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Dear Reader,

After two years of operation, we would 

like to use this opportunity to give an 

overview of the activities that were 

concentrated and extended at Bielefeld 

University in the area of bioinformatics 

services and training within the Biele-

feld Institute for Bioinformatics Infra-

structure (BIBI).

The institute was founded in summer 

2019 and slightly restructured in spring 

2021. It pools the bioinformatics ser-

vice and training activities at Bielefeld 

University. The goal is to create, to-

gether with ZB MED – Information Cen-

ter for Life Sciences in Köln and Bonn, 

a powerful institute offering research 

infrastructure for all areas in the digital 

life sciences. At the same time original 

research is carried out – mostly in coop-

eration with other national and interna-

tional partners and often with the goal 

to evaluate and improve existing bioin-

formatics services. More background 

about the history and mission of the in-

stitute can be found in the notes by Prof. 

Dr. Alfred Pühler and Prof. Dr. Dietrich  

Rebholz-Schuhmann in this booklet.

The institute comprises three scientif-

ic units, of which two are currently in 

operation. Yet to be set into function 

is the unit for Service Science in the 

Life Sciences, when the professorship 

with the same denomination will be 

filled. The other two scientific units, 

Cloud Computing headed by Prof. Dr.  

Alexander Sczyrba and Microbial Anal-

yses and Services headed by Prof. Dr. 

Alexander Schönhuth, are present-

ed in this brochure by two dedicated 

sections.

The fourth unit of BIBI is the graduate 

school Digital Infrastructure for the 

Life Sciences (DILS), coordinated by  

Dr. Roland Wittler. It contributes both to 

the educational aspect, and also to the 

research profile of BIBI. By training data 

scientists with a focus on the develop-

ment of new bioinformatics methods, 

the graduate school supports the insti-

tute in establishing the young research 

profile "Service Science in the Life Sci-

ences" at an international level. Select-

ed PhD projects currently ongoing in 

the DILS graduate school are presented 

in the third section of this booklet.

The authors of this brochure now wish 

all readers an interesting reading.

November 2021

Prof. Dr. Jens Stoye

Graduate SchoolService Science  
in the Life Sciences

Bielefeld Institute for Bioinformatics Infrastructure 

Cloud Computing Microbial Analyses 
and Services

Editorial
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2018 2019

The process of 
establishing BIBI
The process of 
establishing BIBI

er with the Information Centre for Life 

Sciences (ZB MED) in Cologne, into the 

Leibniz Association. This approach 

was taken from 2018 onwards. First, a 

cooperation agreement was signed be-

tween Bielefeld University and ZB MED. 

Subsequently, the BIBI institute was 

founded, whose administrative and 

user regulations (VBO) came into force 

in 2019. The BIBI institute is headed by 

Jens Stoye and consisted of a total of 

six areas when it was founded. Two of 

these areas were dedicated to the ad-

ministration and coordination offices 

of the de.NBI network and the German 

ELIXIR node. In addition, areas for cloud 

computing, microbial bioinformatics 

and graduate training were also estab-

lished. The sixth area was planned as 

The impulse to found the BIBI institute 

came from the German Network for 

Bioinformatics Infrastructure (de.NBI). 

The de.NBI network is a large-scale 

BMBF project that was initiated in 2015 

and has since been successfully in-

volved in developing a bioinformatics 

infrastructure. Since BMBF projects 

are generally time-limited, a sustain-

able continuation of the de.NBI network 

was considered from the beginning. A 

first approach was to make the network 

permanent in the frame of the Leibniz 

Association. To this end, plans were 

developed to combine the Bielefeld  

parts of the de.NBI network in a “Biele-

feld Institute for Bioinformatics Infra-

structure” (BIBI) and to follow the plan 

to integrate the BIBI institute, togeth-

an area for service science in the life 

sciences for the head of the BIBI insti-

tute to be newly appointed. With the 

establishment of the BIBI institute, all 

the prerequisites have been provided to 

strive for the sustainable continuation 

of the de.NBI network together with 

ZB MED via the Leibniz track. At the end 

of 2020, however, this plan was funda-

mentally changed. At the political level, 

it was decided that the continuation of 

the de.NBI network should take place 

within the framework of the Helmholtz 

Association. The Forschungszentrum 

Jülich (FZJ) was given the task and also 

the financial support to take the de.NBI 

continuation into its hands. This devel-

opment obviously had an impact on the 

BIBI institute. The de.NBI components 

1 Jun 2019 
Coming into force of the 
Administrative and User 
Regulations (VBO) 
of the BIBI institute

20 Jun 2018 
Signing of the 
Cooperation Agreement 
by Bielefeld University and 
ZB MED

29 Oct 2018 
Announcement of the 
joint W3-Professorship 
for “Service Science in the 
Life Sciences”

Alfred Pühler; Bielefeld University, Bielefeld
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2020 2021

Prof. Dr. Alfred Pühler 
Coordinator of the de.NBI network

The process of establishing BIBI

of the BIBI institute were removed. 

However, the modified BIBI Institute, 

with its areas of service science, cloud 

computing, microbial bioinformatics 

and graduate training, was still highly 

topical and so future-oriented that the 

plan to join the Leibniz Association to-

gether with ZB MED could be continued. 

Incidentally, the structure of the mod-

ified BIBI institute was laid down in an 

amended VBO, which already came into 

force on 3 May 2021.

3 May 2021 
Publication of the 
modified VBO 
of the BIBI institute

13 Aug 2019 
Selection meeting for filling 
graduate positions at 
Bielefeld University
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ZB MED/BIBI:
A strategic alliance
Dietrich Rebholz-Schuhmann; ZB MED, Cologne

Figure 1: The alliance of ZB MED (orange level) 
and BIBI (blue level) introduces numerous new 
services and extends existing services (grey 
level) by linking content, data science, cloud 
computing, and extending the target groups. In 
this way, ZB MED and BIBI jointly campaign for 
open science in the life sciences.

The Information Centre for Life Scienc-

es (ZB MED) in Cologne follows a long 

tradition of licensing and delivering 

scientific journal articles and scholarly 

books to researchers in Medicine, agri-

cultural sciences (subsidiary located at 

the University of Bonn) and life scienc-

es in general. The transformation of the 

scientific journals towards digital and 

open access publications and in the 

same way in recent years for scholar-

ly books have changed the community 

involvement of ZB MED and is leading 

to a portfolio of services that support 

digital delivery of content. These de-

velopments are well aligned with the 

collection and delivery of digital data 

from the scientific community to the 

scientific community, which requires 

an IT Infrastructure and forms the next 

generation of information delivery.

The Bielefeld Institute for Bioinformat-

ics Infrastructure (BIBI) and ZB MED in 

Cologne form a strategic alliance, since 

both institutes deliver IT services into 

the scientific community in the life 

sciences and provide complementary 

solutions that complete each other’s 

portfolio of solutions. Whereas ZB MED 

is focused on the delivery of content, 

BIBI advances cloud-based analyti-

cal solutions for the life sciences that 

8
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new services: bioinformatics compute 

solutions, cloud computing, data sci-

ence training, and the graduate school  

“Digital Infrastructure for the Life Sci-

ences” (DILS).

Powerful Alliance for the 
Life Sciences

ZB MED supports the scientific 
communities with data, infor-
mation and literature, and BIBI 
offers cloud-based compute 
services. Both complement one 
another in their mission. 

Key Elements of the Strategic Alliance

	• October 2018: Cooperation agreement of ZB MED and 
Bielefeld University on joint development of informa-
tion services for the life sciences

	• August 2019: Foundation of the graduate school “Digital 
Infrastructure for the Life Sciences” (DILS) at BIBI in 
cooperation with ZB MED

	• Since 2019: Hosting joint scientific workshops 
 

 

	• 2020: Developing a joint strategy: “ ZB MED/BIBI 2020-
2025: Supporting humans and environment by research 
and infrastructure”

	• Since 2020: Joint supervision of the first doctoral 
students at the graduate school DILS

	• 2021: First DILS retreat with PhD students and faculty 
members from both institutions

Prof. Dr. Dietrich Rebholz-Schuhmann, 
Scientific director of ZB MED 
Source: ZB MED

ZB MED/BIBI: A strategic alliance

can make efficient use of the content 

available at ZB MED. Both make use of 

large-scale IT infrastructure, howev-

er ZB MED enriches its content with 

semantics technologies whereas BIBI 

analyses large sets of OMICS data, e.g., 

for biomedical research. 

Researchers from BIBI and ZB MED 

are well established in the life sci-

ence research community, in bioin-

formatics as well as medical infor-

matics and agricultural research. 

 

Scientifically they can cover the full 

range of computer science, bioinfor-

matics, medical informatics, semantics 

technologies, e.g., generation and use 

of terminologies and ontologies, and 

machine learning (including deep learn-

ing and AI). Together they provide solu-

tions that cover the complete research 

life cycle of life science research: a 

unique combination of literature and 

information supply including computa-

tional analysis of big data. This enables 

new scientific insights for researchers 

of all life science disciplines as well as 

bioinformatics. 

BIBI introduces modern infrastruc-

tures and additional bioinformatics 

expertise into the broad repertoire 

of ZB MED. The strategic alliance of  

ZB MED and BIBI implements numerous 
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The life sciences sector places an incredible reliance on 
data and this all needs to be processed and stored some-
where. With the cloud, this data becomes more accessible 
and offers a sea of information.

A FUTURE 
IN THE CLOUD:
high-performance  
computing for life  
sciences



A FUTURE 
IN THE CLOUD:
high-performance  
computing for life  
sciences
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Cloud 
computing 
for the life  
sciences
Alexander Sczyrba; Bielefeld University, Bielefeld

The increasingly widespread availabil-

ity and application of high-throughput 

technologies in the life sciences, such 

as (meta-)genomics studies or imaging 

applications, generate an exponential-

ly increasing amount of experimental 

data. The number of specialized da-

tabases distributed around the world 

is also growing rapidly. Therefore, the 

storage, integration and processing of 

this data becomes the bottleneck of the 

analysis workflows, as they require in-

frastructures for data storage as well as 

services for data processing, analysis 

and possibly special access approval.

According to the definition of the  

National Institute of Standards and 

Technology (NIST), “Cloud computing is 

a model for enabling ubiquitous, con-

venient, on-demand network access to 

a shared pool of configurable comput-

ing resources (e.g., networks, servers, 

storage, applications, and services) 

that can be rapidly provisioned and re-

leased with minimal management effort 

or service provider interaction”. Cloud 

computing plays an important role in 

many modern bioinformatics analy-

sis workflows, from data management 

and processing to data integration and 

analysis, including data exploration 

and visualization. It provides massively 

scalable computing and storage infra-

structures and can therefore represent 

the key technology for overcoming the 

aforementioned problems.

