
Information Extraction from Text for Deep

Domain Knowledge Graph Population

Extracting Pre-Clinical Outcomes in the Domain of Spinal Cord Injury

Hendrik Roman ter Horst

A thesis submitted in partial fulfillment for the

degree of Doctor rerum naturalium (Dr. rer. nat.)

in the

Faculty of Technology, Bielefeld University

Bielefeld, December 2021

Reviewers:

Prof. Dr. Philipp Cimiano, Bielefeld University, Bielefeld Germany

Prof. Dr. Mari Ostendorf, University of Washington, Washington USA

Senior Lecturer Dr. Paul Buitelaar, National University of Ireland, Galway Ireland

Printed on non-aging paper according to ISO 9706.

Abstract

Every year, a vast amount of unstructured medical knowledge is described in thousands

of pre-clinical studies published on publicly available websites such as PubMed. The

aggregation of such knowledge plays an important role in various medical applications

such as therapy development in evidence-based medicine where decisions are made on

the basis of the best available evidence published in the literature so far. However, due

to their natural language format, the manual aggregation of available information is

tedious and time-consuming and can hardly be performed by researchers. Towards this

issue, we are concerned with the automatic information extraction of structured knowl-

edge at a level of detail that supports evidence-based decision making. Specifically, we

focus on automatically populating a deep domain knowledge graph with information

from pre-clinical studies that describe experimental results in the area of spinal cord

injury. An important challenge is that a single study contains multiple outcomes de-

scribed by a total of up to 7,816 (dependent) study parameters. Since the problem of

extracting all these parameters jointly is so far intractable, we propose a hierarchical

architecture that predicts incrementally feasible substructures in a bottom-up fashion

relying on statistical inference and conditional random fields at the heart of our system.

The main contribution of this work is the development of a machine learning methods

integrated into a holistic domain-adapted information extraction system that is capa-

ble of predicting the full details of experimental outcomes as described in pre-clinical

studies written in natural language. We present a general methodology for the ex-

traction of deeply nested structures rooted in the paradigm of structure prediction and

model-complete text comprehension. We further identify domain specific challenges, and

provide adapted solutions. We show how to efficiently evaluate complex nested struc-

tures predicted by our system and present a comprehensive evaluation to understand

the extent to which it can be used with the depth required to support aggregation of

evidence. We show that the information extraction results are satisfactory for many

classes of our domain ontology and identify those which require further research.

i

Acknowledgements

First of all, I would like to thank my supervisor Philipp Cimiano for giving me the

opportunity to work with him on this interesting research topic. I would also especially

like to thank Mari Ostendorf and Paul Buitelaar for reviewing this work.

I am grateful to all members and ex-members of the Semantic Computing Group for

all the support, distractions, and interesting discussions (on-topic or not ;) we had

during my research time. My special thanks go to Soufian Jebbara, Maximilian Panzner,

Sherzod Hakimov, Ole Pütz, Frank Grimm, Basil Ell, and Matthias Hartung. Thank

you for the incredibly fun time we had. Thank you for being my friends.

My thanks go to all PSINK project members who have worked with me closely over the

last couple of years and provided me with fresh ideas, interdisciplinary experience, and

interesting conversations. My special thanks go to Nicole Brazda, Hans-Werner Müller,

Roman Klinger, Julia Krebbers and Jessica Schira–Heinen. Overall, I am very grateful

for the pleasant working environment I have enjoyed at work; all the time!

I like to thank my girlfriend Elisa who has supported me and put up with me over the

last few months. Thanks for being so patient and trustful.

I would also like to thank my friends and family who have always believed in me. Thanks

for showing so much interest in my work. Finally, I would like to thank my long-time

study friends, Sebastian Meyer zu Borgsen and Dennis Wigand who provided me with

valuable feedback, motivation and proof-readings.

This work has been funded by the Federal Ministry of Education and Research (BMBF,

Germany) in the PSINK project (project numbers 031L0028A & 031L0028B).

“There’s nothing more permanent than a temporary hack.”

–True Fact–

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Deep Domain Knowledge Graph Population 3

1.2.1 Simplified Example . 5

1.2.2 Terminology and Notation . 6

1.2.3 Involved Tasks . 8

1.3 Content Overview . 11

1.3.1 Challenges and Research Questions 11

1.3.2 Contributions . 15

1.3.3 Outline . 17

1.4 Publications . 19

2 Foundations 21

2.1 Knowledge Representation . 21

2.1.1 Knowledge Graphs . 22

2.1.2 Resource Description Framework 24

2.1.3 Web Ontology Language . 25

2.1.4 SPARQL Protocol And RDF Query Language 27

2.2 Conditional Random Fields . 29

2.2.1 Factor Graphs . 31

2.2.2 Inference and Learning . 34

3 Related Work 39

3.1 Historical Situation . 39

3.2 Related Information Extraction Problems 42

3.2.1 Entity Recognition and Linking . 42

3.2.2 Relation Extraction . 44

3.2.3 Slot-Filling . 45

3.2.4 Co-Reference Resolution . 48

3.3 Knowledge Graph Population in the Medical Domain 49

v

Contents vi

4 Application Domain: Spinal Cord Injury 53

4.1 Spinal Cord Injury Data-Model . 53

4.1.1 Data-Model Structures . 54

4.2 Real-World Example . 63

4.2.1 Protocol Excerpt . 63

4.2.2 Example Walkthrough . 64

4.3 Data Set . 66

4.3.1 Statistics . 67

4.3.2 Inter Annotator Agreement . 72

5 Model-Complete Text Comprehension 75

5.1 Conditional Random Fields and Factor Graphs 75

5.2 Inference and Parameter Estimation . 78

5.2.1 Objective Function . 79

5.2.2 Parallel Chain Cross Model Update Inference 80

5.3 Sampling from the State Space . 82

5.3.1 Breadth-First Gibbs Sampling . 83

5.3.2 Search Space . 84

5.3.3 Implementation Details . 86

5.4 Feature Engineering . 87

5.4.1 General Aim . 87

5.4.2 Formal Implementation . 88

5.5 Entity and Literal Annotation . 96

5.5.1 Sliding Window CRF . 97

5.5.2 Dictionary Based Approach . 100

5.5.3 Regular Expressions . 101

5.5.4 Intermediate Evaluation . 101

6 Deep Domain Knowledge Graph Population 103

6.1 Ontology-Specific Problem Modelling . 103

6.1.1 Problem Decomposition . 104

6.1.2 System Architecture . 106

6.2 Special Case: Experimental Group . 109

6.2.1 Group Name Recognition . 110

6.2.2 Group Name Co-reference Resolution 111

6.2.3 Additional Features . 113

6.3 Special Case: Result . 118

6.3.1 Group Name Multi-Membership Resolution 118

6.3.2 Investigation Methods and Trends 120

6.3.3 Evidence-based Inference . 122

7 Experiments and Evaluation 125

7.1 Evaluation Metrics and Experimental Settings 125

7.1.1 Metric . 125

7.1.2 Settings and Interpretations . 128

7.2 Experimental Results and Error Analyses 130

7.2.1 Organism Model . 130

Contents vii

7.2.2 Injury Device . 132

7.2.3 Injury Location . 134

7.2.4 Delivery Method . 135

7.2.5 Anaesthetic . 137

7.2.6 Injury . 138

7.2.7 Treatment . 140

7.2.8 Experimental Group . 143

7.2.9 Trend . 145

7.2.10 Investigation Method . 146

7.2.11 Result . 147

7.3 Discussion . 148

8 Applications 153

8.1 Annotating Complex Relational Data with SANTO 153

8.2 System Application: Populating a Knowledge Graph 154

8.3 Exploration of Knowledge with SCIExplorer 155

8.4 Answering Competency Questions . 156

8.5 Automated Grading . 157

9 Conclusion 159

9.1 Summary . 159

9.2 Outlook . 163

9.2.1 Relevance and Adaptation to Clinical Domain 164

9.2.2 Limitations and Future Work . 165

List of Figures 168

List of Tables 173

Abbreviations 175

A Group Name Recognition Expressions 179

B Regular Expressions for Literal Extraction 181

Bibliography 187

Dedicated to my father who has left this world far too early.

– Rest In Peace –

ix

Chapter 1

Introduction

Chapter Overview: In this chapter, we introduce and motivate our main research topic

of populating a deep domain knowledge graph with information automatically extracted

from natural language text. We provide an informal description of the general problem

and sketch challenges and requirements based on a simplified example. This allows us to

subsequently phrase our contributions and research questions. We close the introduction

by providing an overview of the remaining chapters and the published work this thesis is

mainly based on.

1.1 Motivation

Every year, vast amounts of unstructured knowledge are described in thousands of med-

ical studies published on publicly available websites such as PubMed1. This corpus of

information is a valuable resource that plays an important role in various medical appli-

cations, such as therapy development or evidence-based medicine, where decisions are

made based on the best available evidence published so far in the literature [1]. The

benefits of having medical knowledge available in aggregated form fostering accessibility

to researchers are not limited to the clinical setting but also play an important role

in the pre-clinical area.2 Animal experiments are expensive and often morally contro-

versial. Here, existing evidence can inform the design of pre-clinical studies and thus

reduce the number of unnecessary trials. In addition, aggregated knowledge supports

the translation of pre-clinical findings into clinical practice, especially for therapies to

which no effective treatments yet exist [2].

However, relevant information is rarely available in a structured form that would allow

1https://pubmed.ncbi.nlm.nih.gov/; accessed March 6 2021.
2While the clinical domain is concerned with human trials, the pre-clinical area largely consists of

animal studies.

1

https://pubmed.ncbi.nlm.nih.gov/

2 Introduction

an easy aggregation of knowledge, such that its acquisition is usually based on manually

reviewing hundreds of publications. Due to the natural language format of information,

this manual process is a tedious and time-consuming task. Moreover, it requires a fair

amount of domain knowledge and can hardly be done by research groups, let alone indi-

vidual researchers, such that there are entire organizations and communities dedicated to

this task, e.g. the Cochrane Foundation3. Although, there are some attempts to encour-

age researchers to additionally publish their findings in structured form4, the common

publication practice is still to ’encode’ valuable knowledge using natural language. As a

result, conducting a systematic review represents a high effort, and with an ever-growing

corpus of available information, manually aggregating the existing knowledge becomes

an infeasible task.

One solution to address this shortcoming is to rely on machine learning methods that

are capable of processing thousands of documents automatically. Towards the devel-

opment of algorithms that make vast amounts of evidence available through structured

knowledge, we are concerned with automatic Information Extraction (IE) from natural

language text in the medical area. Specifically, we focus on pre-clinical studies describ-

ing experimental outcomes in the domain of Spinal Cord Injury (SCI), aiming at a level

of detail necessary for evidence-based decision making. An SCI describes accidentally

(clinical domain) or experimentally (pre-clinical domain) inflicted damage to the spine

that, among other health limitations, often results in partial paralysis of the affected

individual. Although reliable data on clinical SCI epidemiology are still lacking, the

incidence for SCI varies from 13.1 to 163.4 per million in developed countries and is

increasing by approximately 17,000 per year worldwide [3]. Despite the growing inter-

est and research totaling 75, 475 peer-reviewed PubMed-listed clinical and pre-clinical

publications in 20205, there is no controlled clinical trial demonstrating reproducible

therapeutic success despite some single-case reports [2].

An important prerequisite for a successful knowledge aggregation in a certain domain is

that the information is easily accessible and understandable to both human domain ex-

perts and machines. That is, instead of providing information in compressed textual form

(e.g. as summaries) or in semi-structured form (e.g. markup language-enriched text), the

information must be fully structured and follow a consistent domain-specific vocabulary.

This allows machines to perform well-defined operations on the data so that knowledge

provisioning, filtering, and meta-analysis can be performed (semi-)automatically with

high-level access tools once sufficient data is available.

3https://www.cochrane.org/; accessed November 23 2020
4For example, https://www.clinicaltrials.gov/ or https://www.clinicaltrialsregister.eu/;

accessed March 6 2021.
5search term ”spinal cord injury,” https://pubmed.ncbi.nlm.nih.gov/); accessed November 23 2020

https://www.cochrane.org/
https://www.clinicaltrials.gov/
https://www.clinicaltrialsregister.eu/
https://pubmed.ncbi.nlm.nih.gov/)

3

In the domain of spinal cord injury, pre-clinical trials have highly controlled experimen-

tal setups, where study protocols are specified down to the last detail describing all

necessary key parameters of an experimental outcome. These results provide an im-

portant source of information for the design of new studies and are therefore a valuable

resource for clinicians and researchers. To make the extracted knowledge as profitable as

possible, it is necessary that these experimental results are represented in a structured

and consistent form. This format must be based on a domain-specific vocabulary that

is easily understood by SCI experts, supports the necessary level of detail, and fosters

machine operability. A common method for defining a domain of interest that meets

the aforementioned requirements is to rely on the concepts of ontologies [4]. A domain

ontology describes classes, properties, taxonomic dependencies, and class/property con-

straints that are relevant in the research-domain. In this work, we rely on the Spinal

Cord Injury Ontology (SCIO), developed by Brazda et al. [5, 6], which comprehen-

sively defines the structure and vocabulary of a pre-clinical outcome that includes all

key parameters such as the groups of experimental animals compared, the type of injury

inflicted, the treatment(s) and test(s) studied, as well as the objective outcome, among

others. Furthermore, SCIO is the backbone of many problem-related applications (see

Chapter 8) and of the core methodology we develop in this work (see Chapter 5), as it

guides the inference procedure by defining the structures to be extracted. Conclusively,

our system aims at predicting knowledge structures described by the relevant classes

and properties of the ontology, which are subsequently used to populate a so-called

Deep Domain Knowledge Graph (DDKG).

1.2 Deep Domain Knowledge Graph Population

In this thesis, we follow the general definition of Knowledge Graphs (KG) of Paulheim

et al. [7], i.e. a knowledge graph basically consists of two parts i) a descriptive data-

schema containing the vocabulary of classes and relations, and ii) the data itself which

are basically assertions about instances stored in the knowledge graph [8]. A classical

knowledge graph stores human knowledge in a machine-readable format consisting of

nodes representing Basic Informational Units (BIU) and edges representing relation-

ships between these nodes. While this underlying data representation is quite simple,

arbitrarily complex knowledge structures can be efficiently described [9]. Thus, a single

data point in a KG is represented by a so-called 〈s, p, o〉 triple consisting of a subject

(s) and an object (o) both corresponding to the nodes of the knowledge graph, and

a predicate (p) reflecting the relationship between s and o. In general, nodes corre-

spond to either a real-world entity or a literal value, while a predicate denotes a par-

ticular property/attribute of such an entity. Consider the following example sentence:

4 Introduction

Figure 1.1: Structural comparison of shallow and deep domain knowledge graphs.
Left side shows the classical structure where each node refers to a basic informational
unit such as entities and literals (BIU; ovals). The right side shows the deep domain
structure where only leaf-nodes are considered BIUs and holistically defined sub-graphs

are referred to as basic structural units (BSU; squares).

“Barack Obama was born in 1961.”. The human knowledge contained in this sentence

can be expressed as a triple, i.e. 〈dbr:Barack Obama, dbo:birthYear, “1961”〉. The

namespaces dbr: (DBpedia resources) and dbo: (DBpedia ontology) provide important

information as they disambiguate the mentions “Barack Obama” and “was born” to

the correct real-world entity http://dbpedia.org/resource/Barack Obama and property

http://dbpedia.org/ontology/birthYear, respectively, in the corresponding ontology, DB-

pedia.

Our aim is to populate a Deep Domain Knowledge Graph (DDKG) with information

automatically extracted from natural language text focusing on the holistic extraction

of deep relational domain structures as described by SCIO. Therefore, we refer to our

task as deep domain knowledge graph population from text explaining the terminology

in more detail below.

Domain vs. Open: Information stored in a Domain Knowledge Graph (DKG) is

strictly limited to a specific vocabulary. Consequently, the possible elements of a graph,

i.e. nodes (entities and literals) and edges (relations), strongly depend on the particular

domain. In principle, there are no constraints on domain specifications, and so there

are various DKGs in the literature that, for instance, aim at bio-medical data [10],

spinal cord injury metadata [11], or even Chinese entertainments [12]. Contrary stands

the paradigm of open or general domain knowledge graphs, that store various types of

human knowledge and do not necessarily follow a certain structure or domain [13–16].

Prominent examples in the open domain are: DBpedia[17], Freebase [18], and WikiData

[19].

5

Figure 1.2: Example depiction of a domain and a populated knowledge graph. The left
side shows the template structure of this example domain describing a treatment. The
right side shows a deep domain knowledge graph consisting of two treatment instances

and a single delivery method instance.

Deep vs. Shallow: Inspired by the common AI-meaning of the term ’deep’ generally

referring to Deep Neural Network architectures [20] (DNN; many hidden layers), we

are adapting this term to refer to the complex relational and (deeply) nested domain

structures that we are aiming to extract. Thus, a deep domain knowledge graph is

a graph consisting of multiple layers of well-defined sub-graphs whose dependencies

are predefined by the domain-specific vocabulary. We depict the structural difference

between a shallow knowledge graph and a deep domain knowledge graph in Figure 1.1.

The main difference is that not every node in a DDKG refers to a basic informational

unit. The intrinsic semantic meaning of a certain type of sub-graph is holistically based

on its entire set of related triples/properties. In the following, we refer to such a sub-

graph as a Basic Structural Unit (BSU).

1.2.1 Simplified Example

The principle of Knowledge Graph Population (KGP) describes the automatic extraction

of structured information, usually in the form of triples, from natural language text.

While KGP refers to the task of ’filling’ a graph, the data-schema is predefined and does

not change. Consider the following example domain of medical treatments as depicted

on the left side of Figure 1.2. A treatment is defined by: i) a compound, ii) a dosage,

and iii) a delivery method, which is further defined by. 1) a duration, 2) a location, and

3) the type of delivery. The corresponding data-schema provides two different types of

locations, i.e. thoracic and lumbar and (only) one type of delivery method, i.e. injection.

Further, there are two different compounds described in this domain, i.e. estrogen and

saline, while the dosage and the duration can be arbitrary literal values.

Given the following example input text that contains valuable information according to

6 Introduction

the domain, the goal is to capture all the information in the text that is expressible with

respect to the domain, while ignoring those meaning aspects that do not.

“We compare the treatment effect of different estrogen dosages of 20 mg and

25 mg. Both solutions are injected at thoracic level. The high dosage was

applied within a duration of 3 seconds, while the low dosage within 2 seconds.”

The right side of Figure 1.2 shows the deep domain knowledge graph populated with

the relevant information. Based on the data-schema, the information contained in the

input text describes two distinct treatments and two distinct delivery methods. Both

treatments apply the same compound of type estrogen, and differ in the mentioned

dosages i.e. 20 mg compared to 25 mg. Note that according to the domain specification

not every information in this example text is correctly reflected in the populated graph.

Both treatments mistakenly(!) share the same delivery method as the description of the

duration is missing influencing the number of distinct delivery methods in the knowledge

graph. We discuss this issue in more detail in the Section 1.2.3.

1.2.2 Terminology and Notation

In the following, we present our terminology and notation with examples related to the

knowledge graph shown earlier.

Entity An entity is a simple leaf-node in a knowledge graph that has no further

outgoing edges. Entity nodes refer to real-world entities as described in a data-schema.

The informative value of an entity is not its associated textual mention, if provided,

but its particular entity type. In the following, we refer to entities as a particular

instantiation in a document, and to entity types as their conceptual semantics. We

denote them in Small-Caps. In our example, there are 5 different entity types, namely:

Estrogen, Saline, Thoracic, Lumbar and Injection.

Literal A literal is another basic leaf-node in a knowledge graph. Unlike entities,

their informative values are represented in the form of strings. Modeling a particular

piece of information as a literal is generally used when there is an infinite set of possible

expressions or values, such as when modeling natural numbers or names of things. Thus,

the use of literals is mainly motivated by saving complexity in domain modeling. The

main disadvantage of using literals in knowledge graphs and in particular in the context

of knowledge aggregation, is that they are usually not automatically interpretable, as

required for aggregating or filtering data (e.g. show estrogen treatments with a dosage

7

less than 20 mg) or other metadata analyses. Unlike entities, a literal type is in principle

irrelevant because the text within the literal contains all relevant information. Therefore,

we generally omit the type for literals in the reminder of this work. We indicate literals

in italics, surrounded by quotation marks. In our example, “25 mg” and “20 mg” are

literal values representing the dosages of the estrogen treatments.

Instance The instance is the most central element in the context of deep domain

knowledge graph population. In the graph itself, it is represented as a basic structural

unit consisting of various triples that holistically define the intrinsic semantic meaning

of the instance. An instance of a given class is described by the corresponding domain-

specific data-schema and is defined by a set of properties. In many cases, an instance

relates to a particular entity-type, which is reflected in a certain property. Therefore,

we denote an instance of a particular class/entity-type in Small-Caps, supplemented

by a unique instance ID in superscript. The example knowledge graph contains three

instances. Two treatments, i.e. Treatment0 and Treatment1, and one instance of

the class delivery method, i.e. DeliveryMethod0. Further, we distinguish between

six different types of properties: entity-typed, literal-typed, and instance-typed that can

be either single-valued or multi-valued.

Entity-Typed Property An Entity-Typed Property (ETP) is an attribute slot of an

instance that can be filled with entities of specific types as defined by the data-schema.

In a knowledge graph, an entity-typed edge connects the head-node of an instance to

an entity node. We denote ETPs in italics with an E or E∗ suffix for single-value and

multi-value properties, respectively. In our example, hasCompoundE and typeE are

single-valued ETPs, while hasLocationE∗ is a multi-valued ETP.

Literal-Typed Property A Literal-Typed Property (LTP) is an attribute slot of an

instance filled with string-based literal values. In a knowledge graph, an LTP-edge

connects the head-node of an instance to a literal value. We denote LTPs in italics with

an L or L∗ suffix. In our example, hasDosageL represents such an LTP that stores the

dosage of a treatment, e.g. “20 mg”.

Instance-Typed Property An Instance-Typed Property (ITP) is an attribute slot of

an instance that is filled with another instance of a particular class leading to the deep

relational structure of the knowledge graph. Similar to ETPs, the set of possible values

for an ITP is limited to a certain set of entity-types/classes as defined by the data-

schema. In a knowledge graph, an ITP connects two instance head-nodes. We denote

8 Introduction

an ITP in italics with an I or I∗ suffix. In our example, the instance-typed property

hasDeliveryI connects the two treatment instances Treatment0 and Treatment1 to

the delivery method instance DeliveryMethod0.

Indented-Notation Throughout this thesis, we use the following indented-notation

to represent concrete instances during examples. The three instances of the above ex-

ample are written as:

Treatment0 := [

hasDosageL = “20 mg”

hasCompoundE = 〈Estrogen, “estrogen”〉
hasDeliveryI = DeliveryMethod0]

Treatment1 := [

hasDosageL = “25 mg”

hasCompoundE = 〈Estrogen, “estrogen”〉
hasDeliveryI = DeliveryMethod0]

Deliverymethod0 := [

typeE = 〈Injection, “injected”〉
hasDurationL = ∅
hasLocationE∗ = {〈Thoracic, “thoracic level”〉}]

1.2.3 Involved Tasks

Automatically populating a deep domain knowledge graph with information from natural

language text can in principle be formulated as follows:

“How many and which instances of certain classes are described in a given

input text?”.

Answering this question requires solving several Natural Language Processing (NLP)

problems, which can be broadly subsumed under three main tasks. First, Named Entity

Recognition and Linking (NERL) deals with the detection and disambiguation of basic

informational units such as entities and literals. Secondly, Relation Extraction (RE) is

concerned with identifying relationships between instances, entities, and literals to form

basic structural units, i.e. the instantiation and filling of domain-specific templates.

Thirdly, Co-Reference Resolution (CRR) is concerned with determining which informa-

tional units belong to the same equivalence class. In the following, we go further into

detail sketching challenges and requirements.

9

Named Entity Recognition and Linking NERL describes the task of marking

words or phrases in a text (recognition task) that correspond to particular entities in

some knowledge base (linking or disambiguation task). Because of the general impor-

tance of identifying entities in many downstream applications, NERL is a widely studied

field in NLP [21, 22]. In contrast to classical NERL, there are only few works in the

literature that specifically focus on modeling, identifying, or interpreting literal values

[23–25]. Most of this work has been published in the context of ontology-based infor-

mation extraction [23, 26]. Literals and entities together form the basic informational

units defining the scope of information contained in a text. In this work, our data-model

contains more than 670 entity types and 8 relevant literal types.

Relation Extraction There are several task definitions and approaches to relation

extraction [27]. The most basic RE is formulated as predicting whether or not a binary

relation exists between two entities [28] and while in early research the tasks of NERL

and RE are approached in isolation [29–31], in recent years they are often approached

together [32–34], generally leading to higher performance. Most research takes place in

the open domain, and thus at a very shallow structural level in terms of entity taxon-

omy and relational hierarchy. Applying them to domain-specific resources is challenging:

domain-dependent tasks are typically of higher complexity and require much more data

to reliably train common supervised machine learning systems. At the same time, anno-

tating resources is a laborious task that requires domain expertise. One way to approach

the extraction of multiple dependent relations in domain-specific contexts is to formulate

the task as a slot-filling problem [35], i.e. to fill a single predefined template with literal

values found in the text. The advantage is that multiple relations can be viewed jointly

and thus benefit from mutual information. Unlike binary relation extraction, which is

generally considered in the open domain, slot-filling is mostly considered in specific do-

mains, since such templates usually model the desired information in that domain [36].

Classical slot-filling is very related to our work and can be considered as a promising

approach to the deep domain knowledge graph population problem. However, to address

the complexity of our problem, we cannot restrict slot-filling to string literals extracted

from text. Rather, entities or nested instances must be considered instead, aiming to

extract knowledge at the document level rather than the text level. Our data-schema

contains a total of 10 nested instance classes and 26 distinct relations.

Co-reference Resolution Towards answering the question of how many instances

need to be instantiated during inference to populate a deep domain knowledge graph,

there are in principle three types of co-reference resolution tasks that need to be ad-

dressed.

10 Introduction

First, the resolution of co-reference of named entities. This is often resolved implicitly

during entity recognition and linking as two recognized entity mentions associated with

the same type also refer to the same real-world entity.

Secondly, resolving the co-reference of literals such as the ’names’ or ’mentions’ of certain

instances such as names of experimental groups that appear in several forms throughout

the whole textual description of a pre-clinical study. For example the two names “control

group” and “control animals” refer to the same experimental group instance. This type

of co-reference resolution is highly related to the classical meaning but focus on domain

specific mentions. Further, co-references between literals that have context depending

semantic meanings need to be resolved. Consider for example the four mentions “low

dosage”, “high dosage”, “10 mg”, “20 mg”. Predicting that “low dosage” actually co-

refers to “10 mg”, requires a system to understand that 10 is mathematically less than

20, while the term low is semantically less than high in this particular context.

