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Introduction

Social interactions are an essential part of human life. Being born in families, we

are already embedded in an existing social environment which nurtures our mindset

and mentality. We connect in schools and universities, workplaces, sports and arts

clubs. We follow and read opinions of people we might not even know on social media.

We form friendships, establish business relations and maintain our family ties. We

engage in conversations, arguments, and exchange news and points of view. These

diverse relational patterns are best represented by Social Networks. The opinions and

expectations of people are often in�uenced by those relations through communicating

information and beliefs, and observing behaviors. The social network, alongside with

individual characteristics of people, a�ects their behavior which, in turn, impacts the

social and economic outcomes and welfare.

The worldwide COVID-19 pandemic provides vivid examples of how the collective

behavior and expectations of individuals may a�ect the economies. The uncertainties

and negative expectations from the social and economic disruptions brought by the

pandemic caused panic buying and overconsumption of certain products resulting in

their de�cit. Such behavior was fostered by the social media interactions and exchange

of viral videos of long queues and empty shelves in supermarkets.1 Mistrusts, worries

and conspiracies, combined with unavailable or inaccessible scienti�c output, a�ect

vaccination choices and thus formation of collective immunity.2

Many bank runs occurred during global �nancial crises of 2007-2008 and the Great

Depression as a result of pessimistic public expectations on banks' liquidity or default.

The depositors' beliefs about lack of funds led to panic and mass withdrawals of deposits

causing the liquidity problem and the bank run. Multiple examples of bank runs

resulted from a rumor or fake information spread by means of learning from social

1Zheng, Shou, and Yang (2021) analyze the impact of social learning on consumers’ panic buying
decisions and study the effects on social welfare. Empirical study by Naeem (2021) shows that ob-
serving similar views on social media enhances and motivates the “social proof”, that is, the tendency
of mimicking the panic buying behavior of other people.

2Forsyth (2020) study the groupthink approach, that is, a consensus over an issue with lack of
critical judgment, and pressure to conform in antiquarantine and antivaccination groups.

1



INTRODUCTION

contacts.3 One such example is the Toyokawa Shinkin Bank incident in December

1973 in Japan, when a bank run occurred as a result of a rumor, which allegedly

originated from a conversation between three high school students.4

The examples above aim to demonstrate that while people are forced to make abun-

dance of decisions in daily life, we may not always be the experts on the matter, or

may not always have the right amount and quality of information for better under-

standing of which would be the best choice to make, thus often relying and learning

from opinions of others. It is also safe to assume that people do not always rely on only

one source of information, be it a government or other central authority. The Social

Influence theory put forward by Kelman (1958) suggests that the beliefs and attitudes,

and thus the subsequent actions of individuals, are a�ected by interactions with other

people. The way people's beliefs and expectations are formed is highly a�ected by the

exchange of opinions, as well as observation of behavior in their social network, thus,

the social learning. Moreover, while we may value some opinions better than others,

they may also have higher in�uence on our expectations, decisions and actions. The

observation of behaviors and social norms, communication of beliefs and expectations

result in public opinion formation and the corresponding behaviors which impact social

and economic outcomes, such as investment decisions, consumption choices, voting, so-

cial and political movements, vaccination, climate friendly behavior, to name a few.

Understanding the role and the impact of social in�uence on behavior of individuals is

one of the goals of this thesis.

Given the importance of social in�uence on individual behaviors, understanding

of how the opinion of an individuals is a�ected by the information obtained from

her social contacts is of utmost importance. The two main approaches in modeling

the social learning are the Bayesian and non-Bayesian learning models. The former

approach assumes that agents use Bayes' rule to update their opinions, while the latter

suggests less sophisticated assumptions on the ability of agents to update opinions

with new information. The seminal work in the literature on opinion formation by

DeGroot (1974) suggests a simple non-Bayesian model in which agents update their

opinions in every period of repeated communication by taking the weighted average

of the opinions of their neighbors. Many non-Bayesian models were introduced later.5

3Kelly and O Grada (2000) show that the social network, determined by place of origin and current
neighborhood, was the prime determinant of bank run behavior in panics of 1854 and 1857 in New
York. The empirical study on depositors by Iyer and Puri (2012) shows that the social network, as
the neighborhood residence and ethnic group, can play an important role through the contagion effect
of bank run behavior in depositors.

4See Sekiya (2016) for references.
5See e.g. DeMarzo, Vayanos, and Zwiebel (2003); Ellison and Fudenberg (1995).
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INTRODUCTION

It has been shown that the communication and learning in social networks a�ect the

opinion dynamics and the emergence of a consensus.6 Additionally, the structure of

the network plays an important role in those matters.7

Chapter 1 addresses the question of the impact of social in�uence on expectations

and e�ort dynamics, and long-run e�ort equilibria. The dynamic model introduced

in the chapter captures the social in�uence through communication of beliefs in a

�xed network of agents repeatedly engaging in a group production task with randomly

formed groups. The belief formation takes place in two stages in every period. First,

the players observe the outcome of the game in their group and learn the minimum

e�ort causing the outcome, and then they update their belief according to the current

observation. Secondly, they communicate these beliefs with their neighbors in the

network, and update the belief according to the weighted average of their own beliefs

and those of their neighbors.

Chapters 2 and 3 of the thesis incorporate a di�erent aspect of social in�uence,

namely, social norms and conformity. Together with personal characteristics, social

norms are an important factor in shaping individual behaviors. People adapt their

attitudes, beliefs and behaviors driving them closer to those of others they interact

with. Such behavior can be a result of convincing arguments from friends, complexity

of making decisions and simplicity of following an example, seeking for social approval,

as well as social pressure to conform with norms.8 Conformism models had been widely

studied in Network Games, the literature focusing on analysis of interactions between

individuals connected in a social network, where interactions are modeled using game

theory.9 Starting from the seminal contribution of Ballester, Calvó-Armengol, and

Zenou (2006) the link was established between the pure Nash equilibrium e�ort of

players and their Katz-Bonacich centralities in a large class of network games.10 An

additional important component of individual belief and behavior dynamics are the

personal norms. The Theory of Cognitive Dissonance introduced by social psycholo-

gist Festinger (1957) suggests that people seek for internal consistency aligning their

attitudes and behaviors. While the inconsistency of personal norms with one's own

actions gives rise to cognitive dissonance.11 Chapters 2 and 3 study network game

6See e.g. the survey by Acemoglu and Ozdaglar (2011b).
7E.g. Golub and Jackson (2010a).
8See e.g. Cialdini and Goldstein (2004) and Flache, Mäs, Feliciani, Chattoe-Brown, Deffuant,

Huet, and Lorenz (2017) for reviews.
9See e.g. Bramoullé, Kranton, and D’amours (2014); Jackson and Zenou (2015) for an extensive

surveys on games on networks.
10The Katz-Bonacich centrality, introduced by Katz (1953) and Bonacich (1987), is a measure of

influence of a player embedded in a social network.
11See e.g. Stone and Cooper (2001) among others.
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INTRODUCTION

models with personal norms and conformity, where on one hand players want to be

consistent with their personal norms, on the other, they are punished for not complying

with the social norm. The models in the two chapters di�er with the types of spillover

e�ects present in the network and the assumptions on the network structure. More

speci�cally, in Chapter 2 a two-layer network structure is assumed, where the sources of

spillovers and the pressure to conform are di�erent layers of the network. The model in

Chapter 3 does not assume network multidimensionality, thus the local spillovers and

the pressure to conform originate from the same relational patterns. Additionally, the

model in this chapter incorporates global spillovers in the network suggesting that the

collective behavior in the whole populations a�ects the utility of a single player. The

focus of Chapter 2 is the dynamics of personal norms of the players and the emergence

of consensus. The evolution of personal norms takes place through updating those with

actual behavior, aligning the personal norms and action, in each period. Chapter 3, on

the contrary, does not address the problem of opinion dynamics. Along with analysis

of spillovers, social and personal con�ict in the network game, the main contribution

of the chapter is the incorporation of unions in the network game models.

Overview of the Thesis

In Chapter 1, coauthored with Prof. Dr. Herbert Dawid12 and Prof. Dr. Jasmina

Arifovic13, we explore the role of social in�uence for the coordination of e�ort choice

in a game with strategic complementarities. Players are repeatedly randomly parti-

tioned in groups to play a minimum e�ort game and choose their e�ort based on their

beliefs about the minimal e�ort among the other members of their group. Individual

expectations about this minimal e�ort is in�uenced by own experience as well as by

communication of beliefs within a social network. We show that increasing the impor-

tance of social in�uence in the expectation formation process has positive e�ects on

the emerging (long run) e�ort level, thereby improving the e�ciency of the outcome.

Furthermore, a more centralized social network leads to higher average e�ciency, but

also to increased variance of outcomes. Finally, communication of actual minimum

e�ort cannot replace the communication of beliefs as a device fostering the emergence

of high long run e�ort.

Chapter 2 studies a network game on a �xed multi-layer network. The players are

embedded in a network of two types of relationships. One is a network of social in-

teractions with pressure to conform to the social norm, the other provides additional

12Department of Business Administration and Economics and Center for Mathematical Economics,
Bielefeld University, Germany.

13Department of Economics, Simon Fraser University, Burnaby, Canada.
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strategic complementarities from players' interaction. Additionally, players are en-

dowed with personal ideal e�orts, a personal norm. They repeatedly choose their e�ort

level in the network game and update the ideal e�ort based on the new e�ort choice.

We �nd the pure Nash equilibrium of the game in each period and provide conditions

for the convergence of e�orts and ideals to a steady state. Furthermore, we provide

conditions for emerging long-run consensus about ideals in groups of players and the

entire network.

In Chapter 3, based on the joint work with Dr. Simon Schopohl, we study a net-

work game with spillovers, social con�ict, and private dissonance. We consider a �xed

network where players are heterogeneous in their ideal e�orts and returns on spillovers.

There exists a global spillover e�ect between all players and an additional local spillover

e�ect between neighbors. The players su�er disutility from the discrepancy between ef-

fort choices of their neighbors and themselves, and inconsistency with their ideal e�ort.

We �nd the unique Nash equilibrium of the game and the key players in the network.

Additionally, we introduce unions in the network as groups of players that choose ef-

forts by maximizing their joint utility. We �nd the pure Nash equilibrium in the game

with unions and analyze how their presence a�ects the aggregate e�ort. We de�ne

a measure of intercentrality for players in unions and distinguish the union-induced

contribution of a player to the aggregate e�ort. Moreover, we provide conditions for

an increase in the e�ort of the player and the aggregate e�ort in the network when

adding the player to a union. Furthermore, we de�ne the key unions of a �xed size as

groups of players that increase the aggregate e�ort the most when joined in a union.

Each chapter contains a distinct research paper that can be read independently.

All references can be found in the common bibliography in the end of the thesis.
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Chapter 1

Efficiency Gains through Social

Influence in a Minimum Effort

Game

1.1 Introduction

Group production plays a central role in many economic contexts. In the presence of

strategic complementarities between the actions of group members, the problem of de-

termining individual e�ort by each member in the group typically gives rise to multiple

(Pareto ranked) equilibria and hence to a severe coordination problem. In particular,

the optimal e�ort choice of an agent is crucially determined by her beliefs about the

e�ort the other group members invest into the project. Taking this into account, the

way expectations are formed and adjusted over time is a key driver for determining

the outcome of (repeated) group production problems. In particular, whether an e�-

cient outcome can be reached in the long run strongly depends on the evolution of the

individual expectations of the players.

The agenda of this paper is to study the role of one important aspect of expecta-

tion formation, namely social in�uence, in the dynamics of expectations and actions

in a population of agents which repeatedly undertake some joint production task with

strategic complementarities in changing groups. As an illustrative example of a sit-

uation we have in mind we envision a university which repeatedly encounters calls

for interdisciplinary project proposals and for each of these calls identi�es a group

of faculty members from di�erent departments who, based on their background, are

suitable to contribute to the proposal. Each group member then decides how much

7



CHAPTER 1. EFFICIENCY GAINS THROUGH SOCIAL INFLUENCE IN A
MINIMUM EFFORT GAME

e�ort to invest in developing her part of the proposal. After submission the proposal

is evaluated and the group receives an outcome (e.g. amount of funding, invitation

to resubmit, rejection). We assume that referees tend to focus in their decision to a

large extend on potential weaknesses they see, such that the outcome is determined by

the lowest e�ort shown by any group member. Faculty members over time repeatedly

participate in di�erent such group proposals and over time build expectations about

the minimal e�ort shown among the other members of their group. We assume that

these expectations are not only based on their own experience, i.e. the outcome of the

projects they have been previously involved in, but also on communication with their

friends, close colleagues and co-authors in the profession about their experience with

similar project proposals. In particular, we assume that agents communicate their own

beliefs about the level of minimal e�ort shown in such an interdisciplinary group to

their social contacts. We denote such kind of communication as the social in�uence

channel of the expectation formation process. Whereas the groups jointly producing

the project proposals di�er from call to call, we assume that the set of social contacts

of an agent stays constant over time. The main questions we address within such a

setting are, whether the quality of the project proposals in the long run is higher if

there is communication of the agents' own beliefs in the social network, and, how the

outcome is a�ected by the topology of the social network.

Our research agenda builds on a large body of empirical and theoretical work study-

ing the role of social in�uence for opinion dynamics and expectation formation. Starting

with the seminal contribution of DeGroot (1974) there is by now a rich body of litera-

ture highlighting how communication in social networks a�ects the dynamics of opinion

formation, in particular the emergence of consensus in a population (see e.g. the survey

Acemoglu and Ozdaglar (2011b)), and under which circumstances there is `wisdom of

the crowd' in the sense that communication in a network allows the agents to learn the

true state of the world (e.g. Golub and Jackson (2010a)). As shown e.g. in Golub and

Jackson (2010a) or Acemoglu, Ozdaglar, and ParandehGheibi (2010) also the topology

of the social network matters with respect to these issues. Recent contributions have

also stressed that the impact of social in�uence on economic expectations can have

important implications for actual dynamics in di�erent economic contexts (e.g. Ari-

fovic, Deissenberg, and Kostyshyna (2010); Burnside, Eichenbaum, and Rebelo (2016);

Rotemberg (2017)). However, so far a systematic analysis of the implications of social

in�uence for the selection of the outcome emerging in a population faced with a group

coordination problem is missing. The main contribution of this paper is to �ll this gap.

We address our main research questions by considering a dynamic model of a popu-

lation of agents, which every period is randomly partitioned into groups of given size. In

8



1.1. Introduction

each group agents interact by playing a minimum e�ort game with a �nite set of e�ort

choices. We use the minimum e�ort game as the most widely used model in the theoret-

ical (starting with Bryant (1983)) and experimental (starting with Van Huyck, Battalio,

and Beil (1990)) literature capturing a group coordination problem with strategic com-

plementarities and multiple Pareto ranked equilibria. Each agent in each period plays

the best response to her current expectations. These expectations have the form of a

belief distribution over the set of possible e�ort choices, expressing the probability that

a given e�ort level is the minimum of the e�ort choices of the other members of the

group. In each group only the outcome, i.e. the minimal e�ort level in the group, is

observable for its members. At the end of each period agents update their expectations

in two steps. First, in line with standard adaptive expectations models14, agents build

intermediate beliefs as a weighted average of their previous beliefs and the observed

outcome in the current period. In a second step, agents might communicate their

intermediate beliefs with all their contacts in a social network, which is exogeneously

given and constant over time. Following a standard approach in the literature on social

in�uence dynamics introduced in DeGroot (1974) agents put identical weight on the

intermediate beliefs of all their contacts and the updated belief is a weighted average

of their own intermediate belief and average intermediate beliefs of their contacts.15

The weight agents put on the average beliefs of their social contacts determines the

importance of social in�uence in the population. A main goal of our analysis is to

understand how an increase in this social in�uence parameter a�ects the evolution of

expectations and the distribution of e�ort levels chosen in the long run. We explore

this question by combining analytical �ndings with insights from statistical analysis of

data obtained through extensive simulations of the model under di�erent assumptions

about the size of the social in�uence parameter and the social network topology.

Since the focus of our analysis is on the role of social in�uence, we consider a

model setup which, apart from the considered communication of beliefs, is as simple

14See e.g. Huyck and Stahl (2018) for a recent contribution in the framework of minimum effort
games.

15This model of belief diffusion is sometimes referred to as ‘naive learning’ since individuals do
not take into account that due to the structure of the social network there might be differences in
the correlations between the intermediate beliefs of different pairs of their contacts, which should be
reflected in the weights put on their intermediate beliefs. Alternatively a Bayesian Approach could be
employed in which agents take into account the network structure in a fully rational way. As pointed
out in DeMarzo et al. (2003) however a very high degree of rationality on the agents’ side has to be
assumed for them to infer the correct weights to be put on all their contacts. Indeed, as is shown in
Grimm and Mengel (2019), the naive approach put forward in DeGroot (1974) is better able to explain
the data from experiments studying the effect of social influence than a Bayesian model. Hence, we
stick in our analysis to the assumption that identical weights are put on the communications from all
social contacts.

9
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as possible and directly corresponding to the baseline stag hunt game, for which the

experimental results of Van Huyck et al. (1990) show convergence to the least e�cient

equilibrium under large group sizes. Thereby, we do not incorporate into our model

several mechanisms which have been shown in the literature to improve the e�ciency

of the emerging long run outcome of the game. In particular, our assumption that each

agent considers only the own payo� when determining a best response and then always

chooses that best response does neither consider social preferences (see e.g. Chen and

Chen (2011)) nor stochastic choice by agents, e.g. based on a the well studied logit

model (e.g. Anderson, Goeree, and Holt (2001); Huyck and Stahl (2018)). Further-

more, we assume that an exogenous process stochastically determines the interaction

group every period, while it has been shown in Riedel, Rohde, and Strobl (2016) that

endogenous partner choice can improve the e�ciency in coordination games. Agents in

our setup with social in�uence communicate at the end of each period with their social

contacts about their own beliefs, however there is no pre-play communication within

each interaction group, which might improve the e�ort level chosen in the game (see

e.g. Blume and Ortmann (2007); Kriss, Blume, and Weber (2016)). Also, in our set-

ting agents do not condition their e�ort on the fraction of members of their interaction

group with whom they have direct ties in the social network. This assumption is due

to the fact that we consider large interaction groups where this fraction is typically

small.16 Overall, by abstracting from all these e�ects and considering a very basic

environment we are able to isolate the e�ect of social in�uence for the agent's e�ort

choice.

The �rst main insight from our analysis is that in the absence of social in�uence,

i.e. if the value of the social in�uence parameter is zero, the e�ort level in the popu-

lation converges to the lowest e�ort level chosen in the entire population in the initial

period. In accordance with the experimental evidence of Van Huyck et al. (1990), this

implies that for large groups the long run e�ort level coincides with high probability

with the lowest possible value and therefore the least e�cient equilibrium is reached.17

Intuitively, in the absence of communication with their social contacts, agents observe

only the outcome of the game in their own group, which corresponds to the lowest ef-

fort shown by any group member. Hence, the agent with the most pessimistic belief in

the whole population never receives information that could move her best response up-

wards. Since every period all agents matched with this most pessimistic agent observe

16For small group sizes, in particular interaction groups of size two, experimental findings, e.g. by
Chen and Chen (2011) show that effort in minimum effort games tends to be higher if a player is
matched with another player belonging to the same identity group.

17Van Huyck et al. (1990) consider the groups to be large if they consist of more than two players.
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the group outcome corresponding to this agent's (low) e�ort, their beliefs become more

pessimistic. Due to this mechanism all agents adjust their e�orts downwards over time

until it matches the lowest e�ort level in the population. The picture changes radically

if there is social in�uence in the population. First, due to learning the expectations of

her social contacts, an agent's beliefs can become more optimistic even if the observed

outcome in the own group was low in the previous period. Second, due to the com-

munication between agents, the beliefs in the population become homogeneous much

faster. This induces a fast coordination on an equilibrium and avoids the `downward

drift' of beliefs over time, which occurs in heterogeneous populations due to the fact

that in every group the observed outcome corresponds to the lowest e�ort in the group.

We show that an increase of the social in�uence parameter induces statistically signif-

icantly higher long run e�ort in the population. Furthermore, our analysis establishes

that the topology of the social network matters. In particular, simulation results show

that the expected long run e�ort of agents in the population is signi�cantly larger in

a centralized star network compared to a random network. However, this increase of

average e�ciency comes at the cost of less predictability of the outcome in the sense

that the variance of the long run outcome across simulation runs is much larger under

a centralized network. Intuitively, in a centralized network the population is strongly

in�uenced by the initial beliefs of the agent in the center of the network. This fosters

fast coordination, but at the same time introduces a strong dependency of the long

run outcome from the (stochastic) initial beliefs of a single agent. We show that our

�ndings are not only robust with respect to variations of the model parameters, but

also with respect to a change in the model setup, where agents do not only exchange

their beliefs with their social contacts but also are able to observe the outcomes of all

the group interactions in which any of their social contacts are involved. In particular,

this implies that exchange of information about the outcomes of the group interac-

tion in the social network cannot substitute the communication of beliefs in fostering

coordination on more e�cient equilibria.

The paper is organized as follows. In Section 1.2 we describe our model setting. In

Section 1.3 we derive several analytical �ndings about the long run outcomes for special

cases of our setting, including the scenario without social in�uence. In Section 1.4 we

analyze the general case with social in�uence and in Section 1.5 we consider a model

extension, where not only beliefs but also information about the actual outcomes of the

group interactions are communicated in the social network. Concluding remarks are

given in Section 1.6. Appendix 1.A provides the proofs of the propositions in Section

1.3. In Appendix 1.B we provide the statistical test results discussed in the paper and

in Appendix 1.C the robustness of our results with respect to parameter variations is

11
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demonstrated.

1.2 Model

1.2.1 Setting

There is a set of agents N, with |𝑁 | = 𝑛, connected within a social network 𝑠. The set

of connections of agent 𝑖 in the social network is �xed over time. We denote the set of

social contacts of agent 𝑖 by 𝑚𝑖(𝑠) = {𝑗|𝑖𝑗 ∈ 𝑠} and by 𝜂𝑖(𝑠) = |𝑚𝑖(𝑠)| the number of
social contacts of agent 𝑖.

Every period the set of agents is randomly partitioned into 𝑛/𝑘 groups of size 𝑘,

where each partition has equal probability.18 Thus, each agent faces an equal proba-

bility of being a member of each group. We denote by 𝑔(𝑖, 𝑡) ⊂ 𝑁 the set of members

of the group to which agent 𝑖 belongs at 𝑡 (this implies 𝑖 ∈ 𝑔(𝑖, 𝑡) for all 𝑡).

At each period each group plays the following minimum e�ort game (see Van Huyck

et al. (1990)). Each agent 𝑖 chooses an e�ort 𝑒𝑖,𝑡 from a given set of strategies 𝒳 =

{1, ..., 𝑒}. The payo� of the agent from the game is determined by her own e�ort and

the minimal e�ort chosen by the members of her group in period 𝑡, denoted by 𝑒𝑖,𝑡.

The payo� of agent 𝑖 is given by:

𝜋(𝑒𝑖,𝑡, 𝑒−𝑖,𝑡) = 𝛼𝑒𝑖,𝑡 − 𝛽𝑒𝑖,𝑡,

with 𝛼 > 𝛽 > 0, 𝑒−𝑖,𝑡 = (𝑒𝑗,𝑡)𝑗∈𝑔(𝑖,𝑡)∖{𝑖} and 𝑒𝑖,𝑡 = min𝑗∈𝑔(𝑖,𝑡) 𝑒𝑗,𝑡 is the minimum e�ort

in the group of agent 𝑖.

1.2.2 Beliefs

Each agent at each 𝑡 has a belief about the distribution of minimal e�ort 𝑒 in her

(randomly generated) group: 𝑏𝑖,𝑡 ∈ ∆(𝒳 ) := ⟨𝑏 ∈ R𝑒
+ :
∑︀𝑒

𝑒=1 𝑏(𝑒) = 1⟩. We denote by

𝑏𝑖,𝑡(𝑒) the probability that the minimal e�ort of the other players in the group is 𝑒. A

belief vector which puts probability one on some e�ort level 𝑒 will be referred to as a

point belief and formally written as 𝑏 = 1𝑒. The population pro�le of beliefs at 𝑡 is

denoted by 𝐵𝑡 = (𝑏𝑖,𝑡)𝑖∈𝑁 .

An agent has no information about e�ort level chosen by individual agents and

hence their beliefs about the distribution of minimal e�ort by the other members of

18Assuming that 𝑘 is a divisor of 𝑛, the number of possible ways to form such partitions is given by(︁∏︀𝑛
𝑘 −1
𝑗=0

(︀
𝑛−𝑗𝑘

𝑘

)︀)︁
/(𝑛/𝑘)!.
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their current group does not depend on the identities of these members. The expected

payo� of an agent with e�ort 𝑒 ∈ 𝒳 and belief 𝑏 ∈ ∆(𝒳 ) is given by:

𝜋𝑒(𝑒, 𝑏) =
∑︁
𝑒∈𝒳

𝜋(𝑒, 𝑒)𝑏(𝑒).

Each agent 𝑖 chooses her e�ort by maximizing this expected payo� using her current

belief distribution 𝑏𝑖,𝑡. Hence, an agent with belief 𝑏 chooses an action 𝑎*(𝑏) such that:

𝑎*(𝑏) = max {𝑒 ∈ 𝒳 |𝜋𝑒(𝑒, 𝑏) ≥ 𝜋𝑒(𝑒, 𝑏)) ∀𝑒 ∈ 𝒳 .}

We denote the action of agent 𝑖 at 𝑡 by 𝑎𝑖,𝑡 = 𝑎*(𝑏𝑖,𝑡). Note that the above formulation

of 𝑎*(𝑏) implies that in case an agent is indi�erent between di�erent levels of e�orts

she always chooses the largest of these levels.

After the game has been played, all agents update their belief distributions. They

utilize both the acquired information about the minimum e�ort in their group, and the

information about the beliefs of their neighbors in the network. Precisely, each agent

𝑖 forms an intermediate belief 𝑏̃𝑖,𝑡 as a weighted average of the previous belief and her

current observation 𝑒𝑖,𝑡:

𝑏̃𝑖,𝑡+1 = (1 − 𝜉)𝑏𝑖,𝑡 + 𝜉1𝑒𝑖,𝑡
, (1.1)

where 0 ≤ 𝜉 ≤ 1 denotes the speed of individual updating. The fact that only the

minimum e�ort, rather than all individual e�ort choices of 𝑔(𝑖, 𝑡), is used to update

the beliefs is based on the assumption that the individual e�orts of the group members

are not observable. The only information available is the outcome of the game, which

is determined by the minimum e�ort of all group members.19

Furthermore, individuals change beliefs due to social in�uence. In particular, they

learn about intermediate beliefs 𝑏̃𝑗,𝑡+1(𝑒) of their social contacts and use them to form

their own �nal beliefs. Following standard formulations in the literature on opinion

formation (e.g. DeGroot (1974)) we assume that the updated belief is a linear combi-

nation of the agent's intermediate belief and that of her social contacts. Formally, we

have:

𝑏𝑖,𝑡+1 = 𝑏̃𝑖,𝑡+1 + 𝜒
1

𝜂𝑖(𝑠)

∑︁
𝑗∈𝑚𝑖(𝑠)

(︀
𝑏̃𝑗,𝑡+1 − 𝑏̃𝑖,𝑡+1

)︀
. (1.2)

The parameter 𝜒 ∈ [0, 1] in (1.2) represents the level of con�dence or trust in the

19This assumption seems realistic in many examples of projects carried out by groups, where it is
impossible to identify the individual contributions to the success of the project.
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beliefs of social contacts. It determines the importance of social influence and is a key

parameter in our analysis. This updated belief distribution is then the basis for the

agent's e�ort choice in period 𝑡 + 1.

1.3 Analytical Results

The evolution of the pro�le of belief vectors 𝐵𝑡 constitutes a Markov process20 on the

state space ∆(𝒳 )𝑛. A general analytical characterization of the transient dynamics

or the long run distribution of this process seems infeasible and therefore in Section

1.4 we will use simulations to gain insights in this respect. However, it is possible to

derive general characterizations of absorbing sets of the process, and for the special

case where 𝜒 = 0 also a description of the long-run outcome of beliefs and induced

e�ort can be derived.

It is well known that for each e�ort level 𝑒 ∈ 𝒳 there exists a symmetric Nash

equilibrium of the underlying minimal e�ort game, in which all players choose the

e�ort 𝑒. These Nash equilibria are Pareto ranked and due to 𝛼 > 𝛽 the outcome is

more e�cient the higher the equilibrium e�ort. In our setting each such symmetric

Nash equilibrium corresponds to a uniform population pro�le with 𝑏𝑖,𝑡 = 1𝑒 for all

𝑖 ∈ 𝑁 . Since 𝑎*(1𝑒) = 𝑒 and therefore 𝑒𝑖 = 𝑒 for all agents 𝑖 under such a belief pro�le,

it follows directly that any such uniform pro�le is an absorbing state of the process 𝐵𝑡.

However, as we will show below, the process does not necessarily reach a state with

uniform point beliefs, or even with uniform induced actions in the long run, at least as

long as the social in�uence parameter 𝜒 is positive.

The following proposition shows that if all agents in the population in some period

choose identical e�ort, they will all continue to choose this e�ort in all future periods

as well.

Proposition 1.1. If at some 𝑡 ≥ 0 there exists an effort level 𝑒 ∈ 𝒳 such that 𝑎*(𝑏𝑖,𝑡) =

𝑒 ∀𝑖 ∈ 𝑁 then

(i) 𝑎𝑖,𝜏 = 𝑒 ∀𝑖 ∈ 𝑁 for all 𝜏 ≥ 𝑡,

(ii) 𝑏𝑖,𝜏 → 1𝑒 for 𝜏 → ∞ for all 𝑖 ∈ 𝑁 .

The intuition for this result is quite straight-forward. If there is no communication

of beliefs, then in a period 𝑡, in which all agents observe a minimal e�ort 𝑒, the weight

20For each partition of the agents into groups of size 𝑘 the belief of each agent 𝑖 is given by (1.1)
and (1.2) and is therefore deterministic. Hence, the distribution of 𝐵𝑡+1 given 𝐵𝑡 is determined by
the probabilities of all possible group partitions and the beliefs of all agents in 𝑡 + 1 given a certain
partition.

14



1.3. Analytical Results

of this e�ort level in the updated belief distribution of every agent becomes larger. Due

to the strategic complementarity this increases for all agents their incentive to choose

that e�ort level in period 𝑡 + 1 and, since choosing 𝑒 has already been their optimal

choice in 𝑡, they all choose e�ort 𝑒 also in period 𝑡 + 1.