A future in the cloud: high-performance computing for life sciences
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Sequence Read Archive (SRA) Database Growth

Figure 1: Growth of Sequence Read Archive (SRA) database hosted at the National Center for Biotechnology Information 
(NCBI), USA. The data, available through multiple cloud providers and NCBI servers, is the largest publicly available repos-
itory of high throughput sequencing data. The archive accepts data from all branches of life as well as metagenomic and 
environmental surveys. [1]

Cloud computing (bioinformatics) services  
are often divided into the following areas: 

	• Data as a Service (DaaS):  
provides data storage in a dynamic virtual environment hosted in the cloud, 
providing data that can be accessed from a variety of connected devices 
on the Internet. One such example is the National Center for Biotechnology 
Information (NCBI), which provides the Sequence Read Archive (SRA) data on 
the Google Cloud Platform (GCP) and Amazon Web Services (AWS) clouds. All 
publicly-available, unassembled read data and authorized-access human data 
are available for access and compute through these cloud providers. 

	• Software as a Service (SaaS): 
offers cloud-based tools for performing various bioinformatics tasks, e.g. se-
quence processing, gene expression analysis, or image analysis. 

	• Platform as a Service (PaaS): 
In contrast to SaaS solutions, PaaS solutions enable users to provide bioinfor-
matics applications and maintain complete control over their instances and the 
associated data. 

	• Infrastructure as a Service (IaaS): 
This service model is offered in a compute infrastructure that includes servers 
(usually virtualized) with specific computing capacities and/or storage. The 
user controls all provided storage resources, operating systems and bioinfor-
matics applications. The German Network for Bioinformatics Infrastructure (de.
NBI) Cloud provides such a service free of charge for life scientists in Germany. 

14
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Cost per Megabase of DNA Sequence

Virtual environments such as virtual ma-

chines (VMs), Docker or Singularity pro-

vide maximal flexibility to the users. In 

contrast to classical high performance 

environments they are independent from 

the installed operating system, soft-

ware stacks libraries. Special require-

ments can be fulfilled easily without 

side effects. Additionally, virtual envi-

ronments allow easy exchange of anal-

ysis workflows and with publication of 

these environments research becomes 

reproducible.

Figure 2: Development of costs for sequencing one megabase of genomic information over the last 20 years [2].

The cloud computing department of BIBI 

develops and provides bioinformatics 

environments and workflows for bioin-

formatics analyses, mainly in the field 

of (meta-)genomics. A mirror of SRA’s 

metagenomics data sets hosted at the 

de.NBI Cloud site in Bielefeld allows large 

scale analyses integrating publicly avail-

able data. Examples of such projects are 

described in the following sections.

A future in the cloud: high-performance computing for life sciences

References:
[1] National Center for Biotechnology Information (NCBI) Website: https://www.ncbi.nlm.nih.gov/sra/
[2] The Cost of Sequencing a Human Genome. http://genome.gov/sequencingcosts
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Jan Krüger; Bielefeld University, Bielefeld 

Scaling from single virtual 
machines to high-performance 
clusters within minutes

BiBiGrid:
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Infrastructure-as-a-service (IaaS) is a 

model of cloud computing in which a vir-

tualized IT infrastructure is made avail-

able to users via the Internet. Together 

with Platform-as-a-Service (PaaS) and 

Software-as-a-Service (SaaS), IaaS is 

one of three general cloud service mod-

els. Within the IaaS model users man-

age the operating system, middleware, 

applications and data to take advantage 

of compute and storage resources. The 

IaaS provider is responsible for provid-

ing virtualization, storage, network, and 

servers. As a result, users do not need 

a local data center, avoiding the ad-

ministrative overhead including main-

tenance and updating of hardware and 

software components. The user con-

trols the infrastructure via an applica-

tion programming interface (API) or a 

graphical user interface (dashboard). 

IaaS enables easy scaling and updating 

as well as the addition of resources as 

required.

 

Making use of available IaaS resources 

turns out to be a challenge for many 

users not familiar with cloud environ-

ments. While launching tens or even 

hundreds of virtual machines (VMs) 

is easy using the API or dashboard, 

a whole software application stack 

needs to be deployed on these VMs to 

fully utilize the resources. Many bio-

informatics workflows use classical 

high-performance computing (HPC) 

environments with scheduling systems 

to distribute their compute jobs on HPC 

clusters. These kinds of environments 

need to be set up in the cloud to easily 

move the existing workflows to cloud 

environments. 

 

BiBiGrid [1] is an open source tool for an 

easy cluster setup inside a cloud envi-

ronment. BiBiGrid is independent of the 

operating system and cloud provider. 

Currently it supports backend imple-

mentations for Amazon (AWS), Google 

(Google Compute), Microsoft (Azure) 

and OpenStack. 

 

Starting a cluster requires a valid con-

figuration file and credentials of the 

cloud provider.

The configuration file specifies the 

composition of the requested cluster. 

During resource instantiation BiBiGrid 

configures the network, local and net-

work volumes, (network) file systems 

and deploys the software for immediate 

use of the started cluster. When using 

pre-installed images a fully configured 

and ready to use cluster is available 

within a few minutes.

 

BiBiGrid uses Ansible to configure stan-

dard Ubuntu as well as Debian cloud im-

ages. Depending on your configuration 

BiBiGrid can set up an HPC cluster for 

grid computing (Slurm Workload Man-

ager), a shared file system (NFS on local 

discs and attached volumes), a cloud 

IDE for writing, running and debugging 

(Theia Web IDE) code, and a monitoring 

system (Zabbix). Custom Ansible scripts 

can be used to further customize the 

cluster after first initialization.

Figure 1: BiBiGrid controls cloud computing environments by launching and configuring virtual machines (VMs) and storage vol-
umes. Software stacks are deployed via Ansible and queuing systems (SLURM) are set up to distribute workloads across the VMs. 

A future in the cloud: high-performance computing for life sciences

References:
[1] https://github.com/BiBiServ/bibigrid

17



SIMBA (Sustainable Innovation of Mi-

crobiome Applications in the Food Sys-

tem) is a European innovation project, 

funded under the EU’s Horizon 2020 

Funding Programme, which provides a 

holistic and innovative approach to the 

development of microbial solutions to 

increase food and nutrition security.  

SIMBA focuses in particular on the 

identification of viable land and aquat-

ic microbiomes that can assist in the 

sustainability of European agro- and 

aquaculture. Under the scope of the EU  

SIMBA project, our research group fo-

cuses on exploring microbial commu-

nities in large scale publicly available 

environmental sequencing (metage-

nomics) data and association studies 

with plant growth promoting bacteria 

(PGPB). To that end, our study address-

es both computational intensive chal-

lenges of searching hundreds of tera-

bytes of public data and sophisticated 

data mining (e.g. network analysis) on 

putative PGPB genomes.

EU SIMBA project:  
Analyzing large scale 
metagenomics data 
on the de.NBI Cloud
Liren Huang; Bielefeld University, Bielefeld

We established a scalable bioinfor-

matics workflow for detecting PGPB 

associated microbes from public data. 

In particular, we have developed a dis-

tributable framework, Sparkhit, that 

enables screening and mapping [1] 

terabytes of sequencing data within 

hours. After preliminary screening of 

large datasets, EMGB is used as a gen-

eral purpose bioinformatics workflow 

for analyzing metagenomics data and 

visualizing annotation results. We also 

developed a de-replication tool that can 

handle large amounts of metagenom-

ics samples and facilitate downstream 

co-occurrence network analysis. Most 

tools are containerized (e.g. Docker) 

and are easily accessible on the cloud.

 

In the case of the EU SIMBA project, 

terabytes of public soil metagenome 

datasets were collected and download-

ed on the de.NBI cloud object storage. 

Associated metadata containing de-

tailed description of the datasets was 

18



Platform as a service
(PaaS)

Infrastructure as a service 
(IaaS)

Input 
data

2

Input 
data

1

1, mapping public data 
set to selected genomes 
of interest

2, Assembly of selected 
samples

3, De-replicated 
reconstructed MAGs

5, Calculation of co-
occurrent networks

4, Mapping back of 
sequence datasets to 
the reconstructed MAGs

(Sparkhit, Huang)

(EMGB2, Henke)

(De-replication tool, 
Belmann)

(Network tool, 
Belmann)

Software as a service
(SaaS)

In-house tools

BiBiGrid

Large scale metagenome data screening pipeline Cloud-based bioinformatics solution

Openstack

categorised. In the first step of our 

analysis pipeline, Sparkhit is used to 

map all input sequencing data to the 

selected PGPB genomes. Sparkhit is 

an in-house fragment recruitment tool 

that can be scaled to hundreds of com-

puter nodes. Once high similarity hits 

are found, corresponding samples are 

Figure 1: Large scale metagenome data screening pipeline (left) and cloud-based bioinformatics solution (right). 

selected for assemblies or co-assem-

blies (multiple samples in one bio-proj-

ect) using the EMGB pipeline. The EMGB 

pipeline also generates “metagenome 

assembled genomes” (MAGs) after as-

sembly, representing the microbes 

present in the samples.
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Figure 2: An overview of two use cases on the 
bioinformatics platform.

To remove redundancy between differ-

ent samples, the generated MAGs are 

de-replicated and the representative 

MAGs are selected for further analysis. 

To refine our analytical pipeline, we 

have combined a set of existing tools for 

the de-replication of MAGs. By compar-

ing and evaluating these tools, we were 

able to identify the best approach to 

de-replicate our reconstructed MAGs, 

and accordingly established a personal-

ized de-replication pipeline.

 

Our de-replication pipeline starts by fil-

tering MAGs with high contaminations 

and low coverages. After the filtering 

step, Average Nucleotide Identity (ANI) 

methods are applied to determine spe-

cies and strain level clusters. Once clus-

ters are formed, representative MAGs 

are selected based on the ranking algo-

rithm to represent each cluster. Since 

the core task of MAG dereplication work-

flows is the estimation of similarity be-

tween genomes, which can be done by 

calculating ANI, we collected and eval-

uated several ANI-based approaches. 

Three different datasets (unfiltered, me-

dium, and high MIMAG) from CAMI chal-

lenge [2] are used for species and strain 

level dereplication evaluation.

 

Once representative MAGs are select-

ed, the pipeline re-maps the sequenc-

ing data back to the MAGs and produces 

MAG-abundance profiles for all sam-

ples. The abundance profiles are used 

to compare the PGPB diversity between 

different samples. It can also be used to 

build co-occurrence networks involving 

assembled MAGs and known PGPBs.

 

The intermediate results of the EMGB 

pipeline are imported into the EMGB 

browser. In the browser, each indi-

vidual sample can be selected and its 

computed results can be explored in a 

click-button style. Users can also com-

pare different samples by selecting 

multiple samples in the browser tab. 

Selected metrics, such as the abun-

dance tables of de-replicated MAGs 

from all metagenome samples, are also 

accessible through the web interface.
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A future in the cloud: high-performance computing for life sciences

References:
[1] Huang et al. Analyzing large scale genomic data on the cloud with Sparkhit. Bioinformatics, 2018, DOI: 10.1093/bioinformatics/btx808.
[2] Sczyrba et al. Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software. Nature Methods, 2017, DOI: 10.1038/nmeth.4458.

This project has received funding from 

the European Union’s Horizon 2020 

research and innovation programme 

under grant agreement No. 818431  

(SIMBA). This output reflects only the 

author’s view and the Research Exec-

utive Agency (REA) cannot be held re-

sponsible for any use that may be made 

of the information contained therein.