Thirdly, the task of cardinality prediction, i.e. how many instances of certain classes (e.g.

outcomes, experimental groups, animal models, treatments, etc.) are described in the

text. This requires resolving the co-reference of so-called unnamed entities or unnamed

instances. The identification of equivalence classes for instances that do not refer to

any existing entity in the real world and are often not explicitly mentioned in the text

is based solely on their descriptive properties which requires an information extraction

system to ’understand’ what knowledge is demanded and to infer instances even without

being explicitly mentioned. This is in contrast to approaches that are bottom-up and

not guided by an underlying data-schema, and consequently are limited to extracting

(binary) relationships between named entities. However, in complex domains such as

the one we consider here, there are many unnamed entities that are highly relevant and

could never be detected by methods relying solely on NERL. In our domain, the main in-

stance class of an unnamed entity is the experimental result described in a study, which

are typically not named in the sense that each result is given a name. Nevertheless,

it is important to extract all the main results and their parameters for the purpose of

knowledge aggregation.

Approach To address these aforementioned tasks within a single system, our approach

relies on the guidance of a domain ontology that defines the knowledge structures a

system needs to extract that reflect the overall design, protocol, and key outcomes of

a study. In the context of spinal cord injury as discussed in this work, a single study

describes between 1 and 92 (average 21) outcomes, with each outcome being specified by

28 to 198 (average 76) dependent variables (outcome parameters).6 Since the problem

6The presented numbers of outcomes per study and variables per outcome are calculated based on our
annotated corpus. However, there are no restrictions or limitations on the number of variables involved
in general.

11

of extracting all these variables jointly is so far intractable, we propose a hierarchical

pipeline architecture that predicts incrementally feasible substructures in a bottom-

up fashion. At the core of our approach is a statistical inference method that relies on

Conditional Random Fields (CRF) to infer the most likely instance of the domain model

from an input text. We call this task model-complete text comprehension (MCTC),

which has been introduced in our previous work [37]. The automatic population of a

deep domain knowledge graph requires extensive text understanding, which has not been

addressed in the literature to date, making it an interesting NLP research task.

The main benefit of our method is that it supports: i) the exploration of knowledge via

an appropriate tool that we call SCIExplorer, ii) the answering of competency questions,

and iii) the automatic grading of therapies, an effort that is typically performed in a

manual manner [38]. In addition to supporting the on-demand aggregation of evidence,

our method comes with the advantage that, by providing a systematic overview of the

experiments carried out so far, redundant studies can be avoided, the experimental

design of a planned study can be optimized and the development of new hypotheses can

be guided.

1.3 Content Overview

The following section gives a brief overview of this thesis. We summarize the main

challenges of our task of populating a deep domain knowledge graph with information

automatically extracted form natural language text. We formulate relevant research

questions that we aim to answer and present our main and sub-contributions.

1.3.1 Challenges and Research Questions

Automatically extracting complex nested structures from natural language text to popu-

late a deep domain knowledge graph is a challenging NLP problem as it involves a variety

of classical NLP tasks such as recognizing and disambiguating entities and literals in the

input text, extracting multiple relationships between them, resolving their co-references,

and predicting the cardinalities of structures. All of these tasks are challenging research

fields on their own, dealing with common NLP issues such as ambiguities, implications,

expressiveness, etc. The development of machine learning methodologies integrated in

a holistic system that is capable of performing all these tasks poses further conceptual

challenges that we address in the following. Based on the given problem description,

the example, and the involved NLP tasks mentioned above, the next four paragraphs

address these challenges and summarize them by formulating precise research questions.

12 Introduction

Challenge 1: Problem Modeling Our information extraction method is rooted in

the model-complete text comprehension paradigm [37] that aims at automatically ex-

tracting multiple, deeply nested structures from natural language text. In particular, we

approach this task as a structure prediction problem and model probabilistic inference

with conditional random fields and factor graphs. One challenge that appears in this

context is a proper modeling of the machine learning model. This involves modeling the

problem in a syntactic way that answers the question of how to represent and address

nested structures in CRFs and factor graphs, but also in a semantic way that answers

the question of how to generate sufficient statistics to produce a meaningful feature de-

scription of predictions.

In the syntactic context, the corresponding research questions can be precisely formu-

lated as:

RQ 1.1: How can we represent deeply nested structures as a structure pre-

diction problem?

RQ 1.2: How can we model cardinalities in nested structure representations?

Capturing the semantic meaning of the predicted structures is a challenging task as it

requires an adequate feature description of the target random variables which is a time

consuming task that requires a certain level of domain knowledge. The corresponding

research question can be precisely formulated as:

RQ 1.3: How can we model sufficient statistics capturing important key

information of multiple nested structures?

Challenge 2: Tractable Inference Performing exact inference in highly relational

and multivariate data is generally intractable as it grows exponentially with the number

of target variables to predict. In the context of deep domain knowledge graph population,

this number can be between a few hundreds and several thousands per document. Thus,

the overall challenge is to design approximate inference that is tractable without limiting

the system’s capability to predict the required structures in their full complexity. The

corresponding research question can be precisely formulated as:

RQ 2.1: How can we model tractable inference over complex nested struc-

tures that fulfills the requirements of deep domain knowledge graph popula-

tion?

13

Recent research has often proven that the performances of (probabilistic) predictions

increase when multiple NLP problems are processed jointly rather than in a pipeline.

A major drawback on the other hand is that joint models tend to require significantly

more training data as problem complexity usually grows exponentially. Considering the

various NLP tasks related to deep domain knowledge graph population, the challenge is

to find a balanced trade-off between leveraging joint capabilities and complexity under

consideration of the available amount of labeled training data. A particular challenge

that arises in the context of inference is the one of exploring cardinalities. Since there

are no natural limitations to the amount of information mentioned in a document e.g.

cardinality of study outcomes, experimental groups, etc., a challenge here is to infer

the cardinality of structures and multi-valued properties. The corresponding research

question can be precisely formulated as:

RQ 2.2: To which extent and how can we efficiently model joint inference?

Finally, it is of utmost importance to model inference over unnamed entities, i.e. struc-

tured instances where no head-entity is explicitly mentioned in a document and thus

classical NER-based approaches notoriously fail. The corresponding research question

can be precisely formulated as:

RQ 2.3: How can we perform inference over unnamed entities?

Challenge 3: Domain Problem Decomposition Deep domain knowledge graph

population requires to address several natural language tasks, such as entity recognition,

entity linking, relation extraction, co-reference resolution, and cardinality prediction.

Further, we are aiming at a comprehensive text understanding capturing a diverse set

of informational structures such as the animal model, the injury model, etc., which def-

initions are spread across the whole document. Thus, a further challenge is to design an

adequate decomposition of the overall extraction problem that models joint inference on

variables which are semantically dependent while relaxing the independence assumption

where no direct information exchange is necessary. The corresponding research question

can be state more precisely as:

RQ 3.1: How can we effectively decompose the overall extraction problem of

complex structures into tractable and efficiently solvable sub-tasks?

In light of applying our developed methodologies to the concrete domain of extracting

pre-clinical outcomes in the domain of spinal cord injury, it is important to address

14 Introduction

domain dependent difficulties and design heuristics to overcome eventual shortcomings

of the decomposition:

RQ 3.2: What issues particularly appear in the domain of spinal cord injury

and how can these be addressed?

Our overall challenge is to build a comprehensive system that i) integrates all decom-

posed components, ii) addresses the aforementioned NLP-tasks, and iii) outputs the

most probable structures containing the ’real’ informational content of a pre-clinical

study in full detail. The corresponding research question can be formulated as:

RQ 3.3: How can we build a comprehensive system for deep domain knowl-

edge graph population in the context of pre-clinical studies in the domain of

spinal cord injury?

Challenge 4: Evaluation Finally, we address the challenge of evaluating the deeply

nested structures we aim to predict in this work. A proper evaluation plays a pivotal

role during inference and model parameter learning for computing update-deltas and

producing proper learning signals. Performing model updates is a frequently called

subroutine during inference and is thus a time-critical operation. On the other hand,

an inexact learning signal can lead to wrong parameter updates and inexact model

learning. Furthermore, we are interested in evaluating the strengths and weaknesses

of our proposed methodology and system architecture in our final evaluation in order

to understand the extent to which our system can be used for a study with the depth

and reliability required to support aggregation of evidence. A corresponding research

question can be formulated as:

RQ 4.1: How can we efficiently evaluate deeply nested structures?

Aiming at a deep understanding of the performances and produced output errors of our

system, it is imperative to understand the failures of individual components. This leads

to the research question:

RQ 4.2: How well do the individual components of the system perform in a

real-world application scenario?

An important part of knowledge graph population from text, is the identification of

entities and literals in the input document. They play an important role in guiding

15

inference and reduce the search space complexity. Due to their particular importance,

we investigate the impact of our proposed named entity recognition and linking method

on the overall system performance leading to the research question:

RQ 4.3: What is the impact of the proposed entity recognition and linking

method?

Besides the identification of entities and literals, predicting their relations is an important

sub-task. In order to get a better understanding of errors produced by our system

towards this aspect, we investigate the impact of relation extraction within our system.

This leads to the research question:

RQ 4.4: What is the impact of the proposed relation extraction method?

However, not all components of our system are purely based on our proposed machine

learning model but rather follow a heuristic approach. In order to understand the

systems weaknesses and strengths it is necessary to properly evaluate these methods and

heuristics and investigate their impact on the overall evaluation performance leading to

the research question:

RQ 4.5: How well do our proposed heuristic solutions for domain specific

issues perform and what are their impacts?

1.3.2 Contributions

The overall main contribution of this work is the development of a comprehensive and

deep domain- adapted information extraction system that can predict the full details of

a pre-clinical study written in natural language with respect to a data-model provided by

a domain ontology. We show that this is a complex NLP-information extraction problem

that, so far, has not been considered in its whole complexity in the literature. Our goal

is to populate a deep domain knowledge graph that stores the extracted information

in a structured and well-defined form for further usage such as automatic knowledge

aggregation, therapy grading and development.

Our main contributions can be summarized as:

• We model a domain agnostic machine learning approach that is capable of extract-

ing deeply nested structures in the structure prediction paradigm for information

extraction from natural language text. See Section 5.1.

16 Introduction

• We present a tractable joint inference strategy for the multi-instance prediction

task. See Section 5.2.

• We engineer a domain agnostic feature set that models sufficient statistics for a

variety of different instances types. See Section 5.4.

• We present a data-model driven and domain agnostic problem decomposition strat-

egy for highly complex ontological classes and dependencies. See Section 6.1.1.

• We apply our developed methodologies to the concrete domain of spinal cord injury

and present a holistic system architecture with unidirectional information flow to

balance the computational costs of inference and joint modeling of variables. In

this context, we describe domain specific issues and propose heuristic solutions.

See Section 6.1.2.

• We present an evaluation methodology tailored to the task of comparing deeply

nested structures that can be used as machine learning signal as well as for our

final evaluation. See Section 7.1.

• Finally, we present an extensive evaluation of our system, our developed method-

ologies and heuristics to understand the extent to which our system can be used

for a study with the depth required to support aggregation of evidence. We show

that the information extraction results are satisfactory for many classes of SCIO

and identify those for which further research is needed. See Section 7.2.

Further sub-contributions resulting from this work include:

• We apply our developed system to a new corpus of unseen data consisting of

approximately 5,700 full-text articles describing pre-clinical outcomes in spinal

cord injury and present statistics of the populated deep domain knowledge graph.7

See Section 8.2.

• We show how the information stored in the knowledge graph can be easily filtered

and aggregated for further metadata analysis, therapy development, and therapy

grading.8 The knowledge graph can be efficiently searched by domain experts using

the exploration tool SCIExplorer [39]. See Section 8.3, Section8.4, and Section 8.5.

• We present the annotation tool SANTO [40], which we developed for the annota-

tion of highly relational data.9 See Section 8.1.
7The graph can be found here: http://psink.techfak.uni-bielefeld.de/SCI-KG/; accessed March

6 2021.
8The tools can be found here: http://psink.techfak.uni-bielefeld.de/psink/; accessed Novem-

ber 23 2020.
9The annotation tool can be found here: http://psink.techfak.uni-bielefeld.de/santo/; ac-

cessed March 6 2021.

http://psink.techfak.uni-bielefeld.de/SCI-KG/
http://psink.techfak.uni-bielefeld.de/psink/
http://psink.techfak.uni-bielefeld.de/santo/

17

1.3.3 Outline

The overall thesis is divided into 9 chapters. This chapter provided a general introduction

to our work, including our main motivations and an informal description of our task.

We briefly introduced our approach to the stated problem, the challenges and scope of

this work. Finally, we have posed relevant research questions that we aim to answer

and summarized the contributions of our work. The rest of this thesis is organized as

follows:

• In Chapter 2, we present the foundations to the methods used in our thesis, includ-

ing the background of general semantic web elements such as knowledge graphs,

ontologies, as well as protocol and query languages. The second part focuses on

the foundations of the implemented probabilistic graphical model, i.e. conditional

random fields and factor graphs.

• In Chapter 3, we introduce related work on knowledge graph population and give

a brief historical background in the field of information extraction, focusing on

the three main areas of rule-based, probabilistic, and neural approaches to situate

the methods of our system. The second part addresses related natural language

processing problems that arise in knowledge graph population. Finally, we present

related work in the (bio)-medical field and briefly discuss existing approaches.

• In Chapter 4, we present the domain background of our application context. We

describe the spinal cord injury data-model that we aim to predict. We motivate

this level of complexity with a detailed real-world example of the information

extraction problem. The last part contains a description of the data set that was

used to train and evaluate our method and developed system.

• In Chapter 5, we describe the developed machine learning methodology, which

is the main component of our system. We explain how to formulate the general

information extraction task as structure prediction with conditional random fields

and factor graphs. We give details on the implementation of the machine learn-

ing methodology and describe the main elements such as the objective function,

inference strategy, feature engineering, and entity candidate generation methods.

• In Chapter 6, we provide a complexity analysis of the domain we consider and

the overall information extraction problem. We present our proposed problem de-

composition, choice of foci on certain aspects of the overall task, and implemented

heuristics that extend the main methodology. Finally, we present our system ar-

chitecture that explains the interaction of all components.

18 Introduction

• In Chapter 7, we describe in detail our performed experiments and the main eval-

uation results of predicting pre-clinical spinal cord injury outcomes. We present

a detailed error analysis for each main component of the system. This includes

performance in a real-world application scenario where both entities and relations

must be predicted. We further analyze the errors made by the system compar-

ing the performances with two upper bounds settings where either relations or

candidates are provided by an oracle.

• In Chapter 8, we give a brief description of several applications developed in the

context of this work that emphasize the relevance of an (automatically populated)

deep domain knowledge graph. We also describe the application of our system to

new, unseen data populating a large knowledge graph with knowledge of several

thousand documents.

• In Chapter 9, we conclude the main aspects of our work and answer the research

questions posed. The chapter ends with a brief discussion of the remaining ques-

tions and suggestions for future work.

19

1.4 Publications

The main content of this thesis is based on the following peer-reviewed published papers:

[41] ter Horst, H., Hartung, M., & Cimiano, P. (2017, June). Joint entity recognition

and linking in technical domains using undirected probabilistic graphical models.

In International Conference on Language, Data and Knowledge (pp. 166-180).

Springer, Cham.

[42] ter Horst, H., Hartung, M., Klinger, R., Brazda, N., Müller, H. W., & Cimiano,

P. (2018, June). Assessing the impact of single and pairwise slot constraints in

a factor graph model for template-based information extraction. In International

Conference on Applications of Natural Language to Information Systems (pp. 179-

190). Springer, Cham.

[43] ter Horst, H., Hartung, M., & Cimiano, P. (2018, September). Cold-start knowl-

edge base population using ontology-based information extraction with conditional

random fields. In Reasoning Web International Summer School (pp. 78-109).

Springer, Cham.

[44] ter Horst, H., Hartung, M., Cimiano, P., Brazda, N., Müller, H. W., & Klinger,

R. (2020). Learning soft domain constraints in a factor graph model for template-

based information extraction. Data & Knowledge Engineering, 125, 101764.

[37] ter Horst, H., & Cimiano, P. (2020, November). Structured Prediction for Joint

Class Cardinality and Entity Property Inference in Model-Complete Text Com-

prehension. In Proceedings of the Fourth Workshop on Structured Prediction for

NLP (pp. 22-32).

[45] ter Horst, H., & Cimiano, P. (2020). Incorporating Semantic Dependencies Ex-

tracted from Knowledge Graphs into Joint Inference Template-Based Information

Extraction. In European Conference on Artificial Intelligence 2020.

Throughout the thesis I use the personal pronoun we to acknowledge my co-authors.

However, in all of the previous papers I contributed the main aspects of conceptualiza-

tion, implementation and evaluation.

20 Introduction

Further publications that were developed and published during the research of this thesis

are:

[46] Hakimov, S., ter Horst, H., Jebbara, S., Hartung, M., & Cimiano, P. (2016, Novem-

ber). Combining textual and graph-based features for named entity disambigua-

tion using undirected probabilistic graphical models. In European Knowledge

Acquisition Workshop (pp. 288-302). Springer, Cham.

[5] Brazda, N., Estrada, V., Kirchhoffer, T., ter Horst, H., Hartung, M., Wiljes, C., ...

& Müller, H. W. (2016). SCIO: The Spinal Cord Injury Ontology, a Prerequisite

for Automated Data Extraction from Publications on Research in Spinal Cord

Injury. In Proceedings of the 18th Spinal Research Network Meeting (ISRT 2016).

[6] Brazda, N., ter Horst, H., Hartung, M., Wiljes, C., Estrada, V., Klinger, R., ...

& Cimiano, P. (2017). SCIO: an ontology to support the formalization of pre-

clinical spinal cord injury experiments. In Proceedings of the 3rd Joint Ontology

Workshops (JOWO): Ontologies and Data in the Life Sciences (Vol. 2050).

[39] Borowi, A., ter Horst, H., Hartung, M., Estrada, V., Brazda, N., Müller, H. W.,

& Cimiano, P. (2017). Ontology-driven Visual Exploration of Preclinical Research

Data in the Spinal Cord Injury Domain. Proceedings of the SEMANTICS 2017

Poster and Demo Track, 2044.

[40] Hartung, M., ter Horst, H., Grimm, F., Diekmann, T., Klinger, R., & Cimiano,

P. (2018, July). SANTO: a web-based annotation tool for ontology-driven slot

filling. In Proceedings of Association for Computational Linguistics 2018, System

Demonstrations (pp. 68-73).

[47] Schwitteck, A., ter Horst, H., & Hartung, M. (2018). What Coreference Chains

Tell about Experimental Groups in (Pre-) Clinical Trials. In Proceedings of DGf-

S/CL Poster Session.

Chapter 2

Foundations

Chapter Overview: This chapter presents the theoretical and technical groundwork

for the methods implemented in this thesis. The first part deals with the theoretical

background of general semantic web elements including knowledge graphs, ontologies, as

well as protocol and query languages. The second part focuses on the basics of conditional

random fields and factor graphs.

2.1 Knowledge Representation

An essential prerequisite for working with structured knowledge is an adequate formal-

ization and representation of the desired information, which can have any complex rela-

tional structure. In contrast to classical relational databases, which require a predefined

data-schema in advance, the concept of graphical storage of factual information, which

overcomes this compelling necessity, has led to the popularity of knowledge graphs in

industry [48–50], in the open domain [7], but also in domain-specific contexts [51]. The

main advantage of knowledge graphs is the very simple but powerful data representation

with nodes and edges. While data of arbitrary complexity is stored in this loose repre-

sentation, accessing information of interest requires understanding the underlying data,

which is of particular importance in domain-specific knowledge graphs when knowledge

aggregation is the goal.

Although loose data representation has its advantages in modeling complexity, there is a

need to formalize domain-specific data in detail. This data formalization not only affects

how the desired knowledge stored in a graph is accessed and aggregated. It can also

guide automated information extraction systems by defining the desired information to

be extracted. With the goal of extracting domain-specific knowledge, an IE system can

systematically search for relevant information by capturing only those meaning aspects

21

22 Foundations

that are expressible in terms of the formalization, while ignoring those that are not. In

this work, we refer to such a knowledge instantiation of a certain schema as a data-model

that contains information of the domain in question in full detail, including entity types

and their taxonomic dependencies, instances and their properties, as well as property

constraints.

One way to define the vocabulary and conceptual elements of a data-model is to rely

on the concept of ontologies [8]. A domain ontology can be seen as a set of terminology

rules that define the domain of interest. In the terminology of description logic, such a

data-model refers to the terminology box (T-box) [52], which specifies the intensional

knowledge with a set of conceptual elements and constraints describing the relationships

between these elements. Correspondingly, the assertion box (A-Box) specifies knowledge

at the extensional level containing facts about specific instances of the conceptual ele-

ments described at the intensional level.

From a methodological point of view, the formulations of the A-Box and the T-Box fol-

low the same language rules, which increases the readability of the stored data. Formal

languages that support the representation of information semantics are usually referred

to as ontology languages or vocabulary specification languages. The most common ones

in the traditional field of knowledge representation and reasoning [53, 54] are the Re-

source Description Framework [55, 56] (RDF) and the Web Ontology Language [4, 8]

(OWL), which have become recommended standards by the World Wide Web Consor-

tium (W3C).

From a semantic point of view, it is useful to clearly distinguish between the two knowl-

edge representations, since many information extraction tasks deal with either one of

them. Following the definition of knowledge graphs by Paulheim et al. [7], we address

the knowledge graph population task by relying on a fix data-model (T-Box) concep-

tualized by the Spinal Cord Injury Ontology (SCIO) and focus on the population of

the A-Box by extracting deeply nested instances. In the following, we define knowledge

graphs, terminologies, as well as web and query languages used in this work in more

detail.

2.1.1 Knowledge Graphs

The term Knowledge Graph was primarily coined by Google in 2012 and refers to the

semantic web search paradigm “Things, not Strings” [57]. The goal was to move from

an unstructured representation of information (string-based) to a structured representa-

tion of knowledge (semantic-based), with the main purpose of storing factual knowledge

about entities and their relationships in a machine-readable way. Depending on the

23

domain and application, information can come from different sources, such as i) un-

structured text, e.g. scientific publications, news, or social media, ii) semi-structured

text, e.g. markup languages and tables, or iii) structured sources, e.g. databases or other

knowledge graphs. Most publicly available work on knowledge graphs is located in the

open domain and follows the Linked Open Data paradigm [58] (LOD). Some prominent

examples of storing open domain knowledge, i.e. real-world entities and relationships be-

tween them, are Freebase [18], YAGO [59], Wikidata [19], and DBpedia [17]. Knowledge

graphs in industry are mainly developed by large companies [7]. Prominent examples

are: Google’s Knowledge Vault [48], which is a probabilistic knowledge graph contain-

ing semi-structured web content. Amazon’s Product Knowledge Graph [49] contains

entities about existing products and their properties, and Facebook’s Graph Search [50]

promotes web search based on human relationships in social networks. Because of their

power to store arbitrarily complex data [51], they are also widely used in domain-specific

contexts, with many examples in the domains of bio-medicine [10] and spinal cord injury

metadata [11], among many others1.

There are several applications of knowledge graphs as they address information overload

[60] and enable intuitive knowledge exploration by bridging data and human seman-

tics [39, 61]. In addition, they support knowledge-driven tasks by being an essential

component of many artificial intelligence systems for i) answering questions, where ex-

tracting the correct answer requires mapping input questions written in natural language

to entities and relations [62], (ii) decision support, where decisions are based on aggre-

gated knowledge [63], (iii) ontology-based information extraction, where the IE process

is guided by an ontology [43, 64], and (iv) knowledge completion and error reduction

“completing” or “repairing” a knowledge graph [65].

In general, a knowledge graph stores information in a machine-readable format con-

sisting of nodes representing key informational units and edges representing relations

between these nodes. Formally, data in a knowledge graph G are represented in the

form of triples 〈h, r, t〉 ∈ I × R × {I ∪ L}, where I is the set of existing resources, R
is the set of relations, and L is the set of literal values. Each triple 〈h, r, t〉 ∈ G is a

composition of the head-node h ∈ I, the tail-node o ∈ I∪L, and a directed relation-edge

r ∈ R between h and t. In the specific context of deep domain knowledge graphs as

considered in this work, we further distinguish that a node is either a basic informational

unit or the head of a basic structural unit. In principle, each leaf-node can be considered

a BIU whereas a sub-graph with a specific semantic meaning is considered a BSU. Here,

a BIU is either an entity or a literal, while a BSU is considered an instance of a certain

class/entity-type (cf. Figure 1.2).

1https://deepai.org/publication/domain-specific-knowledge-graphs-a-survey; accessed on
November 6 2020.

https://deepai.org/publication/domain-specific-knowledge-graphs-a-survey

24 Foundations

2.1.2 Resource Description Framework

The most widely used and accepted language in the Open Web community for describing

(knowledge) graphs and ontologies is the Resource Description Framework. RDF is a

language specifically designed for representing data as 〈s, p, o〉 triples with a subject (s),

a predicate (p), and an object (o). Following the W3C [66] standards for exchanging

graphs, it can be mapped directly to our previous definition of knowledge graphs. A

specification of RDF is that each triple element s, p, and o lies within a predefined

namespace or Uniform Resource Identifier (URI) to be conform with the LOD paradigm

[58]. In essence, an RDF graph is a set of triples where a subject is either an IRI or an

empty node, the predicate is an IRI, and the object is either an IRI, an empty node,

or a literal. In this work, we omit empty nodes from this definition, since they play no

further role in the context of deep domain knowledge graphs.

To describe a graph in a uniform way, the RDF language provides a predefined vocabu-

lary of relational concepts also in the form of 〈s, p, o〉 triples consisting of terms such as

rdf:type and rdf:Property, which are located in the namespace http://www.w3.org/1999/

02/22-rdf-syntax-ns#. The classical RDF terminology is extended by the RDF Schema,

which consists of concepts such as rdfs:subClassOf, rdfs:domain, rdfs:range, which are

located in the namespace http://www.w3.org/2000/01/rdf-schema#. In the following,

we explain the main RDF/RDF Schema concepts that we use in this work. We mainly

rely on the descriptions proposed by the W3C2, simplified to our use case, and give

simple examples in the DBpedia domain with the namespaces dbo: and dbr:.

rdf:type rdf:type is used to state that a resource is an instance of a class. A triple of

the form: 〈R rdf:type C 〉 states that C is an instance of a class and R is an instance of

C. The rdfs:domain of rdf:type is rdfs:Resource. The rdfs:range of rdf:type is rdfs:class.

Consider the concrete example triple: 〈dbr:Barack Obama rdf:type dbo:Person〉

rdfs:subClassOf rdfs:subClassOf is a property that is used to state that all instances

of one class are also instances of another class. A triple of the form: 〈C1 rdfs:subClassOf

C2 〉 states that C1 is a subclass of C2 and is thus usually more specific. E.g. C1 =

dbo:Writer is a subclass of C2 = dbo:Person. The rdfs:subClassOf property is transitive.

rdfs:domain The property rdfs:domain is used to state that any resource that has a

given property is an instance of one or more classes. A triple of the form: 〈P rdfs:domain

C 〉 states that P is an instance of the class rdf:Property, that C is a instance of a class and

2https://www.w3.org/TR/rdf-schema; accessed November 4 2020

https://www.w3.org/TR/rdf-schema

25

that the resources denoted by the subjects of triples whose predicate is P are instances

of the class C. For example, 〈dbo:birthPlace rdfs:domain dbo:Person〉 states that an

instance of a person, and consequently due to the rdfs:suClassOf relation an instance of

dbo:Writer have birth places.

rdfs:range rdfs:range is a property that is used to state that the values of a property

are instances of one or more classes. The triple 〈P rdfs:range C 〉 states that P is an

instance of the class rdf:Property, that C is an instance of a class and that the resources

denoted by the objects of triples whose predicate is P are instances of the class C.