Proposition 1.1 shows that any set of beliefs corresponding to some uniform choice

of e�ort among agents is absorbing. This raises the question whether it is guaranteed

that the belief process ends up in one of these absorbing states with uniform e�ort

choice. In the absence of social in�uence the answer to this question is a�rmative.

In the following proposition we show that if 𝜒 = 0 the population always converges

to a state in which all agents have identical point beliefs, i.e. they all expect with

probability one that the minimum e�ort is some 𝑒 ∈ 𝒳 and choose their own e�ort

level equal to 𝑒. Moreover, the long run e�ort is determined by the minimal e�ort

chosen among all agents at 𝑡 = 1.

Proposition 1.2. Assume that 𝜒 = 0 and denote by 𝑒1 = min𝑖∈𝑁 [𝑎*(𝑏𝑖,1)]. Then,

(i) actions of an agent never increase over time: 𝑎𝑖,𝑡+1 ≤ 𝑎𝑖,𝑡 for all 𝑖 ∈ 𝑁, 𝑡 ≥ 1.

(ii) for every 𝜖 > 0 there exists 𝑇 > 0 such that IP[𝑎𝑖,𝜏 = 𝑒1 ∀𝑖 = 1, .., 𝑁 for all

𝜏 ≥ 𝑡] > 1 − 𝜖,

(iii) 𝑏𝑖,𝑡 → 1𝑒1
(in probability) for 𝑡 → ∞ for all 𝑖 ∈ 𝑁 .

Proposition 1.2 shows that in the absence of social in�uence the population in

the long run always coordinates on some e�ort level, which means that the population

pro�le of beliefs always reaches a state corresponding to a Nash equilibrium of the game.

However, the proposition also gives a clear indication that the dynamic adjustment of

individual's beliefs induces a downward trend in the chosen e�ort and in the long run

all agents adopt the smallest among all e�ort levels chosen in the initial period. The

reason for this downward trend is that, due to the structure of the minimum e�ort

game, no agent ever observes an outcome which is above its own e�ort level. In the

absence of social in�uence this implies that when an agent updates her beliefs she

always increases the weight of an e�ort level which is below or equal her best response

in the current period. Hence, the best response of an agent can never increase over

time. This induces contagion-like dynamics of agents switching to beliefs that induce

the minimal e�ort in the population, which constantly remains at 𝑒1. Hence, in the

long-run all agents in the population choose this minimal e�ort.

For a su�ciently large value of the social in�uence parameter 𝜒 the claim that beliefs

and actions become uniform in the long are in general no longer true. Actions might
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stay heterogeneous forever and, therefore, also e�ort levels above the initial minimal

e�ort are chosen by some agents in the long run. De�ning 𝜒 := (𝑛−2)𝛽
(𝑛−𝑘)𝛼

we obtain the

following proposition.

Proposition 1.3. Assume that (𝑛 − 𝑘)𝛼 > (𝑛 − 2)𝛽 and 𝜒 ≥ 𝜒 > 0. Then for any

initial belief profile 𝐵1 with |{𝑖 ∈ 𝑁 : 𝑎*(𝑏𝑖,1) = 𝑒1}| = 1 there exists a network 𝑠 such

that max𝑖∈𝑁 [𝑎𝑖,𝑡] > min𝑖∈𝑁 [𝑎𝑖,𝑡] for all 𝑡 with probability one.

To interpret the proposition it should �rst be noted that the condition (𝑛− 𝑘)𝛼 >

(𝑛−2)𝛽 implies that 𝜒 < 1, such that the interval (𝜒, 1] of values of the social in�uence

parameter 𝜒 leading to heterogeneous long-run beliefs and actions is not empty. Given

that we always have 𝛼 > 𝛽 the condition is quite weak as long as we assume that the

size of the interaction group (𝑘) is small compared to the population size (𝑛). Whereas

Proposition 1.3 is formulated for initial beliefs inducing that the minimal e�ort in the

�rst period is chosen by a single agent, analogous results can be obtained for scenarios

with a larger number of agents choosing the lowest initial e�ort 𝑒1 with an adjusted

value of the threshold 𝜒.

The intuition for the potential long-run heterogeneity of beliefs and actions in the

presence of social in�uence is that in a situation, in which the beliefs of the social

contacts of an agent are more optimistic than the observed outcome of the group

interaction of that agent, the social in�uence, i.e. the direct communication of beliefs,

might prevent the downward adjustment of that agent's beliefs. Hence the contagion of

low e�ort choices, which drives the dynamics in the absence of social in�uence, might

be stopped. If the social network is such that agents, which initially choose low e�ort do

no have social ties to more optimistic individuals, which is the type of network on which

the proof Proposition 1.3 is based, then neither do these agents increase their actions

over time, nor do the more optimistic individuals, who are linked through the social

network, adjust their beliefs so strongly downwards to choose the minimal population

e�ort. Whenever these optimistic agents are in the same interaction group with the

pessimistic agent, the negative impact of the observed low outcome in their group on

their beliefs is outweighed by the social in�uence from their optimistic social contacts.

Hence, in such a scenario long-run heterogeneity of beliefs and actions prevails.

Our analytical �ndings provide little guidance on the shape of the dynamics and

long run distribution of beliefs and actions for 𝜒 > 0. In the following section we

employ numerical simulations to explore how the evolution of beliefs and e�orts are

a�ected by social in�uence in di�erent settings. In particular, we examine how the

degree of con�dence in the beliefs of others, and the topology of the social network

in�uence the distribution of minimum e�orts and associated payo�s in the game.
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Figure 1.1: Erdős–Rényi random network of 𝑛 = 30 players, with probability 𝑝 = 0.2 of a

formed link between each pair.

1.4 Effect of Social Influence

The following analysis relies on a baseline parametrization of the model given by 𝑛 =

30, 𝑘 = 5, 𝛼 = 2, 𝛽 = 1, 𝑒 = 15, 𝜉 = 0.1 and 𝜒 = 0.3. The game parameters 𝛼

and 𝛽 are chosen in line with Van Huyck et al. (1990). A relatively low speed of

updating 𝜉 is chosen to prevent overly naive behavior of agents driven entirely by their

previous period observation. Variations of the con�dence parameter 𝜒 will be discussed

extensively in the next section. The chosen values of 𝑛, 𝑘 and 𝑒 turn out not to be crucial

for the qualitative results we will discuss. Robustness checks showing that our results

still hold for alternative speci�cations of the parameters are provided in Appendix 1.C.

Furthermore, we assume that all agents initially have heterogeneous point beliefs of

the form 𝑏𝑖,1 = 1𝑒 for 𝑒 uniformly chosen from 𝒳 . Our comparison of model outcomes

under di�erent parameter and network constellations is based on batches of 𝑄 = 20

simulation runs carried out for each constellation. In order to avoid spurious e�ects

induced by di�erent set of initial beliefs across the sets of batch runs, we generate a

set of 𝑄 initial beliefs (one for each single simulation run). We use these same initial

beliefs in each set of batch runs carried out under the di�erent considered parameter

constellations. Concerning the social network, our benchmark is to consider a random

network with linking probability 𝑝 = 0.2 between each pair of agents. Similarly to our

approach taken with respect to initial beliefs we generate a set of 𝑄 random networks

and use this same set in every batch of run across di�erent parameter constellations.

1.4.1 Model Dynamics in the Baseline Scenario

To gain some initial understanding of the mechanisms at work we �rst illustrate the

dynamics of a single simulation run in the case of a random social network displayed

in Figure 1.1.
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Figure 1.2: Dynamics of the expected values of the belief distributions (a), the chosen

actions (b) and the standard deviation of the belief distributions (c) for all agents in a single

run in the baseline scenario.

Figure 1.2 shows the dynamics of the action as well as the expectation and the

standard deviation of the belief of each agent in the population. The �gure illustrates

that whereas agents start with heterogeneous point beliefs, initially the belief distribu-

tions of individual agents quickly become more dispersed (i.e. the standard deviation

of individual belief distributions increases, see panel (c)) and at the same time the ex-

pected values of individual beliefs approach each other (panel (a)). This is due to the

interplay of observing the actual minimum e�ort in an agent's own group, which might

di�er from the agent's expectation, and the communication of beliefs from the agent's

social contacts. Actions stay strongly heterogeneous for approximately 10 periods and

then quickly converge to a common e�ort level of 𝑒 = 3 in this run. Once actions have

converged to a uniform pro�le they stay constant over time (as shown in Proposition

1.1). Panel (b) of Figure 1.2 illustrates this result. The standard deviation of indi-

vidual beliefs goes to zero (see panel(c)) and the expectations of the individual beliefs

become uniform across agents slowly converging to the actual e�ort level observed in

all groups (see panel (a)). In other words, the belief pro�le converges towards a pro�le

of homogeneous point beliefs.

Agents with low point beliefs at 𝑡 = 1, due to social in�uence, quickly become
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Figure 1.3: Distribution of average efforts at 𝑡 = 40 for 𝜒 = 0, 0.3, 0.6, 0.9.

more optimistic about the minimum e�ort in their group (see panel (a)). For some of

them this leads to an increase of the chosen action over time (see panel (b)). In light

of Proposition 1.2(i), which shows that in the absence of social in�uence individual

e�ort levels can never increase over time, it is clear that this e�ect is driven by the

communication of beliefs between agents. The intuition is similar to that already

discussed at the end of Section 1.3. In a setting where outcomes are determined by

the lowest e�ort in the group, like the minimum e�ort game, direct communication is

important because it allows agents to realize that other agents in the population have

expectations that are much more optimistic than observable outcomes would suggest.

Hence, social in�uence might induce an upward adjustment of individual beliefs which

is su�ciently strong to give rise to an increase of the agent's (optimal) action choice.

1.4.2 Effects of Social Influence

The discussion of the single run in our baseline scenario highlights the strong impor-

tance of social in�uence for the dynamics of e�ort level choices in the population. To

examine the role of social in�uence in more detail we now systematically analyze how

the agents' level of con�dence in the beliefs of their social contacts a�ects the emerging

level of e�ort in the population. More precisely, we vary the con�dence parameter 𝜒

between 𝜒 = 0 and 𝜒 = 0.9 and for each of the considered values carry out a batch of

𝑄 = 20 simulation runs of 𝑇 = 40 periods. Figure 1.3 shows boxplots of the distribu-

tions of the population average of actions across the batch runs. It should be noted

that in all runs at 𝑡 = 40 actions are already uniform such that the population average

coincides with the action of every single agent in the population. It can be clearly seen
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Figure 1.4: Dynamics of expected values of minimal effort (a), chosen actions (b) and

standard deviation of the belief distributions (c) for all agents in a single run under strong

social influence (𝜒 = 0.9).

that a higher level of social in�uence, expressed by a larger value of 𝜒, signi�cantly

increases the distribution of long run e�orts in the population.21 In Appendix 1.B we

provide the results of the Wilcoxon Signed Rank Tests to show that the distributions

of e�orts change signi�cantly for di�erent values of 𝜒.

Similarly to Figure 1.2 described earlier, Figure 1.4 shows the dynamic of the action

(panel (b)), expected value and the standard deviation of the belief of each agent in

the population (panels (a) and (c)) where the level of con�dence in social contacts'

beliefs 𝜒 is equal to 0.9 compared to 𝜒 = 0.3 in the baseline scenario. In order to see

the e�ect of increased social in�uence one can �rst notice that the beliefs of the agents

converge much faster with higher con�dence level 𝜒. Particularly, the agents with low

initial beliefs become more optimistic quicker and the beliefs across all agents converge

faster. Based on this, the beliefs stay more optimistic in the long run compared to

the benchmark in Figure 1.2 where the population variance of the beliefs decreases

much slower. Panel (c) of Figure 1.4 shows that the beliefs of individual agents quickly

become more dispersed reaching the peak of the standard deviations earlier compared

21Throughout the analysis we consider the difference between two distributions to be statistically
significant when the when the 𝑝-value of the Wilcoxon signed rank test is below 0.05.
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Figure 1.5: Dynamics of distribution of the population mean of expectation (a) and standard

deviation of the individual belief distributions in the baseline scenario. Panel (c) shows the

standard deviation of expected minimal effort across agents. The confidence bands in all

panels illustrate the dynamics of the mean across the set of batch runs and one standard

deviation from it for 𝜒 = 0 (grey), 0.3 (green) and 0.9 (blue).

to the benchmark, but this dispersion then is reduced more quickly than in the case of

a low value of 𝜒.

The positive e�ect of the social in�uence on the pace of convergence and e�ort

choice proves to be robust. Figure 1.5 shows the dynamics of distributions of average

beliefs about the minimal e�ort across the agents in the network (panel (a)), average

standard deviation of beliefs across the agents (panel (b)) and the standard deviation

of the beliefs in the network (panel (c)) for di�erent values of 𝜒. The �gure illus-

trates con�dence bands (across batch runs) of these values for baseline scenario (green

bands), high level of social in�uence (blue bands) and the absence of social in�uence

(grey bands). Similar to the single runs discussed above, the con�dence bands for the

(population) standard deviation of expectations about the minimum e�ort decreases

much faster with higher level of social in�uence (see panel (c)). The distribution of

average standard deviation of beliefs in the network reaches its maximum earlier and

decreases much faster with higher value of 𝜒 (panel (b)). Finally, the beliefs converge

to a signi�cantly higher value of long run e�orts when the level of trust in beliefs of the
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social contacts is high (panel (a)). Considering the initial periods in the dynamics of

population mean of the expectations in Figure 1.5(a), it can be seen that the average

speed (across batch runs) of its decrease is almost identical for the di�erent values of 𝜒.

The crucial di�erence between the three considered scenarios is that, for large values

of 𝜒, the moment in which the population variance is close to zero is much earlier,

and the mean expectation hardly decreases further once the population has become

almost uniform. This observation reinforces our intuition that a stronger e�ect of social

in�uence improves the long-run e�ort level mainly by fostering faster convergence of

population beliefs, thereby avoiding a long lasting drift towards a minimal population

e�ort which is substantially below the average population e�ort.

The grey bands in Figure 1.5 illustrate the results derived in Proposition 1.2(iii)

that beliefs of all agents slowly converge to the lowest e�ort exerted in the �rst period

of the games when there is no social in�uence in the network.

1.4.3 Effects of Social Network Topology

Previous work on opinion formation (e.g. Golub and Jackson (2009), Acemoglu et al.

(2010)) has demonstrated the importance of the social network structure on the emer-

gence of consensus in a population and the ability to learn the true state of the world.

In this section we investigate how the ability of a population to coordinate on an ef-

fort level in our minimum e�ort game and the e�ciency of the emerging e�ort level is

in�uenced by di�erent properties of the social network.

Number of Links

First we explore the e�ect of a changing level of connectedness in the network by

varying the parameter 𝑝 which determines the probability that there is a link between

two nodes. As can be seen in Figure 1.6 increasing this parameter has a non-linear

e�ect on the distribution of the emerging long-run e�ort levels. In particular, the

change in 𝑝 has a signi�cant positive e�ect only on a short interval from 0.1 to 0.2.

Further increase in the number of links doesn't a�ect the expectations and thus the

long-run e�ort levels in a statistically signi�cant way. Hence, above a certain minimal

level a higher degree of connectedness in the network does not foster the emergence of

more e�cient equilibria with higher e�ort level.
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Figure 1.6: Distribution of average efforts at 𝑡 = 40 for linking probability 𝑝 =
0.1, 0.2, 0.3, 0.5.

Network Centralization

So far we have considered random networks with identical linking probabilities between

all agents. However, many social networks are characterized by a `core-periphery'

structure where a few central agents are each linked to a large number of individuals (see

Borgatti and Everett (1999)). In order to study the e�ect of such (partially) centralized

communication structure, we �rst consider the extreme case of a star network, in which

all nodes are connected to one central agent, and then consider scenarios with several

coexisting star networks.

Contrary to the weak e�ect of increasing connectedness in the random network,

changing the type of the network into a star network with a single center boosts the

expected minimum e�ort and the payo�s in the long run. Comparing the individual

expectations and variances for random and star networks in Figures 1.2 and 1.7 one can

observe that the expectations about the minimum e�ort converge to much higher level

when the network is a star. The signi�cant positive e�ect from this change in network

topology on the �nal distribution of average e�orts is shown in Figure 1.8. However,

the variance of this distribution is much higher in the case of a star network. This is

implied by the strong dependence of the outcome on the initial belief of the central

node in the star. More speci�cally, each of the periphery nodes in the network learns

about the belief of the central node, which over time then is adapted to the average

beliefs of all periphery nodes. If an agent with pessimistic initial beliefs is located at the

center of the star and therefore the only source of belief communication for periphery

nodes, the average beliefs in the network quickly become more pessimistic. While a

very optimistic center will push the beliefs in the network up.

23



CHAPTER 1. EFFICIENCY GAINS THROUGH SOCIAL INFLUENCE IN A
MINIMUM EFFORT GAME

t

Ε[𝑏𝑏𝑖𝑖,𝑡𝑡]

t

𝑎𝑎𝑖𝑖,𝑡𝑡

(a) (b)

t

𝑆𝑆𝑆𝑆[𝑏𝑏𝑖𝑖,𝑡𝑡]

(c)

Figure 1.7: Dynamics of expected values of minimal effort (a), chosen actions (b) and

variance of the belief distributions for all agents in a single run with a star social network.

Figure 1.8: Distribution of average efforts at 𝑡 = 40 for a random network (left) and a star

network (right)

As becomes apparent from Figure 1.7, the beliefs of the di�erent agents become

uniform much faster in a centralized network, which leads to a faster convergence

of actions. Since average e�ort levels exhibit a negative trend as long as there is

substantial heterogeneity of beliefs in the population, the fast convergence of beliefs
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Figure 1.9: Distribution of average efforts at 𝑡 = 40 with a random network (a) and a star

network (b) for 𝜒 = 0, 0.3, 0.6, 0.9.

leads to systematically higher e�ort levels compared to the random network. Given this

e�ect of centralization, higher con�dence in beliefs of social contacts for a large range

of 𝜒 has a stronger e�ect in the star network compared to the random one (Figure 1.9).

The increase of 𝜒 in a star network however has a signi�cant positive e�ect only up to

some level. Increasing the value of 𝜒 from 0.6 to 0.9 a�ects the long run distribution

of beliefs negatively (see Figure 1.9).

If the centralization of the information �ow is not global, like in a network with

a single star, but rather characterized by the coexistence of several in�uential `local

stars' the positive e�ect of the network centralization quickly diminishes. Figure 1.10

shows the distribution of long-run e�orts for networks with one to six star components.

Increasing the number of components from two to three and then from three to four

components each yields a signi�cant reduction in long-run e�ort, and the distribution of

e�ort in a network with four star components is actually already below the distribution

under a random network. Figure 1.11 illustrates the dynamics of individual beliefs and

actions for a network with three star components. The mechanism leading to the

relatively low long-term e�ort can be clearly identi�ed in this �gure. Individual beliefs

of agents in each of the three components converge quickly due to communication

of beliefs and social in�uence, however, agents from each component are repeatedly

matched in groups with agents from the component with the lowest beliefs, yielding low

e�ort observations for these agents. Hence, beliefs in all components over time slowly

adjust downwards towards the beliefs of the lowest component and actions across these

components converge to a level determined by the actions taken by members of the

most pessimistic component.
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Figure 1.10: Distribution of average efforts at 𝑡 = 40 for star network (left) and segregated

networks with 2 to 6 star components.
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Figure 1.11: Dynamics of expected values of minimal effort (a), chosen actions (b) and

variance of the belief distributions (c) for individual agents in a single run with a segregated

social network with 3 star components.

The e�ect of a segregation of the network into several disconnected components is

much weaker if each component is a random network. Simulation results not reported

in detail here show that increasing the number of components in general has only

insigni�cant e�ects in such a setting.
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Before analyzing an extension of our benchmark model, we like to point out that in

all simulation runs in all settings considered in this section the beliefs and e�ort choices

eventually become uniform. In particular, this observation also holds true for scenarios

with high values of the social in�uence parameter 𝜒. Relating this to Proposition 1.3,

which shows that for large values of that parameter there always exist social networks

and initial beliefs such that convergence to a uniform pro�le does not occur, shows that

the types of social networks that do not induce uniform long-run pro�les are of very

special structure. As sketched in Section 1.3, long-run heterogeneity of beliefs requires

the existence of separated components in the network where the social in�uence in

the component with optimistic beliefs is su�ciently strong to outweigh the low-e�ort

observations made by the agents in that component who are matched with members of

the (smaller) component with pessimistic beliefs. Simulation results not reported here

show that adding a single connection between these components typically is su�cient

to induce uniform long-run beliefs in the population. Also, the results reported in the

previous paragraphs show that even under fully separated components uniform beliefs

and e�ort choices emerge in the long-run, if the components are of equal size.

1.5 Communication of Information

In our benchmark model we assume that an agent receives information about the

outcomes of the minimal e�ort games in groups other than their own only indirectly

through the communication of the beliefs of their social contacts. However, in many

situations, individuals might not only communicate their beliefs to their social con-

tacts, but also the actual outcome of their own interaction group. In this section we

analyze whether the presence of such communication of information about the group

outcomes in the social network changes the qualitative e�ects of belief communication.

Furthermore, we explore whether communication of information might act as a substi-

tute for the communication of beliefs or whether it might even reinforce the (positive)

e�ect of belief communication on the long-run e�ort level emerging in the population.

We extend the model described in section 1.2 by assuming that, when building their

intermediate beliefs, agents do not only take into account the outcome of their own

interaction group, but also that in all groups of their social contacts. In particular, we

replace in equation (1.1) term 1𝑒𝑖,𝑡
with 𝑏̂𝑖,𝑡(𝑒), which is given by

𝑏̂𝑖,𝑡 = 1𝑒𝑖,𝑡
+ 𝜅

1

𝜂𝑖

∑︁
𝑗∈𝑚𝑖(𝑠)

(︁
1𝑒𝑗,𝑡

− 1𝑒𝑖,𝑡

)︁
. (1.3)
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Figure 1.12: Distribution of average efforts at 𝑡 = 40 for 𝜒 = 0, 0.3, 0.6, 0.9, with 𝜅 = 0.3.

Here 0 ≤ 𝜅 ≤ 1 is a weight that the agent 𝑖 assigns to the information about the

minimum e�ort observed and communicated by her social contacts. Thus, we obtain the

following generalization of equation (1.1), describing the intermediate belief formation

with information communication:

𝑏̃𝑖,𝑡+1(𝑒) = (1 − 𝜉)𝑏𝑖,𝑡(𝑒) + 𝜉𝑏̂𝑖,𝑡(𝑒)

with 𝑏̂𝑖,𝑡 given in (1.3). For 𝜅 = 0 this formulation gives our benchmark model studied

in the previous section.

We again use our baseline parametrization and additionally set 𝜅 = 0.3 as the

baseline value for the weight assigned to the observations of the social contacts. Figure

1.12 shows that the impact of variation of the con�dence parameter 𝜒 on the long run

e�ort choice stays signi�cant also with communication of information. Comparing the

�gure with Figure 1.3 also shows that quantitatively the e�ects of an increase of the

social in�uence parameter 𝜒 are hardly a�ected by the presence of communication of

information. Extensive analyses of the extended model for all the scenarios examined

in Section 1.4 furthermore show that all earlier results remain qualitatively unchanged

also in the presence of information communication. Statistical tests demonstrating this

are presented in Appendix 1.B together with the tests for the baseline model.

Concerning the question whether the exchange of information can act as a substitute

for the exchange of beliefs, we show in Figure 1.13 how the distribution of long-run e�ort

changes if there is no exchange of beliefs (𝜒 = 0) and the parameter 𝜅 determining

the weight of the information obtained from an agent's social contacts is increased.

The �gure clearly demonstrates that exchanging only information without exchanging
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Figure 1.13: Distribution of average efforts at 𝑡 = 40 for 𝜅 = 0, 0.3, 0.6, 0.9, when 𝜒 = 0.

beliefs has hardly any positive e�ect on the level of long-run e�ort which emerges.

This insight is consistent with the intuition developed above that the main role of the

exchange of beliefs is that agents in this way get signals about (expected) minimal

e�ort in groups that are more positive than the actual project outcomes which are

observed. This role cannot be played by the communication of actual minimal e�orts

in the groups of the social contacts. Therefore, the communication of information

about project outcomes cannot act as a substitute for the communication of beliefs in

fostering more e�cient outcomes of the minimal e�ort game. Overall, our results show

that the main results discussed in the previous section qualitatively stay intact if apart

from beliefs also information is communicated in the social network.
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1.6 Conclusions

This paper highlights from a theoretical perspective the potential importance of social

in�uence for improving e�ciency of the outcome of group production problems with

strategic complementarities. Also, it shows that the topology of the social network has

a signi�cant in�uence on the achieved outcome. Unfortunately, at this point experi-

mental studies exploring the role of social in�uence in such a setting is missing. Hence,

the analysis provided in this paper is a natural basis for designing and carrying out

experiments clarifying in how far the e�ects identi�ed in our study are also observable

in the lab. Also from a theoretical perspective it would be interesting to explore the rel-

evance of several of the assumptions that have been made in this paper. This includes

the consideration of endogenous updating of the social network as well a generalization

of the agents' behavior by incorporating logit best reply or social preferences or a more

re�ned expectation updating process, e.g. like the one developed in Grimm and Mengel

(2019) based on its good match with experimental evidence. These issues are left for

future research.
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Appendix 1.A Proofs

Proof of Proposition 1.1. We �rst show a Lemma, which will be used in this proof as

well as in the proofs of the following propositions.

Lemma 1.1. Consider beliefs 𝑏1, 𝑏2 ∈ ∆(𝒳 ) such that 𝑎*(𝑏1) ≤ 𝑎*(𝑏2) then 𝑎*(𝜅𝑏1 +

(1 − 𝜅)𝑏2) ∈ [𝑎*(𝑏1), 𝑎*(𝑏2)] for all 𝜅 ∈ [0, 1].

Proof of Lemma 1.1. In light of the form of 𝜋(𝑒𝑖, 𝑒−𝑖) we can write the expected pro�t

of an agent with e�ort 𝑒 and belief 𝑏 as

𝜋𝑒(𝑒, 𝑏) = 𝛼

(︃∑︁
𝑒≤𝑒

𝑏(𝑒)𝑒 + 𝑒
∑︁
𝑒>𝑒

𝑏(𝑒)

)︃
− 𝛽𝑒.

Hence,

∆𝜋𝑒(𝑒, 𝑏) = 𝜋𝑒(𝑒 + 1, 𝑏) − 𝜋𝑒(𝑒, 𝑏) = 𝛼
∑︁
𝑒>𝑒

𝑏(𝑒) − 𝛽,

which is (weakly) decreasing in 𝑒. Now consider some e�ort = 𝑒1 < 𝑎*(𝑏1). Since

𝑒1 < 𝑎*(𝑏1) ≤ 𝑎*(𝑏2) and ∆𝜋(𝑒, 𝑏) is decreasing in 𝑒, we must have ∆𝜋𝑒(𝑒1, 𝑏1) ≥ 0 and

∆𝜋𝑒(𝑒1, 𝑏2) ≥ 0. Therefore,

∆𝜋𝑒(𝑒1, 𝜅𝑏1 + (1 − 𝜅)𝑏2) = 𝜅∆𝜋𝑒(𝑒1, 𝑏1) + (1 − 𝜅)∆𝜋𝑒(𝑒1, 𝑏2) ≥ 0.

Since 𝑎*(𝜅𝑏1+(1−𝜅)𝑏2) is the largest e�ort among those maximizing the expected pro�t

of the agent, this shows that 𝑒1 < 𝑎*(𝜅𝑏1+(1−𝜅)𝑏2). Hence 𝑎*(𝜅𝑏1+(1−𝜅)𝑏2) ≥ 𝑎*(𝑏1).

Analogous arguments show that 𝑎*(𝜅𝑏1 + (1−𝜅)𝑏2) ≤ 𝑎*(𝑏2). This completes the proof

of the lemma.

To prove claim (i) of the proposition consider a pro�le 𝐵𝑡 such that 𝑎*(𝑏𝑖,𝑡) = 𝑒 for

all 𝑖 ∈ 𝑁 . It should be noted that under such a pro�le 𝑒𝑖,𝑡 = 𝑒 for all 𝑖 ∈ 𝑁 regardless

of the realization of the group partition. Hence 𝐵𝑡+1 is deterministic and we show that

also for 𝐵𝑡+1 we have 𝑎*(𝑏𝑖,𝑡+1) = 𝑒 for all 𝑖 ∈ 𝑁 . Claim (i) then follows by induction.

To show that 𝑎*(𝑏𝑖,𝑡+1) = 𝑒 for all 𝑖 ∈ 𝑁 , we consider an arbitrary agent 𝑖. Since 𝑒𝑖,𝑡 = 𝑒

and 𝑎*(1𝑒) = 𝑒, it follows from Lemma 1.1 that

𝑎*(𝑏̃𝑖,𝑡+1) = 𝑎*((1 − 𝜉)𝑏𝑖,𝑡 + 𝜉1𝑒) = 𝑒.

Since the same reasoning also applies to all social contacts of 𝑖, repeated application
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of the lemma establishes that 𝑎*
(︁

1
𝜂𝑖(𝑠)

∑︀
𝑗∈𝑚𝑖(𝑠)

𝑏̃𝑗,𝑡+1

)︁
= 𝑒, and therefore

𝑎*(𝑏𝑖,𝑡+1) = 𝑎*

⎛⎝(1 − 𝜒)𝑏̃𝑖,𝑡 + 𝜒
1

𝜂𝑖(𝑠)

∑︁
𝑗∈𝑚𝑖(𝑠)

𝑏̃𝑗,𝑡+1

⎞⎠ = 𝑒.

Hence, we obtain part (i) of the proposition.