21



UNLOCKING 
THE GENETIC 
SECRETS OF 
MICROORGANISMS: 

In the last decade bioinformatics has silently filled in the 
role of cost effective and target-oriented data analysis. It 
has enhanced our understandings about the microorganisms' 
genome structure and the cellular processes in order to 
treat and control microbial cells as factories.

accessing and analysing 
microbial genome data
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The 
genetic diversity 
of viruses on a  
graphical map
Alexander Schönhuth; Bielefeld University, Bielefeld

Various life-threatening viruses mutate 

insanely fast, thereby protecting the 

virus from human immune response 

or medical treatment. Naturally, virus 

variants form within the infected hosts, 

when hijacking the host’s replication 

machinery. Therefore, accurate track-

ing of strains within individual patients 

or local samples, for example obtained 

from wastewater, can make a crucial 

contribution to assessing the evolu-

tionary course of epidemics [1]. 

We focus on developing methodology 

for identifying the development of new 

strains/variants, and to put them into 

context with existing strains/variants. 

To do that, all strains and variants are 

arranged in a “map-like” graphical data 

structure. This “map of variants” high-

lights the origin of new variants conve-

niently, and puts them into context with 

existing variants. 
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Further, this enables us to accurately 

place new infections on this map of 

variants. As a consequence, new 

infections can be classified at 

high resolution. Novel, emerging 

variants can be spotted quickly 

and integrated into the map in an evo-

lutionarily consistent manner.

Key to success is to make use of 

“pangenome graphs” as a relatively new 

concept to arrange individual, mutual-

ly related genomes in an evolutionarily 

sensible way. Pangenome graphs have 

recently been emerging, and gradually 

replacing traditional ways of working 

with genomes. 

Their advantages are their compact-

ness – which can save petabytes of 

storage space – their intuitive repre-

sentation, and their consistency in 

terms of the evolutionary relationships 

among the individual genomes. 

Recently, we have pointed out ways 

to make stringent use of pangenome 

graphs for tracking and analyzing vi-

ruses. Therefore, it was important to 

realize that not only one, but possibly 

several strains can populate individual 

hosts. In fact, this is rather common 

because new strains and variants form 

within hosts, when the virus hijacks the 

host’s replication machinery; note that 

virus particles cannot mutate while cir-

culating between hosts.

The crucial first step is to adapt analysis 

tools accordingly, and to make it pos-

sible to construct pangenome graphs 

that reflect the within-host diversity 

of a virus: not considering within-host 

diversity collapses different mutations, 

which falsifies one’s view on the evolu-

tionary development of the virus. The 

challenge however is that considering 

within-host diversity requires approach-

es that are essentially novel [2,3].

Once this foundation has been laid, ac-

curate pangenome graphs can be con-

structed, as we could demonstrate in a 

corresponding series of papers [4,5]. 

See Figure 1 for an illustration of the 

algorithmic steps to be taken towards 

successful construction of viral pange-

nome graphs.

Figure 1: Pangenome graph construction.  
(A) Original viral haplotypes, reflecting strain 
specific genomes. While originally unknown, they 
are the source of fragments (aka contigs) shown 
in (B). The task is to reconstruct sequences 
shown in (A) from fragments shown in (B). This 
reconstruction proceeds in four further steps: 
computing a multiple sequence alignment leads 
to a first graph as shown in (C), compressing the 
graph by joining letters leads to (D). Eventually, 
inspecting all possible paths (“candidate paths” 
in (E)) and evaluating their plausibility relative 
to the original fragment data leads to the final 
situation, shown in (F). The final graph enables 
us to correctly identify the haplotypes that were 
responsible for generating the data.
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Supporting 
local health 
authorities

Michael Beckstette; Bielefeld University, Bielefeld

in fighting the  
SARS-CoV-2 pandemic
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The global SARS-CoV-2 pandemic 

poses numerous new challenges and 

actions on different kinds of adminis-

trative and institutional levels ranging 

from world-wide vaccination initiatives 

over state-specific changes of laws to 

new regulations for local authorities. 

Most notably with the appearance of 

new emerging virus variants like the 

more infectious Alpha (B.1.1.7) and 

Delta (B.1.617.2) variants, local 

health authorities in Germany were 

confronted with new tasks such as 

sequencing of virus genomes and 

virus lineage detection. The impor-

tance of these tasks emerged not 

only from the necessity to control 

local outbreaks but also from the 

obligation to provide data to fed-

eral government agencies like the 

Robert Koch Institute (RKI) for 

monitoring of the pandemic situ-

ation and population risk assess-

ment which is finally used to fur-

nish recommendations to health 

professionals and governmental 

decision-makers.

In early 2021, when the Alpha variant of 

the SARS-CoV-2 virus started to spread 

over Germany (Figure 1), the Chemical 

and Veterinary Investigation Office for 

the region Ostwestfalen-Lippe (CVUA-

OWL) contacted researchers of the 

Bielefeld Institute for Bioinformatics 

Infrastructure (BIBI) and asked for sup-

port in the bioinformatics analysis of 

sequenced virus samples from patients 

from the OWL region. BIBI's substan-

tiated existing expertise in this field 

[1, 2] and a pragmatic and efficient 

collaboration style between research-

ers from both institutions allowed to 

promptly provide a secure and easy to 

use solution operating on the federat-

ed de.NBI cloud computing infrastruc-

ture [3]. With the COG-UK [4] and the 

RKI CovPipe [5] analysis pipelines two 

widely used, fully automated bioinfor-

matics workflows for the reproducible 

analysis of SARS-CoV-2 samples could 

be offered to CVUA-OWL researchers. 

The former has widely been used in 

the COVID-19 Genomics UK Consor-

tium (COG-UK) project which has been 

a pioneering initiative in the use of 

large-scale, whole genome sequenc-

ing of SARS-CoV-2, with the aim to aid 

the harmonization of the analysis of 

sequencing data by providing a stan-

dardized analysis workflow. The lat-

ter is an alternative bioinformatics 

pipeline developed by the German 

Robert Koch institute (RKI) and 

widely used in Germany for the 

analysis of SARS-CoV-2 samples 

from viral outbreaks. Likewise, to 

the COG-UK pipeline, the workflow 

covers and automates all necessary 

steps from rigorous quality assess-

ment of the input data, read map-

ping against the SARS-CoV-2 refer-

ence genome, over variant calling 

and generation of a consensus 

sequence of the virus containing 

the in the analysis process detect-

ed mutations (genomic variants) to 

lineage assignment. In addition, BIBI 

researchers enhanced these standard 

workflows with additional capabilities 

for comprehensive result visualiza-

tions (Figures 1 and 2) allowing to gen-

erate epidemiological information that 

is easily interpretable by public health 

institutions.

“The researchers from BIBI 
were of great help in the 
bioinformatics analysis of 
our samples. They provided 
standardized and easy to 
use workflows, which have 
successfully been used to 
analyze and identify the 
variants of more than 260 
SARS-CoV-2 positive samples.”

Dr. Henning Petersen from the CVUA-OWL

Unlocking the genetic secrets of microorganisms: accessing and analysing microbial genome data

27



ORF1ab S ORF3a E M ORF6
ORF7a ORF7b ORF8 N ORF10

Reference allele frequency Alternate allele frequency
Genes:

1 5001 10001 15001 20001 25001 29903

F9
24

F

D6
14

G

B.1

1 5001 10001 15001 20001 25001 29903

V6
0V

F9
24

F

T2
00

7T

L3
60

6F

P3
95

2S

A2
22

V

D6
14

G
V6

22
I

S7
4S

L8
4L

I11
8V

S1
66

L
L9

3L

H1
7H

A2
20

V
V3

0L

B.1.177

1 5001 10001 15001 20001 25001 29903

S2
16

S
E3

47
K

T7
08

I
F9

24
F

T1
00

1I

A1
70

8D
F1

90
7F

I2
23

0T

LS
GF

36
74

_3
67

7L

IH
V6

8_
70

I
S9

8F
VY

14
3_

14
4V

N5
01

Y
A5

70
D

D6
14

G
P6

81
H

T7
16

I
S9

82
A

D1
11

8H

L1
40

F

Q2
7*

R5
2I

Y7
3C

D3
H

D3
V

D3
E

R2
03

K
R2

03
R

G2
04

R
S2

35
F

B.1.1.7

1 5001 10001 15001 20001 25001 29903

K1
20

N

F9
24

F
V1

21
1F

A1
30

6S

P2
04

6L
S2

13
2G

P2
28

7S

D2
90

7D
V2

93
0L

T3
25

5I
A3

57
1V

T3
64

6A
V3

68
9V

T1
9R

EF
R1

56
_1

58
G

L4
52

R
T4

78
K

D6
14

G
P6

81
R

S8
16

S

S2
6L

I8
2T

V8
2A

T1
20

I
T4

0I
LD

F1
18

_1
20

L
R2

03
M

G2
15

C
D3

77
Y

B.1.617.2

48/2020

05/2021

25/2021

Reference genome:
Wuhan-Hu-1 NC_045512.2

Figure 1: The genomic dynamics of SARS-CoV-2. Sketched are genomic variants – with respect to the original SARS-CoV-2 corona 
virus responsible for the initial outbreak in Wuhan/China – in protein coding regions of different virus strains circulating in Europe 
over the time of the pandemic. Variants are annotated with their allele frequencies and effect on the corresponding proteins amino 
acid sequence. If available, the calendar week of first occurrence in Ostwestfalen-Lippe (OWL), based on genome sequencing data 
of our project partner CVUA-OWL, is given in blue. The B.1 lineage is a large European lineage whose origin roughly corresponds 
to the Northern Italian outbreak in March 2020. It was the dominant lineage in Germany until summer 2020. The B.1.177 lineage 
spread mostly over Europa after opening of borders in summer 2020 and appeared for the first time in the OWL data in week 
48/2020. B.1.1.7 (Alpha) is the first variant of concern (VOC) that spread over Europe. It was first detected in the United Kingdom 
in September 2020 and is associated with the N501Y mutation and with evidence for having higher transmissibility than other 
lineages resulting in rapid growth in the UK and internationally. At the beginning of 2021 (week 05/2021 in OWL) Alpha starts to push 
away other virus variants and quickly became the dominant variant in spring 2021. The B.1.617.2 (Delta) lineage was first detected 
in October 2020 in India and classified as a VOC in Mai 2021. It has much increased transmissibility compared to Alpha and is linked 
to a significantly higher risk of severe COVID-19 disease progression and death. In OWL it appeared in week 25/2021 and since July 
2021 it has become the dominant virus lineage accounting today for more than 99 percent of all SARS-CoV-2 infections in Germany. 
With P681R, L452R and T478K it carries several mutations in the virus' spike protein (S gene) that are linked to higher virus load due 
to increased replication rates and the ability to partially escape neutralizing antibodies generated by the hosts immune response. 
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Figure 2: Analysis report. Analysis results of a SARS-CoV-2 positive sample from the Ost-
westfalen-Lippe region that was classified as belonging to the highly infectious Delta variant 
(B.1.617.2) of the virus. Shown is an excerpt of the virus genome with coverage information 
of the used sequencing amplicons, gene annotation, VOC B.1.617.2 defining variants, variants 
called for this sample with their amino acid alterations and genomic coverage information. 
The part of the genome coding for the spike protein (S gene) is marked in yellow. Detected, 
lineage (Delta) specific genomic variants are colored red in the samples variant track.
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Omics Fusion

Stefan P. Albaum; Nils Kleinbölting; Bielefeld University, Bielefeld

Understanding a system as a whole of-

ten requires to consider its different 

levels and their connections [1]. For a 

,biological organism‘ these levels are 

represented by: the genome (which 

genes are encoded on the DNA lev-

el), the transcriptome (what and how 

much is transcribed from the genome 

to mRNA), the proteome (what is trans-

lated into proteins/enzymes) and the 

metabolome (which metabolites are 

present – often as products of enzyme 

processing). The mere presence of a 

particular gene or allele, respectively, 

is not providing insights into a possi-

ble number of transcripts of this gene, 

and even less into the synthesis rates of 

the corresponding protein or the abun-

dance of specific metabolites synthe-

sized by specific enzymes. Many factors 

may influence this process. Moreover, 

synthesized proteins will in turn affect 

the actual metabolism of an organism. 