More concrete, the triple 〈dbo:birthPlace rdfs:range dbo:Place〉 states that an instance

of a place can be the value of a birth place property. Together with the domain, a

concrete triple in some knowledge graph could be: 〈dbr:Barack Obama dbo:birthPlace

dbr:Hawaii〉

rdfs:label rdfs:label is used to provide a human-readable version of a resource’s name.

A triple of the form: 〈 R rdfs:label L 〉 states that L is a human readable label for R e.g.

〈dbr:Barack Obama rdfs:label “Barack Obama”〉

2.1.3 Web Ontology Language

The Web Ontology Language [4, 8] was developed in addition to the RDF (Schema)

vocabulary, with a focus on defining semantic relationships that occur specifically in

domains as described by ontologies and taxonomies. OWL is used to exchange uniform

information described by a well-defined syntax and formal logic-based semantics in the

format of terminological statements. This has many advantages, e.g. a formalization

of knowledge is available for machine processing, allows logical reasoning, and provides

an intuitive and unified view of the data that consequently makes it easy to formulate

efficient queries on the data. Thus, a domain ontology written in OWL is a formal

conceptualization of the domain of interest following logical theories from the first-order

predicate logic [52]. It defines terminologies and provides fine-grained definitions of

properties, classes, individuals, data types, property restrictions etc.

In the following, we explain the most relevant OWL assertions used in this work, mainly

based on the W3C descriptions3, simplified to our use case. The namespace of the OWL

terminology is http://www.w3.org/2002/07/owl#.

3https://www.w3.org/TR/owl-ref/; accessed November 4 2020.

https://www.w3.org/TR/owl-ref/

26 Foundations

owl:Class The most basic OWL assertion is the definition of a class. The asser-

tion owl:Class rdf:about=“C” states the existence of class C and will assert the triple

〈example:C rdf:type owl:Class〉. Note that owl:Class is a subclass of rdfs:Class.

Listing 2.1 provides an example definition of a class in OWL and RDF notation. The

example asserts that there is a resource dbr:Barack Obama with label “Barack Obama”

that is subclass of the class dbo:Person.

<owl:Class rdf:about="dbr:Barack_Obama">

<rdfs:subClassOf rdf:resource=dbo:Person/>

<rdfs:label rdf:datatype="xsd:string">

Barack Obama

</rdfs:label >

</owl:Class >

Listing 2.1: Example class definition in OWL and RDF Schema notations.

owl:ObjectProperty OWL distinguishes between two main types of properties. Ob-

ject properties link instances to other instances of classes. For example, the assertion

owl:ObjectProperty rdf:about=“dbr:birthPlace” restricts the property dbr:birthPlace to

have only values which are instances of type dbo:Place e.g. dbr:Hawaii.

Listing 2.2 provides an example definition of an object property in OWL and RDF

notation. In this example, the object property dbo:birthPlace is the predicate that

connects an instance of the class dbo:Person as domain with an instance of the class

dbo:Place as range.

<owl:ObjectProperty rdf:about="dbo:birthPlace">

<rdfs:domain rdf:resource="dbo:Person"/>

<rdfs:range rdf:resource=""dbo:Place"/>

</owl:ObjectProperty >

Listing 2.2: Example object property definition in OWL and RDF Schema notations.

owl:DatatypeProperty Data-type properties link instances to data-type values. The

assertion owl:data-typeProperty rdf:about=“dbo:birthYear” defines the property dbo:birth

Year with the restriction that its values are data-types such as literals (strings) or

numbers (integer).

owl:maxCardinality The assertion owl:maxCardinality rdf:datatype=“2”ˆˆxsd:non

NegativeInteger is used to restrict specific OWL-properties to have at most N semanti-

cally distinct values.

27

Listing 2.3 provides an example definition of an data-type property and a cardinality

restriction in OWL and RDF notation. The example defines that there is a data-type

property dbo:birthYear which is the predicate that connects an individual of the class

dbo:Person as domain with exactly one string value.

<owl:DatatypeProperty rdf:about="dbo:birthYear">

<rdfs:domain rdf:resource="bdo:Person"/>

<rdfs:range rdf:resource="&xsd:string"/>

<owl:minCardinality rdf:datatype="xsd:nonNegativeInteger">

1

</owl:minCardinality >

</owl:DatatypeProperty >

Listing 2.3: Example data-type property definition with cardinality restriction in
OWL and RDF Schema notations.

2.1.4 SPARQL Protocol And RDF Query Language

The SPARQL Protocol And RDF Query Language (SPARQL) is a standard language

recommended by the W3C for querying and updating data represented as RDF and

OWL. SPARQL provides a rich and powerful functions that enables various query types

for working with triple data, including SELECT (retrieving data), ASK (Boolean search),

DESCRIBE (describing the structure of data), and CONSTRUCT (retrieving sub-graphs). In

this work, we mainly use SPARQL to retrieve relational data from our domain ontology

and to extract information from our populated deep domain knowledge graph. Therefore,

in the following, we focus only on the SELECT query and refer to the work of Pérez et

al. [67] for a complete description of the features of SPARQL.

A SELECT-query is in principle a composition of a PREFIX declaration specifying the

namespaces, the SELECT-clause containing the output variables of interest, and the

WHERE-clause containing:

• basic graph patterns are triples consisting of constants and variables denoted by

’:’ and ’?’, respectively. E.g. ?s rdfs:subClassOf dbo:Person.

• property path patterns describe possible routes through a graph.

E.g. rdfs:subClassOf* models subclass transitivity.

• logical operators e.g. UNION evaluates like a logical OR of two graph patterns.

• solution set modifiers such as DISTINCT and FILTER.

Evaluating a query over an RDF graph produces an unordered collection of solutions,

where each solution matches the query patterns in the WHERE clause. Relevant informa-

tion is bound to the output variables specified in the SELECT clause. In other words,

28 Foundations

evaluating a query pattern P on an RDF graph G, denoted [[P]]G , is a function that

maps each output variable p ∈ P to a term in G such that all constraints and conditions

are satisfied. Consider the following examples:

• Listing 2.4 shows the query PD/R which extracts domain and range values for

the specific property dbo:birthPlace bound to the variables ?domain and ?range,

respectively. Due to the DISTINCT keyword, each domain/range pair occurs only

once in the solution collection. Evaluating PD/R on the DBpedia ontology (DBO),

which is [[PD/R]]DBO, yields exactly one solution4:

?domain=dbo:Person and ?range=dbo:Place.

PD/R =

PREFIX dbo: <http :// dbpedia.org/ontology/>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

SELECT DISTINCT ?domain ?range

WHERE {

dbo:birthPlace rdfs:domain ?domain .

dbo:birthPlace rdfs:range ?range .

}

Listing 2.4: SPARQL query to extract the domain and range of the specific example
property dbo:birthPlace.

• The second example is the PSC pattern as shown in Listing 2.5. Here, the goal is to

extract all subclasses and instances for the given parent class dbo:Writer. The set

of associated subclasses is bound to the variable ?subClass. The first basic graph

pattern ?subClass rdf:type dbo:Writer binds all terms to the variable that are an

instance of dbo:Writer. The second pattern is of type property path denoted by

the asterisk, which is used to resolve the transitivity of the subclass relationship.

The UNION keyword combines both solutions. Evaluating PSC on DBO, which is

[[PSC]]DBO, yields several thousand different solutions.5

In the rest of this thesis, we use the following implicit prefixes and namespaces:

• PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

• PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

• PREFIX owl: <http://www.w3.org/2002/07/owl#>

• PREFIX dbo: <http://dbpedia.org/ontology/>

4According to https://dbpedia.org/sparql; accessed November 23 2020.
5According to https://dbpedia.org/sparql; accessed November 23 2020.

https://dbpedia.org/sparql
https://dbpedia.org/sparql

29

PSC =

PREFIX rdf: <http :// www.w3.org /199/02/22 -rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

SELECT DISTINCT ?subClass

WHERE {

{ ?subClass rdf:type dbo:Writer }

UNION

{ ?subClass (rdfs:subClassOf)* dbo:Writer }

}

Listing 2.5: SPARQL query to extract all subclasses and instances of the specific
example class dbo:Writer.

• PREFIX scio: <http://psink.de/scio/>

• PREFIX scir: <http://psink.de/scir/>

2.2 Conditional Random Fields

In the following, we present the theoretical foundations of our implemented machine

learning methodology for extracting a data-model to populate deep domain knowledge

graphs. We frame the information extraction as structure prediction task [68] given

natural language as input and rely on conditional random fields [69] with imperatively-

defined factor graphs [70] to model the conditional probability distribution over possible

predictions. We describe the general way of decomposing a conditional probability with

factor graphs in Section 2.2.1 and focus on inference and parameter learning in Section

2.2.2.

Structure prediction describes the class of information extraction problems that involve

predicting a number of interdependent target variables, denoted by ~y, given a number

of input variables, denoted by ~x. Modeling structure prediction problems in multivari-

ate data, as we do in this work, is computationally expensive and exact inference is

often intractable. While the computation of the joint probability p(~y, ~x) over input and

output variables is commonly found in generative models such as naive Bayesian net-

works [71] or hidden Markov models [72], undirected graphical models and in particular

conditional random fields compute the conditional probability p(~y|~x) and are trained

discriminatively [73]. An important aspect of CRFs is that the input ~x is assumed to be

fully observed. Thus, a CRF does not model statistical dependencies between elements

in ~x.

The concept of conditional random fields is a well-established and researched machine

learning method that can be applied to a variety of NLP-related structure prediction

30 Foundations

tasks. These include IE problems with shallow output structures, such as sequence-to-

sequence prediction, where the output is bijectively aligned to the input; classic examples

are part-of-speech (POS) tagging [74, 75] and (named) entity recognition [76]. More

complex prediction problems, where the target can be arbitrarily structured, include

tasks such as relation extraction [77] and syntactic parsing [78]. In our previous work,

we have successfully shown that the flexibility in modeling multivariate data makes CRFs

applicable to even more complex problems such as joint entity recognition, linking and

relation extraction [41], or slot-filling [42].

In this work, we show how conditional random fields can be used to model the knowl-

edge graph population task with statistical inference. In essence, KGP can be viewed

as a particular instance of an information extraction problem with two characteristics:

first, there is a data-model that reflects the domain of interest and defines the struc-

tures to be predicted and the vocabulary of existing entities and relationships. Secondly,

information extraction serves as an upstream process to populate an (initially empty)

knowledge graph of a certain structure. Thus, the goal is to predict the most likely

assignment of output variables based on the set of entities and relations of the corre-

sponding data-model that best reflects the knowledge expressed in a document. In other

words, modeling knowledge graph population as a statistical inference problem requires

computing the distribution of possible instantiations of the data-model.

Let ~y = (y1, . . . , yn) be the target vector consisting of n (dependent) output variables,

and ~x = (x1, . . . , xm) be the vector of m fully observed input variables. In stochastic

models, the conditional probability distribution of the output variables given these input

variables is modeled as

p(~y|~x) = p(y1, . . . , yn|x1, . . . , xm) (2.1)

where a certain element ~y ∈ Y is an instantiation of a desired output structure described

by the elements of this vector. Thus, the goal is to find the particular assignment to

the variables ~y ′ that maximizes the probability under the distribution. This is found by

Maximum-A-Posteriori inference (MAP) equated as

~y ′ = argmax
~y∈Y

p(~y|~x). (2.2)

In the specific context of NLP, the observed input variables ~x typically describes a tok-

enized text written in natural language, where each variable xi ∈ ~x corresponds to the

ith token in the input document. However, ~x is not necessarily restricted to textual to-

kens, but can contain any observed information such as pre-computed POS tags, entity

annotations, syntactic information, etc. The target output vector ~y varies in length and

31

V0 V1 Ψ1(·) V0 V2 Ψ2(·) V1 V3 Ψ3(·) V2 V3 Ψ4(·)

vt vt 5 vt vt 3 vt vt 1 vt vt 3
vt vf 2 vt vf 4 vt vf 1 vt vf 2
vf vt 2 vf vt 0 vf vt 1 vf vt 1
vf vf 1 vf vf 3 vf vf 7 vf vf 4

Table 2.1: Example compatibility table for possible pairwise variable assignments.
The specific example assignments V0 = vt, V1 = vt, V2 = vf , and V3 = vt are high-

lighted.

complexity depending on the structure being predicted. For example, modeling binary

relation extraction can consist of a single output variable, syntax parsing requires to

model a tree-based structure of variable complexity. While modeling a fully joint depen-

dency between all variables is intractable in multivariate data spaces, CRFs overcome

this by relaxing the independence assumption relying on a graphical representation to

explicitly model the desired dependencies among output variables [79]. The decomposi-

tion of the overall conditional probability into local dependencies of output variables is

described by a so-called factor graph.

2.2.1 Factor Graphs

A factor graph, as introduced by Koller et al. [73], is a bipartite undirected graph

G = (V,E, F) consisting of a set of variables V , factors F , and edges E. V is defined

as the union of all random variables, i.e. V = ~y ∪ ~x. A factor Ψ ∈ F is a function

Ψ : V → R≥0 that returns a non-negative scalar value indicating the compatibility of

a subset of random variables v ⊆ V , also called the scope of a factor. An edge e ∈ E
connects the factor to the subset of random variables within its scope, represented as a

tuple e = 〈v,Ψ〉. This factorization into local compatibility functions is essentially the

approach used by conditional random fields to model conditional probability.

Example Consider the following example, adapted from our earlier work [43]. Let

Gex = {Vex, Fex, Eex} be an example factor graph, as shown in Figure 2.1 consisting of

• four random variables Vex = {V0, V1, V2, V3} where each element is of a binary type

being either true (t) or false (f) such that Vi ← {vt, vf} for each i ∈ [0, 3].

• four factors Fex = {Ψ1,Ψ2,Ψ3,Ψ4} computing scores reflecting the compatibility

of pairwise variables as shown in Table 2.1.

• four edges Eex = {〈{V0, V1},Ψ1〉, 〈{V0, V2},Ψ2〉, 〈{V2, V3},Ψ3〉, 〈{V1, V3},Ψ4〉}.

32 Foundations

Figure 2.1: Example factor graph with four random variables (circles) and four factors
(black boxes) connected by four edges connecting variables and factors.

Note that the decomposition as described by the factor graph in Figure 2.1 is chosen

exemplarily and needs to be imperatively defined. In this example, it is assumed that

there are no direct dependencies between V0 and V3 as well as between V1 and V2.

In a real-world scenario, factorization is usually determined by prior human knowledge

about the problem since a proper factorization is crucial for efficient domain and problem

modeling. Based on this factor graph, the factorization of the joint probability of random

variables can be formulated as

p(V0, V1, V2, V3) =
1

Z(·)
Ψ1(V0, V1) ·Ψ2(V0, V2) ·Ψ3(V2, V3) ·Ψ4(V1, V3) (2.3)

where Z is the partition function that sums up over all possible variable assignments in

order to ensure a valid probability. In this particular example, Z(·) is calculated as

Z(·) =
∑

v0∈V0,v1∈V1,v2∈V2,v3∈V3

Ψ1(v0, v1) ·Ψ2(v0, v2) ·Ψ3(v2, v3) ·Ψ4(v1, v3). (2.4)

The probability of the concrete variable assignment highlighted in Table 2.1, i.e., V0 =

vt, V1 = vt, V2 = vf and V3 = vt, can be explicitly computed as

p(vt, vt, vf , vt) =
1

Z(·)
(Ψ1(vt, vt) ·Ψ2(vt, vf) ·Ψ3(vf , vt) ·Ψ4(vt, vt))

=
1

Z
(5 · 4 · 1 · 1)

=
20

Z

(2.5)

where

Z = Ψ1(vt, vt) ·Ψ2(vt, vt) ·Ψ3(vt, vt) ·Ψ4(vt, vt)

+ Ψ1(vt, vt) ·Ψ2(vt, vt) ·Ψ3(vt, vf) ·Ψ4(vt, vf)

+ . . .

+ Ψ1(vf , vf) ·Ψ2(vf , vf) ·Ψ3(vf , vf) ·Ψ4(vf , vf)

= 659.

(2.6)

33

Thus, the probability of the example variable assignment is: p(vt, vt, vf , vt) = 20
659 = 0.03.

General Formalization The general form of a factorization according to a factor

graph G = {V, F,E} requires a notation describing the scope of a factor. Generally,

the scope of a factor ωΨ ⊆ V is defined as the neighboring subset of random variables

V associated with the factor Ψ in the factor graph. Such a neighborhood function

N (Ψ) = ωΨ can be formalized as

N (Ψ) = {v ∈ V | (v,Ψ) ∈ E}. (2.7)

The general factorization used by conditional random fields can thus be formulated as

p(~y|~x) =
1

Z(~x)

∏
Ψ∈F

Ψ(ωΨ) (2.8)

Recall that each factor Ψ ∈ F is a non-negative real-valued function Ψ : V → R≥0

that computes a scalar score representing the compatibility of adjacent variables ωΨ in

the output vector ~y. Typically, a factor has a log-linear form consisting of a weighted

feature vector ~f that models sufficient statistics given a set of indicator functions and a

learned weight vector of the CRF model θ. More precisely, each factor is computed by

an exponential of the dot product over ~f and θ, which is

Ψ(ωΨ) = exp(〈~f(ωΨ), θΨ〉) (2.9)

such that Equation 2.8 can now be formulated as

p(~y|~x) =
1

Z(~x)

∏
Ψ∈F

exp(〈~f(ωΨ), θΨ〉). (2.10)

An essential part of conditional random fields and imperatively defined factor graphs is

the concept of parameter binding which means that the same parameter set is used for all

factor instantiations of the same factor type. This concept is implemented by so-called

factor templates. Each factor template ti ∈ T binds a set of common parameters θti , a set

of indicator functions fti and a set of neighboring variables ωti . Conceptually, for each

ω ∈ ti, a factor template instantiates a factor Ψω that shares the same model parameters

and feature functions with all other instantiations generated by ti. This process is also

referred to as unrolling the factor graph over the input. With this definition, we can

further specify the conditional probability of a conditional random field as

p(~y|~x; θ) =
1

Z(~x)

∏
ti∈T

∏
Ψ∈ti

exp(〈~f(ωΨ), θi〉). (2.11)

34 Foundations

2.2.2 Inference and Learning

The estimation of model parameters θ in CRFs is tightly coupled with the inference

procedure, since learning model parameters requires performing inference frequently,

which can be computationally intensive and often exceeds tractability. Therefore, effi-

cient inference is particularly necessary. Computing the true distribution of marginal

probabilities in ~y grows exponentially with the size of the target vector, since Z(~x) sums

over an exponential number of possible assignments to the variables. This makes exact

inference in general factor graphs intractable [73]. A classical attempt to overcome this

intractability is to rely on stochastic algorithms that approximate exact inference by

sampling from the desired probability distribution. A common class of approximated

inference methods is based on Monte Carlo algorithms [80], which guarantee that given

sufficient computation time (unknown in advance and therefore usually estimated em-

pirically) and sampling steps, a sample will be drawn from the desired distribution [77].

Markov Chain Monte Carlo Inference The inference method developed in this

work is based on Markov chain Monte Carlo inference [81] (MCMC), which iteratively

generates stochastic samples from a joint distribution p(~y) to approximate the posterior

distribution. The samples are sampled probabilistically from a state space Y containing

all possible variable assignments of ~y. In this context, a particular variable assignment

at a time point t is also called a state, such that we denote the variable assignment ~y

at time point t as ~y(t). While iterating through the true state space, a Markov chain is

constructed whose final state space approximates that of Y and thus converges to the

real distribution of interest given infinite time steps. Consequently, the distribution of

states within the chain approximates the marginal probability distribution of p(yi) for

all yi ∈ ~y.

For high–dimensional multivariate distributions, the Markov chain can be efficiently

constructed using Metropolis–Hastings (MH) sampling algorithms [82]. In Metropolis–

Hastings, a new sample ~̂y is drawn at time t + 1 from the probability distribution Q
conditional on the current sample ~y(t). Since Q is proportional to p, the Markov chain

approximates the desired distribution by relying on a stochastic acceptance/rejection

strategy. The pseudo-code for the standard MH procedure is shown in Algorithm 1.

Here, the function acceptanceRatio(·, ·) calculates the ratio for a new proposal state to

be accepted as the next successor state conditioned on the current state. In standard

MH, this ratio is calculated by dividing the model probability of the new candidate state

by the probability of the current state:

acceptanceRatio(~̂y, s) =
q(~̂y)

q(s)
, (2.12)

35

Algorithm 1 Pseudo-code Metropolis–Hastings Sampling

1: initialize: ~y0 ← random sample, t← 1
2: repeat
3: ~̂y ∼ Q(~̂y|~y(t))
4: t← t+ 1
5: if acceptanceRatio(~̂y, ~y (t−1)) ≥ rand[0, 1] then
6: ~y (t) ← ~̂y
7: else
8: ~y (t) ← ~y (t−1)

9: until convergence

where q(s) is a function that is proportional to the real probability p(s). If q(~̂y) ≥ q(s)

the new state candidate will be accepted as the resulting ratio is greater 1. Otherwise,

the likelihood of being accepted is proportional to the likelihood under the model.

Gibbs Sampling A specific adaptation and implementation of the general MH algo-

rithm is Gibbs Sampling, introduced by Casella et al. [83] and further placed in the

context of MCMC inference by Resnik et al. [84]. The principle of Gibbs Sampling

is to apply atomic changes to the current state, rather than drawing from the full dis-

tribution of possible assignments. In other words, each variable yi ∈ ~y is resampled

individually, while all other variables remain fix, so that the conditional dependence of

a new candidate can be formulated as p(yi|~y\i). Gibbs Sampling is specifically designed

for multivariate data, where a relaxation of the independence assumption can be well

defined by an appropriate factorization [77]. In this work, we adapt the idea of Gibbs

sampling moving from the general depth-first search to a breadth-first search procedure,

as described in Section 5.1. The pseudo-code for drawing the next sample with standard

Gibbs sampling is shown in Algorithm 2.

Algorithm 2 Create next sample with standard Gibbs Sampling

1: input: ~y(t), Y1, · · ·Yn
2: output: ~y (t+1)

3: for i = 1 to n do
4: y

(t+1)
i ∼ p(Yi|y(t+1)

1 , . . . , y
(t+1)
i−1 , y

(t)
i+1, . . . , y

(t)
n)

5: return ~y t+1

Parameter Learning with SampleRank Learning the model parameter θ consists

of finding the optimal weight vector that maximizes the a-posteriori probability p(~y|~x; θ).

In supervised machine learning algorithms, parameters are optimized given some training

data D = {(~y, ~x)1, . . . , (~y, ~x)i, . . . , (~y, ~x)|D|} to maximize the likelihood of the data under

36 Foundations

the model, that is

θ̂ = argmax
θ

∏
(~y,~x)∈D

p(~y|~x; θ). (2.13)

In principle, parameter estimation invokes the inference procedure as a subroutine and

relies on a ranking objective that attempts to update the parameter vector by assigning

a higher probability to preferred solutions. This is also the approach of SampleRank

[78] used in this work. SampleRank is an online algorithm that learns preferences over

hypotheses from gradients between (atomic) changes to overcome the expensive com-

putational costs normally incurred during inference. Updating parameters is based on

gradient descent given pairs of states 〈~y (t), ~y (t+1)〉 generated by the Markov chain; con-

sisting of the current best state ~y (t) and the sampled successor state ~y (t+1). In principle,

the model parameters are updated at each inference step where the model preference

M(·, ·) and the objective preference P(·, ·) diverge. The objective preference function

P : Y × Y → {true, false} can be formulated as

P(~̃y, ~̂y) = (O(~̂y) > O(~̃y)) (2.14)

where O(~y) denotes an objective function that returns a score indicating the degree of

agreement with the ground truth of the particular training point. In CRFs, the model

preference function M : Y × Y → {true, false} can be basically formulated as

M(~̃y, ~̂y) = (p(~̂y |~x; θ) > p(~̃y |~x; θ)) (2.15)

where p is computed as shown in Equation (2.11). The pseudo-code of the SampleRank

is provided in Algorithm 3.

Algorithm 3 Pseudo-code SampleRank Algorithm

1: inputs: state space Y , learning rate η
2: initialize: θ ← ~0, t← 0, ~y (t) ← ~∅
3: repeat
4: ~̃y ∼ Q(·|~y (t))
5: ∆← φ(~̃y, x)− φ(~y (t), x)
6: if θ ·∆ > 0 ∧ P(~y (t), ~̃y) then
7: θ ← θ − η∆
8: else if θ ·∆ ≤ 0 ∧ P(~̃y, ~y (t)) then
9: θ ← θ + η∆

10: t← t+ 1
11: if accept(~̃y, ~y (t−1)) then
12: ~y (t) ← ~̃y

13: until convergence
14: return parameter θ

37

Here, accept(·, ·) is an acceptance function accept : Y, Y → {true, false} that determines

whether the new sampled state is favoured over the old sample.

Q : Y × Y → (0, 1] denotes the proposal distribution as provided by Gibbs Sampling,

for instance. Further, sufficient statistics to a specific variable assignment is denoted as

φ : Y ×X → R|θ| such that p(~y|~x; θ) ≡ θ · φ(~̂y, x).

A clear advantage of SampleRank is that the convergence against the global param-

eter optimum is (almost) independent of the proposal distribution and the inference

strategy, as shown by Rohanimanesh et al. [81]. This includes various implementa-

tions of Metropolis-Hastings algorithms such as Gibbs sampling and variations. How-

ever, the main advantage over other machine learning approaches that rely on gradient

descent and are thus limited to convex differentiable loss functions is that parameter

optimization in SampleRank supports arbitrary objective functions [85]. This includes

non-differentiable ones such as the F1 metric used in this work and allows the model

parameters to be optimized towards the same objective used in the final evaluation.

Chapter 3

Related Work

Chapter Overview: In this chapter, we present related work on knowledge graph popu-

lation. To situate our work, we provide a brief historical overview of information extrac-

tion systems, focusing on the three main areas of rule-based, probabilistic, and neural

approaches. In the second part of this chapter, we introduce related natural language

problems on knowledge graph population and discuss existing work. The last part of this

chapter addresses information extraction with a focus on the medical domain.

3.1 Historical Situation

Over the last three decades, there has been a growing interest in information extraction

tasks in various forms, domains, and levels of detail related to knowledge graph pop-

ulation. Although the term knowledge graph was primarily coined by Google in 2012,

many related works have been addressed decades earlier under various headings that can

be broadly categorized into three classes of approaches: i) rule-based, ii) probabilistic,

iii) and neural. In the following, we briefly introduce each class to situate the methods

developed in our work.

The first approach to formulating tasks related to knowledge graph population, has been

presented at the first Message Understanding Conference (MUC) in 1987 [86]. Its ba-

sic information extraction paradigm describes tasks in which a system processes a set

of documents written in natural language to fill predefined slots in a template-based

structure [87]. In the following decade, between 1987 and 1997, several Message Under-

standing Conferences have been held [88], leading to additional task specifications while

broadening the focus to a wider range of domains. These involved attribute extraction

39

40 Related Work

of i) terrorist attacks in MUC-3 and MUC-4, ii) joint ventures in MUC-5, iii) key pa-

rameters of management change and succession events in MUC-6, and iv) aircraft crash

information in MUC-7.

