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Chapter 1

Introduction

For centuries, philosophers and scientists alike have been trying to identify the
fundamental, indivisible constituents that make up matter. While the idea that
matter consists of such indivisible constituents dates as far back as the ancient
Greeks, it took scientists until the nineteenth century to find reliable evidence
for the existence of atoms. With the advent of modern physics in the twentieth
century, scientists were able to quantitatively study the behavior of atoms and
eventually discovered that the atom is yet another compound object, consisting of
electrons and a nucleus, the latter of which revealed itself to be a bound state of
protons and neutrons.

Ultimately, this search for the fundamental building blocks of nature culmi-
nated in the formulation of the standard model of particle physics. It describes
three of the four fundamental forces of nature, electromagnetism, the weak in-
teraction, responsible for the β decay, and the strong interaction, responsible for
e.g. nuclear forces, together in the framework of quantum field theory. Gravity,
the weakest force in nature, still refuses to be formulated in terms of a consistent
quantum field theory and is not part of the standard model.

The fundamental constituents of the standard model, the elementary particles,
are listed in Table 1.1 below. The fermionic sector can be divided into two seg-
ments, strongly interacting quarks (up, down, strange, charm, top and bottom)
and leptons (electrons, muons, taus and their respective neutrinos) that only inter-
act electroweakly. In the bosonic sector, the photon γ mediates electromagnetic
forces, while the gluons g mediate strong forces and the W± and Z bosons weak
forces. Finally, interactions with the scalar Higgs boson H0 provide the fermions
and massive bosons with their mass terms. Although it faces an ever growing list
of short comings, the standard model is one of the best tested theories ever put
forth by scientists and its predictions have been confirmed to incredible precision.

The strongly interacting sector of the standard model is described by the the-
ory of quantum chromodynamics (QCD) which exhibits many unique features
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1.1. THE PHASE DIAGRAM OF QCD

Fermions Bosons

u c t g
d s b γ

e µ τ H
νe νµ ντ W±, Z

Table 1.1: Particle content of the standard model.

absent in the electroweak sector. QCD is a non-abelian gauge theory with SU(3)
as the symmetry group. Quarks are described as spin 1

2
fermions in the fundamen-

tal representation of SU(3). As such, they come in three so-called color charges
corresponding to the three generators of the fundamental representation. Gluons
on the other hand are described as massless spin 1 bosons in the adjoint repre-
sentation of SU(3) and thus come in eight different color charge variants. Color
charges, however, do not exist freely in nature and are instead only encountered
inside color charge neutral objects such as hadrons. This is a result of QCDs con-
finement property: The static quark-antiquark potential is found to rise linearly
for large separation distances r [1]. Furthermore, QCD is asymptotically free:
The coupling strength gs decreases with increasing energy scale which enables
perturbative calculations for highly energetic processes [2]. Conversely, however,
a large part of QCDs phenomena cannot be addressed with perturbative methods,
rendering the study of them incredibly challenging.

1.1 The phase diagram of QCD

Due to these unique features, strong interaction matter shows a variety of inter-
esting properties when subjected to extreme conditions of temperature and den-
sity such as those present in the early universe or in heavy ion collision experi-
ments. When heated up sufficiently, QCD matter transitions into a new state, the
Quark Gluon Plasma (QGP) phase, where quarks and gluons are deconfined and
can move quasi-freely within the plasma rather than being confined into hadrons.
This new state of strong interaction matter is studied intensively in heavy ion colli-
sion experiments. Measurements at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN
revealed that the medium created in these heavy ion collisions is able to quench
highly energetic particle jets with an efficiency that can only be attributed to a
plasma of quarks and gluons [3][4]. Furthermore, the medium shows large ellip-
tic flow and a shear viscosity to entropy density ratio η/s very close to that of a
perfect fluid.
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CHAPTER 1. INTRODUCTION

While the existence of the QGP phase has been firmly established [5], a precise
determination of the phase diagram of QCD has not been possible so far as a mul-
titude of challenges complicate its study. The two principle features of QCD that
dictate the structure of the phase diagram are the above mentioned confinement
as well as chiral symmetry. In the limit of infinitely heavy quark masses, QCD
is reduced to a pure SU(3) gauge theory with its dynamics entirely governed by
gluons. The corresponding Lagrangian possesses an exact Z(3) center symme-
try that is spontaneously broken above a critical temperature Tc. This is signaled
by the behavior of the so-called Polyakov loop expectation value |〈P 〉|, which
is non-zero in the symmetry broken phase and vanishes in the Z(3) symmetric
phase [6]. It therefore functions as the order parameter for this phase transition.
The Polyakov loop is furthermore related to the heavy quark free energy Fq via

| 〈P 〉 | ∼ e−Fq/T . (1.1.1)

Therefore, |〈P 〉| = 0 signals confinement, as the free energy associated with
having a free heavy quark in the system diverges. |〈P 〉| 6= 0, on the other hand,
implies deconfinement. The transition between the two phases has been found to
be of first order. Moving away from the purely gluonic case, however, the Z(3)
center symmetry is explicitly broken and the Polyakov loop no longer functions
as an order parameter which complicates the study of confinement in full QCD
significantly.

In the opposite quark mass limit, where the masses (mf ) of Nf quarks vanish,
the QCD Lagrangian possesses a U(Nf )L × U(Nf )R chiral symmetry which can
equivalently be expressed as SU(Nf )L× SU(Nf )R×U(1)A×U(1)V . The axial
symmetry U(1)A, although a symmetry of the Lagrangian, is broken in the quan-
tized theory. The U(1)V symmetrry is responsible for baryon number conserva-
tion whereas the chiral symmetry SU(NF )L×SU(NF )R is broken spontaneously
below a critical temperature T 0

c . This is signaled by a non-zero chiral condensate

〈ψ̄fψf〉 =
T

V

∂ lnZ

∂mf

, (1.1.2)

which is the order parameter of this phase transition. Furthermore, this sponta-
neous symmetry breaking gives rise to massless Goldstone bosons. While non-
zero quark masses explicitly break chiral symmetry, it can still be considered a
good approximate symmetry for the light up and down quarks and serves as an
explanation for the smaller then otherwise expected pion masses found in nature.
The nature of the chiral phase transition is still under investigation and recent
studies are aiming to determine the universality class that the transition belongs to
[7]. The current estimate for the critical temperature of QCD with two massless
light quarks and a massive strange quark calculated by the HotQCD collaboration
is T 0

c = 132+3
−6 MeV [8].
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Lattice QCD calculations have been able to show that an imprint of the chi-
ral phase transition is still visible at finite quark masses. The chiral condensate
changes considerably with increasing temperature and its associated susceptibil-
ity shows a clear peak that diverges as two light quark masses (ml) approach zero,
i.e. ml → 0. It is therefore referred to as an analytic crossover transition rather
then a true phase transition and the peak of the corresponding susceptibility is of-
ten used to define a pseudo-critical transition temperature Tpc. Recent lattice QCD
calculations from the HotQCD collaboration yielded Tpc = 156.5 ± 1.5 MeV [9]
while Borsanyi et al. found Tpc = 158± 0.6 MeV [10].

The phase diagram can be extended by a further axis, the baryon chemical
potential µB, which controls the net-baryon density of the system. Unfortunately,
direct lattice QCD simulations at non-zero chemical potential are rendered impos-
sible by the infamous sign problem. The lattice QCD action becomes complex and
can no longer be used as a weight factor in Monte Carlo simulation algorithms.
While promising methods to solve this problem are being developed [11][12][13],
none of them is in a state where it can provide precise, continuum extrapolated
predictions. Thus indirect methods have to be used instead. By using extrapo-
lations from imaginary chemical potentials [14], where simulations are possible,
or by using Taylor expansions around µB = 0 [15], the µB > 0 region can be
accessed and the pseudo-critical transition line Tpc(µB) has been calculated up to
about µB = 300 MeV in recent studies. It was found that the pseudo-critical tran-
sition temperature slightly decreases with increasing baryon chemical potential
but within the region explored so far, the crossover nature did not change. Beyond
µB ∼ 300 MeV, first principle lattice QCD calculations are no longer available
and model calculations are used to explore the QCD phase diagram. These pre-
dict that the crossover line delineated by Tpc(µB) ends in a second order critical
endpoint (CEP) beyond which the transition turns into a genuine first order phase
transition. However, predictions for the specific location vary strongly depending
on the model used. A sketch of a possible QCD phase diagram is shown in Fig.
1.1.

1.2 The search for the critical endpoint

Searching for the elusive critical endpoint in the QCD phase diagram has become
one of the mayor goals in heavy ion research with both theorists and experimen-
talists devoting significant resources towards finding it. Apart from the chiral con-
densate and its susceptibility, conserved charge1 fluctuations also show critical
behavior if they couple to the order parameter. Furthermore, they are accessible

1Such as baryon number (B), electric charge (Q) or strangeness (S).
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µB

T

LQCD

critical point?

QGP

hadron gas

156 MeV

crossover

1st-order?

Figure 1.1: A sketch of a possible QCD phase diagram as a function of temperature T and
baryon chemical potential µB . The red line denotes the small strip of the pseudo-critical
transition line Tpc(µB) that we are able to address with lattice QCD calculations. The
black dashed line corresponds to the pseudo-critical transition line Tpc(µB) which ends
in a critical endpoint denoted by the black dot. The solid black line denotes a possible
first order transition line. The nuclear liquid-gas transition and a possible color supercon-
ducting phase are not shown.

in heavy ion collision experiments such that a comparison between theoretical
predictions and measurements are in principle possible. When relativistic nuclei
collide in such experiments, they create a hot and dense “fireball” of strongly in-
teracting matter that rapidly expands and cools down, traversing different regions
of the QCD phase diagram [16]. After the early stages of the collision, the fireball
thermalizes quickly and finds itself in the QGP phase. As it cools, quarks and glu-
ons eventually confine into hadrons, either smoothly via the crossover transition,
or possibly abruptly via a first order transition depending on the baryon chemical
potential of the system. Soon after, the fireballs expansion and cooling causes in-
elastic scattering to cease and the particle content to become fixed. This is known
as the chemical freeze-out and is characterized by the freeze-out temperature Tf
and chemical potentials µB,f , µQ,f , µS,f . Finally, elastic scatterings also stop as
the so-called kinetic freeze-out is reached. From here on, particle momenta are
fixed and particles “stream” freely until they reach the detector.

Due to global charge conservation, the system created in a heavy ion collision
experiment should be described by a canonical ensemble, whereas theoretical cal-
culations that study the QCD phase diagram use a grand canonical formulation.
To emulate such a grand canonical ensemble in the experiments, measurements
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1.2. THE SEARCH FOR THE CRITICAL ENDPOINT

are performed in sub-volumes of the fireball which is realized by introducing ap-
propriate rapidity cuts. Charge fluctuations are then measured by counting the
particle multiplicities in this sub-volume in each collision event which then yields
an event-by-event charge distribution.

Since the particle multiplicities are fixed at chemical freeze-out, one expects
to see remnants of the critical behavior in event-by-event fluctuations if freeze-out
occurs close enough to the critical endpoint. As the critical point is approached,
the correlation length ξ increases until it eventually diverges at the CEP. Semi-
nal work by Stephanov based on universality arguments has shown that higher
order fluctuations such as the kurtosis are particularly sensitive to this divergence
[17]. For instance, the kurtosis scales with ξ7 in the vicinity of the CEP and is ex-
pected to turn slightly negative when the freeze-out curve passes below the CEP
[18]. The freeze-out conditions found in heavy ion collisions can be controlled
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Figure 1.2: A comparison between the pseudo-critical transition line Tpc(µB) and
freeze-out parameters determined from fitting particle yield measurements to statistical
hadronization models. Taken from [9].

by varying the energy
√
sNN of the colliding nuclei. High beam energies, such as

those realized in the ALICE experiment at LHC, correspond to small freeze-out
chemical potentials while lower beam energies result in higher freeze-out chemi-
cal potentials. The Beam Energy Scan (BES) program performed at RHIC studies
collisions with energies

√
sNN ranging from 200 GeV down to 7.7 GeV and the

freeze-out curve that results from these different beam energies seems to be in
close agreement with the pseudo-critical transition line of the chiral crossover as
shown in Fig. 1.2. Therefore, higher order cumulants of conserved charge fluctu-
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CHAPTER 1. INTRODUCTION

ations are promising observables for finding evidence for the critical endpoint in
the QCD phase diagram.

1.3 Aim of this thesis
In this thesis, we want to provide first principle QCD predictions of cumulants of
net charge fluctuations using lattice QCD methods and confront them, to the extent
that it is possible, with available experimental results as well as models such as
the hadron resonance gas. In the first half of this thesis, comprised of the first four
sections, we will lay out the theoretical basis for these calculations. Section 2 will
detail the formulation of QCD on a discretized lattice and explain the specifics of
the Highly Improved Staggered Quark (HISQ) action that we use for the numerical
simulations presented in this work. The third section summarizes the numerical
methods and algorithms used and provides details on the employed simulation pa-
rameters as well as the scale setting procedure. The Taylor expansion method that
is used to access susceptibilities in the small baryon density region is described in
the fourth section. The second half of this thesis then presents a detailed discus-
sion of the results obtained from numerical computations performed throughout
the last three years. We will start with comparing precise lattice QCD determi-
nations of second order cumulants to different hadron resonance gas models in
the fifth section. This is followed by a comparison of up to sixth order cumulant
ratios of net baryon number fluctuations along the pseudo-critical transition line
Tpc(µB) to corresponding measurements taken by the STAR collaboration during
the BES program. Lastly, we present results on higher order cumulant ratios of
net electric charge and net strangeness fluctuations along Tpc(µB) and discuss to
what extent they can be helpful in constraining freeze-out parameters in a model
independent approach.
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Chapter 2

Formulating QCD on the lattice

Obtaining QCD predictions from first principle calculations poses a formidable
challenge as the theory is inherently strongly coupled such that the usual pertur-
bative methods employed in particle physics are only applicable at very small
distances or, equivalently, at very high energies. In order to obtain predictions at
intermediate and smaller energy scales, non-perturbative methods such as lattice
QCD need to be applied. The fundamental idea behind the lattice approach is
to formulate the theory on a discrete space-time grid in order to render the QCD
path integral finite dimensional, making it amenable to numerical treatments on
powerful computers. Solving the discretized theory at different resolutions, quan-
tified by the lattice space a, then allows to compute the limit a → 0 in which
the continuum theory is recovered. As the discretization procedure itself is not
unique, many different variants have been proposed throughout the years, each
coming with its own set of advantages and short-comings that lattice QCD practi-
tioners get to choose from. In this section, we will describe our particular choice
of discretization schemes.

2.1 Lattice discretization
The fundamental mathematical object from which physical observables are de-
rived in finite temperature QCD is the partition function

Z(V, T, µ) =

∫
DADψDψ̄ exp {−SE} , (2.1.1)

which integrates gauge- and fermion field configurations weighted by a Boltz-
mann factor exp {−SE} given by the Euclidean QCD action SE . Here, A repre-
sents the gluon field and ψ and ψ̄ the Grassmann-valued quark fields. The temper-
ature and volume dependencies enter the partition function through the integration

9



2.1. LATTICE DISCRETIZATION

limits of the Euclidean action while the chemical potential µ is introduced through
the conserved current ψ̄γ0ψ

SE =

∫ 1
T

0

dx0

∫
V

d3xLE(A,ψ, ψ̄, µ) (2.1.2)

=

∫ 1
T

0

dx0

∫
V

d3x

[
−1

2
TrFµνFµν + ψ̄f,a (γν (∂ν − igAν − µδ0,ν) +mf )a,b ψf,b

]
.