A holistic study of a living organism 

therefore has to consider all these dif-

ferent “omics” levels including a view 

into an organism's transcriptome, pro-

teome and metabolome.

— a web application to analyze 
and integrate microbial data 
from multiple omics sources

Unlocking the genetic secrets of microorganisms: accessing and analysing microbial genome data
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Omics Fusion has been developed to 

support researchers in the analysis of 

such datasets [2]. The web application 

provides a comprehensive portfolio of 

methods to analyze data from different 

levels of omics in an integrative man-

ner. It is freely available to the public 

and provided following the software as 

a service paradigm. Omics Fusion has 

initially been designed for microbial 

data, but also has successfully been 

used for plant and other higher organ-

isms data including human data.

Starting with the upload of data tables 

containing transcript counts, quan-

titative protein ratios or metabolome 

abundance values from high-through-

put experiments users can draw on a 

collection of tools for integrative data 

analysis and data visualization to gain 

new insights into a biological system 

under investigation. This includes func-

tionality to filter, normalize and trans-

pose data and analyses such as variance 

and regression analysis to determine 

significantly differentially abundant 

determine optimal clustering solutions. 

Furthermore, specialized cluster meth-

ods have been developed and allow, in-

ter alia, the combined detection of tran-

scripts and proteins that show similar 

patterns of abundance.

Extensive visualization methods enable 

explorative ways to better understand 

the data. An intuitive presentation is 

the combined mapping of transcript, 

protein and metabolome data on meta-

bolic pathway maps. The tool box for vi-

sual and meaningful representation of 

data, moreover, contains scatter plots, 

box- and whisker plots and parallel co-

ordinate plots. An important element 

for understanding biological data is the 

enrichment of the quantitative infor-

transcripts, proteins or metabolites. 

Methods such as principal component 

analysis and t-SNE can provide an ini-

tial overview on the data by reducing its 

dimensionality and thereby increasing 

the interpretability.

Omics Fusion places a particular em-

phasis on unsupervised learning meth-

ods. Cluster analysis, for example, al-

lows to identify groups of transcripts, 

proteins and metabolites that show a 

similar pattern of expression or abun-

dance. A common problem, in this re-

gard, is the determination of an optimal 

number of clusters fitting to the data. 

Our software offers various means to 

apply cluster algorithms on the data and 

features a fully automated procedure to 
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mation by further descriptions of gene 

functions or metabolite characteristics 

and their role in an organism. For this 

purpose, Omics Fusion provides inter-

faces to common data repositories as 

provided by the NCBI [3] and the Uniprot 

consortium [4] to retrieve annotation 

data such as enzyme classifications, 

well-defined function descriptions or 

metabolic pathway associations. With 

this information, connections between 

the data may become visible that be-

forehand were not obvious.

Omics Fusion is continuously devel-

oped. Depending on the needs of the 

community, new methods are being 

integrated in the software or existing 

methods adapted.

References:
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Figure 1: Screenshots of the web application Omics Fusion:  
A) data management, B) cluster analysis, C) cluster profiling visu-
alization, D) pathway mapping.
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“Digital Infrastructure for  
the Life Sciences” (DILS)



GRADUATE  
SCHOOL 

“DILS is a win-win constellation: The PhD students 
benefit from the academic infrastructure and 
scientific network in BIBI, and BIBI benefits from 
active research and method development of the 
PhD students. Furthermore, it is a platform for 
launching further bilateral research projects.”
Dr. Roland Wittler, Coordinator DILS



Muhammad Elhossary; ZB MED, Cologne

Large scale 
detection of 
regulatory 
small RNAs in 
pathogenic 
bacteria
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Life threatening diseases caused by 

bacteria combined with a growing drug 

resistance of these species is a world 

major health concern. Gammaproteo-

bacteria is one important class of bac-

teria that comprises many critically 

pathogenic members that are hard to 

treat. These pathogens adapt to the 

continuous changes of their surround-

ing environment. This adaptation in-

volves numerous complex biological 

processes. The transcription regula-

tion, i.e. the control of gene expression, 

is one essential process among them. 

Generally, in bacteria, a class of RNA 

References:
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[3] Saliba et al. New RNA-seq approaches for the study of bacterial pathogens. Current Opin-ion in Microbiology, 2017. DOI 10.1016/j.mib.2017.01.001.

known as regulatory small RNAs (sRNA) 

plays a vital role in regulating gene ex-

pression post-transcriptionally. Those 

regulatory RNAs can influence the ac-

tivity of messenger RNAs (mRNA) by 

several mechanisms before they get 

translated into proteins [1]. The most 

common mechanism is anti-sense 

base-pairing between the sRNA and 

the mRNA which for example can cause 

translation blockage by binding to ri-

bosome binding sites or within the 

open reading frame region [2]. Bacte-

ria typically express hundreds of these 

regulatory RNAs, and each can regulate 

several messenger RNAs differently. Up 

to date, their evolution and biological 

functions remain largely unknown de-

spite their described importance.

The first step in understanding the reg-

ulation of sRNAs is to detect them and 

then identify their interactions with 

their target mRNAs. High-throughput 

sequencing technologies can be uti-

lized to perform global transcriptome 

and interactome measurements that 

help to reveal, identify and characterize 

these regulatory small RNAs [3]. This 

is followed by a downstream compu-

tational analysis using tools that can 

generate genome-wide high resolution 

small RNA annotations and character-

izing their regulatory networks. For this 

purpose, a diverse set of twenty spe-

cies of the Gammaproteobacteria class 

grown in different conditions are stud-

ied. Among this set of species, there 

are model species such as E. coli that 

were extensively studied and can serve 

as references in comparative studies 

for poorly studied species.

We will offer queryable interconnect-

ed data and have modeled the regu-

latory networks which afterwards will 

be integrated into a web platform that 

provides comparative views of small 

RNAs and their regulatory networks to 

efficiently help researchers to address 

further unanswered biological ques-

tions. Furthermore, tools and pipelines 

developed will also be published, ensur-

ing their easy reproducibility and reuse.

Figure 1: Project plan overview
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Errors in 
Sequencing 
Data
Quality Assessment and 
Bioinformatics Solutions
Sebastian Jünemann; Bielefeld University, Bielefeld

DNA sequencing describes the auto-

mated process of reconstructing the 

ordered sequence of nucleotides con-

stituting a DNA molecule. Next-gener-

ation sequencing (NGS) instruments, 

in particular those of the second-gen-

eration, are utilizing nano-scale bio-

chemical processes, e.g. sequencing 

by synthesis, in a highly parallelized 

manner on a massive scale to sequence 

single source DNA molecules in multi-

ple copies and repetitions. The advent 

of NGS technologies had a huge impact 

on numerous research fields leading to 

a downright explosion of all sequence 

based research fields.

Metagenomics (MG) studies microbial 

communities by the entirety of its ge-

nomic content, the metagenome, and 

addresses, inter alia, the question what 

is the taxonomic origin of all individual 

community members, their function 

within that community and their inter-

action with other members, the envi-

ronment or host [1]. Targeted MG, also 

known as amplicon sequencing, ad-

dresses only a subset of whole genome 

shotgun MG, the taxonomic composi-

tion. Here, only a specific marker gene 

is focused on, e.g. the 16S rRNA gene, 

which is being selectively extracted and 

amplified before the sequencing proce-

dure. Metagenomics, and in particular 

16S rRNA gene based amplicon surveys, 

experienced a renaissance with the 

advent of NGS technologies due to in-

creasingly cheaper and quicker access 

to raw genomic data allowing to analyze 

hundreds of samples in parallel.

Graduate School: “Digital Infrastructure for the Life Sciences” (DILS)
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Figure 1: Flowchart of targeted Metagenomics from environmental samples to high-quality sequencing data: After sampling and DNA extraction, the DNA 
library is prepared for and sequenced on a NGS instrument, and errors can occur in both steps (e.g. PCR errors and sequencing errors). These errors are 
usually addressed by specific algorithms either by filtering erroneous data (e.g. as done by chimeric read detection) or by correcting erroneous data points. 
In conjunction with other quality assessment (QA) methods, e.g. the removal of adapters and primers and filtering based on low quality scores and ambig-
uous bases, these algorithms are piped together in a workflow. QA workflows can make use of flexible workflow languages (e.g. using nextflow) and can be 
deployed as software containers (e.g. using singularity) in cloud environments (e.g. an openstack cloud) for easy access and application.

The process of sequencing is remodel-

ing a natural process and is thus natu-

rally affected by different error sources 

and variation. However, as long as indi-

vidual errors are random and introduced 

with a lower probability than their er-

ror-free counterparts, errors, in theory, 

can be compensated by increasing the 

coverage, i.e. the number each single 

source DNA molecule is sequenced re-

petitively. Still, some sequencing errors 

are methodological and can be impeded 

only to a certain degree. This means in 

effect that not all errors are introduced 

at random but systematically. Thus, 

each sequencing technology comes 

with its own error profile [2].

Issues arise also during the library 

preparation, i.e. the process of treat-

ment from an environmental specimen 

to a sample ready to be introduced into 

a sequencing instrument. This usual-

ly involves various steps, of which the 

amplification of DNA material by Poly-

merase Chain Reaction (PCR) is the 

most error prone. Errors and artifacts 

introduced during PCR can have a fal-

sifying impact on the community under 

study, e.g. artificially inflating species 

richness or diversity. One of the more 

difficult error sources to address are so 

called chimeras, artificial cross hybrid-

ized DNA sequences formed from parts 

of other sequences. Even though their 

formation can be reduced by adjusting 

PCR conditions, their formation cannot 

be prevented completely [3].

 

Explicit errors, for instance overly 

long PCR fragments or overlapping se-

quencing signals, can already be dealt 

with during library preparation or the 

sequencing process. For more subtle 

errors appropriate quality assessment 

(QA) tools are applied to NGS data to 

(i) assess the overall data quality, (ii) 

detect putative erroneous sequencing 

reads or stretches, (iii) filter the data 

for errors, or, if possible, (iv) correct the 

errors [4].