All of these tasks have in common that a single predefined template reflecting the domain

of interest must be populated with text snippets from a natural language document.

Early popular approaches to tasks formulated in MUC include the CIRCUS system of

Lehnert et al. [89], TACITUS by Hobbs et al. [90], and FASTUS by Appelt et al. [91]

and are mainly based on handwritten rules and grammars for extracting entity mentions

and relations between them. In 1992, Hearst [92] proposed a pattern-based approach

that overcomes the limitations of hand-crafted rules, with the original goal of capturing

hyponyms in text. Based on the past success of pattern-based systems and motivated

by the fact that hand-crafted rules quickly reach scalability limits, IBM developed a

declarative information extraction system called SystemT [93, 94] in 2009.

The general observation about such rule-based approaches is that they are very powerful

in solving very specific tasks [95], e.g. provide high accuracy in extracting domain-

specific values such as medical information [96]. Common drawbacks are their lack

of flexibility, scalability, and the fact that they do not provide confidence values for

extractions since there is no probabilistic information [15]. In this work, we rely on

a very limited set of hand-crafted rules to extract certain types of literal values such

as dosages, weights, and other literal-typed attributes, which are subsequently used as

candidate values in our supervised machine learning method.

Rule-based approaches fall under the category of unsupervised methods, i.e. no (man-

ually) annotated data is required to train a system. The quality of annotations are

mostly based on experience and empirical observations, which often leads to a lack of

generalizability to unseen data. Early attempts to overcome the limitations of purely

rule-based approaches include TextRunner by Yates et al. [16] in 2007, KnowItAll by

Etzioni et al. [13] in 2008, and Yago by Angeli et al. [59] in 2009.

The shift towards self-learning machine learning methods leads to the need to provide

sufficient training data, which can be regarded the main drawback of modern machine

learning approaches. However, the public availability of the World Wide Web brought

new opportunities for modeling and designing information extraction tasks, mostly in the

open domain. In 2009, the Text Analysis Conference [35] (TAC) reformulated template-

based information extraction as slot-filling for knowledge base population (TAC-KBP)

in the open domain [36].

A particular branch of self-learning methods related to our work are Probabilistic Graph-

ical Models (PGM), as described by Koller et al. [73]. The strengths of probabilistic

approaches are that they provide a confidence value for certain extractions and are

41

highly problem-adaptable in terms of designing inference and learning methods, model-

ing domain-specific features, and integrating external domain knowledge [45, 46, 70, 97].

This flexibility of modeling even complex domains, enables their application to various

types of information extraction problems performing considerably well even with com-

paratively little training data [98]. These advantages make PGMs also applicable to

domain-specific tasks involving the prediction of predefined structures in multivariate

data spaces as e.g. found in slot-filling and other KGP related tasks [69].

Due to the enormous amount of (semi) structured data available on World Wide Web

as e.g. provided by DBpedia[17], Wikidata[19], and Freebase[18], it is nowadays compa-

rably easy to create corpora with several thousand (distantly) supervised training data,

which strongly promotes research in the open domain [45]. Since, annotating and re-

viewing documents in the open domain does not require any domain expertise, data sets

can be created in crowd-based environments, e.g. using Amazon’s Mechanical Turk.

This relatively cheap ability to generate large amounts of training data is encouraging

the development of (deep) neural architectures to approach KGP and related tasks. In

the last decade, the trend in machine learning methods has strongly shifted towards

neural architectures. In 2015, Zeng et al. [99] proposed a convolutional network for

the triple extraction task based on distantly supervised training data. In 2017, Zhang

et al. [100] proposed a long short term memory (LSTM) network architecture for the

task of slot-filling and knowledge base completion. In 2018, Guan et al. [101] proposed

a neural network architecture that shares the embedding of entities and relations for

knowledge graph completion. Other recent approaches to knowledge graph population

and construction build on transformer architectures, such as those proposed by Bosselut

et al. [102] in 2019.

Nowadays, neural models are widely used for various natural language processing tasks

and usually provide state-of-the art performance, benefiting from the ease of integrating

very large pre-trained language models [103]. Their seemingly infinite capabilities and

performance continue to encourage research in this area. Their weaknesses compared

to probabilistic models are the need for large amounts of training data [104], a still

cumbersome integration of external domain knowledge, and a difficult adaptation to

structure prediction tasks [105, 106]. This does not make them fully applicable to the

prediction of complex structures with comparably few training data as faced in this

work.

42 Related Work

Figure 3.1: An example showing entity recognition and linking as well as literal
extraction.

3.2 Related Information Extraction Problems

There are several natural language processing problems related to knowledge graph pop-

ulation. When considering KGP in an upstream application scenario, as we do in this

work, the following tasks must be addressed by an information extraction system: first,

named entity recognition and linking, as well as literal extraction and interpretation,

that aim at finding relevant basic informational units in the text. Secondly, relation

extraction is the task of finding relationships between such basic informational units

to form basic structural units. Thirdly, co-reference resolution aims at grouping infor-

mational units into equivalence classes creating reference chains. Fourthly, slot-filling

describes an entity-centric multi-relation extraction task, i.e. the extraction of a prede-

fined set of attributes describing a particular entity-specific structure. While most of

these tasks can be considered independently, there are recent approaches that show the

advantage of tackling two or more of these tasks jointly [32, 33, 107]. We describe each

task in detail in the following.

3.2.1 Entity Recognition and Linking

Named Entity Recognition and Linking (NERL) describes the task of marking entity

mentions in a given input text written in natural language and linking them to unique

concept identifiers of a knowledge base. A simple example is shown in Figure 3.1.

Consider the example sentence “Barack Obama was born on August 4, 1961 in Hawaii”.

Named entity recognition aims at identifying relevant substrings in the text that mention

specific entities, here “Barack Obama” and “Hawaii”. The linking problem aims at

unifying these mentions by disambiguating their semantic meaning. In particular, the

recognized mentions are unified by linking them to their corresponding concepts of some

knowledge base, e.g. DBpedia. The mention “Barack Obama” is linked to the URI

dbr:Barack Obama and the mention “Hawaii” is linked to dbr:Hawaii. Although the two

tasks can be considered independently, as e.g. approached in [46], they typically benefit

from mutual information and are therefore often modelled jointly [21]. The approach

to named entity recognition and linking at the token level is usually formulated as a

43

sequence tagging problem [108] relying on a predefined vocabulary of IOB1 tags, which

are enriched with entity labels of the domain of interest. Thus, the goal of sequence

tagging is to learn a one-to-one mapping from tokens to tags, i.e. to assign a particular

entity related tag to each token, resulting in a sequence of tags.

NERL originated in the context of information extraction, aiming at the identification of

persons, company names, and other so-called open domain entities [21], but also received

prominent attention in many specific domains, fostered by a number of open joint tasks,

e.g. the BioNLP [109], the BioCreative [110], or TAC [98] among others. Most related

to our work is the biomedical field, which focuses on entities such as genes, diseases,

proteins, etc. [30, 31], and the medical field, which focuses on the extraction of PICO

elements (Patient/Problem (P), Intervention (I), Comparison (C) and Outcome (O)) at

various levels of detail [111–113].

Settles et al. [31] developed a machine learning model based on conditional random fields

for named entity recognition and linking in the biomedical domain, focusing on entities

such as proteins, DNA, RNA, and cells. Their probabilistic model implements a variety

of classical linguistic features in combination with domain-specific and semantic features.

Their system achieved state-of-the-art performance at the 2004 BioNLP Shared Tasks.

The work of Summerscales et al. [111] applied conditional random fields to extract key

entity mentions from clinical trial abstracts, including treatments, experimental groups,

and outcomes. In 2008, Leaman et al. developed BANNER [22], a conditional random

field based mainly on orthographic, morphological, and shallow syntax features. In 2016,

they implemented a system called TaggerOne [114] to tackle joint NER and linking with

a semi-Markov-structured linear classifier and a rich set of linguistic features focusing on

bio-medical concepts appearing in the Medical Subject Headings [115] (MeSH). Finkel

et al. [116] developed the well-known Stanford Named Entity Recognizer, a conditional

random field with Gibbs sampling inferences optimized for entity recognition and linking.

Their model integrates a rich feature set consisting of local linguistic and non-local

context information. In recent years, as artificial neural networks have become more

popular, a number of neural approaches have been published, providing new state-of-

the-art results on various benchmarks. Li et al. [117] and Zhu et al. [118] developed

recurrent neural network architectures for the biomedical field, focusing on proteins and

genes.

An often implicitly addressed line of research in entity recognition and linking is the

identification of data-type entities (literals) such as dosages, frequencies etc. While

named entities are distinguishable by the unique concept identifier e.g. some URI, a

literal is a textual mention that carries the main information in its surface form. In

1Used as hypernym for related tagging schemata such as IOB2, IOE etc.

44 Related Work

Figure 3.2: An example showing relation extraction between informational units in a
document.

the example above, such a data-type entity would be the year of birth expressed in

the mention “1961 ”. Although there is extensive work on representing and modeling

data-types [23, 119–121], as well as on extracting data-types [24, 25], to our knowledge

there is only little to no published work that focuses specifically on their extraction and

semantic interpretation beyond determining the broader data-type such as xsd:string or

xsd:integer, etc. However, we have found that this is an important task for automatically

populating a deep domain knowledge graph, as they contain valuable information used

for knowledge filtering, aggregation, and inference.

3.2.2 Relation Extraction

Relation Extraction (RE) describes the task of determining whether or not a (specific)

relation exists between two informational units mentioned in a text [122]. Usually,

such relations are expressed in terms of 〈s, p, o〉 triples. Consider the example sentence

“Barack Obama was born 4. August 1961 in Hawaii.” as shown in Figure 3.2. The rela-

tions to be extracted between the informational units dbr:Barack Obama, “1961 ”, and

dbr:Hawaii are expressed by the triples 〈dbr:Barack Obama dbo:birthPlace dbr:Hawaii〉
and 〈dbr:Barack Obama dbo:birthYear “ 1961”〉. In principle, relation extraction can be

modeled as a binary classification problem, where every possible triple is classified as

true or false [123]. However, this can generate many (spurious) triples, as the complexity

of the search space grows exponentially with the number of relations and entities. This

contrasts with the conceptual formulation of global relation extraction [124], which tar-

gets specific semantic relations between two entities. Both formulations initially require

entity prediction or model both tasks jointly. Promoted by several open joint tasks such

as Automatic Content Extraction [125] (ACE), SemEval[121, 126] or, more related to

our work, BioCreative[110], which provide huge amounts of labeled training data, there

have been remarkable advances in RE [127] in recent years.

45

Figure 3.3: An example showing classical slot-filling. A template structure with three
slots that describe a person is filled with informational snippets from the text.

While early systems focused on the relation detection task assuming entities to be given,

some systems approach both tasks in a pipeline architecture predicting entities first

and subsequently their relations, or, more recently, model both tasks in a joint fashion

with uni-directional information flow [128] (semi-joint) or bidirectional information flow

[41, 129] (fully joint). Approaches range from developing patterns as proposed by Peng

et al. [130], relying on matrix factorization as proposed by Riedel et al. [131], leveraging

domain knowledge for unsupervised RE proposed by De Lacalle and Lapata [14], to

neural architectures as proposed by Mehryary et al. [104]. However, extracted relations

are fairly local in nature and the task has been, so far, typically restricted to extracting

binary relations within single sentence boundaries only. As an exception, Gupta et al.

[132] very recently developed a neural approach to find relations between entities across

sentences.

Considering a knowledge graph as a set of triples, the (domain) knowledge graph popula-

tion can basically be understood as (joint) entity linking and binary relation extraction in

an end-to-end system [34, 133]. However, there are several reasons to approach DKGP

in a template- or ontology-based environment that exploits the interdependent struc-

ture of relations and entities. This is particularly useful in closed domains [26, 43], but

also promotes triple extraction in the open domain [134]. Jointly considering multiple

(dependent) relations given a predefined template in an entity-centric manner can be

subsumed under the heading of slot-filling, which is an important subtask in knowledge

graph population [35, 36, 98].

3.2.3 Slot-Filling

Slot-Filling (SF) is concerned with automatically filling a set of predefined slots of a

template structure with textual phrases from a given input document. The origin of

slot-filling dates back to 1996, where it was first introduced as part of the Message

46 Related Work

Figure 3.4: An example showing document-level slot-filling. A template structure
with three slots that describe a person is filled with disambiguated entities recognized

in the input text.

Understanding Conference [88]. In the context of event extraction, the goal is to extract

specific information that is important in a particular event case, such as in MUC-3 to

MUC-7. In contrast to such scenario-based events, the task of inferring general events

was first introduced in the ACE shared tasks [125]. Here, the arguments of an event refer

to people, objects, times, and places with the restriction that the informational units

are mentioned in the same sentence as the event trigger. Consider the example shown

in Figure 3.3, where a template consists of three slots describing general attributes of a

person, filled with informational snippets from the input sentence.

In 2009, the concept of SF was refined and presented at the Text Analysis Conference

[35] (TAC). The TAC Knowledge Base Population Track (TAC-KBP) combines the tasks

of entity linking and slot-filling and shifts the original SF definition towards an entity-

centric relation extraction problem, such as addressed in ontology-based information

extraction [64, 135] or in the extraction of infoboxes from Wikipedia articles [45, 136].

Document-level slot-filling describes an entity-centric task where multiple relations be-

long to a particular entity of interest mentioned in the text. Consider the example shown

in Figure 3.4. Similar to the previous example, the slots in the template describe gen-

eral attributes of a person. However, there are two key differences. First, the template

is defined by an ontology, in this case the DBpedia-Ontology, which specifies existing

relationships and possible slot-filling candidates. Second, the slot-values are not just

textual phrases, but disambiguated entity mentions associated with the same ontology

that describes the structure of the template.

47

Figure 3.5: An example showing document-level slot-filling and cardinality prediction
based on a template structure that describes the animal model in the spinal cord injury

domain. The relevant information is collected from multiple sentences.

Other approaches to SF implement distant supervision, as described by Surdeanu et

al. [137, 138], or, more recently, neural networks as described by Zhang et al. [100].

Furthermore, slof-filling can be seen as an upstream process for (cold-starting) knowledge

graph population, as described in our previous work [43].

Slot-filling usually deals with the prediction of a single template per document only and

does not consider nested structures, which greatly reduces relational complexity. With

our work presented here, we attempt to go beyond such simplifications and achieve

document-level text interpretation in terms of a complete data-model including cardi-

nality prediction of the inferred template structures. Consider the following example

document, located in our spinal cord injury domain: “Male and female mature Dawleys

are used in this experiment. Female rats weighing 200 g.” and a template structure

describing the subject of pre-clinical study, i.e. the animal model, consisting of four

slots: scio:hasGender, which describes the sex of the animals, scio:AgeCategory, which

is a categorical representation of their age, scio:Species, which describes the breed of the

animals, and scio:hasWeight, which determines their average weight. Given the docu-

ment and the template structure, the goal is to estimate the actual number of template

structures to infer, to which we refer to as cardinality prediction, and to determine the

correct slot-fillers, as shown in Figure 3.5.

This example document describes two animal models that share several slot-filling vari-

ables but differ in their gender and weight. The main difference from the previous

example in Figure 3.4 is that slot-filling no longer needs to be entity-centric. The de-

rived resources scir:animal model 0 and scir:animal model 1 are not directly associated

with any entity in the text or existing resources in a knowledge base, but are specifically

determined by their properties. To our knowledge, there is no existing approach, with

the exception of our previous work [37], that proposes a joint approach for predicting

48 Related Work

Figure 3.6: An example showing (classical) entity-centric co-reference resolution.

both the cardinality of templates and filling each slot. In the broader context of knowl-

edge graph population, this raises another issue, namely the resolution of co-references

between named and unnamed inferred entities.

3.2.4 Co-Reference Resolution

Co-Reference Resolution (CRR) describes the task of identifying text mentions that re-

fer to the same (real-world) entity [139]. A pair of mentions for which this assumption

holds is called co-referential. In general, one of the mentions is the main element of

the co-referential pair, called the antecedent, and which is usually the first occurring

mention of the corresponding pair. In classical CRR, co-referential mentions are lin-

guistic constructs or phrases, such as noun phrases or pronouns. Consider the following

example sentences: “Barack Obama was born in Honolulu, Hawaii. His Second name

is Hussein. Hussein now resides in Massachusetts.”. Classical co-reference resolution

aims at predicting that the mention “Barack Obama” is the antecedent of the mention

“His” and “Hussein” as depicted in Figure 3.6. All three mentions refer to the same

real-world resource dbr:Barack Obama. This information is necessary when e.g. asking

the question: “What is the second name of Obama?” which can only be answered by

knowing that “His” co-refers to the real-world entity dbr:Barack Obama. In some cases,

CRR is tightly linked to, or resolved by global entity linking. For example, linking the

entity mention “Hussein” in the third sentence to the resource dbr:Barack Obama re-

solves their co-reference.

In the biomedical domain, the task shifts towards identifying co-referring mentions of

diseases, genes, proteins [140], or to other medical concepts such as medical tests and

treatments [141]. A comprehensive review on co-reference tasks in the clinical domain

is published by Zheng et al [142]. Relevant work that tackles classical co-reference res-

olution alone or jointly with other tasks are briefly sketched below. The Stanford-Sieve

framework was developed by Lee et al. [143] to approach classical CRR in a pipeline

architecture. The system is based on a modular architecture of sieves that filter out

spurious co-references at multiple levels of detail. The degree of freedom to implement

sieves individually allows researchers to apply this framework to almost any domain. An

49

example of this is the work of Hajishirzi et al. [144] who first propose a joint model for

entity detection, linkage, and co-reference resolution exploiting their mutual informa-

tion. Singh et al. [145] address the tasks of entity recognition, relation extraction, and

co-reference resolution jointly. However, the interaction between relation extraction and

co-reference resolution is not modeled directly, but only through entity tags. This con-

trasts with the work of Luan et al. [33], who model all three tasks of entity recognition,

relation extraction, and co-reference resolution fully jointly as multinomial classification

problem relying on feed-forward neural networks. Durret et al. [146] propose a global

entity-level inference for classical co-reference resolution based on a rich factor graph. In

the unrolled factor graph, each factor refers to an entity property defined on a semantic

or syntactic linguistic basis. Haghighi et al. [147] propose an unsupervised generative

model that incorporates several linguistic properties of the entity and its mention.

In template-based knowledge graph population considered in this work, new resources

are inferred during inference based on the occurrence of their properties in the text.

Thus, unlike classical CRR, a system needs to abstract from explicit mentions in the

text and consider the properties that belong to inferred resources in order to resolve

their co-reference. Consider the example sentences: “Male and female mature Dawleys

are used in this experiment. Female rats weighing 200 g.” and the resolved co-references

as depicted in Figure 3.7. The example shows that the decision of whether or not a new

resource needs to be instantiated for the second sentence can be approached by modeling

the problem as co-reference resolution. In this example, the antecedent is not a certain

explicit mention in the sentence, but rather refers to an entire instantiated template.

Based on the available information in the second sentence, a system must resolve the

co-reference between the instantiated template and the mention “Female rats” to make

a correct prediction of the animals’ weight.

3.3 Knowledge Graph Population in the Medical Domain

There are basically two classes of knowledge graph population approaches, namely triple

extraction and template-based extraction. In both classes the goal is to predict a set of

〈s, p, o〉-triples in which nodes are unified entities (or literals) connected by edges that

correlate to a fixed set of relationships in order to form an appropriate graph structure.

A common approach to knowledge graph construction is to specifically extract individual

triples from sentences, which requires identifying relevant entities and predicates [148].

Therefore, most approaches focus on individual subtasks such as entity recognition and

linking [149, 150], predicate linking [151–153], and relation extraction [28, 154]. While

triple extraction approaches do not necessarily focus on specific domains and often rely

50 Related Work

Figure 3.7: An example showing template-based co-reference resolution with an in-
ferred antecedent resource.

on binary relation extraction methods to extract triples independently, template-based

IE uses the domain-specific structure to model informational dependencies jointly.

This is the approach modeled in slot-filling, which is another way to address knowledge

graph population by relying on predefined target structures [35, 36, 43]. Especially in

closed domains where the domain can be fully defined, extraction systems often make

use of domain-specific ontologies, such as those framed in Ontology Based Information

Extraction [26, 42, 64] (OBIE). Other works and tasks related to knowledge graphs,

including their auto completion [65, 101], construction [12, 33, 102, 148], and popula-

tion [43, 155] with information extracted from unstructured, semi-structured, or fully

structured data.

Towards developing methodologies to DDKG, our system is the only work we are aware

of that extracts information from pre-clinical studies. Yet, there is a body of related

work in the area of information extraction from clinical trials that frames the task

as identifying the key PICO concepts in text: Patient/Problem (P), Intervention (I),

Comparison (C) and Outcome (O).

In this direction, an early approach was proposed by Summerscales et al. [111]. They

rely on conditional random fields (CRFs) to extract key parameters of PICO concepts

specifically focusing on three classes: treatments, treatment groups, and outcomes. How-

ever, their approach is limited to entity detection and linking and does not consider the

search for relationships between these three entity types. Another key difference to our

approach is granularity. While Summercales et al. focus on the three classes mentioned

above, SCIO provides a detailed taxonomy of more than 670 relevant classes considered

by our system. The method they developed uses CRFs and manually defined linguistic

features such as the word itself, the part of speech, the title of the section in which the

51

word occurs, and the textual context words in combination with their POS tags. They

also rely on semantic features such as the MeSH IDs and the semantic tag(s) alone and

in combination with the linguistic features.

A more recent approach is that of Trenta et al. [112], who propose a maximum entropy

classifier for the joint extraction of (fine-grained) PICO concepts, with the overall goal

of extracting evidence tables from medical abstracts to support evidence-based decision

making [156]. Trenta et al. focus on recognizing a set of six classes, which are: P; patient

group, A1; arm 1 intervention, A2; arm 2, OC; measured outcome, R1; outcome for A1

and R2; outcome for A2. Because of the comparatively small number of entities (6 vs.

670 in our case), they can model relation extraction within the entity class labels. The

advantage of this is that relation extraction is implicitly solved during entity recognition

and linking. The disadvantage is the limited flexibility and scalability of their data-

model. Their approach consists of two steps. First, a maximum entropy classifier is

used to generate entity linking candidates at the token level based on a standard set

of linguistic features. The best combination of candidates (and hence resolving relation

extraction) is found by a subsequent integer linear programming (ILP) method, which

includes several manually added knowledge-based constraints that take into account the

common dependencies between the target information. A key difference to our approach

is the generated output. While Trenta et al. focus on extracting evidence tables whose

cells consist only of strings, similar to classical slot-filling, that do not support fully

automated knowledge aggregation and summarization, our generated knowledge graph

consists of concepts, leading to a conceptual normalization that supports both.

The work of Brujin et al. [113] attempts to automatically extract evidence to improve the

practice of personalized medicine. Their approach combines an SVM-based text classifier

with regular expressions to extract a list of 20 PICO elements, such as:“criteria, the

name of all experimental and control treatments, intervention parameters such as dosage,

frequency, duration, etc., sample size, start and end date of enrolment, primary and

secondary outcomes, funding information, and publication details”. Unlike our work,

their approach is limited to entity detection and linkage. There are no dependencies

between these elements considered in their extraction system.

Ferracane et al. [157] focus on the extraction of clinical arms, motivated by the observa-

tion that simple entity recognition and linking is not sufficient to extract experimental

groups. To address this challenge, they apply a binary SVM classifier for co-reference res-

olution to identify experimental groups (patient groups) from medical abstracts. Their

model implements four types of features, namely: bag-of-words, drugbank listing, tf-

idf values, and co-reference resolution features based on the Stanford Core NLP toolkit

52 Related Work

[143]. Their work is strongly related to our previous work [37], which deals with cardinal-

ity prediction of experimental groups from text, a problem we also specifically address in

this work. The main differences are that we predict a complete instance (as opposed to

string-based co-reference), while jointly leveraging and predicting the group’s properties.

Other approaches focus only on sentence extraction/classification [158–160] and not

on predicting semantic structures. Furthermore, none of these works aim at deeper

extraction of arms/experimental groups and their properties, let alone constructing fine-

grained knowledge graphs with the ability to support aggregation of evidence across

studies, automated ranking, and other types of meta-analyses. Further, they have in

common that they only consider abstracts. Unlike the pre-clinical domain, many clinical

publications follow the CONSORT statement [161], which ensures that abstracts have

some structure and degree of completeness, making the task of information extraction

easier. In the pre-clinical field, this standard is not yet widely accepted. A holistic

understanding of a study therefore requires full text analysis.

Further, as there is no work on pre-clinical IE (to our knowledge), we would like to point

to three comprehensive reviews on information extraction from clinical texts to situate

our work in the current state of clinical research. In 2018 the review by Wang et al.

[162] and more recently the review by Fu et al. [163] from 2020, provide a comprehensive

literature review focusing on applications and methods for information extraction in the

clinical domain for various types of resources, such as clinical notes, diagnostic reports,

disease study domains (where our work is located), and others. They show that despite

all the drawbacks, a large part of current applications are still rule-based or hybrid (rule-

based with traditional or neural machine learning methods), as they usually provide high

accuracy on multiple tasks and are applicable to low resources. Our approach can also be

considered as a hybrid system since we partially rely on rules, e.g. for entity recognition

and literal extraction and normalization.

Chapter 4

Application Domain: Spinal Cord

Injury

Chapter Overview: In this chapter, we provide relevant background information on

our application context. The chapter is divided into three main parts. The first part

discusses our application domain of spinal cord injury and provides a detailed description

of the data-model and its main structures derived from the corresponding ontology that

we aim to extract. In the second part, we provide a comprehensive real-world example of

the information extraction problem. The last part contains the description of the data

set that is used to train and evaluate our supervised machine learning method.

4.1 Spinal Cord Injury Data-Model

Our data set, developed system, and involved methods are framed in the context of

Spinal Cord Injury (SCI). In particular, we are interested in experimental results of SCI

treatments described in pre-clinical studies. Such scientific publications usually follow

a similar protocol and study design to describe the experimental results and their key

parameters. This is formulated in a detailed and structured manner by the Spinal Cord

Injury Ontology (SCIO) developed by Brazda et al. [5, 6]. SCIO was developed in a

bottom-up fashion based on the review of several hundred publications to adequately

and comprehensively formulate their semantic and syntactic structure. At the time of

writing, SCIO consists more than 670 classes, 100 different property relations (object

and data type properties), and 620 taxonomic relations (subclass definitions).1 In this

work, we use SCIO as a vocabulary to define the schema of the knowledge graph, i.e.

1For detailed descriptions, see www.psink.de and http://psink.techfak.uni-bielefeld.de/scio;
accessed on November 3 2020.

53

www.psink.de
http://psink.techfak.uni-bielefeld.de/scio

54 Application Domain: Spinal Cord Injury

to determine the types of nodes and edges that exist in it. It also forms the basis for

the target structures and substructures to be inferred by the automatic information

extraction system (cf. Chapter 5 and Chapter 6). In addition, SCIO is used as a

backbone in several other applications developed in our work (cf. Chapter 8).

