light-cone can be assumed to be

Ai(x) = αi(τ,x⊥) (2.53)

Aη(x) = αη(τ,x⊥) (2.54)

which is independent of η because the incoming nuclei are infinitesimally thin. The

solution at the boundary (τ → 0) is obtained by matching the combined solution

of region II and III, as given in Eq. (2.49), with the solution in forward light cone

Eq. (2.53)

αi(τ → 0,x⊥) = AiR(x⊥) + AiL(x⊥) (2.55)

αη(τ → 0,x⊥) = ig

2

[
AiR(x⊥), AiL(x⊥)

]
(2.56)

∂τα
i,η(τ → 0,x⊥) = 0 (2.57)

With this initial condition, the solution for τ > 0 can be obtained numerically [86].
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In addition to the fields of the incoming nuclei, the above gauge fields, give rise to

longitudinal electric and longitudinal magnetic fields

Ez(τ → 0,x⊥) = igδij
[
AiR(x⊥), AjL(x⊥)

]
(2.58)

Bz(τ → 0,x⊥) = igεij
[
AiR(x⊥), AjL(x⊥)

]
(2.59)

which are correlated over transverse distance scales on the size O(1/Qs). In [28],

the authors discuss the natural explanation for the occurrence of longitudinal color

fields in terms of induced charge density.

We can conclude this by summarising the collision as: As the incoming nuclei with

the transverse fields move away from each other after the collision, chromo-electric

and chromo-magnetic field in form of elongated tubes fills up the space. At later

times, these flux tubes give rise to their transverse counterpart and evolve, until

all components are comparable to each other. The Glasma refers to these chromo-

electric and chromo-magnetic fields which populates the initial stage of the collision.

2.4 Real-time lattice simulation

In the last section, we outlined the results for single nuclei before the collision and

determined the initial condition for the Glasma fields. Over the years, different ap-

proaches have been put forward in order to obtain the gauge fields after the collision.

Most of the initial approximate solutions were based on the power expansion of the

valence charge [87] and thereby relied on the assumption that the classical fields are

weak. Many (semi-) analytic results [32–35] hinges on the idea that the classical

description breaks down very soon after the collision and hence one can solve the

Yang-Mills equation in a power series in τ. Despite the rigorous mathematics, it is

extremely difficult to compute higher order terms and make an agreeable comparison

with the existing results. A better way to solve the classical Yang-Mills equation is

to use numerical methods.

Real time lattice gauge theory is based on discretizing the classical Yang-Mills theory

on space-time lattice. In this approach, we consider points (x, y, z) on a cubic lattice
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of dimension Nx×Ny×Nz with lattice spacing aµ in µ-direction. To begin with, we

will consider the time to be a continuous variable and will be discretized later. The

lattice analogue of our gauge fields is given in terms of link variables Uµ(x)

Uµ(x) = exp
(
igaµA

a
µ(x+ aµ/2)ta

)
(2.60)

where µ = t, x, y, z is used to denote the Lorentz indices in Minkwoski coordinates, ta

are the fundamental generators of su(Nc) Lie Algebra normalized as tr[ta, tb] = δab/2

and g is the gauge coupling. A physical picture of the link variable is that it is the

smallest space-like Wilson line that one considers while connecting the two adjacent

lattice sites x and x+ aµ

Uµ(x) = P exp
(
ig
∫ x+aµ

x
dxµAµ(x)

)
(2.61)

To enforce the gauge invariance of the action, the link variables transforms as

U (G)
µ (x) = G(x)Uµ(x)G†(x+ aµ) (2.62)

where G(x) ∈ SU(Nc)are local gauge transformation. Before constructing the lat-

tice gauge action, we introduce another term called plaquette Uµν(x) which are the

smallest, closed loops on the lattice.

Uµν(x) = Uµ(x)Uν(x+ aµ)U †µ(x+ aν)U †ν(x) (2.63)

where a link variable in negative direction is defined using

U †µ(x) = U−µ(x+ aµ) (2.64)

It can be easily seen that the trace of the plaquette is a gauge invariant object. On

taking the continuum limit aµ → 0, one finds that the plaquette is related to the

field strength tensor

Uµν(x) = exp
(
igaµaνF

a
µν(x+ aµ/2 + aν/2)ta +O(ga3)

)
(2.65)

Unlike the link variable which connects the adjacent lattice points, plaquette are

defined in the center of the loop and relates to the flux through the enclosed area.
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Since in the forthcoming discussion, we will be working in the axial gauge At = 0,

the corresponding link variable are given as Ut = 1. At this stage one can express,

electric field in terms of plaquette but to make quantities dimensionless on lattice,

we introduce some factors while connecting the continuum electric field to its lattice

counterpart

EI(x) = ga3

aI
EI,cont(x+ at/2 + aI/2) (2.66)

We note that I, J = x, y, z will be used to denotes the spatial Lorentz indices.

2.4.1 Equation of Motion

The lattice analogue of the Yang-Mills equations of motion can be derived using

Hamiltonian formalism. By performing the Legendre transform

H = Eµ
a

(
∂0
xA

a
µ

)
− L (2.67)

the Yang-Mills Hamiltonian in the continuum form takes the form

H =
∫
d3xH, H = 1

2√−gc
(−gIJ)EI,cont

a EJ,cont
a +

√
−gc
4 F a

IJF
IJ
a (2.68)

where summation is implied over α, β. Now based on the plaquette and the lattice

electric field, the lattice Hamiltonian is defined as

H =
∑
x,I

a2
I

g2√−gca3 (−gII)
EI
a,xE

I
a,x

2 +
∑
x,I,J

√
−gca3

g2a2
Ia

2
J

(−gII)(−gJJ)ReTr
[
1− UIJ(x)

]
(2.69)

where gc is the metric determinant defined as gc := det(gµν).

Using the lattice Hamiltonian, the lattice equation of motion are derived from their

continuum analogues via

∂x0EI
a,x = −

(
ga3

aI

)
∂H

∂AaI,x
(2.70)

∂x0AaI,x =
(
ga3

aI

)
∂H

∂EI
a,x

(2.71)
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where the factors are associated with the mapping of continuum variables to lattice

variables. By solving Eq. (2.71) one gets;

∂x0AaI,x = aI
g
√
−ga3 (−gII)EI

a,x (2.72)

On using the definition of gauge links, we get

∂x0UI,x =
∑
y

a3 ∂UI,x
∂AaI,y

∂x0AaI,y = (−igaI)
(
∂x0AaI,xt

a
)

(2.73)

which leads to the following expression for the evolution of the lattice gauge links

∂x0UI,x = −i a2
I√
gca3 (−gII)EI

a,xt
aUI,x (2.74)

In order to determine the equation of motion for the electric field, we first look at

the derivative of lattice Hamiltonian with respect to the gauge field

∂H

∂AaI,x
=
(
aI
ga3

)∑
J

√
−gca3

a2
Ia

2
J

(−gII)(−gJJ)ReTr
[
ita
(
UIJ(x) + U−JI(x)− UI−J(x)− UJI(x)

)]
(2.75)

By using the anti symmetric properties of the field strength tensor, we can compactify

the above expression by using Uµν = −Uνµ

∂H

∂AaI,x
= 2

(
aI
ga3

)∑
J

√
−gca3

a2
Ia

2
J

(−gII)(−gJJ)ReTr
[
ita
(
UIJ(x)− UI−J(x)

)]
(2.76)

Note that the above expressions are for source-less Lagrangian. The source can be

introduced to the EOMs of the electric field as in the continuum as

∂x0EI
a,x =

(
− 2
√
−gca3

)(−gII
a2
I

)∑
j

(−gJJ
a2
J

)
ReTr

[
ita
(
UIJ(x)− UI−J(x)

)]
− jIa,x

(2.77)

where jIa,x denotes the color charge density at the lattice site.

While Eqs. (2.74) and (2.77) provide the EOMs for the gauge links and electric

fields discretized on a spatial lattice, evidently, in order to solve Eqs. (2.74) and

(2.77) numerically, it also becomes necessary to discretize their time evolution. For

small temporal lattice spacing (at → 0), one can solve the equations on lattice using
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Leapfrog Algorithm which involves formulating the problem at integer and half-

integer time steps. We purposely defined our electric fields at half-integer time step

in Eq. (2.66) which leads to solving the gauge fields at full time steps.

UI(x+ at) = exp
(
− i a

2
Iat√
gca3 (−gII)EI

(
x+ at

2
))
UI(x) (2.78)

The plaquette involved in the Eq. (2.77) are solved at full time steps, such that

Ei
a

(
x+ at

2
)

= EI
a

(
x− at

2
)

+
(
− 2
√
−gca3

)(−gII
a2
I

)
×

∑
J

(−gJJ
a2
J

)
ReTr

[
ita
(
UIJ(x)− UI−J(x)

)]
− jIa,x (2.79)

Along with the evolution equations, we can also derive the Gauss Law constraint by

writing the equation of motion for the electric field and the gauge link in term of

Algebra valued fields as

∂x0EI
x =

(
− i
√
−gca3

)(−gII
a2
I

)∑
j

(−gJJ
a2
J

)[(
UIJ(x)− UI−J(x)

)]
− jIx (2.80)

and

∂x0UI,x = −i a2
I√
gca3 (−gII)EI

xUI,x ∂x0U †I,x = −i a2
I√
gca3 (−gII)U †I,xEI

x (2.81)

The covariant derivative in the Gauss constraint DIE
I − j0 = 0 can be expanded to

give

∑
I

EI
x − U

†
I,x−IE

I
x−IUI,x−I − j0 = 0 (2.82)

Taking the time derivative of the above equation, one gets following contribution

from the derivative of gauge links

∂x0U †I,x−IEx−IUI,x−I + U †I,x−IEx−I∂x0UI,x−I = 0 (2.83)
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and following contribution on taking the derivative of electric field
(
Eq. (2.80)

)
and

that of current

∑
IJ

UIJ(x)− UI−J(x)− U †I,x−I
(
UIJ(x− I)− UI−J(x− I)

)
UI,x−I −DIj

I − ∂x0j0

(2.84)

The first two terms vanishes and the last two term yields current conservation equa-

tion. Therefore, the evolution equation for the Gauss law is also satisfied i.e

∂x0

(
DI(x)EI

x − j0
x

)
= 0 (2.85)

As can be seen from the above equation that the conservation of Gauss law depends

on the evolution of fields and currents. For relevant initial condition, the Gauss law

constraint has to be satisfied but evolution on the lattice involves various discretiz-

ation errors which leads to a small violation.

2.4.2 Initial Condition

In order to obtain the solution of boost-invariant Glasma in the forward light cone,

one has to recast the initial conditions on the lattice in terms of lattice variable i.e

transverse gauge links Ui and longitudinal electric fields Eη.

As the transverse gauge links on the boundary of light cone are given as the sum

of pure gauge solution of the incoming nuclei, we will start by putting one nucleus

on lattice. We start by sampling the color charge density ρk in the transverse plane

according to

〈
ρak(x, y)ρbl (x̄, ȳ)

〉
= δabδklδ(x− x̄)δ(y − ȳ)g

2µ2(x, y)
Nsaxay

(2.86)

where the indices k, l = 1, 2, ..., Ns represents discretized sheets along x− or x+

coordinate. With this, the color charge density at each lattice site is given as

ρaL/R(x, y) =
∑
kx,ky

e
2πi

(
kxx
Nx

+ kyy

Ny

)
k2
⊥

k2
⊥ +m2

∑
x′,y′

gµ(x, y)√
Nsaxay

ζa(x′, y′)e
−2πi

(
kxx
′

Nx
+ kyy

′

Ny

)

(2.87)
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We have regularised the color charge density by introducing the infrared regulator as

mentioned in Eq. (2.45). On top of infrared regularisation, one could also introduce

a cut-off scale Λ to make the problem UV finite. Here, ζ(x, y) are Gaussian random

numbers and on a lattice of size Nx × Ny. Usually one takes a square lattice such

that Nx = Ny, along with equidistant transverse lattice spacing.

The above equation includes back and forth, discrete Fourier transformation which

are quite easy to implement on a lattice. kx, ky are discretized momentum with

squared lattice momentum given as

k2
⊥ = 4

a2
x

sin2
(
πkx
Nx

)
+ 4
a2
y

sin2
(
πky
Ny

)
(2.88)

The Wilson line at each lattice site is then fabricated as

VL/R(x, y) =
Ns∏
i=1

exp
(
− ig

ρaL/R(x, y)ta

∇2

)
(2.89)

With this, the gauge links in Region II and III of Fig. 2.2 is obtained from the Wilson

line using a fairly simple relation

Ui, L/R(x⊥) = VL/R(x⊥)V †L/R(x⊥ + ai) (2.90)

The lattice equivalent of Eq. (2.55) which is the solution of gauge links at the bound-

ary of the light-cone, has been derived in [88] and is given as

Tr
[

ta

((
1 + Ui

)(
U†i,L + U†i,R

))]
= 0 (2.91)

This simple looking equation is highly non-trivial to solve as it involves N2
c − 1

equations. For SU(2) group, the solution can be compactly expressed as

Ui(x⊥) =
(
Ui,L + Ui,R

)(
U †i,L + U †i,R

)−1
(2.92)

For Nc > 2, the technique is outlined in [83] and an iterative solution is available in

Theoretical Background 27



[89]. The initial electric field on lattice has also been derived in [88] and takes the

form

Eη(x⊥) = −i4g
∑
i=1,2

1
a2
i

[(
Ui(x⊥)− 1

)(
U †i,L(x⊥)− U †i,R(x⊥)

)
+
(
Ui(x⊥ − a⊥)− 1

)(
U †i,L(x⊥ − a⊥)− U †i,R(x⊥ − a⊥)

)
− h.c.

]
(2.93)

where “h.c" stands for hermitian conjugate of the spelled out term. One can easily

check that on expanding the gauge links to first order, the above expression matches

with the continuum result (2.58). These initial conditions are then fed into the

leapfrog algorithm to obtain the solution at desired proper time τ.

2.5 Attributes of Boost-invariant Glasma

Over the years, series of work has been done in unfolding the transverse geometry

of fireball. In this section, we will put together the standard results obtained via

numerical simulation of 2 + 1D Glasma. Our main concern will be the different

components of energy momentum tensor T µν

T µν = Tr
[
− FµρFνρ + 1

4gµνFρσFρσ
]

(2.94)

Since MV model is transversely homogeneous, only diagonal components of the en-

ergy momentum tensor survives on averaging over the color charges densities, which

are given as

T µν = diag
(
ε, pT, pT, pL

)
(2.95)

where ε = 1
τ

dE
d2x⊥dη

is the energy density, pT is the transverse pressure and pL is the

longitudinal pressure. Since classical Yang-Mills theory is a conformal field theory,

the energy momentum tensor is traceless, and the energy density ε is connected to

the longitudinal and transverse pressure as ε = 2pT +pL. These pressure components
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Figure 2.3: Longitudinal and transverse components of the electric and magnetic
field computed on 512 × 512 lattice with g2µRA = 67.7. This result is taken from
ref. [90]

can be expressed in terms of transverse and longitudinal components of electric and

magnetic fields as

pT = E2
L +B2

L (2.96)

pL = E2
T +B2

T − E2
L −B2

L (2.97)

In the proper-time rapidity (τ, η) coordinates, these components are given as

E2
T =

〈
Tr
[
Fτ iFτ i

]〉
(2.98)

B2
L =

〈1
2Tr

[
FijFij

]〉
(2.99)

B2
T =

〈 1
τ 2 Tr

[
FiηFiη

]〉
(2.100)

E2
L =

〈 1
τ 2 Tr

[
FτηFτη

]〉
(2.101)

where 〈〉 represents averaging over the transverse plane.

The different components of the electric and magnetic fields are shown in Fig. 2.3

where numerical simulation was performed on a lattice with Nx = Ny = 512 in [90].
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The color charge distribution was based on MV model where a dimensionless para-

meter g2µRA controls the weak or strong-field limit. This dimensionless combination

takes into account the coupling constant g, the MV parameter µ which is related

to the saturation momentum, and the nuclear radius RA. We start with τ → 0

where only longitudinal color fields exists and are expected to be as equal as given

by Eqs. (2.58) and (2.59). The discrepancy in the results in Fig. 2.3 is explained in

term of the breaking of rotational invariance by modes near the Brillouin zones [90].

The initial coherent longitudinal fields leads to an interesting consequence - the

longitudinal pressure pL(τ → 0) is negative. The energy momentum tensor at early

times,

T µν(τ = 0) = diag(ε, ε, ε,−ε) (2.102)

reflects that we start with an anisotropic system. Subsequently, at τ > 0, the

fields loose their coherence and decay into quasi-particles with transverse momentum

∼ Qs but vanishing longitudinal momentum in the local rest-frame. Therefore, at

late times τ ≥ 1/g2µ particles with zero longitudinal momentum lead to vanishing

longitudinal pressure pL = 0.

T µν(τ ≥ 1/g2µ) = diag(ε, ε/2, ε/2, 0) (2.103)

As the macroscopic properties of initial state (T µν , Jµ) are set as an input for hydro-

dynamic model, this anisotropy could turn out to be a serious problem. One could

think, if this anisotropic behaviour has something to do with the boost-invariant

solution. Hence in order to study the isotropization of system at mid rapidity, small

fluctuation was considered on top of boost-invariant Glasma [91–94], and these lead

to the conclusion that 2+1D Glasma is unstable and rapidity dependent fluctuation

drives the system towards isotropization. A more lucid treatment of this problem is

by introducing an intermediate kinetic theory [95, 96] that connects the anisotropic

system of classical fields to a fully isotropic hydrodynamics system.

As Glasma expands behind the outgoing nuclei the energy density decreases with

time ε ∼ 1/τ (Fig. 2.3) but since we are working in the boost-invariant limit, energy
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Figure 2.4: Energy per unit rapidity fE = g2

πR2
A(g2µ)3

dE
dη

as a function of proper time
for different lattice spacing a. This plot is taken from ref [90]

per unit rapidity dE/dη remains constant as shown in Fig. 2.4. In both perturbative

solutions and numerical simulations [86, 90, 97] based on MV model, the energy

density is found to be UV divergent at τ = 0. However this logarithmic divergence

dies out at late proper times (τ ∼ 1/g2µ) and hence one can regulate this behaviour

in the continuum limit (a → 0) for any τ > 0 by introducing an ultraviolet cutoff

Λ ≥ Qs ∝ g2µ.

The Glasma expansion ceases the non-linear interaction and by the time τ ∼ 1/Qs,

the fields can be be treated as an ensemble of particles [28, 98, 99]. To compute the

gluon distribution, one solves the linearized, source-free Yang-Mills equation in the

forward light cone using the initial condition (2.55) – (2.57). Since gluon number

is not a gauge invariant quantity, its computation requires the fixation of a residual

gauge freedom. The standard technique is to use a Coulomb gauge ∂iAi(τ,x⊥) = 0

on top of the global axial gauge Aτ = 0 [98–101], at the time of measurement as it

minimises the initial gauge fields. In [98, 99], the number distribution of produced

gluon was computed by identifying the Hamiltonian of linearized Yang-Mills system

with that of free field. In [66, 102], the gluon distribution at a particular time
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τ is obtained by projecting the gauge fixed equal time correlation functions on to

transversely polarized gluon modes

dN

d2k⊥dy
= 1

(2π)2

∑
λ,a

∣∣∣∣τgµν(ξλ,k⊥
µ (τ)∂τAaν(τ,k⊥)

)∣∣∣∣2 (2.104)

where gµν(1,−1,−1,−τ−2) denotes the Bjorken metric and λ = 1, 2 labels the two

transverse polarizations. The mode function takes the following form in the Coulomb

gauge [102]

ξ(1),k⊥
µ (τ) =

√
π

2|k⊥|


−ky
kx

0

H(2)
0 (|k⊥|τ) (2.105)

ξ(2),k⊥
µ (τ) =

√
π

2|k⊥|


0

0

k⊥τ

H(2)
1 (|k⊥|τ) (2.106)

where k⊥ = (kx, ky) and H(2)
p denotes the Hankel functions of the section type and

order p. On relating the final multiplicity of hadrons to initial gluon multiplicity,

a ballpark value was obtained for number of inelastic gluon production and bounds

were set for charge density parameter g2µ at RHIC and LHC energies [103].