To show part (ii) we de�ne for some arbitrary e�ort 𝑒 ∈ 𝒳 ∖ {𝑒} the maximal

probability for this e�ort level in any belief distribution in 𝐵𝜏 as 𝑏̄(𝑒)𝜏 = max[𝑏𝑖,𝜏 (𝑒) :

𝑖 ∈ 𝑁 ] for all 𝜏 ≥ 𝑡. Since 𝑒𝑗,𝜏 = 𝑒 ̸= 𝑒 for all 𝑗 ∈ 𝑁 and 𝜏 ≥ 𝑡 we have

𝑏̃𝑗,𝜏+1(𝑒) = (1 − 𝜉)𝑏𝑗,𝜏 (𝑒) ≤ (1 − 𝜉)𝑏̄(𝑒)𝜏 ,

and therefore

𝑏𝑖,𝜏+1(𝑒) = (1 − 𝜒)(1 − 𝜉)𝑏𝑖,𝜏 (𝑒) +
𝜒

𝜂𝑖(𝑠)

∑︁
𝑗∈𝑚𝑖(𝑠)

𝑏̃𝑗,𝜏+1 ≤ (1 − 𝜉)𝑏̄(𝑒)𝜏

for all 𝑖 ∈ 𝑁 . Hence, 𝑏̄(𝑒)𝜏+1 ≤ (1 − 𝜉)𝑏̄(𝑒)𝜏 and accordingly lim𝜏→∞ 𝑏̄(𝑒)𝜏 = 0 for all

𝑒 ̸= 𝑒. This implies that 𝑏𝑖,𝜏 → 1𝑒 for 𝜏 → ∞ for all 𝑖 ∈ 𝑁

Proof of Proposition 1.2. (i) By de�nition we have 𝑒𝑖,𝑡 ≤ 𝑎*(𝑏𝑖,𝑡) for all 𝑖 and all 𝑡.

Hence, 𝑎*(1𝑒𝑖,𝑡
) = 𝑒𝑖,𝑡 ≤ 𝑎*(𝑏𝑖,𝑡). Using Lemma 1.1 we obtain

𝑎𝑖,𝑡+1 = 𝑎*(𝑏𝑖,𝑡+1) = 𝑎*((1 − 𝜉)𝑏𝑖,𝑡 + 𝜉1𝑒𝑖,𝑡
) ≤ 𝑎*(𝑏𝑖,𝑡) = 𝑎𝑖,𝑡.

(ii) First, we show that for any agent 𝑖 with 𝑎𝑖,1 = 𝑒1 := min𝑗∈𝑁 𝑎𝑗,1 we must have

𝑎𝑖,𝜏 = 𝑒𝜏 = 𝑒1 ∀𝜏 ≥ 1. This can be shown by induction. Assume that for all 𝜏 = 1, .., 𝑡

beliefs 𝑏𝑖,𝜏 are such that 𝑎*(𝑏𝑖,𝜏 ) = 𝑒𝑡 = 𝑒1. Then obviously we have 𝑎𝑖,𝑡 = 𝑒1 and

therefore, under consideration of 𝜒 = 0, the updated belief reads

𝑏𝑖,𝑡+1 = 𝑏̃𝑖,𝑡+1 = (1 − 𝜉)𝑏𝑖,𝑡 + 𝜉1𝑒1
.

Using Lemma 1.1 it follows from 𝑎*(𝑏𝑖,𝑡) = 𝑎*(1𝑒1
) = 𝑒1 that 𝑎𝑖,𝑡+1 = 𝑎*(𝑏𝑖,𝑡+1) = 𝑒1.

For any agent 𝑗 ̸= 𝑖 we have 𝑎*(𝑏𝑗,𝑡) ≥ 𝑒1 and 𝑒𝑗,𝑡 ≥ 𝑒1, which implies that

𝑎𝑗,𝑡+1 = 𝑎*
(︁

(1 − 𝜉)𝑏𝑗,𝑡 + 𝜉1𝑒𝑗,𝑡

)︁
≥ 𝑒1.

From this we conclude that 𝑒𝑡+1 ≥ 𝑒1, which in light of 𝑎𝑖,𝑡+1 = 𝑒1 implies 𝑒𝑡+1 = 𝑒1.

This completes the induction and we have shown that 𝑎𝑖,𝑡 = 𝑒𝑡 = 𝑒1 for all 𝑡 ≥ 1.
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Consider now an agent 𝑗 with 𝑎𝑗,𝑡 > 𝑒1. Taking into account that 𝑒 is a strictly

optimal action under belief 𝑏 = 1𝑒 and the continuity of 𝜋𝑒 with respect to 𝑏, it follows

that there exists some 𝜆̃ such that 𝑎*(𝜆1𝑒1
+ (1 − 𝜆)𝑏𝑗,𝑡) = 𝑒1 for all 𝜆 ≥ 𝜆̃. Choose a

𝑇 such that (1 − 𝜉)𝑇 < 1 − 𝜆̃. There is a positive probability that agent 𝑗 is matched

with an agent 𝑖 with 𝑎𝑖,𝑡 = 𝑒1 for 𝑇 periods in a row. The belief of agent 𝑗 in period

𝑡 + 𝑇 then is given by

𝑏𝑗,𝑡+𝑇 = (1 − 𝜉)𝑇 𝑏𝑗,𝑡 + (1 − (1 − 𝜉)𝑇 )1𝑒1

and our reasoning above shows that, in case such a matching pattern occurs, this agent

𝑗 switches to action 𝑎𝑗,𝑡+𝑇 = 𝑒1. Following the arguments provided in the �rst part of

the proof, this implies that 𝑎𝑗,𝜏 = 𝑒1 for all 𝜏 ≥ 𝑡 + 𝑇 . The same reasoning can be

applied sequentially to every agent 𝑗 with 𝑎𝑗,𝑡 > 𝑒1. Together, this establishes that from

every pro�le of beliefs 𝐵𝑡, that can be reached with positive probability from 𝐵1, there

is a positive probability path to a pro�le 𝐵̃ with the property that 𝑎*(𝑏̃𝑖) = 𝑒1 for all

𝑖 ∈ 𝑁 . Denote the set of all such belief pro�les 𝐵̃ by ℬ̃ = {𝐵̃|𝑎*(𝑏̃𝑖) = 𝑒1 ∀𝑖 ∈ 𝑁}. We

know from Proposition 1.1 that this set ℬ̃ of belief pro�les is absorbing. Together with

the fact that there is a transition path with positive probability from any reachable

state into ℬ̃, this implies that IP(𝐵𝑡 ̸∈ ℬ̃) → 0 for 𝑡 → ∞. This shows part (ii) of

the proposition. Part (iii) follows directly from the observation that if 𝐵𝑡 ∈ ℬ̃ then

𝑏𝑖,𝑡+𝜏 (𝑒) ≤ (1 − 𝜉)𝜏𝑏𝑖,𝑡(𝑒) for all 𝑖 ∈ 𝑁, 𝑒 ̸= 𝑒1.

Proof of Proposition 1.3. Consider any initial belief pro�le 𝐵1 with |{𝑖 ∈ 𝑁 : 𝑎*(𝑏𝑖,1) =

𝑒1}| = 1. Without restriction of generality we label the agent with the smallest initial

e�ort as agent 1. Hence, we have 𝑎*(𝑏1,1) = 𝑒1 and 𝑎*(𝑏𝑖,1) > 𝑒1 ∀𝑖 = 2, .., 𝑛. Consider

the social network 𝑠 with 𝑚1(𝑠) = ∅, 𝑚𝑖(𝑠) = 𝑁 ∖ {1, 𝑖}. Since agent 1 does not have

any social contacts under this social network, the beliefs of agent 1 in period 𝑡 are given

by

𝑏1,𝑡 = (1 − 𝜉)𝑡−1𝑏1,1 + (1 − (1 − 𝜉)𝑡−1)1𝑒1

and it follows from Lemma 1.1 that 𝑎1,𝑡 = 𝑒1 for all 𝑡.

Considering agents 𝑖 = 2, .., 𝑛 we proceed by induction. Assume that 𝑎*(𝑏𝑖,𝜏 ) > 𝑒1

for all 𝑖 = 2, ..𝑛 and 𝜏 = 1, .., 𝑡. We show that then also 𝑎*(𝑏𝑖,𝑡+1) > 𝑒1 for all 𝑖 = 2, ..𝑛.

De�ne, as in the proof of Proposition 1.2, the expected pro�t di�erence between two

adjacent e�ort levels as ∆𝜋𝑒(𝑒, 𝑏) = 𝜋𝑒(𝑒 + 1, 𝑏) − 𝜋𝑒(𝑒, 𝑏). Since ∆𝜋𝑒(𝑒, 𝑏) is weakly

decreasing in 𝑒 and 𝑎*(𝑏𝑖,𝑡) > 𝑒1 for all 𝑖 = 2, .., 𝑛 it follows that

∆𝜋𝑒(𝑒1, 𝑏𝑖,𝑡) = 𝛼
∑︁
𝑒>𝑒1

𝑏𝑖,𝑡(𝑒) − 𝛽 ≥ 0.
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De�ning 𝑥𝑖,𝑡 =
∑︀

𝑒>𝑒1
𝑏𝑖,𝑡(𝑒), it follows that

𝑥𝑖,𝑡 ≥
𝛽

𝛼
∀𝑖 = 2, .., 𝑛.

In every period (𝑘 − 1) agents are matched with agent 1 and hence observe 𝑒𝑖,𝑡 = 𝑒1,

whereas for the remaining 𝑛− 𝑘 agents we have 𝑒𝑖,𝑡 > 𝑒1. Denote by agent 𝑗 one of the

agents matched with agent 1 in 𝑡. Furthermore, denote by 𝑦𝑡 =
∑︀

𝑖 ̸=1,𝑗

∑︀
𝑒>𝑒1

𝑏𝑖,𝑡(𝑒) the

sum of the probabilities that all agents apart from agents 1 and 𝑗 put on e�ort choices

above 𝑒1. Clearly, we have 𝑦𝑡 ≥ (𝑛− 2)𝛽
𝛼
. De�ning 𝑥̃𝑗,𝑡 =

∑︀
𝑒>𝑒1

𝑏̃𝑗,𝑡(𝑒) we obtain from

(1.1)

𝑥̃𝑗,𝑡+1 = (1 − 𝜉)𝑥𝑗,𝑡.

Furthermore, we de�ne by 𝑦𝑡 =
∑︀

𝑖 ̸=1,𝑗

∑︀
𝑒>𝑒1

𝑏̃𝑖,𝑡(𝑒) and we get

𝑦𝑡+1 = (1 − 𝜉)𝑦𝑡 + 𝜉(𝑛− 𝑘).

Inserting this into the belief adjustment due to social in�uence for agent 𝑗 (see 1.2) we

obtain

𝑥𝑗,𝑡+1 = (1 − 𝜒)𝑥̃𝑗,𝑡+1 +
𝜒

𝑛− 2
𝑦𝑡+1

= (1 − 𝜒)(1 − 𝜉)𝑥𝑗,𝑡 +
𝜒

𝑛− 2
((1 − 𝜉)𝑦𝑡 + 𝜉(𝑛− 𝑘))

≥ (1 − 𝜒)(1 − 𝜉)
𝛽

𝛼
+

𝜒

𝑛− 2

(︂
(1 − 𝜉)(𝑛− 2)

𝛽

𝛼
+ 𝜉(𝑛− 𝑘)

)︂
= (1 − 𝜉)

𝛽

𝛼
+ 𝜒

𝑛− 𝑘

𝑛− 2
𝜉,

where we have used that 𝑥𝑗,𝑡 >
𝛽
𝛼
and 𝑦𝑡 ≥ (𝑛 − 2)𝛽

𝛼
. If 𝜒 > 𝜒 this directly implies

that 𝑥𝑗,𝑡+1 ≥ 𝛽
𝛼
and therefore 𝑎*(𝑏𝑗,𝑡+1) > 𝑒1. Clearly, the beliefs of all agents who

have not been matched with agent 1 in period 𝑡 are more optimistic than that of

agent 𝑗 and therefore we have 𝑎*(𝑏𝑖,𝑡+1) > 𝑒1 for all 𝑖 = 2, .., 𝑛. This completes the

induction. Overall, we have shown that for all agents 𝑖 = 2, .., 𝑛 we have 𝑎𝑖,𝑡 > 𝑒1 for

all 𝑡 ≥ 1. Together with 𝑎1,𝑡 = 𝑒1 for all 𝑡 ≥ 1 this shows that with probability one

max𝑖∈𝑁 [𝑎𝑖,𝑡] > 𝑒1 = min𝑖∈𝑁 [𝑎𝑖,𝑡], which completes the proof.
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Appendix 1.B Test Results

We perform Wilcoxon signed-rank test to show the signi�cance of di�erence between

distributions of long run e�ort choices. Tables 1.1-1.7 in this appendix show the p-

values of the tests. We consider the di�erence of two distributions to be signi�cant

when p < 0.05.

Table 1.1: Effect of the social influence on long-run efforts.

𝜒 0 and 0.3 0.3 and 0.6 0.6 and 0.9
𝜅 = 0 0.0002 0.0001 0.0006
𝜅 = 0.3 0.0001 0.0001 0.0457

The table shows the effects of increasing social influence on the long-run efforts in the baseline

model (𝜅 = 0) and the extended model with the information communication (𝜅 = 0.3) with
random network.

We compare each pair of long-run effort distributions for scenarios with trust parameter values

𝜒 equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0,9.

Table 1.2: Effect of changing the random network connectedness.

0.1 and 0.2 0.2 and 0.3 0.3 and 0.5
𝜅 = 0 0.0419 0.2396 0.4666
𝜅 = 0.3 0.6677 0.7794 0.5882

The table shows the effect of increasing average degree in the random network. We com-

pare the pairs of long-run effort distributions in random networks with probabilities of link

formation p equal to 0.1 and 0.2, 0.2 and 0.3, 0.3 and 0.5. The Wilcoxon signed-rank tests

are performed for the baseline model (𝜅 = 0) and the extended model with the information

communication (𝜅 = 0.3).

Appendix 1.C Robustness

In this appendix we show the robustness of our model with respect to changes in size

of the social network (𝑛), randomly generated groups' size (𝑘), the number of possible

strategies, that is, the highest e�ort level (𝑒), and the speed of beliefs' updating (𝜉).

In particular, we show that the e�ect of the increasing level of trust in beliefs of social

contacts remains the same when changing the benchmark parametrization.
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Table 1.3: Social influence effect in the star network.

𝜒 0 and 0.3 0.3 and 0.6 0.6 and 0.9
𝜅 = 0 0.0001 0.0012 0.0178
𝜅 = 0.3 0.0001 0.0021 0.0021

The table shows the effects of increasing social influence on the long-run efforts in the baseline

model (𝜅 = 0) and the extended model with the information communication (𝜅 = 0.3) with
star network.

We compare each pair of long-run effort distributions for scenarios with trust parameter values

𝜒 equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0,9.

Table 1.4: Effect of network centralization.

𝜒 = 0 𝜒 = 0.3 𝜒 = 0.6 𝜒 = 0.9
𝜅 = 0 0.2708 0.0007 0.0076 0.1978
𝜅 = 0.3 0.0894 0.0003 0.0085 0.1506

The test result in the table indicate the significance of difference between long-run effort

distributions of random network with benchmark value of link formation probability 0.2 and

star network. The tests are performed for the baseline model (𝜅 = 0) and the extended model

with information communication (𝜅 = 0.3). Alongside with the benchmark value of trust

parameter 𝜒 = 0.3 other levels of social influence are tested.

Table 1.5: Effect of increasing segregation level in random networks.

1 and 2 2 and 3 3 and 4 4 and 5 5 and 6
𝜅 = 0 0.9553 0.4441 0.2396 0.0119 0.6677
𝜅 = 0.3 0.9553 0.8373 0.8082 0.0966 0.1850

The table shows Wilcoxon signed-rank tests results of comparing long-run effort distributions

of random networks with 1 component and 2 disconnected components, as well as random

networks with 2 and 3, 3 and 4, 4 and 5, and 5 and 6 disconnected components. The average

degree in all networks is kept equal to the benchmark value.

Network Size

We compare the e�ect of increasing social in�uence in networks of sizes 𝑛 = 15 and

𝑛 = 50 to the benchmark of size 30. We �nd that in smaller network of size 15

increasing the value of parameter 𝜒 from 0.6 to 0.9 doesn't have a signi�cant e�ect
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Table 1.6: Effect of increasing segregation level in networks with star components.

1 and 2 2 and 3 3 and 4 4 and 5 5 and 6
𝜅 = 0 0.4441 0.0545 0.0239 0.5883 0.7795
𝜅 = 0.3 0.0160 0.2396 0.0054 0.6407 0.6676

The table shows Wilcoxon signed-rank tests results of comparing long-run effort distributions

of a star network and a network with 2 disconnected star components, networks with 2 and

3, 3 and 4, 4 and 5, and 5 and 6 disconnected star components correspondingly.

Table 1.7: Comparing the effects of 𝜒 and 𝜅.

𝜒 or 𝜅 0 and 0.3 0.3 and 0.6 0.6 and 0.9
𝜅 = 0 0.0002 0.0001 0.0006
𝜒 = 0 0.0048 0.0594 0.0117
𝜅 = 0.3 0.0001 0.0001 0.0457
𝜒 = 0.3 0.2396 0.9256 0.1850

The table shows the effects of increasing social influence (𝜒) and coefficient of information

communication (𝜅) on the long-run efforts when the 𝜅 and 𝜒 are set to 0.3 correspondingly.

(Figure 1.1422, Table 1.8). This results in a signi�cant di�erence between distributions

of long run e�orts for network sizes 15 and 30, the �cross-e�ect� of network size (Table

1.9, 𝑝 = 0.016). In all remaining cases the increase in value of trust parameter 𝜒 has

a signi�cant e�ect on the long run e�ort choice, whereas the �cross-e�ect� of network

size for a given value of 𝜒 is insigni�cant.

Table 1.8: Effect of increasing social influence on long-run efforts in different size networks.

𝜒 0 and 0.3 0.3 and 0.6 0.6 and 0.9
𝑛 = 15 0.0038 0.003 0.0545
𝑛 = 30 0.0002 0.0001 0.0006
𝑛 = 50 0.0001 0.0001 0.0018

The table shows the effect of increasing social influence on the long-run efforts in the baseline

model (𝜅 = 0). We compare each pair of long-run effort distributions for scenarios with trust

parameter values 𝜒 equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0,9 when the size of the network

is 15, 30(benchmark) and 50.

22In this and further figures, the darker grey coloring of the plots is to represent the benchmark
model.
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Figure 1.14: Distribution of average efforts at 𝑡 = 40 for 𝜒 = 0, 0.3, 0.6, 0.9, for network
sizes 𝑛 = 15, 𝑛 = 30 and 𝑛 = 50.

Table 1.9: Cross-effect of the network size.

15 and 30 30 and 50
𝜒 = 0 0.9256 0.1305
𝜒 = 0.3 0.9256 0.1851
𝜒 = 0.6 0.1213 0.5135
𝜒 = 0.9 0.016 0.6407

The table shows the “cross-effect” of increasing network size for different levels of social influ-

ence parameter 𝜒.

Random Group Size

The positive e�ect of the increasing 𝜒 holds when changing the size of random game

groups 𝑘 in the network of size 30. This result is illustrated in Figure 1.15 and con-

�rmed by test results in Table 1.10. We also �nd that the increasing the number of

people in randomly formed groups playing minimum e�ort game decreases the e�orts

signi�cantly. Thus, increase in 𝑘 from 2 to 5, and from 6 to 10 leads to a signi�cant

decrease in long-run e�orts for all analyzed values of the trust parameter. Moreover,

the negative e�ect increasing the group size from 5 to 6 is signi�cant given there is no

social in�uence in the network (Table 1.11).

Strategy Set

For a given set of strategies 𝒳 = {1, ..., 𝑒} the positive e�ect of trust parameter on

e�ort choice is independent from the value of 𝑒 (Figure 1.16, Table 1.12). Despite of
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Figure 1.15: Distribution of average efforts at 𝑡 = 40 for random group sizes 𝑘 = 2, 5, 6, 10
and 𝜒 = 0, 0.3, 0.6, 0.9.

Table 1.10: Effect of increasing social influence on long-run efforts with different random

group sizes.

𝜒 0 and 0.3 0.3 and 0.6 0.6 and 0.9
𝑘 = 2 0.0003 0.0001 0.0021
𝑘 = 5 0.0002 0.0001 0.0006
𝑘 = 6 0.0002 0.0001 0.0002
𝑘 = 10 0.0023 0.0001 0.0002

The table shows the effect of increasing social influence on the long-run efforts in the baseline

model (𝜅 = 0). We compare each pair of long-run effort distributions for scenarios with trust

parameter values 𝜒 equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0,9 when the size of randomly

generated groups 𝑘 are 2, 5, 6, and 10.

Table 1.11: Cross-effect of increasing the random group size.

2 and 5 5 and 6 6 and 10
𝜒 = 0 0.0001 0.0458 0.0054
𝜒 = 0.3 0.0001 0.0826 0.0023
𝜒 = 0.6 0.0001 0.0646 0.0003
𝜒 = 0.9 0.0001 0.4009 0.0239

The table shows the “cross-effect” of increasing random group size 𝑘 for different levels of

social influence parameter 𝜒.

the di�erence in number of possible e�orts and the higher average e�ort, the long-run

e�ort' distribution doesn't di�er signi�cantly with absence of social in�uence. While
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this di�erence grows signi�cantly when the trust parameter 𝜒 is positive (Table 1.13).

This can be explained scaling up with the average of possible strategies.

Figure 1.16: Distribution of average efforts at 𝑡 = 40 with highest possible effort and number

of possible strategies 𝑒 = 7, 15, 25 and 𝜒 = 0, 0.3, 0.6, 0.9.

Table 1.12: Effect of increasing social influence on long-run efforts with different values of

𝑒.

𝜒 0 and 0.3 0.3 and 0.6 0.6 and 0.9
𝑒 = 7 0.0239 0.0002 0.0043
𝑒 = 15 0.0002 0.0001 0.0006
𝑒 = 25 0.0001 0.0001 0.0006

The table shows the effect of increasing social influence on the long-run efforts in the baseline

model (𝜅 = 0). We compare each pair of long-run effort distributions for scenarios with trust

parameter values 𝜒 equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0,9 when the highest possible

effort is 7, 15, and 25.

Speed of Updating

Increasing the speed for updating old beliefs to new information a�ects the long-run

e�ort choice for any level of trust in the network. The negative cross-e�ect of faster

updating is signi�cant (Table 1.15). Test results in Table 1.14 show that the positive

e�ect from increasing social in�uence remains signi�cant when 𝜉 = 0.1, and 𝜉 = 0.3.

While for faster belief updating (𝜉 = 0.5, 𝜉 = 0.6) increase in trust parameter from

absence of social in�uence 𝜒 = 0 to 𝜒 = 0.3 becomes insigni�cant.
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Table 1.13: Cross-effect of changing the highest possible effort.

7 and 15 15 and 25
𝜒 = 0 0.0826 0.2111
𝜒 = 0.3 0.0068 0.0034
𝜒 = 0.6 0.0002 0.0007
𝜒 = 0.9 0.0002 0.0005

The table shows the “cross-effect” of increasing the highest possible effort 𝑒 for different levels
of social influence parameter 𝜒.

Figure 1.17: Distribution of average efforts at 𝑡 = 40 for 𝜒 = 0, 0.3, 0.6, 0.9 with 𝜉 = 0.1,
𝜉 = 0.3 and 𝜉 = 0.5.

Table 1.14: Effect of increasing social influence on long-run efforts with different values of

speed of updating 𝜉.

𝜒 0 and 0.3 0.3 and 0.6 0.6 and 0.9
𝜉 = 0.1 0.0002 0.0001 0.0006
𝜉 = 0.3 0.0066 0.0002 0.0076
𝜉 = 0.5 1 0.0029 0.0355
𝜉 = 0.6 1 0.012 0.0033

The table shows the effect of increasing social influence on the long-run efforts in the baseline

model (𝜅 = 0). We compare each pair of long-run effort distributions for scenarios with trust

parameter values 𝜒 equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0.9 when the speed of belief

updating 𝜉 is 0.1, 0.3, 0.5, 0.6.
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Table 1.15: Cross-effect of increasing speed of belief updating.

0.1 and 0.3 0.3 and 0.5
𝜒 = 0 0.0458 0.0144
𝜒 = 0.3 0.0004 0.0048
𝜒 = 0.6 0.0001 0.0012
𝜒 = 0.9 0.0001 0.0004

The table shows the “cross-effect” of increasing the speed of belief updating 𝜉 for different

levels of social influence parameter 𝜒.
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Chapter 2

Dynamics of Ideal Efforts and

Consensus in a Multi-Layer

Network Game

2.1 Introduction

Individual choices are often a�ected by the social environment.23 The behaviors and the

attitudes of social contacts a�ect their well-being, driving the choices and leading them

to adapt, or even adopt, opinions. Such social construct of opinion formation can often

lead to conformity.24 Yet, individual beliefs on many issues vary signi�cantly in society.

The willingness and the incentives to change those beliefs together with behaviors

di�er across people, too.25 Despite the importance of a consensus in problems where

coordination matters, the presence of diverse opinions about the issue is an important

part in the evolution of the beliefs, thus the dynamics of individual choices.26

Recent research has shown that studying the social and economic relations in the

context of network interactions can provide valuable insights about group outcomes

and individual choices.27 The literature on network games provides a game-theoretic

23Behavioral spillovers and peer effects through social interaction are present in education, labor
markets, environmental choices, crime, etc. For surveys on theory and empirical evidence see Durlauf
(2004), Ioannides and Datcher Loury (2004), Ioannides and Ioannides (2012).

24See the pioneering work by Asch (1955) on opinions and social pressure.
25Bednar and Page (2007) define behavioral stickiness as one of the elements of cultural behavior.

They show that the individuals may not alter their behavior despite changes in incentives.
26“When consensus comes under the dominance of conformity, the social process is polluted and the

individual at the same time surrenders the powers on which his functioning as a feeling and thinking

being depends.” Asch (1955).
27There is a wide range of applications of network theory in social and economic problems, such as in
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framework for analyzing the behavior of players in a variety of economic settings, with

players embedded in a network. The structure of the network, the players' characteris-

tics, along with the type of ties connecting the players and economic incentives, a�ect

the individual outcomes. The topology of the network impacts the e�orts dynamics

and learning in the population (see e.g Golub and Jackson (2010b) or Acemoglu and

Ozdaglar (2011a)). While the games on networks commonly study players embedded

in a network structure representing one type of relationships,28 oftentimes people are

engaged in multiple types of relationships that in�uence individual choices regarding

a single issue.29 Within the same population, the people are connected in a friend-

ship network, a network of professional connections, cultural ties, religious or ethnic

groups, and even online communities. The presence of links in each dimension of such a

multi-layer network of social interactions may a�ect the individual di�erently through

spillovers, social norms, peer pressure, etc.

The objective of this paper is to study the evolution of personal norms and e�orts in

a population of players embedded in a two-layer network. The two layers of the network

in�uence di�erently the individual's choice of action regarding a single activity. The

presence of social interactions in the �rst layer carries a pressure to conform with the

social norm within the layer. One may consider relations within a religious and ethnic

communities, family ties, where social norms can be strongly imposed. The second

layer represents a network where the interaction with neighbors generates strategic

complementaries of e�orts, as present in friendship networks.30 It is natural to assume

that same social contacts can generates strategic complementaries of e�orts and create

pressure to conform with the norms at the same time, thus be represented in both layers

of the network. Yet, depending on the nature of relationships, the magnitude of the

received complementarities and the level of peer pressure can be di�erent. Additionally,

players have personal norms related to the e�ort choice, or ideal efforts,31 and they are

labor markets (e.g. Calvó-Armengol (2004), Calvo-Armengol and Jackson (2004)), financial markets
(e.g. Gale and Kariv (2007), Elliott, Golub, and Jackson (2014)), R&D collaborations (e.g. Goyal and
Moraga-Gonzalez (2001), König, Battiston, Napoletano, and Schweitzer (2012), Dawid and Hellmann
(2014)), as well as peer effects in networks (see the recent survey by Bramoullé, Djebbari, and Fortin
(2020)), opinion diffusion (e.g. Golub and Jackson (2010b), Jackson and Yariv (2011)), adoption of
environmentally friendly behavior (Currarini, Marchiori, and Tavoni (2016)) and technology adoption
(e.g. Beaman, BenYishay, Magruder, and Mobarak (2021)).

28There are extensive surveys on network games literature, e.g. Jackson and Zenou (2015) and
Bramoullé and Kranton (2015).

29The papers by Belhaj and Deroïan (2014) and Chen, Zenou, and Zhou (2018) capture multiple
activities on a single-layer network. Walsh (2019) studies a public good game on a two-layer network
where the players choose to invest in one of the layers.

30See e.g. Calvó-Armengol, Patacchini, and Zenou (2005) and Calvó-Armengol, Patacchini, and
Zenou (2009).

31The notion of ideal efforts in network games is used in recent works by Olcina, Panebianco, and
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heterogeneous in their ideal e�orts and productivity. They repeatedly participate in

a network game where the deviation from the social norm creates con�ict cost from

the �rst network layer. At the same time, the deviation from the ideal e�ort causes

disutility from the cognitive dissonance or inner con�ict.32 The players are myopic, so

they do not consider how their e�ort choice a�ects those of other players in the network.

We �nd the equilibrium e�orts of the players, which are equivalent to their weighted

Katz-Bonacich centrality,33,34 that is, the network centrality measure indicating the

weighted number of paths in the network stemming from a given player, additionally

weighted by idiosyncratic productivities and ideal e�orts of each player on the paths.

We assume that the norms, both social and personal, tend to change. The players

update their ideal e�orts by adapting those to their actual e�orts in the network game.

The ideal e�ort is updated as a linear combination of the ideal in the previous period

and the actual e�ort. This form of updating implies that the players adjust their ideals

to justify their actions and to manage their cognitive dissonance.35 Such linear updating

method is most similar to the well-known DeGroot updating introduced by DeGroot

(1974) and widely used in opinion formation and social learning models. Compared

to DeGroot updating where the beliefs are revised according to the social norm, in

our model the ideal is updated according to the actual e�ort that is, in turn, a linear

combination of social norm, the current ideal e�ort of the player, her productivity,

and e�ort complementarities from the additional network layer. A similar approach to

DeGroot updating has been adopted by DeMarzo et al. (2003) who de�ne the notion of

persuasion bias as a failure to adjust for repetition of information, whether it is coming

from one source throughout the time or multiple sources that are connected in the

social network. Such bounded rationality of players is assumed in most non-Bayesian

Zenou (2017) and Galeotti, Golub, Goyal, and Rao (2021).
32The Theory of Cognitive Dissonance introduced by social psychologists dates back to Festinger

(1957). It suggests that people strive for internal consistency continuously aligning the cognitions with
their actions in order to minimize the cognitive dissonance. Experimental work by Elliot and Devine
(1994) proves this result. Akerlof and Dickens (1982) and Rabin (1994) incorporate the psychological
theory of cognitive dissonance into theoretical economic models of rational choice. They show that
such approach provides a better explanation of the welfare consequences of some economic phenomena.