We aim to extract outcomes in full detail, which requires considering the syntactic struc-

ture and semantic dependencies of each class at a detailed level that includes all relevant

properties and sub-properties. Together with domain experts, we identified the follow-

ing ontological classes as key parameters that must be extracted to fully describe a pre-

clinical outcome: Result, InvestigationMethod, Trend, ExperimentalGroup,

Treatment, Injury, InjuryDevice, DeliveryMethod, Anaesthesia, InjuryLo-

cation, and OrganismModel.2 The corresponding data-model structures from these

classes, which serve as knowledge representations that guide our IE system and are used

to populate our deep domain knowledge graph, are described below.

4.1.1 Data-Model Structures

In the following sections, we illustrate and describe the data-model in detail by presenting

the general structures of the instances to extract, textually describing the properties

involved, and providing an example in indented notation.

4.1.1.1 OrganismModel

Figure 4.1: Schematized data-model structure of an instance of type Organism-
Model.

An organism model describes the characteristics of the experimental population that is

experimentally injured and to which a treatment is applied. Instances of type Organ-

ismModel, as depicted in Figure 4.1, are described by five properties: hasGenderE ,

2A detailed description of the selection process is postponed to Section 6.1

55

hasSpeciesE , hasAgeCategoryE , hasWeightL, and hasAgeL. 3 A concrete example in-

stance of an organism model in indented-notation is:

OrganismModel1 := [

hasAgeCategroyE = 〈Adult, “mature”〉
hasGenderE = 〈Male, “male”〉
hasSpeciesE = 〈SpragueDawleyRat, “SD-rats”〉
hasAgeL = ∅
hasWeightL = “200-300 gram”]

4.1.1.2 Injury

Figure 4.2: Schematized data-model structure of an instance of type Injury.

A spinal cord injury describes the process which leads to the lesion of the spinal cord.

The structure of an instance of type Injury is schematized in Figure 4.2. An injury

model is described by its type and three additional properties: hasInjuryDeviceI de-

scribes the device that was used to inflict the injury (cf. Section 4.1.1.5). The property

hasInjuryLocationI specifies the height or area in the spinal cord of the injury (cf. Sec-

tion 4.1.1.6), and the multi-valued property hasAnaesthesiaI∗ describes the anaesthetics

which are applied during surgery (cf. Section 4.1.1.3). A concrete example instance of

an injury model in indented-notation is:

Injury1 := [

hasInjuryLocationI = InjuryLocation1

hasInjuryDeviceI = InjuryDevice1

hasAnaesthesiaI∗ = {Anaesthetic1}]

3hasAgeL is used to describe the actual specific age of the animals, e.g. “3 month old” whereas the
categorical age is captured by the property hasAgeCategoryE e.g. adult or young.

56 Application Domain: Spinal Cord Injury

4.1.1.3 Anaesthetic

Figure 4.3: Schematized data-model structure of an instance of type Anaesthetic.

An anaesthetic is the type or substance of anaesthesia applied to a subject during surgery.

The data-model of an instance of type Anaesthetic is schematized in Figure 4.3.

An instance is described by its type and two additional properties: hasDosageL and

hasDeliveryMethod I . While the first one is filled with a literal value indicating the

substances’ dosage, the latter one describes the method of delivery as described in Section

4.1.1.4. A concrete example instance of an anaesthetic in indented-notation is:

Anaesthetic1 := [

typeE = 〈Xylazine, “xylasine”〉
hasDosageL = “60 mg/kg”

hasDeliveryMethodI = DeliveryMethod1]

4.1.1.4 DeliveryMethod

Figure 4.4: Schematized data-model structure of an instance of type Deliv-
eryMethod.

The delivery method is a standardized procedure of administration of medication, cell

implants, or other therapeutic substances to a subject. The data-model of an instance

of type DeliveryMethod is schematized in Figure 4.4. A delivery method is described

by its type and two additional properties. The duration is a literal value described by

hasDurationL. The list of locations on which the compound is delivered is described

by the multi-valued property hasLocationE∗. A concrete example instance of a delivery

method in indented-notation is:

DeliveryMethod1 := [

typeE = 〈Injection, “injected”〉
hasDurationL = “1 µL/min”

57

hasLocationE∗ = {〈Intraperitoneal, “intraperitoneally”〉}
]

4.1.1.5 InjuryDevice

Figure 4.5: Schematized data-model structure of an instance of type InjuryDevice.

The injury device is an instrument used to inflict an injury to the spinal cord during an

experimental study. The structure of an instance of type InjuryDevice is depicted in

Figure 4.5. An instance is mainly defined by its type and several literal-based properties.

Note that not every property is populated for every type of device. For example, a weight

drop is a device used to crush the spine by dropping a weight from a certain height onto

the dura mater spinalis. Thus, an injury device of type WeightDrop is described by

the properties hasWeightL, hasDistanceL, or/and hasForceL. In contrast, instances of

type Balloon, for example, are specified only by hasVolumeL. A concrete example

instance of an injury device in indented-notation is:

InjuryDevice1 := [

typeE = 〈NYUImpactor, “NYU weight drop device”〉
hasWeightL = “10 g”

hasDistanceL = “4 cm”

hasForceL = ∅
. . .

]

58 Application Domain: Spinal Cord Injury

4.1.1.6 InjuryLocation

Figure 4.6: Schematized data-model structure of an instance of type InjuryLoca-
tion.

The injury location is the anatomical area of the injured spine. The structure of an

instance of type InjuryLocation is schematically shown in Figure 4.6. There are two

types of injury locations: a single vertebra or a vertebral region. The number of injured

vertebrae often depends on the type of injury. For example, while a contusion usually

involves multiple vertebrae, a precise cut may damage only a single vertebra. In the case

of a complete area, the instance of a location is specified by the properties hasUpper-

VertebraE and hasLowerVertebraE . Two concrete example instances for different injury

locations in indented notation are:

InjuryLocation1 := [

typeE = 〈VertebralArea, “Thoracic level 6-Th7 ”〉
hasUpperV ertebraE = 〈T6, “Thoracic level 6 ”〉
hasLowerV ertebraE = 〈T7, “Th7 ”〉]

InjuryLocation2 := [

typeE = 〈T6, “Thoracic level 6 ”〉
hasUpperV ertebraE = ∅
hasLowerV ertebraE = ∅]

59

4.1.1.7 Treatment

Figure 4.7: Schematized data-model structure of an instance of type Com-
poundTreatment.

In general, a treatment is the therapeutic intervention for spinal cord injury applied

to a subject in a study. While there are many different treatments described in SCIO,

e.g. surgical or electrical treatments, in this work we focus on the most common type,

i.e. treatments that involve the application of a substance, cell, implant, etc. Figure

4.7 shows the schematic structure of an instance of type CompoundTreatment, which

includes five properties. The most important property is hasCompoundE , which specifies

the type of drug applied. Each compound is applied at a specific dosage, which is

captured by the literal value of the hasDosageL property. hasApplicationInstrumentE

defines the type of instrument used to apply the compound, such as a micropipette.

Finally, hasDeliveryMethod I specifies the method by which the applied compound was

administered, e.g. by inhalation or injection. The detailed specification of instances of

type DeliveryMethod is described in Section 4.1.1.4. A concrete example instance

for a compound treatment in indented notation is:

CompoundTreatment1 := [

hasCompoundE = 〈OlfactoryEnsheatingGliaCell, “OEC”〉
hasDirectionE∗ = {}
hasApplicationInstrumentE = ∅
hasDeliveryMethodI = DeliveryMethod1

hasDosageL = “10mg/kg”]

60 Application Domain: Spinal Cord Injury

4.1.1.8 ExperimentalGroup

Figure 4.8: Schematized data-model structure of an instance of type Experimen-
talGroup.

The experimental group is a collection of an organism model, an injury model, and

a treatment model in the context of a study. An instance of type Experimental-

Group is mainly defined by these three properties, as shown schematically in Figure

4.8. The hasOrganismModel I property specifies the animal model used and its proper-

ties (see Section 4.1.1.1). The hasInjuryI property describes the experimentally inflicted

injury. Its value is of type Injury (see Section 4.1.1.2). The treatment(s) applied are

contained in the multi-valued property hasTreatmentI∗. Here, the values are of type

CompoundTreatment (see Section 4.1.1.7). Further, hasGroupNameL∗ is an auxil-

iary property that describes naming variations of an experimental group appearing in a

certain document. A concrete example instance for an experimental group in indented

notation is:

ExperimentalGroup1 := [

hasGroupNamesL∗ = {“first group”, “low OEC treated”}
hasTreatmentI∗ = CompoundTreatment1

hasInjuryI = Injury1

hasOrganismModelI = OrganismModel1]

4.1.1.9 Trend

Figure 4.9: Schematized data-model structure of an instance of type Trend.

The instance structure of type Trend is shown in Figure 4.9. A trend reflects a mea-

sured difference between the reference and the target group and is described by three

61

properties. hasObservedDifferenceE captures the objective trend/direction of the mea-

sured values, e.g. an increase or decrease in walking ability. hasSignificanceE determines

whether or not the test was reported as statistically significant, while the p-value is cap-

tured by the hasPValueL property. A concrete example instance of a trend in indented

notation is:

Trend1 := [

hasSignificanceE = 〈Positive, “positive”〉
hasObservedDifferenceE = 〈Increase, “higher”〉
hasPV alueL = “p < 0.005 ”]

4.1.1.10 Result

Figure 4.10: Schematized data-model structure of an instance of type Result.

An instance of type Result comprises all relevant key parameters required to describe

exactly one pre-clinical finding of a study. The structure of an instance, as shown in

Figure 4.10, consists of four single-valued properties. hasTargetGroupI refers to the

group named in the scientific text as the group receiving the observed treatment in

question. hasReferenceGroupI refers to the experimental group used as a reference, e.g.

an untreated control group or a group treated with a different dosage. The value of

both properties are instances of type ExperimentalGroup as described in Section

4.1.1.8. The applied test of the intervention, e.g. walking ability test, is contained in

the hasInvestigationMethodE property. The objective result of this test is represented

by an instance of type Trend (cf. Section 4.1.1.9). A concrete example instance of a

result in indented notation is:

Result1 := [

hasInvestigationMethodE = 〈BBBTest, “BBB scores”〉
hasTrendI = Trend1

hasTargetGroupI = ExperimentalGroup1

hasReferenceGroupI = ExperimentalGroup2]

62 Application Domain: Spinal Cord Injury

4.1.1.11 Complete Data-Model of Pre-clinical Outcomes

In the previous sections, we described the individual structures of each main class of

our data-models. To get an overall impression of their interaction and dependencies, we

present the full data-model we aim to extract in Figure 4.11.

Figure 4.11: Schematized data-model in full detail.

There are three relevant aspects to consider regarding the complexity of this visualiza-

tion. First, a pre-clinical study typically describes multiple outcomes that all follow the

same general schema of the shown data-model. Thus, this represents only a single data

point in a deep domain knowledge graph. Secondly, the data-model only represents the

basic structure of an outcome. On the one hand, not every instance is fully populated

for all possible attributes. On the other hand, multi-valued properties can have more

than one property value. Thirdly, not every data point in the knowledge graph is neces-

sarily unique in all details. On the contrary, the overlap of instantiations of individual

outcomes described within the same study is generally quite high. For example, consider

two outcomes that measure different types of values on the same experimental groups,

e.g. the walking ability and the axonal regeneration. Based on the data-model presented

here, these two outcomes differ only in the two attributes of trend (reflecting the objec-

tive observation) and investigation method (type of test), while the other parameters

(i.e. the experimental groups) remain the same. Such overlaps can occur at any level

of the data-model hierarchy, e.g. experimental groups have the same animal models,

injuries are inflicted with the same devices, etc. Identifying these shared instances is

what makes the populated knowledge graph a deep domain knowledge graph.

63

4.2 Real-World Example

The real-world example consists of a textual excerpt from Amemori et al. [164] and

describes a single outcome in natural language form. The given text is structured in

sentences (indicated by the sentence index in parentheses) and annotated with entities

and literals at the token-based level. Relevant terms and phrases are italicized and

underlined, with the corresponding annotation of the entity (or literal) type in the

subscript. In Figure 4.12, we show an overview of the relational dependencies between

the annotated entities of the described outcome. Below this excerpt, we provide a walk-

through describing how the extraction of the structured outcome would be approached

by human annotators4 and can be approached by an automated IE system.

4.2.1 Protocol Excerpt

[36] AdultAdult maleMale Wistar ratsWistarRat weighing 270–300 gWeight were used in

our experiments.

[37] The lesioned animals were divided into four groups.

[38] The first group received both OEG and MSCExperimentalGroup1 (n = 21).

[42] SCI Balloon compressionCompression was used to create an SCI.

[44] A 2-french Fogarty catheterFogarthyCatheter was inserted below T8T8, and the bal-

loon was inflated with 15 µLVolume saline for 5 min at T8.

[45] During the surgical procedure, the body temperature of the animal was maintained

at 37◦C with a heating pad, and 3%Dosage isofluraneIsoflurane in air was

administeredInhalation at a flow rate of 0.3 µL/min to prevent edema development as a

result of low levels of anesthesia.

[68] A total of 3×105Dosage OEGOlfactoryEnsheatingGliaCell and/or

MSCMesenchymalStemCell was injectedInjectionDelivery through a

glass pipetteMicroPipette at a concentration of 1×105 cells/µL, into the

proximalProximal, centralCentral and distalDistal parts of the lesioned spinal cord (each

part received 1 µL cell suspension),

at a depth of 1 mm below the dorsal surface and a rate of 1 µL/minDuration using

4According to the annotation guidelines and experience of domain experts we have worked with.

64 Application Domain: Spinal Cord Injury

a Nano-Injector (Stoelting Co.); OEG/MSC-transplanted animalsExperimentalGroup1 re-

ceived six injections (3×105 OEG and 3 × 105 MSC) instead of the three injections

received by the other animals.

[70] The control groupExperimentalGroup2 received three injectionsInjectionDelivery of

salineSaline (1 µL/injectionDosage), also into the proximalProximal,

centralCentral and distalDistal parts of the lesioned spinal cord.

[141] The control animalsExperimentalGroup2 achieved BBB scoresBBBTest of 7.08 ± 0.24

at the end of the experiment (9 weeks after SCI, 8 weeks after transplantation) but never

supported their body weight on their hind legs.

[145] Animals with OEG and MSC co-graftsExperimentalGroup1 , even though they re-

ceived six injections, showed a statistically significantPositiveSignificance

improvementIncrease 6 weeks after SCI, with a final BBB scoreBBBTest of 9.18 ± 0.44.

The relevant information describing the outcome is spread over 10 sentences with a

maximum distance of 106 sentences (from the first mention of the animal model in

sentence 38 to sentence 145 defining the outcome). According to the data-model, the

description of the single outcome consists of 43 relationships between 29 different entities

mentioned in the text, and 5 instances that are not explicitly mentioned in the text, such

as Treatment, Result, and OrganismModel.

4.2.2 Example Walkthrough

In the following, we go through the previous example and explain the annotations and

relational dependencies of the described result.

Finding evidence of a result A result is rarely explicitly mentioned in the text.

However, evidence of the existence of an outcome is found in sentence 145, that is the

joint appearance of an investigation method “BBB score”BBBTest, a trend “improve-

ment”Increase and “statistically significance”PositiveSignificance), and the mention of an

experimental group “OEG and MSC co-grafts”ExperimentalGroup1 .5 Finding the latter

evidence requires the co-reference resolution of this mention and its first explicit appear-

ance in sentence and 38 “first group received both OEG and MSC ”ExperimentalGroup1 .

5The BBB score is an important value in neurological scale test measuring the walking ability of
animals.

65

Figure 4.12: Relational dependencies between all variables that describe the pre-
clinical outcome from the example excerpt.

Extracting the reference group Once an instance of the result is instantiated,

the missing reference experimental group must be added to complete the result. This

information can be found in sentence 141. Based on the name, i.e. “control animals”,

the group named here refers to the missing reference group which often relates to a

control group. Thus, the two sentences 145 and 141 contain the basic elements of a

result.

Extracting the treatment of the reference group The mention of “control

group”ExperimentalGroup2 at the beginning of the sentence 70 indicates that additional

treatment properties such as the applied compound with the appropriate dosage etc.

can be found here. In order to apply the treatment to the correct group, i.e. the

reference group, the co-reference between “control group” and “control animals” needs

to be resolved.

Extracting the treatment of the target group Sentence 68 contains information

about the treatment of the target group. Here, the co-reference between “OEG and/or

MSC ” and “OEG and MSC co-grafts” must be resolved. The target group receives two

compound treatments “OEG”OlfactoryEnsheatingGliaCell and “MSC ”MesenchymalStemCell

with each having the dosage “3×105 ”Dosage. The sentence also contains information

66 Application Domain: Spinal Cord Injury

about the method of administration and the location of injection. A difficult task here

is to decide which of the mentioned information (treatments, dosages) corresponds to

the target group, since the sentence mentions several other groups and treatments.

Extracting the injury Usually, the treatment is different between the target and

the reference groups and their appearances are mentioned close to co-referring group

names. In contrast, the injury is usually the same for both groups and does not contain

the explicit mention of any group. In this example, the specification of the injury takes

several sentences to complete. The type of the injury is mentioned in sentence 42 “SCI

Balloon compression”Compression. Sentence 44 further refines the injury by mentioning

the actual device and the location while sentence 45 describes the anaesthetic and its

properties.

Extracting the organism model The specification of the organism model is de-

scribed in sentence 36 which contains all the information to fully specify the organism,

with the literal-typed age being the only missing property. Similar to the injury, the

organism model is usually the same for both groups and thus not necessarily mentioned

in context of a certain group name.

4.3 Data Set

The data set consists of two publication corpora, one containing studies on SCI treatment

with chondroitinase ABC and one on olfactory ensheathing glia (OEC) transplantation

after SCI. All publications are in English and listed in PubMed. The corpus was an-

notated over a four-year period by up to five domain experts using the data-model as

an annotation scheme following comprehensive annotation guidelines.6 In essence, the

annotations have been performed in a two-step approach. First, entities were annotated

at the token level across the entire document. In a second step, these annotations were

set into relation by filling them into predefined data-model corresponding templates. A

more detailed view on the annotation process is postponed to Section 8.1.

Data Representation To store the annotated and predicted data-model in a machine-

readable manner, and fulfilling the LOD and Semantic Web requirements [58], we rely

on the Resource Description Framework [165] to represent our data in such a way that

the annotated corpus can be viewed as a deep domain knowledge graph. Recall that,

6Annotation guidelines can be found here http://psink.techfak.uni-bielefeld.de/

SCIO-guidelines; accessed March 6 2021.

http://psink.techfak.uni-bielefeld.de/SCIO-guidelines
http://psink.techfak.uni-bielefeld.de/SCIO-guidelines

67

data in RDF is represented as 〈s, p, o〉 triples consisting of a subject, a predicate, and

an object. Our relational data can be easily described by this triple format, where the

subject refers to a particular instance of a certain class, the predicate refers to a par-

ticular property type, and the object is either an entity, a literal value, or a pointer to

a different instance. Consider the following set of triples, which partially describes the

previous example (cf. the corresponding representation in Figure 4.12):

1 〈scir:OrgModel 0, scio:hasWeight, “270–300 g”〉
2 〈scir:ExperimentalGroup 1, scio:hasOrganismModel, scir:OrgModel 0 〉
3 〈scir:ExperimentalGroup 2, scio:hasOrganismModel, scir:OrgModel 0 〉
4 〈scir:ExperimentalGroup 1, scio:hasInjury, scir:Injury 0 〉
5 〈scir:ExperimentalGroup 2, scio:hasInjury, scir:Injury 0 〉
6 〈scir:ExperimentalGroup 1, scio:hasTreatment, scir:Treatment 0 〉
7 〈scir:ExperimentalGroup 2, scio:hasTreatment, scir:Treatment 1 〉
8 〈scir:ExperimentalGroup 2, scio:hasTreatment, scir:Treatment 2 〉
9 〈scir:Treatment 0, scio:hasCompound, scio:Saline〉
10 〈scir:Treatment 1, scio:hasCompound, scio:OlfactoryEnsheatingGliaCell〉
11 〈scir:Treatment 2, scio:hasCompound, scio:MesenchymalStemCell〉
12 〈scir:Injury 0 rdf:type, scio:Compression〉

An example of a literal property value, such as the weight of an animal model, is given by

the property hasWeightL. The representation of a literal property value is shown in line

1. The corresponding organism model instance in the subject position is augmented with

ID 0.7 The same organism model instance is used as value in the hasOrganismModel I

property by both experimental groups. This is shown in line 2 and 3. The instance

of the experimental group with ID 2 has two treatments. When storing multi-valued

properties, the subject-predicate pair is the same and only the object is different, as

shown in line 7 and 8. Storing entities as property values is shown in the lines 9 to 11.

When an entity is used as a property value, we can simply use the entity type itself in

the object position, since no further references are required. Finally, the entity type of

an instance is specified using the W3C standardized property rdf-type, shown in line 12.

4.3.1 Statistics

In the following, we provide an overview of our data set and give statistics of the class

distributions providing the total number of instances, the instances per document, and

the average number of instances per document. Furthermore, we provide a statistical

7The name and IDs of instances are arbitrary, but for better readability we rely on the form: Enti-
tyTypeID.

68 Application Domain: Spinal Cord Injury

OrganismModel doc num avg InjuryDevice doc num avg

instance 205 225 1.10 typeE 177 183 1.03

hasWeightL 156 161 0.79 hasVolumeL 5 5 0.03
hasAgeL 51 65 0.32 hasWeightL 34 34 0.19
hasSpeciesE 205 225 1.10 hasForceL 29 29 0.16
hasAgeCategoryE 159 169 0.82 hasDistanceL 34 34 0.19
hasGenderE 185 200 0.98 hasDurationL 5 5 0.03

InjuryLocation doc num avg DeliveryMethod doc num avg

typeE 205 244 1.19 typeE 166 341 2.05

hasUpperVertebraeE 69 71 0.35 hasDurationL 27 48 0.29
hasLowerVertebraeE 69 71 0.35 hasLocationsE∗ 166 382 2.30

Anaesthetic doc num avg Injury doc num avg

typeE 164 277 1.69 typeE 202 228 1.13

hasDosageL 160 272 1.66 hasAnaesthesiaI∗ 179 325 1.61
hasDeliveryMethodI 122 204 1.24 hasInjuryDeviceI 174 186 0.92

hasInjuryLocationI 200 226 1.12
hasInjuryIntensityE 28 32 0.16

Treatment doc num avg ExperimentalGroup doc num avg

instance 142 546 3.85 instance 110 361 3.28

hasDeliveryMethodI 139 482 3.39 hasOrganismModelI 110 359 3.26
hasDirectionE∗ 71 328 2.31 hasInjuryI 107 341 3.10
hasApp.InstrumentE 104 305 2.15 hasTreatmentI∗ 110 519 4.72
hasCompoundE 142 504 3.55
hasDosageL 134 345 2.43

Trend doc num avg Result doc num avg

instance 106 883 8.33 instance 104 2,140 20.58

hasSignificanceE 101 714 6.74 hasInvestigationMethodE 104 2,140 20.58
hasDifferenceE 106 840 7.92 hasTrendI 104 2,134 20.52
hasPValueL 92 546 5.15 hasTargetGroupI 104 2,140 20.58

hasReferenceGroupI 104 2,140 20.58

Table 4.1: Basic statistics for each main class considered in our corpus. We provide
information about the number of documents annotated with the respective property /
instance (doc), the number of distinct instances / property values (num), and the avg.

number of annotations per documents (avg).

analysis regarding the overall complexity of property prediction, which is mainly deter-

mined by the number of possible candidates defined in SCIO. We present details on the

coverage of the data set, i.e. which entity types and properties exist in the data set and

in which quantity.

The overall corpus contains 205 full-text scientific publications describing pre-clinical

outcomes. 104 documents are fully annotated at the complete level of results, the re-

minder is partially annotated as shown in Table 4.1. In terms of knowledge graphs, the

annotated graph corpus consists of 56, 323 manually annotated RDF triples, of which

24, 161 triples define instances (rdf-type statements) and 32, 162 properties of these in-

stances. Further, the set of property triples consists of 18, 460 instance-typed properties,

8, 981 entity-typed properties, and 4, 721 literal-typed properties. Further basic statis-

tics of the corpus and the annotations per instance class are summarized in Table 4.1.

69

Fcandidates(P) :=

SELECT DISTINCT ?value

WHERE

{ { ?value a ?r }

UNION

{ ?value (rdfs:subClassOf)* ?r }

scio:P rdfs:range ?r

}

Listing 4.1: SPARQL query to extract all entity types that serve as possible slot-filler
candidates for a given entity-typed property P

The table provides information about the number of documents in which the respective

property or instance is annotated (doc). Consider the OrganismModel for example.

There are 205 documents annotated with organism models, which is reflected in the

doc-column of the instance-row. In total there are 225 organism model instances, which

indicates that few documents are annotated with multiple instances. The average num-

ber of organism models per document is shown in the avg-column, i.e. 225
205 = 1.10.

In 156 documents, the hasWeightL property is annotated, while the number of total

weight annotations is 161 as shown in the num-column. The average number of weight

annotations per document is calculated by dividing the number of weight annotations

by the total number of documents that mention an organism model, i.e. 65
205 = 0.32. For

more details on the cardinality distributions per class and per multi-valued property, see

Section 7.

While this table provides only basic statistics of the corpus, we provide a further analysis

of the entity-typed properties by setting the annotation statistics into relation with the

data-model, providing insights of the property candidate distribution. The following 4

paragraphs address various measurements we use to analyze the complexity of properties

and classes.

Candidate Values We refer to a candidate as a possible value of a property. The

set of candidates for a given property P depends on the underlying ontology or data-

schema from which the candidates are extracted. More precisely, the set of candidates

is defined by the range of the ontological property including the range class and all its

transitive subclasses. The number of possible candidates correlates with the difficulty

of correctly predicting the particular property. Candidates are extracted from SCIO

with the SPARQL query Fcandidates(P) defined in Listing 4.1. Consider the example

evaluation [[Fcandidates(hasGender
E)]]SCIO = {Gender,Male,Female,Mixed}.

70 Application Domain: Spinal Cord Injury

Coverage The coverage of a property is the ratio between the number of annotated

values in the data set (knowledge graph) and the number of candidate values contained in

the ontology. That is, the higher the coverage, the more candidate values are represented

in the data set. For example, consider the hasAgeCategoryE property. There are two

out of four different values mentioned in the data set, i.e. Adult and Young, so the

coverage is 2/4 = 50%.

