
656
October 2021

Language games under Knightian
uncertainty about types

Zhaojun Xing

Center for Mathematical Economics (IMW)
Bielefeld University
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Abstract

We concern a sender-receiver game of common interests having
infinite types, e.g the set [0, 1]2, but with finite signals. In our paper,
we extend the game by introducing multiple priors over the type space
and use incomplete preferences in Bewley’s way. We characterize the
equilibria under incomplete preferences by E-admissibility. Besides,
it has the equivalence between the equilibria and Voronoi languages.
Further, we demonstrates the existence of the indeterminacy of the
game. At last, we present that vague words, e.g. cheap, big, red,
etc., exist in the Knightian worlds but not in the Bayesian worlds,
which means that vagueness comes from the way we view the world
in Knightian method.
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1 Introduction

Vague words are widely used in our daily life, e.g. long, child, red, chair,
etc. However, using vague words is inefficient in Crawford and Sobel (1982)’s
cheap-talk game if the sender and the receiver have common interests. Based
on a cheap-talk game Jäger et al. (2011), that is a generalization (in sense
of type space with multiple dimensions) of Crawford and Sobel’s game, we
show that using vague words is rational.

In classic Bayesian games, As Lipman (2009) says, it is not that people
have a precise view of the world but communicate it vaguely; instead, they
have a vague view of the world. Then we assume that the receiver has
multiple priors rather than a single prior on the sender’s private type set.
We adopt Aumann (1962)’s attitude towards players’ preferences, i.e. of all
the axioms of utility theory, the completeness axiom is perhaps the most
questionable 1. And both players employ incomplete preferences in Bewley
(2002)’s way. We find that there is a set of strict equilibria given multiple
priors of the players on type set, where each strict equilibria is characterized
by a Voronoi language Jäger et al. (2011). The set of strict equilibria forms
a so called vague Voronoi language under some conditions, which consists of
vague words and each each vague word features thick borderline cases.

As Crawford and Sobel (1982) demonstrates, the sender has motivation
to hide her private information and uses noise or vague signals to confuse the
receiver when she has conflict interests with the receiver. Based on Craw-
ford and Sobel’s model, most recent researches, e.g. Blume et al. (2007) and
Kellner and Le Quement (2018), obtain vagueness relying on the assumption
of conflict interests between the sender and the receiver. However, many
human activities require coordination, e.g. meeting with one people in some

1In detail, he says, like others of the axioms, it is inaccurate as a description of real
life; but unlike them, we find it hard to accept even from the normative viewpoint. Does
“rationality” demand that an individual make definite preference comparisons between
all possible lotteries (even on a limited set of basic alternatives)? For example, certain
decisions that our individual is asked to make might involve highly hypothetical situations,
which he will never face in real life; he might feel that he cannot reach an “honest” decision
in such cases. Other decision problems might be extremely complex, too complex for
intuitive “insight,” and our individual might prefer to make no decision at all in these
problems. Or he might be willing to make rough preference statements such as, “I prefer
a cup of cocoa to a 75-25 lottery of coffee and tea, but reverse my preference if the ratio is
25-75”; but he might be unwilling to fix the break-even point between coffee-tea lotteries
and cocoa any more precisely. Is it ”rational” to force decisions in such cases?
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place without full information (see P5-P8 of Lewis (1969) for more exam-
ples). But Lipman (2009) shows that using vague words (represented by
mixed strategies) is inefficient under aligned interests due to the concavity
of players’ utility functions. It seems irrational to use vague words under
common interests. Then he asks a question “why is language vague?”

We extend the games from Jäger et al. (2011) with Knightian uncertainty
to answer this question. The cheap-talk game progresses as follows. There are
two players including a sender and a receiver in the game. The sender’s pri-
vate type set is a convex and compact one-dimensional or multiple-dimensional
metric space, e.g. [0, 1]2. The sender sends its type to the receiver via some
word from a finite word list, e.g. {Left, Right}. Once the receiver obtains the
word, she interprets it as some meaning which belongs to the type set. Due
to aligned interests between the sender and the receiver, they want to coop-
erate to reduce the loss during the information transmission. However, due
to the limited words, it is impossible to transmit infinite types to the receiver
exactly without communication before gaming. So, there is a loss for almost
all types (except the prototypical types) during the information transmission.
Naturally, a question occurs that is how do the sender and the receiver act
to reduce the loss. Jäger et al. (2011) finds that the sender should partition
the type set into mutually exclusive cells, and each cell corresponds to each
signal or word. All of these cells form a Voronoi tessellation. Here, “Voronoi”
means a Voronoi tessellation or a Voronoi diagram, which is generated by a
set of prototypical points. For each point there is one corresponding cell
such that all points in this cell are closer to the prototypical point of this cell
than any other prototypical point. As in Figure 1, the Voronoi tessellation
is generated by the points {a, b}. All points in the left cell is closer to the

Left Right

a b

Figure 1: a Voronoi language with two words: Left and Right.
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point a than the point b, and all points in the right cell is closer to the point
b than the point a. The points a and b correspond to the generated Left and
Right cell, respectively. Further, it requires that the receiver should explain
each word as the Bayesian estimator of the cell that the word means. The
sender’s strategy and the receiver’s strategy form a Voronoi language 2. For
example, in Figure 1, a Voronoi language that is consisting of the sender’s
strategy (sending the left cell to the word Left and sending the right cell to
the word Right) and the receiver’s strategy (interpreting the word Left to
the point a and interpreting the word Right to the point b), where the points
a and b are the centers of the mass of the left and right cell, respectively.
Besides, they have demonstrated that the each strict Nash equilibrium 3 is a
Voronoi language, and vice versa.

Now, we introduce multiple priors of the players on types. A decision rule
called maximality Bewley (2002) is used to obtain players’ optimal strate-
gies. Finding optimal acts in decision problems or equilibria in games with
incomplete preferences is not trivial. A natural idea is scalarizing incomplete
preferences as Shapley (1959), Aumann (1962), Schervish et al. (2003), Rig-
otti and Shannon (2005),Bade (2005), Evren (2014) and Danan et al. (2016).
Among them, Schervish et al. (2003), Rigotti and Shannon (2005) and Danan
et al. (2016) consider the incompleteness coming from multiple priors, where
the state spaces in their models are finite. In Appendix A, we extend the
scalarization to an infinite-dimensional space in the level of decision theory.
We scalarize an act by multiplying each prior from the prior set and then
admit the acts which achieves maximum value under some prior. This deci-
sion rule is called E-admissibility (short for Expectation-admissibility) Levi
(1980). Notice that an act or an option is maximal if there is no other act
dominating this act under all distributions, and an act is E-admissible if
there exists some distribution such that the act has the maximum expected
value. Schervish et al. (2003) have proved the equivalence of maximality and
E-admissibility within finite states. We extend their outcome in Appendix
A under infinite states to solve our game with infinite types.

Naturally, the concept of (strict) Nash equilibrium should be updated for
introducing Knightian uncertainty. We have defined (strictly) maximal equi-

2Geometrically, a Voronoi language is a centroidal Voronoi tessellation Du et al. (1999),
which is generated by the centers of the mass of corresponding cells if the loss function is
quadratic.

3Due to the plethora of Nash equilibria in all signaling games, like polling equilibrium,
they focus on strict Nash equilibria.
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librium and (strictly) E-admissible equilibrium, which correspond to maxi-
mality and E-admissibility, respectively. As we have an equivalence between
maximality and E-admissibility, we are able to apply it in the game. By
the feature of E-admissibility, we are able to focus on players’ behavior with
single prior, i.e. without Knightian uncertainty. In case of single prior, each
strict Nash equilibrium is a Voronoi language. Via the equivalence, we are
able to characterize all strict Nash equilibria under Knightian uncertainty.
Further, we show the equivalences among the following three concepts in
our games: strictly E-admissible Nash equilibrium, strictly maximal Nash
equilibrium and Voronoi language.

Further, we study the equilibria under Knightian uncertainty. For each
strictly maximal Nash equilibrium, there exists a continuum of strictly max-
imal Nash equilibrium surround it. This kind of indeterminacy also appears
in financial markets Rigotti and Shannon (2005). In natural languages, this
phenomenon is called vagueness, like the vague words ‘cheap’, ‘small’, ‘red’,
‘game’ etc. Besides, we define the concept named vague Voronoi languages
inspired by the definition of vagueness in a conceptual spaces approach Dou-
ven et al. (2013) and Decock and Douven (2014), where vagueness comes
from the multiplicity of prototypes (corresponding to Bayesian estimators
in our paper) of each word. Each vague Voronoi language collects a set of
strictly maximal Nash equilibria or Bayesian estimators. And we prove that
vague Voronoi languages do not exist in the Bayesian worlds but exist in the
Knightian worlds. At last, we study the efficiency of vague Voronoi languages
and obtain an efficient vague Voronoi language.