33This network centrality measure, introduced first by Katz (1953) and reestablished later by
Bonacich (1987), captures the power or the status as a relative degree of influence of the player
in the network.

34Following the seminal work by Ballester et al. (2006), the link between the Katz-Bonacich central-
ity of a player and her effort is an established result in the literature on network games. Introducing
heterogeneity in players’ productivities results in equilibrium efforts being equivalent to the weighted
Katz-Bonacich centrality measure. E.g. see Remark 1 in Ballester et al. (2006).

35An early experimental study by Brehm (1956) shows that people attempt to increase the desir-
ability of their made choices to stay consistent with their decisions. In psychology literature such
ex-post rationalization of decisions and choice-supportive bias is present in experimental results (see
e.g. Mather and Johnson (2000), Mather, Shafir, and Johnson (2000)).
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learning models. We undertake the same approach in the current paper.

Similarly to subjective beliefs, we assume that ideal e�orts are a subjective measure

idiosyncratic to the players. We study the dynamics of ideal e�orts given the multi-

layer network structure, the taste for conformity, sensitivity to cognitive dissonance

in the network, and players' productivity coe�cients. We show that under certain

conditions on the network layer of strategic complementarities, the steady-state exists.

Moreover, in presence of regular equivalence of players in the given two-layer network,

that is, similarity in their relational patterns and neighborhoods, the ideals of players

converge to a consensus. Referring to ideal e�orts as to an individual subjective matter,

we refrain from studying the correctness of it. Thus, the consensus over the ideals in

this setting represents the possibility of coordination in the network, rather than the

�correctness� of learning and convergence to true action. A number of works have

studied the ability of correct aggregation of information and conditions to converge to

the truth. Golub and Jackson (2010b) characterize the population and the learning

process as wise if, given the existence of consensus, the in�uence of the most in�uential

player vanishes as the network grows. Similarly to DeMarzo et al. (2003), they show

that the social in�uence of an individual depends on her connectedness and the position

in the network. Bala and Goyal (1998) study a non-Bayesian model of social learning

in the context of technology adoption. Similarly to Golub and Jackson (2010b), they

show that the structure of the network has important implications in the adoption

of new technologies, and their di�usion in society. Acemoglu and Ozdaglar (2011a)

provide an overview of works on opinion dynamics and social learning.

Finally, this paper is closely related to the work by Olcina et al. (2017) on assimila-

tion dynamics in the population. They study a network game where the players make

decisions on the e�ort to assimilate to the majority norm. This decision is based on

the personal norm of the individual and the behavior of her peers. Further, they study

the economic incentives for assimilation. Similarly, we study a network game where the

economic incentives, as well as the ideal e�orts and the social norms, a�ect the e�ort

choice of the players. The introduction of multidimensionality in the network is the

main contribution of the current work. We show that the layer of network complemen-

tarities a�ects the structural similarities of players in the network providing conditions

for the consensus between players.

The rest of the paper is organized as follows. We introduce the network game and

�nd the equilibrium e�orts in Section 2.2. Convergence to the steady-state and the

consensus are characterized in Section 2.3. The dynamics of the ideal e�orts are studied

on numerical examples in the same section. We conclude in Section 2.4. The proofs

not given in the main text are provided in the Appendix 2.A.
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2.2 Model

2.2.1 The Game

We have a set of players 𝑁 with |𝑁 | = 𝑛, embedded in a multi-layer network of social

in�uences. The network consists of two layers, where one layer represents the network 𝑔

of social connections, and the other is the network of complementarities 𝑙. The network

𝑔 is a directed weighted network described by the weighted adjacency matrix G* with

elements 𝑔*𝑖𝑗. The weight 𝑔
*
𝑖𝑗 on the link 𝑖 → 𝑗 is normalized by the degree of player 𝑖

on 𝑔, such that
∑︀
𝑗∈𝑁

𝑔*𝑖𝑗 = 1 for all 𝑖 ∈ 𝑁 . The network 𝑙 is represented by the matrix

Λ with elements 𝜆𝑖𝑗 > 0 as coe�cients of e�ort complementarity from players 𝑗 given

the existence of a directed link 𝑖 → 𝑗 in the network 𝑙 for all 𝑖, 𝑗 ∈ 𝑁 . By convention,

we assume there are no self-loops in the network, i.e. 𝑔*𝑖𝑖 = 0 and 𝜆𝑖𝑖 = 0 for all 𝑖 ∈ 𝑁 .

Players are initially endowed with personal ideals, or personal norms, 𝑦0𝑖 . Each

period 𝑡 they choose their e�orts 𝑥𝑡
𝑖 based on the network game on the layers 𝑔 and

𝑙. The choice of e�ort for each player 𝑖 is based on her idiosyncratic productivity 𝜃𝑖,

complementarities from the network 𝑙, the cost from miscoordination in the network

𝑔, as well as the cost from inconsistency with her ideal behavior 𝑦𝑡𝑖 . After each period

network game, players update their ideal e�orts, adapting those to their actual e�orts

with a speed of updating 𝜉 ∈ [0; 1].

The timing of the model is the following for each period 𝑡.

1. Network game and effort selection. Players 𝑖 ∈ 𝑁 choose the best response e�orts

𝑥𝑡
𝑖 in the two-layer network game by maximizing the following utility:

𝑢𝑡
𝑖(𝑥) = 𝜃𝑖𝑥

𝑡
𝑖+𝑥𝑡

𝑖

∑︁
𝑗∈𝑁

𝜆𝑖𝑗𝑥
𝑡
𝑗−

𝜔1

2

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗(𝑥
𝑡
𝑖 − 𝑥𝑡

𝑗)
2

⏟  ⏞  
Conformism or conflict

−𝜔2

2
(𝑥𝑡

𝑖)
2− 𝜔3

2
(𝑥𝑡

𝑖 − 𝑦𝑡𝑖)
2⏟  ⏞  

Consistency or
cognitive dissonance

, (2.1)

𝑥𝑡
𝑖 = 𝐵𝑅𝑖(x

𝑡
−𝑖;G

*,Λ, 𝑦𝑡𝑖 , 𝜃𝑖, 𝜔1, 𝜔2, 𝜔3),

where x𝑡
−𝑖 is the list of e�orts of players 𝑁 ∖ 𝑖.

2. Updating ideal efforts. Players update their ideal e�orts based on the actual e�ort

𝑥𝑡
𝑖 and ideal e�ort 𝑦𝑡𝑖 of the current period:

𝑦𝑡+1
𝑖 = 𝜉𝑥𝑡

𝑖 + (1 − 𝜉)𝑦𝑡𝑖 . (2.2)

The coe�cients 𝜔1, 𝜔2 and 𝜔3 in the utility of player 𝑖 in (2.1) are the cost coe�cients
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of the model. The di�erence in e�orts of neighbors in the network 𝑔 is ampli�ed by the

coe�cient 𝜔1, that is, the cost of con�ict. The cost of con�ict may also be regarded as a

taste for conformity. The cost of unit e�ort is given by the coe�cient
𝜔2

2
. In addition,

𝜔3 is the cost of moral con�ict or sensitivity to cognitive dissonance. When the cost of

con�ict 𝜔1 is high, the disutility from miscoordination in the network 𝑔 is high, forcing

the neighbors to coordinate around social norm faster, resulting in conformity. If the

sensitivity to cognitive dissonance 𝜔3 is high, the players remain consistent with their

ideal e�orts longer.36

2.2.2 Equilibrium

Solving for the �rst-order conditions on the utility (2.1) of player 𝑖, we �nd her best

response e�ort in period 𝑡:

𝑥𝑡
𝑖 =

1

𝜔1 + 𝜔2 + 𝜔3

(︃
𝜃𝑖 + 𝜔3𝑦

𝑡
𝑖 +
∑︁
𝑗∈𝑁

𝜆𝑖𝑗𝑥
𝑡
𝑗 + 𝜔1

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥
𝑡
𝑗

)︃
.

One can see that the best response of the player is the linear combination of her

productivity 𝜃𝑖, the ideal e�ort 𝑦
𝑡
𝑖 , complementarities

∑︀
𝑗∈𝑁

𝜆𝑖𝑗𝑥
𝑡
𝑗 from the network 𝑙, and

the social norm
∑︀
𝑗∈𝑁

𝑔*𝑖𝑗𝑥
𝑡
𝑗 in the network 𝑔.

Let x𝑡, y𝑡 be the vectors of e�orts and ideal e�orts in period 𝑡 respectively, and let

𝜃 denote the vector of idiosyncratic elements 𝜃𝑖, for all 𝑖 ∈ 𝑁 . Then, the best response

in matrix form will be given by:

x𝑡 =
1

𝜔1 + 𝜔2 + 𝜔3

(︀
𝜃 + 𝜔3y

𝑡 + Λx𝑡 + 𝜔1G
*x𝑡
)︀
. (2.3)

We characterize the conditions for the existence of unique Nash equilibrium in the

following proposition.

Proposition 2.1. Assuming the spectral radius of Λ+𝜔1G
* is smaller than (𝜔1+𝜔2+

𝜔3), the unique Nash equilibrium in pure strategies is then given by:37

36The cost of private dissonance indicates the level of flexibility of the players. This leaves room
for extending the model by introducing heterogeneity in players’ types. Particularly, dividing the
players into stubborn (or persistent) and flexible agents, with the first group having higher coefficient
𝜔3 compered to the flexible agents, and thus sticky ideals.

37The spectral radius of a matrix is its largest absolute eigenvalue. Debreu and Herstein (1953)
show that for a square matrix 𝐴, (𝑠𝐼−𝐴)−1 is well-defined and non-negative if and only if the spectral
radius of 𝐴 is smaller than 𝑠. This result was used and the link between the equilibrium efforts of the
network game and the Katz-Bonacich centralities had been first established in the seminal work by
Ballester et al. (2006).
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x𝑡 =
1

𝜔1 + 𝜔2 + 𝜔3

(︂
I− 1

𝜔1 + 𝜔2 + 𝜔3

(Λ + 𝜔1G
*)

)︂−1

(𝜃 + 𝜔3y
𝑡).

One can see that the unique Nash equilibrium of the game is proportional to the

weighted Katz-Bonacich centrality of the players on a network represented by the

matrix (Λ + 𝜔1G
*) and weighted by the linear combination of productivites and ideal

e�orts at time (𝜃 + 𝜔3y
𝑡).38 The matrix (Λ + 𝜔1G

*) represents a network formed by

projecting the links of the layer 𝑙 on 𝑔, where the adjacency matrix of the layer 𝑔 is

weighted by the coe�cient of con�ict cost.

To be able to characterize the dynamics of ideal e�orts by the multi-layer network

representation, analogously to Olcina et al. (2017), we de�ne the following vectors of

length 2𝑛.

x̂𝑡 :=

[︃
𝜃

x𝑡

]︃
ŷ𝑡 :=

[︃
𝜃

y𝑡

]︃
The vectors x̂𝑡 and ŷ𝑡 are constructed using the vector 𝜃 as �rst 𝑛 elements, and

vectors x𝑡 and y𝑡 as the second half of the respective vector. Additionally, we de�ne

the following matrix.

Ḡ :=
1

𝜔1 + 𝜔2

[︃
(𝜔1 + 𝜔2)I O

I (Λ + 𝜔1G
*)

]︃
(2.4)

Using the de�nitions above and the equation (2.3) we can write the augmented

vector of e�orts x̂𝑡 as the weighted average of ŷ𝑡 and the social norm in the network

described by the augmented adjacency matrix Ḡ.

x̂𝑡 =
𝜔3

𝜔1 + 𝜔2 + 𝜔3

ŷ𝑡 +
𝜔1 + 𝜔2

𝜔1 + 𝜔2 + 𝜔3

Ḡx̂𝑡

One can notice, that the �rst 𝑛 elements of the vector x̂𝑡, the vector 𝜃, does not

change over time and does not carry any economic meaning. While the elements from

𝑛 + 1 to 2𝑛 correspond to (2.3). This allows us to rewrite the equilibrium e�orts and

characterize new conditions for equilibrium existence.

Proposition 2.2. Let 𝛿1 be the spectral radius of the matrix Ḡ. If 𝛿1 <
𝜔1 + 𝜔2 + 𝜔3

𝜔1 + 𝜔2

,

38E.g. see Remark 1 in Ballester et al. (2006).
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then the unique Nash equilibrium in pure strategies is given by:

x̂𝑡 =
𝜔3

𝜔1 + 𝜔2 + 𝜔3

(︂
I− 𝜔1 + 𝜔2

𝜔1 + 𝜔2 + 𝜔3

Ḡ

)︂−1

ŷ𝑡.

One can see that 1 is always an eigenvalue of Ḡ by construction, whereas for the

parameter values satisfying 𝜔2 ≥ 1 + max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗 it is also the spectral radius.

Lemma 2.1 provides conditions on parameter values and combinations that ensure

the equilibrium existence in Proposition 2.2.

Let's introduce the following notations:

𝜔2 ≡ max
𝑖

∑︁
𝑗∈𝑁

𝜆𝑖𝑗,

𝜔2 ≡ max
𝑗

∑︁
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗 + 𝜔1𝑔
*
𝑖𝑗) − 𝜔1 − 1.

Lemma 2.1. Let 𝛿1 be the spectral radius of the matrix Ḡ. The condition 𝛿1 <
𝜔1+𝜔2+𝜔3

𝜔1+𝜔2

is satisfied if one of the conditions below holds:

(a) Given 𝜔2 > 𝜔2, 𝜔2 < 𝜔2 and 𝜔3 > 𝜔2 + 1 − 𝜔2;

(b) Given 𝜔2 > 𝜔2, 𝜔2 ∈ [𝜔2;𝜔2) and 𝜔3 > 1;

(c) Given 𝜔2 ≤ 𝜔2, 𝜔2 < 𝜔2 and 𝜔3 > 1 + 𝜔2 − 𝜔2;

(d) 𝜔2 ∈ [𝜔2; 1 + 𝜔2) and 𝜔3 > 1 + 𝜔2 − 𝜔2;

(e) 𝜔2 ≥ 1 + 𝜔2 and 𝜔3 > 0.

Figure 2.1 illustrates the conditions provided in Lemma 2.1. The combination of

parameter values of 𝜔2 and 𝜔3 in the shaded area above the black line in Figure 2.1

ensures the existence of equilibrium given that max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗 > max
𝑗

∑︀
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗 + 𝜔1𝑔𝑖𝑗) −

𝜔1 − 1. The shaded area above the green line in the �gure displays the satisfying

parameter combinations, when the opposite is true.
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𝜔2

𝜔3

1

𝜔2 + 1

𝜔2
𝜔2 𝜔2 + 1

𝜔2 + 1

𝜔2

𝜔2=max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗

𝜔2=max
𝑗

∑︀
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗+𝜔1𝑔*𝑖𝑗)−𝜔1−1

Figure 2.1: The shaded area covers the combination of parameter values according to the

conditions on Ḡ provided by Lemma 2.1.

When the coe�cients of cost and cognitive dissonance are too low relative to com-

plementarities in the network, the positive feedback loops in players' e�orts escalate

in�nitely, so the Nash equilibrium does not exist. Thus, the cost coe�cients have to

be high enough to curb the complementarities in the network measured by the spectral

radius of the matrix Ḡ. The combinations of parameters in Figure 2.1 ensure this

requirement and the existence of Nash equilibria.

2.3 Dynamics and Convergence of Ideal Efforts

2.3.1 Updating Ideal Efforts

Let 𝜑 =
𝜔1 + 𝜔2

𝜔1 + 𝜔2 + 𝜔3

. We can then rewrite the augmented vector of equilibrium e�orts

in Proposition 2.2 as follows:

x̂𝑡 = (1 − 𝜑)
(︀
I− 𝜑Ḡ

)︀−1
ŷ𝑡. (2.5)
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Similarly to x̂𝑡, in the stage of updating the ideal e�orts, we can apply the updating

rule on the augmented vector ŷ𝑡. The �rst 𝑛 elements of ŷ𝑡 remain unchanged and

equal to 𝜃 over time, while the elements 𝑛 + 1 to 𝑛 correspond to ideal e�orts y𝑡 in

time period 𝑡.

ŷ𝑡+1 = 𝜉x̂𝑡 + (1 − 𝜉)ŷ𝑡 (2.6)

Plugging x̂𝑡 in (2.5) into the equation (2.6) we have:

ŷ𝑡+1 =[𝜉(1 − 𝜑)
(︀
I− 𝜑Ḡ

)︀−1
+ (1 − 𝜉)I]ŷ𝑡.

The transition to a new ideal e�ort depends on player's current ideal e�ort and the

equilibrium e�ort. The latter is determined by her location in the network, that is, her

weighted Katz-Bonacich centrality.

2.3.2 Convergence and Consensus

Let us de�ne the following matrices:

M :=
(︀
I− 𝜑Ḡ

)︀−1

T := 𝜉(1 − 𝜑)M + (1 − 𝜉)I (2.7)

We can rewrite the ideal e�orts using the notations in (2.7).

ŷ𝑡+1 = Tŷ𝑡 = T𝑡+1ŷ0 (2.8)

Given the initial ideal e�orts ŷ0 and the matrix T, we can �nd the ideal e�orts

at any time period 𝑡, as well as the limit beliefs ŷ∞. Proposition 2.4 provides the

conditions for existence of the limit ideal e�orts. Moreover, it shows that in order to

�nd the ideal and equilibrium e�orts in the limit it is su�cient to use the augmented

matrix of weights Ḡ instead of T. To do so, we �rst de�ne the relationship between

the corresponding eigenvalues of the two matrices.

Proposition 2.3. Consider the distinct and ordered sets of eigenvalues 𝛿𝑖 of Ḡ, and

𝜏𝑖 of T. Then for all 𝑖 ∈ [1, 𝑛]:

𝜏𝑖 = 𝜉
1 − 𝜑

1 − 𝜑𝛿𝑖
+ (1 − 𝜉).

One can notice that if
∑︀
𝑗∈𝑁

𝜆𝑖𝑗 = 𝜔2 − 1 for all 𝑖 ∈ 𝑁 , then the matrix of weights
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Ḡ, and thus, the matrix (1 − 𝜑)M are row-normalized matrices.39 As a result, the

matrix T is row-normalized as a convex combination of a row-stochastic matrix and

an identity. With this setting, the dynamics described in (2.8) is a time-homogeneous

Markov process with transition matrix T.

Proposition 2.4. For a given network with layers 𝑔 and 𝑙 such that max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗 ≤

𝜔2−1, and Ḡ is diagonalizable, there exist Ḡ∞ = lim
𝑡→∞

Ḡ𝑡 and T∞ = lim
𝑡→∞

T𝑡 such that:

ŷ∞ = T∞ŷ0 = Ḡ∞ŷ0

and

x̂∞ = (1 − 𝜑)
(︀
I− 𝜑Ḡ

)︀−1
Ḡ∞ŷ0.

A special case ful�lling the conditions Proposition 2.4 are the networks with undi-

rected layers 𝑔 and 𝑙 described by symmetric matrices G* and Λ. This makes the

augmented matrix Ḡ symmetric and thus diagonalizable. Therefore, for symmetric

matrices G* and Λ, the existence of limit ideal e�orts and actions depends on the

maximum row-sum norm of the matrix of weights Λ.

It is easy to show that matrices Ḡ and T are commuting matrices, that is ḠT =

TḠ.40 It is known that commuting matrices share the same set of eigenvectors. Using

this fact, together with the assumption on diagonalizability of Ḡ, we can rewrite the

two matrices as follows.

Ḡ = EΔE−1 and T = EΣE−1,

where E is the matrix of eigenvectors of Ḡ and T as columns, Δ is the diagonal matrix

of eigenvalues of Ḡ, and Σ is the diagonal matrix of eigenvalues of T. Thus, there

exists a transformation 𝑃 (.) such that 𝑃 (Δ) = Σ 41 given which, we can �nd ŷ∞:

Σ∞ = lim
𝑡→∞

Σ𝑡 = lim
𝑡→∞

𝑃 (Δ)𝑡

ŷ∞ = EΣ∞E−1ŷ0.

39For a row-normalized Ḡ and 𝜑 < 1, the matrix M =
∞∑︀
𝑘=0

𝜑𝑘Ḡ𝑘 is converging Neumann series with

sum of elements in each row equal to 1
1−𝜑 . Therefore, the matrix (1− 𝜑)M is row-normalized.

40See the proof in Step 1 of the proof of Proposition 2.4 in the Appendix.
41E.g. see Zhang (2011), Chapter 3, Theorem 3.1.
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Given the convergence of Ḡ in Proposition 2.4 we can �nd the steady-state equi-

librium e�orts of the players.

x∞ = y∞ =
1

𝜔1 + 𝜔2

(︂
I− 1

𝜔1 + 𝜔2

(Λ + 𝜔1G
*)

)︂−1

𝜃 (2.9)

Indeed, when ŷ𝑡+1 = ŷ𝑡 = ŷ∞, the equilibrium e�orts are identical to the ideals,

ŷ∞ = x̂∞. From equilibrium e�orts in (2.5) in the steady state we have

x̂∞ = (1 − 𝜑)
(︀
I− 𝜑Ḡ

)︀−1
x̂∞ =⇒ x̂∞ = Ḡx̂∞.

Recalling the de�nition of Ḡ in (2.4) we �nd the steady-state equilibrium e�orts of

players.

x∞ =
1

𝜔1 + 𝜔2

(𝜃 + (Λ + 𝜔1G
*)x∞)

Assume there exists a row vector eᵀ, such that 𝑦∞𝑖 = eᵀy∞ for all players 𝑖 ∈ 𝑁 .

Denote 𝑦∞ := eᵀy∞. This implies, that in the steady state the ideal e�orts of the

players converge to a consensus 𝑦∞, in which case we have:

y∞ =
1

𝜔1 + 𝜔2

(𝜃 + (Λ + 𝜔1)y
∞) ,

𝑦∞𝑖 =
𝜃𝑖

𝜔2 −
∑︀
𝑗∈𝑁

𝜆𝑖𝑗

s.t. 𝑦∞𝑖 = 𝑦∞ for all 𝑖 ∈ 𝑁. (2.10)

A consensus over ideal e�orts occurs among structurally equivalent players (Lorrain

and White, 1971), that is, the players that share the same neighborhood and similar

relationship patterns in the network, and have the same productivity. Such strict form

of players' equivalence ensures the consensus. A more general de�nition of similarity of

players in the network is the regular equivalence (Sailer, 1978; White and Reitz, 1983).

Definition 2.1. Let 𝐶 ⊂ 𝑁 be a subset of players in the network. Given the layers

𝑔 and 𝑙, and productivity coefficients 𝜃, we say that the players in 𝐶 are regularly

equivalent if their neighborhoods are equivalent to each other, and for all 𝑖 ∈ 𝐶 there

exists a consensus such that 𝑦∞𝑖 = 𝑦∞𝐶 .

Unlike structurally equivalent players, regularly equivalent players do not necessar-

ily share the same neighbors in the network, but they have similar connection patterns

and are connected to similar neighbors. The neighbors, in turn, are also regularly

equivalent. The consensus ideal e�ort of regularly equivalent players is given by:
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𝑦∞𝐶 =

𝜃𝑖 +
∑︀

𝑗∈𝑁∖𝐶
(𝜆𝑖𝑗 + 𝜔1𝑔

*
𝑖𝑗)𝑦

∞
𝑗

𝜔2 −
∑︀
𝑗∈𝐶

𝜆𝑖𝑗 + 𝜔1(1 −
∑︀
𝑗∈𝐶

𝑔*𝑖𝑗)
(2.11)

Proof. Using the de�nition of ideal e�orts in the steady state in (2.9) and assuming

there exists consensus among structually equivalent players inn 𝐶, such that 𝑦∞𝑖 =

𝑦∞𝐶 = for all 𝑖 ∈ 𝐶, we can �nd the consensus ideal for players in 𝐶.(︂
I− 1

𝜔1 + 𝜔2

(Λ + 𝜔1G
*)

)︂
y∞ =

1

𝜔1 + 𝜔2

𝜃

For player 𝑖 ∈ 𝐶 with 𝑦∞𝑖 = 𝑦∞𝐶 we have:

𝑦∞𝐶 − 1

𝜔1 + 𝜔2

⎛⎜⎜⎜⎜⎜⎝
∑︁

𝑗∈𝑁∖𝐶

𝜆𝑖𝑗𝑦
∞
𝑗 +

∑︁
𝑗∈𝐶

𝜆𝑖𝑗𝑦
∞
𝑗⏟  ⏞  

𝑦∞𝐶
∑︀

𝑗∈𝐶 𝜆𝑖𝑗

+𝜔1

∑︁
𝑗∈𝑁∖𝐶

𝑔*𝑖𝑗𝑦
∞
𝑗 + 𝜔1

∑︁
𝑗∈𝐶

𝑔*𝑖𝑗𝑦
∞
𝑗⏟  ⏞  

𝑦∞𝐶
∑︀

𝑗∈𝐶 𝑔*𝑖𝑗

⎞⎟⎟⎟⎟⎟⎠ =
1

𝜔1 + 𝜔2

𝜃𝑖

𝑦∞𝐶 − 1

𝜔1 + 𝜔2

⎛⎝𝑦∞𝐶 (
∑︁
𝑗∈𝐶

𝜆𝑖𝑗 + 𝜔1

∑︁
𝑗∈𝐶

𝑔*𝑖𝑗) +
∑︁

𝑗∈𝑁∖𝐶

(𝜆𝑖𝑗 + 𝜔1𝑔
*
𝑖𝑗)𝑦

∞
𝑗

⎞⎠ =
1

𝜔1 + 𝜔2

𝜃𝑖

𝑦∞𝐶 (𝜔1 + 𝜔2) − 𝑦∞𝐶 (
∑︁
𝑗∈𝐶

𝜆𝑖𝑗 + 𝜔1

∑︁
𝑗∈𝐶

𝑔*𝑖𝑗) −
∑︁

𝑗∈𝑁∖𝐶

(𝜆𝑖𝑗 + 𝜔1𝑔
*
𝑖𝑗)𝑦

∞
𝑗 = 𝜃𝑖

𝑦∞𝐶

(︃
𝜔2 −

∑︁
𝑗∈𝐶

𝜆𝑖𝑗 + 𝜔1(1 −
∑︁
𝑗∈𝐶

𝑔*𝑖𝑗)

)︃
=
∑︁

𝑗∈𝑁∖𝐶

(𝜆𝑖𝑗 + 𝜔1𝑔
*
𝑖𝑗)𝑦

∞
𝑗 + 𝜃𝑖

Thus, the consensus e�ort of regularly equivalent group of players is given by (2.11).

The regular equivalence is associated with similarities in networks characteristics

of the players, such as the neighborhood and the weights on all layers of the network,

the idiosyncratic productivity parameters of the neighbors, as well as the productivity

of the player herself.

2.3.3 Numerical Examples

Consider a network of 𝑛 = 10 players connected through a social network 𝑔 (Figure

2.2) with normalized equal weights on the directed links, and a network of additional
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Figure 2.2: Social network 𝑔

complementarities 𝑙 (Figure 2.3). In each period the players engage in the two-layer

network game in (2.1) where the productivity of e�ort is 𝜃𝑖 = 1 for all players, and the

e�ort cost parameter is 𝜔2 = 2. In the initial period 0, the players are endowed with

ideal e�orts 𝑦𝑖 = 0.2𝑖:

y0ᵀ = [0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2].

After each period game the players update their ideal e�orts according to equation

(2.2) with the speed 𝜉 = 0.2. We consider an arbitrary set of combinations for param-

eters of con�ict cost and sensitivity to cognitive dissonance with 𝜔1, 𝜔3 ∈ {2, 8, 15}.
Consider the network of social interactions in Figure 2.2a. In the absence of com-

plementarity layer 𝑙, the ideal e�orts in all three components of the network 𝑔 converge

to the consensus 𝑦∞ = 0.5 by expression (2.10). The layer of complementarities in the

network a�ects the steady-state level of e�orts and ideals, as well as the existence of

the consensus. Let us now add the layer 𝑙 in Figure 2.3a described by the following

adjacency matrix.

Λ(𝑎) =

⎛⎜⎜⎜⎝
0 0.5 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.7 0 0 0
0 0 0 0 0 0.7 0 0 0 0
0 0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎠
For this and further examples, we distinguish the following sets of players that form

disconnected components in both networks in Figures 2.2a and 2.3a:

𝐶1 = {1, 2, 3, 4, 5}, 𝐶2 = {6, 7}, 𝐶3 = {8, 9, 10}.

Moreover, we assume that the players in each set 𝐶𝑖 are homogeneous in their aggregate
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Figure 2.3: Network of complementarities 𝑙

complementarity coe�cients such that∑︁
𝑗∈𝑁

𝜆𝑖𝑗 = 0.5 ∀𝑖 ∈ 𝐶1,
∑︁
𝑗∈𝑁

𝜆𝑖𝑗 = 0.7 ∀𝑖 ∈ 𝐶2 and
∑︁
𝑗∈𝑁

𝜆𝑖𝑗 = 1 ∀𝑖 ∈ 𝐶3. (2.12)

It is easy to see that the players within each component 𝐶𝑖,𝑖∈{1,2} are regularly

equivalent. The players in 𝐶3 are regularly equivalent since player 8 receives the same

aggregate complementarity from the regularly equivalent players 9 and 10. Moreover,

the components are disconnected in both layers of the network, thus the steady-state

e�orts and ideals can be found using the equation (2.10). The following vector shows

the ideal e�orts of players in the steady state:

y∞ᵀ = [0.667 0.667 0.667 0.667 0.667 0.769 0.769 1 1 1].

Unsurprisingly, we can see that the complementarities of e�orts from 𝑙 increase the

ideal e�orts of players in the steady state. Figure 2.4 shows the dynamics of the ideal

e�orts of the players. One can observe that with a higher cost of con�ict 𝜔1 the ideal

e�orts within each component 𝐶𝑖 converge faster. While the increase in the cost of

cognitive dissonance 𝜔3 delays the convergence to the steady-state.

Assume now a complete network of social interactions 𝑔 in Figure 2.2b. The regular

equivalence of players within each set 𝐶𝑖 remains. Thus, the consensus over ideal e�orts

among players in 𝐶𝑖 satis�es the expression (2.11). E.g. for any player 𝑖 ∈ 𝐶3, given
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Figure 2.4: Dynamics of ideal efforts in the network of complementarities in Figure 2.3a and

the network of social interactions in Figure 2.2a

𝜔1 = 15, we �nd:

𝑦∞𝐶3
=

𝜃𝑖 + 𝜔1(
5
9
𝑦∞𝐶1

+ 2
9
𝑦∞𝐶2

)

𝜔2 −
∑︀
𝑗∈𝐶3

𝜆𝑖𝑗 + 𝜔1
7
9

= 0.778.