Maximum Probability Mass The Maximum Probability Mass (MPM) of a property

can be considered as the data sets’ bias for a property value. The higher the MPM,

the higher the bias towards a particular value. Note that only non-empty properties

are considered in this statistic. The MPM for a property with candidate probability

distribution X is simply calculated as

max
x∈X

(P (X = x)) (4.1)

Gini Coefficient Finally, we provide the Gini coefficient [166], which measures the

degree of probability inequality in an observed distribution, i.e. how far a distribution X

deviates from its corresponding uniform distribution UX . The Gini coefficient Gini(X)

ranges between 0 (uniform) to 1 (maximum inequality)8 and is calculated by the sum

of Euclidean distances over all pairwise elements in (xi, xj) ∈ (X,X) divided by the

maximum distance, i.e. sum of pairwise distances in (ui, uj) ∈ (UX , UX). Let I be the

number of elements in X and P (X = xi) be the probability of element xi in X, then

Gini(X) is calculated as

G(X) =

∑I
i

∑I
j | xi − xj |

2 ∗ |I|2 ∗ x̄
(4.2)

where

x̄ =
1

|I|

I∑
i

P (X = xi). (4.3)

Example: Let C = {c0, c1, c2, c3} be a set of 4 distinct candidate values for a property

p that is populated 100 times in the data set. Consider the following two distributions:

let UX be the uniform distribution of the candidate values, that is UX ∼ U(c0, c3) such

that P (X = xi) = 1
|I| = 0.25. Let X be the real distribution in the data set with

P (X = c0) = 0.15, P (X = c1) = 0.75, P (X = c2) = 0.10, and P (X = c3) = 0. The Gini

8The Gini coefficient converges against 1.0, given a large number of candidate values where the whole
probability mass is on a single value.

71

property candidate coverage MPM Gini

hasOrganismSpeciesE 25 48% 0.40 0.79
hasAgeCategoryE 4 50% 0.99 0.75
hasGenderE 4 100% 0.73 0.60
hasLowerVertebraeE 26 58% 0.32 0.74
hasUpperVertebraeE 26 62% 0.30 0.71
hasDirectionE 13 46% 0.43 0.80
hasApplicationInstrumentE 15 60% 0.43 0.72
hasCompoundE 100 29% 0.29 0.90
hasLocationsE 78 35% 0.32 0.90
hasInjuryIntensityE 4 100% 0.50 0.41
hasInvestigationMethodE 94 66% 0.12 0.74
hasSignificanceE 3 100% 0.44 0.14
hasDifferenceE 13 77% 0.36 0.73

typeE

InjuryDevice 28 61% 0.30 0.74
DeliveryMethod 8 38% 0.92 0.85
VertebralLocation 33 73% 0.32 0.75
Anaesthetic 10 80% 0.26 0.51
Injury 18 67% 0.24 0.68
InvestigationMethod 94 64% 0.11 0.75

Table 4.2: Complexity of all entity-typed properties considered in our data-model
structures. We provide the number of possible candidates, the coverage, the maximum

probability mass (MPM), and the Gini coefficient.

coefficients of X and UX are

Gini(X) =
|(0.15− 0.75)|+ · · ·+ |(0.00− 0.10)|

2 ∗ 16 ∗ 0.25
=

4.6

8
= 0.575

Gini(UX) =
16 ∗ |(0.25− 0.25)|

2 ∗ 16 ∗ 0.25
=

0

8
= 0

Statistics Overview The statistics are given in Table 4.2. Note that we restrict our

analyses to entity-typed properties, since the values for instance-typed properties depend

on the complexity of the instance itself, while the values for literal-typed properties are

basically infinite.

The table shows the complexity of all entity-typed properties considered in our data-

model. For example, consider the hasOrganismSpeciesE property. There are 25 candi-

date values named in the data-model, of which approximately 48% are represented in

the corpus annotations. The maximum probability mass is 0.40 and correlates with the

property value bias. This can be interpreted as meaning that in 40% of the data the

particular property is populated by a particular entity type. The Gini coefficient of 0.79

indicates that the overall distribution of values is concentrated on a few values only.

Overall, this analysis shows that the prediction of the organism species is of a rather

72 Application Domain: Spinal Cord Injury

simple task. However, note that these statistics do not reflect whether or not a property

is populated which needs to be taken into account during inference.

4.3.2 Inter Annotator Agreement

In the following, we describe several measures for computing the Inter Annotator Agree-

ment (IAA) based on four documents that have been annotated by two annotators

redundantly, according to the final version of the annotation guidelines. The IAA is an

important objective indicator that reflects annotation reliability by measuring the extent

to which independent annotators agree on a set of annotations for the same document.

In general, the higher the agreement, the more reliable annotations are. Further, the

IAA does not only reflect the reliability of the data, but also allows to contextualize the

performance of an automatic information extraction system by providing human-based

reference performances. In our knowledge graph population context, annotation relia-

bility can be considered at four different levels, ranging from a strict token-based level

to the annotation of complete instances:

• First, we compute Cohen’s kappa (CK) for entity annotations at the exact token

level (cf. exact NER column). Cohen’s kappa ranges from −1 to 1 and reflects

the probability that the annotations are equal by choice. According to Landis

and Koch [167], values below 0 mean no agreement, 0− 0.20 mean low agreement,

0.21 − 0.40 mean reasonable agreement, 0.41 − 0.60 mean moderate agreement,

0.61− 0.80 mean substantial agreement, and 0.81− 1.0 mean perfect agreement.

• Secondly, as an abstraction from this strict agreement, we provide the Dice Coeffi-

cient (DC) for sentence-level entity annotations by computing the DC for individ-

ual entities and then averaging over all entities (see sentence-NER column). For

two sets of entities, the DC is between 0 and 1, meaning that no entities overlap

or there is perfect overlap.

• Third, as a further abstraction from the strict overlap comparison, we compute

the document-level DC by relying on bag of entities (cf. column entities). Here,

we ignore their textual mention and position in the document, which is motivated

by the fact that the knowledge graph is also populated at the document level.

• Finally, we compute the F1 score for the overall task of annotating complete in-

stances (cf. instances column). This is also the measure we use to evaluate our

information extraction system in Chapter 7, so that the results of our IE system

can be directly compared to these F-measures.

73

class NER template filling

exact sentence entities instances

OrganismModel 0.84 1.00 1.00 0.93
DeliveryMethod 0.34 0.67 0.71 0.38
Anaesthetic 0.79 1.00 1.00 0.68
InjuryDevice 0.52 0.88 1.00 0.88
InjuryLocation 0.10 0.60 1.00 0.60
Injury 0.66 0.90 1.00 0.72
Treatment 0.24 0.51 0.76 0.50
ExperimentalGroup 0.47 0.74 0.91 0.69
Trend 0.46 0.77 0.93 0.62
InvestigationMethod 0.07 0.41 0.47 0.52
Result 0.45 0.71 0.85 0.65

Table 4.3: Inter annotator agreement scores for the main classes of SCIO considered
in this work. We compute Cohen’s Kappa for the exact NER task (exact NER) and
the Dice Coefficient for annotations at a sentence level (sentence NER) and for bag
of entities (entities). The similarity of annotated instances are computed with the F1

score (instances).

The IAA scores at the four levels are given in Table 4.3. We show that annotating at the

exact token level works best for entities related to OrganismModel (CK = 0.84) and

worst for InvestigationMethod (CK = 0.07). OrganismModel related annotations

such as age, e.g. Adult, gender, e.g. Male, or species, e.g. WistarRat, generally do

not show high variation promoting a high agreement. In contrast, the annotations of

investigation methods, e.g. AxonalRegenerationTest, AxonalChangeTest, or

CystVolumeTest, show high variability in how these tests are referred to in the text.

This poses a significant challenge to the annotators and to an information extraction

system, as the semantic boundaries of these entities are not always clear.

With the abstraction of the exact tokens to the sentence level, we find a strong match

for all classes and entity types, ranging from 0.41 to 1.0 for InvestigationMethod

and OrganismModel, respectively. This shows that determining the exact location of

an entity is a fairly difficult task, but sentence labeling works quite well even for difficult

entity types.

Further abstraction to bag of entities at the document level leads to a perfect Dice

Coefficient of 1.0 for OrganismModel, Anaesthetic, InjuryDevice, and Injury-

Location, Injury. However, there is still a large discrepancy in the annotations of

InvestigationMethod (DC = 0.52).

The last column of the table shows the agreement at the level of fully annotated data-

model structures consisting of multiple properties. Due to this more specific task, the

scores decrease when comparing the entities-setting to the instances-setting. The only

exception in this pattern is for InvestigationMethod, which can be explained by

the fact that some annotations are used multiple times as value for the results. The

74 Application Domain: Spinal Cord Injury

agreement between annotations ranges from 0.50 for Treatment to 0.93 for Organis-

mModel. The most complex structure, i.e. Result, shows an agreement of 0.65, which

is remarkable considering the complexity and number of variables involved.

Chapter 5

Model-Complete Text

Comprehension

Chapter Overview: In this chapter, we describe our developed methodology to ap-

proach knowledge graph population, tailored but not limited to the application domain of

spinal cord injury. We frame the task of extracting a data-model from text as structure

prediction and describe our machine learning method providing implementation details

of conditional random fields and factor graphs, the objective function, inference strategy,

and feature engineering. Finally, we describe our candidate generation methods, includ-

ing approaches towards entity recognition and linking as well as literal extraction and

interpretation.

5.1 Conditional Random Fields and Factor Graphs

Deep domain knowledge graph population requires to predict a number of predefined

structures that describe the domain of interest while predicting properties and their

relational dependencies. This requires an automated extraction system to have a deep

’understanding’ of the text, since relational dependencies are distributed throughout the

entire document. Our approach to this problem is rooted in the concept of our previous

work that introduced the paradigm of Model-Complete Text Comprehension (MCTC)

[37]. In MCTC, we aim at a holistic text understanding with respect to a predefined

domain data-model that describes the desired knowledge to extract. That is, extracting

those meaning aspects of a text which are expressible by the data-model, while ignoring

those aspects which are not.

In principle, MCTC can be understood as a multi-template slot-filling task [35] that

targets a document level of information extraction rather than a textual level. The

75

76 Model-Complete Text Comprehension

data-model to be extracted can be formulated as a template in which certain properties

(slots) are filled with certain values mentioned in the document. In contrast to classical

slot filling, such values can be literals, entities, but also complex structure, i.e. (nested)

instances. A central aspect in MCTC is the identification of multiple instances for a given

class, the number of which is not known a priori and must also be predicted, hereinafter

referred to as cardinality prediction. This requires a dynamic instantiation of template-

structures whose evaluation are based on the incorporation of relational dependencies

exceeding sentence boundaries by far. There are several challenging problems that arise

in this context as already sketched in the introduction. In essence, the problem can be

subsumed by the question(s):

How many and which instances of a certain class defined by the data-model

are mentioned in the text?

In previous work [37], we have shown that jointly modeling cardinality prediction while

predicting the instances’ properties benefit from mutual information leading to better

performance than predicting both in isolation. Addressing both problems jointly can

be formulated as a structure prediction task in a probabilistic manner, inferring the

most probable instance of the data-model based on basic structural and informational

entities mentioned in an unstructured input text. We approach this probabilistic problem

with conditional random fields [69, 77] and generative inference to approximate the real

probability distribution of data-model instances in order to select the most likely instance

that captures the true knowledge of the text.

Modeling Instances in Structure Prediction A key requirement in MCTC is to

efficiently model the set of instances of a certain class as structure prediction prob-

lem. As an example, assume that we aim at predicting instances of type Organism-

Model described by a set of 5 properties P = {P1 = hasWeight, P2 = hasAge, P3 =

hasAgeCategory, P4 = hasGender, P5 = hasSpecies} (cf. Section 4.1.1.1). Further,

a particular instantiation of the data-model that corresponds to the organism models

mentioned in text, needs to describe a number of distinct instances. This cardinality is in

the following denoted as λ. Consider the real-world example shown in Figure 4.12, which

contains a single instance, i.e. λ = 1, that can be described as a set of property–value

pairs: M = {P 1
1 =“270-300g”, P 1

2 = ∅, P 1
3 = Adult, P 1

4 = Male, P 1
5 = WistarRat}:

OrganismModel0 := [

hasAgeCategroyE = 〈Adult, “adult”〉
hasGenderE = 〈Male, “male”〉
hasSpeciesE = 〈WistarRat, “Wistar rats”〉
hasAgeL = ∅

77

hasWeightL = “270-300g”]

In general, structure prediction aims to predict target variables ~y based on informa-

tion described by a number of observed input variables ~x. In the context of MCTC,

~x corresponds to the list of tokens given a pre-tokenized input text, while the output

variables ~y correspond to an instantiation of the data-model containing the predicted

set of instances. To adequately model the instances of a data-model in the target vari-

ables, we encode ~y as a vector of nested vectors ~y = {~y 1, . . . , ~y i, . . . , ~y λ, λ}, which

contains as many vector elements as there are instances in the inferred data-model,

plus one dimension that stores the cardinality λ. Each nested vector is of the form

~y i = {yi1, . . . , yij , . . . , yili} with a variable length li containing as many elements as there

are property values describing the particular instance. With these two definitions, we

can define that ~y ≡M∪λ with yij ≡ P ij . A key feature of modeling MCTC as structure

prediction is that the sizes of the nested vectors, and hence the size of the target vec-

tor, are determined dynamically during inference. The total number of predicted target

variables is denoted by n =| ~y |= 1 +
∑λ

i l
i.

Modeling the Probability Distribution Let Y be the set of all possible instanti-

ations of the data-model, the conditional probability of a specific instantiation ~̂y ∈ Y

given the input variables ~x is

p(~̂y|~x). (5.1)

The most probable value assignments to the set of output variables, denoted as ~y ′, is

found by MAP-inference, that is

~y ′ = argmax
~y∈Y

p(~y|~x). (5.2)

In this work, we rely on conditional random fields [69, 77] (cf. Section 2.2) and factor

graphs [73, 79] (cf. Section 2.2.1) to decompose the overall joint probability of target

variables into individual factors. The set of existing factors and their scope is defined

by a bipartite undirected factor graph G = (V,E, F) consisting of a set of edges E, a set

of random variables V defined as the union of the observed input and the target output

variables V = ~y ∪ ~x, and a set of factors Ψ ∈ F . Each factor has a logarithmic form

equated as

Ψ(ω) = exp(〈f(ω), θΨ〉) (5.3)

where the function f(·) models a feature vector that models sufficient statistics based

on a subset of neighboring variables ω ⊆ V as defined by its scope. The factor graph

we implement in this work is shown in Figure 5.1. In our approach, it is crucial to

capture dependencies between multiple target variables, such as the variable representing

78 Model-Complete Text Comprehension

Figure 5.1: Unrolled factor graph over two example instances showing the factoriza-
tion into unary property factors and binary property factors. Both types of factors are
additionally connected to the cardinality value λ of the respective instance class. We

omit the input variables, assuming them to be fully observed.

the cardinality of the instance class and variables representing the properties of the

instances. For this reason, we introduce factors that model the interaction between all

pairs of property variables while having access to the cardinalities. Based on our general

idea of pairwise approximation to a full joint dependency graph developed in previous

work [37, 42], we compute unary and binary factors for single and pairwise variables,

respectively, of properties within a single instance, but also across two instances. The

conditional probability p(~y|~x; θ) modeled by our CRF is

1

Z(~x)

∏
T∈T

∏
Ψ∈T

∏
yi∈~y,i 6=n

[
Ψ′(λ, yi, ~x; θ)

∏
yj∈~y,j /∈{i,n}

Ψ′′(λ, yi, yj , ~x; θ)
]

(5.4)

and given the factor definition in Equation (5.3) can be explicitly written as

1

Z(~x)

∏
T∈T

∏
Ψ∈T

∏
yi∈~y,i 6=n

[
exp(〈f ′(λ, yi, ~x), θT 〉)

∏
yj∈~y,j /∈{i,n}

exp(〈f ′′(λ, yi, yj , ~x), θT 〉)
]
(5.5)

5.2 Inference and Parameter Estimation

In the previous section, we defined the target structure to predict and model the prob-

ability distribution with the factorization as described by our problem-specific factor

graph. In the following, we describe our inference procedure and how we learn the

model parameter θ on which the model probability is dependent on. While, parameter

estimation typically invokes inference as a subroutine, it can be viewed as a composition

of exploring the state space and the strategy of sampling from that state space.

79

State-based inference In state-based inference, a state ~y (t) is defined as one par-

ticular value assignment to the target variables at a particular time point t. During

inference, at each time step, a set of proposal states Ω(~y (t)) is computed based on a list

of predefined rules that are applied to the current state, i.e. changing the properties

of described instances. The successor state ~y (t+1) ∈ Ω(~y (t)) is then sampled from the

generated set of proposal states according to a state space distribution ~̂y ∼ Q(Ω(~y (t)))

and an acceptance function accept: (~̂y, ~y t) → {true, false}. The sampled state is ei-

ther accepted by a function accept(·, ·) as successor state or not, that is ~yt+1 ← ~̂y or

~y t+1 ← ~y t, respectively. This procedure is generally known as constructing the Markov

chain [82].

Parameter Learning During training, model parameters θ are updated based on gra-

dient descent as described by SampleRank [85] aiming at minimizing errors between the

prediction and the ground truth based on the harmonic F1 score as described in Section

5.2.1. SampleRank is a supervised machine learning algorithm that learns preferences of

variable assignments from atomic updates (cf. Section 2.2.2). The observation and eval-

uation of atomic changes is based on the comparison of two states ~̂y and ~̃y according to

two preference functions. First, they are compared according to an objective preference

function (cf. Algorithm 3 line 7,9; Equation (2.14)). The objective preference is based

on the evaluation to the ground truth of the state O(~y) and always prefers the ’better’

state. Secondly, both states are compared according to the model φ(~̂y) · θ ∝ p(~̂y|~x; θ)

that prefers the state with the higher model probability (cf. Algorithm 3 line 6; Equation

(2.15)). In the following, we go into detail about the previously mentioned components

as they are implemented in our approach:

• The objective function O is described in Section 5.2.1.

• The inference strategy is described in Section 5.2.2.

• The sampling distribution Q is described in Section 5.3.1.

• The search space exploration Ω is defined in Section 5.3.2.

• The acceptance function accept and further implementation details are described

in Section 5.3.3

5.2.1 Objective Function

The objective function O(~y) computes an objective similarity between the predicted

variable assignment ~y and its ground truth assignment ~y ′ and is based on the harmonic

80 Model-Complete Text Comprehension

Figure 5.2: Parallel multi chain inference plus cross over model updates. Proposal
state generation follows the breadth-first Gibbs Sampling.

F1 score = 2tp
2tp+fp+fn . Essentially, the objective function compares the current assign-

ment of each variable yij to the ground truth yij
′. Thus, a true positive (tp) is defined

as a correct value assignment, a false positive (fp) is defined as an incorrect (or unnec-

essary) value assignment in the prediction, while a false negative (fn) is an incorrect (or

missing) value assignment in the ground truth. Misusing the vector notation as sets of

property–values pairs, we can compute: tp = |~y ′ ∩ ~y|, fp = |~y \ ~y ′|, and fn = |~y ′ \ ~y|.
A detailed description of the calculation of tp, fp, and fn based on a concrete example

is postponed to Section 7.1.

5.2.2 Parallel Chain Cross Model Update Inference

In the following, we explain our implemented inference strategy that jointly considers

the aspects of cardinality and property prediction. Our inference is based on the par-

allel multi chain plus cross model updates inference strategy (PMC+) described in our

previous work [37]. In principle, this inference is an adaptation of Gibbs Sampling [83]

in a state-based Markov chain Monte Carlo sampling scheme built on multiple chains,

as proposed by Resnik et al. [84].

The PMC+ procedure, as depicted in Figure 5.2, is initialized with m = β − α empty

Markov chains S0 = [s0
α, . . . , s

0
λ, . . . , s

0
β] that are explored in parallel but independently

from each other, where stλ ≡ ~yt consisting of λ instances. Each state s0
λ ∈ S0 is ini-

tialized with a predefined number of instances within a certain range that corresponds

to the cardinality value λ, where 0 ≤ α ≤ λ ≤ β. The key-feature of this strategy is

that the cardinalities are not sampled over, but remain fixed at all times during the

construction of the Markov chains. In previous work [37], we have shown that exclud-

ing cardinality sampling from the state space leads the model to focus on predicting

81

properties with higher accuracy such that, in PMC+, only the property values of the

instances are resampled. Parallel sampling is independent in the sense that for each

chain, the computation of the set of proposal states and sampling the successor states

are performed independently. However, the model parameters θ are shared across all

chains and thus updated m times per time step for each pair of current state and suc-

cessor state.

Another key aspect in PMC+ is overcoming the deficit in cardinality sampling through

cross-chain parameter updates (cf. bold triangle in Figure 5.2), which foster the model

to learn the correct cardinality values apart from being resampled. The cross-chain

model update operations are based on a set of state pairs computed by pairwise combin-

ing the selected successor states of each chain. This generates m2+m
2 additional model

parameter updates after each time step. Inference ends when all chains converge (cf.

the convergence criteria are described in Section 5.3.3; Equation 5.12). The final state

is chosen based on the highest model probability among the final states of all chains.

The pseudo-code for the PCM+ with SampleRank is presented in Algorithm 4.

Algorithm 4 Pseudo-code parallel multi chain SampleRank Algorithm

1: inputs: α, β
2: initialize: θ ← ~0, t← 0
3: output θ
4: for α ≤ λ ≤ β do
5: stλ ← ~∅
6: repeat
7: updates← [∅] . store updates over all chains
8: for α ≤ λ ≤ β do . compute deltas with std. SR
9: s̃ tλ ∼ Q(Ω(stλ))

10: updates.Add(Delta(s̃λ, sλ))

11: for α ≤ λ ≤ β do . compute deltas for chain cross over updates with SR.
12: for λ < j ≤ β do
13: updates.Add(Delta(s̃j , s̃λ))

14: if accept(s̃λ, sλ) then . apply next samples on acceptance
15: sλ ← s̃λ
16: for ∆ ∈ updates do . apply updates to model parameter
17: θ ← θ + ∆

18: until convergence
19: procedure Delta(ŝ, s)
20: ∆← φ(ŝ, x)− φ(s, x)
21: if θ ·∆ > 0 ∧ P(s, ŝ) then
22: return −η∆
23: else if θ ·∆ ≤ 0 ∧ P(ŝ, s) then
24: return η∆

25: return ∅

82 Model-Complete Text Comprehension

Figure 5.3: Example of Breadth First Gibbs Sampling. The sampled path of output
variables [y3 → y2 → y3 → · · · → y1] is highlighted.

5.3 Sampling from the State Space

In the previous section, we showed how our general inference strategy interacts with

learning the model parameters. In the following, we describe how the successor state

is determined from the set of proposal states during inference based on Markov chain

Monte Carlo sampling. Given a fixed cardinality λ of explored instances, let Y =

(Y1 × · · · × Yi × · · · × Yn−1 × λ) be the set of all possible mappings to the output

variables, where each particular Yi is the set of all possible mappings to a particular

variable yi ∈ ~y.1 Since exact inference is not possible in this search space, we rely on a

sampling procedure based on the idea of Gibbs Sampling. Rather than probabilistically

drawing the next sample from a fully joint distribution, Gibbs Sampling essentially

makes a separate probabilistic choice for each variable, with each choice depending on

the other variables. One problem with standard Gibbs Sampling is that the order of the

variables sampled must be determined a priori. A common way is to iterate through the

variables in the target vector in a sequential order. However, especially for multivariate

data with latent dependencies, as often found in domain-specific contexts, the order

can affect efficiency and performance [84]. Instead, we propose a Breadth-First Gibbs

Sampling (BFGS) as described in the following.

83

5.3.1 Breadth-First Gibbs Sampling

To overcome the ordering problem, we relax this requirement by extending the state

space at each intermediate step to all possible states that can be reached by applying

exactly one atomic change to the current state. That is, within each chain in PCM+

inference, the exploration and sampling follows our implementation of BFGS as depicted

in Figure 5.3 (cf. Atomic Change Sampling presented in our earlier work [43]).

Let the set of proposal states be computed by the function Ω : Y → Y d such that

Ω(~y) ⊆ Y contains only states that can be reached by applying one atomic change

operation to a target variable of the current state. Implementation details of the search

space are given in Section 5.3.2. The next state ~y (t+1) is sampled according to the

probability distribution Q(·) based on the state space Ω(~y (t)) as

~y (t+1) ∼ Q(Ω(~y (t))) =

1

Z(~y)p(~y|~x; θ) iff ~y ∈ Ω(~y (t))

0 else
, (5.6)

where

Z(~y) =
∑

~̂y∈Ω(~y)

p(~̂y|~x; θ)

.

Example Consider the following example. Given an output vector ~y = [y1, y2, y3]

consisting of three variables with search space Y1 = {a1, a2, a3}, Y2 = {b1, b2, b3}, and

Y3 = {c1, c2, c3}. At each time point t, there are 9 possible proposal states from which

a sample can be drawn. A possible sampling path is shown in Figure 5.4.

Consider for example the variable assignment at time point t = 2 which is ~y 2 = (y1 =

∅, y2 = b2, y3 = c2). The set of possible candidate states is Ω(~y 2) = Y1 ∪ Y2 ∪ Y3

where: Y1 = {(y1 = a1, y2 = b2, y3 = c2), (y1 = a2, y2 = b2, y3 = c2), (y1 = a3, y2 =

b2, y3 = c2)} is the set of states where the first variable is changed. Y2 = {(y1 =

∅, y2 = b1, y3 = c2), (y1 = ∅, y2 = b2, y3 = c2), (y1 = ∅, y2 = b3, y3 = c2)} is the set of

states where the second variable is changed. Y3 = {(y1 = ∅, y2 = b2, y3 = c1), (y1 =

∅, y2 = b2, y3 = c2), (y1 = ∅, y2 = b2, y3 = c3)} is the set of states where the third

variable is changed.

1Note that in this section we omit the nested vector representation.

84 Model-Complete Text Comprehension

Figure 5.4: Depiction of the breadth-first Gibbs Sampling procedure showing updates
to the output variables. In this example, the output vector contains three variables
{y1, y2, y3} with search spaces Y1 = {a1, a2, a3}, Y2 = {b1, b2, b3}, Y3 = {c1, c2, c3}.
The sampled path over the output variables, that is [y3 → y2 → y3 → · · · → y1], is

highlighted.

5.3.2 Search Space

In the previous section, we briefly introduced the function Ω(·), which computes a set of

proposal states based on the current state from which a sample is drawn. In principle,

the resulting set of proposal states contains every state that can be reached by applying

one atomic change to the variable assignment of the target vector according to a semantic

search space Y. Recall that the cardinality variable α ≤ λ ≤ β determines the number

of instances contained in the current state and is not sampled over but predefined. The

determination of α and β, the atomic change rules, and the semantic search space are

described in the following.

Cardinality Search Space Although we do not sample over the cardinality variable

during inference, we need to find appropriate minimum α and maximum β values to ini-

tialize the PMC+ inference, assuming that the correct cardinality is somewhere between

α and β (cf. Figure 5.2). Based on the assumption that the number of instances is

approximately normally distributed over the training corpus, we rely on the range-rule

of thumb [168] to estimate both parameters. Essentially, α and β are computed based

on the average cardinality of the instances in the training set. Let µ be the average

cardinality and σ the standard deviation, we define:

α = µ− σ and β = µ+ σ. (5.7)

85

Atomic Change Rules We define the following three atomic change rules:

• Changing a Property Value: If the property is of entity- or literal-type, it involves

changing only a single variable in the target vector. If the property is of instance-

type, the entire instance is replaced, which may result in the change of multiple

variables in the target vector. In particular, all variables belonging to the particular

instance are replaced.

• Adding a Property Value: The Add rule can only be applied to multi-valued prop-

erties or to empty single-valued properties. The number of variables added to the

target vector depends on the property value added. Adding an instance to a prop-

erty adds as many new variables to the target vector as property values describing

the instance. Adding just an entity or literal adds only one variable to the target

vector.