 

General data QA is done usually by uti-

lizing intrinsic sequence information to 

generate quality profiles, report about 

benchmarking properties or to search 

for known contaminating sequence 

patterns (e.g. sequencing primers). 

Such profiles often build the basis for 
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deducing and applying data specific fil-

tering rules to increase the overall data 

quality. Detection and filtering of errors 

can be done extrinsically by comparing 

sequences of known origin to reference 

data or intrinsically by matching se-

quencing reads against each other in or-

der to detect outliers or abnormalities, 

as done e.g. by our developed chimera 

checker tool ChimP. Here, a sequence 

is compared to its potential parents uti-

lizing a specific alignment method and, 

if the match against different parents is 

high enough, reported as a chimera. In 

some occasions, error correction can 

be applied by grouping reads belonging 

to the same origin, e.g. based on cov-

erage and nucleotide conformity. Now, 

random errors can be rectified by call-

ing up a majority based consensus.

Usually, different QA tools cover only 

one or few of the aforementioned is-

sues. To this end, several tools are 

usually piped together in a consecu-

tively applied workflow to deal with all 

potential error sources in a meaningful 

manner (Figure1). However, NGS is a 

rapidly evolving field. Sequencing pro-

tocols change and new technologies 

emerge. Thus, old tools need to be ad-

opted or new ones developed tailored 

to instrument specific properties. In 

addition, the exponential trend at which 

sequencing data is being generated is 

still ongoing. This presents a challenge 

on the performance of bioinformatics 

solutions, leaving data processing as 

the new bottleneck in the field of NGS 

based research. Moreover, fully stan-

dardized QA workflows are, until now, 

still no integral part of SOPs of data 

generators, researchers, or public 

data archives. This complicates data 

exchange, reproducibility, and compa-

rability. Therefore, joint and communi-

ty driven effort is necessary to define 

and guarantee a minimum data quality 

standard, and the harmonization of QA 

processes to be – eventually – integrat-

ed into a FAIR life cycle, e.g. by reaching 

out to the National Research Data Infra-

structure (NFDI) consortia.
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From hidden 
data and infor-
mation towards 
data-driven  
research
Machine readability and access to data, 

information and knowledge are core re-

quirements for data-driven research. 

Furthermore, the enormous growth in 

freely available, electronic research 

data increases the need for semantic 

interoperability as well as computa-

tional methods to generate new infor-

mation and knowledge from the data.

This, however, implies that all published 

data is stored in a machine-readable 

format and that data can be accessed. 

Especially in the medical area, this is 

hampered by the heterogeneity and 

missing standardization of the data as 

well as the restricted access and avail-

ability of high quality data.

Concerning the literature, there is an 

increasing need for text mining solu-

tions to make a transfer from unstruc-

tured text to machine readable infor-

mation possible. During the past 20-30 

years, intense research has been done 

in the field of natural language pro-

cessing (NLP) and also in the specific 

application field of bio-medical NLP  

(bioNLP). Currently, Artificial Intel-

ligence (AI) methods seem to be su-

perior to traditional approaches. The 

success of those methods is, however, 

dependent on high-quality, labeled data 

whose availability is strongly limited. In 

addition, it still remains open wheth-

er the results achieved on the specific 

training/test data are transferable to 

real world applications.

Another obstacle for data analysis in 

the medical domain is the access to 

personalized health data. Despite the 

growing amount of freely available data, 

personal data (e.g. clinical or epidemio-

logical data) is usually not publicly avail-

able due to data privacy. To circumvent 

data protection, machine learning (ML) 

methods will be investigated in order to 

generate synthetic data.

The overarching aim of this project is to 

investigate computational methods in 

order to make biomedical data and in-

formation available in a machine-read-

able format and, thereby, supporting 

researchers.
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Investigating the robustness 
of transfer learning-based NER 
methods 

We investigated the robustness of cur-

rent state-of-the-art text mining meth-

ods, such as BioBERT [1], in the area 

of Named Entity Recognition (NER) 

of diseases. These machine learning 

(ML)-based methods are usually trained 

and evaluated on specific, relatively 

small corpora and evaluations on cor-

responding test sets show promising 

results. For NER of diseases, two differ-

ent manually labeled data sets are pub-

licly available which consist of training, 

development and test data. Our first 

investigation focused on cross-corpora 

evaluation: training on one dataset and 

evaluation on the test set of the other 

data set. We could show that the mod-

el achieves an F1-score of only 68% –  

a drop of about 20% compared to the 

original test set [2].

Provided ML-based models are able to 

generalize, comparable results would 

be expected from data sets following 

the same annotation guidelines. An 

analysis of the two different data sets 

revealed that the training and corre-

sponding test set (belonging to the 

same data set) are similar in wording and 

topics while the data sets as a whole do 

not. This leads to the assumption that 

a model trained on one available cor-

pus is not applicable to real world cases 

and needs to be continuously retrained 

(called continual learning). Currently, 

we are investigating compute- and re-

source-efficient methods.

Figure 1: Excerpt of an abstract (doi: 10.1101/2021.07.06.21260115), annotated with disease mentions 
(screenshot taken from https://preview.zbmed.de).

Service Science – 
COVID-19 underlines the need 
for text mining-based solutions

The current COVID-19 pandemic under-

lines the need for text mining methods 

as more than 100 papers – mostly in 

form of preprints – are currently pub-

lished per day which makes it infeasi-

ble for a human to read all of them. In 

order to support researchers to cope 

with this huge amount of information, 

we set up a text mining-based seman-

tic search engine, called preVIEW, that 

currently contains more than 37,000 

preprints from seven different preprint 

servers, such as bioRxiv and medRxiv 

[3]. In accordance to our previous re-

search, we found out that the current 

machine learning-based state-of-the-

art methods are not applicable to ser-

vices/real world cases because they do 

not generalize well and are not consis-

tently able to recognize new terms. For 

Two examples
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Figure 2: Screenshot of our 
semantic search engine preVIEW, 
freely accessible under  
https://preview.zbmed.de.
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example, for the recognition of diseas-

es, the ML-based algorithm TaggerOne 

[4] missed new terms like COVID-19. As 

text mining is nevertheless needed to 

index these high amounts of preprints 

and thereby find relevant literature, we 

extended the text mining workflow with 

additional rule based components and 

re-evaluated the resulting annotations. 

Moreover, for new entity classes – i.e. 

SARS-CoV-2 specific virus proteins and 

variants of interest – a dictionary-based 

approach was implemented due to the 

lack of training data for supervised 

learning algorithms.

Whereas preVIEW was developed as a 

fast prototype together with the user 

community in the beginning of the cri-

sis, it has been continuously improved 

towards a sustainable system [5]. In ad-

dition, it is currently undergoing eval-

uation by BioCreative Interactive text 

mining track [6] in order to evaluate 

the system usability by a variety of end 

users.
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Benedikt Osterholz; Bielefeld University, Bielefeld

Biogas- 
GeneMining
Metagenomics survey unravels the 
potential of biogas microbiomes

The importance of biogas in the 
portfolio of green fuels

In times of environmental pollution and 

global warming, it is important to re-

place fossil fuels by renewable forms 

of energy. Solar energy and wind power 

significantly contribute to these forms 

of energy. However, also recovery of en-

ergy from digestion of biomass has its 

place among the renewable energies. 

Biogas produced through decomposi-

tion of organic substrates can be con-

verted to electricity and heat and is also 

transportable using the existing natural 

gas infrastructure. Storage of biogas 

for later combustion is also feasible.

Biogas is mostly generated in agricul-

tural biogas plants from energy crops, 

residual material from agriculture and 

manure as input substrates. The corre-

sponding anaerobic digestion process 

is considered to represent the most 

efficient bioenergy production pathway 

known [1]. 

Potential for improvement 

In the anaerobic digestion of biomass, a 

huge number of microbial species is in-

volved. These possess a great variety of 

metabolic properties, that are exploit-

ed to generate the desired methane 

within biogas [2,3].

However, the majority of these species 

that can be detected in biogas reactors 

have not been adequately character-

ized, either in terms of their biomass 

conversion properties or in terms of 

their respective ecological roles with-

in the microbiological system. Accord-

ingly, the trophic network responsible 

for the degradation of crop biomass in 

biogas reactors is only partially under-

stood [2, 4, 5].

Deeper knowledge about interactions 

between different microbial species 

considering their metabolic proper-

ties is expected to enhance the overall 

performance of the biogas process. An 

improved monitoring, management and 

engineering of biogas microbiomes is 

envisioned.
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Analysis of biogas microbiomes 
applying methods of metage-
nome research

To study the function of biogas micro-

biomes, data on these microbial com-

munities are needed. The overall goal 

is to access and use publicly available 

metagenome datasets originating from 

biogas microbiomes. Sequencing of 

metagenomic DNA allows to portray the 

microbial community of a sample and 

not only the cultivable species, which 

is why metagenome analyses are pre-

ferred when the whole picture is to be 

viewed [3, 6, 7, 8]. 

Currently, there are 386 biogas metag-

enomes that are used for this project. 

These large data volumes, typical for 

the life sciences, present another huge 

problem to tackle.

A lot of different steps are necessary to 

implement established bioinformatics 

solutions and concepts for compara-

tive analyses of metagenome datasets 

representing biogas microbiomes. 

Certainly, it is not feasible to manually 

perform all data processing steps for 

a large number of samples. Therefore, 

an automated bioinformatics workflow, 

the Metagenomic-Toolkit, was devel-

oped and implemented. Apart from the 

realization of the general feasibility, our 

workflow also offers additional bene-

fits like guaranteed reproducibility of 

all steps, a high rate of portability and 

support of key cloud computing based 

technologies.

Parallelization using  
cloud computing

After the implemetation of a suitable 

workflow, nothing is gained if it does 

not finish in an adequate time frame, 

which is a real problem when hundreds 

of datasets have to be processed. The 

performance of single computers is 

not sufficient, for what reason the 

Metagenomic-Toolkit was developed 

to be executed in a cloud computing 

environment (Figure 1). All the different 

steps were parallelized by the workflow 

through distribution of jobs over hun-

dreds of different compute nodes at the 

same time and compilation of obtained 
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Metagenomic-Toolkit:

Reproducibility:
dependencies 
are solved via 
containers 

Portability:
pipelines scale 
depending on 
the system

Version 
control

S3 object 
storage 
support

Benedikt Osterholz - CMG 7

Code in any
language
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Figure 1: Overview of special features within the Metagenomic-Toolkit.

Figure 2: The Metagenomics-Toolkit: All available modules and processes that can be combined by the user.

results at the end of the computation 

process. In this way, the work time is 

reduced to an acceptable minimum.

The goal

Implementation of the Metagenom-

ics-Toolkit is expected to enable rep-

resentation of detailed microbial net-

works, identify the core microbiome of 

biogas communities, determine unique 

taxa for specific sub-communities and 

to elucidate relationships between tax-

onomic units by means of co-occur-

rence and network analyses. The overall 

aim of the project is to further upgrade 

and optimize the biogas process as a 

whole.
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Yersinia pestis 

Escherichia coli 

Luca Parmigiani; Bielefeld University, Bielefeld

Comparing  
pangenomes

With the advent of Next-Generation 

Sequencing technologies, the number 

of genomes we have at our disposal for 

each different species is increasing – 

opening new prospects previously not 

feasible.