The ideal e�orts of players in the steady states, given the cost of con�ict 𝜔1 = 15,

are the following:

y∞ᵀ = [0.756 0.756 0.756 0.756 0.756 0.765 0.765 0.778 0.778 0.778].

The dynamics of ideal e�ort with the complete network 𝑔 are displayed in Figure 2.5.

Comparing the two examples above and the dynamics of ideal e�orts in Figures 2.4 and

2.5, we can see that the variance between the steady-state ideals of the components is

lower in the network with densely connected layer 𝑔,

Let us further consider only the social network 𝑔 depicted in Figure 2.2a for the rest

of the examples below. Further, let us consider the layer of e�ort complementarities

𝑙 in Figure 2.3b. We assume that the aggregate of the complementarity coe�cients

of players do not change by adding a new link. Thus, by adding a connection in

the network layer 𝑙, we redistribute the complementarity coe�cients of outgoing links

maintaining the characteristics described in (2.12). By doing so, we can analyze the

e�ect of the change in the structure of the layer 𝑙 without increasing the complemen-
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Figure 2.5: Dynamics of ideal efforts in the network of complementarities in Figure 2.3a and

the complete network of social interactions in Figure 2.2b.

tarity levels in the network. Assume, the layer 𝑙 is described by the following matrix

of complementarity coe�cients.

Λ(𝑏) =

⎛⎜⎜⎜⎝
0 0.5 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.7 0 0 0
0 0 0 0 0 0.5 0 0.2 0 0
0 0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎠
The additional link 7 → 8 in 𝑙 makes the player 7 in�uenced by the component

𝐶3 driving the ideal e�orts of players 6 and 7 closer to 𝑦∞𝐶3
. Unlike the case with 𝑙 in

Figure 2.3a, players 6 and 7 are not equivalent anymore, so the consensus over ideal

e�ort in 𝐶2 is not achieved.

Further, we add a complementarity link connecting player 7 to player 5 as in Figure

2.3c, the component 𝐶2 is then additionally in�uenced by the e�orts in the component

𝐶1. Assume the link 7 → 5 with 𝜆75 = 0.2 in the matrix of weights Λ(𝑐) describing the
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layer in Figure 2.3c.

Λ(𝑐) =

⎛⎜⎜⎜⎝
0 0.5 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.7 0 0 0
0 0 0 0 0.2 0.3 0 0.2 0 0
0 0 0 0 0 0 0 0 0.5 0.5
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎠
As shown in Table 2.1, the steady-state consensus e�ort in the component 𝐶1 is

0.667 and is lower than that of player 6 and component 𝐶3 in the previous example.

Receiving complementarity from the lower-e�ort component 𝐶1, the ideal e�orts of

player 7 decreases. At the same time, the pressure to conform in layer 𝑔 forces player

6 to adjust her e�ort according to the new social norm.

Consider now the layer 𝑙 in Figure 2.3d where players 5 and 8 reciprocate player 7

with complementarity links. The matrix of weights is the following.

Λ(𝑑) =

⎛⎜⎜⎜⎝
0 0.5 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0
0.3 0 0 0 0 0 0.2 0 0 0
0 0 0 0 0 0 0.7 0 0 0
0 0 0 0 0.2 0.3 0 0.2 0 0
0 0 0 0 0 0 0.2 0 0.4 0.4
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎠
The new links make the network connected. There is no regular equivalence between

players anymore, which results in all players having di�erent steady-state e�orts. The

ideal e�orts of the players in 𝐶1 are positively a�ected by the e�orts in the rest of the

network. This positive e�ect is weaker for players that are further from player 5.

The steady-state ideal e�orts in previous examples are summarized in Table 2.1.

Table 2.1: Ideal efforts of players in the steady-state.

𝑦∞1 𝑦∞2 𝑦∞3 𝑦∞4 𝑦∞5 𝑦∞6 𝑦∞7 𝑦∞8 𝑦∞9 𝑦∞10
Λ(𝑎) 0.667 0.667 0.667 0.667 0.667 0.769 0.769 1 1 1

𝜔
1

=
2 Λ(𝑏) 0.667 0.667 0.667 0.667 0.667 0.783 0.79 1 1 1

Λ(𝑐) 0.667 0.667 0.667 0.667 0.667 0.777 0.78 1 1 1
Λ(𝑑) 0.668 0.669 0.67 0.671 0.673 0.776 0.779 0.98 0.989 0.985

𝜔
1

=
8 Λ(𝑏) 0.667 0.667 0.667 0.667 0.667 0.785 0.787 1 1 1

Λ(𝑐) 0.667 0.667 0.667 0.667 0.667 0.778 0.779 1 1 1
Λ(𝑑) 0.6687 0.669 0.6694 0.667 0.671 0.777 0.778 0.983 0.986 0.984

𝜔
1

=
15 Λ(𝑏) 0.667 0.667 0.667 0.667 0.667 0.786 0.787 1 1 1

Λ(𝑐) 0.667 0.667 0.667 0.667 0.667 0.778 0.779 1 1 1
Λ(𝑑) 0.669 0.6692 0.6695 0.6698 0.67 0.777 0.778 0.983 0.985 0.984

One can also observe that while the sensitivity to cognitive dissonance 𝜔3 does not
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a�ect the steady-state levels of ideals e�orts, increasing the said parameter slows down

the emergence of the consensus among players and the steady state. The higher con�ict

cost 𝜔1, on the other hand, accelerates the agreement between players connected in the

layer of social in�uences 𝑔.

2.4 Conclusions

In this paper, we have proposed a network game model with multidimensionality of

network relations, where people repeatedly choose their e�orts and update their ideal

beliefs based on their current choices. Speci�cally, we study a model with a two-layer

network where the �rst layer dictates the social norm, and the second is a network of

interactions with strategic complementarities in e�orts. The players in the network are

initially endowed with heterogeneous ideal e�orts and di�er in their productivity. In

line with the network game literature, we �nd that the pure Nash equilibrium of the

game is proportional to Katz-Bonacich centrality in the combined network of the two

layers. Additionally, we �nd the steady-state equilibrium e�orts and ideals. We derive

the conditions for the existence of consensus about ideal e�orts in the whole population

and among structurally and regularly equivalent players.

The dynamics of ideal e�orts in our model show that the sensitivity to cognitive

dissonance and the taste for conformity have opposing e�ects on the speed of converges

to a consensus and the steady state. The sensitivity to cognitive dissonance captures

the behavioral stickiness of the players a�ecting the speed of convergence to a steady-

state, but does not change the long-run e�orts. The taste for conformity, on the other

hand, a�ects the steady-state levels of e�orts. Consideration of possible heterogeneity

in the cost of the cognitive dissonance, as well as the taste for conformity, is left for

future research.

We show that the multidimensionality of network interactions may change the over-

all e�ort levels and the beliefs in society. While focusing on the network layer with

strategic complementarities we leave the consideration of other types of relations for

future research. In particular, the direct extension of the model provided in this paper

is the consideration of strategic substitutability along with complementarities on the

same network layer.
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Appendix 2.A Proofs

Proof of Proposition 2.1. Given 𝑥*
𝑖 is the optimal e�ort choice for 𝑖

𝜕𝑢𝑡
𝑖

𝜕𝑥𝑡
𝑖

(𝑥𝑡*
𝑖 ) ≡ 0

𝜕𝑢𝑡
𝑖(𝑥

𝑡)

𝜕𝑥𝑡
𝑖

= 𝜃𝑖 +
∑︁
𝑗∈𝑁∖𝑖

𝜆𝑖𝑗𝑥
𝑡
𝑗 − 𝜔1

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗(𝑥
𝑡
𝑖 − 𝑥𝑡

𝑗) − 𝜔2𝑥
𝑡
𝑖 − 𝜔3(𝑥

𝑡
𝑖 − 𝑦𝑡𝑖) =

= 𝜃𝑖 +
∑︁
𝑗∈𝑁∖𝑖

𝜆𝑖𝑗𝑥
𝑡
𝑗 − 𝜔1𝑥

𝑡
𝑖

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗⏟  ⏞  
=1

+𝜔1

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥
𝑡
𝑗 − 𝜔2𝑥

𝑡
𝑖 − 𝜔3𝑥

𝑡
𝑖 + 𝜔3𝑦

𝑡
𝑖 =

= (𝜃𝑖 + 𝜔3𝑦
𝑡
𝑖) +

∑︁
𝑗∈𝑁∖𝑖

𝜆𝑖𝑗𝑥
𝑡
𝑗 + 𝜔1

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥
𝑡
𝑗 − (𝜔1 + 𝜔2 + 𝜔3)𝑥

𝑡
𝑖

= (𝜃𝑖 + 𝜔3𝑦
𝑡
𝑖) +

∑︁
𝑗∈𝑁∖𝑖

(𝜆𝑖𝑗 + 𝜔1𝑔
*
𝑖𝑗)𝑥

𝑡
𝑗 − (𝜔1 + 𝜔2 + 𝜔3)𝑥

𝑡
𝑖

Thus the equilibrium e�ort choice of 𝑖 is:

𝑥𝑡*
𝑖 =

𝜃𝑖 + 𝜔3𝑦
𝑡
𝑖

(𝜔1 + 𝜔2 + 𝜔3)
+
∑︁
𝑗∈𝑁∖𝑖

𝜆𝑖𝑗 + 𝜔1𝑔
*
𝑖𝑗

(𝜔1 + 𝜔2 + 𝜔3)
𝑥𝑡
𝑗,

for all 𝑖 ∈ 𝑁 , or:

𝑥𝑡*
𝑖 =

𝜃𝑖 + 𝜔3𝑦
𝑡
𝑖

(𝜔1 + 𝜔2 + 𝜔3)
+

1

(𝜔1 + 𝜔2 + 𝜔3)

∑︁
𝑗∈𝑁∖𝑖

𝜆𝑖𝑗𝑥
𝑡
𝑗 +

𝜔1

(𝜔1 + 𝜔2 + 𝜔3)

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥
𝑡
𝑗,

We can rewrite it in a matrix form:

x𝑡 =
1

(𝜔1 + 𝜔2 + 𝜔3)
𝜃+

𝜔3

(𝜔1 + 𝜔2 + 𝜔3)
y𝑡 +

1

(𝜔1 + 𝜔2 + 𝜔3)
Λx𝑡 +

𝜔1

(𝜔1 + 𝜔2 + 𝜔3)
G*x𝑡,

So the, matrix form solution of the equilibrium e�orts is the following:(︂
I− 1

(𝜔1 + 𝜔2 + 𝜔3)
(Λ + 𝜔1G

*)

)︂
x𝑡 =

1

(𝜔1 + 𝜔2 + 𝜔3)
(𝜃 + 𝜔3y

𝑡)
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Ans thus the vector of equilibrium e�orts is:

x𝑡 =
1

(𝜔1 + 𝜔2 + 𝜔3)

(︂
I− 1

(𝜔1 + 𝜔2 + 𝜔3)
(Λ + 𝜔1G

*)

)︂−1

(𝜃 + 𝜔3y
𝑡)

Proof of Lemma 2.1. In order to ensure the condition of Proposition 2.2 on the spectral

radius 𝛿1 of the matrix Ḡ in (2.4), we can use maximum row-sum and column-sum

norms of the matrix, |||Ḡ|||∞ and |||Ḡ|||1, to �nd an upper bound for the spectral

radius42.

One can see that the row-sum for each of the �rst 𝑛 rows of the matrix Ḡ is equal to 1.

While for the consecutive 𝑛 rows, the sum of row elements of (𝑛 + 𝑖)th row is equal to
1+𝜔1+

∑︀
𝑗∈𝑁 𝜆𝑖𝑗

𝜔1+𝜔2
, for each 𝑖 ∈ 𝑁 . As a result, the maximum row-sum norm of the matrix

is the maximum of given values:

|||Ḡ|||∞ = max

{︃
1,

1

𝜔1 + 𝜔2

(1 + 𝜔1 + max
𝑖

∑︁
𝑗∈𝑁

𝜆𝑖𝑗

}︃

Moreover, Gershgorin circle theorem allows us to see from the �rst 𝑛 rows of the matrix

Ḡ that 1 is one of its' eigenvalues.

Similarly, the sum for each of the �rst 𝑛 column elements of the matrix Ḡ is 1+𝜔1+𝜔2

𝜔1+𝜔2
.

And the sum of column elements for columns 𝑛 + 𝑗 for each 𝑗 ∈ 𝑁 is
∑︀

𝑖∈𝑁∖𝑗(𝜆𝑖𝑗+𝜔1𝑔𝑖𝑗)

𝜔1+𝜔2
.

Thus the maximum column-sum norm of the matrix is the following:

|||Ḡ|||1 = max

⎧⎨⎩1 +
1

𝜔1 + 𝜔2

,
1

𝜔1 + 𝜔2

max
𝑗

∑︁
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗 + 𝜔1𝑔𝑖𝑗)

⎫⎬⎭
Now let's �nd the better proxy for the upper bound 𝑈𝐵(𝛿1) of the spectral radius by

�nding min{|||Ḡ|||∞, |||Ḡ|||1} for all parameter values that satisfy 𝜔2 ≥ max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗.

And |||Ḡ|||1 can re�ne the upper bound for 𝛿1 when 𝜔2 < max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗.

Case 1: Assume |||Ḡ|||∞ = 1. Thus 1 ≥
1+𝜔1+max

𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗

𝜔1+𝜔2
, which follows by 𝜔2 ≥ 1 +

max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗.

(i) If |||Ḡ|||1 = 1 + 1
𝜔1+𝜔2

> 1.

42This follows common linear algebra results, e.g one can see the Theorem 5.6.9 in Horn and Johnson
(2012).
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(ii) If |||Ḡ|||1 =
max

𝑗

∑︀
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗+𝜔1𝑔𝑖𝑗)

𝜔1+𝜔2
≥ 1 + 1

𝜔1+𝜔2
> 1.

Case 2: Assume |||Ḡ|||∞ =
1+𝜔1+max

𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗

𝜔1+𝜔2
. This means that

1+𝜔1+max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗

𝜔1+𝜔2
> 1. Then

we have 𝜔2 < 1 + max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗.

(i) If |||Ḡ|||1 = 1 + 1
𝜔1+𝜔2

. Then 𝜔2 ≥ max
𝑗

∑︀
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗 + 𝜔1𝑔𝑖𝑗) − 𝜔1 − 1

And 1 + 1
𝜔1+𝜔2

≥
1+𝜔1+max

𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗

𝜔1+𝜔2
only when 𝜔2 ≥ max

𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗.

(ii) If |||Ḡ|||1 =
max

𝑗

∑︀
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗+𝜔1𝑔𝑖𝑗)

𝜔1+𝜔2
≥ 1 + 1

𝜔1+𝜔2
. Then 𝜔2 < max

𝑗

∑︀
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗 +

𝜔1𝑔𝑖𝑗) − 𝜔1 − 1.

Thus |||Ḡ|||∞ is the upper bound for the spectral radius if
max

𝑗

∑︀
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗+𝜔1𝑔𝑖𝑗)

𝜔1+𝜔2
≥

1+𝜔1+max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗

𝜔1+𝜔2
.

Let's introduce the following notations:

𝜔2 ≡ max
𝑖

∑︁
𝑗∈𝑁

𝜆𝑖𝑗

𝜔2 ≡ max
𝑗

∑︁
𝑖∈𝑁∖𝑗

(𝜆𝑖𝑗 + 𝜔1𝑔
*
𝑖𝑗) − 𝜔1 − 1

To sum up

𝑈𝐵(𝛿1) = |||Ḡ|||∞ = 1 when 𝜔2 ≥ 𝜔2 + 1.

𝑈𝐵(𝛿1) = |||Ḡ|||∞ = 1+𝜔1+𝜔2

𝜔1+𝜔2
when 𝜔2 ∈ [𝜔2;𝜔2 + 1).

𝑈𝐵(𝛿1) = |||Ḡ|||1 = 1 + 1
𝜔1+𝜔2

when 𝜔2 ∈ [𝜔2;𝜔2)

and 𝜔2 < 𝜔2.

𝑈𝐵(𝛿1) = |||Ḡ|||1 = 𝜔2+𝜔1+1
𝜔1+𝜔2

when 𝜔2 < 𝜔2

and 𝜔2 < 𝜔2.

𝑈𝐵(𝛿1) = |||Ḡ|||∞ = 1+𝜔1+𝜔2

𝜔1+𝜔2
when 𝜔2 < 𝜔2

and 𝜔2 ≥ 𝜔2.

We can now say that for 𝛿1 < 𝜔1+𝜔2+𝜔3

𝜔1+𝜔2
it is su�cient to have 𝑈𝐵(𝛿1) < 𝜔1+𝜔2+𝜔3

𝜔1+𝜔2
.

Thus,

∙ When 𝑈𝐵(𝛿1) = |||Ḡ|||∞ = 1, then 1 < 𝜔1+𝜔2+𝜔3

𝜔1+𝜔2
when 𝜔3 > 0.

∙ When 𝑈𝐵(𝛿1) = |||Ḡ|||∞ = 1+𝜔1+𝜔2

𝜔1+𝜔2
, then 1+𝜔1+𝜔2

𝜔1+𝜔2
< 𝜔1+𝜔2+𝜔3

𝜔1+𝜔2
when 𝜔3 > 1 +

𝜔2 − 𝜔2.
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∙ When 𝑈𝐵(𝛿1) = |||Ḡ|||1 = 1 + 1
𝜔1+𝜔2

, then 1 + 1
𝜔1+𝜔2

< 𝜔1+𝜔2+𝜔3

𝜔1+𝜔2
when 𝜔3 > 1.

∙ When 𝑈𝐵(𝛿1) = |||Ḡ|||1 = 𝜔2+𝜔1+1
𝜔1+𝜔2

, then 𝜔2+𝜔1+1
𝜔1+𝜔2

< 𝜔1+𝜔2+𝜔3

𝜔1+𝜔2
when 𝜔3 > 𝜔2 +

1 − 𝜔2.

These results are illustrated in Figure 2.1.

Proof of Proposition 2.3. Notice the following:

Ḡ = EΔE−1 =⇒ Δ = E−1ḠE

T = EΣE−1 =⇒ Σ = E−1TE

multiplying T in (2.7) by E from the left and by E−1 from the right we get the

following:

E−1TE = E−1 (𝜉(1 − 𝜑)M + (1 − 𝜉)I)E

Σ = 𝜉(1 − 𝜑)E−1ME + (1 − 𝜉)I

= 𝜉(1 − 𝜑)E−1
(︀
I− 𝜑Ḡ

)︀−1
E + (1 − 𝜉)I

= 𝜉(1 − 𝜑)
(︀
E−1(I− 𝜑Ḡ)E

)︀−1
+ (1 − 𝜉)I

= 𝜉(1 − 𝜑)
(︀
I− 𝜑E−1ḠE

)︀−1
+ (1 − 𝜉)I

= 𝜉(1 − 𝜑) (I− 𝜑Δ)−1 + (1 − 𝜉)I

So we have:

Σ = 𝜉(1 − 𝜑) (I− 𝜑Δ)−1 + (1 − 𝜉)I

We can �nd the vector of eigenvalues 𝜏 of T by multiplying the above expression

by a vector of ones, 1, such that 𝜏 = 𝑃 (𝛿).

Notice that:

(I− 𝜑Δ)−1 =
∞∑︁
𝑡=0

𝜑𝑡Δ𝑡

Σ1 = 𝜉(1 − 𝜑) (I− 𝜑Δ)−1 1 + (1 − 𝜉)I1

𝜏 = 𝜉(1 − 𝜑)
∞∑︁
𝑡=0

𝜑𝑡Δ𝑡1 + (1 − 𝜉)1
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And for each distinct eigenvalue we have:

𝜏𝑖 = 𝜉(1 − 𝜑)
∞∑︁
𝑡=0

𝜑𝑡𝛿𝑡𝑖 + (1 − 𝜉)

= 𝜉
1 − 𝜑

1 − 𝜑𝛿𝑖
+ (1 − 𝜉)

Recall that 𝜑 =
𝜔1 + 𝜔2

𝜔1 + 𝜔2 + 𝜔3

and from the condition in Proposition 2.2 we have

that 𝛿1 <
𝜔1 + 𝜔2 + 𝜔3

𝜔1 + 𝜔2

which implies that 𝜑𝛿𝑖 < 1. One can notice that when 𝛿𝑖 < 1

then 𝜏𝑖 < 1, as a convex combination of 1 and a value below 1, for all 𝑖 ∈ [1, 𝑛].

Additionally, this is always true when 𝜔3 = 0.

So when Δ∞ converge Σ∞ converge too.

Proof of Proposition 2.4. Similarly to Proposition 1 in Olcina et al. (2017) we prove

the proposition by following steps.

Step 1. Ḡ and T are commuting matrices: ḠT = TḠ.

Recalling the notations in (2.7) we have that

ḠT = 𝜉(1 − 𝜑)ḠM + (1 − 𝜉)Ḡ.

To show that Ḡ and M are commuting matrices we �rst show that Ḡ and M−1

commute.

ḠM−1 = Ḡ
(︀
I− 𝜑Ḡ

)︀
=
(︀
I− 𝜑Ḡ

)︀
Ḡ = M−1Ḡ.

Multiplying the above equality by M from left and right we have that ḠM =

MḠ. From which it directly follows that ḠT = TḠ.

Step 2. From diagonalizability of Ḡ we can infer that T is also diagonalizable given that

M is a polynomial of Ḡ, and T is a linear convex combination of M and I.

As commuting matrices, Ḡ and T share the same set of eigenvectors, thus also

the eigenvector associated with the eigenvalue equal to 1. We can rewrite the

two matrices as

Ḡ = EΔE−1 and T = EΣE−1,

where E is the matrix of eigenvectors of Ḡ and T as columns. Δ is the diagonal
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matrix of eigenvalues of Ḡ, and Σ is the diagonal matrix of eigenvalues of T.43

The eigenvalues in Δ and Σ are ordered in the decreasing manner, with the

order of eigenvectors in E corresponding to associated eigenvalues. From the

above-mentioned it directly follows that:

Ḡ𝑡 = EΔ𝑡E−1 thus Ḡ∞ = EΔ∞E−1 with Δ∞ = lim
𝑡→∞

Δ𝑡

and

T𝑡 = EΣ𝑡E−1 thus T∞ = EΣ∞E−1 with Σ∞ = lim
𝑡→∞

Σ𝑡

The condition max
𝑖

∑︀
𝑗∈𝑁

𝜆𝑖𝑗 ≤ 𝜔2 − 1 ensures that 𝛿1 = 1.44 Which, as it is easy

to see from Proposition 2.3, implies that 𝜏1 = 1. While for any other eigenvalue

𝛿𝑖 < 1 of Ḡ, we have that 𝜏𝑖 < 1. This follows that

Δ∞ = Σ∞ and Ḡ∞ = T∞.

Using the results above in (2.8) we �nd the ŷ∞. And plugging it into the equilibrium

e�orts in equation (2.5) we prove the second part of the proposition.

43Notice that given the diagonalizability of Ḡ, it has 2𝑛 eigenvectors.
44Recall that, by construction of the matrix in (2.4), 1 is always an eigenvalue of Ḡ.
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Chapter 3

Unions in Network Games With

Conflicts and Spillovers

3.1 Introduction

Cooperation and collective acts are often key in achieving a common goal or improving

welfare in many social and economic contexts. Collaborative behavior is known to be

present in human populations from ancient times.45 Shared intentions are a basis for

formation of economic unions, climate treaties, military alliances, cooperatives, labor

unions, etc. The interactions between people involving the exchange of ideas, opinions,

or beliefs, a�ect their behaviors that in�uence the well-being of the society. Whether

as individuals, households, �rms, or countries, the decisions of agents a�ect each other

through the network of connections.46,47 The composition and the structure of such

networks, in turn, in�uence the evolution of cooperative behavior in the population.48

In this paper, we study a network game of spillover e�ects, con�icts, and private

45Smith (2003) provide a survey of literature on evolution of human cooperation.
46Jackson (2009) roughly categorizes two settings where the network interactions impact the be-

havior. In one setting the network structure is the primary source of information transmission, in the
other, the network determines the structure of interdependence of individual outcomes on the actions
of their neighbors or, in other words, spillovers. In many circumstances, networks embody both roles.
Learning and information communication through social networks can result in the adoption of green
products and innovative technologies, while the decisions about product or technology adoption are
affected by potential spillovers from neighbors.

47Behavioral spillovers and peer effects in networks had been studied in adoption of education,
green behavior and technology adoption, criminal behavior. See the recent survey by Bramoullé et al.
(2020).

48Fowler and Christakis (2010) survey a set of experiments showing that the cooperative behavior
spreads in social network.
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dissonance in a �xed network.49 We later extend the game by allowing cooperative

behavior in groups of players, assuming a shared intention to maximize the joint utility

of the group. We consider a global spillover e�ect between all players and an additional

local spillover e�ect between neighbors in the network. Players receive utility from net-

work spillovers with heterogeneous returns. The players in the network su�er disutility

when their e�orts are di�erent from those of their neighbors. This disutility can be

described as social dissonance or con�ict from non-compliance with the social norm.

The second source of the con�ict we incorporate in our network game is the individual

cognitive dissonance which occurs when the individual observes a discrepancy between

her belief about the ideal behavior and the factual e�ort. The idiosyncratic ideal effort

of the player, together with her return coe�cient of global and local spillovers, compile

the type of the player. We show that the type of the player increases her intercentrality,

and along with her position in the network of a given structure, a�ects the contribu-

tion of the player to the aggregate e�ort. Additionally, the e�orts of the players in the

game are strategic complements. Thus, the increase in the e�orts of network neighbors

fosters an increase in the e�ort of the given player. Further, we �nd the unique Nash

equilibrium of the game. The equilibrium e�orts of players are proportional to the

weighted Katz-Bonacich centralities, allowing us to follow the literature on key players

going back to Ballester et al. (2006). In their seminal paper, Ballester et al. (2006)

provide a geometric characterization of the key player in the network with peer e�ects

by de�ning a new measure of centrality, intercentrality. The key player is the player

in the network the removal of which entails the highest impact on the aggregate e�ort

in the network. The intercentrality measure captures the externalities that players

have from each other.50 They �nd that the Nash equilibrium of the game with peer

e�ects and e�ort complemetarities is proportional to the Katz-Bonacich centrality put

forward by Bonacich (1987) and Katz (1953). We �nd the positive key player in our

model, i.e. the player that once removed from the network has the highest impact on

the total e�ort level in the network, and the negative key player, i.e. the player with

the lowest impact, respectively.

Assuming a collaborative behavior in groups of players, we allow for unions where

the members choose their e�orts by maximizing their joint utility in the network.

49For network games see e.g. Jackson and Zenou (2015). Another survey on games on fixed networks
by Bramoullé and Kranton (2015) covers a variety of settings as peer effects, public goods, and
technology adoption. An important contribution in the literature on games on networks is the paper by
Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) where authors develop a general framework
to study network games.

50The peer effects with the implementation of key player policies had been studies empirically in
education (Liu, Patacchini, and Zenou (2014)) and criminal networks (Lee, Liu, Patacchini, and Zenou
(2020)).
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We show that apart from individual e�orts in�uencing the decisions of other players

through spillovers, the e�orts of all players in a connected network are additionally

a�ected by the unions. We consider a set of unions as a partition of players in the

network where links between members of a union are not required. We provide the

generalized characterization of the unique Nash equilibrium for the game with unions

and analyze how the presence of those a�ects the total e�ort in the population of

players. We de�ne a union intercentrality measure to �nd the key players in the

network with unions. Given a set of initial parameters and network structure, we show

that the key players in the setting with unions may di�er from the ones of the original

network of single players as a result of additional union effect in union intercentrality.

Furthermore, the key addition to the existing union is de�ned. That is the player that

increases the aggregate e�ort in the network by joining a union. We de�ne the key

union as the union that, once created, increases the aggregate e�ort in the game the

most.

There are various examples of social and economic issues that can be described by

games of spillovers and con�icts. When talking about global health issues, it comes

naturally to think of the possible global e�ect of collective e�orts in the development

of a vaccine against a fast-spreading virus on one individual that will enjoy the positive

spillovers from these e�orts. While the vigilance of friends, the small community of

direct contacts, may help to keep a low transmission level of the disease in our network,

helping to avoid subsequent costs by avoiding the infection. This can be seen as local

spillovers from direct contacts. At the same time, the behavior of the direct contacts

may a�ect the health of the individual also negatively, causing con�ict and disutility.

Furthermore, the cost restrictions due to required quarantines and lockdowns may di�er

among individuals due to their personal needs and preferences, giving rise to private

dissonance.

Another example of a network game with spillovers and con�icts is the adoption of

technology when compatibility matters. The choice of technology such as the choice

of messaging applications, software for video conferences, cloud computing services, or

�le transfer services is strongly a�ected by the choice of peers. While failure to coor-

dinate creates incompatibility. One reason for such miscoordination can be personal

preferences or ideal choices of individuals which can be based on trust or mistrust in

the speci�c service provider, data protection issues, or simply personal habits.

Environmentally friendly behavior is another example where spillovers and miscoor-

dination, together with private dissonance, a�ect individual choices. Studies show that

social norms and private values are strong determinants of collective pro-environmental
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behaviors.51 Examples of collective pro-environmental behaviors are group activities,

educational programs that aim to preserve the environment through recycling, collec-

tive clean-ups and beauti�cation organized by communities. The collective action with

a shared intention to promote green behavior is put through organizations and move-

ments such as Greenpeace, Fridays for Future, or country-level treaties, such as the

Paris agreement. Other factors behind the reasoning and pro-environmental decisions

of individuals are the social in�uence and private values. The discomfort from act-

ing di�erently from the neighbors, or the willingness to �t the social norms can drive

the attitudes of individuals regardless of any monetary bene�t.52 Meanwhile, private

values, or private norms, are another driving force of individual behavior.53,54

We contribute to the literature on network games by studying the local and global

spillovers, con�ict with neighbors and taste for consistency with ideal behavior in one

game. Moreover, we introduce unions, groups of collaborative players maximizing the

joint utility, in the network and extend the de�nition of the key player to the network

game with unions. The welfare analysis and the study of utility outcomes are outside

of the scope of this paper. This opens ground for future research on the study of union

formation in networks with spillovers and social and private dissonance, and study of

the union stability using fair allocation rules in network-dependent coalitions.