• Deleting a Property Value: In opposite to the add-rule, the delete-rule can only be

applied to non-empty single-valued and non-empty multi-valued properties. The

number of deleted variables from the target structure is either a one for entity-

typed or literal-typed properties or depends on the number of involved values that

describe the removed instance.

Semantic Search Space The semantic search space of a property P is mainly in-

fluenced by three types of information: the type of property, the property candidates

of the underlying data-model, and the set of informational units annotated in a given

document. Let CP = [[Fcandidate(P)]]SCIO be the set of data-model candidates for prop-

erty P , as previously defined in Section 4.3.1; Listing 4.1. Furthermore, let EA, LA,

IA be the set of entity-typed, literal-typed, and instance-typed annotations for a given

document. The search spaces for different property types are:

• The search space of literal-typed properties is simply defined as the set of annotated

literals LA.

• The search space of entity-typed properties is defined as EA∩CP , i.e. we consider

only those possible candidates that are supported in the document.

• The search space of instance-typed properties is simply defined as the set of an-

notated instances IA.

86 Model-Complete Text Comprehension

5.3.3 Implementation Details

Sampling from the set of proposal states requires computing the probability distribution

at each time step t. This requires computing the model probability p(~y|~x; θ) for each

proposal state, which involves computing the partition function Z. However, unlike

other classes of inference such as marginal inference strategies [169], MAP inference does

not necessarily require the computation of all marginal probabilities since the partition

function is simply a normalization constant such that the probabilities sum up to 1. Z

can be equated as
Y∑
~y

p(~y|~x; θ) = 1 (5.8)

Therefore, this constant can be factored out so that the calculation of the conditional

probability in a CRF, as defined in Equation (5.5), can be approximated without a loss

of information or changing the underlying model preferences by

p(~y|~x, θ) ∝
∏
T∈T

∏
Ψ∈T

∏
yi∈~y,i 6=n

[
Ψ′T (·)

∏
yj∈~y,j /∈{i,n}

Ψ′′T (·)
]
. (5.9)

To further reduce complexity, we use an alternating sampling scheme during training.

We start the training in the first epoch with sampling from the probability distribution

of the objective function, which is defined in equivalence to Equation (5.6) as

Q(Ω(~y) =

O(~y)∑

~̂y∈Ω(~y)
O(~̂y)

if ~y ∈ Ω(~y)

0 else

. (5.10)

We then further alternate between the objective probability distribution and the model

probability distribution. Empirical experiments have shown that this strategy greatly

reduces the training time due to a faster convergence of the model.

The acceptance function accept(~̂y, ~y) introduced in Algorithm 3 line 14, is modeled ac-

cordingly to the sampling scheme. We chose an alternating strategy that either greedily

accepts the better state based on the objective function, as defined in Section (5.2.1), or

based on the model score2, as defined in Equation (5.9). The acceptance function can

be equated as

accept(~̂y, ~y) =

{
p(~̂y|~x; θ) > p(~y|~x; θ) iff model-based epoch

O(~̂y) > O(~y) else
(5.11)

Finally, we limit the complexity of the search space by designing two convergence cri-

teria. First, we limit the overall training by a maximum number of sampling steps per

2Note that the computed value of the model is no longer a valid probability, but rather a model score.

87

training instance. In all experiments, we set the maximum to 200, empirically deter-

mined.

The second criterion is inspired by the classical convergence of gradient descent opti-

mization problems, where the model parameters are directly examined [170]. However,

this is very time consuming if the number of model parameters is large. We approximate

this by comparing the model score instead. Our model-score convergence criteria com-

putes the differences between the model scores of the last three states in the generated

state chain. If the difference between the pairwise model scores is each less than an

empirically determined threshold τ = 0.00001, the model is assumed to have converged.

This means that either the same state is sampled three times in a row or that there

are multiple states that are equally likely and the model is unable to favor one over the

other. Formally, this model convergence function can be defined recursively as:

conv(0) = |p(~y (t−d)|~x; θ)− p(~y (t−d+1)|~x; θ)| ≤ τ ∧ conv(d+ 1) ∧ d < 3 (5.12)

5.4 Feature Engineering

In the first section of this chapter, we described our proposed factor graph for modeling

the decomposition of variable dependencies in the target vector. Our factor graph con-

sists of two types of factors Ψ′ and Ψ′′ that compute the compatibility scores of unary

variables and binary variables, respectively. Recall from Equation (2.9) that a factor

is basically an exponential function of the dot product over a feature vector f and the

(learned) model parameter θ. In Section 5.2, we showed how θ is learned during training.

In this section, we describe how the feature vectors f ′(·) and f ′′(·) from Equation (5.5)

are computed, focusing on providing a general description of features that can be used

in the context of model-complete text comprehension.

5.4.1 General Aim

The general goal of modeling features is to capture the semantic correctness of a pre-

dicted target structure. While features computed on single variables can be considered

as property priors in a broader sense, pairwise consideration of variables measures the

compatibility of common property assignments. In the following, we give a brief informal

description of the feature classes and their objectives.

• Document-level: Document-level features measure the compatibility of property

assignments of instances based on the textual content of the document. For this

88 Model-Complete Text Comprehension

purpose, we observe triples for plausibility that contain the property type, the en-

tity type of the property candidate value, and its textual representation in the form

of n-grams. Furthermore, we measure the compatibility of pairwise assignments

of property values considering their sentential distance, assuming that values as-

signed to the same property, in the case of multi-valued properties, or within the

same instance are more likely to be closer to each other than distributed across

the document. While property candidates with a large distance are more likely to

belong to different instances or to be irrelevant in general.

• Document-structure: Document structure features are based on a heuristic seg-

mentation of the document into the standard sections of a scientific article. We

compute features that capture n-grams mentioned in particular sections of the ar-

ticle as indicators for favoring certain candidate values for certain properties. In

this way, we can model that certain content is expected in certain sections and

should override inconsistent information that occurs in other sections.

• Cardinality: With the goal of cardinality prediction, we measure the compatibility

of cardinality values as a function of other random variables in the target structure.

To do this, we make the choice of a cardinality dependent on n-grams that occur

in the surface forms of property values.

In addition, we also consider features that implement a prior for the cardinalities of

classes as well as for the number of values for multi-valued properties. This enables

the model to learn a class/property specific distribution of cardinality values. It

is assumed that the cardinality of a class has a very high a priori probability for a

given value in the training data. This puts pressure on the model during inference

to prefer data-model instances where the class cardinality is similar or the equal,

unless other features provide strong evidence to the contrary.

• Within- and Across-Instance Coherence: Sometimes values of properties are shared

across instances. So we measure the compatibility of value assignments across

properties within an instance, but also how plausible it is that a given value is

shared across instances.

5.4.2 Formal Implementation

In the following, we provide a formal definition of the implemented features. We give

concrete examples for each feature and briefly discuss their individual motivations.

89

Preliminaries Let ω ⊆ V be the scope of a factor Ψ as specified by the factor graph.

We distinguish two different scopes: ω′ = {yi, λ, ~x} and ω′′ = {yi, yj , λ, ~x}, correspond-

ing to unary property factors and binary property factors, respectively. In general, a

property function f : ω → {0, 1}d computes a d-dimensional binary feature vector for a

given input ω. In the following, we make use of the following notations and assumptions:

• For simplicity and readability, we treat vectors and lists as ordered sets of elements,

so mathematical expressions such as yi ∈ ~yj or ~yj ⊆ ~y are well defined.

• We introduce the notation ~y\λ = {y1, . . . , yn−1} that denotes the target vector

consisting only of property-related variables without the cardinality variable λ.

This is a useful expression because some features are based solely on property

variables.

• Given a tokenized input document of the form x = [x1, . . . , x|x|] corresponding to

the observed input vector ~x, where xi ∈ x is the ith token in the document, we

define xi:j ⊆ x as a continuous list of tokens of the form [xi, xi+1 . . . , xj−1, xj] with

j ≤ i ≤ |x|.

• As many features are based on n-grams, we denote N (n,xi:j) as a function that

computes the set of n-grams for a given list of tokens xi:j . The set includes all

uni-grams, bi-grams, . . . , and n-grams. Formally, it is computed as

N (n,xi:j) = {xk:(k+µ)} : ∀µ(0 ≤ µ ≤ n) : ∀k(i ≤ k ≤ j − n)

= {xi:(i+0), . . . ,xk:(k+µ), . . . ,x(j−n):j}
(5.13)

• Let E be the set of existing entity types defined by the data-model that is retrieved

by Query 5.1. Further, let A be the set of entity- or literal-typed annotations that

serve as property candidates for a given input document during inference. Each

annotation â ∈ A is a tuple 〈ê, x̂i:j〉 consisting of an entity type ê ∈ E and a list

of tokens x̂i:j . Our method that computes A is described in Section 5.5.

• The notation yi ← a states that the respective output variable yi ∈ ~y\λ is anno-

tated with the particular annotation a = 〈e,xi:j〉.

SELECT DISTINCT ?e

WHERE { ?e (a)* owl:Class }

Listing 5.1: Extracts the set of existing entity types E. Since the ontology contains

instances as well as class definitions that we consider as entities we use the recursive

property path to retrieve both.

90 Model-Complete Text Comprehension

In this work, we follow the notation for feature functions of Sutton et al. [77]. A basic

feature function has the following general form:

fnameω (ω̂) = qname(ω)1{ω̂=ω} (5.14)

and is a composition of two parts. 1 denotes a prior function that is 1 (true) only

for a particular configuration of ω. q : (·) → {1, 0} denotes an observation function

that returns 1 (true) if the given set of observed input parameters satisfies the semantic

requirement of the function. Consider the example of the observation function

qs w n(xi:j) =

1 iff xi matches [0-9].*

0 else

that semantic requirement is fulfilled if the first token of an annotation starts with a

number. To increase readability we simplify the function as

qs w n(x(i:j)) = xi matches [o-9].*.

In the following paragraphs, we define our features developed and implemented in this

work.

N-Grams Given an unary feature scope ω′ = {λ, ŷ, ~x}, n-gram features are computed

on the annotations that are used as values for single property variables in the output

vector ŷ ∈ ~y\λ with ŷ ← â = 〈ê, x̂i:j〉. We distinguish two types of n-gram features that

capture either common mentions, referred to as Annotation N-Gram-features (ANG),

or common linguistic contexts of annotations, referred to as Context N-Gram- features

(CNG).

The ANG-features are

fangêxπ
(ŷ,x) = 1ŷ=e1x=xπ (5.15)

∀ŷ ∈ ~y\λ : ŷ 8 ∅ ∀e ∈ E ∀xπ ∈ N (3, x̂i:j)

The CNG-features are

f cngêxπ
(ŷ,x) = 1ŷ=e1x=xπ (5.16)

∀ŷ ∈ ~y\λ : ŷ 8 ∅ ∀e ∈ E ∀xπ ∈ (N left ∪N right)

where N left = N (3, x̂(i−3):(i−1)) is the left context and N right = N (3, x̂(j+1):(j+3)) is the

right context.

Example: Given the annotated example document

91

In the experiment, we use adult female Wistar ratsWistarRat weighing 200 g.

that contains the annotation a = 〈e = WistarRat,xi:j =“Wistar rat”〉 and a given

output vector that describes a single instance ~y = {y1 ← ∅, . . . , yi ← a, . . . , yn−1 ←
∅, λ = 1}. The following ANG-features are instantiated:

fang = {1yi=WistarRat1x=“Wistar”,

1yi=WistarRat1x=“rat”,

1yi=WistarRat1x=“Wistar rat”}

and the following 12 (6 left-sided and 6 right-sided) CNG-features:

f cng = {1yi=WistarRat1x=xπ | xπ ∈ N left ∪N right}

with N left = {“use”, . . . , “use adult”, . . . , “use adult female”} and

N right = {“weighing”, . . . , “weighing 200”, . . . , “weighing 200 g”}.

Intuitively, n-gram features are used to distinguish between spurious and probable entity-

type annotations. With enough training data, they capture entity-specific terminologies.

In case the data set contains a strong bias towards particular entity-types, these features

are in principle vulnerable to overfitting as they are not able to generalize to other entity-

types. We have found through empirical evaluation that n-grams ranging from one to

thee tokens is a good compromise between sparsity and instantiating irrelevant features.

Single Token Context Given an unary feature scope ω′ = {λ, ŷ, ~x}, we compute

Single Token Context-features (STC) for each single variable ŷ ∈ ~y\λ with ŷ ← â =

〈ê, x̂i:j〉. In contrast to n-grams, STC-features capture a larger linguistic contexts of

annotations but are limited to single tokens aiming at important terms that appear in

a range of ten tokens surrounding the annotation. The STC-features are

fstcêx (ŷ,x) = 1ŷ=e1x=x (5.17)

∀ŷ ∈ ~y\λ : ŷ 8 ∅ ∀e ∈ E ∀x ∈ (x(i−10):j ∪ xi:(j+10))

Example: Given the annotated example document

Materials and Method. Adult female Wistar ratsWistarRat weighing 200 g

were used in this study.

92 Model-Complete Text Comprehension

that contains the annotation a = 〈e = WistarRat,x : i, j =“Wistar rat”〉 and an

output vector that describes a single instance ~y = {y1 ← ∅, . . . , yi ← a, . . . , yn−1 ←
∅, λ = 1}. The following STC-features are instantiated:

fstc = {1yi=WistarRat1x=x | x ∈ X}

where X = {“Materials”, “and”, “Method”, . . . , “this”, “study”, “.”} is the set of all to-

kens with a maximum distance of ten tokens of the particular annotation.

With this set of features, we strive towards capturing important key words that appear

in a larger context of (ir)relevant annotations e.g. headlines of sections as in the example

shown above. This is of special importance as our input document is written in plain

natural language text and does not contain any markup language.

Context-Between-Annotation Given a binary feature scope ω′′ = {ŷ, ỹ, λ, ~x}, we

instantiate Context-Between-Annotation-features (CBA) measuring common linguistic

contexts between pairs of property assigned annotations keeping track of whether or not

they are assigned in the same instance. We instantiate features for all pairs of assigned

annotations with a maximum distance of ten tokens capturing their linguistic context

as n-grams. The CBA-features are

f cba%e1e2cxπ(ŷ, ỹ, λ,x) = qsame% (ŷ, ỹ)1{ŷ=e1}1{ỹ=e2}1{λ=c}1{x=xπ} (5.18)

∀c ≥ 1 ∀% ∈ {t, f} ∀ŷ, ỹ ∈ ~y\λ : ŷ, ỹ 8 ∅ ∀e1, e2 ∈ E ∀xπ ∈ N (3,xj:k) : |j − k| ≤ 10

where ŷ ← 〈ê,xi:j〉, ỹ ← 〈e′,xk:l〉 and qsame% is an observation function that returns 1

iff % = t ∧ ŷ and ỹ are from the same instance or % = f ∧ ŷ and ỹ are from different

instances.

Example: Given the annotated example document

AdultAdult female Wistar rats weighing 200 gWeight were used.

that contains two annotations â = 〈ê = Adult,xi:j = “Adult”〉 and a′ = 〈e′ =

Weight,xk:l = “200 g”〉. Further, consider the output vector that describes two

instances with a single property assignment each, that is ~y = {y0
1 ← ∅, . . . , y0

i ←
â, . . . , y1

j ← a′, . . . , y1
n−1 ← ∅, λ = 2}. The following CBA-features are instantiated:

f cba = {qcbafalse(yi, yj)1{yi=Adult}1{yj=Weight}1{λ=1}1{x=xπ} | xπ ∈ N}

with N = {“female”, “Wistar”, . . . , “female Wistar”, . . . , “Wistar rats weighing”}

93

Our intuition of this feature is that the intermediate context of two assigned annotations

contains valuable information for identifying spurious or correct property assignments.

While in the example above the two annotations were incorrectly assigned to two differ-

ent instances, consider the following sentence: Male rats weigh 250 g while the females

weigh 200 g. Here, it is obvious to humans that the second weight does not belong to

the male related instance indicated by the keyword while, which would be captured by

this feature.

Pairwise Locality Features With a focus towards the local locality of annotations,

we implement Pairwise Locality-features (LOC). Given a binary feature scope ω′′ =

{yi, yj , λ, ~x}, we capture the sentential distance of two assigned annotations. We limit

this feature to pairs of annotations that are assigned to the same instance. The LOC-

features are

f locse1e2(ŷ, ỹ) = qlocs (ŷ, ỹ)1{ŷ=e1}1{ỹ=e2} (5.19)

∀s ≥ 0 ∀ŷ, ỹ ∈ ~yi ∈ ~y\λ : ŷ, ỹ 8 ∅ ∀e1, e2 ∈ E

where ŷ ← â = 〈ê,xi:j〉, ỹ ← ã = 〈ẽ,xk:l〉 and qlocs is an observation function that returns

1 iff s is equals to the sentential distance of â and ã.

Example: Based on the previous example, the following LOC-feature is instantiated:

f loc = {qloc0 1{ŷ=Adult}1{ỹ=Weight}}

These features enable the model to learn whether annotations associated with an in-

stance should rather appear within a single sentence or not. The pairwise consideration

approximates a fully joint consideration of all properties of an instance. With sufficient

statistics the model is able to learn that for some instance classes the set of relevant an-

notations are clustered around a single sentence, while for other (more complex) classes

annotations rather spread across multiple sentences.

Entity-Type-Context Given a binary feature scope ω′′ = {λ, ŷ, ỹ, ~x}, we instantiate

features that capture the context of entity-type annotations for a pair of properties.

Entity Type Context-features (ETC) abstract from the actual linguistic resource and

capture only the sequence of entity-types annotated in the context of the annotations

in question. The features are restricted to single instances and thus do not explicitly

model the cardinality of instances. The ETC-features are

fetce1e2(ŷ, ỹ) = qetc(ŷ, ỹ)1{ŷ=e1}1{ỹ=e2} (5.20)

94 Model-Complete Text Comprehension

∀ŷ, ỹ ∈ ~y\λ : ŷ, ỹ 8 ∅ ∀e1, e2 ∈ E

where ŷ ← â = 〈ê,xi:j〉, ỹ ← ã = 〈ẽ,xk:l〉 and qetc(ŷ, ỹ) is an observation function that

returns 1 iff â appears to the right of ã (that is i < k).

Example: Given the annotated example document

AdultAdult femaleFemale Wistar ratsWistarRat weighing 200 gWeight were used.

that contains four annotations: a0 = 〈Adult, “Adult”〉, a1 = 〈Female, “female”〉,
a2 = 〈WistarRat, “Wistar rats”〉, and a3 = 〈Weight, “200 g”〉. Further, let the

output vector describe a single individual ~y = {y1 ← ∅, . . . , yi ← a0, yj ← a2, yk ←
a3, yl ← ∅, . . . , yn−1 ← ∅, λ = 1}. The following three features are instantiated:

fetc = {1{yi=Adult}1{yj=WistarRat},

1{yi=Adult}1{yk=Weight},

1{yj=WistarRat}1{yk=Weight}}

With this type of feature, we aim to learn common semantic constructs that abstract

from the textual resource so that a model is able to learn that certain information is

usually mentioned before or after certain other information. For example, the weight of

an animal is usually mentioned after the species, as in the example given.

Property Cardinality Prior Capturing common cardinalities of properties can be

particularly useful for multi-valued properties. To this end, we implement the Property

Cardinality Prior -features (PCP) which are instantiated for an unary feature scope

ω′ = {ŷ, λ, ~x}. We instantiate a feature for each property (whether it is empty or not)

that captures the current value and the number of other annotations assigned to that

property. Let Φ(ŷ) be a function that returns the property P̂ of the particular output

variable ŷ. Then, the PCP-features are

fpcp
φP̂ c

(ŷ, λ) = qpcpφ (P)1{P̂=P}1{λ=c} (5.21)

∀c ≥ 1 ∀φ ≥ 0 ∀ŷ ∈ ~y\λ ∀P ∈ Φ(ŷ)

where ŷ ← â = 〈ê,xi:j〉 and qpcpφ (P̂) is an observation function that returns 1 iff φ is

equals to the number of variables in the output structure that belong to the property P̂

that is iff φ =
∑

y∈~y\λ(1 iff y 8 ∅ ∧ P̂ = Φ(y) else 0).

95

Example: Consider the following example output structure that describes a single in-

stance ~y = {y1 ← a0, y2 ← a1, y3 ← ∅, y4 ← a2, λ = 1} with Φ(y1) = P1,Φ(y2) =

P1,Φ(y3) = P2, and Φ(y4) = P3. The following features are instantiated:

fpcp = {qpcp2 (P1)1{P=P1}1{λ=1},

qpcp0 (P2)1{P=P2}1{λ=1},

qpcp1 (P3)1{P=P3}1{λ=1}}

Document Section When aggregating information across an entire document, it is

important to capture where particular information is positioned. We capture this in

two granularities. Our heuristics are mainly based on regular expressions that cover

frequent variations in the spelling of certain section names, as well as common orders

and lengths of sections. For example, the beginning of the reference section can be found

with the expression: (r) ?(e) ?f ?e ?r ?e ?n ?c ?e ?s?/i. The reference section

is commonly the last section of a document. In such cases where a sentence cannot be

classified, we determine the quarter of the document in which the annotation is located.

The Document Section-features (DS) are instantiated for an unary scope ω′ = {ŷ, λ, ~x}.
The DC-features are

fdsρe (ŷ) = qdsρ (ŷ)1{ŷ=e} (5.22)

∀ρ ∈ S ∀ŷ ∈ ~y\λ : ŷ 8 ∅ ∀e1, e2 ∈ E

with ŷ ← â and the observation function qdsρ (ŷ) returns 1 iff â is located in the section ρ.

S = {Abstract, Introduction,Method,Results,Discussion, References, S0, S1, S2, S3}
is the set of possible sections.

This feature allows the model to learn favoring annotations that are in the abstract of

a document over annotations that are located in the references, for example. In our

particular domain of spinal cord injuries, specific instances are usually mentioned in

specific sections. While organisms, injuries, treatments, and experimental groups are

usually defined in the methods section, experimental outcomes are generally described

in the results section.

Data Type Features We include Data Type-features (DT) that measure common

acceptable values for literal-typed properties that are of the form v ∈ R. As a pre-

processing step to this feature, we calculate the average µ and standard deviation σ for

each literal property given the training data. We discretize v by calculating d(in)(v) =

ceil(v−µσ). The value d(in) can be interpreted as the closest distance of v to µ in steps

96 Model-Complete Text Comprehension

of size σ. Further, we capture the negative counterpart d(out)(v) = d(in)(v) + 1. The

DT-features are

fdt
P̂ ρd

(ŷ, v) = qdtdρ(v)1{P̂=P} (5.23)

∀ρ ∈ {in, out} ∀d ∈ [0..4] ∀ŷ ∈ ~y\λ : ŷ 8 ∅ ∀P ∈ Φ(ŷ)

with ŷ ← â = 〈ê, v̂〉 and the observation function qdtdρ(v̂) returns 1 iff d(ρ)(v̂) = d.

Example: Given the annotated example document

Adult female Wistar rats weighing 200 gWeight were used.

that contains the annotation â = 〈Weight, “200 g”〉. Further, let the output vector

describe a single individual ~y = {y1 ← ∅, . . . , yi ← â, . . . , yn−1 ← ∅, λ = 1}. Let µ =

225 and σ = 20 for the property hasWeightL, the following five features are instantiated:

fdt = {qdt0 out(200)1{P̂=hasWeightL}, qdt1 out(200)1{P̂=hasWeightL},

qdt2 in(200)1{P̂=hasWeightL}, qdt3 out(200)1{P̂=hasWeightL},

qdt4 out(200)1{P̂=hasWeightL}}

In this way, the model learns preferences about possible literal values for certain proper-

ties such as temperature (−10 – 40), or weight (200 – 500) which effectively encode soft

constraints such as ’The weight of rats typically scatters around a mean of 200 gram by

two standard deviations of 20 gram’.

5.5 Entity and Literal Annotation

As in many NLP downstream applications, the first step is to find basic informational

units such as entities and literals in an unstructured input text. The goal of this process,

also called Named Entity Recognition and Linking (NERL), is to find relevant tokens or

phrases in the input text and link them to known concepts in a knowledge base (in our

case SCIO). In our work, these BIUs are the property candidates and thus determine

the search space of our inference method as introduced in Section 5.3.2. Furthermore,

the computation of the sufficient statistics is based on the concrete annotations used

as property candidate values as previously introduced in Section 5.4. In the following

section, we describe in particular how we compute the set of annotations.

Our extraction is based on three different methods, each of which generates a set of

annotations for a given document in order to increase the coverage of correct candidate

values available. The first method is based on conditional random fields with a sliding

window-based inference. Secondly, we apply a dictionary-based approach where entries

97

are automatically generated based on class labels of the ontology and training data

mentions. Thirdly, with a focus towards literal values such as weights or ages, we

implement a simple heuristic that relies on a rich set of regular expressions. This has

the advantage that extracted mentions can be automatically interpreted in terms of their

individual elements (e.g. value unit combinations for weights such as 200 g, as required

for Data Type-features, cf. Section 5.4).

Preliminaries Let the input document be a list of tokens x = [x1, . . . , xi, . . . , x|x|],

where xi ∈ x corresponds to the ith token. Let E be the vocabulary of entities and

literals to be annotated. Our goal is to compute a set of token-based annotations A

with elements of the form a = 〈e,xi:j〉, with xi:j = [xi . . . , xj] ∈ x, 1 ≤ i ≤ j ≤ |x| and

e ∈ E.

5.5.1 Sliding Window CRF

In contrast to a linear chain CRF, which is commonly used for sequence tagging tasks

such as named entity recognition and linking [74–77], we model NERL as a multi-class

segmentation problem exploiting a joint structure of modeling of all annotated seg-

ments. In principle, we rely on the CRF model described earlier, which allows us to

flexibly increase and decrease the size of the output target variables (in this case classi-

fied segments) while adjusting only the factor graph and the proposal state generation

procedure.

Modeling the Output Vector In equivalence to the definition in Section 5.1, let ~x

be the observed input vector corresponding to x and ~y the output vector with variable

length. Rather than representing a data-model, ~y = (s1, . . . , sn) corresponds directly to

the predicted set of annotations in the form of labeled segmentations. Each segment s

is of the form 〈e,xk:l〉, where e is the class label (entity type) and xk:l is the annotated

token or phrase.

Factor Graph Our factor graph contains two types of factors. Factors of unary type

Ψ′ connect a single variable in the output vector and factors of binary type Ψ′′ connect

two variables in the output vector. In equivalence to the conditional probability defined

in Equation 5.9, we compute the model probability of a given set of segments as

p(~y|~x; θ) ∝
∏
T∈T

∏
Ψ∈T

∏
yi∈~y

[
exp(〈f ′(yi, ~x), θT 〉)

∏
yj∈~y,j 6=i

exp(〈f ′′(yi, yj , ~x), θT 〉)
]
. (5.24)

98 Model-Complete Text Comprehension

Two unrolled versions of the factor graph at different time steps over the example input

sentence: “Adult female Wistar rats weighing 200 g were used.” are shown in Figure

5.5. The upper factor graph at time point t shows two segments while the factor graph

at time point t+ 1 contains three segments.