The practice of sequencing and ge-

nome analysis, for what re-

gards most of the already 

sequenced species, 

usually involves at  

some point comparing the nucleotide 

sequences, previously extracted from 

the sample, to some reference genome. 

This reference genome fails to account 

for all the variability present in nature 

and can not truly represent a whole 

species.

closed pangenome instead needs much 

less genomes to portray the species, 

and we can have extreme cases like 

Bacillus anthracis where four genomes 

are sufficient to completely character-

ize the species.

With the amount of new genome se-

quence data produced, nowadays it 

is conceivable to perform this type of 

study, like regarding the openness or 

closedness of a pangenome, directly 

on the nucleotide sequence. In this way 

the analysis is no longer limited only to 

genes, but provides also information 

about noncoding sequences, small 

RNAs or other repeated structures.

In 2005 the term pangenome was used 

by Tettelin et al. [1] to describe the set 

of all distinct genes present in a spe-

cies: either present in all genomes, 

defined as core genes, or  

present in just  

 

some, called 

dispensable genes. Their goal 

was to know how many genomes should 

be sequenced to fully describe a bac-

terial species. While this concept of 

pangenome was later extended beyond 

bacteria, to plants and animals, one 

of the most outstanding discoveries 

at the time was that some species 

possess 

an open pangenome and 

others a closed pangenome.

For an open pangenome the number of 

genomes that has to be sequenced in 

order to get a full picture of the species 

is large, since new distinct genes are 

found each time a new sequenced ge-

nome is inserted in the pangenome. A 
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Yersinia pestis 

Escherichia coli 

Here we show early results of the com-

parison between two different pange-

nomes, one derived from 58 genomes 

of Escherichia coli, and one from 58 ge-

nomes of Yersinia pestis. 

 

Even though the length of the genomes 

of E. coli and Y. pestis are comparable –  

5 million versus 4 million base pairs, 

respectively – these 

two species show 

different genome variability. The 

pangenome of E. coli has been de-

scribed as an open pangenome and 

reflects its ability to colonize many 

environments and to transfer ge-

netic material. On the other hand 

the lifestyle of Y. pestis and its re-

stricted niche makes it difficult to  

acquire foreign genes, which in turn ex-

plains its closed pangenome.

We can already see 

this property reflected in the to-

pology of the graphs shown in Fig. 1. In 

the two pictures we present a subgraph 

of the total pangenome for the two 
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Yersinia pestis

Escherichia coli

Figure 1: Visualization of two subgraphs of the 
whole pangenomes, one constructed from 58 
genomes of Y. pestis and one from 58 genomes 
of E. coli. The visible difference in the amount of 
variations can be further characterized mathe-
matically, classifying species with an open or a 
closed pangenome on the basis of their genome 
sequences and their respective graph, without 
the necessity of annotating them.

species. Every time a position in the 

genome contains multiple variations 

among the species, the graph reflects 

it by branching and creating multiple 

paths.

These differences are crucial to define 

effective similarity measures on 

pangenomes, exploiting as much as 

possible repetitiveness and structur-

al attributes. We aim to provide algo-

rithms to estimate the genomic diver-

sity of the pangenomes that scale up 

with the huge amount of sequenced 

genomes.
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anti-nutritional components. There-

fore, we study the molecular basis of 

relevant seed quality parameters. To 

achieve this, (i) dedicated tools for 

the transfer of functional annotation 

data are developed, (ii) high‑through-

put sequencing data is harnessed for 

e.g. mapping‑by‑sequencing, and (iii) 

in‑depth characterization of involved 

key genes have been performed.

The development of dedicated tools fa-

cilitates the automatic analyses of the 

genes and encoded enzymes involved, 

The increasing demand in high quali-

ty plant based food products requires 

breeding of improved crop plants. 

Rapeseed (Brassica napus L.) is one of 

the most important oil crops world-

wide. Beside its high-quality fatty acid 

balance, also the excellent amino acid 

composition of its protein is of high 

nutritional value. However, the pres-

ence of anti-nutritional components 

renders rapeseed protein unusable 

for human consumption. As part of 

the BMBF‑funded project RaPEQ, our 

aim is to reduce or even remove these 

and provides predictions for their 

functionalities. All tools created in this 

project will be made freely available on 

github, e.g. KIPEs (Knowledge-Based 

Identification of Pathway Enzymes) 

(Figure 1) [1].

 

The results of (i) were incorporated into 

(ii), namely the analysis of large genomic 

and transcriptomic data sets to identify 

loci and genes associated with seed oil, 

seed protein-, and antinutrients con-

tent via mapping‑by‑sequencing (MBS). 

MBS combines bulk‑segregate‑anal-

Functional genomics of  
and bioinformatic analysis 
tools for seed quality  
parameters in rapeseed
Hanna Marie Schilbert; Bielefeld University, Bielefeld
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Figure 1: Workflow of KIPEs.

ysis and next‑generation‑sequenc-

ing, which enables the identification 

of causal mutations associated with 

a phenotype of interest. For this task, 

the development and application of 

automatic scripts (written in python) 

is necessary. Candidate genes and se-

quence variants associated with each 

seed quality trait were identified. Con-

sequently, causal sequence variants 

have been validated to be associated 

with seed glucosinolate content using 

the BnASSYST diversity panel.
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Figure 2: Transcriptomic analysis revealed the major FLS genes expressed in B. napus seeds.

Recently, the main bitter off-taste com-

ponent in rapeseed protein isolates 

was identified: Kaempferol 3-O-(2'''-O-

Sinapoyl-ß-sophoroside) (K3OSS) [2]. 

The key enzyme of flavonol biosynthe-

sis is flavonol synthase (FLS), which 

converts dihydroflavonols to flavonols. 

We identified the members of the FLS 

gene family via KIPEs (see (i)) based on 

the genome sequence of the polyploid 

B. napus cultivar Express 617 [4]. In or-

der to identify which FLS genes con-

tribute to flavonol production in seeds, 

we analyzed several transcriptome data 

sets (Figure 2). The FLS gene family re-

vealed organ- and development-specif-

ic gene expression. In seeds, five FLS 

genes are expressed: BnaFLS1-1, Bna-

FLS1-2, BnaFLS2-1, BnaFLS3-3, and 

BnaFLS3-4. The corresponding gene 

products were functionally character-

ized (Figure 3) [3]. Our results provide 

novel insights into the molecular basis 

of seed protein, oil, glucosinolate and 

flavonol biosynthesis in B. napus, which 

can be used for targeted engineering 

and breeding to support the use of rape-

seed protein in human consumption.
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Figure 3: Flavonol synthases involved in the bio-
synthesis of the main bitter off-taste component 
K3OSS.
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Algorithms for 
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computational 
pangenomics
Tizian Schulz; Bielefeld University, Bielefeld

Ongoing technological improvements 

during the last decades have made DNA 

sequencing become both affordable 

and fast. Nowadays, sequencing of DNA 

isolates is a standard approach even in 

small laboratories, and genetic infor-

mation is decoded from DNA molecules 

at a speed comparable to computation 

times needed for subsequent down-

stream analyses. Consequently, more 

and more individual genome sequences 

are getting abundant for many species 

across all parts of the tree of life.

The massive increase of genomic data 

means a great chance for science. New 

large-scale data sets may allow us to 

gain many new biological insights. 

However, it also puts new challenges 

on algorithms in computational biolo-

gy. Efficient storage concepts are vital 

to keep large data sets processible on 

state-of-the-art hardware. At the same 

time, processing times need to stay 

reasonable. Traditional methods often 

fail to fulfill these demands since they 

have not been developed for such large-

scale data.

Figure 1: Redundant sequence information that appears in several members of 
a pangenome is stored only once in a sequence graph which reduces memory 
requirements and facilitates sequence comparisons.

The pangenomic approach is one way to 

handle large data sets while facing the 

above-described challenges. A pange-

nome is defined as the set of all ge-

nomic information of a species. It can 

be stored efficiently by using graphical 

data structures.
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A sequence graph takes perfect advan-

tage of the high amounts of sequence 

redundancy inside a pangenome of 

closely related organisms, because 

sequence parts shared by several in-

dividuals are stored in the graph only 

once (Figure 1). Furthermore, they can 

facilitate sequence comparisons during 

analysis. Only looking at the graph’s to-

pology already reveals the degree of 

genetic diversity within the pangenome 

and allows to distinguish areas of strong 

sequence conservation from those of 

high variability. Some graph data struc-

tures even allow to omit certain com-

putationally expensive preprocessing 

steps such as genome assembly that are 

usually needed after DNA sequencing.

Unfortunately, the processing of a se-

quence graph is often more complex than 

the processing of plain sequences, and 

a modification of algorithms to work on 

graphs is often not possible in a straight-

forward way. Therefore, at BIBI and in 

collaboration with several other groups 

we have developed algorithms for an effi-

cient analysis of graphical pangenomes.
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Figure 2: Alignment statistics for a pangenome graph differ compared 
to conventional alignment statistics, because the central assumption of 
unrelatedness between sequences is violated. Our simulations could show 
an affine, linear dependency for larger score values (top). A priority sampling 
method allowed us to gain sufficiently many samples from the distribution’s 
rare event tail with only a moderate sampling in total. Results are shown as 
histograms (bottom).

The first problem studied focuses on 

the detection of sequence homology. 

This is one of the most basic tasks in 

DNA sequence analysis. Being con-

fronted with a new DNA sequence of 

unknown biological function, a com-

mon way to estimate this function is 

to search for homologous sequences 

whose function is already known. Clas-

sically, this is done by scanning large 

sequence databases, calculating align-

ments between database sequences 

and the query to measure their similar-

ity, and estimating homology based on 

an alignment statistic using the gained 

alignment score. As alignment calcula-

tion for large amounts of sequences is 

costly, heuristic approaches are usually 

preferred over exact methods.

The most popular homology detection 

method BLAST [1] gains speed by the 

underlying assumption that in a large 

database of many unrelated sequenc-

es only a small number of sequences 

matches well to the query and needs to 

be compared thoroughly while most se-

quences can be discarded quickly with-

out missing any meaningful results. 

However, this assumption fails when 

considering a pangenome where all se-

quences are closely related. As a con-

sequence, BLAST’s run time increases 

linearly with the number of genomes in 

a pangenome.

In order to cope with this challenge, 

we introduced PLAST [2], a method to 

detect sequence homology between a 

DNA query sequence and a pangenome 

represented as a sequence graph. Un-

like BLAST, our algorithm makes use of 

the fact that shared sequence parts are 

collapsed inside the graph and can cal-

culate alignments for several genomes 

simultaneously.
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Figure 3: Comparisons of our method to classical homology 
detection tools on pangenomes of different sizes show supe-
rior behavior in terms of speed and memory consumption.