2.6 Renormalization equation & beyond the boost-

invariance

So far the separation of the partonic content of a nucleus into large x sources and

small x fields has been done arbitrarily by introducing a cutoff scale Λ+ = xP+ as

shown in Fig. 2.5. The cutoff lead to the formation of MV model which we used

to develop the initial conditions for the boost-invariant collision. One might wonder

what happens if we lower the cutoff to Λ′+. In order for the classical description to

hold, the semi-fast modes with Λ′+ < k+ < Λ+, have to be treated as the new color

sources δρ that will radiate the small-x gluons. That means lowering the cutoff will

induce color sources δρ such that the total sources ρ′ = ρ + δρ, will lead to a new
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Figure 2.5: A sketch showing the separation of scales based on CGC for a hadron
with longitudinal momentum P+ along with a new cutoff Λ′+ < Λ+

distribution function WΛ′+ [ρ′], similar to Eq. (2.32) but with additional quantum

fluctuations that are integrated out in charged squared fluctuation µ2. Therefore

the quantum evolution to smaller x precisely results in the renormalization group

equation, known as the JIMWLK evolution equation (eponymous for the authors

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner) [104]. The JIM-

WLK equation can be compactly written as [105–107]

∂WY [α]
∂Y

= −HJIMWLKWY [α] (2.107)

where WY denotes the weight function at rapidity Y , α is the gauge field for a given

color charge density and HJIMWLK is JIMWLK Hamiltonian given as

HJIMWLK = −1
2

∫
x⊥y⊥

δ

δαa(x⊥)χ
ab(x⊥,y⊥) δ

δαb(y⊥) (2.108)

where
∫
x⊥y⊥

denotes the integration over the transverse coordinates x⊥ and y⊥. The

kernel χab(x⊥,y⊥) is related to the two point function of induced charge correlator

as χab ∝ 〈δρa(x⊥)δρb(y⊥)〉

For the purpose of numerical implementation, it is useful to express the JIMWLK

equation as a functional Langevin equation for the Wilson lines V [106, 108]. The

JIMWLK equation in term of Langevin step has been derived in [109] as

Vx⊥(Y + dY ) = exp
{
− i
√
αsdY

π

∫
z⊥
Kx⊥−z⊥ ·

(
Vz⊥ξz⊥V

†
z⊥

)}
×

Vx⊥(Y ) exp
{
i

√
αsdY

π

∫
z⊥
Kx⊥−z⊥ · ξz⊥

}
(2.109)

where αs = g2/4π is the coupling constant ξz⊥ =
(
ξaz⊥,1t

a, ξaz⊥,2t
a
)
is the noise term
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which is related to the emission of semi-fast gluon by the hard partons. One and

two-point function of the noise term is given as

〈ξax⊥,i
(Y )〉 = 0 (2.110)

〈ξax⊥,i
(Y )ξby⊥,j

(Y ′)〉 = δabδijδ(2)
x⊥y⊥

δ(Y − Y ′) (2.111)

where i and j are the transverse components of the vector x⊥ and y⊥. Perturbatively,

the JIMWLK kernel is given as

Kx⊥−z⊥ = (x⊥ − z⊥)
(x⊥ − z⊥)2 (2.112)

In transverse space this kernel leads to gluon emission at large transverse distances

which is unphysical (due to confinement) and violates the Froissart bound of cross

section. To curb this behavior, one frequently introduces the infrared regulator m

[110]

Kx⊥−z⊥ = m|x⊥ − z⊥|K1(m|x⊥ − z⊥|)
(x⊥ − z⊥)
(x⊥ − z⊥)2 (2.113)

where K1(x) is the modified Bessel function of the second kind. Overall, the JIM-

WLK evolution contains two parameters: αs which controls the evolution speed, and

m which mimics the confinement.

Basically, the evolution to small x can be formulated in rapidity. Taking this rapidity

dependence into account, various simulation techniques [41, 42] have been developed

to study the collisions beyond the boost-invariance by evolving the initial Wilson

line VY0 via JIMWLK equation

VY0
JIMWLK−−−−−−→ VY0±dY (2.114)

In [41], Wilson lines at different rapidity collides with one another using the boost-

invariant initial condition in order to obtain the 3+1 D Glasma at late times. Al-

though, this work sets a premise for interesting phenomenology, one still needs to

explore the initial state from the first principles. With this, we will now try to work

on our first goal of solving the 3+1D classical Yang-Mills equation by taking the

finite longitudinal thickness of the incoming nuclei into account.
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Chapter 3

3D Structure of Glasma Initial State

Following chapter deals with simulation of 3+1 D Glasma on lattice. In section 3.1

we mention the general formalism to discretize 3+1 D classical Yang-Mills equation

on lattice along with the initialization of gauge fields and currents. In section 3.2

we present result from our numerical simulations for MV model and explore the

longitudinal dynamics of the fireball in addition to simultaneous comparison to boost-

invariant results. We develop a realistic model for heavy-ion collision in Section 3.3

which we then use to study the effects of fluctuation at RHIC energies.

3.1 General formalism for 3 + 1 D collisions in

Yang-Mills theory

Based on the Color Glass Condensate (CGC) effective description of high-energy

QCD, the initial state energy deposition and early time dynamics in high-energy

heavy-ion collisions can be described semi-classically by solving classical Yang-Mills

equations of motion for the gluon fields Aµ in the presence of fluctuating color charges

ρ, which characterize the nuclear parton content. Even though a complete analytical

treatment of the Yang-Mills equation is not possible, it is remarkable that the initial

state immediately after the collision (τ = 0+) can be determined analytically for

boost-invariant collisions in the high-energy limit [28, 87]. Beyond the time of the

collision τ = 0, where a far-from-equilibrium Glasma is produced [88, 111], the
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classical Yang-Mills dynamics becomes highly non-linear, and additional analytic

insights can only be obtained in the limit where one or both of the two sources are

considered to be weak such that the equations of motion linearize.

Nevertheless, important insights into the early time non-equilibrium dynamics have

been established based on numerical simulations [18, 92, 93, 99], where in order to

describe the non-linear dynamics of the boost invariant Glasma, the effectively 2+1

dimensional classical Yang-Mills equations are discretized on a lattice and solved

numerically in the forward light cone i.e. for τ > 0. Below we explain how to

generalize this setup to simulate the collision of nuclei with a finite longitudinal

thickness in 3+1D collisions, where in contrast to the boost invariant high-energy

limit, the entire space-time dynamics of the collision has to be simulated numerically,

including the explicit evolution of color charges before, during and after the collision.

Due to the computational complexity of 3 + 1 D simulations, we will perform all

of our simulations for the SU(2) gauge group rather than the physical gauge group

SU(3) of QCD. Even though we do not expect to see any qualitative changes between

the SU(2) and SU(3) dynamics, quantitative values of observables will change, and

should therefore not be compared directly to experimental results.

3.1.1 Discretization of gauge fields and currents

We follow standard procedure in the context of classical-statistical lattice gauge the-

ory simulations [86, 112] and start by discretizing the classical Yang-Mills Hamilto-

nian in temporal axial At = 0 gauge on a three dimensional Nx × Ny × Nz lattice

with lattice spacing aµ in the µ̂ direction [88, 99]

HYM =
∑
x,I,J

√
−ga3

g2a2
Ia

2
J

(−gII)(−gJJ)ReTr
[
1− UIJ(x)

]
+
∑
x,I

a2
I

g2√−ga3 (−gII)
EI
a,xE

I
a,x

2

(3.1)

where x denotes the lattice site, a = 1 · · ·N2
c − 1 is the color index and gµν =

(+1,−1,−1,−1) denotes the Minkowski metric. In order to have consistent index

notation from here after: We will use I, J = x, y, z to denote the spatial Lorentz in-

dices, i, j = x, y to denote the transverse Lorentz indices, and α, β, µ, ν to denote the
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four dimensional Lorentz indices in Minkowski (t,x⊥, z) or light-cone (x+, x−,x⊥) co-

ordinates, with x⊥ = (x, y) denoting the transverse coordinates. Within the Hamilto-

nian formalism Eq. (3.1), the electric field strength is represented in terms of the

lattice electric field variables,

EI
a,x = ga3

aI

√
−g(−gIJ)∂0Aa,J(x+ Î/2 + t̂/2) (3.2)

while the magnetic field strength is given in terms of the lattice plaquette variables

Ux,IJ = Ux,IUx+Î,JU
†
x+Ĵ ,IU

†
x,J

' exp
(
igaIaJFIJ(x+ Î/2 + Ĵ/2)

)
(3.3)

which are formed of SU(Nc) group valued lattice gauge links

Ux,I ' exp
(
igaIA

I(x+ Î/2)
)
. (3.4)

The pre-factors in the definitions in Eqns. 3.2, 3.3 have been arranged such that

all lattice variables are explicitly dimensionless. Within the CGC framework the

incoming nuclei are described by eikonal color currents JµR/L(x) which propagate

along the light cones and provide a source

Jµ(x) = JµR(x) + JµL(x) (3.5)

for the classical gluon fields, where the subscriptsR and L represent the nuclei coming

in from the right and left respectively. Before the collision the initial conditions for

the currents JµR/L(x) in covariant (∂µAµ = 0) gauge are given in terms of the color

charge densities ρaR/L(x±,x⊥) of the two colliding nuclei as

JµR(x) = δµ−ρaR(x+,x⊥)ta

JµL(x) = δµ+ρaL(x−,x⊥)ta (3.6)

where ta are generators in the fundamental representation. However, during the

collision both currents JµR/L(x) will receive a color-rotation, which in the 3+1 D

setup has to be calculated by solving dynamical equations of motions for the currents
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JµR/L(x). We therefore also discretize the color currents on the lattice, where by

keeping track of the relevant light-cone (±) components, the currents are defined as

J±x,dyn(t) = ga3 J
0
R/L

(x+ẑ/2)±Jz
R/L

(x+ẑ/2)
√

2

J±x,stat(t+ at
2 ) = ga3 J

0
R/L

(x+t̂/2)±Jz
R/L

(x+t̂/2)
√

2 (3.7)

with "dynamical" (dyn) and "static" (stat) currents on alternating half-integer time

slices, as usual in a leap-frog scheme.

3.1.2 Equations of Motion & Gauss Law

By performing the variation of the lattice Hamiltonian w.r.t to electric fields and

gauge fields, one obtains the Hamiltonian equations of motion for the lattice gauge

link and electric field variables. We employ a leap frog algorithm with time step

at = 0.08×min(az, a⊥), where gauge links are defined at every full time step whereas

the electric fields are calculated for every half-integer time step, such that the update

rule for the lattice gauge links takes the form

UI,x(t+ at) = exp
(
− i a2

Iat√
−ga3 (−gII)EI,x(t+ at

2 )
)
UI,x(t) (3.8)

whereas for the evolution of the lattice electric fields one also has to take into account

the coupling to the eikonal currents, such that the update rule for the lattice electric

fields is given by

Ei
a,x(t+ at/2)− Ei

a,x(t− at/2) = (−2
√
−ga3at)

(
−gii
a2
i

)∑
j

(
−gjj
a2
j

)
×

ReTr
[
ita
(
Uij(x)− Ui−j(x)

)]
(3.9)

Ez
a,x(t+ at/2)− Ez

a,x(t− at/2) = (−2
√
−ga3at)

(
−gzz
a2
z

)∑
i

(
−gii
a2
i

)
×

ReTr
[
ita
(
Uzi(x)− Uz−i(x)

)]
− at

J+
a,x,dyn(t)− J−a,x,dyn(t)

√
2az

(3.10)
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Due to the explicit appearance of the currents on the rhs of Eq. 3.10, the color cur-

rents J±x (t) also have to be treated as dynamical degree of freedom as – in contrast

to the boost-invariant high-energy limit – they are present not only on the infinites-

imal boundary of the light-cone but throughout the entire simulation volume and

thus affect the evolution of the classical Yang-Mills fields. Since in the eikonal limit

the different components of the current are related by J0
R/L(x) = ∓JzR/L(x), it is

straightforward to construct the dynamical equation of motion of the currents from

the (covariant) charge conservation equation DµJ
µ = 0 as ∂0J

±(x) = ∓DzJ
±(x),

and we employ the following update rules

J±x,dyn(t+ at)− J±x,dyn(t) = ∓ atDF
z J
±
x,stat(t+ at

2 )

J±x,stat(t+ at
2 )− J±x,stat(t−

at
2 ) = ∓ atDB

x,zJ
±
x,dyn(t) (3.11)

where DF/B
µ denotes the forward and backward covariant derivatives

DF
x,µX =

(
Ux,µX(x+i),µU

†
x,µ −Xx,µ

)
/aµ

DB
x,µX =

(
Xx,µ − U †(x−i),µX(x−i),µ U(x−i),µ

)
/aµ (3.12)

We note that due to the leap-frog discretization in Eqns. 3.11, the dynamical cur-

rents do not propagate exactly at the speed of light, but instead satisfy the same

lattice dispersion relation as the lattice gauge fields, which converges to a light-like

dispersion in the continuum limit. This is different from CPIC method where the

color charges have light-like dispersion and the dispersion of the gauge field depends

upon the details of the numerical scheme [113]. However, as in CPIC, the lattice

version of the Gauss law constraint

DB
x,IE

I
x(t+ at

2 ) = 1√
2

(
J+
stat(t+ at

2 ) + J−stat(t+ at
2 )
)

(3.13)
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is automatically satisfied at each time, as long as it is satisfied by the initial con-

ditions, as can be checked straightforwardly by evaluating the time derivative of

Eq. 3.13

∂0
(
Dx,IE

I
x − J0

)
= ∂0

(
Ex,I − U †(x−I),IE

I
(x−I) U(x−I),I − J0

)
= DI

(
− J I − ReTr

[
ita
(
Uij(x)− Ui−j(x)

)])
− ∂0J

0

= −DµJ
µ = 0 (3.14)

where the second equality comes from the equation of motion of gauge links and

fields as in Eqs. 3.8,-3.10. The gauge part vanishes which then leaves us with current

continuity equation as seen in the third equality.

3.1.3 Initial Conditions for 3+1D collisions

Since for 3+1 D collisions of extended nuclei, one has to simulate the dynamics of

the color charges before, during and after the collision, the initial conditions for the

above evolution equations have be formulated at Minkowski time t0 < 0 before the

collision, where the colliding nuclei are well separated from each other. Since the

color charges inside the two nuclei do not interact with each other before the wave-

packets overlap, the initial conditions are then determined by the superposition of

the analytic solutions for the gauge fields in the presence of the individual color

charges of the two nuclei, as illustrated in Fig. 3.1.

Specifically, in the covariant ∂µAµ = 0 gauge, the solution to classical Yang-Mills

equations before the collision takes the form

A±cov.(x∓,x⊥) = − 1
∇2
⊥
ρL,R(x∓,x⊥) Aicov. = 0 (3.15)

where we have explicitly assumed that – at the initial time t < 0– the incoming nuclei

are well separated from each other, such that color charge distributions ρL,R(x∓,x⊥)

of the two nuclei do not interact with each other.

We note that in ∂µAµ = 0 gauge the gauge potentials A±, only have support in the

vicinity of the two light-cones, where color charges are present, as seen in top panel

of Fig. 3.1. However, for real time lattice simulation it is convenient to employ the
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Figure 3.1: Gauge fields for the two colliding nuclei with finite longitudinal extent
(Rγ ' R

γ
) in covariant gauge (left) and light-cone or temporal axial gauge (right).

temporal axial (A0 = 0) gauge condition, and the corresponding initial conditions

can be obtained by performing a gauge transformation, which eliminates the gauge

potentials A± prior to the collision. By following previous works [85, 114, 115], the

corresponding gauge transformation can be expressed as

V (x) = VR(x+,x⊥)VL(x−,x⊥) (3.16)

where the light-like Wilson lines VL/R associated with the left and right moving nuclei

are determined by

∂+VR(x+,x⊥) = igA−cov.VR(x+,x⊥),

∂−VL(x−,x⊥) = igA+
cov.VL(x−,x⊥) (3.17)

such that VL/R are given by the light-like Wilson lines

VR(x+,x⊥) = P exp
(

+ ig
∫ x+

−∞
dy+A−cov.(y+,x⊥)

)
,

VL(x−,x⊥) = P exp
(

+ ig
∫ x−

−∞
dy−A+

cov.(y−,x⊥)
)

(3.18)
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The initial condition in temporal axial gauge after performing this gauge transform-

ation is given by

A± = 0 Ai = i

g
V ∂iV † (3.19)

which is illustrated on the right panel of Fig. 3.1. By initializing the simulation,

at a sufficiently early time t = t0, where the incoming nuclei are well separated

from each other, one finds that at each particular point z at most one of the two

Wilson lines VL/R is different from the identity, and the Wilson lines in Eq. (3.16)

effectively commute. Similarly, at each particular point z the corresponding gauge

fields Ai vanish, or reduce to the well known solutions AiL/R for individual nuclei in

the respective light-cone gauge [99, 114, 115], as indicated in Fig. 3.1.

So far we have discussed the structure of the initial conditions in the continuum,

and we will now address the corresponding lattice implementation. Starting from

a given distribution of color charges ρL/R(t0, z,x⊥) at initial time t0 (as shown in

Fig. 3.1) discretized on a spatial x, y, z grid, we first compute the covariant gauge

A±cov.(t0, z,x⊥) fields according to Eq. 3.15, and subsequently construct the discret-

ized version VL/R(t0, z,x⊥) of the light-like Wilson lines. Since before the colli-

sion, the Wilson lines VR(x+,x⊥) are independent of x−, the light-like Wilson lines

VR(t0, z,x⊥) can be defined to end on the lattice points x, y, z at initial time t0 as

illustrated in the left panel of Fig. 3.2.

If we consider the left moving nucleus, which is initially located on the right hand side

of the lattice, the corresponding Wilson line VR(t0, z,x⊥) is equal to the identity for

all points z which at the time t0 are located to the left of the incoming color charges.

Starting from VR(t0, z = 0,x⊥) = 1 at the left boundary of the lattice (zi = 0), the

Wilson lines VR(t0, z,x⊥) for z > 0 can be constructed successively based on the

relation

VR(t0, z + az,x⊥) = P exp
(

+ ig
∫ x+

1 = t0+z+az√
2

x+
2 = t0+z√

2

dz+A−cov.(z+,x⊥)
)
VR(t0, z,x⊥)

(3.20)

Exploiting again the invariance of the A−cov.(x+,x⊥) gauge fields under shifts along
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Figure 3.2: Illustration of light-like Wilson lines on t-z grid for the left moving nucleus
with a finite longitudinal extent (Rγ = R

γ
)

the x− direction, the additional color rotation in Eq. 3.20 can then be approximated

by parametrising the part

Q = P exp
(

+ ig
∫ x+

1 = t0+z+az√
2

x+
2 = t0+z√

2

dz+A−cov.(z+,x⊥)
)

as indicated in the right panel of Fig. 3.2. Using z+(s) = x+
1 + s(x+

2 − x+
1 ) with

s ∈ [0, 1], we get

Q = P exp
(
ig(x+

2 − x+
1 )
∫ 1

0
dsA−cov

(
x+

1 + s(x+
2 − x+

1 ),x⊥
))

= P exp
(
ig
az√

2

∫ 1

0
dsA−cov

(
x+

1 + s(x+
2 − x+

1 ),x⊥
))

' P exp
(

+ ig
az√

2
A−cov.

(
x⊥, x

+
1 or x+

2

))
(3.21)

Based on this, Eq. 3.20 can be modified as

VR(t0, z + az,x⊥) = P exp
(

+ ig
az√

2
A−cov.

(
t0, z,x⊥

))
VR(t0, z,x⊥) (3.22)

The discretized Wilson lines for the nuclei coming from the right and left direction

is then given by

VR,L(t,x⊥, z) =
∏
zi

exp
(
±igaz√

2
A∓R,L(t,x⊥, zi)

)
(3.23)
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The initial condition for the lattice gauge links are then determined from the Wilson

lines as

Ui(t, ~x) = V (x⊥, z)V †(x⊥ + î, z) Uz(t, ~x) = 1 (3.24)

which is obtained by expanding the exponential in Eq. 3.4 to first order. Next, in

order to initialize the lattice electric fields Ex,I
(
t + at

2

)
, we make use of the update

rule for the gauge links in Eq. 3.8, to express

Ex,I
(
t+ at

2
)

= −ia
3

a2
Iat

log
(
Ux,I(t+ at)U †x,I(t)

)
(3.25)

which relates the electric fields to the gauge links at times t0 and t0 +at. By following

the same procedure as outlined above, the gauge links Ux,i(t + at) are constructed

from the color charges propagated by a single time step according to

ρaL,R(t+ at,x⊥, z) = 1
Nz

∑
kz

e
2πikzz
Nz


e∓iωat : kz < Nz

2

e±iωat : kz ≥ Nz
2


∑
z′
e
−2πikzz′

Nz ρaL,R(t,x⊥, z′)

(3.26)

with

ω2 = 2
a2
z

(
1− cos

(2πkz
Nz

))
,

such that the evolution of the color charges in the initialization step satisfies the

lattice dispersion.