The rest of the paper is organized as follows. In Section 3.2 we describe the network

spillover game with social and private dissonance. We �nd the unique Nash equilib-

rium of the game and study di�erent settings of the game in examples. In Section

3.3 we introduce unions in the network game. We show the e�ect of such unions on

equilibrium e�orts. Concluding remarks are provided in Section 3.4 and the proofs are

in the Appendix 3.A.

51See e.g. Viscusi, Huber, and Bell (2011), Gifford and Nilsson (2014).
52An empirical study conducted by Ando, Ohnuma, Blöbaum, Matthies, and Sugiura (2010) identi-

fies and compares the determinants of individual and collective environmentally conscious behaviors.
They show that the subjective norms from the network impact the collective pro-environmental be-
haviors, which indicates the importance of the social influence on the collective behavior regarding
environmental issues.

53Gifford and Nilsson (2014) provide an extensive survey of studies of personal and social determi-
nants of pro-environmental behavior.

54Viscusi et al. (2011) investigate empirically the importance of the social norms by characterizing
the latter with the normatively appropriate behavior. They capture the influence of personal values on
the recycling decision with data on personal attitude towards the environment. Moreover, the authors
show that the private values reflected in becoming upset at neighbors not recycling are far more
predictive of a person’s behavior than the external norms reflected in their beliefs about what their
neighbors might think of them. Meanwhile, the people that consider themselves environmentalists are
more likely to be concerned about “private and external” norms experiencing green guilt from acting
less environmentally friendly compared to their neighbors.
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3.2 The Network Spillover Game

3.2.1 The Game

We study a network game with continuous action space and strategic complementaries

between the actions of the neighbors. We have a set of 𝑁 ∈ {1, 2, ..., 𝑛} players con-

nected through a directed network 𝑔 where 𝑔𝑖𝑗 is the positive weight on the directed

link from player 𝑖 to 𝑗 for any neighbors 𝑖, 𝑗 ∈ 𝑁 in the network. The weight is zero,

𝑔𝑖𝑗 = 0, when such directed link is absent. By convention we assume there are no

self-loops in the network, thus 𝑔𝑖𝑖 = 0 for all 𝑖 ∈ 𝑁 . We use the weighted adjacency

matrix G* associated with the network 𝑔, with elements 𝑔*𝑖𝑗 ∈ [0, 1] corresponding

to the original weights 𝑔𝑖𝑗 normalized by out-degrees 𝑑+𝑖 (𝑔) of player 𝑖, that is, her

weighted number of outgoing links. For simplicity we assume that the network does

not contain disconnected nodes, so that 𝑑+𝑖 (𝑔) > 0 for all players. Thus, the matrix

G* is row-normalized
∑︀
𝑗∈𝑁

𝑔*𝑖𝑗 = 1, for all 𝑖 ∈ 𝑁 .

The players are endowed with personal ideals regarding their own behavior. We de-

note the ideal efforts of the players with 𝑦𝑖 ∈ R+.55 They choose their e�orts 𝑥𝑖 ∈ R+

based on spillovers and con�icts from the neighbors in the network, while trying to

remain consistent with their personal ideal e�ort levels to avoid disutility from private

cognitive dissonance. We de�ne this private dissonance as the discrepancy between the

actual and ideal e�orts. We distinguish two types of spillovers in the model: global and

local spillovers. Similarly to public goods games, the players bene�t from the e�orts

exerted by all players in the network. Yet, unlike public goods in networks studied by

Bramoullé and Kranton (2007) or local-aggregate or -average models,56 we assume that

these spillovers are not restricted to direct network neighbors, thus we refer to those

as global spillovers. Conversely, the local interactions between neighbors cause local

spillovers. These are the spillovers occurring from complementarities in player's e�ort

𝑥𝑖 and her descriptive social norm
∑︀
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗,
57 which in network games is commonly

55The ideal efforts can be perceived as a personal norm of a player, personal standard, an attitude
towards the specific issue, feeling of moral obligation, or self-expectations (disregarding the possibility
that these expectations may derive from socially shared norms) (Ajzen and Fishbein, 1970; Schwartz,
1973; Schwartz and Howard, 1980). While non-compliance with, or the violation of the personal norm
may results in feeling of guilt, loss of self-esteem, self-depreciation (Schwartz, 1973), this discrepancy
between the self-standard, or personal norm, and actual behavior causes aroused cognitive dissonance

(Stone and Cooper, 2001).
56See e.g. Liu et al. (2014) and Ushchev and Zenou (2020).
57While players enjoy the collective effort of the whole population (the public good), their behavior

is directly affected by those of their direct social contacts. Therefore, we assume no effort complemen-
tarities through global spillovers.
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referred to simply as social norm of player 𝑖. While the descriptive social norms is

the representation of social behavior, the injunctive norm is the perception of social

approval. We assume that the disapproval is costly and players su�er disutility from

social dissonance, or conflict, caused by the di�erence in their e�orts and those of each

of their neighbors. In other words, the deviation from injunctive norm, that is, the

di�erence in behavior with each of direct neighbors, results in disutility. Minimiza-

tion of this cost of con�ict leads to conformism similarly to conventional local-average

models with descriptive social norms. As also noted by Ushchev and Zenou (2020),

this form of representation is still a conformist model and does not a�ect the choice of

equilibrium e�orts compared to the more common representation. However, it results

in di�erent welfare outcomes due to di�erent utilities in equilibrium.

Let x = (𝑥1, ..., 𝑥𝑛) be the vector of e�orts of player in the network 𝑔, and x−𝑖 the

list of e�orts of players 𝑁 ∖ 𝑖. The utility of player 𝑖 with e�ort 𝑥𝑖 and idiosyncratic

ideal 𝑦𝑖 is then given by the linear-quadratic function

𝑢𝑖(𝑥𝑖,x−𝑖, 𝑦𝑖, 𝜃𝑖, 𝑔) = 𝜆1𝜃𝑖
∑︁
𝑗∈𝑁

𝑥𝑗⏟  ⏞  
global spillover

effect

+ 𝜆2𝜃𝑖𝑥𝑖

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗⏟  ⏞  
local spillover

effect

− 𝜔1

2

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2

⏟  ⏞  
cost of

social dissonance

− 𝜔2

2
𝑥2
𝑖⏟  ⏞  

effort cost

− 𝜔3

2
(𝑥𝑖 − 𝑦𝑖)

2

⏟  ⏞  
cost of

private dissonance

,(3.1)

where 𝜆1, 𝜆2, 𝜔1, 𝜔2 and 𝜔3 are positive coe�cients of the respective source of

splillovers and costs. The players bene�t from spillovers and su�er quadratic cost

from their social dissonance, e�ort, and private dissonance. The coe�cients 𝜆1 and

𝜆2 capture the e�ects of global and local spillovers, 𝜔1 is the sensitivity to con�ict or

taste for conformity, and 𝜔2 is the coe�cient of e�ort cost. The sensitivity to cogni-

tive dissonance or the taste for consistency with ideal behavior is represented by 𝜔3.

Additionally, the players are heterogeneous in their return on spillovers captured by

parameters 𝜃𝑖 ∈ R+, for all 𝑖 ∈ 𝑁 . One can see that given the positive coe�cients and

parameters 𝜃𝑖, the e�orts of network neighbors are strategic complements:

𝜕2𝑢𝑖

𝜕𝑥𝑖𝜕𝑥𝑗

= (𝜆2𝜃𝑖 + 𝜔1)𝑔
*
𝑖𝑗 ≥ 0.

Utility representation in (3.1) captures the bene�ts of players through positive

spillovers from aggregate e�ort in a given network 𝑔 and their direct neighbors, as

well as the peer pressure to exert e�orts close to those of the neighbors as an incentive
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to minimize the social dissonance and avoid miscoordination and con�ict. In addi-

tion, the players have an incentive to be consistent with one's personal ideal 𝑦𝑖.
58 The

e�orts incur quadratic costs independently from the network structure and personal

ideal e�ort.

Idiosyncratic ideal 𝑦𝑖 together with parameter 𝜃𝑖 can be interpreted as the type of

player 𝑖 in the network. By setting either of the two parameters to be homogeneous

across the network, we let the other indicate the player's type.

3.2.2 Nash Equilibrium

Consider the following restructured form of the utility in (3.1)

𝑢𝑖 = (𝜆1𝜃𝑖 + 𝜔3𝑦𝑖)𝑥𝑖 + 𝜆1𝜃𝑖
∑︁
𝑗∈𝑁∖𝑖

𝑥𝑗 +
∑︁
𝑗∈𝑁∖𝑖

𝑔*𝑖𝑗

(︁
(𝜆2𝜃𝑖 + 𝜔1)𝑥𝑖 −

𝜔1

2
𝑥𝑗

)︁
𝑥𝑗

− 1

2
(𝜔1 + 𝜔2 + 𝜔3)𝑥

2
𝑖 −

𝜔3

2
𝑦2𝑖 .

Using this representation, we can observe the direct e�ect of the player's e�ort on her

utility, with type (𝑦𝑖, 𝜃𝑖) de�ning the return (𝜆1𝜃𝑖 +𝜔3𝑦𝑖) on e�ort, and
1

2
(𝜔1 +𝜔2 +𝜔3)

being the coe�cient of its' quadratic cost. We can also observe a quadratic cost in�icted

by player's personal ideal,
𝜔3

2
𝑦2𝑖 . The component exhibiting the utility from interaction

with neighbors shows the positive complemetarities in their e�orts with coe�cient

(𝜆2𝜃𝑖 +𝜔1), as already noted above, and a cost that player 𝑖 bears from the e�ort 𝑥𝑗 of

her neighbors with coe�cient
𝜔1

2
. It directly follows that the overall impact of direct

interaction with the neighbor 𝑗 of player 𝑖 on her utility is positive if 59

𝑥𝑗 < 2

(︂
𝜆2𝜃𝑖 + 𝜔1

𝜔1

)︂
𝑥𝑖.

We introduce the following notations. Let 𝛼𝑖(𝜃𝑖, 𝑦𝑖) and 𝜑𝑖(𝜃𝑖) be the coe�cients

of player 𝑖's utility from her own e�ort and that of her network neighbors weighted by

the overall cost coe�cient associated with player's e�ort, respectively:

𝛼𝑖(𝜃𝑖, 𝑦𝑖) =
𝜆1𝜃𝑖 + 𝜔3𝑦𝑖

(𝜔1 + 𝜔2 + 𝜔3)
and 𝜑𝑖(𝜃𝑖) =

𝜆2𝜃𝑖 + 𝜔1

(𝜔1 + 𝜔2 + 𝜔3)
. (3.2)

58In network games literature, the notion of ideal efforts and consistency is present in works by
Olcina et al. (2017) and Galeotti et al. (2021).

59We consider a fixed network structure. One may argue that severing the link with a neighbor 𝑗
where the given condition of positive impact doesn’t hold is a possible step in the strategy of utility
maximization. Similarly to Arifovic, Eaton, and Walker (2015) one can study the dynamics of network
structure and personal ideals. Yet, the study of network evolution is outside the scope of this paper.
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Note that 𝛼𝑖 is an increasing function of player's type (𝜃𝑖, 𝑦𝑖), and 𝜑𝑖 increases with

parameter 𝜃𝑖. Using the notations in (3.2) we �nd the best response𝐵𝑅𝑖(x−𝑖;G
*, 𝑦𝑖, 𝜃𝑖) :=

𝐵𝑅𝑖(x−𝑖;G
*, 𝜑𝑖, 𝛼𝑖) of player 𝑖 from �rst order conditions on (3.1):

𝐵𝑅𝑖(x−𝑖;G
*, 𝜑𝑖, 𝛼𝑖) = 𝛼𝑖 + 𝜑𝑖

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗. (3.3)

Thus, we see that the best response of player 𝑖 is linear in the e�orts of her neighbors.

Let 𝛼 and 𝜑 be 𝑛-dimensional vectors of 𝛼𝑖 and 𝜑𝑖 respectively, and I be 𝑛-identity

matrix. Further, let [𝜑 ⊗G*] be a matrix formed by coordinate-by-coordinate multi-

plication of the vector 𝜑 and the matrix G*.60

Proposition 3.1. Assume that the spectral radius of the matrix [𝜑 ⊗ G*] is smaller

than 1. Then, the unique Nash equilibrium in pure strategies is given by

x = (I− 𝜑⊗G*)−1𝛼. (3.4)

Lemma 3.1. Let 𝜌 be the spectral radius of the matrix [𝜑 ⊗G*]. For any network 𝑔

and types 𝜃𝑖 of players 𝑖 ∈ 𝑁 , if max
𝑖

𝜃𝑖 <
𝜔2 + 𝜔3

𝜆2

then the condition 𝜌 < 1 is satisfied.

Proof. The proof of Lemma 3.1 follows directly from the fact that the weighted adja-

cency matrix G* is row-normalized, and the application of Gershgorin circle theorem.

Indeed the spectral radius 𝜌 lies within the unit circle if the maximum row-sum norm

of the matrix [𝜑⊗G*] is smaller than one. This is satis�ed if the maximum of 𝜑𝑖 for

all 𝑖 ∈ 𝑁 is smaller than one. Using the notations in (3.2) it follows that the condition

𝜌 < 1 in Proposition 3.1 is satis�ed when max
𝑖

𝜃𝑖 <
𝜔2 + 𝜔3

𝜆2

.

Proposition 3.1 provides an equilibrium solution to the general problem of the

network game with spillovers and social and private dissonance. We can derive the

equilibrium e�orts for a special case such as the class of homogeneous games where the

players are identical in their ideal e�orts and return parameters, that is, (𝑦𝑖, 𝜃𝑖) = (𝑦, 𝜃)

for all 𝑖 ∈ 𝑁 . Let 𝛼 = 𝛼𝑖(𝑦, 𝜃) and 𝜑 = 𝜑𝑖(𝜃) be the corresponding homogeneous

parameters 𝛼𝑖 and 𝜑𝑖 in (3.2), for all 𝑖 ∈ 𝑁 . The following corollary shows that for

any network structure where each node has at least one outgoing link, the equilibrium

e�ort choices in the network game will be homogeneous when the players' types are

homogeneous across the players.

60Throughout the paper we use the symbol ⊗ to define matrix formed by coordinate-by-coordinate
multiplication of a vector and a matrix, i.e. by each 𝑖-th row of the matrix multiplied by corresponding
𝑖-th element of the vector. Thus the matrix [𝜑⊗G*] is an (𝑛× 𝑛) matrix resulting from multiplying
each 𝑖-th element of the vector 𝜑 with 𝑖-th row of the matrix G* for each 𝑖 ∈ 𝑁 .
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Corollary 3.1. For a network 𝑔 represented by row-normalized weighted adjacency

matrix G*, and homogeneous player types (𝑦, 𝜃) across the network, such that 𝜃 <
𝜔2 + 𝜔3

𝜆2

, the unique Nash equilibrium in pure strategies is given by

𝑥 =
𝛼

1 − 𝜑
.

with 𝑥𝑖 = 𝑥 for all 𝑖 ∈ 𝑁 .

Proof. Following Proposition 3.1, to ensure the existence of equilibrium the spectral

radius of the matrix 𝜑G* has to be smaller than 1. Similarly to the proof of Lemma

3.1, it is easy to show that this condition is satis�ed when 𝜃 <
𝜔2 + 𝜔3

𝜆2

. Then, the

equilibrium e�orts in the game (3.4) with homogeneous types (𝑦, 𝜃) are

x* = 𝛼(I− 𝜑G*)−11,

with 1 being a unit vector of size 𝑛. Additionally, given row-normalized adjacency

matrix G*, we have that (I−𝜑G*)1 = (1−𝜑)1. Using the properties of matrix inverse

we have

1 = (I− 𝜑G*)−1(I− 𝜑G*)1 = (I− 𝜑G*)−1(1 − 𝜑)1.

Thus (I− 𝜑G*)−11 =
1

1 − 𝜑
1. From which follows that

𝛼(I− 𝜑G*)−11 =
𝛼

1 − 𝜑
1

and the equilibrium e�orts in the game with homogeneous types are given by

x* =
𝛼

1 − 𝜑
1.

Using the original notations in (3.2) we �nd that 𝑥* =
𝜆1𝜃 + 𝜔3𝑦

𝜔2 + 𝜔3 − 𝜆2𝜃
for each

player. As expected, in the homogeneous setup of Corollary 3.1 the coe�cient of social

dissonance 𝜔1 does not a�ect the equilibrium outcomes due to absence of con�ict when

all neighbors are identical in their types.

The most basic example to satisfy Corollary 3.1 are complete networks. Given

equal weights on each link, every node in such network is equivalent to another. With

homogeneous parameters of the model, the spillover game on the complete network is

symmetric, and thus equilibrium e�orts are equal for all players.
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(c) Network with 3 components

Figure 3.1

More interestingly, regardless of the network structure 𝑔 and its' size, the equilib-

rium e�orts of all players in the network are still identical and depend only on the

coe�cients of the game, ideal e�orts and type parameter values. This result is mainly

driven by the fact that we associate any network with its' row-normalized weighted

adjacency matrix. Figure 3.1 illustrates three networks of the same size,61 yet with

di�erent structures. The three networks have players exerting the same e�ort in equi-

librium. Which also means that the aggregate utilities and e�orts in three networks

are also the same. This property of symmetry in players' e�ort choices regardless of

the network structure, and given that the type parameters are homogeneous, allows us

to distinguish the e�ects of model coe�cients for a given network when heterogeneity

is introduced.

Using the results above we can distinguish a subset of players in the network for

which homogeneity in ideal e�orts and 𝜃 imply homogeneous e�ort choices in equilib-

rium. Players forming a strongly connected component in a given network with no path

connecting the component with rest of the network are such a subset. Assume there is a

subset 𝐶 ⊂ 𝑁 of players in the directed network 𝑔 that comprise a strongly connected

component in the network. In addition to strong connectivity, for any 𝑖 ∈ 𝐶 and any

61In all network figures illustrated in the paper we purposely omit the arrows indicating the direction
of the link whenever the weights are non-zero on both directions.
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𝑗 ∈ 𝑁 ∖ 𝐶 the weight 𝑔*𝑖𝑗 = 0. Corollary 3.2 below provides the pure Nash equilibria

for players in 𝐶, given that the ideal e�orts and 𝜃 types within the component are

homogeneous.

Corollary 3.2. For any strongly connected component of players 𝐶 ⊂ 𝑁 with no

outgoing path towards players in 𝑁 ∖𝐶 on the directed network 𝑔, given that all players

in 𝐶 are homogeneous in ideal efforts 𝑦𝑐 and type parameters 𝜃𝑐, (𝑦𝑘, 𝜃𝑘)∀𝑘∈𝐶 = (𝑦𝑐, 𝜃𝑐),

such that 𝜃𝑐 <
𝜔2 + 𝜔3

𝜆2

, the unique Nash equilibrium in pure strategies for each player

in 𝐶 is given by

𝑥𝑐* =
𝜆1𝜃

𝑐 + 𝜔3𝑦
𝑐

𝜔2 + 𝜔3 − 𝜆2𝜃𝑐
.

Proof. By de�nition, the subset of players 𝐶 is disconnected from the rest of the net-

work due to absence of outgoing links from the nodes in the component to those in

𝑁 ∖ 𝐶. This implies that the weighted adjacency matrix associated with any strongly

connected component without outgoing paths on 𝑔 is the submatrix G*
𝑐 of G

* formed

by the subset of rows and columns corresponding to players in 𝐶. Using the properties

of the best response function (3.3) the results in Corollary 3.1 can be applied. Thus the

equilibrium e�ort choice of any player in 𝐶 with homogeneous types (𝑦𝑐, 𝜃𝑐) is equal to

𝑥 =
𝛼𝑐

1 − 𝜑𝑐
,

where 𝛼𝑐 =
𝜆1𝜃

𝑐 + 𝜔3𝑦
𝑐

(𝜔1 + 𝜔2 + 𝜔3)
and 𝜑𝑐 =

𝜆2𝜃
𝑐 + 𝜔1

(𝜔1 + 𝜔2 + 𝜔3)
.

3.2.3 Key Players

In this section we use the notion of key players introduced by Ballester et al. (2006) to

�nd the most in�uential players in the network. To identify the key players we de�ne

the intercentrality (or key player centrality) measure for directed networks analogous

to the one of Ballester et al. (2006) for our network game on the directed network

𝑔, represented by row-normalized weighted adjacency matrix G*. We use the Katz-

Bonacich centrality as an established measure of player's contribution in the aggregate

outcomes of the network.

Introduced by Katz (1953) and rede�ned later by Bonacich (1987), the Katz-

Bonacich centrality measures the centrality of player 𝑖 as the total number of all possi-

ble paths that stem from 𝑖, with each path weighted inversely to its length. Thus, the

higher number of shorter paths connecting the player to others in the network increases

her Katz-Bonacich centrality. The vector of Katz-Bonacich centralities associated with
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G*, with scalar values of 𝜑 and 𝛼 is given by

𝑏(G*, 𝜑, 𝛼) = 𝛼

∞∑︁
𝑡=0

𝜑𝑡G*𝑡1,

with 𝑏(G*, 𝜑, 𝛼) = 𝛼(I− 𝜑G*)−11 for 𝜑 < 1.

Let M(G*,𝜑) := (I−𝜑⊗G*)−1 be well de�ned and non-negative. And let's de�ne

𝑏(G*,𝜑,𝛼) := M(G*,𝜑)𝛼 for vectors 𝛼 and 𝜑, then

𝑏(G*,𝜑,𝛼) =
∞∑︁
𝑡=0

[𝜑⊗G*]𝑡𝛼

is the vector of weighted Bonacich centralities in the network represented by the adja-

cency matrix [𝜑⊗G*]. This measure corresponds to equilibrium e�orts x* of the game

(G*,𝜑,𝛼) de�ned in Proposition 3.1. We can then say that the equilibrium e�ort of

player 𝑖 in the game is given by her weighted Katz-Bonacich centrality 𝑏𝑖(G
*,𝜑,𝛼).

And ℬ :=
∑︀

𝑖∈𝑁 𝑏𝑖 is equivalent to the aggregate e�ort in the network. Next, we de-

�ne the contribution of player 𝑖 as a di�erence in the aggregate e�ort and that of the

network without player 𝑖.

Definition 3.1. The contribution 𝛿𝑖 of player 𝑖 to the aggregate effort in the network

is the difference between the aggregate effort exerted in the initial game (G*,𝜑,𝛼) and

the new game (G*−𝑖,𝜑−𝑖,𝛼−𝑖) on the network 𝑔−𝑖 obtained by removing node 𝑖 from

the initial network 𝑔:

𝛿𝑖(G
*,𝜑,𝛼) = ℬ(G*,𝜑,𝛼) − ℬ(G*−𝑖,𝜑−𝑖,𝛼−𝑖).

G*−𝑖 is the row-normalized weighted adjacency matrix of the new network 𝑔−𝑖

formed by removing player 𝑖 from the original network 𝑔. While the vectors 𝜑−𝑖 and

𝛼−𝑖 are formed by simply removing the 𝑖-th element from the corresponding initial

vector.

We de�ne 𝑖* as a positive (negative) key player if removing her from the initial

network 𝑔 has the highest (lowest) overall impact on the aggregate equilibrium level.

Definition 3.2. The player is the positive key player 𝑖*+ of the game if she has the

highest contribution 𝛿𝑖:

𝑖*+ = arg max
𝑖

𝛿𝑖(G
*,𝜑,𝛼).
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The negative key player 𝑖*− is the player with lowest contribution 𝛿𝑖:

𝑖*− = arg min
𝑖

𝛿𝑖(G
*,𝜑,𝛼).

The problem of �nding the key players de�ned above is equivalent to �nding the

arg min
𝑖

ℬ(G*−𝑖,𝜑−𝑖,𝛼−𝑖) and arg max
𝑖

ℬ(G*−𝑖,𝜑−𝑖,𝛼−𝑖) for positive and negative key

players respectively. In other words, the key player is the player which, once removed

from the network, has the highest or lowest impact on aggregate e�ort exerted in the

population of players. The following proposition suggests that the contribution 𝛿𝑖 of

the player is equivalent to an intercentrality measure proportional to its' weighted

Katz-Bonacich centrality.

Proposition 3.2. The contribution of player 𝑖 to the aggregated effort ℬ of the game

is given by her intercentrality:

𝛿𝑖(G
*,𝜑,𝛼) =

𝑏𝑖(G
*,𝜑,𝛼)

𝑚𝑖𝑖

∑︁
𝑗∈𝑁

𝑚𝑗𝑖,

where 𝑚𝑖𝑗, 𝑖, 𝑗 ∈ 𝑁 are the elements of matrix M(G*,𝜑).

The weighted Katz-Bonacich centrality 𝑏𝑖 of player 𝑖measures all the paths in 𝑔 that

start from 𝑖 and are weighted according to parameters in 𝜑 and 𝛼. The intercentrality

𝛿𝑖 measures the total number of paths that pass through 𝑖, that is, 𝑖's Katz-Bonacich

centrality and her contribution to every other player's centrality.

3.2.4 Spillovers, Conflicts and Private Dissonance

In the rest of the section we try to disentangle the e�ects of spillovers and social

and private dissonance of players in games on a �xed networks by studying speci�c

examples. We �nd the key players and discuss the resulting equilibrium outcomes

given parameter settings.

Example 3.1. Game of spillovers

Consider the networks in Figure 3.1a and 3.1b, with players 𝑁 = {1, . . . , 11}. For

simplicity, we assume there is no social and private dissonance in this example, 𝜔1 =

𝜔3 = 0, and the effort cost coefficient 𝜔2 = 1. The global spillovers have a coefficient

of 𝜆1 = 1 and the local spillovers’ coefficient is 𝜆2 = 0.1.

Given the initial parameter values we need the types 𝜃𝑖 to satisfy the condition in

Lemma 3.1. As a reference point we use the game with homogeneous players. Recalling
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Corollary 3.1 we choose a unique 𝜃 <
𝜔2

𝜆2

for all players. Setting 𝜃 = 1 we �nd the

unique Nash equilibrium e�ort equal to 1.11. The intercentrality 𝛿𝑖 for all players is

the same and is equal to their e�orts. Thus, in the homogeneous game there are no

distinguished key players. We introduce heterogeneity by assigning higher type 𝜃𝑖 = 2

to one of the players in given networks. In Table 3.1 we show how the total e�ort

and key players in the network change with the introduction of a higher type player.

As all players in the homogeneous game on the complete network (Figure 3.1a) are

structurally equivalent, it does not matter which player is assigned a higher type. We

see that the presence of a higher type player in the network increases the total e�ort in

the network making the player herself the positive key player with higher intercetrality

compared to that of the others'. Unlike complete networks, in the bridge network in

Figure 3.1b the choice of the player matters due to structural di�erences. Exploiting

the symmetries in this network we identify equivalent nodes which reduces the number

of players we need to study down to players 1, 2 and 3. We see in Table 3.1 that while

the positive key player is the one with higher type in each of the three settings, the

highest aggregate e�ort in the network among the three is reached when the higher

type is assigned to the player in position 2. When player 1 is the higher type player,

the negative key players are those that are the furthest from 1 in the network. In case

of player 2, when 𝜃2 = 2, the negative key player is her direct neighbor, player 6, which

can be explained by lack of spillovers from 6 given the absence of social links other

than those of player 2. Player 3 when assigned 𝜃3 = 2 has the highest intercentrality

of all. Yet this setting makes player 1 a negative key player, resulting in a lower level

of aggregate e�ort compared to the case of 𝜃2 = 2.

Example 3.2. Social dissonance

We change the setup in Example 3.1 by adding the social conflict. We set the conflict

cost coefficient to 𝜔1 = 1 in the games on networks 3.1a and 3.1b.

In the homogeneous game, where the players are identical in their types, the intro-

duction of social con�ict does not cause any change in outcomes. With heterogeneity

in the player types the con�ict with neighbors can a�ect equilibrium e�orts. Assume

all players but player 𝑖 have their return parameter equal to 1, 𝜃𝑗 = 1 for all 𝑗 ∈ 𝑁 ∖ 𝑖,
and assign 𝜃𝑖 = 2.

In the game on the complete network the con�ict with neighbors, or the social

dissonance, increases the aggregate e�ort in the game. As it is displayed in Table 3.1,

when player 1 is the higher type player her e�ort in the game with social dissonance

is lower than that of the game with 𝜔1 = 0. While the higher type player has the

highest intercentrality, thus is the positive key player, she has a lower e�ort due to
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peer pressure. The negative key players, thus the rest of the players in the complete

network, increase their e�orts when social dissonance is introduced. As a result, the

presence of disutility from deviation from the social norm increases the e�orts of the

players.

Like in the previous example, the bridge network in 3.1b requires to study the

e�ects of the social dissonance in three di�erent cases by assuming players 1, 2 or 3 as

the higher type player. While the e�orts of negative key players 𝑖*− are increasing in all

three cases, their intercentralities 𝛿−𝑖 are decreasing. As in the game on the complete

network, the e�orts of the positive key players are decreasing in all three games on the

bridge network when the con�ict is introduced. While only the intercetrality of positive

key player 2 increases with her having a higher type. The total e�ort is decreasing with

the presence of con�ict with neighbors when player 1 or 3 have higher type, while in

case of 𝜃2 = 2 the total e�ort in the game is increasing. The results are displayed in

Table 3.1.

Table 3.1: Aggregate effort, equilibrium efforts and contributions of positive (+) and negative
(−) keyplayers in games on Complete and Bridge networks in Figure 3.1, with spillovers and

social dissonance, Examples 3.1 and 3.2.