Color-space is indexed through a and b ranging from 0 to Nc with Nc being the
number of colors and flavor-space is indexed via f = 0, . . . , nf where nf is the
number of quark-flavors. Greek indices label (Euclidean) space-time directions
and Einsteins summation convention for equal indices is used. The field strength
tensor Fµν is defined as

Fµν(x) =

N2
c−1∑
i=0

λi
2
F i
µν(x), (2.1.3)

F i
µν(x) = ∂µA

i
ν(x)− ∂νAiµ(x) + gf ijkAjµ(x)Akν(x), (2.1.4)

with f ijk being the structure constants of SU(Nc) and λi the Gell-Mann matrices.
Similarly, the gauge field Aµ(x) is defined via

Aµ(x) =

N2
c−1∑
i=0

λi
2
Aiµ(x). (2.1.5)

The discretization of (2.1.1) proceeds by introducing a finite space-time grid with
Nτ lattice sites in temporal direction and Nσ lattice sites in spatial directions.
Neighboring sites are separated by a lattice spacing a such that the physical 3-
volume V is given by V = a3N3

σ and the temperature T is related to the in-
verse of the temporal lattice extent T = 1

aNτ
. The quark fields ψ(x) are placed

on lattice sites, while gluonic degrees of freedom are introduced via matrices
Uµ(x) ∈ SU(Nc) placed on the links connecting two lattices sites. These link
matrices are related to the gluon fields via Uµ(x) = exp {aAµ(x)}. Multiplying
the link matrices Uµ(x) along a unit square yields the fundamental plaquette

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x), (2.1.6)

which is used to formulate a discrete version of the gluon action, the Wilson action

SG,Wilson =
2Nc

g2

∑
x

∑
µ<ν

(
1− 1

Nc

Re Tr Uµν(x)

)
. (2.1.7)

10



CHAPTER 2. FORMULATING QCD ON THE LATTICE

Using the relation between the link matrices Uµ(x) and Aµ(x), it is easy to show
that this discretization reproduces the continuum formulation, i.e. the field strength
tensor term, up to O(a2) corrections. The convergence rate towards the contin-
uum can be improved upon by employing what is known as Symmanzik improve-
ment [19][20] where further terms are included in the action that explicitly can-
cel the O(a2) corrections. The tree-level Symmanzik improvement, for example,
achieves this cancellation by including link-matrices Uµ(x) multiplied along 2×1
rectangles

SG =
2Nc

g2

∑
x

∑
µ<ν

cP

(
1− 1

Nc

Re Tr Uµν(x)

)
(2.1.8)

+ cR

(
1− 1

Nc

Re Tr Rµν(x)

)
,

with Rµν(x) = Uµ(x)Uν(x+ µ̂)Uν(x+ µ̂+ ν̂)U †µ(x+ 2ν̂)U †ν(x+ ν̂)U †ν(x)

+ Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †µ(x+ ν̂ + µ̂)U †µ(x+ ν̂)U †ν(x).

Choosing the coefficients cP = 5
4

and cR = −1
6

then cancels the O(a2) cor-
rections. All numerical simulations carried out in this thesis make use of this
improved gauge action. Schematic representations of the expressions contained
in the Symmanzik improved gauge action are shown in Figure 2.1.

Uµν(x)

x µ

ν

x µ

ν R
(1)
µν (x)

x µ

ν

R
(2)
µν (x)

Figure 2.1: Schematic representations of the fundamental plaquette Uµν(x) and the two
terms comprising Rµν(x). Link variables Uµ(x) are represented by an arrow going from
x to x+ µ̂.

2.2 Highly improved staggered quarks

The fermionic part of the action can be discretized by replacing the covariant
derivative in (2.1.2) with symmetric finite differences. Local gauge invariance is

11



2.2. HIGHLY IMPROVED STAGGERED QUARKS

retained by multiplying the neighboring spinors ψ(x ± µ̂) with the lattice gauge
fields Uµ(x) as shown for a single quark flavor below

SF,naive =
∑
x

ψ̄(x)

(∑
µ

γµ
Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)

2a
+mψ(x)

)
.

(2.2.1)

This discretization approach, known as the naive fermion discretization, comes
with a significant drawback that necessitates further improvements. The quark
propagator, obtained by inverting the Dirac operator, contains 16 poles, 15 of
which represent unphysical states known as doublers. In the massless and non-
interacting case, the poles are located at p = (0, 0, 0, 0) and pdoubler = (π/a, 0, 0, 0),
(0, π/a, 0, 0), . . . , (π/a, π/a, π/a, π/a) [21]. More refined discretization schemes
are necessary to reduce or alleviate this doubling problem. One such approach,
the staggered quark formulation [22], reduces the degeneracy from 16 down to 4.
This is achieved by transforming the spinors locally via

ψ(x)→ γx11 γ
x2
2 γ

x3
3 γ

x0
0 ψ(x) (2.2.2)

ψ̄(x)→ ψ̄(x)γx00 γ
x3
3 γ

x2
2 γ

x1
1 ,

which diagonalizes the action w.r.t Dirac space, but introduces the so-called stag-
gered phase factor

η1(x) = 1, η2(x) = (−1)x1 , η3(x) = (−1)x1+x2 , η0(x) = (−1)x1+x2+x3 , (2.2.3)

into the finite difference term of the action. Of the four identical Dirac components
in the action, three are dropped and only one labeled χ(x) is kept, which yields
the staggered quark discretization

SF,staggered =
∑
x

χ̄(x)

(∑
µ

ηµ
(
Uµ(x)χ(x+ µ̂)− U †µ(x− µ̂)χ(x− µ̂)

)
+mχ(x)

)
.

= SF,naive[U ] +
∑
x

mχ̄(x)χ(x). (2.2.4)

For notational convenience, we also absorbed appropriate factors of a in χ(x).
The remaining four degenerate quark species are referred to as tastes. At finite
lattice spacing, these quark species can interact and change their taste, e.g. by
exchanging a gluon with one or more momentum components close to π/a. While
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CHAPTER 2. FORMULATING QCD ON THE LATTICE

those processes are suppressed by a2, their effects at finite lattice spacing can still
be sizable [23]. The Highly Improved Staggered Quark (HISQ) discretization
[24], that we make use of in this work, improves upon the standard staggered
quark formulation by eliminating the taste exchange interactions at tree level while
also removing other discretization errors at order O(a2) stemming from the finite
difference term. The latter is achieved simply by extending the finite difference
term to contain a three-link hopping, the so-called Naik term [25]

SF,Naik [U ] =
∑
x,µ

χ̄(x)ηµ (Uµ(x)Uµ(x+ µ̂)Uµ(x+ 2µ̂)χ(x+ 3µ̂) (2.2.5)

−U †µ(x− µ̂)U †µ(x− 2µ̂)U †µ(x− 3µ̂)χ(x− 3µ̂)
)
.

Taste exchange interactions are removed by modifying the quark-gluon vertex
with a form factor fµ(q) that is zero for momenta q with one or more components
qi = π/a. More specifically

fµ(q) =

{
1, for q → 0

0, for q → ~ξπ/a, ~ξ2 6= 0, ξµ = 0,
(2.2.6)

where ~ξ is a 4-component vector whose elements can be 0 or 1. This form factor is
achieved by smearing the gaugefield Uµ(x), i.e. replacing it by a weighted sum of
neighboring links. Gluons with one transverse momentum component qi = π/a
are removed by including so-called three-link staples U3−link

µ,ν (x) while those with
two and three transverse momentum components qi = π/a are removed by includ-
ing five-link staples U5−link

µ,ν,ρ (x) and seven-link staples U7−link
µ,ν,ρ,σ(x), respectively. A

diagrammatic representation of these staples is given in Fig. 2.2. The smeared
link Vµ(x) = Ff7Uµ(x) reads

Vµ(x) = Ff7Uµ(x) (2.2.7)

=
1

8
Uµ(x) +

1

16

∑
ν 6=µ

U3−link
µ,ν (x) +

1

64

∑
ρ6=ν 6=µ

U5−link
µ,ν,ρ (x)

+
1

384

∑
σ 6=ρ6=ν 6=µ

U7−link
µ,ν,ρ,σ(x).

Note that the summation over the directions perpendicular to µ also include back-
ward directions. Repeated application of the smearing procedure can further re-
duce the taste-violation effects stemming from one-loop diagrams but re-projection
to U(3) or SU(3) is required to avoid enhancing one-loop diagrams with two
gluon vertices [23]. For the HISQ discretization, the Vµ(x) links are re-projected
to U(3), which we label Wµ(x)

Wµ(x) = UU(3)Vµ(x). (2.2.8)
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2.2. HIGHLY IMPROVED STAGGERED QUARKS

Finally, a second level of smearing is applied, this time including an additional
five-link term, the Lepage term, that cancels remaining O(a2) errors introduced
by the first level of smearing.

Xµ(x) = Ff7LWµ(x) =
7

8
Wµ(x) + Ff7Wµ(x)− 1

8

∑
ν 6=µ

W Lepage
µ,ν (x). (2.2.9)

The full HISQ action then reads

SHISQ =
1

2
SF,naive[X]− 1

48
SF,Naik[W ] +

∑
x

mχ̄(x)χ(x). (2.2.10)

Note, however, that the prefactors listed here, particularly the ones for the Naik
term, are specific to the number of flavors used throughout this thesis. We use
two mass degenerate (up & down) light quarks and heavier strange quarks in our
calculations which is often referred to as Nf = 2 + 1. Heavier quark flavors,
such as charm quarks with masses around 1.275(25) GeV, are neglected in our
calculations as they are contribute only very little to the thermodynamic behavior
at the temperature scales that we are interested in.

U3−link
µ,ν (x)

x µ

ν ULepage
µ,ν (x)

x µ

ν

U5−link
µ,ν,ρ (x)

x µ

ν

ρ

U7−link
µ,ν,ρ,σ(x)

x µ

ν

ρ

σ

Figure 2.2: Diagrammatic representations of the terms entering the smearing operators
Ff7 and Ff7L.
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CHAPTER 2. FORMULATING QCD ON THE LATTICE

The formulation that we have presented here so far successfully reduces taste
exchange interactions and discretization errors of O(a2) but four tastes are still
present. In the continuum limit, these would correspond to four physical quark
states with the same mass contributing equally to the partition function. In order
to correct for this shortcoming, we employ the rooting procedure [23]. The lattice
QCD partition function can be written as a (lattice-) path integral analogously to
(2.1.1) in which we can integrate out fermionic d.o.f. analytically, giving rise to
the determinant of the fermion matrix Mf

Zlat. =

∫
DUDχDχ̄ e−SF−SG =

∫
DUDχDχ̄ e−χ̄Mfχ−SG (2.2.11)

=

∫
DU detMfe

−SG .

Each of the four tastes contributes equally to detMf in the continuum limit. Using
the fourth root of the determinant instead guarantees that we obtain only a single
quark state in the continuum. While the procedure of rooting has been discussed
controversially in the past, empirical evidence points towards the correctness of
it [23]. For the Nf = 2 + 1 flavor setup that we are using in this thesis, (2.2.11)
reads

Z =

∫
DU detMu

1/4 detMd
1/4 detMs

1/4e−SG (2.2.12)

=

∫
DU detMl

1/2 detMs
1/4e−SG .
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Chapter 3

Numerical Methods

The numerical workflow for calculating higher order cumulants of conserved
charge fluctuations presented in this work comprises two main parts, the genera-
tion of gaugefield configurations using the rational Hybrid Monte Carlo (RHMC)
algorithm and the subsequent evaluation of certain operators defined in section 4.4
on these gaugefield configurations with a combination of Krylov solvers. In this
chapter, we will provide a brief overview of these methods and highlight some
of the algorithmic details crucial for keeping numerical costs of these simulations
under control.

3.1 RHMC algorithm

Expectation values of physical observables derived from (2.2.12) generally take
the form

〈O〉 =
1

Z

∫
DU O detMl

1/2 detMs
1/4e−SG , (3.1.1)

which lends itself naturally to evaluation with importance sampling Monte Carlo
if

P (U) =
1

Z
detMl[U ]1/2 detMs[U ]1/4e−SG[U ], (3.1.2)

can be interpreted as a probability weight. In the absence of a chemical potential
µ, this is possible if the lattice Dirac operator - the finite difference operator in the
fermion action - is γ5 hermitian, which is the case for the staggered discretization
that we are using in this thesis. With importance sampling, computing (3.1.1) then
comes down to generating a sequence ofN gauge configurations Ui, i = 1, . . . , N
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3.1. RHMC ALGORITHM

distributed according to (3.1.2) and evaluating

〈O〉 ' 1

N

N∑
i=1

O(Ui). (3.1.3)

The generation of such a sequence of gauge field configurations requires the use
of sophisticated numerical methods, particularly due to the determinants of the
fermion matrix whose dimension can easily exceed dim(Mf ) ∼ O(106). In this
thesis, we will make use of the rational hybrid Monte Carlo (RHMC) algorithm
[26][27] to generate gauge field configurations. In it, the fermion determinant is
dealt with by introducing bosonic pseudo-fermions φ and φ† that are placed on
the lattice sites, just like their fermionic counter parts χ and χ̄. Unlike those,
however, φ(x) and φ†(x) are not Grassmann valued but complex valued vectors
which have, in the case of the staggered discretization, three color components.
A single determinant factor with exponent nf/4 can be re-written in terms of a
Gaussian lattice path integral over these pseudo-fermions via

(detMf )
nf/4 =

∫
Dφ†Dφ e−φ†(M†fMf)

−nf/4φ. (3.1.4)

To evaluate the matrix exponential
(
M †

fMf

)−nf/4
, a rational approximation

r(x) ' x−nf/8 is used that takes the form

r(M †
fMf ) = α0 +

k∑
i=1

αi

M †
fMf + βi

, (3.1.5)

where αi and βi are constants chosen to optimally approximate x−nf/8 given the
maximum degree k. By incorporating this rational approximation and the pseudo-
fermions into a new effective action Seff , the lattice path integral can be expressed
as

Z =

∫
DUDφ†Dφ exp

{
−SG − φ†r2

(
M †

fMf

)
φ
}

(3.1.6)

=

∫
DUDφ†Dφ exp {−Seff} .

The computation of the determinant has therefore been traded in favor of calcu-
lating additional path integrals. Multiple determinants, as present in (2.2.12), are
dealt with by simply introducing additional pseudo-fermions.