While the above procedure provide initial conditions for the lattice gauge links and

electric fields in temporal axial gauge, the color charges ρL/R(t0,x⊥, z) are still given

in covariant gauge. Instead of performing a gauge transformation of the charges, we

exploit Gauss Law to determine the static currents as

J±stat
(
t+ at

2 ,x⊥, z
)

=
√

2
∑
i=1,2

DiE
i
(
t+ at

2 ,x⊥, z
)

(3.27)

where the factor of
√

2 comes from the transformation between Minkowski and light-

cone coordinates. This fixes the Gauss Law for initial condition and therefore should
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Figure 3.3: A sketch showing the front view of the simulation box with inactive
transverse planes on the longitudinal edges. The dotted area portrays the real simu-
lation box which due to fixed boundary condition requires extra cells (colored area)
to compute fields at the boundary.

remain fixed at later times too. The initial value of the dynamical currents Jdyn is

set by performing half a time step of evolution as

J±dyn(t+ at,x⊥, z) =± az
at

1
Nz

∑
kz

e
2πikzz
Nz



1 : kz = 0(
e±iωat−1

1−e
−2πikz
Nz

)
: kz < Nz

2

0 : kz = Nz
2(

e∓iωat−1

1−e
−2πikz
Nz

)
: kz > Nz

2


×

∑
z′
e
−2πikzz′

Nz J±stat(t+ at
2 ,x⊥, z

′) (3.28)

With these initial condition, the successive dynamics namely during the collision -

diamond shaped collision region in Fig. 3.1, and after collision, is then simulated

numerically.

3.1.4 Ghost cells and Observables

Starting from the initial conditions outlined above, we simulate the dynamics of

the collision in Minkowksi coordinates xµ = (t, x, y, z) by solving the classical Yang-
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Mills equations for the lattice gauge links and electric fields, along with the evolution

equations for the eikonal currents. Since we use axial gauge, the gauge fields are non-

zero and different in the limit z → ±∞, such that periodic boundary condition can

not be used. Therefore we implement fixed boundary condition with some ghost

cells which remain inactive during the evolution as shown in Fig. 3.3. The entire

transverse plane at z = −1 and z = Nz are then set equal to plane z = 0 and

z = Nz − 1 respectively.

While in principle the evolution can be performed up to arbitrary late times, in

practice the incoming nuclei will approach these fixed boundaries from where color

charges can not traverse any further. Therefore the simulation has to be stopped

before this occurs.

When investigating the initial energy deposition during the collision and early-time

dynamics of the Glasma, we will primarily focus on the evolution of energy mo-

mentum tensor T µν(x), which we compute as

T 00(x) = 1
2

(
E2
loc(x) +B2

loc(x)
)

T IJ(x) = 1
2

(
E2
loc(x) +B2

loc(x)
)
δIJ − EI,a

loc (x)BJ,a
loc (x)

T 0I(x) = εIJK
(
EJ,a
loc (x)×BK,a

loc (x)
)

(3.29)

where E2
loc(x) = EI,a

loc (x)EI,a
loc (x), and Eloc(x) and Bloc(x) are local electric and mag-

netic fields. Note that electric field is naturally evaluated at x+aI/2 +at/2 whereas

magnetic field is evaluated at x+aI/2+aJ/2. To define them at same lattice position,

we calculate the electric and magnetic fields using smeared operator definitions

Ea
I,loc(x) = aI

2a3

(
Ea
I (x) + U †I (x− Î)Ea

I (x− Î)UI(x− Î)
)

BI,a
loc (x) = εIJK

aI
4a3 ReTr

(
ita
(
UJK(x) + UJ−K(x)

+ U−J−K(x) + U−JK(x)
))

. (3.30)

with gauge links U in the magnetic field definition, saved at t + dt/2. As the main
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motive of our simulation is to understand the longitudinal structure of the fields, we

will frequently perform averages over the transverse plane, which we denote as〈
T 00(t, z)

〉
⊥

= 1
NxNy

∑
x⊥

T 00(t,x⊥, z) (3.31)

Based on the symmetries in particular model of nucleus, most of the components of

energy momentum tensor might vanish on averaging over the color charge density.

For example, rotational symmetry in MV model gives vanishing energy flux T 0i, i =

1, 2 in the transverse direction.

Besides the space-time evolution of the energy momentum tensor, we will also con-

sider the evolution of the field intensity of longitudinal (‖) and transverse (⊥) com-

ponents of the (chromo-) electromagnetic fields

B2
‖(x) = 2

a2
xa

2
y

ReTr
[
1− Uxy(x)

]
B2
⊥(x) =

∑
i=x,y

2
a2
i a

2
z

ReTr
[
1− Uiz(x)

]

E2
‖(x) = 1

2a2
xa

2
y

N2
c−1∑
a=1

[
Ea
z (x)

]2

E2
⊥(x) =

∑
i=x,y

1
2a2

i a
2
z

N2
c−1∑
a=1

[
Ea
i (x)

]2
(3.32)

3.2 3+1D Collisions of individual color charges

Based on the above simulation framework, we will now study the initial energy

deposition and early time dynamics of the Glasma. Before we turn to simulations

involving realistic models of the color charge distributions of the colliding nuclei,

it proves insightful to first consider the collision of individual ensembles of color

charges, to test the framework and develop an intuitive picture of the underlying

dynamics.

3D Structure of Glasma Initial State 47



We follow the previous works [84, 88], and sample the transverse distribution of color

charges based on the McLerran-Venugopalan (MV) model as

ρ
a (2D)
L/R (x, y) =

∑
kx,ky

e
2πi

(
kxx
Nx

+ kyy

Ny

)
k2

k2 +m2 e
−k2/2Λ2

∑
x′,y′

Qs
√
axayζ

a(x′, y′)e
−2πi

(
kxx
′

Nx
+ kyy

′

Ny

)
(3.33)

where ζ(x, y) are Gaussian random numbers. To cure the infrared divergence of

the model, we introduce a regulator m ∼ ΛQCD which enforces color neutrality on

low momentum modes by cutting off the long radiative tails. Even though lattice

spacing aI introduces a momentum cut off of order 1/aI , we manually introduce

another regulator Λ at the level of color charge distribution to make our simulations

UV finite. These regulators are set in terms of a dimensionful scale Qs as m/Qs = 1

and Λ/Qs = 5.

Subsequently, the three dimensional color charge distribution

ρaL/R(x, y, z) = ρ
a (2D)
L/R (x, y)azT (z) (3.34)

is obtained by multiplying the transverse color charge distribution with the same

Gaussian profile at each point

T (z) = 1√
2πR2

γ

e−z
2/2R2

γ (3.35)

where the dimensionful parameter Rγ = R/γ controls the longitudinal extent of the

nucleus.

Since the initial color charge distributions are characterized in terms of the dimen-

sionful scales Qs and Rγ, the latter can be used to set the scale of the lattice calcu-

lation by specifying the value of Qsa⊥ and Rγ/az. Generally, the (transverse) lattice

spacing has to be chosen sufficiently small to avoid discretization errors Qsa⊥ � 1,

while at the same time the transverse simulation volume N⊥a⊥ should be large com-
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pared to the color charge correlation length ∼ 1/m. In nutshell, we have following

hierarchy in transverse scales

a⊥ �
1
Qs

≤ 1
m
� N⊥a⊥

Similarly, the longitudinal color charge distribution has to be smooth on the scale of a

single lattice spacing az � Rγ, while at the same time the longitudinal extend of the

lattice Nzaz has to be sufficiently large to allow for a long enough time evolution after

the collision. Within the above setup, we have varied both the lattice spacings Qsa⊥,

Rγ/az as well as the lattice length QsN⊥a⊥ and Rγ/Nzaz to check that discretization

errors do not play a significant role, and if not stated otherwise we will present results

for N⊥ = 128, Nz = 2048 with Qsa⊥ = 0.125 and Rγ/az = 16 in the following.

3.2.1 Stable propagation of color charges before and after

the collision

Before we address the dynamics of the collision, we briefly verify that – within our

numerical setup – the color charges of the individual nuclei propagate in a stable

fashion. We illustrate this behavior in Fig. 3.4, where the top panel shows the

evolution of the longitudinal profiles of the color charge distribution ρ(t, x, y, z) =√
ρa(t, x, y, z)ρa(t, x, y, z) at a randomly chosen point x, y in the transverse plane. By

comparing the initial color charge distribution ρa(t0, x, y, z) determined according

to Eq. 3.27, to the charge density ρa(t0, x, y, z) = Vab(t0, x, y, z)ρcov.
b (t0, x, y, z) re-

constructed from the color charge distribution in covariant gauge, we observe an

excellent agreement demonstrating that the re-construction of the charge density

based on Gauss’s law works as expected. By comparing the dynamically evolved

charge distribution ρa(t, x, y, z) to the translated initial conditions ρa(t0, x, y, z −

c(t− t0)), we can further confirm that for sufficiently small lattice spacing az � R,

the numerical dispersion of the currents is small, such that over the relevant time

scales the nuclei propagate in a stable fashion at almost the speed the light.

Beside the stable propagation of the color charges, it is also important that the gluon

fields induced by the color charges propagate in a stable way along side the charges,
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Electric and magnetic field strengths of the left moving nucleus along with the ana-
lytically obtained result at initial time t0 and at some later time t− t0 = 5/Qs, prior
to the collision (right).

as can be seen from the bottom panel of Fig. 3.4, where we show the evolution of the

longitudinal profiles of the average electric and magnetic field strengths 〈E2
⊥(t, z)〉⊥,

〈B2
⊥(t, z)〉⊥, 〈E2

‖(t, z)〉⊥ and 〈B2
‖(t, z)〉⊥. By comparing the longitudinal field strength

profiles in Fig. 3.4 at different times, one again concludes the nuclei propagate in a

stable fashion over the relevant time scales. Moreover, using the two point function

of the color charge distribution in the momentum space

〈ρ̃a(k⊥, z)ρ̃b(k′⊥, z′)〉 = (2π)2Q2
sT (z)T (z′)δabδ2(k⊥ + k′⊥) (3.36)

one can also the compute the field strengths before the collision as

〈
Eia(z, x⊥)Eib(z′, y⊥)

〉
=
〈
∂ixA

−a(z, x⊥)∂iyA−b(z′, y⊥)
〉

=
∫ d2k⊥

(2π)2

∫ d2k′⊥
(2π)2

ki

k⊥2
k′i

k′⊥
2

〈
ρ̃a(z, k⊥)ρ̃b(z′, k′⊥)

〉
eik⊥x⊥+ik′⊥y⊥

(3.37)

On plugging in the value of the above two-point function and taking the limit

(z′, y⊥)→ (z, x⊥), the trace of the correlation function
〈(
Ea
i (x⊥, z)

)2〉
is given as

E2
⊥(t0, z) = 1

2
Q2
s

2 (N2
c − 1)T (z)2

∫ dk⊥
2π

1
k⊥

( k⊥2

k⊥2 +m2

)2
e
−k⊥

2

λ2 (3.38)
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where the factor of 1/2 in the front accounts for the conversion of light-cone coordin-

ate to Minkowski coordinate. As seen in Fig. 3.4, the analytical result matches with

the results reproduced by our real-time lattice simulations, indicating the residual

discretization errors are indeed small.

3.2.2 Evolution of the fields during and after the collision

Now that we have established the validity of our setup, we will analyze the energy

deposition and early time dynamics of the collisions. Before we present our numer-

ical results, we briefly recall the structure of the Glasma fields in the high-energy

boost invariant limit [28, 86, 87] which will serve as a basis for comparison. Before

the collision, the incoming nuclei feature the transverse electric and magnetic fields

known as the Weiszaecker-Williams fields (WW)

Ei
WW = ∂0AiR/L Bi

WW = εij∂zAjR/L (3.39)

localized in narrow strips along the light-cones. Even though the structure of the

fields during the collisions is not analytically accessible, it is well established that

the initial state immediately after the collision (τ = 0+) features boost invariant

longitudinal electric and magnetic fields in the forward light-cone

Eη(τ = 0,x⊥) = − igδijV †(x⊥)
[
AiL(x⊥), AjR(x⊥)

]
V (x⊥)

Bη(τ = 0,x⊥) = − igεijV †(x⊥)
[
AiL(x⊥), AjR(x⊥)

]
V (x⊥) (3.40)

where V (x⊥) is defined in Eq. 3.16 and we adapted the usual τ =
√
t2 − z2 and η =

tanh−1(z/t) coordinates, with longitudinal electric and magnetic fields in the Milne

coordinates defined as Eη = 1
τ
Fτη and Bη = −1

2ε
ijFij, which at mid-rapidity (η = 0)

are equivalent to the fields in Minkowski coordinates i.e Eη|η=0 = Ez,Bη|η=0 = Bz.

Subsequently, for τ > 0 the initial Glasma flux tubes in Eq. 3.40 begin to expand

in spatial direction leading to decoherence of strong chromo-electric and chromo-

magnetic fields. After a time scale ∼ 1/Qs, the evolution essentially becomes free

streaming, resulting in a state of approximately vanishing longitudinal pressure pL =

T ηη ' 0 [28]. While the evolution of the boost-invariant Glasma produced in the
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magnetic fields at the center of the collision for different longitudinal thickness:
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forward light-cone has been explored to detailed extent within numerical simulations

[18, 28, 92] and (semi-)analytic calculations [86], we further note that also in the

boost-invariant high-energy limit the eikonal charges receive a color rotation during

the collision, and the transverse electric and magnetic fields continue to exist in

narrow strips along the light-cones.

Beyond the high-energy boost invariant limit, the formation of the Glasma begins

as soon as the color charge distributions of the incoming nuclei start to overlap and

persists over an extended period of time until the colliding nuclei have passed through

each other. Now in order to analyze the formation of the 3+1D Glasma, we first

consider the evolution of the fields at the center of the collision (z = 0), where one

has τ = t and η = 0 such that the descriptions in Minkowski (t, z) coordinates and

Milne (τ, η) coordinates coincide. We present our results in Fig. 3.5, where we show

the time evolution of the longitudinal and transverse electric and magnetic fields

strength during and after the collision for two different values of QsRγ = 1/4 and

QsRγ = 1/16 corresponding to different longitudinal thickness of the colliding nuclei.

Since we want to focus on the creation of the Glasma, we have subtracted the field

strength associated with Weiszaecker-Williams fields of the colliding charges, i.e. we

consider E2
Glasma(t, z) = E2(t, z)− E2

WW (t, z), and we have defined the origin of the

coordinate system such that at t = 0 the charge distributions of the colliding nuclei

maximally overlap with each other.

During the collision longitudinal electric and magnetic fields build up monotonically

as the two nuclei pass through each other, while the transverse electric and magnetic

components experience rapid changes. By the time that the incoming nuclei have

passed each other, which corresponds to Qst ' 0.25 in the left panel and Qst ' 1

in the right panel, the transverse electric and magnetic fields become small again

and longitudinal electric and magnetic fields dominate the energy density. While

close to the boost-invariant limit for QsRγ = 1/16 the longitudinal electric and

magnetic fields have approximately the same magnitude, the longitudinal magnetic

field strength is suppressed compared to the longitudinal electric field for QsRγ = 1/4

i.e away from the boost invariant limit. Similar behaviour was observed in [46] along

with stronger dependency on infrared regulator m.
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Figure 3.7: Space-time evolution of the non-zero components of the energy mo-
mentum tensor: T 00/Q4

s, TZZ/Q4
s, (TXX + T Y Y )/2Q4

s and T 0Z/Q4
s obtained after

averaging over the transverse plane in the Minkowski coordinates. Simulations are
performed for a single event of a thick nuclei (QsRγ = 0.5)

Eventually, as the colliding nuclei have passed through each other, transverse elec-

tric and magnetic fields are regenerated from their longitudinal counterparts, until

at late times the different components become of comparable magnitude. Similar to

the boost-invariant case, the different field intensities at the center of the collision

(z = η = 0) then start to decay as approximately ∝ 1/τ as indicated by the black

dashed lines in Fig. 3.5 Next we will investigate the dependence of the initial en-

ergy deposition and early time dynamics on the longitudinal thickness. In Fig. 3.6

we present the evolution of transverse magnetic and longitudinal electric fields for

different values of QsRγ characterizing the longitudinal thickness of the colliding

nuclei.1 Alongside the results from 3+1D numerical simulations, we also show res-
1Similar behavior can be observed for the longitudinal magnetic and transverse electric com-

ponents which are not depicted here.
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ults for the boost invariant limit, obtained by performing 2 + 1D boost-invariant

classical Yang-Mills simulations for the same color charge distributions, using the

infinite Wilson lines VL/R(x⊥) as an input. Starting from the collision of thick nuclei

with QsRγ = 1/2, where the collision takes a significant amount of time and the

evolution of B2
⊥(t, z = 0) and E2

‖(t, z = 0) shows a smooth transition between the

different stages, the decrease/increase of the transverse magnetic/longitudinal elec-

tric field strength during the collision sharpens significantly as the collision becomes

shorter and shorter for smaller values of QsRγ. Conversely, the evolution of the fields

after the collision for Qst & QsRγ is rather insensitive to the longitudinal thickness,

and the results for 3+1D collisions smoothly approach the boost-invariant result as

QsRγ → 0. This behaviour was expected since a detector kept far away could never

differentiate between a nuclei with or without any longitudinal support.

So far we have focused on the time evolution in the center of the collision (z = 0),

and we will now analyze space-time evolution of longitudinal profiles of the collision

in more detail. Instead of showing results for the individual field strength com-

ponents, we will focus on the evolution of the dominant components T 00, T 0z, T zz

and T ii of the energy momentum tensor, and similar to our previous result subtract

the contributions T 00
WW = T zzWW = ±T 0z

WW of the Weiszaecker-Williams fields to the

energy momentum tensor. Primarily, pure Glasma fields can be obtained by sub-

tracting the fields of nuclei before the collision at each lattice point but to make sure

that we were not messing around, we preferred taking a long route and performed

three independent simulations, where in the first case we simulate the full collision,

while the other two simulations simply propagate of the left/right moving charges.

The subtraction takes into account the non-zero dispersion of the color charges due

to residual discretization errors, and the energy-momentum tensor of the Glasma

T µνGlasma = T µνfull− T
µν
WW,L− T

µν
WW,R vanishes identically before the two incoming nuclei

collide.

Our results for the space-time evolution evolution of the energy-momentum tensor are

compactly summarized in Fig. 3.7, where the different panels show the t, z depend-

ence of the various components of 〈T µνGlasma〉⊥ in the lab-frame averaged over the trans-

verse plane. By focusing on the evolution of the transverse pressure (T xx + T yy)/2,
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one clearly observes the energy deposition in the central region where (T xx + T yy)/2

increases during the collision, exhibits a pronounced peak and subsequently decreases

due to the rapid longitudinal expansion of the Glasma. However, in addition to the

energy deposition in the central region, we also observe rather large contributions to

T 00, T 0z and T zz in the vicinity of the two light-cones. While it is intuitively clear

that the non-equilibrium plasma produced away from central region should feature

sizeable velocities in the longitudinal direction and therefore contribute significantly

to T 00, T 0z and T zz in the lab-frame, the magnitude of contributions is surprisingly

large compared to the transverse pressure. Even though we can not clearly rule

out that these contributions may arise due to artifacts of the lattice discretization,

we have checked explicitly that the observed behavior remains unchanged when we

decrease the lattice spacing, as discussed in more detail in Appendix A. Since to the

best of our knowledge such behavior has not been reported previously in the context

of 3+1D Glasma simulations, clarifying the detailed structure of the fields in the

vicinity of the light-cone will require further numerical and analytical investigations

in future.

While the results in Fig. 3.7 were obtained for the collision of rather thick nuclei

(QsRγ = 1/2), it is also interesting to investigate how the space-time profiles change

when varying the longitudinal thickness QsRγ of the colliding nuclei. We investigate

this behavior in Fig. 3.8, where we present heat-map figures of the space-time

evolution of the transverse pressure (T xx + T yy)/2 for QsRγ = 1/2, overlayed with

the τ, η coordinate system in the forward light-cone, by indicating lines of constant

time Qsτ and constant space-time rapidity η.

While the results for the collision of thin nuclei (QsRγ = 1/16) closely resemble the

behavior in the boost invariant limit, as lines of constant transverse pressure (T xx +

T yy)/2 coincide well with lines of proper time Qsτ within the central rapidity region

(η . 1), clear deviations from boost-invariance emerge when considering the collision

of nuclei with a large longitudinal extent (QsRγ = 1/2). Most importantly, one

observes that for QsRγ = 1/2 the transverse pressure is significantly reduced towards

the edges of the forward light-cone, indicating a non-trivial space-time rapidity profile

around mid-rapidity.
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Figure 3.8: Heat-map figures for the space-time evolution of the transverse pressure
〈PT (t, z)〉⊥ overlayed with grey dashed τ, η lines for thin nuclei QsRγ = 0.0625 (left)
and thick nuclei QsRγ = 0.5 (right).
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Figure 3.9: Rapidity profiles of the transverse pressure for various nuclear thickness
QsRγ. Color coding shows the different proper-time.
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3.2.3 Space-time rapidity profiles

So far, we have leveraged our framework to study the space-time picture of the

collision in Minkowksi space. Now we will look at the non-trivial rapidity dependence

of the observables, which arises naturally by including the longitudinal thickness of

the colliding nuclei. Even though the mapping of (t, z) data into (τ, η) coordinates

is in principle straightforward, the availability of information on a discrete t, z grid 2

poses additional challenges, as a straightforward interpolation between data points

can become problematic in the vicinity of the light cones. Due to these technical

difficulties, we will re-strict ourselves to an investigation of the rapidity range η ∈

(−1.25, 1.25), and show the corresponding result for different τ as a function of

η. We further note that the conversion of Minkowski (t, z) space results to Milne

coordinates τ, η can in fact be quite sensitive to the definition of the origin of the

coordinate system, and we will always fix the origin t = 0, z = 0 at the space-time

point, where the center of mass of the two nuclei coincides.