Conflict Type
Total
effort

Positive key player Negative key player

𝜔1 𝜃𝑗∈𝑁∖𝑖 = 1 ℬ + 𝑏+ 𝛿+ − 𝑏− 𝛿−

𝜃𝑖 = 1 12.2223 𝑁 1.1112 1.1112 𝑁 1.1112 1.1112
Complete Network
𝜔1 = 0 𝜃𝑖=1 = 2 13.4582 {1} 2.2247 2.348 𝑁 ∖ {1} 1.1234 1.111
𝜔1 = 1 𝜃𝑖=1 = 2 13.464 {1} 1.7056 2.353 𝑁 ∖ {1} 1.1759 1.1104
Bridge Network

𝜔1 = 0
𝜃𝑖=1 = 2 13.4365 {1} 2.2268 2.326 {3},{4},{5},

{8},{9},{10}
1.1124 1.0984

𝜃𝑖=2 = 2 13.4838 {2} 2.228 2.373 {6} 1.1359 1.0948
𝜃𝑖=3 = 2 13.4478 {3} 2.2277 2.337 {1} 1.1124 1.0988

𝜔1 = 1
𝜃𝑖=1 = 2 13.3791 {1} 1.7192 2.268 {3},{4},{5},

{8},{9},{10}
1.1443 1.0407

𝜃𝑖=2 = 2 13.5847 {2} 1.7479 2.474 {6} 1.2413 1.0533
𝜃𝑖=3 = 2 13.4104 {3} 1.7429 2.3 {1} 1.1444 1.0479

Example 3.3. Cognitive dissonance

In addition to the conflict with neighbors in Example 3.2 we add the personal conflict,

the private dissonance arising from difference in the ideal 𝑦𝑖 and the actual efforts. To

do so we set the coefficient 𝜔3 = 1.
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To study the e�ect of the private dissonance we assume the type parameter 𝜃 to

be homogeneous across the network and equal to 1. Endowing all players with same

ideal e�orts 𝑦 = 1 satis�es Corollary 3.1 and results in identical equilibrium e�orts of

1.0527. The aggregate e�ort is then equal to 11.579 for a network with 𝑛 = 11 players.

Note, that the ideal e�ort 𝑦 = 1 and the equilibrium e�ort 1.0527 are lower than the

equilibrium e�ort of 1.11 in the homogeneous game without private dissonance. This

re�ects the fact that the ideal e�ort incurs an additional cost on the utilities of players

through the private dissonance.

Assuming one of the players in the network has higher ideal e�ort, 𝑦𝑖 = 2 while

𝑦𝑗 = 1 for all 𝑗 ∈ 𝑁 ∖ 𝑖, we �nd the key players and their contributions. Similarly

to Examples 3.1 and 3.2 we study the complete and the bridge networks in Figure

3.1a and 3.1b, distinguishing three cases on the bridge network with players 1, 2 and

3 having a higher ideal e�ort. In presence of private dissonance, the introduction of

a player with higher ideal e�ort increases the e�orts of players in the network. The

higher ideal e�ort increases the intercentrality of the player making her the key player

on the network. Table 3.2 displays the results.

Table 3.2: Aggregate effort, equilibrium efforts and contributions of positive (+) and negative
(−) keyplayers in games on Complete and Bridge networks in Figure 3.1, with spillovers, social

and private dissonance, Example 3.3.

Type Total effort Positive key player Negative key player
𝑦𝑗∈𝑁∖𝑖 = 1 ℬ + 𝑏+ 𝛿+ − 𝑏− 𝛿−

𝑦𝑖 = 1 11.579 𝑁 1.0527 1.0527 𝑁 1.0527 1.0527
Complete Network
𝑦𝑖=1 = 2 12.1053 {1} 1.3928 1.579 𝑁 ∖ {1} 1.0713 1.0527

Bridge Network

𝑦𝑖=1 = 2 12.0766 {1} 1.3966 1.551 {3},{4},{5},
{8},{9},{10}

1.0591 1.0332

𝑦𝑖=2 = 2 12.1389 {2} 1.4009 1.613 {6} 1.0904 1.0343
𝑦𝑖=3 = 2 12.0877 {3} 1.4001 1.562 {1} 1.0591 1.0351

3.3 Unions in Networks

In this section we introduce unions as groups of players maximizing their joint utility.

These unions are a coordination device that can potentially have bene�cial impact on

collective e�orts in the network. We study how the presence of such unions a�ects

the aggregate e�ort in the network, and we provide conditions based on which the
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participation in the union increases the e�ort of a player. In addition, we distinguish

the role of the union in player's contribution to the aggregate e�ort by de�ning union

intercentrality and union-induced intercentrality measures. We also �nd the key players

in the network with unions and de�ne key unions as unions that, once formed, incur

the highest increase in the aggregate e�ort.

3.3.1 Equilibrium Efforts In the Network Game with Unions

In this paper we refer as unions to the sets of players in the network that maximize

their joint utility. We denote by 𝑝(𝑖) the union of players to which player 𝑖 belongs to.

That is, for all 𝑖 ∈ 𝑁 , 𝑝(𝑖) ⊆ 𝑁 is the set of players in the network 𝑔 that the union of

player 𝑖 consists of. We assume that each player can be a member of only one union.

Thus for any 𝑘 ∈ 𝑁 such that 𝑘 /∈ 𝑝(𝑖), 𝑝(𝑖) ∩ 𝑝(𝑘) = ∅. And for any players 𝑖, 𝑗 ∈ 𝑁

that belong to the same union the sets 𝑝(𝑖) and 𝑝(𝑗) are equivalent, 𝑝(𝑖) = 𝑝(𝑗). This

notation allows us to be consistent with cases where the players do not belong to any

union, and generalize de�nitions and results in Section 3.2 accounting for presence of

unions. We say that player 𝑘 ∈ 𝑁 is a single player if she is not a member of any union

and the set 𝑝(𝑘) consists of only player 𝑘 herself, 𝑝(𝑘) = {𝑘}.
Let 𝑃 be the set of all unions and single players in the network. Namely, 𝑃 is a

partition of players 𝑁 into groups with 𝑝(𝑖) ∈ 𝑃 , for any 𝑖 ∈ 𝑁 , being the union with

player 𝑖. We de�ne 𝑆 ⊆ 𝑁 as the set of all single players, such that 𝑝(𝑖) = {𝑖} for

any 𝑖 ∈ 𝑆. The set of union players, or team players, in the network is then the set

𝑁 ∖ 𝑆. For any union 𝑝(𝑖) ∈ 𝑃 in the network 𝑔 the utility of the union, that is, the

joint utility of all union members, is the following:

𝑈𝑝(𝑖) =
∑︁
𝑗∈𝑝(𝑖)

𝑢𝑗.

Using the utility of a single player de�ned in equation (3.1) we have:

𝑈𝑝(𝑖) =
∑︁
𝑗∈𝑝(𝑖)

(︁
𝜆1𝜃𝑗

∑︁
𝑘∈𝑁

𝑥𝑘+𝜆2𝜃𝑗𝑥𝑗

∑︁
𝑘∈𝑁

𝑔*𝑗𝑘𝑥𝑘−
𝜔1

2

∑︁
𝑘∈𝑁

𝑔*𝑗𝑘(𝑥𝑗−𝑥𝑘)2−𝜔2

2
𝑥2
𝑗−

𝜔3

2
(𝑥𝑗−𝑦𝑗)

2
)︁
.

(3.5)

Note, when 𝑝(𝑖) is a singleton, 𝑖 ∈ 𝑆 and 𝑝(𝑖) = {𝑖}, players 𝑖's utility is then

𝑈{𝑖} =
∑︀

𝑗∈{𝑖} 𝑢𝑗 = 𝑢𝑖. Thus, for any single player 𝑖 ∈ 𝑆 in the network with unions

the de�nition of the player's utility in (3.5) is unchanged with respect to the one of

the game without unions (3.1) in Section 3.2. This property allows us to rede�ne the

parameters 𝛼𝑖 and 𝜑𝑖 in 3.2 without loss of generality. Equation (3.6) provides a general
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de�nition of these parameters extending their application to the network game with

unions. In addition, a new parameter 𝛾𝑖𝑗 is de�ned.

𝛼𝑖 =
𝜆1Θ𝑖 + 𝜔3𝑦𝑖

Ω𝑖

, 𝜑𝑖 =
𝜆2𝜃𝑖 + 𝜔1

Ω𝑖

, 𝛾𝑖𝑗 =

⎧⎪⎨⎪⎩
𝜆2𝜃𝑗 + 𝜔1

Ω𝑖

if 𝑝(𝑖) = 𝑝(𝑗)

0 otherwise
, (3.6)

where Θ𝑖 =
∑︁
𝑗∈𝑝(𝑖)

𝜃𝑗 and Ω𝑖 = 𝜔1(1 +
∑︁

𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖) + 𝜔2 + 𝜔3.

Notice that for any single player 𝑖 ∈ 𝑆, 𝛾𝑖𝑗 = 0 for all 𝑗 ∈ 𝑁 .

As in Section 3.2, let 𝛼 and 𝜑 be 𝑛-dimensional vectors of 𝛼𝑖 and 𝜑𝑖, respectively.

Let H be a matrix with elements ℎ𝑖𝑗 that represent the union relation of any pair of

players:

ℎ𝑖𝑗 = 𝛾𝑖𝑗𝑔
*
𝑗𝑖 (3.7)

for all 𝑗 ∈ 𝑁 . So we have ℎ𝑖𝑗 > 0 for all 𝑗 ∈ 𝑝(𝑖) with 𝑔*𝑗𝑖 > 0.62

Using the notations above and given the de�nition of union utility in (3.5) we can

now �nd the best response for each player 𝑖 ∈ 𝑁 in the network with unions. We �nd

that the best response functions 𝐵𝑅𝑖(x−𝑖;G
*,H, 𝜑𝑖, 𝛼𝑖) are linear in players' e�orts

x−𝑖:

𝐵𝑅𝑖(x−𝑖;G
*,H, 𝜑𝑖, 𝛼𝑖) = 𝛼𝑖 + 𝜑𝑖

∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘 +
∑︁
𝑘∈𝑁

𝛾𝑖𝑘𝑔
*
𝑘𝑖𝑥𝑘

= 𝛼𝑖 +
∑︁
𝑘∈𝑁

(𝜑𝑖𝑔
*
𝑖𝑘 + ℎ𝑖𝑘)𝑥𝑘.

The additional term
∑︀
𝑘∈𝑁

𝛾𝑖𝑘𝑔
*
𝑘𝑖𝑥𝑘 in the best response of the player, compared to

the best response in (3.3) of the game without unions, is the additional in�uence from

the union peers of player 𝑖 on her e�ort. In particular, this in�uence is non-zero when

the union peers have directed links towards the player.

The following proposition provides the Nash equilibrium e�orts of players in the

network spillover game with unions.

Proposition 3.3. Assume that the spectral radius of [𝜑⊗G* + H] is smaller than 1.

Then, the unique Nash equilibrium in pure strategies is given by

x = (I− [𝜑⊗G* + H])−1𝛼. (3.8)

62In matrix terms H = Γ ⊗ G*𝑇 with Γ being a matrix of parameters 𝛾𝑖𝑗 and ⊗ an element-by-
element multiplication of the two matrices.
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We can consider Proposition 3.3 as a generalization of the equilibrium e�orts of

the game without unions provided in Proposition 3.1. In other words, Proposition 3.1

provides conditions and equilibrium e�orts for the special case of Proposition 3.3 where

𝑝(𝑖) = {𝑖} for all 𝑖 ∈ 𝑁 , thus 𝑆 = 𝑁 , in which case equation (3.4) is equivalent to

(3.8).

Given the strategic complementarities in e�orts of players in the network game it is

easy to see that an increase in e�orts of players through formation of a union positively

a�ects the e�ort of the rest in the network. The following proposition establishes the

presence of strategic complementarity in e�orts in the game with unions.

Proposition 3.4. An increase in effort 𝑥𝑖 of any player 𝑖 ∈ 𝑁 in the network with

unions 𝑃 , weakly increases the efforts of all players in the network.

While the e�orts of players in the network game with unions are strategic comple-

ments, the e�ort of a single player does not always increase by joining a union. The

following lemma provides a su�cient condition for the e�orts of players and the ag-

gregate e�ort in the network with unions being higher than those of the network with

only single players.

Lemma 3.2. Consider a network 𝑔 and it’s weighted adjacency representation G*,

with ideal efforts 𝑦𝑖 and type coefficients 𝜃𝑖 for all players 𝑖 ∈ 𝑁 . Let 𝑙 ∈ 𝑝(𝑖) ∖ 𝑖 be

such that

𝑙 = arg min
𝑘∈𝑝(𝑖)∖𝑖

(𝜆2𝜃𝑘 + 𝜔1)
𝑔*𝑘𝑖
𝑔*𝑖𝑘

.

If the condition below holds, it is then sufficient to say that the union 𝑝(𝑖) increases the

equilibrium effort of player 𝑖.

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝜔1 + 𝜔2 + 𝜔3

≤ min

⎧⎪⎨⎪⎩(𝜆2𝜃𝑙 + 𝜔1)𝑔
*
𝑙𝑖

(𝜆2𝜃𝑖 + 𝜔1)𝑔*𝑖𝑙
,

𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖

⎫⎪⎬⎪⎭
Moreover, if the condition above is satisfied for all 𝑖 ∈ 𝑁 ∖ 𝑆, then the union set 𝑃

increases the aggregate effort in the network with respect to the game without unions.

Being in a union increases player 𝑖's utility through global spillovers. At the same

time, the local spillovers and the social dissonance of union peers that are in�uences by

player 𝑖 (all 𝑗 ∈ 𝑝(𝑖) ∖ 𝑖 such that 𝑔*𝑗𝑖 > 0) now a�ect player 𝑖's choice of e�ort directly.

Thus, the union 𝑝(𝑖) increases the e�ort of player 𝑖 if the positive spillovers received

from the union outweigh the cost of con�ict created by her participation.
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As a direct consequence of the condition in Lemma 3.2, we can say that the inter-

centrality of player 𝑖 in Proposition 3.2 (for the vector 𝑏 and the matrix M rede�ned

according to network game with unions and presented in upcoming section) is increas-

ing with union 𝑝(𝑖) with respect to being a singleton.

3.3.2 Key Players in the Network with Unions

We search for the positive and negative key players in the network with unions, i.e.

the players that have the highest and the lowest impact on the aggregate e�ort in

the game regardless of their a�liation to any union in the network. Using the results

of Proposition 3.3 we generalize the de�nition of the matrix M introduced earlier.

Let M(G*,𝜑,H) := (I − [𝜑 ⊗ G* + H])−1 be well de�ned and non-negative with

entries 𝑚𝑖𝑗, 𝑖, 𝑗 ∈ 𝑁 . Then the vector of weighted Katz-Bonacich centralities of players

is 𝑏(G*,H,𝜑,𝛼) := 𝑀 (G*,𝜑,H)𝛼. The e�ort of each player 𝑖 is then given by

𝑏𝑖(G
*,H,𝜑,𝛼) =

∑︀
𝑘∈𝑁

𝑚𝑖𝑘𝛼𝑘.

Similarly to the game without unions let ℬ(G*,H,𝜑,𝛼) denote the total e�ort of

all players ℬ(G*,H,𝜑,𝛼) =
∑︀
𝑗∈𝑁

𝑏𝑗(G
*,H,𝜑,𝛼). Next, we rede�ne the contribution of

player 𝑖 to the total e�ort in the network game with unions.

Definition 3.3. The contribution 𝛿𝑖,𝑃 of player 𝑖 to the total effort in the network

with set of unions 𝑃 is the difference between the aggregate effort exerted in the initial

game (G*,H,𝜑,𝛼) and the game (G*−𝑖,H−𝑖,𝜑−𝑖,𝛼−𝑖) after removing player 𝑖 from

the network:

𝛿𝑖,𝑃 (G*,H,𝜑,𝛼) = ℬ(G*,H,𝜑,𝛼) − ℬ(G*−𝑖,H−𝑖,𝜑−𝑖,𝛼−𝑖).

By removing player 𝑖 from the network 𝑔 we automatically assume her being re-

moved from the union 𝑝(𝑖). Given that, the matrixH−𝑖 and the vectors 𝛼−𝑖 and 𝜑−𝑖 are

constructed by reevaluating the respective entries of H, 𝛼 and 𝜑 through the change in

parameters Θ𝑗 and Ω𝑗 in (3.6) and the weighted adjacency matrix G*−𝑖 of the network

𝑔−𝑖 for each 𝑗 ∈ 𝑁 ∖ 𝑖. Accordingly, we de�ne M−𝑖 = (I𝑛−1 − [𝜑−𝑖 ⊗G*−𝑖] −H−𝑖)−1

with new entries 𝑚−𝑖
𝑖𝑗 . Using the above mentioned, we can �nd the relation of the

player's contribution to the aggregate e�ort with her intercentrality and the additional

e�ect resulting from her membership in a union. Player's union intercentrality is the

combination of her intercentrality and a union e�ect.

Proposition 3.5. The contribution of player 𝑖 to the aggregate effort in the network
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with set of unions 𝑃 is given by her union intercentrality

𝛿𝑖,𝑃 (G*,H,𝜑,𝛼) =
∑︁

𝑘∈𝑝(𝑖)∖𝑖

∑︁
𝑗∈𝑁

𝑚−𝑖
𝑗𝑘 (𝛼𝑘 − 𝛼−𝑖

𝑘 )

⏟  ⏞  
Union effect

+
𝑏𝑖(G

*,H,𝜑,𝛼)

𝑚𝑖𝑖

∑︁
𝑗∈𝑁

𝑚𝑗𝑖⏟  ⏞  
Intercentrality

or

𝛿𝑖,𝑃 (G*,H,𝜑,𝛼) =
∑︁

𝑘∈𝑝(𝑖)∖𝑖

∑︁
𝑗∈𝑁

𝑚−𝑖
𝑗𝑘 (𝛼𝑘 − 𝛼−𝑖

𝑘 ) + 𝛿𝑖(G
*,H,𝜑,𝛼). (3.9)

As part of her union intercentrality, the membership of player 𝑖 in union 𝑝(𝑖) induces

a union effect on her union peers through additional splillovers.63 Given a non-negative

matrix M−𝑖, if 𝛼𝑘 ≥ 𝛼−𝑖
𝑘 for all 𝑘 ∈ 𝑝(𝑖), it is su�cient to say that the union e�ect

in player's intercentrality is positive. Using the de�nition of 𝛼𝑘 in (3.6) we can �nd

a condition for positive union e�ect in player's intercentrality. The following lemma

provides this condition.

Lemma 3.3. For the union effect in union intercentrality of player 𝑖 to be positive, it

is sufficient to have either of the following conditions satisfied for all 𝑖 ∈ 𝑁 ∖ 𝑆 and

𝑘 ∈ 𝑝(𝑖) ∖ 𝑖:
𝑔*𝑖𝑘 = 0 or

𝜆1𝜃𝑘
𝜔1𝑔*𝑖𝑘

≥ 𝜆1Θ𝑘 + 𝜔3𝑦𝑘 − 𝜆1𝜃𝑖
Ω𝑘 − 𝜔1𝑔*𝑖𝑘

.

One may notice that the union e�ect in 𝛿𝑖,𝑃 (G*,H,𝜑,𝛼) disappears if player 𝑖 is

a single player, 𝑖 ∈ 𝑆. Which means that the de�nition of union intercentrality for

the single player in the network with unions is equivalent to her intercentrality (or key

player centrality) in the network without unions.

Corollary 3.3. The contribution of single player 𝑗 ∈ 𝑆 to the aggregate effort in the

network game with unions 𝑃 is given by her (union) intercentrality 𝛿𝑗,𝑃 = 𝛿𝑗,

𝛿𝑗,𝑃 (G*,H,𝜑,𝛼) =
𝑏𝑗(G

*,H,𝜑,𝛼)

𝑚𝑗𝑗

∑︁
𝑘∈𝑁

𝑚𝑘𝑗

63Throughout the paper we assume the network 𝑔 to be represented by weighted adjacency matrix

such that the weights on outgoing links of each player 𝑖 sum up to 1, i.e. 𝑑+𝑖 (𝑔) =
𝑛∑︀

𝑗=1

𝑔𝑖𝑗 = 1.

Changing this assumption affects the parameters 𝛼𝑖, 𝜑𝑖, 𝛾𝑖𝑗 through the cost Ω𝑖 which will then be as
follows: Ω𝑖 = 𝜔1(𝑑

+
𝑖 (𝑔) +

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔𝑗𝑖) + 𝜔2 + 𝜔3.

The change in Ω𝑖 entails a change in the definition of union intercentrality and with an additional
“neighborhood effect” from the set of neighbors 𝑁(𝑖) of player 𝑖 along with the union effect:

𝛿𝑖,𝑃 (G
*,H,𝜑,𝛼) =

∑︁
𝑘∈𝑝(𝑖)∪𝑁(𝑖)

𝑘 ̸=𝑖

∑︁
𝑗∈𝑁

𝑚−𝑖
𝑗𝑘 (𝛼𝑘 − 𝛼−𝑖

𝑘 ) + 𝛿𝑖(G
*,H,𝜑,𝛼).
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for all 𝑗 ∈ 𝑆.

Using the de�nitions of the union intercentrality for players in the game with unions,

we can now de�ne the key players in the game.

Definition 3.4. The positive key player 𝑖*+ is the player with the highest union inter-

centrality in the network:

𝑖*+ = arg max
𝑗∈𝑁

𝛿𝑗,𝑃 (G*,H,𝜑,𝛼).

The negative key player 𝑖*− is the player with the lowest union intercentrality:

𝑖*− = arg min
𝑗∈𝑁

𝛿𝑗,𝑃 (G*,H,𝜑,𝛼).

Example 3.4. No unions

Consider a game on the bridge network in Figure 3.1b. Let the coefficients of the game

be as follows: 𝜆1 = 0.5, 𝜆2 = 0.125, 𝜔1 = 0.125, 𝜔2 = 0.5, 𝜔3 = 0.125. We assume the

ideal efforts 𝑦𝑖, 𝑖 ∈ 𝑁 to be homogeneous and equal to 1. The return coefficients 𝜃𝑖 are

randomly drawn from the range [0.5; 1.5] and displayed in Figure 3.2.

The aggregate e�ort ℬ of the game where all players are single is 14.8. The positive

key player in the network is player 2 with type 𝜃2 = 1.5, e�ort 𝑏2 = 1.78 and inter-

centrality 𝛿2 = 2.07. The negative key player of the game is player 7 with type 𝜃7 = 0.5,

e�ort 𝑏7 = 0.82 and intercentrality 𝛿7 = 0.57. The list of all e�orts and contributions

of each player is displayed on Table 3.3.
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1
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8

1
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Figure 3.2: Bridge network with idiosyncratic coefficients 𝜃𝑖 of players 𝑖 ∈ {1, ..., 11} dis-

cussed in Examples 3.4-3.7.

Example 3.5. Union {1, 2}
Following the setting in the Example 3.4 we introduces the union 𝑝(1) consisting of
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players 1 and 2 of the network 𝑔. The rest of the players in the network remain

singletons, 𝑆 = {3, 4, . . . , 11}. So the set of unions is 𝑃 = {{1, 2}, {3}, {4}, . . . , {11}}.

The total e�ort exerted in the network game with the union {1, 2} increases to

18.41 compared to 14.8 in the no union case. The contribution of the union members

to the total e�ort is much higher, with player 2 remaining the positive key player of the

game with higher e�ort 𝑏2 = 3.13 and union intercentrality 𝛿2,𝑃 = 5.68. The negative

key player of the game with union {1, 2} is now player 6 with e�ort 𝑏6 = 1.17 and

union intercentrality 𝛿6,𝑃 = 0.3. The list of e�orts and contributions for each player is

displayed on Table 3.3.

Table 3.3: Equilibrium efforts and contributions of players in the network in Figure 3.2,

with no unions (Example 3.4), and union {1, 2} (Example 3.5) and union {1, 2, 3, 4, 5} (Ex-

ample 3.7). The contributions of players in Examples 3.4 with no unions are measured by

intercentralities 𝛿𝑖, and by union intercentralities 𝛿𝑖,𝑃 when a union exists in the network.

No Unions Union {1,2} Union {1,2,3,4,5}
Player Type Effort Contrib. Effort Contrib. Effort Contrib.

𝑖 𝜃𝑖 𝑏𝑖 𝛿𝑖 𝑏𝑖 𝛿𝑖,𝑃 𝑏𝑖 𝛿𝑖,𝑃

1 1.5 1.65 1.76 2.99 5.37 6.81 15.51
2 1.5 1.78 2.07 3.13 5.68 9.44 20.43
3 1.4 1.68 1.78 1.87 1.72 9.09 18.24
4 1.3 1.59 1.65 1.78 1.57 9.02 17.44
5 1.1 1.43 1.38 1.6 1.27 8.89 15.77
6 0.6 1 0.59 1.17 0.3 2.87 -7.74
7 0.5 0.82 0.57 0.9 0.43 1.11 0.03
8 0.7 0.96 0.86 0.98 0.8 1.02 0.63
9 1.5 1.59 1.78 1.61 1.74 1.67 1.6
10 1 1.2 1.22 1.22 1.17 1.27 1.02
11 0.8 1.07 1.02 1.16 0.93 1.41 0.62
ℬ 14.8 18.41 52.6

3.3.3 Key Unions

In social and economic problems seeking partnership, and looking for best options in

forming unions in a given network is a commonly addressed issue. When addressing

the issue of increasing the aggregate e�orts in the population, �nding the key player in

the network helps to identify the most in�uential player a�ecting the total e�ort the

most. Given a network structure, our aim is to �nd the unions of players, as groups
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that maximize their joint utility, that a�ect the total e�orts in the network game the

most.

Assume a set of unions 𝑃 in the network 𝑔 formed by joining a single players 𝑖 to

the union 𝑝 of initial union structure 𝑃 , such that 𝑝 = 𝑝 ∪ {𝑖}.

Proposition 3.6. The change in aggregate effort in the network through the addition

of a single player 𝑖 ∈ 𝑆 to the union 𝑝, such that 𝑝 = 𝑝∪ {𝑖}, is given by the difference

of player’s union intercentralities for union structures 𝑃 and 𝑃 in the network:

𝜎𝑝
𝑖 = 𝛿𝑖,𝑃 (G*,H𝑖∈𝑝,𝜑𝑖∈𝑝,𝛼𝑖∈𝑝)⏟  ⏞  

union intercentrality
when 𝑖 ∈ 𝑝

− 𝛿𝑖,𝑃 (G*,H𝑖∈𝑆,𝜑𝑖∈𝑆,𝛼𝑖∈𝑆)⏟  ⏞  
(union) intercentrality
when 𝑖 is a single player

We call 𝜎𝑝
𝑖 the union-induced intercentrality of player 𝑖 from joining the union 𝑝.

Using the union intercentrality de�nition in (3.9) and that of a single player in the

network with unions in Corollary 3.3 we can rewrite 𝜎𝑝
𝑖 in the following way.

𝜎𝑝
𝑖 =

∑︁
𝑘∈𝑝∖𝑖

∑︁
𝑗∈𝑁

𝑚−𝑖
𝑗𝑘 (𝛼𝑘 − 𝛼−𝑖

𝑘 )

⏟  ⏞  
Union effect

+ 𝛿𝑖(G
*,H𝑖∈𝑝,𝜑𝑖∈𝑝,𝛼𝑖∈𝑝)⏟  ⏞  
intercentrality of 𝑖

when 𝑖 ∈ 𝑝

− 𝛿𝑖(G
*,H𝑖∈𝑆,𝜑𝑖∈𝑆,𝛼𝑖∈𝑆)⏟  ⏞  

(union) intercentrality of 𝑖
when 𝑖 ∈ 𝑆

If the condition of Lemma 3.2 holds the di�erence of player's intercentrality when

it belongs to a union is greater than that of the same player when she is single. So we

have 𝛿𝑖(when 𝑖 ∈ 𝑝) − 𝛿𝑖(when 𝑖 ∈ 𝑆) ≥ 0 for 𝑝 = 𝑝 ∪ {𝑖}, such that {𝑖}, 𝑝 ∈ 𝑃 and

𝑝 ∈ 𝑃 . In addition, Lemma 3.3 provides conditions for the union e�ect of player 𝑖 to

be positive. It is then straightforward to see that 𝜎𝑝
𝑖 ≥ 0 for all players that satisfy

the conditions in Lemma 3.2 and Lemma 3.3. In other words, if the union 𝑝 ∈ 𝑃

increases the intercentrality of player 𝑖, and union e�ect of player 𝑖 is positive, then

the union-induced intercentrality 𝜎𝑝
𝑖 of the player is positive.

Using the de�nition of the union-induced intercentrality we can �nd the key ad-

dition, the player that has the highest impact on the aggregate e�ort in the network

when added to a given union.

Definition 3.5. The key addition to a given union 𝑝 ∈ 𝑃 is player 𝑖 ̸∈ 𝑝 that has the

highest union-induced intercentrality when added to the union,

𝑖 = arg max
𝑗 ̸∈𝑝

𝜎𝑝
𝑗 .

Given a network with set of unions 𝑃 , the key addition will induce the highest
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increase in aggregate e�ort in the game when added to a given union. The key addition

to a single player 𝑖 ∈ 𝑆 is player 𝑗 ∈ 𝑆 with highest impact on the aggregate e�ort

when the union {𝑖, 𝑗} is formed. We call the union of these initially single players a

key union of two, when it induces the highest increase in total e�ort in the network

among all other possible pairs.

Definition 3.6. Assume a network 𝑔 with set of unions 𝑃 , such that there exists a set

of single players |𝑆| > 2. The key union with two players 𝑖, 𝑗 is the one that solves

max
𝑖,𝑗∈𝑆

𝜎
{𝑗}
𝑖 .

To generalize De�nition 3.6, we can �nd the key union of any size 𝑧 < |𝑆|, given a

network with initial set of unions 𝑃 including a set of single players 𝑆.

Definition 3.7. Assume a network 𝑔 with set of unions 𝑃 , such that there exists a

set of single players with |𝑆| > 𝑧. The key union of 𝑧 players 𝑖1, . . . , 𝑖𝑧 is the one that

solves

max
𝑖1,...,𝑖𝑧∈𝑆

𝜎
{𝑖1}
𝑖2

+ 𝜎
{𝑖1,𝑖2}
𝑖3

+ . . . + 𝜎
{𝑖1,...,𝑖𝑧−1}
𝑖𝑧

.

The above De�nitions 3.5, 3.6, 3.7 together suggest that the key addition to a given

union, which in turn is the key union of its' size 𝑧 < 𝑛, does not necessarily result in

key union of size 𝑧 + 1. This result is illustrated in the following example.

Example 3.6. Key Addition and Key Union

Consider the network in Figure 3.2 with one union in the set 𝑃 . Given an opportunity

to expand the union by one member we find the best member to add, the key addition.

Moreover, we can find the key union of a given size, that is, the union that provides

the highest total effort compared to other same-size unions.

In Example 3.5 we discussed the union 𝑝(1) consisting of players 1 and 2 in the

network. Following De�nition 3.5 we �nd player 𝑖 with the highest union-induced

intercentrality 𝜎
{1,2}
𝑖 , which is player 3 with 𝜎

{1,2}
3 = 6.91. By de�nition, this player

assures the highest possible increase in the aggregate e�ort when added to the union

{1, 2}, which is then equal to 25.32. Table 3.4 provides the aggregate e�orts and

union-induced intercentralities of players in 𝑆 from joining the union {1, 2}.
It is worth noting that the union of 1 and 2 is the key union of size two, since

it satis�es De�nition 3.6 with 𝜎
{2}
1 = 𝜎

{1}
2 = 3.60. We can acknowledge that when

gradually expanding the union size up to three members by �nding the key additions,
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players 1, 2 and 3 satisfy the following condition:

max
𝑖1,𝑖2

𝜎
{𝑖1}
𝑖2

+ max
𝑖3

𝜎
{𝑖*1,𝑖*2}
𝑖3

= 𝜎
{1}
2 + 𝜎

{1,2}
3 = 10.51.

On the other hand, given an opportunity to form a union of size three directly, one

can �nd the key union of size three that satis�es De�nition 3.7. By doing so, we �nd

that players 2, 3 and 4 form the union of the size with highest aggregate e�ort:

max
𝑖1,𝑖2,𝑖3

(𝜎
{𝑖1}
𝑖2

+ 𝜎
{𝑖1,𝑖2}
𝑖3

) = 𝜎
{3}
2 + 𝜎

{2,3}
4 = 𝜎

{4}
2 + 𝜎

{2,4}
3 = 𝜎

{4}
3 + 𝜎

{3,4}
2 = 11.19.

Indeed, the aggregate e�ort in the network game with union {2, 3, 4} is 25.99 which

exceeds the ℬ = 25.32 of the game with the union {1, 2, 3}. Thus, the key union of

size 3 is the union {2, 3, 4}.

Table 3.4: Union-induced intercentralities of players 𝑖 ∈ {3, ..., 11} and the aggregate efforts

in the network with a union {1, 2, 𝑖} in Figure 3.2, Example 3.6.

Player 𝑖 Union ℬ 𝜎
{1,2}
𝑖

{1, 2} 18.41
3 {1, 2, 3} 25.32 6.91
4 {1, 2, 4} 25.05 6.65
5 {1, 2, 5} 24.54 6.14
6 {1, 2, 6} 24.22 5.81
7 {1, 2, 7} 23.21 4.81
8 {1, 2, 8} 22.82 4.41
9 {1, 2, 9} 24.49 6.08
10 {1, 2, 10} 23.45 5.04
11 {1, 2, 11} 23.93 5.52

Example 3.7. Union {1, 2, 3, 4, 5}
Consider now the union of players {1, 2, 3, 4, 5}, with the rest being single players in

the network.

As shown in Table 3.3, the negative key player of the game is player 6. The positive

externalities from the neighboring union increase the incentives of player 6 to free-ride,

increasing the con�ict between the neighbors. Moreover, the union intercentrality of

player 6 is negative. That is, removing player 6 from the network will increase the

aggregate e�ort in the population. On the contrary, the union-induced intercentrality

of player 6 is the highest among other single players (see Table 3.5). The latter means
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that, while removing the player from the network would increase the aggregate e�ort

to 60.34, adding the player to the union {1, 2, 3, 4, 5} will increase it even more.

Table 3.5: Union-induced intercentralities of players 𝑖 ∈ {6, ..., 11} and the aggregate efforts

in the network with a union {1, 2, 3, 4, 5, 𝑖} in Figure 3.2, Example 3.7.

Player 𝑖 Union ℬ 𝜎
{1,2,3,4,5}
𝑖

{1, 2, 3, 4, 5} 52.6
6 {1, 2, 3, 4, 5, 6} 72.95 20.35
7 {1, 2, 3, 4, 5, 7} 64.26 11.66
8 {1, 2, 3, 4, 5, 8} 63.69 11.09
9 {1, 2, 3, 4, 5, 9} 68.7 16.1
10 {1, 2, 3, 4, 5, 10} 65.57 12.97
11 {1, 2, 3, 4, 5, 11} 66.28 13.68

In the example of virus transmission, with the e�orts in vaccination and precau-

tionary measures, such as social distancing or wearing masks, one may think of a group

of individuals connected in a network similar to one in Figure 3.2. People bene�t from

being surrounded by others that put high e�orts in preventive measures and vaccina-

tion. This positive spillovers result in relative safety against the infection and may

reduce the incentives of an individual to vaccinate when considering the individualistic

approach of player's utility maximization, such as in case of player 6 in Example 3.7.

Moreover, such behavior can a�ect the aggregated outcomes in the network negatively.

On the contrary, consideration of the joint bene�t in �ghting the virus, mitigates the

free-riding incentives, increasing the e�orts in the network through spillovers.

3.4 Conclusions

Social interactions and the structure of social networks have an important role in

economic outcomes. The e�ect of local interactions had been studied in various settings,

such as education, criminal networks or pro-environmental behavior. Recent works on

network games have also studied the interplay of conformism or miscoordination with

the social norm, and preference for consistency with personal ideal behavior (Olcina

et al. (2017), Galeotti et al. (2021)). In this paper, we study a network game where the

social in�uence and the preference for consistency a�ect the e�ort choice of the players

through spillovers from the network, con�ict with neighbors, and a private dissonance

from inconsistency with own ideals. We further generalize the model by de�ning unions

in the network.
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In the network of single players, the players choose their e�orts based on the return

on their own e�ort, as well as the e�orts of their network neighbors and the overall

performance in the game, the global spillovers. They experience disutility from the

di�erences in behavior with their neighbors and when the e�ort is inconsistent with

their ideal e�ort resulting private dissonance. We �nd that the equilibrium e�orts of

the network game are proportional to the weighted Katz-Bonacich centralities of the

players. We show that the personal characteristics of the player, such as idiosyncratic

return and ideal e�ort, a�ect her intercentrality, together with the position in the

network. Therefore, we rede�ne the problem of �nding the key players in the network.

Using the idea of interest group formation and collective action we extend the net-

work game, allowing for unions in the network that work towards achieving a common

objective. Similar to cartels, the players in a union maximize their joint utility. We

characterize the Nash equilibrium of the network game with unions and �nd the key

players. The contribution of the player to the aggregate e�ort in the network with

unions is complemented by the union e�ect. Accordingly, we introduce union inter-

centrality as a measure capturing the key players in the network with unions. We show

that the characterized Nash equilibria, union intercentrality, and the problem of �nd-

ing the key players in the network with unions are generalizations of the corresponding

de�nitions of the game with single players only discussed in Section 3.2. We discuss

policies to increase the total e�ort in the population of players by forming unions of

a �xed size, and by adding players to a given union. To do so, union-induced inter-

centrality is de�ned in order to �nd the key addition to a union, and the key union

of a given size is de�ned as the union ensuring the highest increase in the aggregate

e�ort. We show on an example that while the key-player policies target the removal of

the negative key player from the network, the union formation approach suggests that

adding such player to a given union may have a stronger e�ect on the collective out-

comes in the population. The study of the unions in the network allows us to �nd the

best outcomes for the aggregate e�ort in the games where cooperation is possible. Yet,

the union stability and welfare analysis with consideration of a fair utility allocation

rule is left for future research.
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Appendix 3.A Proofs

Proof of Proposition 3.1. Given 𝑥*
𝑖 is the optimal e�ort choice for 𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖

(𝑥*
𝑖 ) ≡ 0

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑖

= 𝜆1𝜃𝑖 + 𝜆2𝜃𝑖
∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗 − 𝜔1

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗(𝑥𝑖 − 𝑥𝑗) − 𝜔2𝑥𝑖 − 𝜔3(𝑥𝑖 − 𝑦𝑖) =

= 𝜆1𝜃𝑖 + 𝜆2𝜃𝑖
∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗 − 𝜔1𝑥𝑖

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗⏟  ⏞  
=1

+𝜔1

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗 − 𝜔2𝑥𝑖 − 𝜔3𝑥𝑖 + 𝜔3𝑦𝑖 =

= 𝜆1𝜃𝑖 + 𝜔3𝑦𝑖 + (𝜆2𝜃𝑖 + 𝜔1)
∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗 − (𝜔1 + 𝜔2 + 𝜔3)𝑥𝑖

Thus the equilibrium e�ort choice of 𝑖 is:

𝑥*
𝑖 =

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖
(𝜔1 + 𝜔2 + 𝜔3)

+
𝜆2𝜃𝑖 + 𝜔1

(𝜔1 + 𝜔2 + 𝜔3)

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗,

for all 𝑖 ∈ 𝑁 . We can rewrite it as:

𝑥*
𝑖 = 𝛼𝑖 + 𝜑𝑖

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗, (3.10)

where 𝛼𝑖 and 𝜑𝑖 are de�ned in (3.2).

Matrix form solution of the equilibrium e�orts is the following:

x = 𝛼 + 𝜑⊗G*x ⇔ (I− 𝜑⊗G*)x = 𝛼 ⇔

x = (I− 𝜑⊗G*)−1𝛼
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Proof of Proposition 3.2.

ℬ(G*,𝜑,𝛼) − ℬ(G*−𝑖,𝜑−𝑖,𝛼−𝑖)

=
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁

(𝑚𝑗𝑘𝛼𝑘 −𝑚−𝑖
𝑗𝑘𝛼

−𝑖
𝑘 )

=
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁

(𝑚𝑗𝑘𝛼𝑘 −𝑚−𝑖
𝑗𝑘𝛼𝑘 + 𝑚−𝑖

𝑗𝑘𝛼𝑘 −𝑚−𝑖
𝑗𝑘𝛼

−𝑖
𝑘 )

=
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁

(𝑚𝑗𝑘 −𝑚−𝑖
𝑗𝑘 )⏟  ⏞  

* Lemma 3.4

𝛼𝑘 +
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁

𝑚−𝑖
𝑗𝑘 (𝛼𝑘 − 𝛼−𝑖

𝑘 )⏟  ⏞  
=0

=
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁

𝑚𝑗𝑖𝑚𝑖𝑘

𝑚𝑖𝑖

𝛼𝑘 =
∑︁
𝑗∈𝑁

𝑚𝑗𝑖

𝑚𝑖𝑖

∑︁
𝑘∈𝑁

𝑚𝑖𝑘𝛼𝑘

=
𝑏𝑖(G

*,𝜑,𝛼)

𝑚𝑖𝑖

∑︁
𝑗∈𝑁

𝑚𝑗𝑖 = 𝛿𝑖(G
*,𝜑,𝛼)

* with Φ(𝑔) = [𝜑⊗G*] in Lemma 3.4.

Lemma 3.4 (Adaptation of Lemma 1 in Ballester et al. (2006)). Let 𝑀 (Φ(𝑔)) = [I−
Φ(𝑔)]−1 be well defined and nonnegative. Then𝑚𝑗𝑖(Φ(𝑔))𝑚𝑖𝑘(Φ(𝑔)) = 𝑚𝑖𝑖(Φ(𝑔))[𝑚𝑗𝑘(Φ(𝑔))−
𝑚𝑗𝑘(Φ(𝑔−𝑖))] for all 𝑘 ̸= 𝑖 ̸= 𝑗.

Proof. Let 𝑓𝑖𝑗 with 𝑖, 𝑗 ∈ 𝑁 , be the elements of the matrixΦ(𝑔) de�ned on the weighted

adjacency matrix of the network 𝑔, and similarly 𝑓−𝑖
𝑘𝑗 the elements of the matrix Φ(𝑔−𝑖)

de�ned on the weighted adjacency matrix of the network 𝑔−𝑖 formed by removing player

𝑖 from 𝑔.

𝑚𝑖𝑖(Φ(𝑔))[𝑚𝑗𝑘(Φ(𝑔)) −𝑚𝑗𝑘(Φ(𝑔−𝑖))] =
∞∑︁
𝑠=1

𝑓
[𝑠]
𝑖𝑖

∞∑︁
𝑟=0

(︁
𝑓
[𝑟]
𝑗𝑘 − 𝑓

−𝑖[𝑟]
𝑗𝑘

)︁
=

=
∞∑︁
𝑠=1

𝑓
[𝑠]
𝑖𝑖

∞∑︁
𝑟=0

𝑓
[𝑟]
𝑗(𝑖)𝑘 =

∞∑︁
𝑠=1

∞∑︁
𝑟=0

𝑓
[𝑠]
𝑖𝑖 𝑓

[𝑟]
𝑗(𝑖)𝑘

=
∞∑︁
𝑠=1
𝑠′≥1

∞∑︁
𝑟=0
𝑟′≥1

𝑓
[𝑟−𝑟′]
𝑗𝑖 𝑓

[𝑠−𝑠′]
𝑖𝑖 𝑓

[𝑠′]
𝑖𝑖 𝑓

[𝑟′]
𝑖𝑘

=
∞∑︁
𝑝=1

∑︁
𝑝′≥1

𝑓
[𝑝−𝑝′]
𝑗𝑖 𝑓

[𝑝′]
𝑖𝑘 = 𝑚𝑗𝑖𝑚𝑖𝑘

where 𝑓
[𝑟]
𝑗(𝑖)𝑘 is the weighted number of the 𝑟-step paths from 𝑗 to 𝑘 passing throught

the node 𝑖, it is the (𝑖, 𝑗)th element of the 𝑟-power of matrix Φ(𝑔) associated to the

Bonacich centrality of player 𝑗.
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Proof of Proposition 3.3. We �rst �nd the best response of player 𝑖 ∈ 𝑝(𝑖) for any

𝑝(𝑖) ∈ 𝑃 from the �rst order conditions on the joint utility in (3.5).

𝜕𝑈𝑝(𝑖)(𝑥)

𝜕𝑥𝑖

=𝜆1𝜃𝑖 + 𝜔3𝑦𝑖 + (𝜆2𝜃𝑖 + 𝜔1)
∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘 − (𝜔1 + 𝜔2 + 𝜔3)𝑥𝑖+

+
∑︁

𝑗∈𝑝(𝑖)∖𝑖

(︁
𝜆1𝜃𝑗 + (𝜆2𝜃𝑗 + 𝜔1)𝑔

*
𝑗𝑖𝑥𝑗 + 𝜔1𝑔

*
𝑗𝑖𝑥𝑖

)︁
=

=𝜆1

∑︁
𝑗∈𝑝(𝑖)

𝜃𝑗 + 𝜔3𝑦𝑖 + (𝜆2𝜃𝑖 + 𝜔1)
∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘 +
∑︁

𝑗∈𝑝(𝑖)∖𝑖

(𝜆2𝜃𝑗 + 𝜔1)𝑔
*
𝑗𝑖𝑥𝑗+

− (𝜔1(1 +
∑︁

𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖) + 𝜔2 + 𝜔3)𝑥𝑖

𝜕𝑈𝑝(𝑖)(𝑥)

𝜕𝑥𝑖

≡ 0

(𝜔1(1+
∑︁

𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖)+𝜔2+𝜔3)𝑥
*
𝑖 = 𝜆1

∑︁
𝑗∈𝑝(𝑖)

𝜃𝑗+𝜔3𝑦𝑖+(𝜆2𝜃𝑖+𝜔1)
∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘+
∑︁

𝑗∈𝑝(𝑖)∖𝑖

(𝜆2𝜃𝑗+𝜔1)𝑔
*
𝑗𝑖𝑥𝑗

Using the notations introduced in equations (3.6) and (3.7), 𝑥*
𝑖 becomes:

𝑥*
𝑖 =

𝜆1Θ𝑖 + 𝜔3𝑦𝑖
Ω𝑖

+
(𝜆2𝜃𝑖 + 𝜔1)

Ω𝑖

∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘 +
∑︁

𝑗∈𝑝(𝑖)∖𝑖

𝜆2𝜃𝑗 + 𝜔1

Ω𝑖

𝑔*𝑗𝑖𝑥𝑗

𝑥*
𝑖 = 𝛼𝑖 + 𝜑𝑖

∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘 +
∑︁

𝑗∈𝑝(𝑖)∖𝑖

𝛾𝑖𝑗𝑔
*
𝑗𝑖𝑥𝑗

𝑥*
𝑖 = 𝛼𝑖 + 𝜑𝑖

∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘 +
∑︁
𝑘∈𝑁

ℎ𝑖𝑘𝑥𝑘 (3.11)

With the following matrix form representation.

x = 𝛼 + [𝜑⊗G*]x + Hx ⇔ (I− [𝜑⊗G*] −H)x = 𝛼 ⇔

x = (I− [𝜑⊗G*] −H)−1𝛼

Note, that when 𝑝(𝑖) = {𝑖} equation (3.11) is equivalent to (3.10), and as a conse-

quence equation (3.4) is equivalent to (3.8).

Proof of Proposition 3.4. Let 𝑣 =
(︁

𝜕𝑥1

𝜕𝑥𝑖
, . . . , 𝜕𝑥𝑛

𝜕𝑥𝑖

)︁
denote the vector of derivatives of

the e�ort of the players with respect to 𝑥𝑖. From x = 𝛼 + [𝜑⊗G* + H]x and the fact

that 𝛼 and 𝜑 are independent from 𝑥𝑖, it follows v = [𝜑 ⊗ G* + H]v. Solving for 𝑣
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yields: v = (I− [𝜑⊗G*] −H)−11 where 1 is 𝑛× 1 vector of 1's.

Under our assumption that the spectral radius of [𝜑⊗G*] + H is smaller than 1, the

matrix (I− [𝜑⊗G*] −H)−1 is non-negative. It then follows that the entries of 𝑣 are

also non-negative.

Proof of Lemma 3.2. To avoid confusion in notations let's name the parameters in (3.2)

as 𝛼𝑆
𝑖 and 𝜑𝑆

𝑖 , to indicate the respective parameters of a single player 𝑖 ∈ 𝑆. The best

response of the player in the network without unions is then:

𝑥𝑆
𝑖 = 𝛼𝑆

𝑖 + 𝜑𝑆
𝑖

∑︁
𝑗∈𝑁

𝑔*𝑖𝑗𝑥𝑗.

Recall the best response of the player in the network with set of unions 𝑃 with

𝑖 ∈ 𝑝(𝑖):

𝑥𝑖 = 𝛼𝑖 + 𝜑𝑖

∑︁
𝑘∈𝑁

𝑔*𝑖𝑘𝑥𝑘 +
∑︁
𝑘∈𝑁

𝛾𝑖𝑘𝑔
*
𝑘𝑖𝑥𝑘.

We can derive su�cient conditions to ensure 𝑥𝑖 ≥ 𝑥𝑆
𝑖 using the two steps below.

Step 1: Find the conditions for 𝜑𝑆
𝑖 𝑔

*
𝑖𝑘 ≤ 𝜑𝑖𝑔

*
𝑖𝑘 + 𝛾𝑖𝑘𝑔

*
𝑘𝑖 for all 𝑘 ∈ 𝑝(𝑖) ∖ 𝑖.

𝜆2𝜃𝑖 + 𝜔1

𝜔1 + 𝜔2 + 𝜔3

𝑔*𝑖𝑘 ≤
𝜆2𝜃𝑖 + 𝜔1

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝑔*𝑖𝑘 +
𝜆2𝜃𝑘 + 𝜔1

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝑔*𝑘𝑖

𝜆2𝜃𝑖 + 𝜔1

𝜔1 + 𝜔2 + 𝜔3

𝑔*𝑖𝑘 −
𝜆2𝜃𝑖 + 𝜔1

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝑔*𝑖𝑘 ≤
𝜆2𝜃𝑘 + 𝜔1

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝑔*𝑘𝑖

(𝜆2𝜃𝑖 + 𝜔1)𝑔
*
𝑖𝑘

(𝜔1 + 𝜔2 + 𝜔3)

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

(𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3)

≤ 𝜆2𝜃𝑘 + 𝜔1

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝑔*𝑘𝑖

𝜆2𝜃𝑖 + 𝜔1

𝜔1 + 𝜔2 + 𝜔3

𝑔*𝑖𝑘𝜔1

∑︁
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖 ≤ (𝜆2𝜃𝑘 + 𝜔1)𝑔
*
𝑘𝑖
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𝜆2𝜃𝑖 + 𝜔1

𝜔1 + 𝜔2 + 𝜔3

≤ 𝜆2𝜃𝑘 + 𝜔1

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝑔*𝑘𝑖
𝑔*𝑖𝑘

𝜑𝑆
𝑖 ≤ 𝜆2𝜃𝑗 + 𝜔1

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝑔*𝑘𝑖
𝑔*𝑖𝑘

Restructuring the condition above we get:

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝜔1 + 𝜔2 + 𝜔3

≤ (𝜆2𝜃𝑘 + 𝜔1)𝑔
*
𝑘𝑖

(𝜆2𝜃𝑖 + 𝜔1)𝑔*𝑖𝑘

Step 2: Find the condition for 𝛼𝑆
𝑖 ≤ 𝛼𝑖 for all 𝑖 ∈ 𝑁 ∖ 𝑆

𝛼𝑆
𝑖 ≤ 𝛼𝑖

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖
𝜔1 + 𝜔2 + 𝜔3

≤
𝜆1

∑︀
𝑗∈𝑝(𝑖)

𝜃𝑗 + 𝜔3𝑦𝑖

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖
𝜔1 + 𝜔2 + 𝜔3

≤
𝜆1𝜃𝑖 + 𝜔3𝑦𝑖 + 𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖
𝜔1 + 𝜔2 + 𝜔3

− 𝜆1𝜃𝑖 + 𝜔3𝑦𝑖
𝜔1(1 +

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

≤
𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

(𝜆1𝜃𝑖 + 𝜔3𝑦𝑖)

(𝜔1 + 𝜔2 + 𝜔3)

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

(𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3)

≤
𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜔1(1 +
∑︀

𝑗∈𝑝(𝑖)∖𝑖
𝑔*𝑗𝑖) + 𝜔2 + 𝜔3

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖
𝜔1 + 𝜔2 + 𝜔3

≤
𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝛼𝑆
𝑖 ≤

𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖
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Restructuring this condition we have the following:

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝜔1 + 𝜔2 + 𝜔3

≤
𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖

Using the conditions derived in the steps above we can conclude that the participation

in the union 𝑝(𝑖) increases the e�ort of player 𝑖 with respect to her e�ort as a single

player if:

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝜔1 + 𝜔2 + 𝜔3

≤ (𝜆2𝜃𝑘 + 𝜔1)𝑔
*
𝑘𝑖

(𝜆2𝜃𝑖 + 𝜔1)𝑔*𝑖𝑘
, for all 𝑘 ∈ 𝑝(𝑖) ∖ 𝑖, and

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝜔1 + 𝜔2 + 𝜔3

≤
𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖
.

To simplify, assume player 𝑙 ∈ 𝑝(𝑖) ∖ 𝑖 is the player that solves the following problem:

𝑙 = arg min
𝑘∈𝑝(𝑖)∖𝑖

(𝜆2𝜃𝑘 + 𝜔1)
𝑔*𝑘𝑖
𝑔*𝑖𝑘

Combining the two conditions we have that, for a given set of unions 𝑃 and a player

𝑖 ∈ 𝑝(𝑖), for 𝑥𝑖 ≥ 𝑥𝑆
𝑖 it is su�cient to have the following condition hold:

𝜔1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝑔*𝑗𝑖

𝜔1 + 𝜔2 + 𝜔3

≤ min

⎧⎪⎨⎪⎩(𝜆2𝜃𝑙 + 𝜔1)𝑔
*
𝑙𝑖

(𝜆2𝜃𝑖 + 𝜔1)𝑔*𝑖𝑙
,

𝜆1

∑︀
𝑗∈𝑝(𝑖)∖𝑖

𝜃𝑗

𝜆1𝜃𝑖 + 𝜔3𝑦𝑖

⎫⎪⎬⎪⎭
The aggregate e�ort in the network increases with the formation of unions in 𝑃 if the

su�cient condition above is satis�ed for all 𝑖 ∈ 𝑁 ∖ 𝑆.
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Proof of Proposition 3.5.

𝛿𝑖,𝑃 (G*,H,𝜑,𝛼) = ℬ(G*,H,𝜑,𝛼) − ℬ(G*−𝑖,H−𝑖,𝜑−𝑖,𝛼−𝑖)

=
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁

(𝑚𝑗𝑘𝛼𝑘 −𝑚−𝑖
𝑗𝑘𝛼

−𝑖
𝑘 )

(*1)
=
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁∖𝑝(𝑖)

(𝑚𝑗𝑘 −𝑚−𝑖
𝑗𝑘 )𝛼𝑘 +

∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑝(𝑖)
𝑘 ̸=𝑖

(𝑚𝑗𝑘𝛼𝑘 −𝑚−𝑖
𝑗𝑘𝛼𝑘 + 𝑚−𝑖

𝑗𝑘𝛼𝑘 −𝑚−𝑖
𝑗𝑘𝛼

−𝑖
𝑘 ) +

∑︁
𝑗∈𝑁

𝑚𝑗𝑖𝛼𝑖

=
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁∖𝑖

(𝑚𝑗𝑘 −𝑚−𝑖
𝑗𝑘 )𝛼𝑘 +

∑︁
𝑗∈𝑁

𝑚𝑗𝑖𝛼𝑖 +
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑝(𝑖)
𝑘 ̸=𝑖

𝑚−𝑖
𝑗𝑘 (𝛼𝑘 − 𝛼−𝑖

𝑘 )

(*2)
=

𝑏𝑖(G
*,H,𝜑,𝛼)

𝑚𝑖𝑖

∑︁
𝑗∈𝑁

𝑚𝑗𝑖 +
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑝(𝑖)
𝑘 ̸=𝑖

𝑚−𝑖
𝑗𝑘 (𝛼𝑘 − 𝛼−𝑖

𝑘 )

With:

(*1) : 𝛼𝑘 = 𝛼−𝑖
𝑘 ∀ 𝑘 ̸∈ 𝑝(𝑖)

(*2) :
∑︁
𝑗∈𝑁

∑︁
𝑘∈𝑁∖𝑖

(𝑚𝑗𝑘 −𝑚−𝑖
𝑗𝑘 )𝛼𝑘 +

∑︁
𝑗∈𝑁

𝑚𝑗𝑖𝛼𝑖

=
∑︁
𝑗∈𝑁

𝑏𝑗(G
*,H,𝜑,𝛼) −

∑︁
𝑗∈𝑁∖𝑖

𝑏𝑗(G
*−𝑖,H−𝑖,𝜑−𝑖,𝛼)

= 𝑏𝑖(G
*,H,𝜑,𝛼) +

∑︁
𝑗∈𝑁∖𝑖

𝑏𝑗(G
*,H,𝜑,𝛼) −

∑︁
𝑗∈𝑁∖𝑖

𝑏𝑗(G
*−𝑖,H−𝑖,𝜑−𝑖,𝛼)

= 𝑏𝑖(G
*,H,𝜑,𝛼) +

∑︁
𝑗∈𝑁∖𝑖

∑︁
𝑘∈𝑁

(𝑚𝑗𝑘𝛼𝑘 −𝑚−𝑖
𝑗𝑘𝛼𝑘)

(*2𝐴)
= 𝑏𝑖(G

*,H,𝜑,𝛼) +
∑︁
𝑗∈𝑁∖𝑖

∑︁
𝑘∈𝑁

𝑚𝑗𝑖𝑚𝑖𝑘

𝑚𝑖𝑖

𝛼𝑘

(*2𝐵)
= 𝑏𝑖(G

*,H,𝜑,𝛼) + 𝑏𝑖(G
*,H,𝜑,𝛼)

∑︁
𝑗∈𝑁∖𝑖

𝑚𝑗𝑖

𝑚𝑖𝑖

= 𝑏𝑖(G
*,H,𝜑,𝛼)(1 +

∑︁
𝑗∈𝑁∖𝑖

𝑚𝑗𝑖

𝑚𝑖𝑖

)

= 𝑏𝑖(G
*,H,𝜑,𝛼)(

𝑚𝑖𝑖

𝑚𝑖𝑖

+
∑︁
𝑗∈𝑁∖𝑖

𝑚𝑗𝑖

𝑚𝑖𝑖

)

= 𝑏𝑖(G
*,H,𝜑,𝛼)

∑︁
𝑗∈𝑁

𝑚𝑗𝑖

𝑚𝑖𝑖
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(*2𝐴) : Lemma 3.4 withΦ(𝑔) = [𝜑⊗G*] + H

(*2𝐵) :
∑︁
𝑗∈𝑁∖𝑖

∑︁
𝑘∈𝑁

𝑚𝑗𝑖𝑚𝑖𝑘

𝑚𝑖𝑖

𝛼𝑘

=
∑︁
𝑗∈𝑁∖𝑖

⎛⎝𝑚𝑗𝑖𝑚𝑖𝑖

𝑚𝑖𝑖

𝛼𝑖 +
∑︁
𝑘∈𝑁∖𝑖

𝑚𝑗𝑖𝑚𝑖𝑘

𝑚𝑖𝑖

𝛼𝑘

⎞⎠
=
∑︁
𝑗∈𝑁∖𝑖

𝑚𝑗𝑖

𝑚𝑖𝑖

⎛⎝𝑚𝑖𝑖𝛼𝑖 +
∑︁
𝑘∈𝑁∖𝑖

𝑚𝑖𝑘𝛼𝑘

⎞⎠
=
∑︁
𝑗∈𝑁∖𝑖

𝑚𝑗𝑖

𝑚𝑖𝑖

𝑏𝑖(G
*,H,𝜑,𝛼)

Proof of Proposition 3.6.

ℬ(G*,H𝑖∈𝑝,𝜑𝑖∈𝑝,𝛼𝑖∈𝑝) − ℬ(G*,H𝑖∈𝑆,𝜑𝑖∈𝑆,𝛼𝑖∈𝑆)

= ℬ(G*,H𝑖∈𝑝,𝜑𝑖∈𝑝,𝛼𝑖∈𝑝) − ℬ(G*−𝑖,H−𝑖
𝑖∈𝑝,𝜑

−𝑖
𝑖∈𝑝,𝛼

−𝑖
𝑖∈𝑝)

+ ℬ(G*−𝑖,H−𝑖
𝑖∈𝑝,𝜑

−𝑖
𝑖∈𝑝,𝛼

−𝑖
𝑖∈𝑝) − ℬ(G*,H𝑖∈𝑆,𝜑𝑖∈𝑆,𝛼𝑖∈𝑆)

= ℬ(G*,H𝑖∈𝑝,𝜑𝑖∈𝑝,𝛼𝑖∈𝑝) − ℬ(G*−𝑖,H−𝑖
𝑖∈𝑝,𝜑

−𝑖
𝑖∈𝑝,𝛼

−𝑖
𝑖∈𝑝)

−
(︀
ℬ(G*,H𝑖∈𝑆,𝜑𝑖∈𝑆,𝛼𝑖∈𝑆) − ℬ(G*−𝑖,H−𝑖

𝑖∈𝑝,𝜑
−𝑖
𝑖∈𝑝,𝛼

−𝑖
𝑖∈𝑝)
)︀

= 𝛿𝑖,𝑃 (G*,H𝑖∈𝑝,𝜑𝑖∈𝑝,𝛼𝑖∈𝑝) − 𝛿𝑖,𝑃 (G*,H𝑖∈𝑆,𝜑𝑖∈𝑆,𝛼𝑖∈𝑆)
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