Figure 4: In a classical use case, PLAST was taken to search 
for virulence causing genes in a pangenome of Vibrio cholerae 
strains. Viral traits could clearly be found in strains isolated 
from hospital samples (left) while they were widely absent in 
strains from environmental samples (right).
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Figure 5: Due to the high degree of sequence similarity, pangenomes can be partitioned into parts shared by all (core genome)  
and only several (accessory genome) members. Each member also has some unique parts (singleton genome) usually.

The fact that PLAST operates on close-

ly related sequences within a pange-

nome made it necessary to introduce 

an alignment statistic for sequence-

to-graph alignments on pangenome 

graphs – a use case that has never been 

studied before. Our simulations show 

that such an alignment statistic follows 

the same basic rules as a conventional 

alignment statistic. However, its exact 

statistical parameters are additionally 

influenced by the degree of biological 

diversity inside the pangenome (Figure 

2). Comparisons of our tool to BLAST 

and other state-of-the-art homology 

detection tools show a superior behav-

ior of PLAST in terms of run time and 

memory usage (Figure 3). It could also 

convince in several use case scenarios 

(see e.g, Figure 4).

The second project focuses on the de-

termination of a pangenomic core. The 

core of a pangenome is defined as the 

set of genetic material that is shared 

between all members of the pange-

nome (Figure 5).

Pangenomic core detection is a com-

mon and widely used method which has 

many different applications. Among 

others, it can be used for studying ge-

netic diversity, has relevance for drug 

development or vaccine design and is 

applied in crop plant breeding.

Traditionally, a core genome is deter-

mined at the gene level. However, this 

approach has several shortcomings. 

Firstly, it does not allow to detect any 

core features below the genes. Sec-

ondly, it is dependent on multiple pre-

processing steps like genome assembly 

and gene annotation. Both can be highly 

error-prone, which leads to biases and 

has direct influence on the quality of a 

subsequent core detection. Further

more, gene-based core detection in-

volves many alignment calculations 

that are resource demanding and time 

consuming.

In order to extend core detection be-

yond the gene level and to avoid addi-

tional error sources during preprocess-

ing, we introduced a method that works 

directly on sequences instead of whole 

genes. It makes use of a sequence 

graph to allow a fast processing of large 

data sets. The graph makes it also pos-

sible to deal with small variations that 

appear between different individuals on 

the sequence level.

Comparisons to traditional methods 

show that our approach is faster for large 

data sets and leads to similar results.
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Janik Sielemann; Bielefeld University, Bielefeld

Protein-DNA 
binding specifi-
city is facilitated 
by DNA shape

The composition of available proteins 

for each organism is encoded in its 

DNA. The regions that encode for the 

respective proteins are called genes. 

Gene expression denotes the proce-

dure of an organism to use those genes 

to eventually build proteins and other 

gene products. An essential part of this 

procedure is the promoter sequence, 

which is located upstream from the 

protein coding regions and is bound 

by regulatory proteins. Predicting the 

expression of a gene from its promot-

er sequence is one of the key goals of 

transcriptomics research. The predic-

tion of gene expression will require un-

derstanding where exactly regulatory 

proteins bind genomic DNA. A common 

approach to visualize those binding lo-

cations represents the sequence motif 

(Figure 1). Even though sequence motifs 

describe the DNA-binding sites for the 

respective protein, they lack predictive 

power, as they occur more frequently  

unbound than actually bound by the 

protein [1].

Traditionally, these motifs depict only 

sequence but neglect DNA shape. DNA 

is a very constrained molecule since 

its phosphate sugar backbone runs 

antiparallel while its bases are paired 

and arranged in rungs on a helical lad-

der. However, despite the constraints, 

the exact position of each base pair 

and each base in a pair is influenced 

by its surrounding bases. The pairs 

can be tilted, shifted, slid, rolled, risen 

and twisted relative to each other [4] 

(Figure 2). The bases in a pair can be 

buckled, sheared, stretched, twisted, 

opened and staggered [4] (Figure 2). 

The width of the minor groove is also 

influenced by the surrounding bases.
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Figure 1: Example sequence motif. This 
sequence motif was generated using experi-
mentally validated DNA binding sites [2] for the 
protein ANAC070 using MEME-ChIP [3].

Graduate School: “Digital Infrastructure for the Life Sciences” (DILS)
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Since shape may contribute non-lin-

early and combinationally to binding, 

machine learning approaches ought to 

be able to predict binding events using 

DNA shape features. In the example 

workflow (Figure 3) a random forest 

model is built using the DNA shape fea-

tures of all sequence motif occurrenc-

es for the protein HY5 in Arabidopsis 

thaliana.

For each of 216 DNA binding proteins, 

which have publicly available binding 

data, a model was trained using the 

workflow above. The performance of 

those models regarding binding site 

prediction was compared to a conven-

tional sequence based approach (Fig-

ure 4). The area under the precision-re-

call-curve improved on average by 

93.2% using the predictors, which were 

trained on the DNA shape features in 

combination with the sequence search.

In addition to evaluating the perfor-

mance on ground truth data, it was 

tested whether the models are capa-

Figure 2: DNA shape features. A publicly available 
query table [4] was used to translate DNA sequence 
into DNA shape features.

Figure 3: Example workflow for HY5 in A. thaliana. This workflow illus-
trates the computational steps from publicly available data to trained 
models capable of predicting Protein-DNA binding affinity.
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Figure 4: Comparison of performance regarding binding site prediction. 
In combination, the sequence search and random forest models improved 
binding prediction for all tested proteins. 

Figure 5: Competition EMSA experiment. All used sequences contain the 
binding motif. The model assigned different binding affinities, based on 
the shape features of the sequence.

ble of predicting binding affinity to se-

quences, which are not present in the 

A. thaliana genome. For this, three high 

scoring and three low scoring random 

sequences were used for a competition 

EMSA experiment (Figure 5). Five out of 

six sequences show the predicted bind-

ing behaviour in the experiment, which 

is within the expected error rate of the 

model.

In conclusion, the analysis shows that 

a combination of motif sequence and 

motif shape enables improved pre-

diction of TF binding on the genomic 

sequence. This knowledge can now be 

leveraged to transfer likely binding sites 

determined in one genome to that of a 

related species, to better understand 

evolution of regulation and regulatory 

motifs, and to build predictive models 

of gene expression.

Graduate School: “Digital Infrastructure for the Life Sciences” (DILS)
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Computational 
pangenomics  
in plants
Katharina Sielemann; Bielefeld University, Bielefeld

Understanding the complete genom-

ic diversity of larger taxonomic groups 

requires the effective comparison of 

genomes of many species or cultivars, 

or more pragmatically their genome se-

quences. While the fast development 

of long read sequencing technologies 

enables cost-effective data generation, 

there is a pressing need to develop tools 

for the parallel analysis of large (plant) ge-

nome sequences for generation of results 

and creation of knowledge.

As an entry point into comparative ge-

nomics, we want to determine and eval-

uate the pangenome (the entire set of 

sequences, including e.g. genes and 

structural variations) of a selected tax-

onomic group. Comparative analysis of 

high-quality genome sequence assem-

blies from evolutionary related sources 

will provide power to an improved iden-

tification of genes, pseudogenes, trans-

posable elements and structural genome 

variation at the high kbp scale.

Differences concerning gene copy num-

ber and large-scale structural variations, 

including insertions and deletions, can 

be assessed automatically through the 

comparison of these assemblies and also 

by integrating the underlying sequence 

read data. Comparative genomics be-

tween species and against a reference 

genome sequence will allow the identifi-

cation of domestication tracks like “vari-

ant deserts”. Integration of phylogenetic 

and phenotypic information will allow the 

characterization of genomic features that 

confer unique properties (traits, pheno-

types, etc.) to particular species and fur-

ther the investigation of the relation and 

ancestry of these species. We develop 

dedicated tools and automated analyses 

to answer specific questions in this field.
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Figure 1: Genomic rearrangements (plotted with SyRI) [1].

As a first part of the project, a meth-

od for the quantification of gene dis-

pensability (QUOD) was developed [2]. 

Dispensability of genes in a phyloge-

netic lineage, e.g. a species, genus, or 

higher-level clade, is gaining relevance 

as most genome sequencing projects 

move to a pangenome level. Instead of 

classifying a gene in a binary way as 

either core (present in all investigat-

ed genome sequences) or dispensable 

(missing in some genome sequences), 

QUOD assigns a dispensability score 

to each gene. Hence, QUOD facilitates 

the identification of candidate dis-

pensable genes which often underlie 

lineage-specific adaptation to varying 

environmental conditions.

Figure 2: Illustration of the QUOD concept [2].

Figure 3: Geographic distribution of the investigated species [3].

Graduate School: “Digital Infrastructure for the Life Sciences” (DILS)
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We have selected the Betoideae sub-

family including sugar beet (Beta vul-

garis subsp. vulgaris) as evolutionary 

related target for pangenomic studies. 

Sugar-producing beets have a high eco-

nomic value, and crop wild relatives are 

relevant for breeding. The low genetic 

diversity within the cultivated beets 

requires introduction of new traits, for 

example to increase their tolerance and 

resistance attributes – traits that often 

reside in the wild relatives. For this, ge-

netic information of wild beet relatives 

as well as data on their phylogenetic 

placements to each other are crucial. 

To answer this need, in a second part 

of the PhD project, we sequenced and 

assembled the complete plastomes 

sequences from a broad species spec-

trum of the beet genera Beta and Patel-

lifolia [3]. This pan-plastome dataset 

was then used to determine the wild 

beet phylogeny at high-resolution.

In conclusion, our wild beet plasto-

mes present a new resource to under-

stand the molecular base of the beet 

germplasm.

Figure 4: Proposed phylogeny based on chloroplastic k-mers [3,4].
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Figure 5: SNP hotspots throughout the plastome assemblies [3].
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Data Exploration

Tom Jonas Tubbesing; Bielefeld University, Bielefeld

Exploring
comparative metagenomic and 
metatranscriptomic datasets

Figure 1: Multiple microbial communities are sampled and genomes as well as mRNA are probed in 
sequencing experiments. Automated data processing takes place in a cloud environment before a 
researcher interprets the results of the experiment.
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Modern sequencing technologies en-

able in-depth analyses not only of iso-

lated species, but also of environmental 

samples containing diverse microbial 

communities. Learning about these 

communities is relevant to many dif-

ferent fields like crop cultivation, bio-

fuel production and human medicine. 

The data from such a metagenome 

sequencing experiment can be used to 

reconstruct the genomes of bacteria 

and archaea in the sample. Genomes 

generated in this way are referred to 

as metagenome assembled genomes 

(MAGs). From these, one can learn 

which species are present in the sam-

ple, which functionalities are encoded 

on their genomes and how abundant 

each species in the sample is relative 

to the others. Sequencing the mRNA of 

such a sample provides an additional 

layer of information, and such meta-

transcriptome data can be ascribed to 

the various MAGs to gain insight into 

the transcriptional activities of differ-

ent species. Comparative experiments 

can be carried out, where similar mi-

crobial communities are sampled from 

different environments to learn how 

microbiomes react and adapt (Figure 1).

Processing data from these kinds of 

sequencing experiments, however, in-

volves the use of many different bioin-

formatics tools in sequence (Figure 2). 