18



CHAPTER 3. NUMERICAL METHODS

In order to propose a new gauge field configuration Uf from an existing con-
figuration Ui, the RHMC algorithm uses a molecular dynamics approach. By
defining fictitious conjugate momenta

πµ(x) =
8∑
i=1

πiµ(x)Ti ∈ su(3), πiµ(x) ∈ R, Ti : Generators of SU(3)

(3.1.7)

and a corresponding Hamiltonian

H[U, π] =
1

2

∑
x,µ

Tr[πµ(x)2] + Seff [U ], (3.1.8)

we can obtain the equations of motion

dπµ(x)

dt
= − ∂H

∂Qµ(x)
,

dQµ(x)

dt
=

∂H

∂πµ(x)
, (3.1.9)

in a fictitious time t, where the conjugate “position” variable Qµ(x), an element
of the su(3)-algebra, is related to the link variable Uµ(x) via

Uµ(x) = exp

(
i

8∑
i=1

ωiµ(x)Ti

)
= exp (iQµ(x)) . (3.1.10)

Evolving the initial gauge field configuration Ui by integrating these equations of
motion from t = 0 to t = tf then yields a trajectory through phase space whose
endpoint (Qf , πf ) gives a new gauge field configuration Uf . Finally, a Metropolis
acceptance step is performed on Uf which has a high acceptance rate due to the
energy conservation of the Hamiltonian equations of motion.

To ensure that this approach correctly samples (3.1.2), two conditions need to
be fulfilled: detailed balance and ergodicity.
Detailed balance is the requirement that the probability to transition from one
configuration to the another is the same in the reverse direction, i.e. P (Ui →
Uf )

!
= P (Uf → Ui). Ergodicity on the other hand requires that the algorithm is

able to reach any possible configuration starting from an arbitrary one in a finite
number of steps.

In the RHMC algorithm, it is achieved by refreshing the initial conjugate mo-
menta πi for each new trajectory. Detailed balance on the other hand is achieved
by using symplectic integrators such as the 2nd order leapfrog scheme. In total,
the full RHMC algorithm thus proceeds in four steps:

1. Refreshing conjugate momenta π by drawing a new πi according to

P (π) ∼ exp

(
−1

2
Tr(π2)

)
. (3.1.11)
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3.1. RHMC ALGORITHM

2. Refreshing pseudo-fermions φ by drawing a random η with
P (η) ∼ exp (−η∗η) and computing

φ = r
(
M †

fMf

)−1

η. (3.1.12)

3. Integrating the equations of motion to compute Uf .

4. Performing a Metropolis step with a random, uniform x ∈ [0, 1]

Uf =

{
Uf if x ≤ min [1, exp {− (H[Uf ]−H[Ui])}] ,
Ui if x > min [1, exp {− (H[Uf ]−H[Ui])}] .

(3.1.13)

Integrating the equations of motion is by far the most computationally demanding
part of this algorithm. While the specific details vary for different integrators, con-
jugate momenta will be updated regularly during the integration. Schematically,
the kth update in the integration may be written as

πk = πk−1 − δtF [Uk−1, φ], (3.1.14)

where δt is the step-size of the integration and F [Uk, φ] is a force term computed
from the effective action Seff

F [U, φ]µ(x) =
∂Seff

∂Qµ(x)
=

8∑
i=1

Ti
∂Seff

∂ωiµ(x)
. (3.1.15)

Responsible for the high computational cost of the update is the fermionic contri-
bution to this force. It takes the form

∂Seff,F

∂ωiµ(x)
=

∂

∂ωiµ(x)
φ†r̄
(
M †

fMf

)
φ =

∂

∂ωiµ(x)
φ†

(
ᾱ0 +

k̄∑
j=1

ᾱj

M †
fMf + β̄j

)
φ

=−
k̄∑
j=1

ᾱj

[((
M †

fMf + β̄j

)−1

φ

)† ∂ (D†D)
∂ωiµ(x)

(
M †

fMf + β̄j

)−1

φ

]
,

(3.1.16)

and evaluating it involves inverting M †
fMf + β̄i for different β̄i. A similar cal-

culation has to be performed in the second step of the algorithm as well. In that
case, however, only a single inversion is necessary. Fortunately, these types of
inversion problems can be solved efficiently by using the multi-shift Conjugate
Gradient algorithm [28], which solves the equations

(A+ σi)xi = y (3.1.17)

for multiple shifts σi at the cost of solving only the smallest shift σ0. Furthermore,
to avoid having to perform two inversions per force evaluation, a different rational
approximation r̄(x) ' xnf/4 ' r2(x) is used here.
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CHAPTER 3. NUMERICAL METHODS

3.2 Analyzing gauge field configurations

Once enough gauge field configurations have been generated, we can use them
to compute the expectation values of the physical observables we are interested
in. The specific expectation values necessary to compute the conserved charge
fluctuation observables that we want to study here, will be given in section 4. For
now, it suffices to know that they generally are traces over products of the inverse
fermion matrix and derivatives of it, i.e.

O ∼ const. · Tr

(
M−1

f

∂nMf

∂µn
· · ·
)
. (3.2.1)

Not only do we have to invert the fermion matrices multiple times for these ob-
servables, we also need to trace over them. For that, we make use of stochastic
estimators. We draw N random pseudofermions η that fulfill

〈ηi〉 = lim
N→∞

1

N

N∑
k=1

η
(k)
i = 0, and (3.2.2)

〈ηiη∗j 〉 = lim
N→∞

1

N

N∑
k=1

η
(k)
i (η

(k)
j )∗ = δij, (3.2.3)

and use them to approximate the trace of an operator A via

Tr(A) =
∑
i,j

Ajiδij '
∑
i,j

Aji
1

N

N∑
k=1

η
(k)
i (η

(k)
j )∗ =

1

N

N∑
k=1

η(k)†Aη(k). (3.2.4)

A compound operator containing multiple factors of fermion matrix derivatives
and inverses is computed step-by-step from right to left. For example, a single
contribution to the trace of the simple operator M−1

f
∂Mf

∂µ
for a given random vec-

tor η is calculated by first computing the sparse matrix-vector product y =
∂Mf

∂µ
η,

which will be described in more detail in section 4.4 (4.4.4), and then using the
result as input to solve Mfx = y for x using a Conjugate Gradient (CG) solver.
To obtain precise estimates of these traces on a given gauge field configuration,
we need to use between 500 to 2000 random vectors. This is quite a costly cal-
culation and without further improvements, it would require significantly more
computation time to measure the traces on a given configuration than it costs to
even generate that configuration. To bring the cost of these calculations down,
we employ multiple algorithmic and technical improvements with the three most
impactful ones described below.
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3.2. ANALYZING GAUGE FIELD CONFIGURATIONS

Deflation

The computation time of the CG is dominated by the low-lying eigenmodes of
the matrix to invert. Therefore, calculating the lowest Nev eigenvalues and eigen-
vectors and using them to construct an initial guess where these troublesome low-
lying modes are taken care of analytically can drastically reduce the total itera-
tion count. With the stochastic estimator approach, sparse matrix inversions are
performed for hundreds of different right hand side vectors with the same ma-
trix Mf [U ] on a given gauge field configuration U . Thus we can easily amortize
the setup costs that comes with calculating the Nev eigenvalues and eigenvectors.
Given a random vector η and the Nev lowest eigenvalues λi and eigenvectors vi,
the initial guess that we will be using is

x0 =
Nev∑
i=1

〈vi, η〉
λi

. (3.2.5)

To calculate these eigenvalues and -vectors, we use the so-called Thick Restart
Lanczos algorithm (TRLan) [29]. In Figure 3.1, we show the effectiveness of this
method for aN3

σ×Nτ = 483×12 gauge field configuration with temperature T =
157 MeV. While an inversion without deflation in this particular example requires
about 3500 iterations to converge, computing 256 eigenpairs reduces this number
to just 280, decreasing the computational cost by a factor 12.5. In practice, we
typically compute about 124-256 eigenpairs, depending on the available memory
of the Graphics Processing Units (GPUs) used to perform the computations.

Spectral filtering

To decrease the setup cost of deflation, we use a spectral filtering technique. Since
we are only interested in the low-lying eigenpairs of D†D for deflation, we can
apply a polynomial filter inside the TRLan algorithm replacing D†D → p(D†D),
where p(x) is chosen such that it is large near the origin while suppressing higher
parts of the spectrum. A popular choice are carefully tuned Chebychev poly-
nomials [30]. However, a simple exponential filter does a similarly good job in
decreasing the computation time while also requiring only very little tuning. By
using the filter

En(α, β) = βn
(

1− αD†D

n

)n
, (3.2.6)

with n = 20 and α = 6 and β = 1, we are able to achieve a speedup of about ×5
for the eigenpair calculation.
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Figure 3.1: Conjugate gradient iteration count for a 483 × 12 gauge field configuration
with T = 157 MeV and ml = 0.00167.

Optimized sparse matrix vector products
On a more technical level, a further significant performance improvement is gained
by using sparse matrix vector products with multiple right-hand side vectors. As
we have argued, both the RHMC and the trace calculations spent most of their
run-time in Conjugate Gradient algorithms. In those, the application of the /D
operator to a pseudofermion vector φ is the dominant part of the computational
cost. On a given lattice site x, this sparse matrix vector product is a 4 dimensional
stencil operation with with nearest and third nearest neighbor terms that can be
read off from the HISQ action described in section 2. It reads

/Dφx =
4∑

µ=0

[(
Xx,µφx+µ̂ −X†x−µ̂,µφx−µ̂

)
+
(
Wx,µφx+3µ̂ −W †

x−3µ̂,µφx−3µ̂

)]
,

(3.2.7)

where X and W are the smeared gauge fields introduced earlier. In order to
identify possible performance limitations of this kernel, it is helpful to compute
its arithmetic intensity: the ratio between performed floating point operations
(FLOP) and Bytes read from and written to memory. Comparing this to the ratio
of peak FLOP/s to memory bandwidth of the compute device that the code is ex-
ecuting on, gives an idea on which aspects the optimization efforts should focus
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on. If the arithmetic intensity of a kernel is much lower than the devices intensity,
the kernels performance is limited by the memory bandwidth and the device will
spend more time moving data to and from memory then it will spend performing
computations. If, on the other hand, the kernels arithmetic intensity exceeds that
of the device, the kernels performance will be limited by the speed at which the
device can perform floating point operations.

In each of the four directions, the /D kernel computes four products of complex
3×3 matrices with complex 3 component vectors as well as three vector additions
totaling 1146 FLOP per site x. At the same time, the kernel reads and writes 1560
Bytes per site if 32 Bit floats are used. The majority of it, 1152 Bytes, come from
loading the link matrices V and X . This gives a naive arithmetic intensity of

FLOP/Byte( /D) =
1146 FLOP/site

(1152 + 384 + 96) Byte/site
' 0.7.

Modern GPUs, specifically the ones used for the numerical work presented in this
thesis, have FLOP/Byte ratios above O(10) when using 32 Bit floats. Therefore,
the performance of the /D kernel is bound by the memory bandwidth on the GPUs
and implementations of (3.2.7) should aim to saturate the available bandwidth as
much as possible.

As mentioned above, the calculation of traces on a single gauge field configu-
ration requires the use of hundreds of right-hand side vectors. In this situation, the
arithmetic intensity of /D can be increased significantly by applying it to multiple
of these vectors at once. If applied to n right-hand side vectors, the arithmetic
intensity becomes

FLOP/Byte( /D)n−rhs =
n · 1146 FLOP/site

(1152 + n · (384 + 96)) Byte/site
,

because the link matrices only need to be loaded once. Using for example 8 right-
hand side vectors already increases the arithmetic intensity to about 1.83, about
2.6 times higher then the single right-hand side version. The performance increase
obtained by this approach is demonstrated in Figure 3.2 which shows the achieved
TFLOP/s of the /D kernel on recent GPU architectures as a function of the number
of right-hand side vectors.
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Figure 3.2: Achieved TFLOP/s of the multi-RHS /D kernel on recent GPU architectures.

3.3 Scale setting

The lattice spacing a introduced earlier is not a direct input parameter to our com-
putations. In fact, with proper rescaling of the fields, it does not appear in the
discrete lattice action (2.2.10) that forms the basis of our calculations. Nonethe-
less, the lattice spacing sets the temperature scale and the scale for all physical
quantities that we wish to compute and thus needs to be determined as a function
of the input parameters i.e. the gauge coupling β and the quark masses ml and
ms. This is achieved by relating lattice computations of the Sommer parameter
a/r1, a length scale characterized by slope of the static quark potential Vqq̄(r)

r2
1

dVqq̄(r)

dr

∣∣∣∣
r=r1

= 1.0, (3.3.1)

and the kaon decay constant afK at given values of β to experimental measure-
ments. For r1, we use the result published by the MILC Collaboration r1 =
0.3106(8)stat.(14)sys.(4)exp. fm [31]. For the kaon decay constant, we use the av-
erage value fK = 155.7/

√
2 MeV quoted by FLAG [32]. Both a/r1 and afK are
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parameterized as

a/r1(β) =
c0f(β) + c2(10/β)f 3(β)

1 + d2(10/β)f 2(β)
, (3.3.2)

afK(β) =
cK0 f(β) + cK2 (10/β)f 3(β)

1 + dK2 (10/β)f 2(β)
, (3.3.3)

where f(β) is the two-loop beta function of QCD with three flavors,

f(β) =

(
10b0

β

)−b1/(2b20)

exp (−β/(20b0)) , (3.3.4)

with b0 = 9/(16π2) and b1 = 1/(4π4).
The specifics of the scale setting procedure are discussed in further detail in our
publication [33]. The parameters entering the scales in (3.3.2) are summarized
in Table 3.1. As we have briefly mentioned earlier, the temperature in lattice

scale c0 c2 d2

r1 43.16(15) 339472(21133) 5452(387)
fK 7.486(25) 41935(2247) 3273(224)

Table 3.1: Scale setting parameters for (3.3.2).

QCD calculations is given by the inverse of the physical temporal extent aNτ of
the system. Therefore, we can parameterize the temperature as a function of the
gauge coupling β with the two different scale setting schemes via

TfK =
1

NτafK
fK , (3.3.5)

Tr1 =
1

Nτ

r1

a

1

r1

. (3.3.6)

While both temperature scales converge as the continuum limit a → 0 is ap-
proached, they differ at non-zero lattice spacing. To be consistent with earlier
works, we use the temperature scale based on afK when showing results of lattice
QCD calculations at finite lattice spacing.

3.4 Setup and statistics
We use the HISQ discretization scheme described in Section 2 for Nf = 2 + 1-
flavor lattice QCD calculations with two degenerate light quark masses ml and
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a heavier strange quark mass ms with the ratio ms/ml = 27 tuned such that
physical meson masses are obtained in the continuum limit. In order to perform
continuum extrapolations, calculations with three different lattice sizes, 323 × 8,
423×12 and 643×16 have been performed. At each lattice size, calculations were
performed for nine different temperatures ranging from 135 MeV to 175 MeV. For
the lattice size 323 × 8, additional calculations at a temperature of 125 MeV were
performed. The number of analyzed gauge field configurations for the different
parameters is listed in Table 3.2 below. Successive configurations are separated
by 10 unit length RHMC trajectories.

Nτ = 8 Nτ = 12
β ml T[MeV] #conf. β ml T[MeV] #conf.

6.175 0.003307 125.28 1,471,861
6.245 0.00307 134.84 1,275,380 6.640 0.00196 135.24 330,447
6.285 0.00293 140.62 1,598,555 6.680 0.00187 140.80 441,115
6.315 0.00281 145.11 1,559,003 6.712 0.00181 145.40 416,703
6.354 0.00270 151.14 1,286,603 6.754 0.00173 151.62 323,738
6.390 0.00257 156.92 1,602,684 6.794 0.00167 157.75 299,029
6.423 0.00248 162.39 1,437,436 6.825 0.00161 162.65 214,671
6.445 0.00241 166.14 1,186,523 6.850 0.00157 166.69 156,111
6.474 0.00234 171.19 373,644 6.880 0.00153 171.65 144,633
6.500 0.00228 175.84 294,311 6.910 0.00148 176.73 131,248

Nτ = 16
β ml T[MeV] #conf.

6.935 0.00145 135.80 17671
6.973 0.00139 140.86 23855
7.010 0.00132 145.95 26122
7.054 0.00129 152.19 26965
7.095 0.00124 158.21 21656
7.130 0.00119 163.50 18173
7.156 0.00116 167.53 19926
7.188 0.00113 172.60 17163
7.220 0.00110 177.80 3282

Table 3.2: Simulation parameters and statistics collected on lattices of sizeN3
σ×Nτ with

Nσ = 4Nτ in calculations with light to strange quark mass ratio ml/ms = 1/27.
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Chapter 4

Generalized Susceptibilities at µ > 0

The conserved charge fluctuations that we aim to compute in this thesis are ac-
cessible in lattice QCD calculations through generalized susceptibilities that are
defined as derivatives of the logarithm of the QCD partition function w.r.t chemi-
cal potentials

χBQSijk (T, ~µ) =
1

V T 3

∂i+j+k lnZ(T, ~µ)

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

, µ̂X ≡
µX
T
. (4.0.1)

To simplify the notation, we drop sub- and superscripts whenever the subscripts
are zero. For example, we abbreviate χBQS200 (T, ~µ) = χB2 (T, ~µ). Forming ratios of
two generalized susceptibilities cancels the temperature and volume factors and
yields cumulant ratios

RX
nm(T, ~µ) =

χXn (T, ~µ)

χXm(T, ~µ)
, (4.0.2)

that have, at least in principle, measurable counterparts in heavy ion collision
experiments.

4.1 Taylor expansions for strangeness neutral sys-
tems

As our goal is, ultimately, to calculate these quantities at µB > 0, we need to
employ a method to circumvent the infamous lattice QCD sign problem that pre-
vents us from performing simulations in this parameter region. For small baryon
chemical potentials, typically µB/T < 2, we can use simple Taylor expansions in
µB. Expanding the nth order generalized susceptibility χXn for conserved charge
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X without introducing further constraints thus simply results in

χXn (T, µB > 0) =
nmax∑
m=n

1

m!
χXm(T, ~µ = 0)µ̂m−nB , with X = B,Q, S. (4.1.1)

The expansion coefficients of such calculations are then given by generalized sus-
ceptibilities χXm(T, ~µ = 0) of order m > n that can be calculated directly with
the methods described in the previous chapter. The specific operators that need
to be calculated on the lattice in order to construct these susceptibilities will be
discussed in a later section. In order to compute cumulants that represent ther-
mal conditions similar to those found in Pb-Pb or Au-Au heavy ion collision ex-
periments, we have to impose two constraints. Firstly, we impose that the net-
strangeness density vanishes

nS ≡ χS1 (T, ~µ) = 0, (4.1.2)

and secondly, that the ratio r between electric charge density and baryon density
is fixed. By relating this ratio to the ratio of proton and baryon numbers NP and
NB = NP +NN of the incident nuclei in Pb-Pb or Au-Au collisions, we obtain

nQ
nB
≡ χQ1 (T, ~µ)

χB1 (T, ~µ)
=

NP

NP +NN

= r =' 0.4. (4.1.3)

We use these constraints to fix the electric charge and strangeness chemical po-
tentials µ̂Q and µ̂S by expressing them in terms of the baryon chemical potential
µ̂B

µ̂Q(T, µ̂B) =
∞∑
i=0

qi(T )µ̂iB, µ̂S(T, µ̂B) =
∞∑
i=0

si(T )µ̂iB. (4.1.4)

Requiring (4.1.2) and (4.1.3) at each order in µ̂B in (4.1.4) gives us two linear
equations that we can solve for the coefficients qi and si. To illustrate this in more
detail, we write the expansion of (4.1.2) to leading order explicitly

nS = χS1 (T, ~µ) = µ̂B

(
χBS11 + χQS11

∂µ̂Q
∂µ̂S

+ χS2
∂µ̂S
µ̂B

)
+O(µ̂3

B)
!

= 0 (4.1.5)

⇒ χBS11 + χQS11 q1 + χS2 s1
!

= 0. (4.1.6)

Here, we have adopted the convention χBQSijk ≡ χBQSijk (T, ~µ = 0) for notational
convenience. The susceptibility χS1 (T, µ̂ = 0) and generally all odd order gen-
eralized susceptibilities at µ̂ = 0 vanish [34] and the derivatives of the chemical
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potentials µ̂Q and µ̂S yield the coefficients q1 and s1. Solving this for either q1 or
s1 and inserting the result into the leading order expansion of (4.1.3)

nQ
nB

=
χBQ11 + χQ2 q1 + χQS11 s1

χB2 + χBQ11 q1 + χBS11 s1

!
= r, (4.1.7)

gives the solutions

s1 = −q1χ
QS
11 + χBS11

χS2
, q1 =

χS2χ
BQ
11 − rχB2 χS2 − χQS11 χ

BS
11 + r

(
χBS11

)2(
χQS11

)2

− χQ2 χS2 + rχBQ11 χ
S
2 − rχBS11 χ

QS
11

.

(4.1.8)

The higher order coefficients are obtained analogously and their expression can be
found in [35]. Armed with these coefficients, we can then compute the constrained
expansions of n-th order cumulants

χXn (T, µB) =
kmax∑
k=0

χ̃X,kn (T )µ̂kB, where χ̃X,kn (T ) =
∂kχXn
∂µ̂kB

∣∣∣∣ nS=0
nQ/nB=r

. (4.1.9)

The full expressions for the constrained expansions of the cumulants are listed
in appendix A. Inserting these expansions into (4.0.2) finally gives us cumulant
ratios that only depend on temperature T and baryon chemical potential µB

RX
nm(T, µB) =

∑kmax

k=0 χ̃
X,k
n (T )µ̂kB∑lmax

l=0 χ̃
X,l
m (T )µ̂lB

. (4.1.10)

4.2 Mapping χBQSijk to quark number susceptibilities

In order to calculate (4.1.10), we need to compute the susceptibilities χBQSijk for all
combinations i, j, k with i + j + k ≤ Nmax as we have seen above. However, we
need to discus how to relate these to operators that we can calculate in lattice QCD
simulations. To derive them, we have to introduce the chemical potentials µB, µQ
and µS into our lattice formulation. Taking derivatives of our lattice QCD partition
function with respect to these will then yield operators that we can evaluate at
~µ = 0. As our lattice formulation includes quarks and gluons rather then hadrons,
we need to first map our baryon-, charge-, and strangeness chemical potentials to
chemical potentials in the quark basis. This is achieved by relating

µB = µu + 2µd, µQ = µu − µd, µS = −µs. (4.2.1)

31



4.2. MAPPING χBQSIJK TO QUARK NUMBER SUSCEPTIBILITIES

In turn, we can relate derivatives with respect to µB, µQ and µS to quark chemical
potential derivatives via

∂

∂µB
=

1

3

(
∂

∂µu
+

∂

∂µd
+

∂

∂µs

)
, (4.2.2)

∂

∂µQ
=

1

3

(
2
∂

∂µu
− ∂

∂µd
− ∂

∂µs

)
, (4.2.3)

∂

∂µS
= − ∂

∂µs
. (4.2.4)

Higher order derivatives of lnZ with respect to these can then be expressed con-
veniently by defining

Dfi =
1

4

∂i

∂µif
ln detMf , (4.2.5)

which we use to write

Audsijk ≡
1

Z

∂i+j+kZ

∂µiuµ
j
dµ

k
s

=
〈
aui a

d
ja
s
k

〉
with afn = exp

{
−Df0

} ∂n exp {Du0}
∂µnf

.

(4.2.6)

The first µu derivative gives, for example, ∂ lnZ
∂µu

= Au1 = 〈Du1 〉 and higher or-
der derivatives can be computed iteratively. An additional µu-derivative can be
expressed as

∂

∂µu
Audsijk = Audsi+1,j,k − AudsijkA

u
1 , (4.2.7)

and explicit expressions for the lowest four orders are

Au1 = 〈Du1 〉 , (4.2.8)

Au2 = 〈Du2 〉+
〈
(Du1 )2〉 , (4.2.9)

Au3 = 〈Du3 〉+ 3 〈Du2Du1 〉+
〈
(Du1 )3〉 (4.2.10)

Au4 = 〈Du4 〉+ 4 〈Du3Du1 〉+ 3
〈
(Du2 )2〉+ +6

〈
Du2 (Du1 )2〉+

〈
(Du1 )4〉 . (4.2.11)

Iterating (4.2.7) gives us for the four lowest order derivatives of lnZ

∂ lnZ

∂µu
= Au1 , (4.2.12)

∂2 lnZ

∂µ2
u

= Au2 − (Au1)2 , (4.2.13)

∂3 lnZ

∂µ3
u

= Au3 − 3Au2Au1 + 2 (Au1)3 , (4.2.14)

∂4 lnZ

∂µ4
u

= Au4 − 4Au3Au1 − 3 (Au2)2 + 12Au2 (Au1)2 − 6 (Au1)4 . (4.2.15)
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The formulas for other flavors and combinations of them are of course obtained
analogously. As we are evaluating these quantities at ~µ = 0, all odd order deriva-
tives vanish so the expressions simplify significantly. Finally, we can use (4.2.2)
together with the above results to compute the generalized susceptibilities χBQSijk .
For example, the baryon number variance χB2 is obtained via

χB2 =
1

9

(
χuds002 + 2χuds011 + χuds020 + 2χuds101 + 2χuds110 + χuds200

)
, (4.2.16)

where χudsijk = ∂i+j+k lnZ

∂µiu∂µ
j
d∂µ

k
s

are the quark number susceptibilities.

4.3 Chemical potential on the lattice

With the link between BQS susceptibilities χBQSijk and the quark number suscepti-
bilities established, we now need to discus how to calculate Dfi defined in (4.2.5).
For that, we need to know how the chemical potential enters the lattice theory. In
the continuum theory, a chemical potential would multiply the conserved charge

Q̂f =

∫
d3xψ̄f (x)γ0ψf (x), (4.3.1)

which can be translated to the lattice theory by modifying the temporal link vari-
ables

U0(x)→ (1 + aµ)U0(x) (4.3.2)

U †0(x)→ (1− aµ)U †0(x).

However, it was shown in [36] that this leads to a quadratic divergence in the
energy density for free fermions. This can be avoided by introducing the chemical
potential exponentially

U0(x)→ exp (aµ)U0(x) (4.3.3)

U †0(x)→ exp (−aµ)U †0(x).

4.4 Trace operators

Once the temporal gauge links have been modified with the exponential factors
arising from the chemical potentials being non-zero, we can compute (4.2.5) ex-
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plicitly. For the first four orders, we find

Df
1 =

1

4
Tr

(
M−1

f

∂Mf

∂µ

)
, (4.4.1)

Df
2 =

1

4
Tr

(
M−1

f

∂2Mf

∂µ2

)
− 1

4
Tr

(
M−1

f

∂Mf

∂µ
M−1

f

∂Mf

∂µ

)
,

Df
3 =

1

4
Tr

(
M−1

f

∂3Mf

∂µ3

)
− 1

4
Tr

(
M−1

f

∂Mf

∂µ
M−1

f

∂2Mf

∂µ2

)
+

2

4
Tr

(
M−1

f

∂Mf

∂µ
M−1

f

∂Mf

∂µ
M−1

f

∂Mf

∂µ

)
− 2

4
Tr

(
M−1

f

∂2Mf

∂µ2
M−1

f

∂Mf

∂µ

)
,

Df
4 =

1

4
Tr

(
M−1

f

∂4Mf

∂µ4

)
− Tr

(
M−1

f

∂Mf

∂µ
M−1

f

∂3Mf

∂µ3

)
− 3

4
Tr

(
M−1

f

∂2Mf

∂µ2
M−1

f

∂2Mf

∂µ2

)
(4.4.2)

+ 3Tr

(
M−1

f

∂Mf

∂µ
M−1

f

∂Mf

∂µ
M−1

f

∂2Mf

∂µ2

)
− 3

2
Tr

(
M−1

f

∂Mf

∂µ
M−1

f

∂Mf

∂µ
M−1

f

∂Mf

∂µ
M−1

f

∂Mf

∂µ

)
.

From these first four orders, it already becomes clear that the number of opera-
tors that need to be calculated on the lattice increases rapidly with the number
of µ derivatives. Fortunately, it was found in [37][38] that the divergences that
plague the linear µ formulation only appear in observables with four or fewer µ
derivatives and higher order observables are free from divergences. Furthermore,
both formulations agree with each other at these higher orders. Therefore, we
can use the linear µ formulation for calculating Df

i with i > 4. In that case, the
expressions simplify significantly and all we need to compute is

Df
n =

1

4
(−1)n+1 (n− 1)! Tr

((
M−1

f

∂Mf

∂µ

)n)
. (4.4.3)

The fermion matrix derivatives that appear in these expressions are given by

∂nMf

∂µn
χ = c1

(
U0(x)χ(x+ 0̂)− (−1)nU †0(x− 0̂)χ(x− 0̂)

)
(4.4.4)

+ 3nc3

(
N0(x)χ(x+ 3 · 0̂)− (−1)nN †0(x− 3 · 0̂)χ(x− 3 · 0̂)

)
,

where N0(x) = U0(x)U0(x+ 0̂)U0(x+ 2 · 0̂) denotes the temporal Naik link.
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Chapter 5

Second order cumulants and the
HRG

Having reviewed the theoretical foundations as well as numerical algorithms and
formulas for our lattice QCD calculations of cumulants of conserved charge fluc-
tuations, we now want to change the focus towards the results of our computations.
We start this presentation of results in this chapter with a discussion of second or-
der cumulants and a detailed comparison to different hadron resonance gas models
that we describe below. This chapter is based on our publication [33].

5.1 Hadron Resonance Gas

Before the formulation of QCD itself, Hagedorn formulated the statistical boos-
trap model in an attempt to describe the behavior of strongly interacting mat-
ter. Within the statistical boostrap model, Hagedorn was able to derive an upper
limit for the temperature, now known as the Hagedorn temperature TH , above
which the partition function diverges and hadrons can no longer be stable. This
marked one of the first hints towards the existence of phases of strongly interact-
ing matter other then the hadronic phase and his estimated Hagedorn temperature
TH ≈ 150 MeV [39][40] is very close to the pseudo-critical transition temperature
Tpc = 156.5± 1.5 MeV that is well established through lattice QCD calculations
today [9]. Eventually, these studies culminated in the formulation of the hadron
resonance gas (HRG) model which models the partition function of strongly in-
teracting matter through non-interacting, point-like mesons and baryons following
Bose-Einstein and Fermi-Dirac statistics, respectively. Concretely, the logarithm
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of the HRG partition function reads

lnZHRG(T, V, ~µ) =
∑

i∈mesons

lnZM
i (T, V, ~µ) +

∑
j∈baryons

lnZB
j (T, V, ~µ), (5.1.1)

with lnZ
M/B
i = ∓V di

2π2

∫ ∞
0

dk k2 ln(1∓ zie−εi/T ),

and ε2i = k2 +m2
i , zi = e(BiµB+QiµQ+SiµS)/T .

The sums are taken over a chosen spectrum of hadrons and their resonances. mi

labels their respective masses while the factors Bi, Qi and Si appearing in the
fugacity zi label the states quantum numbers and di counts the spin degrees of
freedom. By expressing the integral in (5.1.1) via modified Bessel functions of
the second kind, we can write the logarithm of ZM/B

i as

lnZ
M/B
i =

V T 3

2π2
di

(mi

T

)2
∞∑
l=1

(±1)l+1 z
l
i

l2
K2(lmi/T ). (5.1.2)

Due to the asymptotic behavior of the modified Bessel function

K2(x) ∼
√

π

2x
e−x for x� 1, (5.1.3)

and the large mass of even the lightest baryon compared to the temperature scale,
contributions with l > 1 can be neglected in the baryon term. We then obtain
the formulas necessary for computing the generalized susceptibilities χBQSijk by
differentiating with respect to the different chemical potentials appearing in the
fugacity zi

χBQSijk = δi,0
∑

a∈mesons

dam
2
a

2π2T 2

∞∑
l=1

zla(lQa)
j(lSa)

k

l2
K2(lma/T ) (5.1.4)

+
∑

b∈baryons

dbm
2
b

2π2T 2
zbB

i
bQ

j
bS

k
bK2(mb/T ).

The list of hadronic states curated by the Particle Data Group (PDG) [41] is of-
ten used for the hadronic spectrum in many HRG calculations. Going forward,
we will label the HRG model based on this list as the PDG-HRG model. Other
popular choices are spectra based on the PDG list but extended by not yet estab-
lished states predicted by the Quark Model which we will label as QM-HRG mod-
els. Further approaches that go beyond the use of non-interacting and point-like
hadron resonances include the phenomenology inspired excluded volume HRG
model (EV-HRG) where a hard core radius r is assigned to baryons through a
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finite volume parameter b = 16πr3/3, as well as models based on relativistic
virial expansions [42]. These models generally contain free parameters that need
to be determined by fitting to lattice QCD calculations of a set of thermodynamic
observables.

Due to their success in describing hadron yields in heavy-ion collision exper-
iments, HRG models are often used to determine freeze-out parameters
(Tf , µB,f , µQ,f , µS,f ) characterizing the thermal conditions present at hadroniza-
tion [43][44]. A similar determination of freeze-out parameters based on parti-
cle yields from first principle lattice QCD calculations is not possible as these
are not observables that can be derived from the QCD partition function. There-
fore, it is important to quantify the range of validity in which hadron resonance
gas models provide a good description of QCD in order to understand system-
atic uncertainties that might arise from such model dependent determinations of
(Tf , µB,f , µQ,f , µS,f ).

For this purpose, we will provide high-precision, continuum extrapolated lat-
tice QCD calculations of second order cumulants of baryon number, electric charge
and strangeness fluctuations and their cross correlations in this section. We will
focus on calculations at vanishing chemical potential, as it allows us to constrain
the fundamental model parameters of HRG models such as the excluded volume
parameter b of EV-HRG models.

5.2 Continuum extrapolation of second order cumu-
lants

Making use of the high statistics data set listed in Table 3.2, we present continuum
extrapolations of all six second order cumulants of baryon number, electric charge
and strangeness

χBQSijk =
1

V T 3

∂ lnZ(T, V, ~µ)

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
µ̂=0

with i+ j + k = 2. (5.2.1)

As our numerical calculations are based on the HISQ discretization scheme with
(2+1)-flavors with a physical strange quark mass and two physical light quark
masses, these six second order cumulants are not independent from each other.
Rather, only four of them are independent while the remaining two are constrained
by the isospin symmetry imposed by our choice of discretization scheme. This
symmetry leads to the two constraints in the (B,Q, S) basis

χS2 = 2χQS11 − χBS11 , (5.2.2)

χB2 = 2χBQ11 − χBS11 . (5.2.3)
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In the (u, d, s) basis, this simply reflects the two conditions χu2 = χd2 and χus11 =
χds11. Furthermore, these constraints are also fulfilled to better than 1% accuracy in
HRG models based on the PDG spectrum as well as those using spectra extended
by states predicted by relativistic quark models. Therefore, all second order cu-
mulants in either of the two basis can be obtained from a set of four independent
observables which we can choose freely. In this work, we focus on χQ2 , χQS11 , χBQ11

and χBS11 , the first two of which are dominated by the non-strange and strange me-
son spectrum while the latter two are dominated by the non-strange and strange
baryon spectrum.

In order to obtain cumulants at the same temperature for each of the four
lattice sizes, we use cubic spline interpolations in the temperature interval T ∈
[134 MeV : 178 MeV]. Error bands on the interpolations have been calculated
using a bootstrap analysis with 800 bootstrap samples. The interpolations have
been performed for both temperature scales and the uncertainties of fK and r1 are
included as systematic errors. Continuum extrapolations of the cumulants based
on both temperature scales were then performed using linear extrapolations in
1/N2

τ ,

f2(T,Nτ ) = f2(T ) +
a

N2
τ

. (5.2.4)

The results of this procedure are shown in Figure 5.1. Continuum extrapolations
including further 1/N4

τ corrections can be found in [33]. Slight discrepancies
between the extrapolations based on TfK and Tr1 are visible at 1/N2

τ = 0. These
stem from systematic errors in the parametrization of a/r1 and afK at finite gauge
coupling. Therefore, the results of the two different linear fits are averaged to yield
a final continuum extrapolation and the difference between the two fit results is
taken as a systematic error that is added linearly to the statistical errors of the
two extrapolations. The continuum extrapolations of the cumulants are shown
in Figures 5.2 and 5.3. The systematic error arising from the uncertainty in the
scale, caused by experimental uncertainties in fπ and r1, is shown as a red band
while the combined systematic and statistical error stemming from the continuum
extrapolation using two different temperature scales is shown as a gray band. A
comparison between these continuum extrapolations and hadron resonance gas
model calculations based on the QMHRG2020 spectrum, described in [33], is
shown in the insets of these figures. The full list of hadrons used in QMHRG2020
is provided in [48]. In Table 5.1 we summarize the results at temperatures between
135 MeV and 175 MeV in steps of 5 MeV and compare them to corresponding
results from [45]. The agreement between both analyses is very good.

When performing the continuum extrapolations of second order cumulants, we
did not assume any specific ansatz for the temperature dependence of the cumu-
lants. To simplify comparisons to other models, it is however beneficial to have a
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proper parametrization of our results. For this purpose, we provide a parametriza-
tion of the cumulants in terms of polynomial fractions,

χXY11 (T ) =

∑3
k=0 n

XY
k t̄k

1 +
∑3

k=1 d
XY
k t̄k

, t̄ =

(
1− Tpc,0

T

)
, (5.2.5)

where X, Y ∈ B,Q, S, and it is understood that χXY11 = χX2 if X = Y . This
parametrization corresponds to the central value of the error bands shown in Fig-
ures 5.2 and 5.3 and the resulting coefficients for each of the cumulants are listed
in Table 5.2.
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Figure 5.1: Continuum extrapolations of the four independent second order cumulants
χBS11 (top left), χBQ11 (top right), χQS11 (bottom left) and χQ2 (bottom right) at temperatures
ranging from 145 MeV to 160 MeV. The colored data points and lines correspond to
the afK scale, whereas the black data points and lines correspond to a/r1. The colored
crosses at 1/N2

τ display the value obtained from QM-HRG calculations based on the
QMHRG2020 spectrum [33]. The QM-HRG results for χQ2 were obtained with finite-
volume corrections for pions and kaons in a volume LT = Nσ/Nτ = 4.
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T [MeV] χQS11 (χQ2 )LT=4 χB2 χS2
this work [45] this work this work this work

135 0.0576(13)(6) 0.0604(20) 0.285(4)(2) 0.0422(22)(10) 0.134(4)(2)
140 0.0655(10)(9) 0.0699(18) 0.312(4)(3) 0.0532(14)(14) 0.156(2)(2)
145 0.0760(12)(12) 0.0806(20) 0.342(4)(3) 0.0689(15)(18) 0.187(3)(3)
150 0.0883(12)(13) 0.0914(12) 0.374(5)(3) 0.0878(18)(20) 0.224(3)(4)
155 0.1018(14)(14) 0.1045(9) 0.404(5)(3) 0.1085(22)(21) 0.266(4)(4)
160 0.1160(16)(14) 0.1193(15) 0.433(5)(3) 0.1296(26)(21) 0.310(5)(4)
165 0.1300(18)(14) 0.1345(20) 0.458(5)(2) 0.1497(28)(19) 0.354(6)(4)
170 0.1434(20)(12) 0.1478(22) 0.476(4)(1) 0.1673(27)(15) 0.396(7)(4)
175 0.1553(26)(12) 0.1600(23) 0.489(4)(1) 0.1809(29)(11) 0.435(8)(4)

T [MeV] χBQ11 χBS11

this work [45] this work [45]
135 0.0114(5)(2) 0.0101(8) -0.0197(15)(3) -0.0167(17)
140 0.0140(4)(3) 0.0124(8) -0.0251(7)(7) -0.0227(13)
145 0.0172(4)(3) 0.0162(12) -0.0345(8)(11) -0.0332(18)
150 0.0204(4)(3) 0.0217(17) -0.0469(10)(14) -0.0491(28)
155 0.0235(4)(3) 0.0242(10) -0.0616(14)(15) -0.0676(38)
160 0.0261(4)(2) 0.0266(7) -0.0775(20)(16) -0.0825(27)
165 0.0280(3)(1) 0.0278(6) -0.0938(22)(15) -0.0981(26)
170 0.0288(2)(0) 0.0277(4) -0.1097(24)(14) -0.1136(23)
175 0.0281(3)(1) 0.0269(4) -0.1244(30)(12) -0.1296(24)

Table 5.1: Continuum extrapolated results for the six second order cumulants obtained
at different temperature values. The first error corresponds to the combined statistical
and systematic errors stemming from the continuum extrapolation while the second error
corresponds to the uncertainty in the physical value of r1. For χQ2 we include an indication
that these results have been obtained on lattices with aspect ratio LT ≡ Nσ/Nτ = 4
as they are particularly sensitive to finite volume effects. For comparison, results from
Bellwied et al. [45] for off-diagonal cumulants are also shown.
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χBQ11 χQS11 χBS11 χQ2 χB2 χS2
nXY0 0.0243 0.106 -0.066 0.413 0.115 0.279
nXY1 0.0122 0.0629 -0.327 -0.159 0.328 -1.172
nXY2 -0.376 -0.6097 0.0290 -2.099 -0.933 -6.661
nXY3 -1.219 -3.896 3.834 -6.362 -6.522 -28.378
dXY1 -3.036 -3.572 -2.505 -2.605 -2.922 -9.135
dXY2 3.006 3.166 2.952 1.677 3.189 13.624
dXY3 -2.133 -5.080 3.0973 3.892 -0.245 -66.402

Table 5.2: Parametrization of second order cumulants corresponding to the central values
of the fits shown in Figures 5.2 and 5.3 in the interval T ∈ [135 MeV : 175 MeV].
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Figure 5.2: Second order off-diagonal cumulants as a function of temperature. QM-HRG
model results based on the QMHRG2020 spectrum [33] are included as colored lines. The
insets show the ratio of these HRG model calculations and continuum extrapolated lattice
QCD results. Results from Bellwied et al [45] are also shown. The data points at finite
values of Nτ are based on the afK temperature scale and the yellow band corresponds to
the crossover temperature Tpc,0.
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results and insets as in Figure 5.2.
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5.3 Comparison with HRG models

The chosen hadronic spectrum in HRG model calculations has a significant in-
fluence on the resulting thermodynamic quantities. While the list of experimen-
tally confirmed hadronic states and resonances maintained by the particle data
group [41] gives a lot of information on the spectrum to use in such models, it
has been pointed out in [46], that this information alone is insufficient to obtain
a satisfactory agreement of second order cumulants calculated within HRG mod-
els and those obtained from first principle lattice QCD calculations. In particular,
strangeness fluctuations and their correlations with baryon number fluctuations
and electric charge fluctuations seem to require additional strange hadron reso-
nances in the baryonic sector of the spectrum in order to reasonably match QCD
calculations. Including such additional resonances, for example by adding reso-
nances predicted by quark model calculations is, however, not unique.

Furthermore, the description of strongly interacting matter in terms of non-
interacting, point-like resonances does not account for repulsive interactions as
well as the interplay between repulsive and attractive interactions. The effects
of these interactions and their interplay can have significant effects on some res-
onances. For the strange meson K∗0(700), for example, partial wave analyses
revealed that this resonance hardly contributes to the thermodynamic behavior of
strong interaction matter as its contribution is strongly suppressed [47]. There-
fore, K∗0(700) should not be included in HRG model calculations of point-like,
non-interacting hadrons although it is a well-established resonance in the PDG
lists.

In order to account for these difficulties, we use a spectrum coined QMHRG2020
as our baseline HRG model. In addition to established mesons and 3-star and
4-star baryon resonances listed by the PDG, we include additional strange and
non-strange baryon states predicted by the quark model that are not listed in the
PDG tables. Furthermore, 1-star and 2-star baryon resonances as well as mesons
included in the PDG data sets listed as not well established are included in the
spectrum. The strange meson K∗0(700) is excluded from this list of hadron states
for the reasons mentioned before. The full QMHRG2020 list can be found in [48].

We have compared our continuum extrapolations of second order cumulants
with the QMHRG-2020 based calculations in the insets in Figures 5.2 and 5.3.
While the agreement between both is generally quite good for low temperatures,
the net baryon-number and electric charge correlation χBQ11 and electric charge
fluctuations χQ2 show significant differences between QCD results and HRG cal-
culations.
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Influence of finite volumes on χQ2
The inset for χQ2 in Figure 5.3 shows a significant difference between QCD and
HRG calculations across the full temperature range that even persists down to
T = 135 MeV. Due to Boltzmann suppression, the lightest charged hadrons, the
pions, are the dominant contribution to electric charge fluctuations in this low tem-
perature regime. These are known to be affected by finite volume effects when
mπ . T such that significant differences compared to results in the thermody-
namic limit can occur [49]. Throughout all lattice QCD calculations presented
in this thesis, we use lattice QCD calculations performed on lattices with fixed
aspect ratio Nσ/Nτ = LT = 4. The physical extent of our lattices is thus fixed.
Therefore, it is more appropriate to compare our QCD results with HRG model
calculations that reflect the restriction to a finite volume with LT = 4. In order
to achieve this, one can investigate the behavior of pion and kaon gasses in a fi-
nite cubic volume with periodic boundary conditions as described in [50]. The
deviations from results in the thermodynamic limit can then be parametrized via

(χQ2 )LT=4

(χQ2 )LT=∞
=

{
0.997− 0.126T/Tpc,0 , pions

1.002− 0.032T/Tpc,0 , kaons.
(5.3.1)

Including these finite-volume corrected contributions for pions and kaons in the
QM-HRG model results in a deviation from the thermodynamic limit result ac-
cording to

(χQ2 )LT=4

(χQ2 )LT=∞
= 1.324− 1.290T/Tpc,0 + 1.316(T/Tpc,0)2 − 0.411(T/Tpc,0)3.

(5.3.2)

Using this parametrization we can compute a finite-volume corrected second order
cumulant for electric charge fluctuations (χQ2 )LT=4 that we show in Figure 5.3 as a
dashed red line. As can be seen from this figure, the agreement between the finite
volume corrected HRG result and the QCD result is much better. Discrepancies
between the two become visible only beyond T > 150 MeV and at Tpc,0 the
lattice QCD result are about 5% smaller then the finite volume corrected QMHRG
calculation.

χQS11 and the role of K∗0(700)

As we have discussed earlier, the kaon resonance K∗0(700), although being listed
as a well-established resonance by the PDG, is not included in the QMHRG2020
spectrum as it has been suggested by S-matrix based analyses that its contribu-
tion to thermodynamics of strongly interacting matter is significantly suppressed.
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In the middle plot of Figure 5.2, we show the correlation between electric charge
fluctuation and strangeness χQS11 . As can be seen in the inset of this plot, the agree-
ment between the QCD result and the QMHRG2020 calculation not including
the K∗0(700) resonance is quite good even well beyond the pseudo-critical tran-
sition temperature Tpc,0. The dominant contribution to this correlation is given
by kaons. In HRG model calculations, the ground state kaon and its P-wave ex-
citation K∗(892) contribute more then 80% to this correlation with the remain-
ing contributions coming from heavier strange mesons and baryons. In Figure
5.4, we show the effect of adding the K∗0(700) resonance to the HRG models.
Adding this resonance increases the second order cumulant χQS11 by about 10%
and spoils the agreement between QCD results and HRG calculations across the
entire temperature range considered by us. Also included in this figure are the S-
matrix calculations from [47], which we combine with the contributions from the
QMHRG2020 spectrum not considered in that analysis. The comparison of HRG
calculations to lattice QCD results indicates, just like the S-matrix analysis has
suggested, that the contribution of the K∗0(700) resonance to thermodynamics of
strongly interacting matter is significantly overestimated if it is included in HRG
model calculations based on point-like, non-interacting hadrons and resonances
only and should therefore not be included in such.
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Figure 5.4: Comparison of QCD results for χQS11 with HRG model calculations. The
red dashed-dotted line shows the effect of including the resonance K∗0 (700) in the
QMHRG2020 spectrum, whereas the green dotted line shows the S-matrix analysis sup-
plemented with states present in the QMHRG2020 list that were not included in the anal-
ysis.
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Fluctuations and correlations of net baryon-number

Comparing the correlations of baryon-number and strangeness, as well as baryon-
number and electric charge, as shown in Figure 5.5 with HRG calculations based
on different hadron lists, one can see that baryon-strangeness correlations χBS11

are particularly sensitive to the strange baryon content of the considered hadron
spectrum while χBQ11 exhibits only a very mild dependece on additional baryon res-
onances. The inclusion of additional resonances absent in the PDGHRG model
results in an increase of about 30% of |χBS11 |. These models are consistent with
lattice QCD calculations up to about Tpc,0, while the PDGHRG shows a sizable
difference from lattice QCD results across the full temperature range. For the
baryon-charge correlation χBQ11 , deviations between HRG calculations and the lat-
tice QCD results appear already around T ∼ 145MeV and keep growing as the
temperature is increased. At the pseudo-critical transition temperature Tpc,0, the
HRG results are about 20% larger and a change in the hadronic spectrum hardly
affects this mismatch.

For net-baryon fluctuations χB2 which can be obtained from the two correla-
tions above via equation (5.2.2), this discrepancy translates to a difference be-
tween HRG calculations and lattice QCD results at Tpc,0 of about 10%.

As changes to the hadron spectrum cannot resolve the discrepancy found in the
comparison of χBQ11 , extensions to the HRG model with point-like, non-interacting
resonances have been attempted. The inclusion of repulsive interactions by ascrib-
ing a finite volume to hadrons, resulting in the EVHRG model, has been studied in
[51][52][53] and generally leads to a suppression of the magnitude of second order
cumulants involving net baryon-number fluctuations. While this would be help-
ful for the description of the baryon-charge correlation χBQ11 , it would invariably
harm the agreement of HRG models with point-like, non-interacting resonances
and QCD for χBS11 . While χBQ11 would favor larger excluded volumes, χBS11 would
favor the opposite.

We can quantify this fact further and compute the values of the excluded vol-
ume parameter b for which the EVHRG model results would be consistent with
QCD. To do so, we note that the ratio of second order cumulants involving net
baryon-number fluctuations from EVHRG and HRG models is, according to [53],
given by

REV
B =

(χBQ11 )EVHRG

(χBQ11 )HRG

=
(χBS11 )EVHRG

(χBS11 )HRG

=
(χB2 )EVHRG

(χB2 )HRG

= 1− 2
b

T
PHRG
B (T ) +O(b2).

(5.3.3)

Here, PHRG
B (T ) denotes the contribution of baryons and anti-baryons to the pres-

sure. We can rewrite this to obtain an expression for the largest (smallest) excluded
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volume parameter b+ (b−) that leads to consistency between EVHRG model cal-
culations and QCD results. Denoting the combined statistical and systematic error
of χBX11 with ∆X where X = Q,S and using the relation PB/T 4 = χB2 , one finds

b± =
1

2T 3(χB2 )HRG

(
1− (χBX11 ±∆X)QCD

(χBX11 )HRG

)
. (5.3.4)
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Figure 5.5: Comparison of continuum extrapolated lattice QCD results for baryon-
strangeness (χBS11 ) and baryon-charge (χBQ11 ) correlations to different HRG models. Re-
sults from excluded volume HRG models with b = 1fm as well as virial expansions [47]
are included as well.

At temperatures around the pseudo-critical transition line Tpc,0, specifically for
T = (150 − 155) MeV, we find that the excluded volume parameter b should be
less or equal to 0.4 fm3 in order to have consistency between QCD results and
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EVHRG calculations of χBS11 . In the case of χBQ11 , however, we find that b should
be in the interval 1 fm3 ≤ b ≤ 2fm3, significantly larger than in the case of
baryon-strangeness correlations.

The temperature derivative of χBQ11 is shown in Figure 5.6 together with EVHRG
results at various values of b. In order to obtain a good agreement between these
and the QCD results, excluded volume factors larger then 2 fm3 would be needed.
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Figure 5.6: Temperature derivative of the continuum extrapolated baryon-charge fluctu-
ation χBQ11 calculated in QCD (bands) and in EVHRG calculations with various excluded
volume parameters b (lines).

As seen in equation (5.3.3), excluded volume corrections to the three second
order cumulants involving baryon-number fluctuations are identical. In order to
resolve discrepancies between QCD results and HRG calculations that cannot be
explained by such corrections, one may form ratios of any two of those second
order cumulants. Excluded volume corrections are canceled in such a ratio and
the remaining discrepancies must have another origin. Due to (5.2.2), it suffices
to investigate only one of such ratios as all the other can be obtained from this
equation. Here, we focus on the ratio χBQ11 /χ

BS
11 which we show in Figure 5.7.
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Figure 5.7: Continuum extrapolation of χBQ11 /χBS11 compared to PDG-HRG and QM-
HRG models.

Significant deviations between HRG calculations and lattice QCD results, that
cannot be explained through a single excluded volume parameter b, become visi-
ble at temperature T ∼ 145 MeV which is, of course, due to χBQ11 calculated from
HRG models deviating from lattice QCD results while χBS11 does not show such a
discrepancy. An analysis of the second order virial coefficient using the S-matrix
approach carried out in [54] arrived at a similar conclusion. There, the authors
point out that various quantum number channels contributing to the partial-wave
analysis of the second virial expansion coefficient are affected differently by re-
pulsive interactions. In EVHRG models, however, these subtleties are missed.

Figure 5.8 shows a comparison between lattice QCD results for χBQ11 and χBS11

with QMHRG calculations and results from second order virial expansions. The
second virial coefficient for χBS11 has been calculated in [55] using a unitary, multi-
channel analysis [56][57] and the result is shown in the left plot of Figure 5.8. Up
until about T = 160 MeV, the virial expansion result agrees with lattice QCD to
about 10% and behaves quite similar to the QMHRG result but does not improve
over it. In the right plot, we show a comparison to an S-matrix based calculation
of χBQ11 that includes contributions from elastic πN scatterings as well as inelastic
πN → ηN interactions. We can see a discrepancy between QCD results and this
calculation at low temperatures that is about a factor two larger compared to the
S-matrix based calculations shown for χBS11 . Therefore, a calculation based on the
two included interactions is not sufficient to yield a satisfactory agreement with
QCD calculations.

While the S-matrix approach to calculating the partition function in a virial
expansion is in principle able to capture the intricate interplay between the dif-
ferent types of interactions occurring in strong interaction matter without relying
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on specific spectra of resonances, it relies on experimental information on scat-
tering phase shifts which is often insufficiently available. At higher densities,
experimentally even less constrained multi-particle interactions have to be taken
into account such that additional approximations are often needed. With currently
available data, the S-matrix approach therefore does not yield an adequate de-
scription of QCD results for correlations of baryon-number and electric charge
fluctuations while also not providing a significant improvement over QMHRG
calculations of χBS11 .
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Chapter 6

Baryon number fluctuations

Cumulant ratios of net baryon-number fluctuations serve as popular probes to
search for the elusive critical endpoint in the QCD phase diagram. As they couple
to the order parameter of the chiral transition, they diverge at the critical point
and are expected to show remnants of the critical behavior in its vicinity. Such
remnants of critical behavior are also expected to be found in fluctuations of net
proton-number fluctuations, used as a proxy for net baryon-number fluctuations,
which are studied intensively in heavy ion collision experiments at RHIC. In this
chapter, we compute lattice QCD predictions for higher order cumulant ratios of
baryon-number fluctuations and compare them to corresponding measurements
performed by the STAR collaboration. This chapter is based on our publication
[58].

6.1 Mean and variance of net baryon-number fluc-
tuations

We have calculated the mean to variance ratio of net baryon-number fluctuations

RB
12(T, µB) =

MB

σ2
B

=
χB1 (T, µB)

χB2 (T, µB)
, (6.1.1)

using the Taylor expansion method described in section 4 with coefficients up to
eight order for strangeness neutral systems nS = 0 and a ratio of electric charge
to baryon density nQ/nB = 0.4 that reflects the conditions found in heavy ion
collisions. We have included data from lattices with temporal extents Nτ = 8, 12.
Lattices with temporal extentNτ = 16 were not included in this analysis as baryon
number fluctuations are considerably more noisy and thus require significantly
larger statistics than currently available to us.
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FLUCTUATIONS

Expansions of χB1 (T, µB) and χB2 (T, µB) are computed according to (4.1.9)
up to O(µ̂7

B) and O(µ̂6
B), respectively. In order to properly take into account

correlations between all expansion coefficients, we evaluate the full expression
(6.1.1) using the jackknife method [59] for chemical potentials in the interval
µB/T ∈ [0, 2] with stepsize δµB = 0.01. We truncate the series for χB1 (T, µB)
at order lmax and that for χB2 (T, µB) at order kmax = lmax − 1 and show the
result of leading order (LO) [lmax = 1, kmax = 0], next-to-leading order (NLO)
[3, 2], etc. up to NNNLO [7, 6] in Figure 6.1. Across the entire temperature range
analyzed by us, cutoff effects remain negligible up to chemical potentials of about
µB/T = 1 and stay comparable to statistical errors of Nτ = 12 results up to
µB/T = 1.2. In order to obtain a continuum estimate, we fit the data with a
polynomial fraction ansatz

f(T, µ̂B) =

∑nmaxx

n=0 an(µ̂B)T̄ n∑mmax

m=0 bm(µ̂B)T̂m
, with T̄ =

T

T0

, (6.1.2)

were T0 is an arbitrary scale. The chemical potential dependency of the coeffi-
cients is parameterized with a simple quadratic polynomial

an(µ̂B) = an,0 + an,2µ̂
2
B, (6.1.3)

bn(µ̂B) = bn,0 + bn,2µ̂
2
B. (6.1.4)

The approach towards the continuum is parameterized by including 1/N2
τ correc-

tions, i.e.

f(T, µ̂B) = h(T, µ̂B) +
1

N2
τ

g(T, µ̂B), (6.1.5)

where h(T, µ̂B) and g(T, µ̂B) are polynomial fractions as given in (6.1.2).
For RB

12, we find it sufficient to use polynomial fractions of order [2,3] in both
terms of the fit ansatz due to the weak temperature dependence and nearly lin-
ear dependence on chemical potential. The resulting continuum extrapolation is
shown for various temperatures in Figure 6.2. As is clearly visible from the figure,
variations ofRB

12 with temperature are very small in the considered range. Further-
more, the precision on the continuum estimate is mostly determined by statistical
uncertainties as the convergence of the Taylor series, seen in Figure 6.1, is quite
good. As we will discuss in more detail in a later section, for chemical potentials
µB < 125 MeV, the lattice QCD results agree quite well with hadron resonance
gas model calculations but beyond 125 MeV, the hadron resonance gas calculation
underestimates the QCD result, indicating large deviations of higher order baryon
number fluctuations at µB = 0 calculated in the HRG model compared to lattice
QCD results.
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Figure 6.2: Continuum estimate of RB12(T, µB) based on NNNLO Taylor expansions
obtained on lattices with Nτ = 8, 12.

6.2 Skewness and kurtosis of net baryon-number fluc-
tuations

For higher order baryon number fluctuations, the agreement between HRG cal-
culations and lattice QCD results seen in the mean-to-variance ratio no longer
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FLUCTUATIONS

persists. The skewness and kurtosis ratios

RB
31(T, µB) =

SBσ
3
B

MB

=
χB3 (T, µB)

χB1 (T, µB)
, (6.2.1)

RB
42(T, µB) = κBσ

2
B =

χB4 (T, µB)

χB2 (T, µB)
, (6.2.2)

are always unity in HRG calculations as one can see from equation (5.1.4). Since
|B| is either 0 or 1, the terms appearing in ratios of two diagonal baryon-number
susceptibilities calculated via (5.1.4) always cancel each other. In lattice QCD
calculations, however, the skewness and kurtosis ratios are known to deviate sig-
nificantly from unity. In contrast to the mean-to-variance ratio, RB

31 and RB
42 show

furthermore a significantly stronger temperature dependence but are rather insen-
sitive to changes in chemical potential.

Using our data for generalized susceptibilities of up to eighth order, we con-
structed NNLO expansions of χB3 (T, µB) and χB4 (T, µB) for strangeness neutral
systems with nS = 0 and nQ/nB = 0.4 and use them together with the expan-
sions of first and second order cumulants to form the two ratios RB

31(T, µB) and
RB

42(T, µB). In Figure 6.3, we show the results obtained on lattices with temporal
extent Nτ = 8 for different truncations [lmax, lmax] of these expansions. The lead-
ing order result, which is a constant in µB/T is shown only for T = 152 MeV as
the NLO and NNLO results of course agree with it at µB = 0. The lower three
temperature values chosen here reflect the range of temperatures that Tpc(µB) as-
sumes across the µB/T range displayed. The lowest temperature T = 152 MeV
corresponds to the value Tpc(µB) assumes at µB/T = 1, whereas T = 155 MeV
and T = 158 MeV correspond to the lower and upper end of the error band on
Tpc(µB = 0), respectively. As we can see from the figure, the effect of higher
order corrections is more significant for the skewness and kurtosis ratios than they
are in the case of the ratio of mean and variance. The difference between NLO
and NNLO expansions of χB3 is about 5% at µB/T = 0.8 and grows to 10% at
µB/T = 1. At µB = 0, the skewness and kurtosis ratio agree with each other to
about 1% to 2%. However, NLO corrections to the kurtosis ratio are about a factor
3 larger than that of RB

31. Similarly, the NNLO corrections to the NLO result are
also larger for RB

42.
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Figure 6.3: The cumulant ratios RB31(T, µB) = SBσ
3
B/MB and RB42(T, µB) = κBσ

2
B

calculated to LO, NLO and NNLO in µ̂B as functions of µB/T for temperatures in the
vicinity of Tpc,0.

These results agree well with earlier studies of higher order cumulants of
baryon-number fluctuations [60] that found RB

31 and RB
42 to be almost identical

at leading order while NLO corrections for RB
42 were found to be a factor three

larger than those for RB
31. In Figure 6.4, we show that this relationship still holds

for NNLO corrections of the two ratios. The inset of the figure shows the second
derivative of the skewness with respect to µB/T as well as one third of the same
derivative of the kurtosis ratio. In Figure 6.5, we show the continuum estimate of
the two ratios at µB = 0 that is obtained from jointly fitting the Nτ = 8, 12 data
with the ansatz given in equation (6.1.5). Due to the statistical uncertainties on the
Nτ = 12 data set, we are unable to resolve any temperature or chemical potential
dependence of cutoff effects and therefore use g(T, µB) = a0,0 together with a
[3,4] polynomial fraction for f(T, µB). In the inset of the RB

42 plot, we also show
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the difference RB
42 − RB

31 at vanishing chemical potential. The chemical potential
dependence of the continuum estimates are shown in Figure 6.6.
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Figure 6.4: Chemical potential dependence of the higher order corrections to RB31 and
one third of the corrections to RB42 calculated on lattices with Nτ = 8. The inset shows
the second derivative with respect to µB/T of these quantities.

6.3 Fifth and sixth order cumulants of net baryon-
number fluctuations

In this section, we present results on cumulant ratios including fifth and sixth
order cumulants of net baryon-number fluctuations which are related to the so-
called hyper-skewness SH and hyper-kurtosis κH

RB
51(T, µB) =

SHB σ
5
B

MB

=
χB5 (T, µB)

χB1 (T, µB)
, (6.3.1)

RB
62(T, µB) = κHBσ

4
B =

χB6 (T, µB)

χB2 (T, µB)
. (6.3.2)

With our eighth order Taylor coefficients, we can calculate up to NLO expansions
of χB5 (T, µB) and χB6 (T, µB). However, as the orders of the cumulants are in-
creased, the signal-to-noise ratio grows dramatically and for fifth and sixth order
cumulants, only the Nτ = 8 data set contains enough configurations to obtain re-
sults with reasonable statistical errors. Therefore, we will not perform continuum
estimations as we have done for the mean-to-variance and skewness and kurto-
sis ratios. As before, we show the results of RB

51 and RB
62 obtained from leading
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Figure 6.5: Continuum estimates of RB31 (left) and RB42 (right) evaluated at µB = 0. The
inset on the right shows the difference between both ratios.

order and next-to-leading order calculations in the vicinity of Tpc as a function
of µB/T in Figure 6.7. Similar to the skewness and kurtosis ratios, RB

51 and RB
62

are in very good agreement with each other at µB = 0. Unlike those, however,
both fifth and sixth order ratios are negative at µB = 0, which is in striking dif-
ference to HRG model calculations where this ratio is always very close to unity.
Next-to-leading order corrections to both quantities are also negative and the cor-
rections to RB

62 are again about a factor 3 larger than those for RB
51 which is a

consequence of the structure of the Taylor expansion of even and odd order cumu-
lants for nQ = nS = 0 which are only slightly modified for strangeness neutral
systems with nQ/nB = 0.4.
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Figure 6.6: µB-dependence of the continuum estimate of skewness (left) and kurtosis
ratios (right).

6.4 Net proton-number fluctuations and baryon num-
ber fluctuations on the pseudo-critical line

Finally, we want to compare our results for net-baryon number fluctuations with
results on higher order cumulants of proton number fluctuations measured by the
the STAR Collaboration during the first phase of the Beam Energy Scan program
at RHIC. For this purpose, we evaluate the cumulant ratios of net baryon-number
fluctuations on the pseudo-critical line Tpc(µB) parameterized by

Tpc(µB) = Tpc,0

(
1− κB,f2

(
µB
Tpc,0

)2
)
, (6.4.1)
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Figure 6.7: Leading order and next-to-leading order calculations of the cumulant ratios
RB51(T, µB) and RB62(T, µB) as a function of µB/T calculated on lattices with temporal
extent Nτ = 8.

with Tpc,0 = 156.5(1.5) MeV and κB,f2 = 0.012(4) as determined in [9]. The
fourth order correction κB,f4 vanishes within errors. The result for the mean-to-
variance ratio RB

12(Tpc(µB), µB) evaluated on the pseudo-critical line is shown in
Figure 6.8 together with HRG calculations. As we can see, both agree quite well
up to chemical potentials of about µB = 125 MeV. Beyond this point, the HRG
calculation underestimates the QCD result and the difference between both grows
with increasing chemical potential. At µB = 200 MeV, it amounts to about 15%.
A determination of freeze-out parameters in heavy-ion collision experiments on
the basis of low order cumulants obtained in HRG calculations, such as the statis-
tical hadronization model approach [43], may therefore be appropriate for small
values of baryon chemical potentials. Based on such parameterizations of the
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freeze-out curve, this translates to an applicability of these methods to beam en-
ergies

√
sNN & 27 GeV. Our results suggest that below this beam energy, HRG

based determinations of freeze-out parameters might differ from what would be
obtained in QCD by more than 10%. In order to avoid the problems associated
with agreeing on certain chemical potentials at given beam energies when dis-
cussing results on higher order cumulants, we replace the baryon chemical poten-
tial in favor of RB

12. At least in the parameter region explored here, this is valid
as RB

12 is a monotonically rising function. In the vicinity of the critical point, this
will break down as the variance σ2

B will diverge such that RB
12 would approach

zero.
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Figure 6.8: The mean-to-variance ratioRB12(T, µB) evaluated on the pseudo-critical tran-
sition line Tpc(µB) compared to HRG model calculations. The width of the HRG band
reflects the discrepancy between PDG-HRG and QM-HRG results.

In Figure 6.9 we show the results for the skewness and kurtosis ratios RB
31 and

RB
42 evaluated on the pseudo-critical transition line Tpc(µB) as a function of the

corresponding RB
12 value up to RB

12 = 0.75, which is equivalent to µB/T = 1. The
error bands include the uncertainty on the determination of the pseudo-critical
transition line as well as statistical errors on the NNLO determination of the cu-
mulant ratios and the continuum estimation. Furthermore, the corresponding net-
proton number fluctuations, taken as a proxy for net baryon-number fluctuations,
obtained by STAR during the BES-I program [61] are shown for beam energies
200 MeV ≥ √sNN ≥ 27 MeV and plotted as a function of the associated mean-
to-variance ratio of net proton-number fluctuations RP

12. Qualitatively, measured
net-proton skewness and kurtosis ratios agree with the lattice QCD calculations
of RB

31 and RB
42. Both decrease mildly with RP/B

12 and the curvature of the kurtosis
ratio is larger than that of the skewness ratio. RP

31 is slightly larger than the lat-
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tice QCD result evaluated on the pseudo-critical transition line which is consistent
with freeze-out occurring slightly below Tpc. The kurtosis ratio RP

42 is consistent
with this finding, however the statistical uncertainties on its experimental deter-
mination are much larger.

Note, however, that such direct comparisons of event-by-event fluctuations
measured in heavy ion collision experiments and fluctuations of QCD in thermal
equilibrium face certain caveats. Unlike the net baryon-number, the net proton-
number is not conserved and fluctuations of the latter may change even after chem-
ical freeze-out [62]. Furthermore, the extent to which event-by-event fluctuations
measured in a sub-volume of the fireball deviate, due to global conservation laws,
from a true grand-canonical ensemble needs to be accounted for [63][64]. Further
aspects of such comparisons are discussed in [65]. Therefore, these direct com-
parisons should be treated only as a rough, first step towards a more sofisticated
analysis that takes these issues into consideration.
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Figure 6.9: Continuum estimations of skewness and kurtosis ratios RB31 = SBσ
3
B/MB

and RB42 = κBσ
2
B evaluated on the pseudo-critical transition line Tpc(µB) and shown as a

function of the corresponding RB12 value. Colored data points show corresponding results
on ratios of net-proton number fluctuations obtained by the STAR collaboration [61]. The
dashed lines show joint fits to the STAR data.

In Figure 6.10, we show the NLO calculations of hyper-skewness and hyper-
kurtosis ratios RB

51 and RB
62 evaluated on the pseudo-critical transition line as well

as results on sixth order cumulants ratios measured by the STAR collaboration
[66]. The data is again shown as a function of RB/P

12 . As we have mentioned
earlier when discussing Figure 6.7, both hyper-skewness and hyper-kurtosis ratios
are negative already at µB = 0 and decrease further as the chemical potential,
or equivalently RB

12 grows. In an earlier comparison of these quantities based on
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preliminary data of the STAR collaboration [58], the experimentally measuredRP
62

clearly disagreed with lattice QCD calculations on the pseudo-critical transition
line and it seemed improbable that one would be able to describe the negative
RP

62 result at
√
sNN = 200 GeV and positive RP

62 result at
√
sNN = 54.4 GeV

simultaneously with QCD in thermal equilibrium. Now, updated results on RP
62

[66] exhibit statistical uncertainties so large that such a definite statement cannot
be made anymore. Furthermore, the results on RP

62 now overlap with RP
62 = 0

within errors. Therefore, more precise experimental results on RP
62 as well as

lattice QCD calculations of higher order contributions to RB
62 are necessary in

order to determine whether or not results on hyperkurtosis are thermodynamically
consistent.
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Figure 6.10: Hyper-skewness and hyper-kurtosis ratios RB51 and RB62 evaluated on the
pseudo-critical transition line based on calculations on lattices with temporal extentNτ =
8. Colored data points show results obtained by the STAR collaboration [66].
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Chapter 7

Electric charge and strangeness
fluctuations

Studies of baryon number and strangeness fluctuations in heavy-ion collisions
experiments often rely on measuring fluctuations of associated proxy particle
species. Proton number fluctuations, for example, typically serve as a proxy for
baryon number fluctuations because neutral baryons are significantly harder to
detect in these experiments. This makes comparisons to lattice QCD calculations
difficult as proton number fluctuations are not observables of lattice QCD, i.e. they
cannot be derived from the lattice QCD partition function. This proxy problem is
mostly absent in the case of electric charge fluctuations such that comparisons
of heavy-ion collision experiment results with lattice QCD are appealing. In this
chapter, we present lattice QCD calculations of higher order cumulant ratios of
these electric charge fluctuations and compare them, to the extent that it is pos-
sible, to results from heavy-ion collision experiments obtained by the STAR and
PHENIX collaborations. Furthermore, we comment on strangeness fluctuations
and how they can be used to constrain the strangeness chemical potential µS,f at
freeze-out.

7.1 Mean-to-variance ratio RQ
12

In order to obtain a continuum extrapolated prediction for the mean to variance
ratio MQ/σ

2
Q = RQ

12 = χQ1 /χ
Q
2 , we compute jackknife estimates of (4.1.10) in a

µB interval µB/T ∈ [0, 2] with a stepsize of δµB = 0.01 for each of the temper-
atures and three lattice sizes listed in 3.2. The maximum orders kmax and lmax of
the numerator and denominator in (4.1.10) have been chosen such that contribu-
tions of generalized susceptibilities χBQSijk (T ) up to eighth order i+ j + k ≤ 8 are
included which corresponds to NNNLO Taylor expansions in µB. This jackknife
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12

analysis produces nine “slices” of data for each lattice size that outline a surface
in the (T, µB)-plane. Figure 7.1 shows the result of this procedure for the lattice
size 323 × 8 in the T, µB-plane.

For most temperatures, the computed mean-to-variance ratio shows a nearly
perfect linear µB dependence. For temperatures T > 156 MeV, the slope of the
surface traced out by the data remains mostly constant and then starts to decrease
gradually as the temperature is lowered below T ' 156 MeV. Furthermore, a
negative curvature starts to build up and modifies the linear µB dependence in the
higher baryon chemical potential region for T < 156 MeV.

Since the data describes mostly flat, tilted surfaces, we fit the three resulting
surfaces jointly with a low order polynomial ansatz where the coefficients carry
an additional 1/N2

τ correction term to parameterize the approach towards the con-
tinuum,

RQ
12,fit(T, µB, Nτ ) = f1(T,Nτ )

µB
T

+ f2(T,Nτ )
µB
T

3

+ f3(T,Nτ )
µB
T

5

, (7.1.1)

fi(T,Nτ ) = δi,1f
(i)
0 + f

(i)
1 T + f

(i)
2 T 3, with f ij = f

(i)
j,0 + f

(i)
j,1

1

N2
τ

.

Finally, we evaluate the polynomial fit along the crossover line of the chiral tran-
sition given in (6.4.1).

In Figure 7.2, the continuum extrapolated lattice QCD prediction of
RQ

12(Tpc(µB), µb) is shown as the gray band while the red line denotes the HRG
result of RQ

12 evaluated on Tpc(µB). Since experimental measurements of electric
charge fluctuations are not plagued with the proxy problem, we are tempted to
compare our lattice QCD predictions with them. Therefore, the STAR collabora-
tions results for RQ

12 from the BES-I program [67] are included in Figure 7.2 as
horizontal lines. The error bars on the results are too small to be resolved in this
figure.

By comparing the intersections of these experimental results with our con-
tinuum extrapolation for RQ

12, we can obtain a mapping between baryon chemical
potentials µB and beam energies

√
sNN . Such comparisons have been proposed in

the past [68][69] to obtain model independent determinations of freeze-out chemi-
cal potentials. Such a determination, however, crucially depends on the freeze-out
temperature Tf which has to be determined from another quantity. As we will see
later, an extraction of Tf from experimental results on higher order cumulants of
electric charge fluctuations is not possible due to large uncertainties.

Instead of trying to extract µB,f ourselves, we can check whether freeze-out at
or very close to the pseudo-critical transition line Tpc(µB), as suggested by Fig-
ure 1.2, is consistent with our prediction of the mean-to-variance ratio MQ/σ

2
Q.
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Therefore, we summarize the chemical potentials extracted from comparing our
prediction forMQ/σ

2
Q to the data from [67] in Table 7.1. The table furthermore in-

cludes the freeze-out chemical potentials extracted using the statistical hadroniza-
tion model [43] as well as a previous determination of freeze-out chemical po-
tentials from lattice QCD [69] based on RQ

12 and the ratio RB
12/R

Q
12. The two

√
sNN [GeV] µB [MeV] (this work) µB,SHM [MeV] [43] µB,WB [MeV] [69]

200 21.1(7) 22.3 22(2)
62.4 61(2) 68.9 65(7)
39 95(3) 106.8 100(9)
27 131(4) 148 134(12)

Table 7.1: Chemical potentials extracted from comparing results from [67] at different
beam energies with our continuum extrapolated lattice QCD prediction for RQ12(Tpc).
Also listed are results from the statistical hadronization model (SHM), as well as a previ-
ous lattice QCD determination of µB,f from the Wuppertal-Budapest Collaboration.

lattice QCD results agree within errors while the freeze-out chemical potential
determined from statistical hadronization is consistently larger than the chemi-
cal potential we obtain when using Tpc(µB). This is partly due to the fact that the
HRG result forRQ

12(Tpc(µB)) is smaller than our lattice QCD prediction across the
full chemical potential range depicted in Figure 7.2. This is in accordance with
our finding that the second order charge fluctuation χQ2 , which gives the dominant
contribution to the slope ofRQ

12, is consistently larger in HRG calculations without
finite-volume corrections.
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Figure 7.1: The mean-to-variance ratio RQ12 of electric charge fluctuations for lattice with
temporal extent Nt = 8 in the (T, µ̂B)-plane.

7.2 Skewness ratio RQ
31

Using the same procedure outlined before, we compute the skewness ratioRQ
31(T, µB) =

SQσ
3
Q

MQ
=

χQ3
χQ1

up to NNLO in µB which corresponds to lmax = kmax = 5. The re-
sults are presented in Figure 7.3 and 7.4 where the former depicts the temperature
dependence of RQ

31 at vanishing baryon chemical potential while the latter shows
the dependence on baryon chemical potential around T = 156 MeV. Compared to
the mean to variance ratio discussed above, the roles of temperature and baryon
chemical potential are reversed for the skewness ratio. There is a pronounced tem-
perature dependence in the form of a (mirrored) sigmoidal curve, while a change
in chemical potential only results in a very mild decrease ofRQ

31 at a level of about
10%. With these properties, RQ

31 was proposed as a thermometer for extracting the
freeze-out temperature Tf from comparison to experimental measurements [68].

In order to perform the continuum extrapolation, we fit RQ
31(T, µB = 0) with

a rational polynomial ansatz (6.1.5) as we have done for the baryon number fluc-
tuations. The cut-off effects are again parameterized by 1/N2

τ correction terms.
If evaluated on the pseudo-critical crossover line Tpc(µB), the small suppres-

sion ofRQ
31 with increasing µB is almost exactly compensated by the enhancement
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Figure 7.2: Continuum extrapolated mean-to-variance ratio RQ12 of electric charge fluc-
tuations evaluated on the pseudo-critical transition line of the chiral transition. The hor-
izontal lines show corresponding results for RQ12 measured by the STAR collaboration at
beam energies

√
sNN = 27− 200 GeV [67].

of RQ
31 with decreasing temperature. RQ

31(Tpc(µB)) therefore remains constant in
the µB-region studied here and we find RQ

31(Tpc(µB)) = 1.04(9) for µB < 150
MeV. The result is shown in Figure 7.5 as a red band with µB replaced with RB

12

as before. For chemical potentials larger than 150 MeV, the signal-to-noise ratio
for the Nτ = 12 and Nτ = 16 data becomes too poor to form robust predictions.

When comparing our result on the pseudo-critical transition line with experi-
mental measurements performed by the PHENIX Collaboration [70], included in
Figure 7.5 as blue data points, we find that they are consistent with a freeze out
temperature Tf ∼ Tpc. However, the uncertainties on the experimental determina-
tion ofRQ

31 are substantial. Since the lattice QCD results suggest that the skewness
ratio is almost independent of RB/P

12 , we may average over the experimental re-
sults to reduce the statistical uncertainty. This is included in 7.5 as a black dashed
band that is slightly larger but still consistent with the lattice QCD determination
within errors. Like the skewness and kurtosis ratios for net-baryon number fluc-
tuations, this suggests a freeze-out temperature slightly below the pseudo-critical
transition line.

HRG models only match our lattice QCD predictions at temperatures T ≤
135 MeV. The behavior of RQ

31 particularly in the region around Tpc cannot be
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described with them.
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Figure 7.3: The skewness ratio RQ31 = SQσ
3
Q/MQ at µB = 0 as a function of tempera-

ture. Colored data points show the lattice QCD results at finite Nτ while the purple band
shows the continuum extrapolation. The colored lines represent the fit function used for
the continuum extrapolation evaluated at the corresponding finite Nτ values. The QM-
HRG result is shown as a black line.

7.3 Kurtosis ratio RQ
42

Furthermore, we computed the kurtosis ratio RQ
42 to NNLO in µB. Unlike the

skewness ratio, RQ
42 does not contain noisy Baryon-electric charge correlations at

µB = 0 and therefore has significantly smaller errors then RQ
31 as shown in Figure

7.6. In the (T, µB)-plane, its behavior is very similar to the skewness ratio, i.e. it
has a pronounced sigmoidal shape in T direction but hardly varies as a function
of µB. The µB dependence is depicted in Figure 7.7. Therefore, evaluating RQ

42

along Tpc(µB) results in a nearly constant value and we obtain RQ
42 = 0.71(5) for

µB < 150 MeV.
As the orders increase, the discrepancies between HRG model calculations

and lattice QCD results grow. In the case of the kurtosis ratio, HRG results based
on calculations without finite-volume corrections differ by more then 50% from
our lattice QCD prediction at T ∼ 135 MeV. This is partly due to finite vol-
ume effects in the light meson sector encountered earlier that become more severe
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Figure 7.4: The subtracted skewness ratioRQ31(T, µB)−RQ31(T, 0) around T = 156 MeV
as a function of µB .

with increasing orders. These, however, do not have an influence on the µB-
dependence of RQ

42, shown in Figure 7.7, as the µB correction terms are mostly
given by higher order baryon-charge correlations. Furthermore, residual taste
changing interactions not fully suppressed by the HISQ formulation as well as
a doubly charged resonance, the ∆++, which is unstable well below Tpc in our
lattice QCD calculations further decrease the value of RQ

42.

7.4 Strangeness fluctuations and the strangeness chem-
ical potential

While cumulant ratios of net strangeness fluctuations are also accessible in lattice
QCD calculations, they do not provide much information on the thermal condi-
tions present in heavy ion collisions as the proxy problem is more severe than it is
for net baryon-number fluctuations. Results on the fluctuations of single strange
particle species, such as kaons [71] and Λ-baryons [72] are available, but the vi-
ability of either of them as a proxy for net strangeness fluctuations is not clear
as contributions from either the strange baryon or strange meson sector are ne-
glected. However, insight on thermal conditions present in heavy ion collisions
might be obtained via a different kind of strangeness observable originating from
the strangeness neutrality constraint nS = 0. Simply dividing equation (4.1.4) by
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Figure 7.5: The continuum extrapolation of RQ31(Tpc(µB), µB) evaluated on the
crossover line of the chiral transition shown as a red band. The blue data points show
the corresponding measurements of RQ31 from [70] whereas the black line corresponds to
the average over these values.

µ̂B yields the ratio

µS
µB

= s1(T ) + s3(T )
(µB
T

)2

+O
((µB

T

)4
)
, (7.4.1)

which is, for small chemical potentials, to a large extent determined by s1(T ) '
−χBS11

χS2
. The strangeness chemical potential to baryon chemical potential ratio is

furthermore accessible in non-interacting hadron resonance gas models via the
ratio of anti-strange baryon to strange baryon yields B̄/B [46] that is given by

B̄

B
(
√
s) = exp

(
−µB
T

(
2− 2|S|µS

µB

))
. (7.4.2)

We can fit experimentally measured yields of strange baryons with this expres-
sion to obtain the ratio µS/µB at the time of chemical freeze-out and compare it
to lattice QCD calculations of the ratio from (7.4.1). The results of this are shown
in Figure 7.8. We used measurements of Λ, Σ, and Ω yields published by STAR
in [73] and [74] to fit (7.4.2) with µB and µS/µB as parameters. The lattice QCD
curve, shown here in orange, is obtained by evaluating the leading order contribu-
tion s1(Tpc(µB)) on the pseudo-critical transition line. Also shown is the result for
s1 obtained from HRG calculations using the QMHRG2020 spectrum. Apart from
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Figure 7.6: The kurtosis ratio RQ42(T, µB = 0) as a function of temperature. As be-
fore, colored data points show the lattice QCD results at finite Nτ while the purple band
shows the continuum extrapolation. The colored lines show the continuum extrapolation
fit evaluated at the corresponding Nτ values.

the data point at
√
sNN = 200 GeV, the ratio of strangeness and baryon chemical

potentials calculated on the pseudo-critical transition line via lattice QCD agrees
with corresponding ratios extracted from the yield fit and is also quite close to the
QMHRG calculation.

Furthermore, the ratio µS/µB is particularly sensitive to the strange hadron
content of the hadronic spectrum. In Figure 7.9, we show the result of s1(T ) based
on the calculations presented in chapter 5 and compare it to QM and PDG HRG
model calculations. The difference between the lattice QCD result of µS/µB and
calculations based on the PDG spectrum is about 15%. Calculations based on the
QMHRG2020 spectrum, however, compare quite well to the lattice QCD result.
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Figure 7.8: Comparison of the ratio of strangeness and baryon chemical potentials from
fits to strange baryon yields and lattice QCD calculations on the pseudo-critical transition
line.
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75



7.4. STRANGENESS FLUCTUATIONS AND THE STRANGENESS
CHEMICAL POTENTIAL

76



Chapter 8

Summary

We have computed all generalized susceptibilities χBQSijk up to order i+ j+ k = 8
with lattice QCD simulations using the 2+1-flavor HISQ discretization scheme
based on the high statistics data set listed in Table 3.2. Using this data, we ob-
tained precise continuum extrapolations of the six second order cumulants of
conserved charge fluctuations and their correlations and compared them to non-
interacting, point-like hadron resonance gas calculations using different lists of
hadron resonances. We found that calculations based on the QMHRG2020 hadron
list agree well with lattice QCD results on strangeness fluctuations as well as the
baryon-strangeness and electric charge-strangeness correlations for temperatures
135 MeV ≤ T ≤ Tpc,0. For the second order electric charge cumulant, we found
that the lattice QCD results, obtained on lattices with aspect ratio LT = 4, are af-
fected by finite volume effects in the pion and kaon sector. By correcting for these
in QMHRG2020 calculations, we also found a good agreement with lattice results
up to about Tpc,0. The most significant difference between non-interacting, point-
like hadron resonance gases and lattice QCD was found in the baryon-charge cor-
relation χBQ11 . While the discrepancy could be decreased by assigning an excluded
volume to hadrons, an excluded volume parameter of b > 1 fm would be required
to describe the temperature dependence of χBQ11 which spoils the good agreement
with strangeness correlations.

Calculations based on virial expansions can account for the interplay between
repulsive and attractive interactions but their precision is currently limited due
to insufficient experimental data on various interaction channels. Nonetheless,
they provide an explanation why the K∗0(700) resonance does not contribute to
the thermodynamics of a medium of strongly-interacting matter and should be
excluded from non-interacting, point-like hadron resonance gas models.

Furthermore, we computed higher order cumulant ratios of baryon-number
and electric charge fluctuations at small values of the baryon chemical potential
µB for strangeness neutral systems nS = 0 and a ratio of electric charge density
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to baryon number density nQ/nB = 0.4. We found the mean-to-variance ratios
MB/σ

2
B andMQ/σ

2
Q to be mostly determined by their leading order contributions,

giving them a monotonic, nearly linear dependence on µB. The former was found
to agree well with HRG calculations up to chemical potentials of about 120 MeV
while for the latter, finite volume effects already present in χQ2 as well as further
deviations from QCD that start to appear close to Tpc, lead to a smaller slope of
RQ

12 in HRG calculations compared to lattice QCD results.
We found the skewness and kurtosis ratios for net baryon-number fluctuations

and net electric charge fluctuations to depend only mildly on µB and consequently
onRB

12 and found that effects of truncating the Taylor series are small for chemical
potentials µB/T ≤ 1. We furthermore evaluated these ratios on the pseudo-critical
transition line Tpc(µB) and compared them, with the caveats of such comparisons
in mind, with corresponding measurements performed by STAR and PHENIX.
We found a good agreement between skewness and kurtosis ratios of net baryon-
number fluctuations with corresponding net proton-number fluctuations measured
by STAR which suggest a freeze-out temperature slightly below Tpc. Similar com-
parisons of the skewness ratio for net electric charge fluctuations with data from
PHENIX also arrive at this conclusion, however statistical uncertainties on the
experimental results are large. A determination of µS/µB on the pseudo-critical
transition line from lattice QCD, and µS/µB at the time of freeze-out, extracted
from strange baryon yield measurements also favors freeze-out occurring in the
vicinity of Tpc. Furthermore, we presented first estimates of fifth and sixth order
cumulant ratios of net baryon-number fluctuations based on NLO calculations on
lattices with Nτ = 8 which we found to be negative along Tpc(µB). While earlier,
preliminary results on corresponding net proton-number fluctuations obtained by
STAR, indicated a clear deviation from lattice QCD results, a recent, complete
analysis shows that uncertainties on these quantities are currently to large to make
statements about the thermodynamic consistenty of them with our other findings.
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Appendix A

Expressions for constrained
expansion coefficients χ̃X,kn

Baryon number

The constrained expansion coefficients χ̃B,kn for odd n are

χ̃B,1n = s1χ
BQS
n01 + q1χ

BQS
n10 + χBQSn+1,00,

χ̃B,3n = (6s3χ
BQS
n01 + s3

1χ
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n03 + 6q3χ

BQS
n10 + 3q1s

2
1χ

BQS
n12 + 3q2

1s1χ
BQS
n21 + q3

1χ
BQS
n30

+ 3s2
1χ

BQS
n+1,02 + 6q1s1χ

BQS
n+1,11 + 3q2

1χ
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n+1,20 + 3s1χ

BQS
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n+2,10 + χBQSn+3,00)/6,

χ̃B,5n = (120s5χ
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n01 + 60s2

1s3χ
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n03 + s5

1χ
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n05

+ 120q5χ
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n10 + 60q3s

2
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n12 + 120q1s1s3χ
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n12 + 5q1s

4
1χ
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n14

+ 120q1q3s1χ
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n21 + 60q2

1s3χ
BQS
n21 + 10q2

1s
3
1χ
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n23 + 60q2

1q3χ
BQS
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+ 10q3
1s

2
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3
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2
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χ̃B,7n = (5040s7χ
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APPENDIX A. EXPRESSIONS FOR CONSTRAINED EXPANSION
COEFFICIENTS χ̃X,KN

The constrained expansion coefficients χ̃B,kn for even n are

χ̃Bn = χBQSn00 ,
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Electric charge

The constrained expansion coefficients for χ̃Q,kn for odd n are
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COEFFICIENTS χ̃X,KN
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The constrained expansion coefficients χ̃Q,kn for odd n are

χ̃Qn = χBQS0,n,0 ,
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