This paper contains the following sections. Section 2 defines the game.
Section 3 analyzes equilibria of the game. Section 4 presents the indeter-
minacy of the equilibria. Section 5 studies vague Voronoi languages. The
efficiency of vague Voronoi languages is discussed in Section 6. Section 7
concludes the paper.

2 The model

In this section, we extend the cheap-talk games with high-dimensional
types and few signals Jäger et al. (2011) to allow for Knightian uncertainty
about types. The revised game progresses as follows. The sender s observes
a private signal, her type t ∈ T , where T is a convex and compact subset of
Rn with non-empty interior and n ≥ 1, e.g. T = [0, 1]2 ⊆ R2. The sender
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chooses a word or signal w from a finite word list W with N words and sends
it to the receiver. The receiver r receives the word wj and interprets it as a
point ij ∈ T . Both players want the type t and the interpretation ij to be
as close as possible. A only deviation from the game of Jäger et al. (2011)
is that the sender and the receiver share a set of priors over the type set T
rather than a single prior, where the beliefs are measured by a nonempty
set of Borel regular probability (also non-atomic) measures P, where P is
convex and closed 4 defined on T assigned with a Borel σ-algebra.

A pure strategy for the sender is a measurable function w ∈ W T : T → W .
A behavioral strategy of the sender is a measurable mapping ω ∈ Ω : T →
∆W , where Ω is the set of the sender’s all behavioral strategies and ∆W
is the set of all probabilities over W . A pure strategy for the receiver is a
vector i = (i1, · · · , iN) ∈ TN , where ij denotes the receiver’s interpretation
of the word wj. A behavioral strategy of the receiver is a mapping µ ∈
M : W → ∆T , where M is the set of the receiver’s all behavioral strategies
and ∆T is the set of all probability measures over T . If the sender’s type
t is interpreted by the receiver as i when they communicate with the word
w, then both players’ losses are measured by l(

∥∥t− iw(t)

∥∥), where ‖·‖ is a
Euclidean norm on T and l : R+ → R is a continuous, convex and strictly
increasing function, e.g. l(d) = d2.

For a prior P ∈P of any player, the expected loss of both players using
pure strategies and behavioral strategies are

L(w, i, P ) =

∫
T

l
(∥∥t− iw(t)

∥∥)P (dt),

and

L(ω, µ, P ) =

∫
T

N∑
k=1

∫
T

l (‖t− i‖)µk(di)ωk(t)P (dt),

respectively, where ωk(t) denotes the probability that the sender uses the
word wk under the type t, and µk(di) is the probability of the receiver choos-
ing i from T to interpret wk. Note that we allow a set of priors of the players,
and the expected losses of both players is the set {L(w, i, P ) : P ∈P}.

As discussed, we assume that players use incomplete preferences in Bew-
ley’s way. Without completeness, an strategy for a player dominates another

4A set of probabilities P is closed with respect to the weak* topology σ(car(T ), C(T )),
where C(T ) is the set of all continuous functionals defined on T and car(T ) is the set of
all regular signed Borel measures of bounded variation over T .
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strategy if and only if it induces less loss under all priors in P if we fix the
other player’s strategy. Formally, fixing the receiver’s strategy µ, the sender’s
strategy

ω(�) � ω′ if and only if L(ω, µ, P )(≤) < L(ω′, µ, P ) for all P ∈P.

Similarly, fixing the sender’s strategy ω, the sender’s strategy

µ(�) � µ′ if and only if L(ω, µ, P )(≤) < L(ω, µ′, P ) for all P ∈P.

3 Equilibria and Voronoi languages

As multiple priors introduced, the definition of equilibria should be up-
dated. A strategy profile in a Bayesian game is a (Bayesian) Nash equi-
librium under a prior if no one can obtain higher payoff unilaterally in the
equilibrium. In the spirit of Nash equilibrium, the revised Nash equilibrium
with Knightian uncertainty should be the profile such that nobody can ob-
tain higher payoff unilaterally under all priors. Like the definition of Nash
equilibrium, we define our equilibrium via the concept of best responses as
follows.

Definition 1. A sender’s strategy ω is a (strictly) maximal best response to
a receiver’s strategy µ if there is no ω′ ∈ Ω\{ω} such that

L(ω′, µ, P )(≤) < L(ω, µ, P )

for all P ∈P. Similarly, a receiver’s strategy µ is a (strictly) maximal best
response to a sender’s strategy ω if there is no µ′ ∈M\{µ} such that

L(ω, µ′, P )(≤) < L(ω, µ, P )

for all P ∈P.

Definition 2. A strategy profile (ω, µ) is a (strictly) maximal Nash equi-
librium if ω is a (strictly) maximal best response to µ and µ is a (strictly)
maximal best response to ω.

Although there is no single expected utility function to fully characterize
an incomplete preference, we are able to describe decision makers’ behavior
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by focusing on each prior from the set of multiple priors. By collecting max-
imal acts under each prior, also called E-admissible acts Levi (1980), we are
able to find all maximal acts under incomplete preferences. In the following,
we define the notion of E-admissible Nash equilibrium to find solutions under
incomplete preferences with multiple priors.

Definition 3. A sender’s strategy ω is an (a strictly) E-admissible best re-
sponse to a receiver’s strategy µ if there exists some P ∈P such that

L(ω, µ, P )(<) ≤ L(ω′, µ, P )

for all ω′ ∈ Ω\{ω}. Similarly, a receiver’s strategy µ is an (a strictly) E-
admissible best response to a sender’s strategy ω if there exists some P ∈P
such that

L(ω, µ, P )(<) ≤ L(ω, µ′, P )

for all µ′ ∈M\{µ}.

Then, we provide the definition of E-admissible Nash equilibria by the
E-admissible best responses.

Definition 4. A strategy profile (ω, µ) is an or a (strictly) E-admissible Nash
equilibrium if ω is an or a (strictly) E-admissible best response to µ and µ is
an or a (strictly) E-admissible best response to ω.

Remark 1. By Definition 3 and 4, if we fix a prior P in P shared by both
players, an E-admissible Nash equilibrium is a Nash equilibrium.

Jäger et al. (2011) has demonstrated that each strict Nash equilibrium
of the cheap-talk game under single prior is a Voronoi language. In the fol-
lowing, we demonstrate that this outcome can be generalized under multiple
priors.

Definition 5. A Voronoi language (see Jäger et al. (2011)) (w, i) consists of
a Voronoi tessellation for the sender and a Bayesian estimator interpretation
for the receiver under P ∈P, i.e.

w(t) := w arg min
j=1,··· ,N

‖t−ij‖, (1)

and ij = b(Cj) (for Cj = {t ∈ T : w(t) = wj}), (2)

where the Bayesian estimator conditional on Cj ⊆ T is

b(Cj) := arg min
i∈T

∫
Cj

l(‖t− ij‖)P (dt).
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Remark 2. For the sake of simplicity, given a Voronoi language (w, i), each
Voronoi cell Cj mapped to the word wj by the sender can be rewritten as

Cj = {t ∈ T : ‖t− ij‖ ≤ ‖t− ik‖ for all k ∈ {1, . . . , N}\{j},= holds if j < k} .

The sender partitions her own type set T in the way of being a Voronoi
tessellation. With slight abuse of notation, we sometimes let ij denote
i(wj), i.e. the interpretation of the word wj. Given the receiver’s strategy
i = (i1, · · · , iN), the sender maps any type t to the word wj, where the inter-
pretation ij of the word wj is the closest interpretation among {ii, · · · , iN} to
t. If there are multiple interpretations closest to t, without loss of generality,
we choose the interpretation whose index is the smallest one. Like a horizon-
tal Voronoi language shown as the left one of Figure 2, the sender maps any
type t in the cell C1 to the word w1 and the interpretation i(w1) of the word
w1 is the closest interpretation of {i(w1), i(w2)} to the type t. Given the
sender’s strategy w = (w1, · · · , wn), once the receiver receives the word wj,
she updates her belief and chooses the interpretation ij that minimizes the
expected loss of the types mapping to wj. For example, in the left Voronoi
language of Figure 2, the receiver interprets the word w1 and w2 as the word
i(w1) and i(w2), respectively, provided that the sender partitions the type
set T into C1 and C2.

Example 1. Jäger et al. (2011) If the loss function l(d) = d2, the receiver’s
strategy is interpreting each word wj as the center of the mass of the Voronoi
cell Cj, i.e.

ij =

∫
Cj
tP (dt)∫

Cj
P (dt)

.