In Fig. 3.9, we present the evolution of transverse pressure τ(T xx+T yy)/2 as a func-

tion of η for different values of QsRγ. Different color codings in Fig. 3.9 correspond

to the results obtained at different proper times τ , and the scaling of the transverse

pressure by a factor of τ has been chosen such that – beyond time scales τ ∼ 1/Qs

– the quantity τ(T xx + T yy)/2 shown in Fig. 3.9 becomes independent of proper

time τ in the boost-invariant high-energy limit. Starting from the collision of thin

nuclei with QsRγ = 1/16, we observe the emergence of a boost-invariant plateau for

η ∈ (−0.8, 0.8), as already seen in the bottom panel of Fig. 3.8, where shortly after

the collision the contours of constant transverse pressure follows the line of constant

proper time τ . When increasing the longitudinal thickness of the colliding nuclei,

the transverse pressure of the Glasma created around mid-rapidity decreases and we

see how the profiles are no longer flat around the central rapidity even for the late

times Qst � QsRγ. Empirically, we find that the resulting rapidity profiles can be
2Even though the time step at is typically small, we only create output of the energy momentum

tensor every 100 steps, in order to keep the overall data size reasonable.
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QsRγ ηR τPT/Q
3
s(η = 0)

1/16 2.48 0.0021
1/8 1.69 0.0020
1/4 1.20 0.0015
1/2 0.98 0.0010

Table 3.1: Parameters of fit function defined in Eqn. 3.41

reasonably well described by the following functional form, which is indicated by the

black dashed lines in Fig. 3.9,

τPT (η) = τPT (η = 0)
cosh(η/ηR) , (3.41)

where τPT (η = 0) is the pressure at mid-rapidity and ηR describes the rapidity

width. By looking at the extracted values of ηR and τPT (η = 0) in Tab. 3.1, one

observes that the rapidity width ηR exhibits a strong dependence on the width QsRγ

of the colliding nuclei, whereas the transverse pressure τPT (η = 0) of the Glasma at

mid-rapidity only decreases slowly with increasing thickness of the colliding nuclei,

as can also be seen directly from Fig. 3.9.

When analyzing the rapidity dependence of the other components of the energy-

momentum tensor, it is convenient to switch to the local rest frame (LRF), defined

by the condition that uµLRF is a time-like eigenvector of the energy-momentum tensor

T µνu
ν
LRF = εLRFu

µ
LRF . The reason for this vague choice is twofold: firstly, the τ −

η frame is suitable for boost-invariant collision and secondly, this frame is quite

sensitive to the definition of origin, as mentioned earlier.

By diagonalizing the average stress-energy tensor T µν,Glasma of the Glasma,3 one gets

the energy density and longitudinal pressure PL in this frame as

εLRF = 1
2

(
T 00 − T zz +

√(
T 00 + T zz

)2
− 4T 0zT 0z

)

PLLRF =1
2

(
T 00 − T zz −

√(
T 00 + T zz

)2
− 4T 0zT 0z

)
(3.42)

We show our results in Fig. 3.10, where we present results for the energy density
3Note that, as discussed previously, the energy-momentum tensor of the Glasma TµνGlasma is

obtained by subtracting the contributions of the Weiszaecker-Williams fields of the colliding nuclei,
prior to the diagonalization procedure
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Figure 3.10: Rapidity profiles of the longitudinal pressure (left) and the energy
density (right) in local-rest frame for different thickness of the colliding nuclei.

τ εLRF and longitudinal pressure PLLRF for different values of QsRγ. Starting with

the evolution of the longitudinal pressure depicted in the left panel, we find that for

collisions of thick nuclei, the longitudinal pressure almost vanishes as the two nuclei

have passed through each other, as seen for QsRγ = 1/2 at late times. With de-

creasing thickness, the longitudinal pressure starts out from negative values around

mid-rapidity, and subsequently relaxes towards zero, in qualitive agreement with

the well established behavior in the high-energy boost-invariant limit [28, 87]. Con-

versely, the rise of the longitudinal pressure PLLRF at larger rapidities signifies clear

deviations from boost invariance, and can be attributed to the spurious presence of

fields on/near the light-cones in Fig. 3.7

In the right panel of Fig. 3.10 we present energy density for different longitudinal

extent of nuclei, at late times where longitudinal pressure almost vanishes (left panel),

such that εLRF ' 2PT and τεLRF ' const is approximately constant. Similar to

Fig. 3.9, we again notice the emergence of a boost-invariant plateau in the high-

energy limit (QsRγ = 1/16), whereas for the collision of thick nuclei at lower energies

(QsRγ = 1/2, 1/4) we see contrasting result which again signifies broken boost-

invariance.
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3.3 3+1 D Collisions with realistic color charge

distributions

So far we have considered a simplistic model of color charge distributions inside

each nucleus, to perform a detailed investigation of the longitudinal dynamics of the

Glasma during and shortly after the collision. Evidently, to connect these simulations

to realistic heavy-ion collisions, it is necessary to develop a more physical model of

the color charge distributions, which reflect both the longitudinal and transverse

structure of the colliding nuclei. Similar to the discussion in the boost invariant high

energy limit [18, 83, 84], the basic idea of our construction will be to connect the color

charge distributions ρL/R(x±,x⊥), to measurements of hadronic structure functions

from the deep-inelastic scattering experiments. Below we develop a model of the

three-dimensional structure of the color charge distribution based on the small-x

transverse momentum distribution (TMDs), and subsequently perform simulations

within this framework to study the effect of longitudinal fluctuations of the color

charge distributions.

3.3.1 Connection to small-x TMDs

Generally speaking, the three-dimensional parton of nucleons and nuclei is encoded

in an underlying Wigner distribution [116, 117] that contains information on the

position and momenta of single partons inside a nucleon or nucleus. By disreg-

arding position or momentum information, the Wigner distribution reduces to a

transverse momentum parton distribution (TMD) or respectively to a generalized

parton distribution (GPD). Conversely, if both position and momentum information

are discarded, one obtains the standard collinear parton distribution function (PDF).

Even though a modeling of the color charge distribution based on the Wigner func-

tion would be desirable, little is known about this fundamental object, and we will

therefore consider a parametrization of the color charge densities based on TMDs,

with the three dimensional spatial structure of nucleons and nuclei imposed by hand

according to a Monte Carlo Glauber model. Specifically, we will assume that the
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position and momentum dependence of the color charge distribution inside a nucleon

can be factorized as
〈
ρa(x)ρb(y)

〉
= δabT

(
x+ y

2

)
Γ(x− y) , (3.43)

where T
(
x+y

2

)
captures the spatial structure of the colliding nucleon, and thus varies

on length scales ∼ Rp and ∼ Rp/γ, where Rp is the proton radius, whereas the

Fourier transform of Γ (x− y) describes the transverse and longitudinal momentum

dependence of color charges inside the nucleus, such that e.g. in the transverse plane

Γ (x− y) typically varies on distance scales ∼ 1/Qs.

Now in order to constrain the behavior of Γ (x− y), we consider the small-x limit

operator definition of the dipole gluon TMD for a left moving nucleus [118, 119]

x2G
(2)(x2,k⊥) = 4

〈pA|pA〉

∫ ∞
−∞

dξ+dξ′+
d2ξ⊥d

2ξ′⊥
(2π)3 eix2p−(ξ+−ξ′+)e−ik⊥(ξ⊥−ξ′

⊥)

〈
pA|Tr

[
F i−
ξ U[ξ,ξ′]F

i−
ξ′ U[ξ′,ξ]

]
|pA

〉
(3.44)

where x2 = k−/p− is the longitudinal momentum fraction and k⊥ is the transverse

momentum of the gluons. The gauge links U[ξ,ξ′] and U[ξ′,ξ] connecting the points ξ

and ξ′ ensures a gauge invariant definition of the TMD distributions.

Within the Color Glass Condensate effective theory, the matrix element 〈pA|...|pA〉/〈pA|pA〉,

is replaced by an average 〈.〉 over the color charge distribution [118, 119]

x2G
(2)(x2,k⊥) = 4

∫ ∞
−∞

dξ+dξ′+
d2ξ⊥d

2ξ′⊥
(2π)3 eix2p−(ξ+−ξ′+)e−ik⊥(ξ⊥−ξ′

⊥)

〈
Tr
[
F i−
ξ U[ξ,ξ′]F

i−
ξ′ U[ξ′,ξ]

]〉
(3.45)

Based on eqn. (3.4,3.15) the non-abelian field strength tensor F i−(ξ) and gauge links

U[ξ,ξ′], U[ξ′,ξ], can be calculated as functional of the color charge density ρ, such that

the x2 and k⊥ dependence of the dipole TMD x2G
(2)(x2,k⊥) is in fact entirely de-

termined by specifying the n−point correlation functions of the color charge density.

Evidently, the general relation between the correlation functions of ρ and the dipole

TMD is rather complicated, and we will thus simplify the problem by considering
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Gaussian correlations of color charges in the dilute limit, where the expression in

Eq. (3.45), can be expanded to lowest non-trivial order in ρ’s.

x2G
(2)(x2,k⊥) = 4(N2

c − 1)
∫ ∞
−∞

d2∆ξd∆ξ+

(2π)3 eix2p−∆ξ+
e−ik⊥∆ξ

∫
d2ξ̄dξ̄+d

2q⊥ d
2q′⊥

(2π)4

eiq⊥(ξ̄+∆ξ/2)eiq
′
⊥(ξ̄−∆ξ/2)

〈
iqi
q2
⊥

iq′i
q′2⊥

ρ(ξ̄+ + ∆ξ+/2, q⊥)ρ(ξ̄+ −∆ξ+/2, q′⊥)
〉

(3.46)

where we have used the average ξ̄ = (ξ + ξ′)/2 and difference coordinate and ∆ξ =

ξ−ξ′. On evaluating the above two-point correlation functions according to Eq. (3.43)

and using the dirac delta function, one gets

x2G
(2)(x2,k⊥) = 4NcCF

(2π)3
Γ̃(k⊥, x2p

−)
k2
⊥

S⊥ (3.47)

where p− =
√
sNN/2 is the large light-component of momentum of the nucleon in

the lab frame and S⊥ =
∫
dξ+ ∫ d2ξ⊥T (ξ⊥, ξ+) is the transverse area of the nucleon.

Based on Eq. (3.47), where Γ̃ denotes the Fourier transform of Γ(x − y), one then

concludes that the k⊥ dependence of the x2G
(2)(x2,k⊥) determines the transverse

structure of the correlation function Γ(x− y), whereas the longitudinal structure of

the correlation function Γ(x− y) is related to the x2 dependence of the TMD.

Now in order to employ Eq. (3.47) to determine the correlation function, we still

need a parametrization of the gluon TMD x2G
(2)(x2, k⊥) as input to the calculation.

We will employ the GBW Model [120] – a simple phenomenological model that has

been fit to small-x deep-inelastic scattering data – where

x2G
(2)(x2,k⊥)

∣∣∣∣
x2=x0

= NcS⊥
2π3αs

k2
⊥

Q2
s(x2) exp

− k2
⊥

Q2
s(x2)

 (3.48)

with the saturation scale Qs(x) parameterized as [120]

Qs(x) = Q0x
−λ(1− x) , (3.49)

with λ = 0.144 and the value of Q0 being set to 0.5 GeV. Since the color charges

are assumed to be x− independent, the light-cone component k+ vanishes identically

for each source, such that in terms of the spatial momenta k− = −
√

2kz and the
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momentum fraction is given by x2 = k−

p−
. Based on Eq. (3.48), the correlation function

Γ̃(k⊥, kz) of the initial color charges is then obtained as

Γ̃(k⊥, kz) =8π
g2

Nc

N2
c − 1

k4
⊥

Q2
s(x2) exp

(
− k2

⊥
Q2
s(x2)

)
(3.50)

which can be used to sample individual configurations of the color charge density as

discussed below.

3.3.2 Sampling of realistic color charge distributions

When describing the color charge distributions of atomic nuclei, we follow the Monte

Carlo Glauber Model and sample the position xi of the i = 1, · · · , A individual nuc-

leons according to a Wood-Saxon distribution. Each individual nucleon is assigned

a three-dimensional thickness profile

Ti(x, y, z) = γ√
2πR2

p

e
−(x−xi)

2−(y−yi)
2−(z−zi)

2γ2

2R2
p (3.51)

such that the overall thickness of the nucleus is given by

T (x, y, z) =
A∑
i=1

Ti(x, y, z) . (3.52)

which according to Eq. (3.47) is normalized such that
∫
d3x T (x) = 2πR2

p A, where

Rp = 2GeV−1 is the proton radius. Since the spatial distribution T typically varies

on distance scales ∼ Rp � 1/Qs, the color charge distribution inside the nuclei is

then sampled according to

ρaL/R(t, x, y, z) = gaxayaz
√
T (x, y, z)

∫
d2k⊥dkz

√
Γ̃(t,k⊥, kz)ζ̃a(k⊥, kz)eik⊥x⊥+kzz

(3.53)

where ζ(x⊥, z) = 1/a3/2χRNG(x⊥, z) are Gaussian random numbers and ζ̃(k⊥, kz)

denotes their Fourier transform. Based on the initial conditions for the charge density

profiles in Eq. (3.53), we then proceed as described in Sec. 3.1 to set up the initial

conditions and simulate the dynamics of the collision. We note that due to the

presence of longitudinal fluctuations, a finer discretization in the longitudinal (z)
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direction is required in this case, and unless stated otherwise, we will employ Q0a⊥ =

0.33 and Rp/az = 256 in our numerical studies.

3.3.3 Numerical results for realistic charges

We now proceed to the study of the collision dynamics for realistic charge profiles,

and consider head on (b = 0) Au-Au collisions for center of mass energies of 130

and 200 GeV. Since the basic features of the reaction dynamics remain essentially

the same as for the simplistic charge profiles discussed in Sec. 3.1, we will focus

our investigation on the violations of boost invariance and study the longitudinal

fluctuations which emerge naturally within our framework.

We illustrate the full 3 + 1 D structure in Fig. 3.11, which shows the different phases

of the collision for one particular event of head-on Au-Au collision at √sNN = 200

GeV. In the left panel, we show the energy density T 00
WW associated with the color

fields of the incoming nuclei, which are well separated at t = −0.37 fm/c before the

collision. Grey spheres overlaid to the energy density profile indicate the positions of

nucleons, which dominate the longitudinal and transverse large scale structure of the

energy density inside the nucleus. Small scale fluctuations of the color charge dis-

tribution results in additional inhomogeneities, clearly visible in the second nucleus.

The central panel of Fig. 3.11 shows the three dimensional profile of the transverse

pressure (T xx+T yy)/2 at the time of the collision t = 0 fm/c i.e. when the incoming

nuclei maximally overlap with each other. Since at this point, some of the individual

nucleon-nucleon collisions have already taken plane, one starts to see formation of

Glasma flux tubes of varying length, along with their fluctuations in the longit-

udinal and transverse direction. Subsequently, the Glasma flux tubes expand into

longitudinal and transverse space, as can be seen from the right panel, showing the

transverse pressure for a late time t = 0.6 fm/c after the collision. Despite the fact

that the individual flux tubes are stretched out along the longitudinal direction, as

a consequence of fluctuation one observes clear non-uniformities of the flux tubes,

along with asymmetries in the forward and backward profiles.

Since at late times the rapid longitudinal expansion of the system stretches out the
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Figure 3.11: Illustration of 3D energy density with the position of nucleons as in-
dicated by small grey spheres (left), transverse pressure during the collision (center)
and after the collision (right) for a single event of Au− Au collision at 200 GeV.

Figure 3.12: Three dimensional rendered view of transverse pressure at τ ' 0.4 fm/c
in Milne coordinates for a single event of Au-Au collision at √sNN = 130 GeV.
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Figure 3.13: Integrated transverse pressure as a function of space-time rapidity for
average and individual runs at center of mass energies of 130 and 200 GeV

longitudinal profiles, some of the features of the Glasma are not clearly visible in the

above figure and it is advantageous to visualize the corresponding structure in Milne

coordinates. We illustrate this in Fig. 3.12, where we show the three dimensional

profile for a head-on Au-Au collision at 130 GeV in x, y and η coordinates at τ '

0.4 fm/c, which characterises the rapidity fluctuations. We note that due to limited

availability of points near the light cone, we restrict ourselves to the central rapidity

range η ∈ [−0.8, 0.8]. Since at times τ ' 0.4 fm/c the color charges of the colliding

nuclei have escaped the central region, the transverse pressure profiles around mid

rapidity are well described by approximately boost invariant flux tubes of varying

transverse extent, and resemble the structures put forward in various models of

the longitudinal structure of the initial state [121, 122]. By careful inspection of

individual flux tubes in Fig. 3.12 one also observes longitudinal fluctuations, albeit

the amplitude of the longitudinal variations is significantly smaller compared to the

variations in the transverse plane.

Now in order to further analyze the longitudinal fluctuations, we consider the rapidity

profiles of the transverse pressure 〈PT (τ, η)〉⊥ averaged over the transverse plane. In

Fig. 3.13 we show the ratio of 〈PT (τ, η)〉⊥ relative to its value 〈PT (τ, η = 0)〉⊥
at mid-rapidity at τ ' 0.75 fm/c for head-on Au+Au collisions at two different
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Figure 3.14: Change in eccentricity relative to value at mid rapidity (top) and corres-
ponding alteration in event plane angle (bottom) as a function of rapidity for three
different events of head-on Au-Au collision at

√
s = 130 GeV

energies √sNN = 130, 200 GeV in the left and right panels. Different curves in

each panel correspond to the results for five individual events (labeled as Seed 0-

4), along with the symmetrized average over all events. Generally, the fluctuations

in the accessible rapidity window −0.6 < η < 0.6 are relatively small . 1%, and

appear to decrease with increasing center of mass energy, as the longitudinal profile

gets stretched out over a larger rapidity range. It is also interesting to observe that

the dominant fluctuation in individual events around mid-rapidity appears to be a

forward/backward asymmetry.

As the fluctuation in the initial state and corresponding initial energy deposition

maps to the anisotropy in azimuthal distribution of final state particle. We charac-

terize this asymmetry in the event geometry using n-th order spatial eccentricity

εn(η) = εn(η)einΦn =
∫
dr2ε(r, φ, η)rneinφ∫
dr2ε(r, φ, η)rn (3.54)

where φ = tan−1(y/x) is the azimuthal angle and ε is the energy density approxim-

ated in terms of T ττ . We demonstrate how geometry varies on event-by-event basis

by presenting eccentricity relative to its value at mid-rapidity and corresponding al-
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Figure 3.15: The factorization ratio r2(ηa, ηb) (left) and r3(ηa, ηb) (right) obtained
from initial spatial eccentricity as a function of rapidity for central Au-Au collision

teration in the event plane angle Φn, expressed as sin
[
n(Φn(η) − Φn(0))

]
, for three

randomly chosen events of Au-Au collision at
√
s = 130 GeV. It is clear from the

top panel of Fig. 3.14 that ε2 and ε3 do not follow a certain trend and may increase

(decrease) together or separately. Similarly one sees a distinguishable variation in

the event plane angle which is related to the fact that different nucleons controls

energy deposition at different rapidity and therefore the measured twist may or may

not change monotonically as shown in the bottom panel of Fig. 3.14.

The variation in event plane angle from particle to particle leads to breakdown of

factorization relation V ab
n = vanv

b
n, where V ab

n is the Fourier coefficient (anisotropic

flow) obtained from two particle correlation function of a pair of particle a and b

with Fourier coefficient va and vb respectively [24, 123]. This decorrelation of the

anisotropic flow in the forward and backward direction is characterised using initial

state εn as

rn(ηa, ηb) =

〈
Re[εn(−ηa).ε∗n(ηb)]

〉
〈
Re[εn(ηa).ε∗n(ηb)]

〉 (3.55)

where 〈〉 denotes the average over different configurations. The results for central

Au-Au collision for two different center of mass energies: 130 and 200 GeV is shown

in Fig. 3.15 with ηb = 0.6 We find that the factorization ratio is less than unity,

meaning that the correlation is stronger in the forward direction, as already seen in

the experiments [24, 25]. The stronger decorrelation at lower center of mass energies

is in agreement with the previous result Fig. 3.13 where strength of fluctuation ceases
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with the increase of collision energy. It would be interesting to extend this analysis to

larger rapidities and to other centrality classes. However, the former would require

simulations on significantly finer and larger lattices, and is therefore beyond the

scope of the present work.