Carrying out the necessary steps re-

quires bioinformatics expertise and a 

significant time investment, which is 

why it is desirable to automate such 

tasks. Furthermore, some software 

tools are too demanding to run on com-

mon computer hardware and might 

still take days to finish on high pow-

ered workstations. Thus, this project 

is concerned with the development of 

workflows to facilitate an automated 

data analysis using the resources of the 

de.NBI cloud [1]. A user has to care only 

about initial input to and final output of 

the workflow while a workflow engine 

takes care of the rest. Containerization 

of software makes workflows portable 

and ensures reproducibility.
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If samples from different environmental 

conditions are to be compared, statisti-

cal analyses can be carried out to infer 

which transcript- or gene-categories 

are differentially abundant between 

the two. In a microbiome, two factors 

drive the change in transcript abun-

dance: Firstly, the strength of gene 

expression affects how much of a cer-

tain transcript is found. Secondly, the 

relative abundance of the species car-

rying the gene has a strong influence on 

transcript counts and can often mask 

variations in the expression patterns. 

For this reason, differential expression 

analysis of microbiomes can answer 

two different questions depending on 

the read count normalization approach 

that is employed [2]. The first approach 

elucidates how the abundances of tran-

scripts change between the samples, 

regardless of what causes the differ-

ences. A second approach can be used 

to measure actual differential expres-

sion and thus learn how individual cells 

respond. In order to learn as much as 

possible from the samples, we aim to 

carry out both methods whenever pos-

sible. To facilitate interpretation of the 

results, data pertaining to individual 

genes and transcripts are aggregated 

at the level of enzymatic functions.

Automated data processing thus yields 

results from a range of different analy-

ses, mainly in the form of large tables: 

Genomes of Species accompanied by 

taxonomic and functional annotations, 

relative and differential abundances 

of genes, and analyses of differential 

abundance as well as differential ex-

pression in the metatranscriptome 

data. Interpreting these results can 

be cumbersome: To answer a biolog-

ical question, it most often becomes 

necessary to relate information from 

several different output files, each 

containing tens of thousands of rows 

of data. To simplify this work, this proj-

ect also strives to provide tools to aid 

in data exploration and interpretation. 

One of these tools processes results of 

differential abundance analysis, relates 

these to biochemical processes defined 

Figure 2: Diagram of a workflow intended for differential gene expression analysis 
based on a combined metagenomics and -transcriptomics experiment.
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in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [3] and is able to pro-

vide contextual information regarding 

the data that a user might want to in-

spect (Figure 3). Such applications may 

be hosted in the de.NBI Cloud and ac-

cessed through a web browser.

Figure 3: Screenshot of the early version of a web application which relates workflow results to biochemical processes, represent-
ed by KEGG modules. The interface provides quick access to the different pieces of information necessary for interpreting results.

References:
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Offering automated workflows enables 

researchers to carry out analyses even 

with limited bioinformatics knowledge, 

while saving time and guaranteeing re-

producibility. Aggregating results and 

relating them in an easy-to-use inter-

face streamlines data exploration and 

interpretation. Thus, we will simplify 

the analysis of metagenome and -tran-

scriptome datasets as well as compar-

isons between microbial communities.

Graduate School: “Digital Infrastructure for the Life Sciences” (DILS)
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Tool  
development

Plants need to adapt to ever changing 

environmental conditions. For example: 

A plant does not get enough water and 

experiences drought stress. It needs to 

activate drought genes to better cope 

with this stressor. These responses 

are organized in molecular regulatory 

circuits which consist of transcription 

factors, histone modifications and DNA 

methylation. One output from these 

networks is the transcript abundance. 

This can be measured by RNA-seq. 

Methods for gene regulatory network 

inference from transcript abundance 

data are available. In the DREAM4 chal-

lenge [1] the objective was to infer the 

gene regulatory networks from simulat-

ed gene expression measurements. In 

the year afterwards a similar objective 

in the DREAM5 challenge was set: Infer 

simulated and in-vivo gene regulatory 

networks. In the DREAM4 challenge, a 

training dataset was provided with the 

solution. The data set was generated 

with GeneNetWeaver. The random for-

est-based method GENIE3 has the best 

performance in this challenge and is 

followed by the ANOVA and the TIGRESS 

algorithms. Performance of the remain-

ing contestants is nearly half as good as 

GENIE3. The prediction performance of 

correlation based methods and Bayes-

ian networks is much lower than the 

performance of GENIE3, ANOVA and 

TIGRESS [2]. Correlation based net-

work inference is still a commonly used 

method [3,4].

for comparative gene 
regulatory network analysis
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In previous work, we employed the ran-

dom forest machine learning algorithm 

GENIE3 for Chlamydomonas reinhardtii. 

There we were able to infer a gene regu-

latory network from 1050 publicly avail-

able RNA-seq datasets. Its predictions 

were validated for LRS1 with an average 

precision of 0.68, with RNA-seq of the 

mutant [5].

Because of this successful usage of 

gene regulatory networks, the approach 

was later employed for the crop plants 

barley, rice, maize and wheat. With 

this approach, we confirmed that gene 

regulatory networks are conserved be-

tween species and that closer species 

show a higher degree of conservation. 

Candidate transcription factors for 

the regulation of photosynthesis were 

identified. Within these candidates, 

the already known photosynthetic tran-

scription factors GLK1 and GNC were 

included.

One major limitation is that network 

inference is computationally resource 

intensive. The algorithms are not opti-

mized to run on a cloud infrastructure 

and are not easily accessible. The data 

acquisition is a critical step for the net-

work inference and needs to be inte-

grated into this procedure. An inferred 

gene regulatory network contains too 

much information. Statistical analysis 

is required to test and generate biolog-

ical hypotheses. For this purpose, the 

previously established analysis will be 

directly integrated into the package. 

Novel networks will be directly com-

pared with already existing networks. 

To assign functions to transcription 

factors, GO-term enrichment for the 

targets of each transcription factor will 

directly be performed. If the user has an 

interest in a special gene list, it will be 

possible to search for potential regula-

tors and for putative conserved regula-

tors in other species.

A standardized pipeline will be built. 

Currently the analysis scripts are not 

optimized to fully utilize high perfor-

mance computing. For example the GO-

term enrichment for each transcription 

factor is not optimized and takes a lot of 

time. The number of compared species 

results in an increase in analyzed tran-

scription factors. This increases the 

compute time substantially especially 

for large plant genomes. This leads to 

the necessity to distribute the work-

load. The analysis and network infer-

ence therefore will be built so that it is 

possible to scale across many cores and 

many machines. This will make com-

parative network analysis even more 

accessible, by a reduction of compute 

time. To achieve this, optimizations will 

be established either in snakemake [6] 

or in nextflow [7].

The gene regulatory networks men-

tioned above were generated with bulk 

RNA-seq data using already established 

methods. Predictions by these net-

works at a high level were successful-

ly validated, but for predictions about 

single genes the error rate is high. Be-

cause of the used data, it is planned 

to test the possibility to improve the 

prediction of gene regulatory networks 

from single cell RNA-seq and ATAC-seq 

data.

Overall, this project will deliver major 

advances with the understanding of 

regulation of photosynthesis and gene 

regulatory network inference. First 

steps are taken to deceiver the impor-

tance of different regulatory levels like 

transcription factor binding site spec-

ificity and open chromatin regions for 

gene regulation.

76

The Bielefeld Institute for Bioinformatics Infrastructure



References:
[1] Greenfield et al. DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One, 2010. DOI: 10.1371/journal.pone.0013397.
[2] Marbach et al. Wisdom of crowds for robust gene network inference. Nat. Meth., 2012. DOI: 10.1038/nmeth.2016.
[3] Horvath et al. Geometric interpretation of gene coexpression network analysis. PLoS Comp. Biol., 2008. DOI: 10.1371/journal.pcbi.1000117.
[4] Huang et al. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize. BMC Plant Biol., 2018. DOI: 10.1186/s12870-018-1329-y.
[5] Lämmermann et al. Ubiquitin ligase component LRS1 and transcription factor CrHy5 act as a light switch for photoprotection in Chlamydomonas. bioRxiv, 2020. DOI: 10.1101/2020.02.10.942334.
[6] Mölder et al. Sustainable data analysis with Snakemake. F1000Res 10, 33, 2021. DOI: 10.12688/f1000research.29032.2.
[7] Di Tommaso et al. Nextflow enables reproducible computational workflows. Nature Biotechnol., 2017. DOI: 10.1038/nbt.3820.

77



IMPRINT
Prof. Dr. Jens Stoye

Bielefeld Institute for Bioinformatics Infrastructure (BIBI)

Faculty of Technology

Bielefeld University

Universitätsstraße 25

33615 Bielefeld

Tel.: +49 (0)521 106 3852

Fax: +49 (0)521 106 6495

E-Mail: bibi@uni-bielefeld.de

Editors:

Editor-in-Chief: Prof. Dr. Jens Stoye (Bielefeld University, BIBI)

Editorial Team: Dr. Irena Maus (Bielefeld University, CeBiTec)

Dr. Roland Wittler (Bielefeld University, BIBI)

www.bibi.uni-bielefeld.de

 @BIBIBielefeld

Date: November 2021

Design and Layout: 

MEDIUM Werbeagentur GmbH, Bielefeld

Printing:

Bruns Druckwelt GmbH & Co. KG, Minden

DOI: https://doi.org/10.4119/unibi/2959449

Unless otherwise noted, this publication is licensed under Creative 

Commons Attribution – Non Commercial - NoDerivatives4.0 Inter-

national (CC BY NC ND). 

 

For more information see:  

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en 

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

PHOTO CREDITS:
de.NBI Administration office

ZB MED  

© stock.adobe.com/Astibuag (Cover) 

© shutterstock.com/sdecoret (p. 4,10) 

© iStock.com/Just_Super (p. 12, 16, 18) 

© shutterstock.com/spainter_vfx (p. 5, 22) 

© iStock.com/LeArchitecto (p. 24) 

© stock.adobe.com/CROCOTHERY (p. 26) 

© iStock.com/Alkalyne (p. 30) 

© iStock.com/carloscastilla (p. 5, 34) 

© stock.adobe.com/Dmitry Knorre (p. 36) 

© stock.adobe.com/Gernot Krautberger (p. 38) 

© iStock.com/onurdongel (p. 42) 

© shutterstock.com/pingebat (p. 44) 

© stock.adobe.com/Natasha (p. 46) 

© iStock.com/matejmo (p. 48) 

© iStock.com/ilyakalinin (p. 52) 

© iStock.com/Bacsica (p. 54) 

© iStock.com/jxfzsy (p. 56) 

© iStock.com/tampatra (p. 60) 

© stock.adobe.com/Christoph Burgstedt (p. 62) 

© iStock.com/SandraMatic (p. 66) 

© iStock.com/Sinhyu (p. 70) 

© iStock.com/imaginima (p. 74) 

© stock.adobe.com/Vjom (p. 76) 

© iStock.com/hh5800 (p. 79)

78

The Bielefeld Institute for Bioinformatics Infrastructure

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode





