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Abstract. Let S be a subsemigroup of a simply connected nilpotent Lie group G. We
construct an asymptotic semigroup S0 in the associated graded Lie group G0 of G.
We can compute the image of S0 in the abelianization Gab

0 = Gab. This gives useful
information about S. As an application, we obtain a transparent proof of the following
result of E. B. Vinberg and the author: either there is an epimorphism f : G → R such
that f(s) ≥ 0 for every s in S or the closure S of S is a subgroup of G and G/S is
compact.

1. Introduction

Given a nilpotent Lie algebra g, we endow the underlying vector space V with
a family of Lie brackets [ , ]t, t > 0 and corresponding Lie algebras gt. For t → 0
these structures converge to a Lie algebra structure g0 that is isomorphic with
the associated graded Lie algebra gr(g) of g. We also define a family δt, t > 0,
of linear automorphisms of V , which give isomorphisms of Lie algebras g → gt.
The Campbell–Hausdorff multiplication turns this into a family of nilpotent Lie
groups Gt, t ≥ 0, and isomorphisms of Lie groups δt : G → Gt for t > 0. Then
every δt, t > 0, is an automorphism of g0 and of G0. For a subset M of G, we
define the limit M0 := limt→0 δtM . We think of M0 as an asymptote of M . The
set M0 has pleasant properties: it is closed and δt-invariant for every t > 0. If S is
a subsemigroup of G then its asymptote S0 is a subsemigroup of G0. Furthermore,
we can compute the image of S0 under the natural map of G0 to its abelianization
Gab

0 . It is the smallest closed convex cone that contains the image π(S) of S under
the natural map π of G to its abelianization Gab ∼= Gab

0 . In particular, if S is not
contained in a half space of the vector space Gab, then its asymptote S0 projects
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onto Gab
0 and hence the asymptote S0 of S is the whole Lie group G0. These results

may be of independent interest. As an application, we give a transparent proof of
the main result of [AV], using stability results developed in [AV]: see Section 3.

Acknowledgments. The author profited very much from the cooperation with
Ernest Borisovitch Vinberg. The construction of the asymptotic semigroup given
here is reminiscent of the construction of an asymptotic semigroup in [V], as Ernest
Borisovitch pointed out. To explore this relation and to continue our joint work
on semigroups was our plan. But his sudden and unexpected death put a sad
end to all our plans. I dedicate this paper to his memory. I thank the various
institutions which supported his regular stays in Bielefeld over the years, the
Humboldt foundation which honored him with a Humboldt award and subsequent
invitations, the DFG under SFB 343 and SFB 701, and the Faculty of Mathematics
of Bielefeld University.

I thank the referees for their comments which led to an improvement of the
presentation, especially in Section 3.

Convention. In this paper, we understand the term ”semigroup” as a semi-
group with identity element.

2. An approximation procedure

Let g be a nilpotent finite dimensional Lie algebra over R. Let zi, i = 1, . . . , d be
its descending central series. So z1 = g and zi+1 = [zi, g] for i ≥ 1. Let V1, . . . , Vd
be vector subspaces of g such that

Vi ⊕ zi+1 = zi

for every i = 1, . . . , d. We denote the projection to the first summand in this direct
sum by φi : zi → Vi.

We reserve the symbol g for the Lie algebra. If we consider g just as a vector
space we denote it by V .

For t > 0, we consider the linear invertible maps δt : V → V , which are uniquely
determined by the property that

δt(v) = ti(v) if v ∈ Vi.

These maps are sometimes called dilations and have been used in analysis (see
[G]). We note that δt depends on the choice of the vector spaces Vi, i = 1, . . . , d.

We define for t > 0 a Lie bracket [ , ]t on V by transport of structure from g
via δt. So

[x, y]t = δt[δ
−1
t x, δ−1t y]

for x, y ∈ V . This defines a new Lie algebra structure on V which we denote by
gt. So g1 = g. We are interested in the limit structure g0, defined by

g0 = lim
t→0

gt.

We have to check that the limit exists and we list some of its properties in
the following proposition. We denote by gr(g) the associated graded Lie algebra
corresponding to the filtration zi, i = 1, . . . , d by the descending central series of g.
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Proposition 1.

a) For every pair x, y of vectors of V , the limit

[x, y]0 = lim
t→0

[x, y]t

exists and turns V into a Lie algebra, which we denote by g0.

b) g0 is a graded Lie algebra and we have

[Vi, Vj ]0 ⊂ Vi+j .

c) The set of Lie brackets [x, y]0, x ∈ V1, y ∈ Vi−1, spans Vi. In particular,
zi, i = 1, . . . , d, is the descending central series of g0.

d) δt is an automorphism of the Lie algebra g0 for every t > 0.

e) Let φi : zi/zi+1 → Vi be the linear isomorphism induced by the projection
φi : zi → Vi. Let φ :

⊕
i zi/zi+1 → V be the linear isomorphism with the

property that φ|zi/zi+1
= φi. Then φ is an isomorphism of Lie algebras φ :

gr(g)→ g0.

So we can think of the family of Lie algebras gt, t→ 0, as an approximation of
gr(g).

Proof. For x ∈ Vi and y ∈ Vj we have

[x, y] =
∑

zk,

where zk ∈ Vk and zk = 0 if k < i+ j. Thus

[x, y]t = δt[δ
−1
t x, δ−1t y]

= δt[t
−ix, t−jy]

=
∑

tk−i−jzk,

hence

[x, y]t = zi+j + tzi+j+1 + t2zi+j+2 + · · · (1)

So for x ∈ Vi and y ∈ Vj , the limit limt→0[x, y]t = zi+j exists and we have
computed the limit

[x, y]0 = φi+j [x, y]. (2)

It follows that the limit exists for every every pair x, y of vectors of V , by
bilinearity of the Lie brackets [ , ]t.

The bracket [ , ]0 turns V into a Lie algebra, since bilinearity, anticommutativity,
and the Jacobi identity are preserved under limits. This shows a). Claim b) follows
from Equation (2), and b) implies d). Equation (2) also implies e). To see c), note
that the set of commutators [x, y], x ∈ V1, y ∈ Vi−1, spans zi modulo zi+1. So c)
also follows from Equation (2). �
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We remark that the explicit formula Equation (2) for the Lie bracket of gt, t ≥ 0
shows that the family gt of Lie algebras is a polynomial family: i.e., the mapping

V × V × [0,∞)→ V, (x, y, t) 7→ [x, y]t (3)

is given by polynomial functions.
For every t ≥ 0, the Campbell–Hausdorff multiplication turns every gt into a

nilpotent Lie group, denoted Gt. We denote the multiplication in Gt by ·t. The
family of Lie groups Gt, t ≥ 0 is also a polynomial family, since all our Lie algebras
are nilpotent of the same degree. The groups Gt are all isomorphic for t > 0; in
fact δt is an isomorphism of G := G1 to Gt.

Let M be a subset of V . We define the limit set M0 = limt→0 δtM as follows.
M0 is the set of points x ∈ V with the following property. For every neighborhood
U of x there is a positive number ε such that U ∩ δtM 6= ∅ for every t ∈ (0, ε).
We take this strict definition of the limit set since we want the limit set to be a
subsemigroup of G0 if M is a subsemigroup of G.

Lemma 2. Let M be a subset of V and let M0 be the limit set as defined above.
Then

a) M0 is a closed subset of V ,
b) M0 is invariant under δt for every t > 0,
c) let M and N be subsets of G. Then we have for their limit sets M0 ·0 N0 ⊂

(M ·1 N)0.

Note that the multiplication ·1 in G1 is just the original multiplication · in
G. So c) establishes a relation between the original multiplication and the limit
multiplication of limit sets. In particular, we have the following corollary.

Corollary 3. Let S be a subsemigroup of S and let S0 be its limit set. Then S0 is
a closed subsemigroup of G0, which is invariant under δt for every t > 0.

Proof. a) The proof of a) is straightforward.
b) Let x be a point of M0, let s be a positive number and let U be a neighborhood

of δsx. Then δ−1s U is a neighborhood of x. So δ−1s U ∩ δtM 6= ∅ for t ∈ (0, ε) for
some ε > 0. Note that δsδt = δst, hence U ∩ δstM 6= ∅ whenever st ∈ (0, sε). Thus
δsx ∈M0 whenever x ∈M0 and s > 0.

c) Let x and y be elements of M0 and N0, respectively. We claim that x ·0 y ∈
(M ·1N)0. Let U be a neighborhood of x ·0 y. The joint continuity of the family of
Lie groups Gt, t ≥ 0, implies that there are neighborhoods V of x and W of y and
a δ > 0 such that x′ ·t y′ ∈ U whenever x′ ∈ V , y′ ∈W and t ∈ [0, δ). Now there is
a number ε > 0, which we may assume to be less than δ, such that V ∩ δtM 6= ∅
and W ∩ δtN 6= ∅ whenever t ∈ (0, ε). For such t let us take x′ ∈ V ∩ δtM and
y′ ∈W ∩ δtN . Then x′ ·t y′ ∈ U ∩ δtM ·t δtN . But δtM ·t δtN = δt(M ·1 N). Thus
U ∩ δt(M ·1 N) 6= ∅ for t ∈ (0, ε) and hence x ·0 y ∈ (M ·1 N)0. �

Lemma 4. Let S be a subsemigroup of G and let S0 be its limit semigroup. Then

a) S0 ∩ Vi = φi(S0 ∩ zi)
b) S0 ∩ Vi is a closed convex cone in Vi,
c) S0 ∩ Vi contains φi(S ∩ zi).
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Proof. a) Trivially S0 ∩ Vi ⊂ φi(S0 ∩ zi). The opposite inclusion follows from the

fact that if s ∈ S0 ∩ zi, say s = si + si+1 + · · · with sk ∈ Vk, then δ1/ns
ni

=

si + 1
nsi+1 + 1

n2 si+2 + · · · is an element of S0 for n ∈ N and hence so is its limit
si = φi(s).

b) First of all, S0 ∩ Vi is an additive subsemigroup of Vi. For, suppose x and y
are elements of S0 ∩ Vi, then x ·0 y ∈ S0 ∩ zi. But x ·0 y ≡ x + y mod z2i by the
Campbell–Hausdorff formula and hence φi(x ·0 y) = x+ y ∈ φi(S0 ∩ zi) = S0 ∩ Vi.
Now claim b) follows since S0 ∩ Vi is closed and δt-invariant.

c) Suppose s ∈ S ∩ zi, say s = si + si+1 + · · · with sj ∈ Vj for j ≥ i. We
claim that si ∈ S0. By our convention a semigroup contains the identity element.
It follows that S0 contains the identity element. We thus may assume that si 6= 0.
For t ∈ (0, 1] let nt ∈ N be such that tint ≤ 1 < ti(nt + 1) and for t > 1 we set
nt = 1. Then δts

nt = tintsi + ti+1ntsi+1 + · · · ∈ δtS converges to si when t tends
to 0, since limt→0 t

int = 1 and limt→0 t
jnt = 0 for j > i. So si ∈ S0 ∩ Vi. �

For the case i = 1, we have in particular φ1(S) ⊂ S0. In this case, we have the
following precise information.

Proposition 5. Let S be a subsemigroup of G and let S0 be its limit subsemigroup
of G0. Then the set S0 ∩ V1 is the smallest closed convex cone in V1 that contains
φ1(S).

Proof. Let C be the smallest closed convex cone in V1 which contains φ1(S). We
know that C is contained in the closed convex cone S0 ∩ V1, by the preceding
Lemma 4. To show the inverse inclusion, it suffices by the separating hyperplane
theorem to show that every linear map l : V1 → R which has non-negative values
on φ1(S) also has non-negative values on S0 ∩ V1. For such l consider the linear
map ψ = l ◦ φ1 : V → R. We have ψ(S) ≥ 0 and ψ(δtx) = tψ(x) for t > 0 and
x ∈ V , hence ψ(δtS) ≥ 0 for all t > 0 and hence ψ(S0) ≥ 0. Thus l(S0 ∩ V1) ≥ 0
as was to be shown. �

3. An application

As an application, we obtain a new proof of the main result of [AV].
Let me recall the main result of [AV]. A subsemigroup S of a topological group

G is called cocompact if there is a compact subset K of G such that G = SK. Let
now G be a simply connected nilpotent Lie group and let Gab = G/(G,G) be its
abelianization, a vector group. Let π : G → Gab be the natural projection. By a
half space in a real vector space V we mean a subset of the form {v ∈ V ; l(v) ≥ 0}
for some nonzero linear function l on V . Let S be a subsemigroup of G.

Proposition 6. The following statements are equivalent.

(1) There is a surjective homomorphism f : G → R of Lie groups such that
f(s) ≥ 0 for every s ∈ S.

(2) The image π(S) of S in Gab is contained in a half space.
(3) π(S) is not cocompact in Gab.

Note that all these statements depend only on the image π(S) of S in Gab. The
proof of this proposition is an application of elementary facts about convex cones
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in vector spaces: see [AV, Prop. 2.1].

The main result of [AV] is the following theorem, [AV, Thm. 1.2].

Theorem 7. If the image π(S) of S in Gab is cocompact in Gab then S is cocom-
pact in G and the closure S of S is a subgroup of G.

Another formulation, equivalent by Proposition 6, is the following theorem.

Theorem 8. Either there is a surjective homomorphism f : G→ R of Lie groups
such that f(s) ≥ 0 for every s ∈ S or S is cocompact in G and the closure S of S
is a subgroup of G.

Thus our result is a common generalization of the following two results. One is
the theorem of Maltsev [M], where S in Theorem 7 is supposed to be a subgroup
of G. The other one is the theorem of Lawson [L] (see [HHL, V.5]), where S in
Theorem 8 is supposed to have interior points, and then one can conclude that
actually S = G in the second alternative: see [AV, Cor. 3.4]. So our result has two
aspects. One of them is the cocompactness aspect, stated in Theorem 7. The other
one is the dichotomy aspect, stated in Theorem 8. It was interesting to see that
the two referees of this paper did not agree on which aspect should be considered
as the main result of [AV]. Also, Ernest Borisovich Vinberg and the present author
may not have agreed on this point. This reminds me of the insight of Adorno: Der
Künstler ist nicht gehalten, das eigene Werk zu verstehen [Ad] (The artist cannot
be held responsible for understanding his own work; I thank David Gordon for
help with the translation).

Outline of proof of Theorem 7. In the proof, we use some of the tools we
developed in [AV]. We may assume that G is of the form considered in Section
2. We choose a family of vector subspaces Vi as above. Let S be a subsemigroup of
G and suppose that its image π(S) in Gab is cocompact. Then φ1(S) is cocompact
in V1, since φ1 = φ1 ◦ π if we identify g ∼= G and Gab ∼= gab = z1/z2 and use
φ1 : z1/z2 → V1 of Proposition 1e). But the only closed convex cone in a vector
space which contains a cocompact subsemigroup is the vector space itself: see [AV,
Prop. 2.1]. So S0 ∩ V1 = V1. Thus S0 is a subsemigroup of G0 which contains V1.
It follows that S0 = G0. This can be proved by induction on dim(G0). A quick
reference would be [AV, Thm. 4.4] since S0 contains a family of one-parameter
subgroups of G0, whose images in gab0 span gab0 . Then by the approximation
argument of [AV, Sect. 3], (which holds also here for the continuous family of
Gt, t ≥ 0) we have that δtS is cocompact in Gt for t small. But δt is an isomorphism
from G to Gt which maps S to St. So S is cocompact in G.

Here are some more details of the approximation argument. Every cocompact
subsemigroup of a connected Lie group contains a finitely generated subsemigroup,
which is also cocompact: see [AV, Prop. 3.6]. Varying this finite set of generators
slightly — and even varying the group law slightly — does not destroy cocompact-
ness. This can be proved as [AV, Thm. 3.7]. It follows that in our case δtS is
cocompact in Gt for t small, since S0 is cocompact in G0.
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