Let T = [0, 1]2, w = {w1, w2}, P is the uniform distribution over T and
l(d) = d2. There are only two Voronoi languages shown as Figure 2. The
sender partitions the type set into two cells C1 and C2, and maps C1 and C2

to w1 and w2, respectively. The receiver interprets C1 and C2 as i(w)1 and
i(w)2, respectively.

Theorem 1. The following three statements are equivalent.

1. A language (w, i) is a Voronoi language with full vocabulary under a
prior P ∈P,

2. A language (w, i) is a strictly maximal Nash equilibrium under P,
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Figure 2: horizontal and diagonal Voronoi languages.

3. A language (w, i) is a strictly E-admissible Nash equilibrium under a
prior P ∈P,

where the full vocabulary means the range of w is W , i.e. all words in the
word list are fully used by the sender. In the following, we always assume that
the word list are fully used in Voronoi languages if not particularly indicated.

Proof. 3⇒ 1. By Corollary 3, Lemma 5, and Lemma 9, we obtain the proof.
1 ⇒ 2. By the definition of the Voronoi language (w, i), the sender’s

strategy is w(t) = arg min
j=1,··· ,N

‖t− ij‖. By the additivity of integral, for all

P ∈P, the strategy w(·) minimize the expected loss∫
T

l
(∥∥t− iw(t)

∥∥)P (dt).

By the definition of the Voronoi language, the receiver’s strategy is

ik = b(Ck) (for Ck = {t ∈ T : w(t) = wk}), (3)

and

b(C) = arg min
i∈T

∫
C

l(‖t− i‖)Pd(t),

where the probability distribution P ∈P is one of the receiver’s priors over
T . Definitely, the sender’s strategy minimize the expected loss under P ∈P.

10



Hence, by the Definition 2, the language (w, i) is a strictly maximal Nash
equilibrium.

2⇒ 3. First, fix the sender’s strategy w. i is a strictly maximal response
to w. So the function t 7→ l

(∥∥t− iw(t)

∥∥) is a strictly maximal act among the
set {

t 7→ l
∥∥t− iw(t)

∥∥ : i ∈ TN
}
.

where by the continuity of l and the norm ‖·‖, the above set is compact and
convex due to the compactness and convexity of TN . By Theorem 5, we
know that t 7→ l

(∥∥t− iw(t)

∥∥) is an strictly E-admissible maximal act among
the set. i is a strictly E-admissible best response to w. Similarly, we can
prove w is a strictly E-admissible best response to i. At last, we obtain the
proof.

The rest of this section paves the way for the proof of Theorem 1.

Lemma 1. Any strictly E-admissible Nash equilibrium is a strictly maximal
Nash equilibrium.

Proof. By the definitions of both equilibria, each strictly E-admissible Nash
equilibrium is a strict Nash equilibrium under the game with some single
prior P ∈P. Then it is impossible for each player to deviate unilaterally to
obtain lower loss under all priors P. So, we have the proof.

Lemma 2. There exists a strictly E-admissible Nash equilibrium.

Proof. Fix any P ∈P, the game degenerates into the game without Knigh-
tian uncertainty or the Bayesian game. By Lemma 1, Theorem 1 and Theo-
rem 2 of Jäger et al. (2011), there exists a Voronoi language and it is a strict
Nash equilibrium. By Remark 1, the strict Nash equilibrium is a strictly
E-admissible Nash equilibrium.

Corollary 1. There exists a strictly maximal Nash equilibrium.

Proof. By Lemma 1, any strictly E-admissible Nash equilibrium is a strictly
maximal Nash equilibrium. Then by Lemma 2, we get the proof.

Lemma 3. Any strictly maximal Nash equilibrium consists of pure strategies.

Proof. Suppose that there exists a strictly maximal Nash equilibrium (ω∗, µ∗)
consisting of non-degenerate behavioral strategies. Fix any t in T . Given a
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non-degenerate behavioral strategy (ω∗, µ∗), the loss of any type t during
information transmission is

N∑
k=1

∫
T

l (‖t− i‖)µ∗k(di)ω∗k(t).

Firstly, fix the sender’s strategy ω∗. For each word w∗k, due to the non-
degenerate strategy used by the receiver, the interpretation µ∗k maps w∗k to a
lottery on T and the support of the probability measure µ∗k is not a singleton.
Meanwhile, because of the convexity of l and the Euclidean norm, there exists
some interpretation µk and ik ∈ T satisfying µk(ik) = 1, such that∫

T

l (‖t− i‖)µ∗k(di) ≥ l (‖t− ik‖) .

Abusing notation slightly, we rewrite µk as ik. For each word w∗k, we find ik
to interpret w∗k. Repeating the above procedure, we obtain an interpretation
vector or the receiver’s strategy i = (i1, · · · , iN) for the sender’s strategy
w∗ = (w∗1, · · · , w∗N). By summing up all words {w∗1, · · · , w∗N}, it has

N∑
k=1

∫
T

l (‖t− i‖)µ∗k(di)ω∗k(t) ≥
N∑
k=1

l (‖t− ik‖)ω∗k(t),

which induces∫
T

N∑
k=1

∫
T

l (‖t− i‖)µ∗k(di)ω∗k(t)P (dt) ≥
∫
T

N∑
k=1

l (‖t− i‖)ω∗k(t)P (dt)

⇔ L(ω∗, µ∗, P ) ≥ L(ω∗, i, P ).

for all P ∈ P. Then µ∗ is dominated by i and is not a strictly maximal
Nash equilibrium. Hence, the receiver uses pure strategies. Similarly, by the
convexity of l and the Euclidean norm, we are able to prove that the sender
also uses pure strategies in any strictly maximal Nash equilibrium.

Corollary 2. Any strictly E-admissible Nash equilibrium consists of pure
strategies.

Proof. Any strictly E-admissible Nash equilibrium is a strictly maximal Nash
equilibrium.

12



From now on, in this paper we only consider pure strategies.

Lemma 4. Given a strictly maximal Nash equilibrium (w∗, i∗), the sender’s
strategy is a Voronoi tessellation corresponding to i∗, i.e. w∗(t) = w arg min

j=1,··· ,N
‖t−i∗j‖.

Proof. Given the receiver’s strategy i∗ and any t in T , by the monotonicity
of l, the sender uses the word w∗(t) := w arg min

j=1,··· ,N
‖t−i∗j‖ to minimize the loss

l(‖t− i∗w∗(t)‖). By the additivity of integral, for all P ∈P, the strategy w∗(·)
minimizes the expected loss∫

T

l
(∥∥t− i∗w∗(t)∥∥)P (dt).

Remark 3. Since w∗(t) = arg min
j=1,··· ,N

‖t− i∗j‖ for all t ∈ T , even at the ex ante

stage the sender’s optimal strategy is independent of her priors on T .

Corollary 3. Given a strictly E-admissible Nash equilibrium (w∗, i∗), the
sender’s strategy is a Voronoi tessellation corresponding to i∗, i.e. P -almost
everywhere w∗(t) = w arg min

j=1,··· ,N
‖t−i∗j‖.

Proof. By Lemma 1, we get the proof.

Lemma 5. Given a strictly E-admissible Nash equilibrium (w∗, i∗) under
P ∈ P, the receiver’s strategy i∗ = (i∗k)k∈{1,...,N} is a Bayesian estimator
interpretation vector. For each cell C∗k ,

i∗k = arg min
i∈T

∫
C∗k

l(‖t− iwk‖)P (dt) and C∗k = {t ∈ T : w∗(t) = wk}.

Proof. By Remark 1, a strictly E-admissible Nash equilibrium is a Nash
equilibrium. Then by Jäger et al. (2011), we know that the receiver’s strategy
is a Bayesian estimator.

Lemma 6. The function t 7→ l(‖t− iw∗(t)‖) is continuous if w∗ is a Voronoi
tessellation corresponding to i, i.e. w∗(t) = w arg min

j=1,··· ,N
‖t−ij‖.

Proof. Given any type t, the value of the function moves continuously in the
interior of the cell w−1(w∗(t)). If a type jumps from one cell to its adjacent
cell, it also moves continuously since the point on the boundary is equal
distance to the closest interpretations.
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Lemma 7. The mapping φ : TN → Cc(T ) defined by i 7→ l(‖t−iw∗(t)‖) is con-
tinuous on TN and the set cl(conv({φ(i) : i ∈ TN})) 5 is convex and compact
if the topology Cc(T ) equipped with the sup norm and w∗(t) = w arg min

j=1,··· ,N
‖t−ij‖.

Proof. To prove the continuity of φ, due to the continuity of l it is sufficient
to prove the continuity of i 7→ ‖t − iw∗(t)‖. For any i, i′ ∈ TN and ε > 0, if
‖i′ − i‖ < ε, then

sup
t∈T

∣∣‖t− i′w∗(t)‖ − ‖t− iw∗(t)‖∣∣
≤ sup

t∈T
‖t− i′w∗(t) − t+ iw∗(t)‖

= ‖i′w∗(t) − iw∗(t)‖
≤ ‖i′ − i‖
< ε.

Hence, we obtain the continuity of φ.
Although i ∈ TN is a convex set, obviously, {φ(i) : i ∈ TN} may be not.

{φ(i) : i ∈ TN} is compact due to the continuity of φ respect to i and the
compactness of TN . By Theorem 5.35 of Aliprantis and Border (2006), i.e.
the closed convex hull of a compact set is compact in a completely metrizable
locally convex space, cl(conv({φ(i) : i ∈ TN})) is compact with respect to
Cc(T ). And the closed set of a convex set is also convex in the topological
vector space Cc(T ). So we obtain the proof.

Lemma 8. Given a strictly maximal Nash equilibrium (w∗, i∗), the receiver’s
strategy i∗ is a Bayesian estimator interpretation vector under some prior
P ∈P.

Proof. By Lemma 4, w∗ is a Voronoi tessellation corresponding to the in-
terpretation i∗. By Lemma 6, the function t 7→ l(‖t − iw∗(t)‖) (short for
l(t, w∗, i)) is continuous. So, the function is an act as we have defined in Ap-
pendix A. Given the equilibrium (w∗, i∗), by the definition of strictly maxi-
mal Nash equilibrium, l(t, w∗, i∗) is a strictly maximal act among {l(t, w∗, i) :
i ∈ TN}. Next, we will show that l(t, w∗, i∗) is also a strictly maximal act
in cl(conv({l(t, w∗, i) : i ∈ TN})), where cl(conv({l(t, w∗, i) : i ∈ TN}))
is a convex and compact set in Cc(T ) proved in Lemma 7. Suppose that

5cl(conv({φ(i) : i ∈ TN})) is the closed and convex hull of {φ(i) : i ∈ TN}.
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the act is not, it has some mixed act λl(t, w∗, i1) + (1 − λ)l(t, w∗, i2) ∈
cl(conv({l(t, w∗, i) : i ∈ TN}))\{l(t, w∗, i) : i ∈ TN} such that∫

T

l(t, w∗, i∗)P (dt) ≥
∫
T

λl(t, w∗, i1) + (1− λ)l(t, w∗, i2)P (dt)

for all P ∈ P, where i1 6= i2 ∈ TN . Due to the convexity of l and the
Euclidean norm, it has∫
T

λl(t, w∗, i1) + (1− λ)l(t, w∗, i2)P (dt) ≥
∫
T

l(t, w∗, λi1 + (1− λ)i2)P (dt).

Since λi1 + (1− λ)i2 ∈ TN , l(t, w∗, i∗) is not strictly maximal in {l(t, w∗, i) :
i ∈ TN}. So, we obtain a contradiction.

Then we are able to apply Theorem 5. It has that l(t, w∗, i∗) is an
E-admissible act in cl(conv({l(t, w∗, i) : i ∈ TN})) and also in its subset
{l(t, w∗, i) : i ∈ TN}. So there exists some P ∈P such that∫

T

l(t, w∗, i∗)P (dt) <

∫
T

l(t, w∗, i)P (dt)

for all i ∈ TN . At last, by Lemma 5, we obtain the proof.

Remark 4. Although the sender have some priors, both strictly maximal
Nash equilibria and strictly E-admissible Nash equilibria only depend on the
receiver’s belief. Hence, we can relax the assumption that both the sender and
the receiver know the receiver’s prior is P without the assumption that they
share a common prior set.

Lemma 9. Any strictly E-admissible Nash equilibrium (w, i) is a language
with full vocabulary, where full vocabulary means that the range of w is W .

Proof. Prove by contradiction. Given a strictly E-admissible Nash equilib-
rium (w, i), suppose that without loss of generality, w−1(w1) = ∅, i.e. the
first word has not been used, and the second word is used. Then we split
C2 = w−1(w2) into C

′
2 and C

′′
2 . C

′
2 and C

′′
2 map to w1 and w2, respectively,

and nothing else changes. We denote the new strategy profile (w′, i). The
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difference between the expected loss of (w, i) and of (w′, i) is∫
C2

l (‖t− i2‖)P (dt)−

(∫
C′2

l (‖t− i1‖)P (dt) +

∫
C′′2

l (‖t− i2‖)P (dt)

)

=

∫
C2

l (‖t− i2‖)P (dt)−

(∫
C′2

l (‖t− i1‖)P (dt) +

∫
C2−C′2

l (‖t− i2‖)P (dt)

)
=

∫
C′2

l (‖t− i2‖)P (dt)−
∫
C′2

l (‖t− i1‖)P (dt)

By Lemma 5, if (w, i) is a strictly E-admissible Nash equilibrium, it should
have

ik = arg min
ik∈T

∫
Ck

l (‖t− ik‖)P (dt).

Since C1 = w−1(w1) = ∅, i1 can be any point in T . Then let i1 be

arg min
i∈T

∫
C′2

l (‖t− i‖)P (dt).

We obtain ∫
C′2

l (‖t− i2‖)P (dt)−
∫
C′2

l (‖t− i1‖)P (dt) ≥ 0.

So (w′, i) dominate (w, i), and it generates a contradiction.

4 Indeterminacy

In this section, we focus on the role of Knightian uncertainty in equilibria.
Given a strictly maximal Nash equilibrium (w, i) under P, w is a Voronoi

tessellation generated by the interpretation vector i. The equilibrium (w, i)
can be fully characterized by the interpretation vector i and we use i to denote
equilibrium (w, i). The next proposition says that the strictly maximal Nash
equilibria moves continuously on the probability set P.

Proposition 1. The correspondence ν : P � TN , where ν(P ) is the set
of all strict equilibria under the probability P , is upper hemicontinuous, i.e.
∀P ∈P if for every open neighborhood Ui of ν(P ), there is a neighborhood UP
of P such that P ′ ∈ UP implies ν(P ′) ⊂ Ui. Further, given some P ∈ P, if
there are any two different strictly maximal equilibria i1, i2 ∈ ν(P ), then there
exist two open neighborhoods Ui1 of i1 and Ui2 of i2 such that Ui1 ∩ Ui2 = ∅.
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Proof. First, let us consider the signaling game with two words under the
type space T = [0, 1]. Besides, let us assume the loss function l(d) = d2. If
the equilibrium i∗ = (i∗1, i

∗
2), then there exists some P ∗ ∈P such that

f1(P ∗, i∗) :=

∫ i∗1+i
∗
2

2

0
tP ∗(dt)∫ i∗1+i
∗
2

2

0
P ∗(dt)

= i∗1

f2(P ∗, i∗) :=

∫ 1
i∗1+i

∗
2

2

tP ∗(dt)∫ 1
i∗1+i

∗
2

2

P ∗(dt)
= i∗2,

where the mapping f(P, i) = (f1(P, i), f2(P, i)) : P × T 2 → T 2 satisfies

f(P ∗, i∗) = i∗. Notice that i∗1 and i∗2 are the centers of the mass of [0,
i∗1+i∗2

2
)

and [
i∗1+i∗2

2
, 1], respectively. Next, let

ν(P ) := {i ∈ T 2 : f(P, i) = i}.

The graph of ν is

Gr ν = {(P, i) ∈P × T 2 : f(P, i) = i}

Due to the continuity 6 of f on P × T 2, the set Gr ν is closed. By the
closed graph theorem (Theorem 17.11 of Aliprantis and Border (2006)), ν is
upper hemicontinuous given the compactness of T 2.

In the similar way, we extend this outcome to higher-dimensional space
T under more general loss function l with N words. Given the equilibrium
i∗ = (i∗1, · · · , i∗N), for each j ∈ {1, · · · , N} it has

fj(P
∗, i∗) := arg min

ij∈T

∫
T

l(‖t− ij‖)1C∗j P
∗(dt) = i∗j

where

C∗j =
{
t ∈ T : ‖t− i∗j‖ ≤ ‖t− i∗k‖ for all k ∈ {1, . . . , N}

}
.

Due to the convexity of l and nonlinearity of l with respect to i, by Theorem
7.15 of Lehmann and Casella (1998), there is a unique i∗j minimizing fj,

6P is is equipped with the weak* topology metricized by the Prokhorov metric. And
P × T 2 is equipped with the product topology.
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i.e. the Bayesian estimator i∗j is unique conditional on C∗j . Then, fj is a
well-defined function.

Similarly, we construct the mapping f(P, i) = (f1(P, i), · · · , fN(P, i)) :
P × TN → TN such that f(P ∗, i∗) = i∗. Next, we show that f(P, i) is
continuous on P × TN . It is sufficient to demonstrate the continuity of∫

T

l(‖t− ij‖)1CjP (dt),

on P × TN . t 7→ l(‖t− ij‖)1Cj is continuous on Cj ⊆ T , given that w∗ is a

Voronoi tessellation. By the definition of weak* convergence, if P λ weak∗−→ P ∗,
then ∫

T

l(‖t− ij‖)1CjP λ(dt)→
∫
T

l(‖t− ij‖)1CjP ∗(dt).

Further, given a sequence of Voronoi languages {iλ}λ∈Λ with iλ → i∗, it
has a sequence of P ∗-measurable functions (l(‖t − iλj ‖)1Cλj )λ∈Λ convergence

in measure to l(‖t− i∗j‖)1C∗j . Then by Lebesgue’s dominated convergence
theorem, it has∫

T

l(‖t− iλj ‖)1Cλj P
∗(dt)→

∫
T

l(‖t− ij‖)1CjP ∗(dt).

So, f(P, i) is continuous on its domain.
As before, let

ν(P ) := {i ∈ T 2 : f(P, i) = i}.
The graph of ν is

Gr ν = {(P, i) ∈P × T 2 : f(P, i) = i}.

Gr ν is closed due to the continuity of f on P × TN . By the closed graph
theorem, ν is upper hemicontinuous given the compactness of TN .

Second, it is sufficient to prove any strictly maximal equilibrium is a
local minimum point of the total loss L(P, i). Since L is continuous on
interpretations I, given a strict (strictly maximal) equilibrium under P , it is
a local minimum point due to common interests between the sender and the
receiver.

The above proposition confirms equilibria moving continuously on a set
of probabilities. It seems that there are infinite equilibria around any equi-
librium. However, it is possible that the correspondence ν is constant on its
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domain. Of course, the constant correspondence is continuous. Henceforth,
we seem any Voronoi language with essentially same partition of type space
as one Voronoi language. The following example shows that there is a unique
Voronoi language under multiple priors.

Example 2. Given T = [0, 1] and two word list {w1, w2}, P is a set of
probabilities conv({P 0, P 1}), where the densities of P 0 and P 1 are

p0(t) =

{
3
4

+ t 0 ≤ t < 1
2

7
4
− t 1

2
≤ t ≤ 1

,

and

p1(x) =

{
5
4
− t 0 ≤ t < 1

2
1
4

+ t 1
2
≤ t ≤ 1

,

respectively. Although the players have a set of convex and closed priors P,
due to the symmetric of priors, the sender always partitions T into [0, 0.5)
and [0.5, 1] if she has two words. And the receiver’s interpretations for w1, w2

are also symmetric under all priors. It means that there is no indeterminacy.

t = 0.5

p0

p1

Although the prior set in the above example contain multiple priors, close
probabilities (in weak* topology) are not in, like a probability P 0

ε , ε → 0+,
with the density

p0
ε(t) =

{
3
4

+ t− ε 0 ≤ t < 1
2

7
4
− t+ ε 1

2
≤ t ≤ 1

.

If both players have sufficient uncertainty, there exists a continuum of equi-
libria around any strictly maximal Nash equilibrium.

Theorem 2. If P contains an open ball, for each strictly maximal Nash
equilibrium i∗ and any open neighborhood Ui∗ of i∗, there exists a continuum
of strictly maximal Nash equilibria in Ui∗.
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Proof. Since i∗ a maximal equilibrium, by Theorem 1, it is an E-admissible
equilibrium under some P ∗ ∈P. By Proposition 1, it has some open neigh-
borhood Ui∗ of i∗ and a neighborhood or open ball UP ∗ of P ∗ such that
ν(P ′) ⊆ Ui∗ if P ′ ∈ UP ∗ . By Proposition 1, ν maps to a unique value in some
local region. Then, there exists some open ball BP ∗ ⊆ UP ∗ such that every
ν(P ′) is singleton if P ′ ∈ BP ∗ . Then ν(P ) is a continuous function on BP ∗ .
As BP ∗ is connected in the compact and metrizable space of all probability
measures, ν(BP∗) is connected in TN due to the continuity of ν. If ν(BP ∗)
is not a singleton, by the continuity of ν(BP ∗), we obtain the continuum.

In the following, we prove that ν(BP ∗) is not a singleton. The proof idea
is to destroy the symmetry happened in Example 2.

i∗1
i′′1

i∗2

o

b1

b2

C1

C2C3

C4

Figure 3: A Voronoi language with four words

For any Voronoi tessellation and any two adjacent intervals or cells, the
two generating points of the two cells forms a segment, like the segment i∗1i

∗
2

in Figure 3. The segment intersects with the boundary point 7 or plane of the
two cells at some point, such as the intersection point o in Figure 3. Then
the distance of each generating point to the intersection point is same, e.g.
‖i∗1 − o‖ = ‖i∗2 − o‖ in Figure 3.

Suppose that ν(BP ∗) is a singleton. Then the Voronoi languages share
the same Voronoi tessellation but possible not share the generators. So the
set of the Voronoi languages can be rewritten as {(w, iκ) : κ ∈ K}, where

7In one-dimensional type space, the two generating points pass through the boundary
point.
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K is an index set. Without loss of generality, we focus on any two cells 8

denoted as C1 and C2. The equilibrium i∗ = (i∗1, i
∗
2, · · · , i∗N) is a strictly E-

admissible Nash equilibrium under P ∗. Since BP ∗ is an open ball, we are able
to find a probability P ′′ ∈ BP ∗ , where P ′′ shares the same probability value
with the probability P ∗ in cells C2, · · · , CN , and deviates a little bit from P ∗

in the cell C1 such that the new Bayesian estimator for C1 is i′′1 satisfying
‖i′′1 − o‖ 6= ‖i∗2− o‖ shown as Figure 3. It is possible because the value of P ′′

on C2 dose not change and the new Bayesian estimator under P ′′ should be
i∗2 as before. As we have assumed, the Voronoi language under P ′′ shares the
same the Voronoi tessellation under P ∗. But under P ′′, ‖i′′1 − o‖ 6= ‖i∗2 − o‖
and it generates a contradiction. So we obtain the proof.

5 Vague Voronoi languages

5.1 Vagueness

In this paper, we follow a conservative definition of vagueness by Perirce
that is a word is vague if it admits borderline cases (pp.14-15 of Keefe and
Smith (1996)). For example, if the values in [0,0.5] and (0.5, 1] are called
small and big, respectively, then the boundary between the two words is
sharp and there are no thick borderline cases. The both words have thick
borderline cases if values in [0,0.4] and (0.6,1] are called small and big, re-
spectively, (0.4,0.6) are called small or big. Notice that, values in (0.4,0.6)
are hard to be called definitely small (or big) but values in [0,0.4] is defi-
nitely small. Now, we go back our games. The existence of vagueness is the
existence of many equilibria such that the borderline cases formed by the
sender have positive measure and the interpretations or Bayesian estimators
of the receiver of the equilibria are connected. Here, the interpretations are
usually called prototypical or typical points of a concept in prototype theory.
The reason why we require the interpretations are connected in the following
definition is that Berlin and Kay 1969 (see section 1.5) find that their test
subjects point at more than one chip as being a typical instance (seem as
the receivers interpretation in this paper) of a color, these chips are always
adjacent. Besides, we can image that if 0.14 and 0.16 are typically small
but any point in (0.14,0.16) is not typically small, it seems strange. Then,

8It is possible because the number of words is greater than 2.
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Gärdenfors (2000) (see p.138) assumes that Voronoi concepts could be gen-
erated by prototype areas, where each area is a circle and then is definitely
connected. And Douven et al. (2013) and Decock and Douven (2014) relax
Gärdenfors’s assumption of any prototypical area to be connected.

5.2 Definitions

By Figure 4, what a color denoting on the figure is a connected region,
like ‘red’ and ‘orange’. The meaning of the word ‘red’ should be some point
of the most left region and never be some point in the most right area. A
feature of the meaning of natural words usually is connected. In our model, it
says that all the types sent to a word should be a connected set. To achieve
this, we follow the idea of Douven et al. (2013) and Decock and Douven
(2014) and assume the set of interpretations should be connected. Then we
provide the definition of vague Voronoi languages as follows.

Figure 4: a color bar

Definition 6. Given a convex and compact set T ⊆ Rn, and a finite word
list {w1, · · · , wN}, a set of languages

V := {(wλ, iλ) : λ ∈ Λ}

indexed by a set Λ is called a vague Voronoi language if

• each language in V is a Voronoi language,

• (thickness) its boundary set

B(V ) := T −
⋃
k≤N

⋂
λ∈Λ

Cλ
k

is positive measured under Lebesgue measure and Cλ
k = {t ∈ T :

wλ(t) = wk},
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• (connectedness) for each word wk in the word list {w1, · · · , wN} the in-
terpretation set of the word wk, i.e. Ik(V ) = {iλk : λ ∈ Λ} is connected,

• (maximality) and V is maximal, i.e. there is no set of Voronoi lan-
guages V ′ satisfying the above two conditions such that V is a proper
subset of V ′.

Remark 5. For each λ, since the sender’s strategy wλ divides T into N cells,
it has T −

⋃
k≤N C

λ
k ≡ ∅. Then the thickness of boundary requires that there

exists at least two different Voronoi languages (wλ1 , iλ1) and (wλ2 , iλ2) such
that for one word wk the difference of the two corresponding cells Cλ1

k 4C
λ2
k :=

(Cλ1
k \ C

λ2
k )
⋃

(Cλ2
k \ C

λ1
k ) is positive measurable. In another word, the word

wk denotes two different meanings or types in different Voronoi languages.
Then the word wk is vague.

The connectedness means that we only collect connected Voronoi lan-
guages. In Example 1, given T = [0, 1]2, w = {w1, w2} and the uniform
distribution P , as Figure 2 there are only two Voronoi languages named by
horizontal Voronoi language and diagonal Voronoi language. We do not col-
lect them to form a vague Voronoi language. Although in Example 1 the
sender use w1 to denote C1 of both horizontal Voronoi language and diag-
onal Voronoi language, in our natural language we would like to call C1 of
horizontal Voronoi language as “Up” and C1 of diagonal Voronoi language
as “Upper-left”. To avoid aggregating essentially different words, we require
the connectedness.

The maximality ensures that a vague Voronoi language is unique in some
local region.

Remark 6. For each λ, the set Cλ
k is a convex set, which is an intersection

set of half-spaces. And the set
⋂
λ∈ΛC

λ
k definitely expressed by the word wk

is also convex since it is an intersection set of convex sets. This verifies the
thought from Gärdenfors (2000) that the meaning of a word is convex.

Intuitively, the higher uncertainty of belief the higher vagueness of a lan-
guage is. This following proposition verifies the intuition.

Proposition 2. Given two convex and closed set of probabilities P1 ⊆P2,
then if there is a vague Voronoi language V P1 under P1, then there is a
vague Voronoi language V P2 under P2 such that B(V P1) ⊆ B(V P2).
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Proof. Due to P1 ⊆ P2, by Definition 3 and 2, the set of all strictly
E-admissible equilibria under P1 is a subset of the set of all strictly E-
admissible equilibria under P2. By Theorem 1, under some convex and
closed set P, the set of all Voronoi languages coincides with the set of all
strictly E-admissible equilibria. So, the set of all Voronoi languages under
P1 is a subset of the set of all Voronoi languages under P2. The vague
Voronoi language V P1 can be extended to V P2 . By the monotonicity of the
operator B from Definition 6, we can obtain B(V P1) ⊆ B(V P2).

5.3 Examples

Example 3. Let T be [0, 1], l(d) = d2, W = {w1, w2} and P = {P λ :
(1− λ)P 0 + λP 1, λ ∈ [0, 1]}, where the density of P 0 is

p0(t) =

{
3
2

0 ≤ t ≤ 2
5

2
3

2
5
< t ≤ 1

,

and the density of P 1 is

p1(x) =

{
1
2

0 ≤ t ≤ 2
5

4
3

2
5
< t ≤ 1

,

Obviously, the probability P 0.5, i.e. 0.5P 0 +0.5P 1, is the uniform distribution
on [0, 1]. For each probability distribution P λ, if let the both players share
the prior P λ, there exist a Voronoi language by Lemma 2. For example, let
P λ = P 0, we can get a Voronoi language as follows. The sender divides her
type space T into two cells [0, b0] and (b0, 1], where b0 ∈ (0, 1), and she sends
the word w1 if her type belongs to [0, b0] otherwise w2. As we know, if both
players share the uniform prior P 0.5, b0.5 should be 0.5. Compared to P 0.5,
P 0 is small biased. The sender decreases the value of boundary, i.e. b0 < 0.5,
to reduce the expected loss. The receiver should interpret w1 as i01 ∈ (0, b0)
and w2 as i02 ∈ (b0, 1). Since b0 is the center point between i01 and i02, we have

b0 =
i01 + i02

2
. (4)
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Besides, i01 is the center of mass of the cell [0, b0]. We obtain

i01 =

∫
[0,b0]

tp0(t)dt∫
[0,b0]

p0(t)dt

=

∫ 2
5

0
3
2
tdt+

∫ b0
2
5

2
3
tdt∫ 2

5

0
3
2
dt+

∫ b0
2
5

2
3
dt

=
3
25

+ 2
3
( b

02

2
− 2

25
)

3
5

+ 2
3
(b0 − 2

5
)
. (5)

Meanwhile, i02 is the center of mass of the cell [b0, 1]. Then, it has

i02 =

∫
[b0,1]

tp0(t)dt∫
[b0,1]

p0(t)dt

=

∫ 1

b0
2
3
tdt∫ 1

b0
2
3
dt

=
1 + b0

2
. (6)

Combining Formula (4), (5), and (6), we have
b0 =

1

40
(−5 + 3

√
65) ≈ 0.480

i01 = −11

16
+

9

80
≈ 0.220

i02 =
7

16
+

3

80

√
65 ≈ 0.740

If both players share the uniform prior P 1, it also has a unique Voronoi
language. Compared to P 0.5, P 1 is great biased. The sender increases the
value of boundary, i.e. b1 > 0.5, to reduce the expected loss. The receiver
should interpret w1 as i11 ∈ (0, b1) and w2 as i12 ∈ (b1, 1). Similarly, we obtain
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the following equation system.

b1 =
1

2
(i11 + i12)

i11 =

∫ 2
5

0
1
2
tdt+

∫ b1
2
5

4
3
tdt∫ 2

5

0
1
2
dt+

∫ b1
2
5

4
3
dt

=
1
25

+ 2
3
(b12 − 4

25
)

4
3
b− 1

3

i12 =

∫ 1

b1
4
3
tdt∫ 1

b1
4
3
dt

=
1 + b1

2

We have b1 ≈ 0.566, i11 ≈ 0.348, and i12 ≈ 0.783. Similarly, for each prior
P we obtain a unique language (wP , iP ). Actually, the set of all Voronoi
languages V := {(wP , iP ) : P ∈P} forms a vague Voronoi language. [0, b0)
is definitely named w1 and (b1, 1] is definitely named w2. But [b0, b1] is some-
times called w1 and sometimes called w2. In the following, we will check
whether V is a vague language.

0 1b0i01 i02i11 i12b1

w1 w2w1 or w2

First, the thickness is satisfied due to b1 − b0 > 0. Second, we need to
check the connectedness. As in one-dimensional type space, essentially, there
is one Voronoi language for each prior P . Then the correspondence ν(P )
degenerates into the mapping ν(P ) = iP = (iP1 , i

P
2 ). By the continuity of ν

and the connectedness of P, we are able to obtain that both sets I1(V ) and
I2(V ) are connected, where I1(V ) := {iP1 : P ∈P} and I2(V ) := {iP2 : P ∈
P}. The maximality is trivial.

In the following, we provide some example under bivariate normal dis-
tributions and with more words. Usually, finding Voronoi languages with
general distributions in a higher-dimensional space is not easy as Example 3.
Fortunately, we are able to approximate Voronoi languages by the algorithm
of Lloyd (1982). In detail, first step, randomly select the receiver’s interpre-
tations from the type set, i.e. randomly start from some generating points
from the type set. Second step, generate the receiver’s partition strategy
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Figure 5: a vague Voronoi lan-
guages with three words under
probabilities of the convex hull
of N ((0, 0), diag(0.81, 0.81))
and N ((0, 0), diag(1, 1)).

Figure 6: a vague Voronoi lan-
guages with three words under
probabilities of the convex hull
of N ((0, 0), diag(0.49, 0.49))
and N ((0, 0), diag(1, 1)).

according to the receiver’s interpretations, i.e. Voronoi tessellation is gener-
ated. Third step, compute the receiver’s expected estimator of the sender’
strategy, i.e. compute the center of mass of each Voronoi cell. Forth step,
move the generating points to the centers of mass of the cells calculated in
the third step and then repeatedly executes from the second step. In this way
we obtain Voronoi languages. And we are able to collect Voronoi language
under each prior to form vague Voronoi languages.

Example 4. Let T be [−1, 1], l(d) = d2, W = {w1, w2, w3} and P = {(1−
λ)P 0 + λP 1 : λ ∈ [0, 1]}, where P 0 is a bivariate normal distribution with
a mean vector µ0 = (0, 0) and a covariance matrix is a diagonal matrix
diag(0.81, 0.81), i.e. t ∼ N ((0, 0), diag(0.81, 0.81)). And P 1 is a bivariate
normal distribution with a mean vector µ1 = (0, 0) and a covariance matrix
being a diagonal matrix diag(1, 1), i.e .t ∼ N ((0, 0), diag(1, 1)). A vague
Voronoi language is shown as Figure 5.

Example 5. Let T be [−1, 1], l(d) = d2, W = {w1, w2, w3} and P = {(1−
λ)P 0 + λP 1 : λ ∈ [0, 1]}, where P 0 is a bivariate normal distribution with
a mean vector µ0 = (0, 0) and a covariance matrix is a diagonal matrix
diag(0.49, 0.49), i.e. t ∼ N ((0, 0), diag(0.49, 0.49)). And P 1 is a bivariate
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normal distribution with a mean vector µ1 = (0, 0) and a covariance matrix
being a diagonal matrix diag(1, 1), i.e .t ∼ N ((0, 0), diag(1, 1)). A vague
Voronoi language is shown as Figure 6.

Comparing Example 4 and Example 5, the priors of the latter are more
uncertain than the former’s. Naturally, by Figure 5 and 6, we see that the
boundary region of the latter is greater than the former’s due to higher
uncertainty.

Example 6. Let T be [−1, 1], l(d) = d2, W = {w1, · · · , w27} and P =
{(1 − λ)P 0 + λP 1 : λ ∈ [0, 1]}, where P 0 is a bivariate normal distribution
with a mean vector µ0 = (0, 0) and a covariance matrix is a diagonal matrix
diag(1, 1), and P 0 is a bivariate normal distribution with a mean vector µ1 =
(0, 0) and a covariance matrix is a diagonal matrix diag(1.44, 1.44). A vague
Voronoi language is shown as Figure 7.

Example 7. Let T be [−1, 1], l(d) = d2, W = {w1, · · · , w27} and P =
{(1 − λ)P 0 + λP 1 : λ ∈ [0, 1]}, where P 0 is a bivariate normal distribution
with a mean vector µ0 = (0, 0) and a covariance matrix is a diagonal matrix
diag(0.035, 0.035), and P 0 is a bivariate normal distribution with a mean vec-
tor µ1 = (0, 0) and a covariance matrix is a diagonal matrix diag(0.04, 0.04).
A vague Voronoi language is shown as Figure 8.

Comparing Example 6 and Example 7, the densities in Example 6 are far
more evenly than then densities in Example 7. Points are heavily concen-
trated around (0, 0) in Example 7. So as shown in Figure 8, the sender pay
more attention on the types around (0, 0) and use more words around (0, 0)
to reduce loss.

5.4 No vagueness in Bayesian worlds

Proposition 3. If both players share a single prior P over T , then there
exists no vague Voronoi language.

Proof. By Proposition 1, each strict Nash equilibrium is locally unique in
some local region. Then it has finite strict Nash equilibria when the range of i
is a convex and compact set TN . So it never has a continuum of equilibria.
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Figure 7: a vague Voronoi
languages with 27 words un-
der probabilities of the convex
hull ofN ((0, 0), diag(1, 1)) and
N ((0, 0), diag(1.44, 1.44)).

Figure 8: a vague Voronoi
languages with 27 words under
probabilities of the convex hull
of N ((0, 0), diag(0.035, 0.035))
and
N ((0, 0), diag(0.04, 0.04)).

5.5 Existence of vagueness in Knightian worlds

Even P is a set of multiple beliefs, it does not always generate a vague
Voronoi languages. Show an example in one-dimensional type space as fol-
lows.

Example 8. Given T = [−1, 1] and two word list {w1, w2}, P is a set of
normal distributions with probabilities {t ∼ N (0, σ2) : σ ∈ [1, 3]}. If there
are two words, the sender always partitions T into [0, 0.5) and [0.5, 1] for any
distribution from P. It means that there is no vague Voronoi languages even
there are multiple priors.

As before, if the prior set contains sufficient uncertainty, there exists a
vague Voronoi language.

Theorem 3. There exists a vague Voronoi language if the probabilities P
contains a open ball.

Proof. Now let us check the four conditions of the definition. The existence of
Voronoi languages has been proved by Jäger et al. (2011) and the maximality
is trivial. Each efficient language is a Voronoi language, where under a prior
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of the receiver P a language (w, i) is called efficient if it minimizes the loss
L(w, i, P ) among all languages. We manage to find a set of some efficient
languages that is connected and thick.

Step 1. Prove that there exists a set of efficient languages such that its
interpretation set is connected.

Let ψ : P � TN be a constant correspondence. Here, we let ψ(P ) = TN

for all P ∈ P, where N is the number of words. Since TN is a compact
set and ψ is constant, then ψ a compact-valued correspondence. Let a value
function −L : Graphψ → R, i.e.

−L(P, i) = −
∑
j∈N

∫
t∈w−1(wj)

l(‖t− ij‖)P (dt),

and −L is the opposite value of the total loss of the language (w, i). Here,
we require that the sender’s strategy w is a Voronoi tessellation uniquely
generated by the interpretation vector i. By Lemma 6, L is continuous with
respect to i. The correspondence of maximizers ν : P � T is

ν(P ) :=
{
i ∈ ψ(P ) : max

i
−L(P, i)

}
.

By Berge’s maximum theorem (see Theorem 17.31 of Aliprantis and Border
(2006)), ν is upper hemicontinuous. Now let us focus on an efficient language
(wλ, iλ) with a prior P λ. Suppose that iλ is a global maximization point
of −L(P λ, i). Due to the convexity of l and the norm, iλ is the unique
point to maximize −L(P λ, i) in a neighborhood U(iλ, δ) of iλ. By upper
hemicontinuity of ν, we are able to find a neighborhood U(P, ζ) of P such that
for all P ∈ U(P λ, ζ) it has ν(P ) ∈ U(iλ, δ), where ν(P ) is a singleton valued
mapping in the range U(iλ, δ). Then we can find a non-singleton, convex and
connected set U(P λ, η) ⊂ U(P λ, ζ), and U(P λ, η) induces a connected set of
interpretations contained in U(iλ, δ) due to the continuity of ν(P ).

Step 2. Prove the set of efficient languages with connected interpreta-
tions having thick boundary. That is to prove the set of efficient languages
is not a singleton. The proof idea is breaking the symmetry that is similar
to the proof in Theorem 2.

Remark 7. By Proposition 3 and Theorem 3, we know that Knightian un-
certainty is the source of vagueness in our model. By Theorem 3, there
are infinite strict equilibria around an strict equilibrium under Knightian
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uncertainty. This phenomenon called robust indeterminacy also appears in
financial markets Rigotti and Shannon (2005), where there is a continuum
of equilibrium allocations and prices under Knightian uncertainty.

6 Efficiency

A language (w, i) 9 is efficient Jäger et al. (2011) if it minimizes the
expected loss L(w, i, P ), where P measures the common belief of the players.
Now, given multiple priors of the receiver, usually no strategy profile (w, i)
minimizes L(w, i, P ) for all P ∈ P under incomplete preference, i.e. there
may be a set of strategy profiles being Pareto optimal. In the following, we
attempt to characterize these profiles and find the relation with the concept
of vague Voronoi language.

Definition 7. Given a convex and compact set T ⊆ Rn, a closed and convex
set of probabilities P, and a finite word list {w1, · · · , wN}, a set of languages

V = {(wλ, iλ) : λ ∈ Λ}

indexed by a set Λ is efficient if

• (efficiency) for each language (w, i) ∈ V , it is Pareto optimal, i.e. the
language (w, i) is efficient if there is no (w′, i′) ∈ W T × TN\{(w, i)}
such that L(w, i, P ) ≥ L(w′, i′, P ) for all P ∈P,

• (connectedness) for each word k in the word list {w1, · · · , wk} the in-
terpretation set of the word wk, i.e. Ik(V ) = {iλk : λ ∈ Λ} is connected,

• (maximality) and V is maximal, i.e. there is no set of Voronoi lan-
guages V ′ satisfying the above condition such that V is a proper subset
of V ′.

Proposition 4. If a non-singleton set of languages V is efficient, then it is
a Vague Voronoi language.

Proof. First, we show each language satisfying the efficiency is a Voronoi
language. Obviously, by Definition 1 and 2, all languages in the set satis-
fying the efficiency should be strictly maximal Nash equilibria due to the

9Like before, non-degenerate behavioral strategies are always dominated by pure strate-
gies under our games. Definitely, non-degenerate behavioral strategies are never efficient.

31



common interests between the players. Then by Theorem 1, we know that
the language is a Voronoi language. Second, the set V is a non-singleton and
the boundary set of V should be positive measurable. Other conditions are
trivial. So we obtain the proof.

Theorem 4. There exists a set of languages V that is efficient.

Proof. It has been proved in the proof of Theorem 3. The vague Voronoi
language constructed in Theorem 3 is efficient.

7 Conclusion

In this paper, we construct a sender-receiver game within Knightian un-
certainty when the type space is finite-dimensional and the word list is finite.
We use the incomplete rules maximality to deal with Knightian uncertainty.
To obtain equilibria, we use E-admissibility to solve the game, where E-
admissibility is equivalent to maximality under some weak conditions. Fur-
ther, the strictly maximal equilibrium and the strictly E-admissible Nash
equilibrium are defined. It has demonstrated that both equilibria are equiv-
alent and are Voronoi languages. Under Knightian uncertainty, a strict equi-
librium surround with a continuum of strict equilibria and players use vague
languages. To characterize vagueness in our natural languages, we provide
a definition of vague Voronoi languages, which is an aggregation of Voronoi
languages or strict equilibria. We have demonstrated that the existence of
vague Voronoi languages or vagueness in Knightian worlds. And there is no
vagueness if the players’ prior is characterized in Bayesian way. At last, we
show that an set of efficient languages is a vague Voronoi language.

A Decisions under Knightian uncertainty

Now, let us remind formal definitions of the two incomplete decision rules
and discuss the relation between them. A set of Borel regular probability
measures P represents Knightian uncertainty on a subset B of all acts A :=
Cc(T ) 10, where P is defined on a compact Polish space (separable completely

10Here, since T is compact, then Cc(T ) = C(T ) and its topological dual space Cc(T )′ =
car(T ) = ca(T ) is the set of all countably additive Borel signed measures on T (see
Corollary 14.15 of Aliprantis and Border (2006)).
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metrizable topological space) T assigned with a Borel σ−algebra, and A is
a set of all continuous real-valued function on T with compact support and
is paired with the sup norm. Due to the continuity of every act a over the
compact set T , the expectation EP (a) =

∫
T

adP < ∞ is well defined. Then
the definitions of the both rules are shown as follows.

Definition 8. Given a set B ⊆ A, an act a∗ is (strictly) maximal in B if
there is no act a ∈ B\{a∗} such that EP (a)(≥) > EP (a∗) for all P ∈P.

Definition 9. An act a∗ is (strictly) E-admissible in B if there exists some
P ∈P such that EP (a∗)(>) ≥ EP (a) for all a ∈ B\{a∗}.

Often, maximality and E-admissibility are not equivalent. In Schervish
et al. (2003), an equivalence of maximality and E-admissibility with finite
set of states is discussed. But in our setting, the set of states T can be
an infinite-dimensional space. We wonder whether there is the equivalence
even when the set of states T is infinite. The following theorem provides an
affirmative answer.

Theorem 5. Given a nonempty convex and compact set 11 of acts B ⊆ A,
and a nonempty convex and closed 12 set of priors P, an act a∗ is a strictly
maximal act in B if and only if it is a strictly E-admissible act in B.

Proof. Obviously, an E-admissible act is a maximal act. In the following, we
prove that the maximal act a∗ is an E-admissible act in B.

Step 1. We manage to find a positive linear functional to separate a∗

from B such that a∗ achieves the maximum value under the linear functional.
Let CA = {a ∈ A : EP (a) ≥ 0 for all P ∈ P}, and CA is a convex cone

for the linearity of EP . By the linearity of E and the closed graph theorem,
CA is a closed set. Then for any positive value ε and constant act εT , it has
that {

a∗ +
1

2
εT
}

+ CA :=

{
a∗ +

1

2
εT + cA : cA ∈ CA

}
is convex and closed. Here, in order to make sure the separated two sets are
disjoint, we add the infinitesimal act 1

2
εT to a∗. Besides, B is convex, and{

a∗ +
1

2
εT
}

+ CA
⋂

B = ∅,

11It is compact with respect to the topology with the sup norm.
12Here, a set of probabilities is closed with respect to the weak* topology

σ(car(T ), Cc(T )), where car(T ) is the set of all regular signed Borel measures of bounded
variation over T .
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where
{
a∗ + 1

2
εT
}

+ CA is definitely nonempty, closed, and convex. By the
strong separating hyperplane theorem (Theorem 5.79 of Aliprantis and Bor-
der (2006)), there exists some nonzero continuous linear functional L ∈ A′
such that

L(a∗ + cA +
1

2
εT ) ≥ α + ε > α ≥ L(a)

⇒ L(a∗ + cA) ≥ α +
1

2
ε > α ≥ L(a)

⇒ L(a∗ + cA) > L(a),

for all a ∈ B and all cA ∈ CA, where A′ is the topological dual of A. By
L(a∗ + cA) ≥ L(a) for all a ∈ B and all cA ∈ CA, we obtain

L(cA) > L(a)− L(a∗)

= L(a∗)− L(a∗)

= 0

if let a = a∗. In another word, it has L ∈ CA′ , where

CA′ = {L ∈ A′ : L(cA) ≥ 0 for any cA ∈ CA} .

More, we have L(a∗) > L(a) for all a ∈ B if cA is 0T , where 0T is a constant
act that assigns 0 to all elements of T .

Step 2. Based on the functional L, by a Riesz representation theorem,
it induces a probability measure.

Given c = L(1T ), we obtain a normalized functional 1
c
L. By the definition

of CA, we know that a ∈ CA if a ≥ 0T . Since L(cA) ≥ 0 for all cA ∈ CA,
it has L(a) ≥ 0 for all a ≥ 0T . So 1

c
L is a positive linear functional. Since

T is a compact set, by Riesz-Markov Theorem (Theorem 14.12 of Aliprantis
and Border (2006)), there exists a unique positive regular Borel measure
satisfying 1

c
L(a) =

∫
T

adQ. Because Q(T ) = 1
c
L(1T ) = 1, Q is a probability

measure. Of course, it has 1
c
L = EQ.

Step 3. We prove the probability Q ∈P. By Theorem 14.14, the norm
dual of A := Cc(T ) is car(T ). Then 〈car(T ), Cc(T )〉 is a dual pair with a
bilinear map defined as

〈µ, a〉 =

∫
adµ,

where µ ∈ car(T ) and a ∈ A.
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Suppose that Q /∈P. By Theorem 5.93 of Aliprantis and Border (2006),
dual pairs are weakly dual, i.e. the topological dual of (car(T ), σ(car(T ), Cc(T )))
is Cc(T ), where the set car(T ) is equipped with a weak* topology σ(car(T ), Cc(T )).
Due to the compactness of the {Q} (see Lemma1 15.21 of Aliprantis and
Border (2006)) and closeness of P, by the strong separating hyperplane
theorem (Theorem 5.79 of Aliprantis and Border (2006)), we can strongly
separate {Q} and P by some a ∈ Cc(T ), such that EQ(a) = 〈Q, a〉 ≤ β and
EP (a) = 〈P, a〉 ≥ β+ ε′ for all P ∈P, where ε′ is some positive real number.
If β < 0, then there exist two positive number n and d such that

− 1

n
(β + ε′) ≤ d < − 1

n
β.

Then we obtain

EQ(
1

n
a + dT ) =

1

n
EQ(a) + d ≤ β

n
+ d < 0,

and

EP (
1

n
a + dT ) =

1

n
EP (a) + d ≥ β + ε′

n
+ d ≥ 0

for all P ∈P. Hence it should have

1

n
a + dT ∈ CA.

At last, provided that 1
c
L ∈ CA′ , it produces a contradiction for EQ( 1

n
a +

dT ) = 1
c
L( 1

n
a + dT ) ≥ 0. Similarly, we also get a contradiction whenever

β ≥ 0. At last, we have Q ∈P.
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A Conceptual Spaces Approach. Journal of Philosophical Logic, 42(1):
137–160, 2013.

[10] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Tessellations:
Applications and Algorithms. SIAM Review, 41(4):637–676, 1999.
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