3.4 Closing Remarks

We developed a framework to perform 3+1D simulations of initial energy deposition

in heavy-ion collision based on the effective theory of CGC, which takes the finite lon-

gitudinal extent of the colliding nuclei into account. Based on a simple model of the

color charge distribution, we investigated the detailed dynamics, during and shortly

after the collision. While in low energy collisions, where the longitudinal extent of

the incoming nuclei QsRγ is non-negligible, significant violations of boost invariance

can be observed, the results smoothly approach the boost invariant limit [87, 92] at

high energies where the longitudinal thickness QsRγ → 0 becomes sufficiently small.

Subsequently, we developed a more elaborate model of the three dimensional color

charge distribution in a large nucleus, where the large scale structure of the nucleus is

determined by the longitudinal and transverse positions of nucleons, while small scale

fluctuations in the longitudinal and transverse directions are determined by the x and

k⊥ dependence of transverse momentum dependent parton distributions. Based on

this model, we obtained first results regarding the three dimensional structure and its

fluctuations at two different center of mass energies, which show encouraging trends

e.g. the longitudinal rapidity profiles and fluctuations appear to become stretched

with increasing center of mass energy, which was not necessarily the case in a previous

attempt to generalize the IP-Glasma initial state to 3 + 1 dimensions [41]. We also

used this model to study the decorrelation of the initial spatial eccentricity, which is

consistent with the experimental observation.

Due to the significant computational cost of performing 3 + 1D classical Yang-Mills

simulations of the space-time dynamics our numerical results have so far been limited

to the central rapidity window for a few head-on collisions, and it would certainly

be interesting to extend the analysis to larger rapidities and higher center of mass
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energies and perform a more systematic study of the various effects as a function

of the centrality of the events. Evidently, to make contact with experimental ob-

servations, such phenomenological studies should be performed within the physical

SU(3) gauge group of QCD, where the formalism developed within this thesis can

be applied in exactly the same way, albeit further increasing the computational cost

of the simulations. Beyond the improvement of numerical simulations (see also [47]),

it would also be important to develop further analytical insights into the 3 + 1 D

space-time evolution of the Glasma, which could e.g. be obtained by analyzing the

perturbative dilute limit along the lines of [124].

Another interesting problem could be studying the production of quark-antiquark

pairs from classical 3+1 D Yang-Mills field. By coupling Dirac equation to the back-

ground Glasma field, one can study the dynamics of fermions, which can help us

in understanding the chemical thermalization in the pre-equilibrium. Although one

can obtain analytical results for dilute-dense collision [125, 126] but revisiting this

problem with a fully non-perturbative 3+1 D solution will lead to interesting phe-

nomenological applications [127, 128]
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Chapter 4

An Analytical study towards dilute

3D Glasma

In the last chapter we developed a framework to solve the 3+1 D classical Yang-Mills

equation and leveraged it to study the longitudinal dynamics of the fireball. Even

though the numerical scheme is free from any numerical instabilities but huge com-

putational cost hinders us from examining the transverse dynamics for the physical

SU(3) gauge group of QCD. In this chapter we present an analytical approach to

gain further insight from the overlapping region of the colliding nuclei. We start

by setting up the the formalism in Section 4.1 by assuming perturbation on top of

the background fields. In Section 4.2, we obtain analytic expressions for the color

fields produced in the forward light cone by using a dummy field approach. We then

employ a simple model of nuclear collision geometry to derive an analytic expression

for transverse pressure in Section 4.3 and extend it to compare our results to 3+1D

classical Yang-Mills simulation in Section 4.4

4.1 General formalism

In order to recapitulate, we quickly go over the fields and color currents of the incom-

ing nuclei prior to the collision in the CGC framework. Using light cone coordinates

x± = (x0±x3)/
√

2, the color current of a nucleus moving along x+ (denoted as “A”)

is given by

J µ
A (x+,x⊥) = δµ−ρ

a
A(x+,x⊥)ta, (4.1)
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where x⊥ = (x1, x2) are transverse coordinates and ta are the generators of the gauge

group. Within the CGC framework, the color current depends only on one of the two

light cone coordinates (in this case x+) due to static nature of the large-x partons.

The color field Aµ sourced by Eq. (4.1) is a solution to the Yang-Mills equations

DµFµν(x+, x−,x⊥) = J ν
A(x+,x⊥), (4.2)

with the gauge covariant derivative

DµFµν = ∂µFµν − ig [Aµ,Fµν ] , (4.3)

and the non-Abelian field strength tensor given by

Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ] . (4.4)

Using appropriate boundary conditions in the asymptotic past x0 → −∞, the solu-

tion to Eq. (4.2) in covariant gauge ∂µAµ = 0 is given as

A−(x+,x⊥) = φA(x+,x⊥) = −(∇2
⊥)−1ρA(x+,x⊥), (4.5)

with all other components of Aµ vanishing. The current and color field in Eqs. (4.1)

and (4.5) solve the gauge covariant continuity equation

DµJ µ(x) = 0. (4.6)

Similarly, we can consider a nucleus moving along x− (denoted as “B”) with the

analogous current and color field

J µ
B (x−,x⊥) = δµ+ρ

a
B(x−,x⊥)ta, (4.7)

A+(x−,x⊥) = φB(x−,x⊥) = −(∇2
⊥)−1ρB(x−,x⊥). (4.8)
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Now, in order to describe the collision of the incoming nuclei in the forward light-

cone, we need to solve the following equations

DµFµν(x) = J µ
A (x) + J µ

B (x), (4.9)

DµJ µ
A (x) = 0, (4.10)

DµJ µ
B (x) = 0, (4.11)

with initial conditions specified in the asymptotic past as

lim
x0→−∞

Aµ(x) = δµ− φA(x+,x⊥) + δµ+ φB(x−,x⊥), (4.12)

lim
x0→−∞

J µ
A (x) = δµ−ρA(x+,x⊥), (4.13)

lim
x0→−∞

J µ
B (x) = δµ+ρB(x−,x⊥). (4.14)

In general, there are no closed form solutions for Eq. (4.9). However, in the ultra-

relativistic limit where the nuclei becomes infinitesimally thin,

ρ(A,B)(x±,x⊥) ' δ(x±)ρ̃(A,B)(x⊥), (4.15)

the solution to Eq. (4.9) is invariant under boosts along z = x3 and a partial analyt-

ical solution is feasible. In this case one can determine the Glasma initial conditions

on the boundary of the light-cone (x+ > 0 with x− = 0 or x− > 0 with x+ = 0) [86]

which due to boost-invariance are naturally expressed in proper time τ =
√

2x+x−

and space-time rapidity η = 1/2 ln(x+/x−) coordinates. The solution at τ = 0+ in

the temporal axial gauge (Aτ = 0) takes the form

Ai(τ = 0+,x⊥) = αiA(x⊥) + αiB(x⊥), (4.16)

Aη(τ = 0+,x⊥) = ig

2
[
αiA(x⊥), αiB(x⊥)

]
, (4.17)

where the color fields αi(A,B)

αi(A,B)(x⊥) = 1
ig
V(A,B)(x⊥)∂iV †(A,B)(x⊥), (4.18)
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are expressed in terms of light-like Wilson lines

V †A(x⊥) = lim
x+→∞

P exp
(
ig

x+∫
−∞

dx′+φA(x′+,x⊥)
)
, (4.19)

V †B(x⊥) = lim
x−→∞

P exp
(
ig

x−∫
−∞

dx′−φB(x′−,x⊥)
)
. (4.20)

Using equations (4.16) and (4.17) as the initial condition, the solution at late times

τ > 0 is either obtained perturbatively, by expanding in proper time τ [32–35] or

numerically using real time lattice simulations [18, 28, 92].

Now, in order to model collisions at finite energy it is necessary to go beyond the

boost invariant approximation given by Eq. (4.15) and allow for more general color

charge densities ρ(A,B)(x±,x⊥) which exhibit a non-trivial dependence on the light

cone coordinates. Even though a fully non-perturbative numerical solution was ob-

tained in the previous chapter, going beyond certain rapidity window or including

LHC energy turned out to highly technical. In this chapter, we derive the semi-

analytical results for Eqs. (4.9) – (4.11) using the weak field approximation which

allows us to construct the solution perturbatively in powers of ρ(A,B)(x±,x⊥)

Aµ(x) = Aµ(x) + aµ(x), (4.21)

Jµ(x) = J µ(x) + jµ(x), (4.22)

where the background fields Aµ = O(ρ) and background currents J µ = O(ρ) are

given by the single nuclei solutions Eqs. (4.1), (4.5) and Eqs. (4.7), (4.8). The

perturbative fields aµ and jµ capture all higher order corrections O(ρn) with n > 1:

the color field aµ describes the (dilute) Glasma itself, while the currents jµ represent

perturbations of the color currents of the nuclei, J µ
A and J µ

B , due to non-Abelian color

rotation. Expanding to quadratic order in the color charge densities, the background

field equations read

∂µFµν(x) = J ν(x), (4.23)

∂µJ µ(x) = 0, (4.24)
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while the perturbative field equations read

∂µf
µν(x) = jν(x) + ig ∂µ [Aµ(x),Aν(x)] + ig [Aµ(x), ∂µAν(x)− ∂µAµ(x)] , (4.25)

∂µj
µ(x) = +ig [Aµ(x),J µ(x)] , (4.26)

with the perturbative field strength tensor

fµν(x) = ∂µaν(x)− ∂νaµ(x). (4.27)

Since the perturbations accounts for the Glasma created during the collision of the

two nuclei, we assume that both perturbative fields and currents vanish in the asymp-

totic past

lim
x0→−∞

aµ(x) = 0, (4.28)

lim
x0→−∞

jµ(x) = 0. (4.29)

Assuming that the color charges of the colliding nuclei do not change their trajectories

and considering the initial conditions in Eq. (4.29), the solution to Eq. (4.26) is

straight-forward:

j+(x+, x−,x⊥) = ig

x+∫
−∞

dz+
[
φA(z+,x⊥), ρB(x−,x⊥)

]
, (4.30)

j−(x+, x−,x⊥) = ig

x−∫
−∞

dz−
[
φB(z−,x⊥), ρA(x+,x⊥)

]
. (4.31)

In covariant gauge, ∂µaµ = 0, Eq. (4.25) simplifies to

∂2aµ(x) = Sµ(x), (4.32)
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where Sµ(x) are a-independent source terms given by

S+(x+, x−,x⊥) = +ig
(
∂−
[
φA(x+,x⊥), φB(x−,x⊥)

]
+
∫
+

[
φA(x+,x⊥), ρB(x−,x⊥)

] )
,

(4.33)

S−(x+, x−,x⊥) = −ig
(
∂+
[
φA(x+,x⊥), φB(x−,x⊥)

]
+
∫
−

[
ρA(x+,x⊥), φB(x−,x⊥)

] )
,

(4.34)

Si(x+, x−,x⊥) = −ig
( [
φA(x+,x⊥), ∂iφB(x−,x⊥)

]
−
[
∂iφA(x+,x⊥), φB(x−,x⊥)

] )
.

(4.35)

For future convenience, we are introducing a shorthand notation

∫
±

f(x±) ≡
x±∫
−∞

dz±f(z±). (4.36)

We emphasise that the choice of covariant gauge provides us an independent solution

for the different components of aµ in Eq. (4.32). Analyzing the x± dependence of the

source terms in Eqs. (4.33) – (4.34), we find that S±(x) are only non-zero along the

boundaries of the future light-cone, whereas Si(x) only has support in vicinity of the

collision center x+ = x− = 0. Requiring causality and appropriate initial conditions

given by Eq. (4.28), we can formally solve the field equations in Eq. (4.32) using

aµ(x) =
∫
y

G(x− y)Sµ(y), (4.37)

with the retarded propagator given by

G(z) = − 1
2πΘ(z0)δ(zµzµ). (4.38)

4.2 Dummy field approach for 3 + 1D Yang-Mills

Even though the above equations are quite neat, the convolution of the Green’s

function with the source terms is quite non-trivial and therefore we introduce a
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comprehensible way to solve these equations analytically. To begin with, we recast

the source terms in Eqs. (4.33) – (4.35) as

S+(x) =
∫
p⊥

∫
q⊥

+ ∂

∂x−
+ q2

⊥

∫
x+

(−gfabctcφ̃aA(x+, p⊥)φ̃bB(x−, q⊥)
)
e−i(p+q)⊥·x⊥ (4.39)

S−(x) =
∫
p⊥

∫
q⊥

− ∂

∂x+ − p
2
⊥

∫
x−

(−gfabctcφ̃aA(x+, p⊥)φ̃bB(x−, q⊥)
)
e−i(p+q)⊥·x⊥

(4.40)

Si(x) = +
∫
p⊥

∫
q⊥

i(pi − qi)
(
−gfabctcφ̃aA(x+, p⊥)φ̃bB(x−, q⊥)

)
e−i(p+q)⊥·x⊥ (4.41)

where
∫
p⊥

=
∫ d2p⊥

(2π)2 and define a dummy source

Sd(x+, x−, p⊥, q⊥) = −gfabctcφ̃aA(x+, p⊥)φ̃bB(x−, q⊥) (4.42)

such that the expression for the source terms simplifies to

S+(x) =
∫
p⊥

∫
q⊥

 ∂

∂x−
+ q2

⊥

∫
x+

Sd(x+, x−, p⊥, q⊥)e−i(p+q)⊥·x⊥ , (4.43)

S−(x) =
∫
p⊥

∫
q⊥

− ∂

∂x+ − p
2
⊥

∫
x−

Sd(x+, x−, p⊥, q⊥)e−i(p+q)⊥·x⊥ , (4.44)

Si(x) =
∫
p⊥

∫
q⊥

i(qi − pi)Sd(x+, x−, p⊥, q⊥)e−i(p+q)⊥·x⊥ . (4.45)

Now, using the general form of Eq. (4.37), the solution for the transverse gauge field

is given by

ai(x) =
∫
y

G(x− y)Si(y)

=
∫
dy+dy−

∫
y⊥

G(x− y)
∫
p⊥

∫
q⊥

i(pi − qi)Sd(y+, y−, p⊥, q⊥)e−i(p+q)⊥·y⊥

=
∫
dy+dy−

∫
p⊥

∫
q⊥

i(pi − qi)Sd(y+, y−, p⊥, q⊥)
∫
y⊥

G(x− y)e−i(p+q)⊥·y⊥ . (4.46)
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Using the redefinition zµ = xµ − yµ we can solve the integral over y⊥:

∫
y⊥

G(x− y)e−i(p+q)⊥·y⊥ = −e−i(p+q)⊥·x⊥
∞∫
0

dρρ

2π∫
0

dθ
1

2πΘ(z)δ(2z+z− − ρ2)e−i|p+q|ρ cos θ

= −e−i(p+q)⊥·x⊥Θ(z0)
∞∫
0

dρρ δ(2z+z− − ρ2)J0(|p+ q|ρ)

= −1
2Θ(z0)Θ(τ)J0(|p+ q|

√
2z+z−)e−i(p+q)⊥·x⊥ , (4.47)

where ρ = |z⊥| and |p+ q| = |(p+ q)⊥|. The two Heaviside functions imply that this

integral is only non-vanishing in the forward light cone. On inserting this result into

Eq. (4.46), we get

ai(x) = −1
2

∫
p⊥

∫
q⊥

i(pi − qi)
∞∫
0

dz+
∞∫
0

dz−Sd(x+ − z+, x− − z−, p⊥, q⊥)×

J0(|p+ q|
√

2z+z−)e−i(p+q)⊥·x⊥ (4.48)

Similarly, the solution for light-cone gauge fields can be given as

a+(x) = −1
2

∫
p⊥

∫
q⊥

(
+ ∂

∂x−
+ q2

⊥

∫
x+

) ∞∫
0

dz+
∞∫
0

dz−Sd(x+ − z+, x− − z−, p⊥, q⊥)×

J0(|p+ q|
√

2z+z−)e−i(p+q)⊥·x⊥ , (4.49)

a−(x) = −1
2

∫
p⊥

∫
q⊥

(
− ∂

∂x+ − p
2
⊥

∫
x−

) ∞∫
0

dz+
∞∫
0

dz−Sd(x+ − z+, x− − z−, p⊥, q⊥)×

J0(|p+ q|
√

2z+z−)e−i(p+q)⊥·x⊥ . (4.50)

In regards to the dummy source, we define the dummy fields

ad(x+, x−, p⊥, q⊥) = g

2

∞∫
0

dz+
∞∫
0

dz−fabct
cφ̃aA(x+ − z+, p⊥)φ̃bB(x− − z−, q⊥)×

J0(|p+ q|
√

2z+z−) (4.51)
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which shortens the expression for the gauge fields to

ai(x) =
∫
p⊥

∫
q⊥

i(pi − qi)ad(x+, x−, p⊥, q⊥)e−i(p+q)⊥·x⊥ , (4.52)

a+(x) =
∫
p⊥

∫
q⊥

(
+ ∂

∂x−
+ q2

⊥

∫
x+

)
ad(x+, x−, p⊥, q⊥)e−i(p+q)⊥·x⊥ , (4.53)

a−(x) =
∫
p⊥

∫
q⊥

(
− ∂

∂x+ − p
2
⊥

∫
x−

)
ad(x+, x−, p⊥, q⊥)e−i(p+q)⊥·x⊥ . (4.54)

We can further simplify the expressions for a± by explicitly carrying out the integ-

ration and derivative on the dummy fields in (4.53) and (4.54). Starting with the

derivative term in Eq. (4.53), we use integration by parts to find

∂
(x)
− ad(x+, x−, p⊥, q⊥) = g

2fabct
c

∞∫
0

dz+
∞∫
0

dz−φ̃aA(x+ − z+, p⊥)φ̃bB(x− − z−, q⊥)×

∂
(z)
− J0(|p+ q|τz) + g

2fabct
c

∞∫
0

dz+φ̃aA(x+ − z+, p⊥)φ̃bB(x−, q⊥).

(4.55)

where τz =
√

2z+z−. The second term in the above equation is the boundary term

for z− → 0, which is proportional to the color potential φ̃bB(x−, q⊥) that vanishes far

inside the future light-cone. Using

∂±τz = z∓/τz, (4.56)

∂±J0(|p+ q|τz) = −J1(|p+ q|τz)|p+ q|z
∓

τz
, (4.57)

we find

∂
(x)
− ad(x+, x−, p⊥, q⊥) ' −g2fabct

c

∞∫
0

dz+
∞∫
0

dz−φ̃aA(x+ − z+, p⊥)φ̃bB(x− − z−, q⊥)×

|p+ q|z
+

τz
J1(|p+ q|τz). (4.58)

where we used ' to denote that this expression is strictly valid inside the future light

cone.
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Now we can examine the term involving an integration in Eq. (4.53)

x+∫
−∞

dx̃+ad(x̃+, x−, p⊥, q⊥) = g

2fabct
c

x+∫
−∞

dx̃+
+∞∫
0

dz+
+∞∫
0

dz−φ̃aA(x̃+ − z+, p⊥)×

φ̃bB(x− − z−, q⊥)J0(|p+ q|τz). (4.59)

The integration over z+ and x̃+ can be re-arranged in the following way:

+∞∫
0

dz+
x+∫
−∞

dx̃+f(x̃+ − z+)g(z+, z−) =
+∞∫
0

dz+
x+−z+∫
−∞

dx̃+f(x̃+)g(z+, z−)

=
x+∫
−∞

dx̃+f(x̃+)
x+−x̃+∫

0

dz+g(z+, z−)

=
+∞∫
0

dz+f(x+ − z+)
z+∫
0

dz̃+g(z̃+, z−). (4.60)

Equation (4.59) can therefore be written as

x+∫
−∞

dx̃+ad(x̃+, x−, p⊥, q⊥) = g

2fabct
c

+∞∫
0

dz+
+∞∫
0

dz−φ̃aA(x̃+ − z+, p⊥)φ̃bB(x− − z−, q⊥)×

z+∫
0

dz̃+ J0(|p+ q|
√

2z̃+z−). (4.61)

The integral over the Bessel function

z+∫
0

dz̃+ J0(|p+ q|
√

2z̃+z−) = 1
|p+ q|

τz
z−
J1(|p+ q|τz), (4.62)

leads to

x+∫
−∞

dx̃+ad(x̃+, x−, p⊥, q⊥) = g

2fabct
c

+∞∫
0

dz+
+∞∫
0

dz−φ̃aA(x̃+−z+, p⊥)φ̃bB(x−−z−, q⊥)×

1
|p+ q|

τz
z−
J1(|p+ q|τz). (4.63)

Combining Eqs. (4.58) and (4.63) yields the required expression for a+ field. One
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can perform a similar calculation to obtain a related expression for a− field. With

this, we can write all the components of the gauge fields as:

a+ ' g

2fabct
c
∫
p,q

+∞∫
0

dz+dz−φ̃aA(x̃+−z+, p⊥)φ̃bB(x−−z−, q⊥)
(
−(p+ q)2

⊥ + 2q2
⊥

)
×

1
|p+q|

z+

τz
J1(|p+ q|τz)e−i(p+q)·x, (4.64)

a− ' g

2fabct
c
∫
p,q

+∞∫
0

dz+dz−φ̃aA(x̃+−z+, p⊥)φ̃bB(x−−z−, q⊥)
(
+(p+ q)2

⊥ − 2p2
⊥

)
×

1
|p+q|

z−

τz
J1(|p+ q|τz)e−i(p+q)·x (4.65)

ai = g

2fabct
c
∫
p,q
i(pi − qi)

+∞∫
0

dz+
+∞∫
0

dz−φ̃aA(x̃+−z+, p⊥)φ̃bB(x−−z−, q⊥)×

J0(|p+ q|τz)e−i(p+q)·x (4.66)

These are the fundamental results of our analytical calculation. At this stage, one

can check that our gauge condition ∂µaµ = 0, still holds. With these non-zero fields,

we can now explore the space-time dynamics for different nuclear models.

4.3 Nuclear Model & Transverse Pressure

Using the above analytical calculation, the longitudinal structure of the Glasma at

late times can be obtained by considering a model for the color charge distribution

inside a nucleus. We assume a simple MV-like model given by

〈
ρa(x+, x⊥)ρb(x′+, x′⊥)

〉
= g2µ2TR(x

+ + x′+

2 )Uε(x+ − x′+)δabδ(2)(x⊥ − x′⊥) (4.67)

where the functions T and U are normalised Gaussian functions with width R and

ε identified as the Lorentz contracted nuclear length and correlation length respect-

ively. The constant µ is the MV model parameter which is related to saturation

momentum Qs via the relation Qs ∝ g2µ. In order to enforce color neutrality on

average, one point function is assumed to be zero.

Based on the above model, we can now address a wide range of observables that would

aid in the characterization of a dilute Glasma. In particular, it would be interesting
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to consider the various components of the energy-momentum tensor which in the

continuum limit takes the following form

T µν = −Fa,µρFa,νρ + 1
4g

µνFa,ρσFaρσ

= 2 Tr
[
− fµρf νρ + 1

4g
µνfρσfρσ︸ ︷︷ ︸

Perturbative

−
(
F µρf νρ + fµρF ν

ρ

)
+ 1

2g
µνfρσFρσ︸ ︷︷ ︸

Mixed Term

− F µρF ν
ρ + 1

4F
ρσF ρσ︸ ︷︷ ︸

Background

]
(4.68)

However, for the purpose of this thesis, we will be considering the transverse pressure

as it is solely generated during the collision and hence has no contribution from the

background and the mixed part. The transverse pressure is given by

pT = εE,L + εB,L (4.69)

where εE,L and εB,L are the longitudinal electric and longitudinal magnetic field

given by

εE,L =
〈
Trf 2

+−

〉
(4.70)

εB,L = 1
2
〈
Trf 2

ij

〉
(4.71)

Longitudinal Magnetic field

To get the longitudinal magnetic field, we first calculate the corresponding field

strength fij with Eq. (4.52)

fij = ∂iaj − ∂jai = 2
∫
p,q

(qipj − piqj)ad(x+, x−, p⊥, q⊥)e−i(p+q)⊥·x⊥ . (4.72)

The square of the above expression contains integrals over four color potentials,

arising from the dummy fields. Since it is quite convenient to solve such integrals in

Fourier space, we write the correlation function in Eq. (4.67) as

〈
ρa(x+, p⊥)ρb(x′+, q⊥)

〉
= g2µ2TR(x

+ + x′+

2 )Uε(x+ − x′+)δabδ(2)(p⊥ + q⊥) (4.73)
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Exploiting the fact that the nuclear model is diagonal in momentum space we have

εB,L = 1
2
〈
Trf 2

ij

〉
= 4

∫
p,q

(p2
⊥q

2
⊥ − (p · q)2

⊥)
〈
Tr

[
ad(x+, x−, p⊥, q⊥)ad(x+, x−,−p⊥,−q⊥)

]〉

= g2

2 Nc(N2
c − 1)

∫
p,q

∫
z±

∫
z̄±

(p2
⊥q

2
⊥ − (p · q)2

⊥)
〈
φ̃A(x+ − z+, p⊥)φ̃A(x+ − z̄+,−p⊥)

〉
×

〈
φ̃B(x− − z−, q⊥)φ̃B(x− − z̄−,−q⊥)

〉
J0(|p+ q|τz)J0(|p+ q|τz̄)

= g2

2 Nc(N2
c − 1)

∫
p,q

∫
z±

∫
z̄±

J0(|p+ q|τz)J0(|p+ q|τz̄)(p2
⊥q

2
⊥ − (p · q)2

⊥)CA(p⊥)×

CB(q⊥)TA(x+ − z+ + z̄+

2 )TB(x− − z− + z̄−

2 )UA(z̄+ − z+)UB(z̄− − z−)

(4.74)

where we have used the shorthand notation
∫
z±
∫
z̄± =

∫∞
0 dz+ ∫∞

0 dz−
∫∞

0 dz̄+ ∫∞
0 dz̄−

and evaluated the color structures as fabcfabc = Nc(N2
c − 1). To obtain the last

equality, we have used Eqs. (4.5) and (4.8), and replaced the gauge fields correlators

with our nuclear model such that the overall transverse dependence is characterised

by

C(p⊥) = g2µ2

(p2
⊥ +m2)2 e

−
p2
⊥
λ2 . (4.75)

It is obvious from the Eq. (4.74) that one can perform a change of variables to

average and difference coordinate, and since T and U are both Gaussian function,

we can change the limits of integration to

∫ ∞
0

dz+
∫ ∞

0
dz−

∫ ∞
0

dz̄+
∫ ∞

0
dz̄− =

∫ ∞
0

dZ+
∫ +2Z+

−2Z+
dδz+

∫ ∞
0

dZ−
∫ +2Z−

−2Z−
δdz−

(4.76)

The resultant expression for the longitudinal magnetic field is then given by

εB,L = g2

2 Nc(N2
c − 1)

∫
p,q

∞∫
0

dZ+
∞∫
0

dZ−
+2Z+∫
−2Z+

dδz+
+2Z−∫
−2Z−

dδz−
(
p2
⊥q

2
⊥ − (p · q)2

⊥

)
×

CA(p⊥)CB(q⊥)TA(x+ − Z+)TB(x− − Z−)UA(δz+)UB(δz−)×

J0
(
|p+ q|τz)J0

(
|p+ q|τz̄)

)
(4.77)
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with τz =
√

2(Z+ + δz+/2)(Z− + δz−/2) and τz̄ =
√

2(Z+ − δz+/2)(Z− − δz−/2)

Longitudinal Electric field

In order to calculate the longitudinal electric field, we start again with the calculation

of the associated field strength f+− by using Eqs. (4.53) and (4.54)

f+− = ∂+a
+ − ∂−a−

=
∫
p,q

(
2∂+∂−ad(x+, x−, p⊥, q⊥)︸ ︷︷ ︸

Q

+(p2
⊥ + q2

⊥)ad(x+, x−, p⊥, q⊥)
)
e−i(p+q)⊥·x⊥

(4.78)

Since we have already calculated the derivative of the dummy field in Eq. (4.58),

we differentiate it again with respect to to x+ to get the first term of the above

expression (denoted by Q)

Q ' −gfabctc
∞∫
0

dz+
∞∫
0

dz−∂
(x)
+ φ̃aA(x+−z+, p⊥)φ̃bB(x−−z−, q⊥)|p+ q|z

+

τz
J1(|p+ q|τz)

= −gfabctc
∞∫
0

dz+
∞∫
0

dz−φ̃aA(x+−z+, p⊥)φ̃bB(x−−z−, q⊥)|p+ q|∂(z)
+

(
z+

τz
J1(|p+ q|τz)

)

= −g2fabct
c

∞∫
0

dz+
∞∫
0

dz−φ̃aA(x+−z+, p⊥)φ̃bB(x−−z−, q⊥)|p+ q|2J0(|p+ q|τz),

(4.79)

The first approximation relates to the omission of boundary terms that are not

relevant within the forward light-cone. To get the final equality, we used the Bessel

identity

2
x
J1(x) = J0(x) + J2(x). (4.80)

The field strength in Eq. (4.78) is then obtained by summing (4.79) with the expan-

ded form of dummy field

f+− = −gfabctc
∫
p,q

∞∫
0

dz+
∞∫
0

dz−φ̃aA(x+−z+, p⊥)φ̃bB(x−−z−, q⊥)(p · q)⊥J0(|p+ q|τz).

(4.81)
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Dilute 3+1D CYM [1] 3+1D CPIC [113]
g2µ g2µ̄√

2 g2µ

R Rγ
2

Rγ
2

m/Λ m/Λ m/Λ

Table 4.1: Parameters for comparing (semi-)analytical results with 3 + 1 D simula-
tions

With this, the expression for the longitudinal electric field takes the following form

εE,L =
〈
Tr
[
f 2

+−

]〉
= g2

2 Nc(N2
c − 1)

∫
p,q

∫
z±

∫
z̄±

〈
φ̃A(x+−z+, p⊥)φ̃A(x+−z̄+,−p⊥)

〉
×

〈
φ̃B(x−−z−, q⊥)φ̃B(x−−z̄−,−q⊥)

〉
(p · q)2

⊥J0(|p+ q|τz)J0(|p+ q|τz̄)

= g2

2 Nc(N2
c − 1)

∫
p,q

∞∫
0

dZ+
∞∫
0

dZ−
+2Z+∫
−2Z+

dδz+
+2Z−∫
−2Z−

dδz−(p · q)2
⊥CA(p⊥)CB(q⊥)×

J0(|p+ q|τz)J0(|p+ q|τz̄)TA(x+ − Z+)TB(x− − Z−)UA(δz+)UB(δz−).

(4.82)

Using Eqs. (4.77) and (4.82), the resultant expression for the transverse pressure is

given as

pT = g2

2 Nc(N2
c − 1)

∫
p,q

∞∫
0

dZ+
∞∫
0

dZ−
+2Z+∫
−2Z+

dδz+
+2Z−∫
−2Z−

dδz−p2
⊥q

2
⊥CA(p⊥)CB(q⊥)×

TA(x+ − Z+)TB(x− − Z−)UA(δz+)UB(δz−)J0(|p+ q|τz)J0(|p+ q|τz̄).

(4.83)

This is the main result of this chapter which shows the dependence of the transverse

pressure on the longitudinal structure of the colliding nuclei. We also note that

by regularising the color potential in the dummy sources (4.42) as φA/B(x±, x) ≡

δ(x±)φA/B(x⊥), the result for 3 + 1 D reduces to the result for 2 + 1 D [86, 129, 130]

(refer to Appendix B for more details)

pT = g2

2 Nc(N2
c − 1)

∫
p,q

CA(p⊥)CB(q⊥)J2
0 (|p+ q|τ)p2

⊥q
2
⊥ (4.84)
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4.4 Numerical results & comparisons to 3+1 D

simulations

As the basic features of the reaction dynamics for 3 + 1 D collisions have already

been examined in detail using real time lattice simulation. Here we determine the

effectiveness of our analytical calculation based on the weak-field approximations by

comparing them with full 3+1 D simulations. In our 3 + 1 D simulations, we defined

the color charge density using ρa(x, y, z) = ρa(2D)(x, y)T (z), which leads to a less

general model given by

〈
ρa(z, x⊥)ρb(z′, x′⊥)

〉
3D

= g2µ2T̃Rγ (z)T̃Rγ (z′)δabδ(2)(x⊥ − x′⊥) (4.85)

Since the color charges are assumed to be x− independent, we can write the above

two-point function in light-cone coordinate system as

〈
ρa(x+, x⊥)ρb(x′+, x′⊥)

〉
3D

= g2µ′2T̃R′(x+)T̃R′(x′+)δabδ(2)(x⊥ − x′⊥), (4.86)

where

µ =
√

2µ′ (4.87)

Rγ =
√

2R′ (4.88)

Now on comparing Eqs. (4.67) and (4.86), we find that the correlators can be matched

by equating the factorised longitudinal dependence as

µ2TR(x
+ + x′+

2 )Tε(x+ − x′+) = µ′2TR′(x+)TR′(x′+). (4.89)

By multiplying the two Gaussians on the left, we find that for ε = 2R, the cross

terms cancel and then the resultant relations are given as

R = Rγ

2 (4.90)

µ =
µ√
2

(4.91)
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Figure 4.1: Transverse pressure as a function of rapidity for three different simulation
parameters in the dilute limit: g2µ/m = 0.5 (left), g2µ/m = 1.0 (middle) and
g2µ/m = 2.0 (right) compared to results from two different numerical schemes (3+1D
CPIC [113] and 3+1D CYM [1]). In the dilute approximation, the transverse pressure
is evaluated at mτ = 8, while the 3+1D simulations are evaluated at g2µτ = 1 in the
case of g2µR ∈ {1/8, 1/4} and g2µτ = 2 for g2µR ∈ {1/2, 1}. The only exception is
g2µR = 1 and g2µ/m = 2, where we use g2µτ = 2. These plots were made by David
Müller.

In Table 4.1, we have summarized the parameters for the analytical results obtained

from Monte-Carlo integration (Dilute) and two different 3+1 D simulation schemes

(3+1D CYM and 3+1D CPIC) with which we will determine the extent to which

the results of our weak-field approximations agree with the fully non-perturbative

real time lattice simulations.

We note that the non-linearity which measures the strength of diluteness of a model,

can be controlled by the dimensionless ratio of the color charge density g2µ and

the infrared regulator m. We vary this dimensionless parameter and compare the

transverse pressure as obtained from the analytical result and the result from 3+1 D

simulations, for different longitudinal extent of the colliding nuclei in Fig. 4.1. The

transverse discretization of the lattice in the two scheme were set to be same: ma⊥ =

0.125 andma⊥N⊥ = 16 withm/Λ = 5. Since the two simulation relies on completely

different numerical schemes, the longitudinal discretization of the lattice is different,

however in both cases, the discretization is chosen such that the nucleus is properly
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Figure 4.2: Transverse pressure corresponding to two different limits of coherence
length: ε/R = 0.1 (left) and ε/R → 0 (right), for various thickness of the incoming
nuclei.

resolved Rγ/az � 1, and the two nuclei propagate large enough after the collision

i.e Nzaz � Rγ.

Since, we are interested in late times where in the boost-invariant limit transverse

pressure τpT (τ) becomes independent of the proper-time τ , we scale the transverse

pressure in Fig 4.1 with proper time τ . We primarily focus our attention on coherent

color fields ε = 2R for which the nuclear model used for analytical calculations and

simulations is identical. Before discussing the results of our weak field approxim-

ation, we emphasize that the results of two different 3 + 1 D classical Yang mills

implementations are in excellent agreement with each other. We find that, as per

our expectation, the analytical calculation works remarkably well in the dilute limit

g2µ/m = 0.5 as seen from the left panel of Fig. 4.1. By increasing the non-linearity

of the model g2µ/m ≥ 1, we find that the analytical results in the dilute limit overes-

timate the transverse pressure; nevertheless the rapidity profiles are still reproduced

rather well and the flattening of the rapidity profiles with increasing g2µ/m is cor-

rectly predicted by the (semi-)analytic calculation. It is further interesting to note

that the ratio of the analytical to that of the simulation results are roughly the same

for different thickness of the colliding nuclei, which suggests that the non-linearity

could effectively be introduced by re-scaling the pressure profile. Besides the signi-
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Figure 4.3: Transverse pressure relative to its value at mid-rapidity for different
thickness of colliding nuclei along with fixed infrared regulator (left) and fixed UV
regulator (right)

ficantly smaller computational cost, another enormous benefit of the semi-analytic

calculation is that it is not bounded by lattice size and therefore can estimate result

at larger rapidities, as is clearly visible from Fig. 4.1.

Now that we have established that our analytical results reproduces the full 3+1D

numerical simulations in the dilute limit, we will further use it to consider the various

limits of our nuclear model. We start by looking at the coherence length ε/R,

which accounts for the randomness of color charges across a fixed longitudinal extent

of the nucleus. Naturally, the longitudinal extent of the nucleus is greater than

the longitudinal extent of color charge distribution and hence for a physical limit

ε/R < 1. In Fig 4.2, we plot the transverse pressure for different thicknesses of

colliding nuclei while considering two different values of ε/R = 0.1 (left panel) and

ε/R → 0 (right panel) corresponding to the McLerran-Venugopalan (MV) model.

We further include a comparsion of the results of the 3+1D dilute calculation, to the

corresponding result in 2+1D boost-invariant limit, which is obtained by integrating

Eq. 4.84. We observe that the curves in both the panels approach the same boost-

invariant plateau around mid-rapidity, whereas the flanks at larger rapidities are

different and depend on the correlation length ε/R. By decreasing the thickness of

the colliding nuclei g2µR → 0, one approaches the boost invariant limit, where the

central plateau extends across all rapidities.
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Next we will investigate the dependence of the rapidity profile on the UV and IR

regulators. In Fig. 4.3, we plot the transverse pressure normalized to its value at

mid-rapidity for different longitudinal extents g2µR. In the left panel we fix the UV

regulator to Λ = 5g2µ and vary the infrared regulator m to three different values.

Similarly, for the right panel, the IR regulator is set to constantm = g2µ, and Λ takes

three different values. We observe that for a constant proper time g2µτ0 = 5, the

profiles are largely insensitive to the variation. Similar to Fig 4.2, a boost invariant

plateau around mid-rapidity emerges upon decreasing the thickness of the colliding

nuclei.

4.5 Closing Remarks

We performed the first analytic calculation of the longitudinal profiles of the energy

deposition in heavy-ion collisions, by considering the collision of extended nuclei in

the dilute limit of the Color Glass Condensate effective field theory of high-energy

QCD. We obtained general analytic expressions for the color fields produced in the

forward light cone (c.f. Eqns. 4.64, 4.65, 4.66), and employed them to evaluate

the rapidity profile of the transverse pressure within a simple specific model of the

nuclear collision geometry.

By comparing the (semi-)analytic results in the dilute approximation to non-perturbative

3+1 D classical Yang-Mills simulations, we confirm excellent agreement in the di-

lute regime. Even beyond the dilute limit, our approximation appears to capture

the rapidity profiles rather well, while the overall magnitude of energy deposition is

overestimated.

Since our analytic expressions allow for an efficient numerical determination of the

energy momentum tensor T µν , the results presented in this thesis provide new op-

portunities to further explore the longitudinal structure of matter produced in high-

energy heavy-ion collisions, to study e.g. the interplay of longitudinal and transverse

fluctuations and develop new Monte-Carlo event generators for the initial state of

heavy-ion collisions.
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In the spirit of the global polarization measurement in non central collisions [131, 132]

and the measurement of anomalous transport phenomenon related with the Chiral-

Magnetic effect [133–135] at RHIC and LHC energies, it could also be interesting

to investigate the angular momentum of Glasma, one and two point function of the

energy density and Chern-Simons current, in the near future. Since these initial

state correlation are reflected in the collective dynamics of QGP medium, extending

the previous boost-invariant calculations [36, 37, 136, 137] to 3+1 D will help in

properly characterising the transport properties of the medium.
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Chapter 5

Longitudinal structure of initial state

in p-Pb collisions

This chapter shows an application of a 3+1 D CGC model to the phenomenological

study of azimuthal correlations in p+Pb collisions. Section 5.1 refers to the approach

of extending the 2+1 D IP-Glasma model to three dimension by using JIMWLK

evolution equations. We would like to emphasize that this formalism also includes

the rapidity structure which results from the fluctuation of the color charges within

the forward light-cone but in contrast to the framework developed in the previous two

chapters, regards the color charges as static. The advantage of using this framework

is that it makes simulations significantly less expensive and enables phenomenological

studies. In Section 5.2, we study the nature of high and low multiplicity events by

computing the gluon multiplicity distribution and dipole scattering amplitude. We

then turn to a detailed discussion of event geometry and initial state momentum

correlations in Section 5.3.

5.1 The 3D IP-Glasma model

We follow the description of [59, 61, 63, 138–140] which is built on the high-energy

factorization of the expectation values of sufficiently inclusive quantities [141–143].

Based on the Color Glass Condensate effective field theory of high-energy QCD,

observables O(yobs) at a rapidity yobs can be calculated on an event-by-event basis

O(yobs) = Ocl

(
V p

x⊥(−yobs), V Pb
x⊥ (+yobs)

)
, (5.1)

93



as a functional of the light-like Wilson lines V p
x⊥(−yobs) and V Pb

x⊥ (+yobs) of the pro-

jectile (p) and target (Pb), by solving the classical Yang-Mills (CYM) equations

[Dµ, F
µν ] = 0. Starting from initial conditions V p/Pb

x⊥ (−ymax) determined by the

IP-Glasma model [18, 19] at the maximal observed rapidity ymax, the rapidity evol-

ution of the light-like Wilson lines V p/Pb
x⊥ (y) is calculated by the JIMWLK evolution

equation (2.109), which therefore governs the longitudinal structure of observables

according to Eq. (5.1). While the factorization in Eq. (5.1) has been proven only

for inclusive quantities which encompass measurements at a single rapidity [141],

we will use the same prescription to calculate un-equal rapidity correlations on an

event-by-event basis. We believe that extension of factorization framework beyond

the local observable will at least capture the important effects of unequal rapidity

correlations, and refer to [144] for additional discussions of the associated caveats,

and provide details of the implementation of the 3D-Glasma model below.

5.1.1 IP-Glasma initial condition

The IP-Glasma model combines a model for the initial color charge density distribu-

tion with a solver for the Yang-Mills equations, which govern the initial conditions

and evolution of the gluon fields produced in the collision of two nuclei. Here, we use

it to determine the nuclei’s gluon Wilson lines at the initial rapidities (the largest x

values). Wilson lines at smaller x then follow from JIMWLK evolution.

The gluon fields in the incoming nuclei are generated by the moving valence charges

according to the Yang-Mills equations [Dµ, F
µν ] = Jν . The current on the right hand

side of this equation is given by the sum of the two nuclei’s color currents (the moving

large x degrees of freedom)

Jν = δν+ρPb(x⊥)δ(x−) + δν−ρp(x⊥)δ(x+) . (5.2)

The color charges ρPb(x⊥) and ρp(x⊥) will be sampled from a color charge density

assuming local Gaussian correlations as in the McLerran-Venugopalan (MV) model

[83, 145]. The spatially dependent color charge densities, g2µPb/p(x,b⊥) are determ-
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ined using the IPSat model [146, 147], as described in Appendix C. It provides the

saturation scale as a function of the nuclear thickness function at a given Bjorken x.

In fact, in IP-Glasma we self-consistently determine Qs(x,b⊥) by iteratively solving

for

x = x(b⊥) = Qs(x,b⊥)
√
sNN

e−y , (5.3)

with √sNN being the center of mass energy of the collision.

The thickness functions, which provide the b⊥ dependence, are determined from

sampling a Woods-Saxon distribution (in the case of the Pb nucleus) and using

a 2D Gaussian distribution for every nucleon. The parameters of the model are

constrained using deeply inelastic scattering data on protons from HERA [148]. For

a detailed description of the implementation used in this work see [149]. The public

IP-Glasma code can be found at [150].

In practice, for each nucleus one solves for the Wilson lines numerically, approxim-

ating the path ordered exponential by the product [85]

V Pb/p
x⊥ =

Ny∏
k=1

exp
(
− ig

ρkPb/p(x⊥)
∇2 + m̃2

)
. (5.4)

Here, m̃ = 0.2 GeV is an infrared regulator that is used to avoid unphysical Coulomb

tails, Ny = 50 is the number of slices in the longitudinal direction, and, as in the

McLerran-Venugopalan model, the ρkPb and ρkp have zero mean and their two-point

functions satisfy (suppressing the subscripts Pb and p for clarity)

〈ρai (b⊥)ρbj(x⊥)〉 = g2µ2(x,b⊥)
Ny

δabδijδ(2)(b⊥ − x⊥) . (5.5)

We generate a total of Np = 32 and NPb = 8 configurations of the Wilson lines

V p/Pb
x⊥ (−ymax) of the proton and lead nuclei at the largest x value, corresponding to

the initial rapidity −ymax = −2.4, with transverse coordinates (x⊥) discretized on a

Ns ×Ns lattice with Ns = 1024 sites and lattice spacing as = 0.02 fm.
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5.1.2 JIMWLK evolution

Starting from the IP-Glasma initial conditions for the Wilson lines V p/Pb
x⊥ (−ymax),

we perform the JIMWLK [104, 151–154] evolution from y = −2.4 to y = +2.4 for

each configuration of the proton and nucleus. We store the configurations for various

slices in rapidity, in steps of y = 0.2

The implementation of the JIMWLK solver is based on the Eq. (5.1), which clearly

reflects that the rapidity evolution in two nuclei is different ±yp/Pbobs when computing

observables at yobs 6= 0. Specifically, we express the JIMWLK hierarchy in terms

of a functional Langevin equation for the Wilson lines using Eqs. (2.109) – (2.113).

For the purpose of completeness, we again write the JIMWLK equation for each

Langevin step as derived in [109]

Vx⊥(y + dy) = exp
{
− i
√
αsdy

π

∫
z⊥
Kx⊥−z⊥ ·

(
Vz⊥ξz⊥V

†
z⊥

)}

× Vx⊥(y) exp
{
i

√
αsdy

π

∫
z⊥
Kx⊥−z⊥ · ξz⊥

}
, (5.6)

with Gaussian noise ξz⊥ = (ξaz⊥,1t
a, ξaz⊥,2t

a) that is local in transverse coordinate,

color, and rapidity: 〈ξbz⊥,i(Y )〉 = 0 and

〈ξax⊥,i(y)ξby⊥,j(y
′)〉 = δabδijδ(2)

x⊥y⊥δ(y − y
′) . (5.7)

Following [110], we employ a regularized JIMWLK kernel

Kx⊥−z⊥ = m|x⊥ − z⊥| K1(m|x⊥ − z⊥|)
x⊥ − z⊥

(x⊥ − z⊥)2 , (5.8)

which suppresses emission at large distance scales and limits growth in impact para-

meter space. The modified Bessel function of the second kind K1(x) behaves as

xK1(x) = 1 + O(x2) for small arguments x, leaving the kernel approximately un-

modified. In contrast, for large arguments K1(x) =
√

π
2xe
−x decays exponentially.

We note that the only free parameters controlling the JIMWLK evolution in Eq. (5.6)

are the (fixed) coupling constant αs and the infrared regulatorm, and we will consider

variations of both parameters to assess the sensitivity of our results. We illustrate
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Figure 5.1: Trace of Wilson line as a function of transverse coordinates to show
the rapidity evolution of three random proton configurations obtained via JIMWLK
evolution. Simulation parameters: αs = 0.3 and m = 0.2 GeV

the JIMWLK evolution in Fig. 5.1, where we present the transverse structure of

three different protons by plotting trace of Wilson line 1−Re[tr(Vx⊥)]/Nc at differ-

ent rapidities. The leftmost column shows the proton structure at y = −2.4 with

gluon fields concentrated in three hot spots at the position of constituent quarks.

We observe that with smaller x or higher rapidities additional fluctuations in the

gluon distribution influence the shape of the proton, which largely has an imprint

of the gluon distribution at the largest x (y = −2.4), as already mentioned in [110].

As x decreases, the saturation scale Qs increases, which ultimately leads to a de-

crease in the characteristic transverse length scale ∝ 1/Qs, which means that the

resulting small-scale structure becomes finer. Later we will see how this significant

fluctuation in the gluon distribution of the proton affects the rapidity dependence of

the observables.
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5.1.3 Event generation & classical Yang-Mills evolution

Having determinedNp proton configurations andNPb lead configurations over the en-

tire range of rapidities −2.4 ≤ y ≤ 2.4, we proceed to generate events, where for each

of the Np ×NPb combination of protons and lead nuclei, we perform Nb⊥ = 16 col-

lisions with different impact parameter b⊥, sampled according to a two-dimensional

uniform distribution with the restriction 0 < |b⊥| < 8 fm.1

Based on the JIMWLK evolved Wilson lines, the initial conditions for the non-

vanishing components of the gauge fields Aix⊥(τ = 0+), Eη
x⊥(τ = 0+) in the forward

light-cone at a given rapidity yobs are then given by

Aix⊥(τ = 0+, Yobs) = i

g

[(
V p

x⊥(+yobs)∂iV p †
x⊥ (+yobs)

)
+
(
V Pb

x⊥+b⊥(−yobs)∂iV Pb †
x⊥+b⊥(−yobs)

)]
(5.9)

Eη
x⊥(τ = 0+, yobs) = i

g

[(
V p

x⊥(+yobs)∂iV p †
x⊥ (+yobs)

)
(
V Pb

x⊥+b⊥(−yobs)∂iV Pb †
x⊥+b⊥(−yobs)

)]
(5.10)

Starting from the initial conditions in Eqns. (5.9) and (5.10), we then solve the

lattice discretized form of the classical Yang-Mills (CYM) equations of motion up

to τ = 0.2 fm/c [88], where we determine the energy-momentum tensor T µν [19],

gluon spectra dNg
d2p⊥dy

and gluon multiplicity dNg/dy =
∫
d2p⊥ dNg

d2p⊥dy
as described in

Eqs (2.104)–(2.106).

Based on the factorization formula in Eq. (5.1), the rapidity Yobs dependence of these

observables in each event is then calculated as in [41] from a series of independent

2+1D CYM simulations, which according to Eq. (5.6) start from the same Wilson

lines V p
x⊥ and V Pb

x⊥ evolved up to different rapidities y = ±yobs. We will consider a

rapidity range yobs ∈ [−2.4,+2.4], where yobs = −2.4(+2.4) corresponds to no JIM-

WLK evolution in the proton (lead nucleus), and calculate observables in intervals

of ∆y = 0.4, and unless stated otherwise αs = 0.15. This choice of αs = 0.15 has
1Note that in order to avoid interpolation of SU(Nc) matrices, we round the impact parameter

b⊥ to the next lattice site.
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Figure 5.2: Normalized probability distribution P (dN/dy), as a function of dN/dy
scaled by its expectation value 〈dN/dy〉 for αs = 0.15 andm = 0.2 GeV. Vertical lines
mark different centrality classes. Crosses are experimental data for raw reconstructed
primary tracks in

√
s = 5.02 TeV p+Pb collisions from the CMS collaboration [155].

been made because the fixed coupling JIMWLK evolution gives rise to a too fast

evolution in x which is not phenomenologically viable.

5.1.4 Gluon multiplicity and centrality selection

Based on the above procedure, we obtain a total of Nevents = Ncoll × Np × NPb =

4096 events, which we further classify into centrality classes according to their gluon

multiplicity g2dNg/dy|yobs=0 at mid-rapidity yobs = 0. Since we do not invoke any

collision criteria (e.g. Ncoll ≥ 1), we first disregard events with g2dNg/dy|yobs=0 < 4

from our event selection and subsequently perform the usual binning. We present the

midrapidity gluon multiplicity distribution scaled by the mean multiplicity in Fig. 5.2

and compare to experimental data on the uncorrected reconstructed primary tracks

from the CMS Collaboration [155].

The width of the gluon multiplicity distribution agrees well with that of the experi-

mental data on reconstructed tracks. The gluon distribution has some peak and dip

structure at small multiplicities, which is not seen in the experimental data, but for
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g2dNg(ch)/dy 0− 5% 40− 50% 60− 70% 80− 90%
m = 0.2 GeV 141.1 52.9 29.2 9.2
m = 0.4 GeV 129.0 49.0 – 9.9
ALICE 42.6 16.1 9.6 4.3
g2dE⊥/dy [GeV]
m = 0.2 GeV 454.8 161.8 79.7 20.0
m = 0.4 GeV 417.7 153.2 – 22.6

Table 5.1: Gluon multiplicity g2dN/dy and transverse energy g2dE⊥/dy at mid-
rapidity y = 0 for αs = 0.15 along with the ALICE data [155] for dNch/dη

for centrality classes (0− 5), (40− 50), (60− 80), and (80− 100)%
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Figure 5.3: Gluon multiplicity relative to its value at y = 0 compared to experimental
from the ALICE collaboration [156] (left) and transverse energy per unit rapidity
dE⊥/dy ∝ τε(τ = 0.2 fm) relative to its value at mid rapidity (right) for different
centrality classes. Simulation parameters: αs = 0.15 and m = 0.2 GeV

larger multiplicities (equal or greater than the mean) the data is well described. The

figure also indicates the centrality classes as obtained from the gluon distribution.

5.2 Global event structure & nature of high mul-

tiplicity events

Before we discuss the event-by-event geometry and azimuthal correlations in high-

energy p+Pb collisions, it is insightful to briefly comment on the general features

of low and high multiplicity events. We first study the rapidity dependence of the

multiplicity dNg/dy and transverse energy dE⊥/dy. In Fig. 5.3 we show dNg/dy and

dE⊥/dy normalized to their value at mid-rapidity dNg/dy|y=0 and dE⊥/dy|y=0 for

different centrality classes (0 − 5), (40 − 50), (60 − 70), and (80 − 90)%. Values at
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mid-rapidity are provided in Table 5.1 where one can essentially see that the ratio

of (0− 5)% to (40− 50)% and (60− 70)% roughly matches with the respective ratio

for ALICE data.

We observe that the rapidity dependence of both the multiplicity and the transverse

energy flattens as one approaches more peripheral events. The gluon distribution

generally shows a steeper rapidity dependence than the experimental data from the

ALICE Collaboration [155], which is essentially symmetric in the (80-100)% bin.

We further observe a non-monotonic behavior with centrality for positive y. This is

related to the behavior of the proton’s saturation scale, which grows less strongly

with rapidity for the most central events compared to other centralities, suppressing

the gluon yield at forward rapidities. We will show this behavior of Qs below in

Fig. 5.5.

The transverse energy shows a slightly weaker centrality dependence compared to

the gluon multiplicity. This could be a consequence of the transverse energy being

more sensitive to the larger of the two Qs values.

In the following, we extract the average Pb and p saturation scales Qs(y) for different

centralities, which will allow further insight into the properties of low and high

multiplicity events. Furthermore, we determine the systems size S⊥(y) for different

centrality classes. Specifically, the saturation scaleQs(Y ) is extracted from the dipole

scattering amplitude

D(r⊥,d⊥) = 1
Nc

tr
[
Vd⊥+r⊥/2V

†
d⊥−r⊥/2

]
, (5.11)

averaged over (dipole) impact parameters |d⊥| < 0.2 Rp from the collision point2 with

Rp being the radius of proton (for more details refer to Appendix C). By following

previous works [110], we extract the distance |r⊥|c where the dipole amplitude equals

a value of c, i.e.

D(|r⊥|c, |d⊥| < 0.2Rp) = c , (5.12)
2Based on Eqs. (5.9) and (5.10) the collision point corresponds to the center of mass of the

proton and respectively the impact parameter b⊥ of collision for the lead nucleus.
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Figure 5.4: Dipole scattering amplitudes 1−D(r⊥, |d⊥| < 0.2Rp) for the lead nucleus
(top) and for the proton (bottom) at three different rapidites y = −2.4, 0,+2.4 as a
function of dipole size |r⊥| in units of the proton radius Rp.

and calculate Qs = 2/|r⊥|c log1/2(1/c) according to the parametrization D(r) =

exp(−Q2
sr⊥2/4). We employ c = 0.8 and 0.9 to estimate the uncertainty of this

procedure.

The system size S⊥ is determined from the energy momentum tensor as

S⊥ =
∫
d2x⊥ x⊥2 T ττ (x⊥)∫
d2x⊥ T ττ (x⊥) (5.13)

which we evaluate at τ = 0.2 fm/c after the collision. Before we address saturation

scales and system size, we show the dipole scattering amplitude 1 − D(r⊥, |d⊥| <

0.2Rp) for Pb nucleus (top) and proton (bottom) as a function of dipole size r⊥
for a fixed range of impact parameter |d⊥| < 0.2Rp for three different rapidities

y = −2.4, 0,+2, 4 in different centrality classes in Fig. 5.4. Dipole amplitude vanishes

if the gluon density is probed by the color charges at the exact same point r = 0

but then it gradually rises and reaches a maximum at r⊥/Rp ∼ 1. We see that

the scattering amplitude saturates D = 1 for (0 − 5)% and (40 − 50)% whereas

the other two centrality classes are dilute even at large rapidities in the Pb nucleus.

For proton (bottom), the dipole amplitude is much below the saturation level even

after full rapidity evolution and starts to fall when the separation between the dipole
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Figure 5.5: Left:Saturation scale Qs(y) as a function of rapidity y for proton (p)
and lead nucleus (Pb) for different centrality classes. Right: System size S⊥ as a
function of rapidity y for different centrality classes. All results are for m = 0.2 GeV
and αs = 0.15.

exceeds the size of proton. We also note that for protons the shape of the curve for

peripheral events remains the same and is less dense than the central events.

We have compactly summarized the results for the dependence of saturation scale

(left) and system size (right) on rapidity for various centrality classes in Fig. 5.5.

The exponential growth of the Qs(y) ∝ exp(±yp/Pb) where arises from the JIMWLK

evolution. The proton saturation scale Qp
s is similar in the three more peripheral

events, while the nucleus’ QPb
s depends more strongly on centrality, indicating that

the multiplicity is determined by the impact parameter, i.e., the position in the

lead nucleus where the proton hits, as well as fluctuations in the lead nucleus. The

significant difference in Qp
s in the top 5% centrality class from other peripheral classes

and similarity between QPb
s in (0-5) and (40 − 50)% class indicates that the high

multiplicity events are mainly due to denser protons.

On the right panel of Fig. 5.5, we see that the system size (S⊥) shows almost a

linear trend due to growth of the proton size with rapidity, as seen in Fig. 5.1.

The most peripheral events show a significantly larger area, which seems counter-

intuitive at first. But given the definition of the area measure in (5.13), an overall

very small but spread out energy density can lead to a large area. This seems to

be the dominant effect in the most peripheral event we studied, while for other

centralities the difference in multiplicities is mainly due to the larger of the two Qs,

as the areas are roughly equal.
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5.3 Event geometry & initial state moment cor-

relations

Now that we have established the basic features of the events in different centrality

classes, we continue to investigate the longitudinal structure of the event geometry

and the initial state momentum anisotropy. Before we continue, we would like to

note that the gluon spectrum at each rapidity is proportional to δ(η−y) [157], where

η is the space-time rapidity. Accordingly, we will be using η and y interchangeably.

We follow standard procedure and characterize the event geometry in terms of the

eccentricities

εn(η) =
∫
d2r⊥T ττ (η, r⊥) |r⊥|neinφr⊥∫
d2r⊥T ττ (η, r⊥) |r⊥|n

(5.14)

Similarly, following [54, 158, 159] the initial state momentum anisotropy can char-

acterized in terms of the anisotropic energy flow

εp(η) =
∫
d2r⊥ T xx(η, r⊥)− T yy(η, r⊥) + 2iT xy(η, r⊥)∫

d2r⊥ T xx(η, r⊥) + T yy(η, r⊥) (5.15)

or alternatively as in [159, 160] in terms of the azimuthal anisotropy vg2 of the pro-

duced gluons 3

vg2(η) =
∫
d2k⊥|k⊥| dN

dηd2k⊥
e2iφk⊥∫

d2k⊥|k⊥| dN
dηd2k⊥

(5.16)

We evaluate the expression in Eqns. (5.14, 5.15, 5.16) at τ = 0.2 fm/c to calculate

εn, εp, v
g
2 as a function of rapidity η on an event-by-event basis. Subsequently, to

quantify the overall rapidity dependence we compute the correlation functions

CO(η1, η2) =
〈
Re
(
O(η1)O∗(η2)

)〉
(5.17)

where 〈.〉 denotes an event average and O is any of the above observables. While the

correlation function CO contains information about both the magnitude and rapidity
3We note that in the quasi-particle picture the definitions of ep and vg2 agree with each other.
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Figure 5.6: Two point correlation function for second order eccentricity Cε2 (top-left)
and momentum anisotropy Cεp (top-right) for (0− 5)% centrality class for αs = 0.15
and m = 0.2 GeV. Bottom panel demonstrates the same observable for (60 − 70)%
centrality class

dependence of the correlation function, we will also consider the normalized rapidity

correlation function

CN
O (η1, η2) = CO(η1, η2)√

〈|O(η1)|2〉〈|O(η2)|2〉
(5.18)

to further analyze the longitudinal decorrelation of the transverse geometry and

initial state momentum correlations. Our results for 3 D structure of event geometry

and initial state momentum anisotropy are compactly summarised in Fig. 5.6 where

we present the two point correlation function Eq. (5.17) of 2nd order eccentricity

ε2 and momentum anisotropy εp for (0 − 5)% (top) and (60 − 70)% (bottom). We

observe that geometry is correlated across large rapidity intervals whereas initial state

momentum correlations are relatively short range in rapidity for central as well as

peripheral events. This can be understood as follows: εp is sensitive to microscopic

momentum space correlations within the proton, so even a single gluon emission

easily changes the color structure and thereby destroys the correlations, whereas

melting the entire geometry of a colliding system is much more difficult. This clearly
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Figure 5.7: Geometric eccentricities
√
〈|ε2

n(η)|2〉 (top) and initial momentum aniso-
tropies

√
〈|εp(η)|2〉 and

√
〈|vg2(η)|〉 for different centrality classes 0-5% (left), 40-50%

(center) and 80-90% (right) as a function of rapidity.

excludes any other qualitative understanding of the long-range azimuthal correlation

in terms of event multiplicity, as in [53], where the dominant mechanism for events

with low multiplicity is ascribed to the intrinsic momentum space correlation. As

these 3 D plots contain a lot of information, but its hard to see quantitatively, we

will try to decipher the basic features of the observables below.

We show the geometric eccentricities
√
〈|ε2

n(η)|2〉 (top) and initial momentum an-

isotropies
√
〈|εp(η)|2〉 and

√
〈|vg2(η)|〉 (bottom) as a function of rapidity for three

different classes (0−5), (40−50) and (80−90)% for m = 0.2 GeV and m = 0.4 GeV

in Fig. 5.7. We observe that the curve remains essentially the same for different

values of infrared regulator m in all the centrality classes. In most cases ε2 de-

creases with increasing rapidity, and does so more rapidly for larger αs and smaller

m, as expected by how these parameters affect the JIMWLK evolution speed. For

our standard parameters of m = 0.2 GeV and αs = 0.15 the rapidity dependence is

rather weak. For the most peripheral bin ε2 has a shallow minimum as a function

of rapidity. The triangularity ε3 has an even weaker rapidity dependence than ε2 in

the two more central bins, and increases with increasing rapidity in the most peri-

pheral bin. Given the comparable size of ε2 and ε3 in this bin, one might expect the

observed anti-correlation between the two quantities, as it is difficult geometrically
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to generate a large ε2 and ε3 at the same time (This can be seen most easily when

arranging just three hot spots. A maximal triangularity goes along with a reduced

ellipticity and vice versa.)

The bottom panel in Fig. 5.7 shows the rapidity dependence of the initial state an-

isotropy εp and the gluon elliptic momentum anisotropy vg2 for the same centrality

classes and parameter sets as the eccentricities above. First, it is clear to see that

both quantities follow each other closely. The anisotropy of the energy momentum

tensor is thus a good predictor of the gluon momentum anisotropy in the situation

where strong final state interactions are not included. When those are included,

the response to the initial spatial anisotropy will dominate the produced particles’

momentum anisotropy in all but the most peripheral events [54, 159]. The rapidity

dependence is negligible in most cases, with the case using αs = 0.3 in the most

central bin showing the strongest decrease with increasing rapidity. In the most

peripheral bin the two quantities show a minimum around y = 1.

In Fig. 5.8, the rapidity dependence of ε2 (left), ε3 (center) and vg24 (right) is shown

for different centralities or m = 0.2 GeV and αs = 0.15. While ε2 is maximal

for 40-50% central collisions, and minimal in the most peripheral bin, ε3 increases

monotonically towards more peripheral events and shows the strongest centrality

dependence on the lead going side. The magnitude and centrality dependence of v2

is only very weakly dependent on the rapidity. As has been observed previously [54,

66], the initial momentum anisotropy driven vg2 increases with decreasing multiplicity

(towards more peripheral events), which can be intuitively understood within the

color-domain model [58, 65, 161], where only partons originating from the same

color domain are correlated with each other. We show here that this is true for all

studied rapidities. Furthermore, the value of vg2 is largely independent of rapidity in

all the centrality bins.

We demonstrate the normalized two point correlation function CN(∆η) =
∫
dη CN(η+

∆η/2, η−∆η/2) for geometry (top) and initial state momentum anisotropy (bottom)

as a function of rapidity separation αs∆η for three different centrality classes (0−5)
4As εp is basically equivalent to the vg2 , we only show the centrality dependence of vg2 .
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Figure 5.9: Normalized two point correlation function CN(∆η) =
∫
dη CN(η +

∆η/2, η−∆η/2) for geometric eccentricities ε2, ε3 (top) and initial state momentum
anisotropies εp, vg2 (bottom) different centrality classes 0-5% (left), 40-50% (center)
and 80-90% (right) as a function of the rapidity separation αs∆η.

 0.6

 0.8

 1

 1.2

 1.4

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

C
N ε 2

(∆
y)

αs∆y

(0-5)%

(40-50)%

(60-70)%

(80-90)%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

C
N v 2

(∆
y)

αs∆y

(0-5)%

(40-50)%

(60-70)%

(80-90)%
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(left), (40− 50) (center) and (80− 90)% (right) for m = 0.2 GeV and m = 0.4 GeV

in Fig. 5.9. We observe that the correlation in geometry persists at larger rapidity

intervals whereas it dies out quickly in initial state momentum anisotropies. The

results presented in top panel mildly depend on the infrared regulator m whereas

the dependency on coupling constant in top as well as bottom panel is absorbed in

the scaling αs∆η. For m = 0.2 GeV, one sees a slightly faster decorrelation and the

effects are more pronounced for the more peripheral events.

The dependency of the normalized correlation function CN(∆η) of the geometric ec-

centricity ε2 and initial state momentum anisotropy vg2 on different centrality classes

are shown in Fig. 5.10. Again we find that the correlation in geometry (left) is rel-

atively long-ranged in rapidity as compared to initial momentum anisotropy (right)

where the correlation never exceeds the width of 1/αs units in rapidity. We further

note that the decorrelation of the geometry is faster in more peripheral events where

fluctuations play a more prominent role; conversely the decorrelation of initial state

momentum correlations occurs less rapidly in more peripheral events.

After examining the rapidity correlation of the event geometry and the initial state

momentum correlation, we would now like to connect our results with the experi-

mental observations of long-range rapidity correlation in small systems. We find that

the correlation from initial event-geometry are long-ranged in rapidity and hence are

more likely to be transformed into momentum correlations by strong final state in-

teraction and get detected in form of ridge in high-multiplicity pp and pA collisions.

We find that for low multiplicity events, initial event geometry decorrelates faster

and is consistent with the current status of experimental runs where currently no

signal of collectivity has been observed in small-systems.

5.4 Closing Remarks

In this chapter, we investigate the event geometry and initial state correlations which

are accepted as possible explanations for collective behaviour in high-multiplicity

events in proton-proton and proton-nucleus collisions. Within the CGC framework,

we follow the approach of extending the IP-Glasma model to three dimension by
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using the JIMWLK evolution equation which provides the rapidity dependence by

evolving the Wilson lines of the incoming gluon distribution.

Based on this formalism, we collide the proton with Pb nucleus at 5.02 TeV, and

first investigate the global event structure and nature of high and low multiplicity

events. By comparing the gluon multiplicity with the experimental data from ALICE

collaboration, we find that the gluon distribution shows a rather steeper rapidity

dependence compared to the ALICE data but the ratio of multiplicity in central to

more peripheral events turns out to be roughly same. We also obtained results for

the saturation scale Qs and found that QPb
s has a rather strong centrality dependence

compared to Qp
s which remains roughly the same for peripheral collisions.

Subsequently, we characterize the event geometry using the eccentricities εn and

the initial state momentum anisotropy using the anisotropic energy flow εp and the

azimuthal anisotropy of the produced gluons vg2 . We find that the event geometry is

correlated across large rapidity intervals whereas initial state momentum correlations

are relatively short range in rapidity. Based on our results, we conclude that that

experimental observations of collectivity in small systems which extend across large

rapidity separations, should likely be interpreted as an imprints of the initial event

geometry.

In future, we would take a step forward and calculate observables like anisotropic flow

coefficients after full hydrodynamic evolution by appending the 3 D IP-Glasma code

to MUSIC [162], which is a numerical software for relativistic viscous hydrodynamics.

We will also try to work on the caveats of this framework as discussed in [41] in order

to gain additional insights into the small-systems.
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Chapter 6

Conclusion

In this chapter, we summarize our main results and provide outline for the future

extension of the work done. We refer the readers to the Sections 3.4, 4.5 and 5.4 for

a detailed overview of the respective chapters.

The central goal of this work is to relax the assumption of boost invariance and

provide a first principle insight into the longitudinal structure of heavy-ion collisions

within the color glass condensate framework.

We first developed a framework to perform 3 + 1 D classical Yang-Mills simulations

which takes the finite-thickness of the colliding nuclei into account and hence provides

a legitimate way of studying the initial energy deposition in heavy-ion collisions. In

contrast to the boost-invariant collision where initial conditions are available at the

boundary of forward light-cone, the collision of nuclei with finite longitudinal extent

relies on the solution of incoming nuclei prior to the collision. Therefore the resultant

numerical simulation provides a natural insight into the collision itself as well as the

dynamics of the Glasma.

Within a simple model of the color charge distribution of each nucleus, we perform

a detailed investigation of the dynamics during and shortly after the collision as a

function of the longitudinal thickness of the colliding nuclei QsRγ and demonstrate

that for QsRγ → 0, boost-invariant limit is recovered. However, for non negligible

values of QsRγ, significant violation of boost-invariance are observed.

Subsequently, we develop a more physical model that connects the color charge

distributions in the colliding nuclei to the parton distributions inside the nuclei. In
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this model, the large scale structure of the nucleus is obtained by 3 D Monte Carlo

Glauber model whereas the small scale fluctuations are determined by parameterizing

small-x TMDs. Based on this model, we studied the pre-equilibrium state at two

different center of mass energies and obtained the first result regarding the three

dimensional structure and its fluctuation which ceases with the increasing
√
s. We

further used this model to study the decorrelation of n-th order anisotropic flow and

obtained a significant result for the event-plane decorrelation that encourages us to

make a direct comparison with the experimental data in the future.

Due to high computational cost, our results were limited to a small rapidity window

and head-on collisions at RHIC energies, and therefore in the future we would like

to optimize the framework in order to access a larger rapidity range and to system-

atically examine the 3 + 1 D Yang Mills dynamics as a function of the centrality of

events. In addition to improving numerical simulations, it would be interesting to in-

vestigate the production of quark-antiquark pairs in the background of non-Abelian

gauge fields.

In Chapter 4, we considered the collision of extended nuclei in the dilute limit of the

color glass condensate and obtained the first analytical results for the longitudinal

profiles of the initial energy deposition in heavy-ion collisions.

By assuming perturbation on top of the pre-collision gauge fields, we determine

the analytical expressions for the color fields produced in the forward light cone

by solving the linearized Yang-Mills equation. We then employ a MV-like model

with factorized longitudinal dependence of nuclear collision geometry and use it

to evaluate the transverse pressure. With this, we compare the rapidity profiles of

(semi-)analytic results in dilute approximation with the 3+1 D CYM implementation

and obtain excellent agreement in the dilute regime. Beyond the dilute regime, the

energy deposition is over-estimated but the rapidity profiles are captured quite well

which suggests that the denseness of a colliding system can be factorized into some

scaling constant. We also examined the coherence length ε/R for two different limits

and found that both approach the same boost-invariant plateau as the thickness of

the colliding nuclei decreases.
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Our analytic expression allows for an efficient way of determining the energy mo-

mentum tensor T µν to desirable rapidity range. In the future, we would like to de-

velop new Monte Carlo event generators for the initial state of heavy ion collisions,

which will open the door to exciting phenomenological studies such as Chiral-Vortical

effect [131, 132] and Chiral- Magnetic effect [133–135].

In the last chapter, we have worked on a phenomenological application of 3 + 1 D

color glass condensate model with a motive to understand the origin of collectivity in

small system at LHC energies. Since our framework for 3+1 D collisions still needs to

be optimized, we follow the approach of extending the impact parameter dependent

Glasma model (IP-Glasma) to 3D using JIMWLK rapidity evolution of the incoming

nuclear gluon distribution [41] to study p+Pb collisions at
√
s = 5.02 TeV.

We first study the rapidity profiles of the saturation scale Qs and the system size S⊥
at different centralities, and find that QPb

s has a rather strong centrality dependence

compared to Qp
s which remains roughly the same for more peripheral events. We

then investigate the non-trivial rapidity dependence of the observables and find that

the event geometry is correlated across large rapidity intervals whereas initial state

momentum correlations are relatively short range in rapidity. Based on this observa-

tion, we rule out the understanding of ridge in high multiplicity pp and pA collisions

based on the initial state momentum correlations. In future, we will be interested in

doing more phenomenology by coupling the IP-Glasma framework to MUSIC [162].

pT = g2

2 Nc(N2
c − 1)

∫
p,q

∞∫
0

dZ+
∞∫
0

dZ−
+2Z+∫
−2Z+

dδz+
+2Z−∫
−2Z−

dδz−p2
⊥q

2
⊥CA(p⊥)CB(q⊥)×

TA(x+ − Z+)TB(x− − Z−)UA(δz+)UB(δz−)J0(|p+ q|τz)J0(|p+ q|τz̄) (6.1)
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Appendix A

Discretization effect and approach

to the continuum limit

Below we provide additional results for simulations where we vary the various dis-

cretization parameters, to illustrate the results presented in the main part of this

work do not suffer from significant discretization artifacts.

We present a compact summary of the results in Fig. A.1, where for a fixed value

of Qst ' 4, subtracted T 00 and T 0z components of the energy momentum tensor

are shown for the thick nuclei (QsRγ = 0.5). In the first two panels: T 00 obtained

with the lattice discretization used throughout the manuscript (Rγ/az = 16; at/az =

0.08) is compared against the values obtained with finer longitudinal lattice spacing

(Rγ/az = 64) and finer time step (at/az = 0.04). Lattice dimension is taken to be

1282 × 1024 and 1282 × 2048 for Rγ/az = 16 and Rγ/az = 64 respectively. We

observe that approaching the continuum limit doesn’t shrink the spurious fields in

the proximity of light cone. In the other two panels, similar result is shown for T 0z,

which again shows that the effect of these contributions do not change with finer

lattice spacing.

After ruling out the lattice discretization artifact, one could argue that the possible

explanation for the huge spikes near the light cone might lie within the numerical

scheme. To verify this, we show our results (SSPS) along with the newly obtained res-

ults from the people doing 3D simulation with Color Particle in cell (CPIC) Method

(pyglams3d) for different values of Qst in Fig. A.2. Despite a completely different
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Figure A.1: Discretization effects on the various components of the energy mo-
mentum tensor for QsRγ = 0.5 at Qst ' 4. Effect of finer longitudinal lattice spacing
az → 0 is shown in panel (a) and (c) whereas that of finer time discretization
at/az → 0 is shown in panel (b) and (d).

numerical scheme, we witness the exact same behaviour which convinces us to do

some analytical studies in the dilute limit in future.
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Figure A.2: Subtracted energy density and energy flux, T 00 (top) and T 0z (bottom)
for different times Qst1,2,... obtained from two different numerical schemes. These
plots were provided by David Müller
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Appendix B

Analytical results for boost-invariant

collisions

In the boost-invariant limit, the color potential in the sources (4.39) – (4.41) can be

regularised as

φA/B(x±, x) ≡ δ(x±)φA/B(x⊥)

The delta function in the above expression simplifies the form of the dummy field in

(4.51) as

ad(x+, x−, p⊥, q⊥) = g

2fabct
cφ̃aA(p⊥)φ̃bB(q⊥)J0

(
|p+ q|

√
2x+x−

)
(B.1)

The different components of the perturbed gauge fields can be obtained by plugging

the above expression for the dummy field in (4.52) – (4.54). Since prominent fea-

tures of the boost-invariant Glasma are easily reflected in the proper time-rapidity

coordinate system, one can apply a coordinate transformation

aτ = 1
τ

(x+a− + x−a+) = aτ

aη = (x+a− − x−a+) = −τ 2aη

to obtain the gauge fields in τ−η coordinates. With this, we can evaluate the different

components of electric and magnetic fields using (2.98) – (2.101). As we have already

performed a detailed calculation for longitudinal electric and longitudinal magnetic

field in Section 4.3, we abstain ourselves from rederiving it and simply replace the
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Figure B.1: Longitudinal and transverse component of electric and magnetic field,
computed (semi-) analytically for SU(3) gauge group.

Gaussian function T and U in (4.74) and (4.82) with delta function to obtain the

required expression in 2+1 D. The different components of the electric and magnetic

fields are then given as 1

εB,L = g2

2 Nc(N2
c − 1)

∫
p,q

CA(p⊥)CB(q⊥)J2
0 (|p+ q|τ)(p× q)2 (B.2)

εE,L = g2

2 Nc(N2
c − 1)

∫
p,q

CA(p⊥)CB(q⊥)J2
0 (|p+ q|τ)(p · q)2 (B.3)

εB,T = g2

2 Nc(N2
c − 1)

∫
p,q

CA(p⊥)CB(q⊥)J2
1 (|p+ q|τ)(p · q)2 (B.4)

εE,T = g2

2 Nc(N2
c − 1)

∫
p,q

CA(p⊥)CB(q⊥)J2
1 (|p+ q|τ)(p× q)2 (B.5)

where τ =
√

2x+x−, and p × q and p · q are the cross and dot product of two

dimensional vector p and q. These results agree with the analytical calculation done
1A calculation similar to the one in section 4.3 can be carried out to obtain the transverse

components.
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for dilute Glasma in [86, 129, 130]. On summing the two contributions – εB,L and

εE,L – one obtains the transverse pressure pT

pT = g2

2 Nc(N2
c − 1)

∫
p,q

CA(p⊥)CB(q⊥)J2
0 (|p+ q|τ)p2

⊥q
2
⊥ (B.6)

In Fig. B.1, we plot the above expressions for the longitudinal and transverse com-

ponents of electric and magnetic field as a function of proper-time. As already seen

in the literature [86, 129, 130], the evolution starts with non-zero longitudinal electric

and magnetic field which are equal at τ = 0 and then slowly decoheres to generate

the transverse fields. We also note that the longitudinal magnetic field is suppressed

compared to longitudinal electric field, as already observed in the fully-non perturb-

ative simulation in Fig 3.5.
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Appendix C

IP-Sat Model

The impact parameter dependent dipole saturation model (IP-Sat) [147] is a model

to extract the saturation scale by fitting the dipole cross section to Deep Inelastic

Scattering (DIS) data [147, 148]. By introducing the impact parameter of nucleon

into the dipole picture, its refines the Golec-Biernat–Wüsthoff (GBW) dipole model

[163, 164]. The total cross-section in this model for a dipole with color charges at

points x⊥ and y⊥ to pass through a gluon cloud is given as

σqq̄ = π2

Nc

r2αs(µ2)xg(x, µ2) (C.1)

where Nc is number of colors, αs is coupling constant, r = |x⊥ − y⊥| is the size

of the dipole and xg(x, µ2) is the gluon density at some scale µ2 of interaction.

The probability that the dipole at an impact parameter b = |x(⊥+y⊥)/2| does not

encounter an inelastic scattering on passing through a thin slice dz of the gluon cloud

is given as

P (b) = 1− σqq̄ρ(b, z)dz (C.2)

where ρ(b, z) is the gluon density normalized as
∫
d2bdzρ(b, z) = 1. Now, the prob-

ability for no scattering on passing through the entire proton is given by taking the

square of scattering matrix element S(b) which in principle is obtained by exponen-

tiating the above result

|S(b)|2 = exp
(
− σqq̄

∫
ρ(b, z)dz

)
(C.3)
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where
∫
ρ(b, z)dz = T (b) and T (b) is defined as the thickness function. which is

normally taken to be Gaussian

T (b) = 1
2πBG

exp
(
− b2/2BG

)
(C.4)

We note that the parameter BG and xg(x, µ2) are obtained by from the fit to the

DIS data. The cross section for inelastic scattering at a given impact parameter is

given as

dσqq̄
db

= 2[1− Re S(b)] = 2
[
1− exp

(
− π2

2Nc
r2α2

s (µ2)xg(x, µ2)T(b)
)]

(C.5)

We refer the readers to [147] for exploring various properties of the above dipole

cross section. The saturation scale Qs for a fixed b is obtained by setting a condition

that the dipole amplitude D(r, b) = 1− Re S(b) is equal to 1− exp(−θ) such that

Q2
s = θ

r2
s

(C.6)

where θ refers to a reference value of dipole amplitude for which saturation is not

yet achieved. For real time lattice simulation, dipole amplitude is computed using

the correlators of Wilson line as

D(b, r) = 1
Nc

Tr
〈

1− V †
(
b+ r

2

)
V
(
b− r

2

)〉
(C.7)

The saturation scaleQs is used to provide the initial color charge density distribution.

IP-Glasma [18, 19] which is one of the most successful model for the boost-invariant

collision combines this model with a 2 + 1 D classical Yang-Mills implementation in

order to explore the initial state of heavy-ion collisions.
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