Figure 5.5: State transition example and unrolled factor graphs for a sliding window
inference CRF. Black boxes correspond to unary factors Ψ′ while grey boxes correspond

to binary factors Ψ′′

Inference During inference, we combine an exhaustive search space exploration as

shown in Figure 5.6 with a greedy state transition defined as

~y (t+1) = max
~y∈S

p(~y|x; θ). (5.25)

where the set of proposal states is S = {〈xi:j , e〉} : ∀e ∈ E ∀i, j < |x|s.t.|i − j| < 10.

Since this strategy generates tremendous amounts of proposal states at each time step,

we reduce the search space by dynamically constraining the window size for each entity

type e ∈ E to its mean token number that occurs in the training data and apply the

following constraints:

• No overlapping annotations.

• No sentence crossing annotations.

• No annotations where either the first token or the last token is a stop-word or a

punctuation.

99

Figure 5.6: Exhaustive proposal state generation with a sliding window exploration.
Sliding window sizes range from 1 to mi (dependent on ei), each window is instantiated

for each entity type ei ∈ E.

Objective Function The objective function is modeled in a strict overlap fashion.

Two segments ŝ = 〈ê, x̂i:j〉 and s̃ = 〈ẽ, x̂k:l〉 are equal iff the assigned label is equal, i.e.

ê = ẽ and the span is equal that is i = k ∧ j = l. A state is evaluated by comparing the

predicted set of segments Segp to the ground truth set of segments Segg computing the

harmonic F1 = 2tp
2tp+fp+fn . The number of correctly classified segments (tp) is calculated

as tp = |Segg ∩ Segp|. The number of segments that are included in the prediction but

are not part of the ground truth (fp) is calculated as fp = |Segp \ Segg|. The number

of segments that are included in the ground truth but not in the prediction (fn) is

calculated as fn = |Segg \ Segp|.

Features We rely on a very limited and simple set of features that are commonly used

in the literature and have led to good performances [76, 171]. With the goal of high

recall, we do not implement restrictive features such as POS tags or positional features,

etc., which generally increase precision. In the following, we briefly describe our token

observation functions Q for features with for unary factor domains:

f ′ = {fe(ω′) = qs(ω
′)1{ŷ=e}| ∀ŷ ∈ ~y ∀q ∈ Q ∀e ∈ E} (5.26)

Token N-grams Context: q returns 1 for every n-gram ranging from one to three tokens

within a maximum distance of five tokens before or behind the observed annotation.

Capturing the context helps to generalize over unseen entity types.

Bag of Words: q returns 1 for each single token of the observed annotation. This feature

captures the prior mentions of entity types.

100 Model-Complete Text Comprehension

Character N-gram: q returns 1 for every character based n-gram of the observed anno-

tation with n ranging from 2 to 5. The feature also captures the entity types prior but

is less vulnerable to sparsity as well as prefix and suffix variations.

Head Token and Tail Token: q returns 1 for the head/tail tokens of the observed anno-

tation. These are often more meaningful than intermediate tokens. With this feature,

we aim at annotating the whole span of an entity instead of just sub spans.

Coherent: This feature is the only one that is computed for binary factor scopes.

f ′′ = {f coherentx1x2e1e2(ω′′) = 1{ŷ=e1}1{ỹ=e2}1{x1=xi:j}1{x2=xj:k}| ∀ŷ, ỹ ∈ ~y ∀e1, e2 ∈ E}
(5.27)

This feature captures whether or not the mentions and entity types of two annotations

are equal. With this feature we strive towards a coherent labeling for equal text spans.

Assuming that if two annotation have the same textual mention they should have the

same entity type.

5.5.2 Dictionary Based Approach

In addition to our supervised sliding window CRF, we apply an unsupervised dictionary

lookup to increase the candidate set of annotations. This is motivated by our obser-

vation that many entities follow a fairly invariant naming convention. The approach

is as follows. For each entity type e ∈ E, dictionary entries are automatically derived

from various sources, such as the ontology and training data. In particular, we create

dictionary entries by decomposing ontological labels, class names, and mentions into

token-based n-grams using the following splitting rules:

• Camel case split :

(?<!(^|[A-Z\W|_]))(?=[A-Z\W|_])|(?<!^)(?=[A-Z\W|_][a-z\W|_]) splits a la-

bel at their upper-case letters. The class label SpragueDawleyRat would create

six dictionary entries: sprague, dawley, rat, sprague dawley, dawley rat, and

sprague dawley rat.

• Split at white spaces:

\s splits a label or mention at white spaces. For instance The training data

mention “SD rats” would create three dictionary entries: SD, rats, and SD rats.

Given a set of dictionary entries for a certain entity, the annotation of a document follows

the same restriction rules as applied during the sliding window CRF annotation. In case

that two annotations are overlapping, we always prefer the longer match.

101

5.5.3 Regular Expressions

Interpretable literals (e.g. the weight of an animal or the dosage of a drug) play an im-

portant role in feature computation (rats weigh more than mice), evaluation (comparing

interpretations rather than simple surface forms), knowledge aggregation, meta-analyses,

data filtering, etc. Due to their linguistic diversity, they cannot be adequately extracted

using a dictionary-based approach, and supervised machine learning fail to automatically

provide an interpretation on demand. We approach the extraction and automatic inter-

pretation of literals heuristically, relying on a set of manually designed regular expres-

sions. The clear advantage is that the grouping function automatically provides an inter-

pretation of the extracted literal by decomposing the match into its individual compo-

nents. Consider for example the regular expression (\d{2,3})-(\d{2,3} ?(g(ram))?

which applied to the mention “270–300 gram” produce the following groups:

• group #1: 270 // from value

• group #3: 300 // to value

• group #4: gram // unit

This allows an automatic interpretation and unification, for example to compute the

mean of literals or to convert units such as gram to kg etc. Our complete set of regular

expressions for each literal-type is given in Appendix B.

5.5.4 Intermediate Evaluation

In the following, we briefly evaluate the three annotation approaches developed, showing

their performance in named entity recognition and linking, as well as in literal extraction

and interpretation. The data set used includes 105 document abstracts, divided into 94

training and 11 test documents. The following two steps are performed as pre-processing.

First, all annotations were collected from the training or test data, respectively. In the

second step, these annotations were projected into the documents relying on an exact

string match. In this way, we generate more training data aiming at a high recall while

reducing model confusion.3 We evaluate our approaches at three different levels by

computing the micro F1 score, as defined previously. At the Bag of Annotations level

(BOA), two annotations are equal if they are equal in entity type, onset, and offset.

At the Bag of Strings level (BOS), two annotations are equal if the entity type and

3Note that the textual-level annotations are based on the template-filling task, and thus only annotate
mentions that are the value of a template slot. This in turn requires a joint relation extraction solution,
which we explicitly decouple in this approach.

102 Model-Complete Text Comprehension

mode BOA BOS BOE

micro F1 P R F1 P R F1 P R

CRF 0.289 0.224 0.405 0.323 0.251 0.453 0.527 0.409 0.740
heuristics 0.028 0.016 0.143 0.029 0.016 0.147 0.140 0.078 0.704
→ entities 0.028 0.016 0.152 0.028 0.016 0.152 0.148 0.082 0.796
→ literals 0.031 0.019 0.092 0.041 0.025 0.121 - - -

overall 0.146 0.088 0.437 0.153 0.092 0.459 0.260 0.156 0.779

Table 5.1: Intermediate evaluation results of the three approaches to entity and literal
annotation.

annotated mention are the same, regardless of their position in the text. At the most

coarse-grained level, we compare the Bag of Entities (BOE). Here, two annotations are

the same if they have the same entity type, regardless of their position in the text and

the actual surface form. The results of this intermediate evaluation are shown in Table

5.1.

The results are averaged over all possible entities mentioned in our data-model. We only

distinguish between literal and entity extraction in our heuristics. In our CRF model,

we make no distinction between literals and entities. The most important values in this

table are the recall performances at the BOE level, which is approximately 0.78. The

recall determines the coverage of correct property candidates, which are then jointly set

into relation by our subsequent MCTC model. The BOS recall is 0.46 and shows the

coverage of candidates that have the correct surface form in terms of an exact match.

This can be important for mention-based features. The BOA recall is 0.44 and shows the

coverage of exactly positioned annotations, which are more relevant for context features.

In general, the table shows a small gap between BOA and BOS, which is mainly due to

our pre-processing strategy.

Chapter 6

Deep Domain Knowledge Graph

Population

Chapter Overview: In the previous chapter, we have introduced our general method-

ology for automatically extracting a data-model defined by a domain ontology. In this

chapter, we present our system architecture to address the overall task of deep domain

knowledge graph population in the specific domain of spinal cord injury. We motivate

our ontology-based problem decomposition of the overall task into simpler data-models

for complexity reduction and describe challenges, exceptions, and the interplay of all

developed models and heuristics.

6.1 Ontology-Specific Problem Modelling

The goal of our system is to populate a knowledge graph with structured outcomes de-

scribed in pre-clinical SCI studies written in natural language. The structured format

of a single outcome is thoroughly defined by the instance class Result, which refers to

the most complex semantic data-model involving several dependent parameters, as de-

scribed in Section 4.1.1.11. Although joint inference approaches have been proposed for

tasks involving the prediction of multiple variables and have been shown to be generally

superior to pipeline approaches [32, 33, 144, 145], due to the high number of variables

related to a single document and even to a single outcome, a pure joint inference in

MCTC is not feasible in our domain. In the following, we motivate and describe our

problem decomposition of the overall task into tractable sub-tasks.

103

104 Deep Domain Knowledge Graph Population

6.1.1 Problem Decomposition

According to our data set, the number of dependent variables for a single document

ranges from 45 to 7, 816 with 1, 571 on average. For a single outcome, the minimum

number of related variables is 28 and the maximum is 198 with an average of 76. Detailed

statistics can be found in Table 6.1. While these numbers were calculated on our data

set, the inference complexity, determined by the number of properties and their possible

values as defined by SCIO, is typically much higher. For example, consider the number

of possible instantiations for the class OrganismModel. Table 4.2 show the number of

possible values for each entity-typed property, which are 25, 4, and 4, respectively. Given

these numbers the Inference Complexity (IC), that is the number of all possible instan-

tiations, can be computed as #hasOrganismSpecies ∗#hasAgeCategory ∗#hasGender =

(25 + 1) ∗ (4 + 1) ∗ (4 + 1) = 650 without taking data-type properties into account

and adding (+1) to each entity-typed property for the case when no value is assigned.

Leaving out the literal-valued properties, there are 650 possible organism models. Note

that an organism model is a fairly simple class with comparatively few properties and

candidates. However, an organism model instance is further a candidate value for the

property hasOrganismModel I of the class ExperimentalGroup and together with all

other properties the inference complexity grows exponentially. Furthermore, there are

some notes to keep in mind when investigating the IC.

On the one hand the IC is underestimated since these numbers do not include data-type

properties as their values are arbitrary. All properties, whether they are of type single-

value or multi-value, are considered to be filled by a single value only which most likely

underestimates the real property cardinality distribution.

On the other hand the complexity is generally overestimated in a real-world scenario

since the comparison of the total number of instances (column total ins. per doc.) with

the distinct number of instances per document (column dist. ins. per doc.) shows that

for many classes the same instance is shared multiple times as a property value in parent

instances. In terms of a deep domain knowledge graph, this means that the head-node

of a sub-graph representing the instance has multiple incoming edges of the same re-

lation type. Consider the example of class OrganismModel. The average number of

unique instances per document is 1.10, while the average number of total instances per

document is 41.16. This means that a document generally describes only one organism

model that is used in all experimental groups. From a semantic analysis perspective,

this makes sense since pre-clinical experiments generally focus on different treatments

applied to the same organism model. For the development of an automated extraction

system, this ratio (distinct divided by total: 1.10
41.16 = 0.03) is a key indicator of an efficient

decomposition of the overall problem into ’independent’ tractable sub-problems.

105

class var. per ins. var. per doc. ins. per doc.

min. max. avg. min. max. avg. min. max.
avg.

total dist. ratio

OrganismModel 1 5 3.65 1 24 4.00 1 6 41.16 1.10 0.03
InjuryLocation 1 3 1.58 0 11 1.88 0 7 38.90 1.19 0.03
InjuryDevice 1 4 1.58 1 4 1.64 1 2 34.79 1.03 0.03
DeliveryMethod 2 6 2.26 2 18 4.64 1 6 84.78 2.05 0.02
Anaesthetic 2 4 3.35 2 15 5.65 1 4 58.17 1.69 0.03
Injury 2 19 8.60 2 33 9.71 1 3 41.16 1.13 0.09
Treatment 1 10 4.58 1 59 17.61 1 10 64.69 3.85 0.06
Exp.Group 2 48 17.07 12 88 30.87 2 7 41.16 3.28 0.08
Trend 1 4 3.27 2 194 39.12 1 58 20.52 8.33 0.40
Invest.Meth. 1 1 1.00 1 64 12.59 1 64 20.58 8.46 0.41
Result 28 198 76.36 45 7816 1571.31 1 92 20.58 20.58 1.00

Table 6.1: Complexity analysis showing i) the minimum, maximum, and average
number of variables averaged over instances and documents, respectively, ii) the mini-
mum, maximum, total, and distinct number of instances averaged over all documents,

as well as the ratio of the latter both.

Bottom Up Problem Decomposition As motivated in the previous section, it is

not possible to formulate the overall task of extracting pre-clinical results in full detail in

a joint fashion. Based on the given complexity analysis, we propose an ontology-aligned

problem decomposition that minimizes the joint information loss while maximizing ef-

ficiency. Essentially, the decomposition strategy follows the ontological structure in a

top-down manner and is based on two recursive rules: i) a property value of a decom-

posed substructure can be either a leaf entity or ii) a valid decomposed substructure

itself. Along these rules, the complex data-model of a Result can be recursively de-

composed into its substructures leading to the individual instance classes described in

Section 4.1.1. The prediction of each decomposed data-model involves the prediction of

the instance cardinality and the prediction of properties and can be approached fully

jointly in MCTC.

A main advantage of this strategy is that it decouples the difficult task of predicting

instance cardinality from using the predicted instances as property values in their re-

spective parent instance. For example, we can predict multiple instances of an organism

model, aiming at a high recall, while knowing that the average number per document is

approximately 1. The actual choice of which instance is used as a property value (and

thus remains in the populated knowledge graph) is predicted along with other properties

of the parent instance, i.e. the experimental group.

The main drawback of this strategy is that it involves a strong independence assumption.

Classes that are not related to the same parent class, e.g. OrganismModel (cf. Section

4.1.1.1) and Anaesthesia (cf. Section 4.1.1.3) are predicted independently. Although

this is syntactically defined by the ontology and thus predefined by domain experts,

from a semantic domain perspective it is not impossible but rather likely that there are

106 Deep Domain Knowledge Graph Population

Figure 6.1: System architecture with uni-directional information flow between all
data-model predictions showing their input and output dependencies and applied ap-

proaches and heuristics (grey boxes).

dependencies between the organism species and the anesthetic dose, for instance, which

cannot be modeled directly by this strategy.

Following the ontological dependency structure, this procedure is applied recursively and

stops when a decomposed structure has only properties whose values have no further

properties. This strategy is the foundation of our system architecture, as described

below.

6.1.2 System Architecture

Our proposed problem decomposition forms a semi-joint system architecture with a uni-

directional flow of information, schematically depicted in Figure 6.1. Each component

in this pipeline is developed to solve one specific task, such as named-entity recognition

or structure prediction of certain data-models. The output of each component serves as

input to other components, as shown in the figure. For example, the organism model

instances predicted in the corresponding MCTC component are used as property value

107

candidates in the MCTC component that predicts instances of type Experimental-

Group, and so on.

In the following, we briefly summarize and set each type of component of our system

into relation that are required to address the overall task of automatically extracting

pre-clinical results in their full complexity.

Entity and Literal Annotation Recognizing and linking relevant entities as well as

recognizing literals and interpret them is an important preliminary step in this down-

stream system. Such annotations are considered as the basic units of information that

determine the semantic content of a document, the search space in terms of candidate

property values, and consequently affect the upper bound of our automatic IE system.

Our approach to annotating entities and literals is described in Section 5.5. We aim for

high coverage (high recall) and assume that the subsequent structure prediction is able

to distinguish between spurious and valuable BIUs.

Model-Complete Text Comprehension (MCTC) The core components of our

system are based on the MCTC paradigm, which is described in detail in Chapter 5.

We apply the developed methodology to predict 8 out of 11 main instance classes. Each

component predicts a data-model of a particular class consisting of a number of in-

stances. We intentionally refer to these instances as basic structural units to emphasize

that once an instance is predicted and used as a candidate property, it is not changed

during inference.

At the bottom is the extraction of instances of type OrganismModel, DeliveryMethod,

InjuryDevice, and InjuryLocation. The input to their MCTC components is solely

the set of BIUs. The next step in the pipeline is to extract instances of type Anaes-

thetic and Treatment, whose inputs are BSUs of type DeliveryMethod and BUIs.

In the third step, we predict instances of type Injury. The input are BSUs of type

Anaesthetic, InjuryLocation, and InjuryDevice.1. With the last MCTC compo-

nent, we predict instances of type ExperimentalGroup. While their extraction poses

several challenges, they play an important role in the prediction of outcomes as indi-

cated in the example from Section 4.2. To improve extraction quality, their prediction is

enriched with additional information, which is briefly sketch in the next two paragraphs.

Our overall approach to experimental group extraction is described in detail in Section

6.2. We provide the system configuration for each MCTC-component in Table 6.2.

1Note that injuries are no longer dependent on BIUs. All associated properties are populated with
previously predicted instances. However, BIUs still play an important role in feature engineering and
are therefore globally accessible

108 Deep Domain Knowledge Graph Population

Equation (5.15) (5.16) (5.17) (5.18) (5.19) (5.20) (5.23) (5.22) (5.21)

e α β fang fcng fstc fcba f loc fetc fdt fds fpcp

Org.Model 10 1 2 X X X X X X X - -
Inj.Location 35 1 2 X X X X X X X X X
Inj.Device 10 1 2 X X X X X X X X -
Del.Method 10 2 2 X X X X X X X X -
Anaesthetic 12 2 3 X X X X X X X X -
Injury 10 1 2 X X X X - - - - X
Treatment 10 2 5 X X X - X X X X X
Exp.Group 10 2 7 cf. Section 6.2.3

Inv.Method sentence classification heuristic cf. Section 6.3.2
Trend sentence classification heuristic cf. Section 6.3.2
Result evidence based heuristic cf. Section 6.3

Table 6.2: Overview of the applied heuristics and MCTC system configurations in-
cluding the number of training epochs (e), the inference minimum (α) and maximum

(β) cardinality parameter, as well as the set of active features.

Group Name Recognition Group names are literal values that are used to name

specific experimental groups in a study. The annotation of group names plays an im-

portant role in predicting the total number of different experimental groups and in

finding and assigning their properties, i.e. in relation extraction throughout the whole

document. Therefore, a successful prediction of experimental groups requires a more so-

phisticated annotation of their names. Our proposed approach to group name extraction

is described in Section 6.2.1.

Group Name Co-reference Resolution In order to fully exploit the information

provided by group names, such as anchoring related property values throughout the

whole document or describing related properties, their co-references need to be resolved.

We approach co-reference resolution using clustering techniques, as described in detail

in Section 6.2.2.

Multi-Membership Resolution Not all group names have a unique cluster mem-

bership. In some cases, group names refer to multiple groups. Consider the example

sentence: : “The sham groupGroupName was compared to all treated groupsGroupName”.

While the group name “sham group” refers only to the control group, the annotated

group name “all treated groups” refers to all groups receiving any type of (non con-

trol related) treatment(s). Since classical clustering approaches are not able to resolve

multi-memberships, we propose a string-based heuristic for this problem as described in

Section 6.3.1.

Sentence Classification The prediction of instances of type Trend as well as entities

of type InvestigationMethod play an important role in our evidence-based heuristic

109

for result prediction (see Section 4.2 and Section 6.3). However, we have found that

our structured inference approach does not work well enough for various reasons and

challenges. Therefore, we address their prediction relying on a different approach, which

is essentially based on a sentence classification algorithm, as described in Section 6.3.2.

Result Prediction Finally, our evidence-based heuristic for predicting the outcomes

of a pre-clinical study in full depth of detail is discussed in Section 6.3.

6.2 Special Case: Experimental Group

The extraction of experimental groups includes several variables which values are dis-

tributed throughout the whole document. Most often, dependent property values are

mentioned in close context with a group name. This information can be used to increase

the prediction performance of experimental groups. However, to do so, all group names

in a text must first be found, and since multiple groups are involved in a study, the

co-reference of the extracted names must be resolved. Although, in the final populated

knowledge graph group names do not contain much semantic value compared to the

other properties, they are a special source of information when it comes to predict-

ing the treatments of a group. This is because, in many cases, groups are specifically

named after the treatments they receive. Consider the two sentences from the example

in Section 4.2:

[70] The control groupExperimentalGroup2 received three injections of saline (1

µL/injection), also into the proximal, central and distal parts of the lesioned

spinal cord.

[141] The control animalsExperimentalGroup2 achieved BBB scores of 7.08 ±
0.24 at the end of the experiment (9 weeks after SCI, 8 weeks after trans-

plantation) but never supported their body weight on their hind legs.

The group names mentioned in these sentences are “control group” and “control ani-

mals”. Although the two mentions are 71 sentences apart and the names are different,

they are related to property mentions of the same experimental group which can only be

properly taken into account when resolving their co-reference. Our approach to group

name recognition is described in the next section. In essence, we generate candidate

resolutions based on a clustering approach as described in Section 6.2.2. Finally, the

group name clusters are used to initialize the inference procedure in our MCTC compo-

nent that aims to extract the data-model of ExperimentalGroup. In particular, the

110 Deep Domain Knowledge Graph Population

initially instantiated empty instances are enriched with a set of clustered group names,

which are evaluated together with all other assigned properties during inference. Due

to their particular complexity, the prediction of experimental groups is based on a set

of specially designed features described in Section 6.2.3.

6.2.1 Group Name Recognition

Group names are literal property values stored in the hasGroupNameL property. Fol-

lowing the methodology developed earlier described in Section 5.5.3, we apply a set of

regular expressions and a sliding window CRF to annotate such group names. However,

unlike other literals such as weights or ages, which usually consist of a number and

a unit, group names are arbitrary strings that cannot be easily expressed using regu-

lar expressions. In addition to these approaches, we annotate group names exploiting

the linguistic and syntactic structure and rely on the pre-trained out-of-the-box syntax

parser from the Stanford CoreNLP toolkit [172]. Our heuristics are based on two steps.

First, we extract all noun phrases (NP) and verb phrases (VP) from a document. Since

this generates many spurious annotations, we apply a string-based filter to these NPs

and VPs. In particular, with a focus on group names such as “the OEC treated animals”

or “the control group”, we retain those NPs that end on specific tail-terms e.g. “group”,

“animals”,“mice”, “rats” etc. Focusing on group names such as “received both OEG and

MSC ”, we retain VPs that start with head-terms such as “received”, “got”, “treated”,

“trained”, “injured”, “contused”, “injected” etc. A full list of regular expressions and

rules can be found in Appendix A.

Intermediate Evaluation Group names are rather auxiliary property values of an

experimental group and are not part of the final evaluation presented in Section 7.2. To

provide insight into their extraction performance, we give a brief intermediate evaluation

of the heuristic in Table 6.3. We compute precision, recall, and F1, as defined in Section

7.1, Equation (7.1), over two sets of group names in a partial overlap comparison at two

levels. At the bag-of-annotations (BOA) level, two compared group names are assumed

to be equal if there is an overlap between the onset and offset of the two group name

annotations. At the bag-of-strings (BOS) level, two group names are assumed to be the

same if they overlap in at least one token that is not a stop-word.

The table shows that both approaches, the symbolic and the syntactic, perform simi-

larly well with a recall of 0.31 and 0.37 in the BOA setting and with 0.76 in the less

stringent BOS setting. Combining the two approaches results in an increase in recall of

about 0.15 for BOA and 0.07 for BOS, showing that the two approaches are partially

complementary. With the focus on high coverage (recall), the small decrease in precision

111

Mode BOA BOS

F1 P R F1 P R

NP tail-filtered 0.131 0.081 0.341 0.382 0.265 0.687
VP head-filtered 0.043 0.074 0.030 0.345 0.567 0.248
NP+VP filtered 0.131 0.080 0.368 0.393 0.265 0.756
RegEx+CRF 0.130 0.083 0.308 0.458 0.327 0.764

All 0.111 0.064 0.444 0.327 0.204 0.828

Table 6.3: Intermediate evaluation results for the group name recognition. We com-
pare the performance of i) NP tail-filtered, ii) VP head-filtered, iii) their combination,

iv) the manually defined set of regular expression, and v) taken all together.

of 0.02 and 0.12 for BOA and BOS, respectively, is acceptable. The general performance

shows that annotating group names is a challenging task.

6.2.2 Group Name Co-reference Resolution

Group names are a valuable source of information when it comes to the joint prediction

of variables in the data-model that relate to experimental groups, since in many cases,

experimental groups are named after their specific properties. In our approach, group

names are not sampled over during inference. Instead, instances are augmented with a

set of group names that belong to the particular groups. This requires a clustering of

the previously extracted names into equivalence classes that resolve their co-reference.

In the following, we describe our approach to generate cluster candidates (co-reference

chains) that are subsequently used and evaluated during MCTC-based inference.

In essence, we rely on a two-stage clustering approach as proposed in our previous work

[37]. In the first step, we compute whether or not two group names belong to the

same cluster. Here, we implement a supervised binary random forest classifier [173]

with correlation-based feature selection leading to Smith-Waterman and 3-gram-based

Jaccard similarity features. Formally, let g ∈ G be the set of group name annotations in

a given document. The binary classifier predicts the probability ptrue(ĝ, g̃) ∈ [0..1] that

two group names ĝ and g̃ belong to the same cluster. This probability is used as their

distance d computed as

d(gi, gj) = (1− ptrue(gi, gj)) (6.1)

in a subsequent unsupervised k-Means clustering [174]. Given a finite set of group

names G and a set of k clusters C = {C1, . . . , Ck}, the clustering can be formulated as

a mapping function where each element g ∈ G is mapped to a single cluster, minimizing

112 Deep Domain Knowledge Graph Population

the inter-cluster distances, formally written as

fc : G→ C with fc(g) = min
C1∪C2∪...,∪Ck

k∑
i=1

∑
g∈Ci

µCi(g) (6.2)

where µCi(g) is defined as the arithmetic mean of the distances between g and all ele-

ments in cluster Ci which is

µCi(g) =
1

| Ci |

Ci∑
ĝ

d(g, ĝ). (6.3)

The quality of the clusters computed with k-Means depends on two parameters. The

distance function, on which we rely on the probability computed by Random Forest, and

the number of clusters, on which we rely on the cardinality parameter α ≤ λ ≤ β used

to initialize our statistical inference in MCTC. Consider cardinality values of α = 2 and

β = 5, then all extracted group names are clustered into either 2, 3, 4, and 5 clusters,

respectively. The quality of a given cluster is then evaluated during MCTC-inference

along with all other property values of the instance.

Example Consider an example set consisting of four group names {“OEC treated

group”, “MSC treated group”, “OEC and MSC treated group”, “control group”}. Possi-

ble clusters with different values of λ are depicted in Figure 6.2. If λ = 3, the clusters

are: C1 = {“OEC treated group”}, C2 = {“MSC treated group”, “OEC and MSC treated

group”}, and C3 = {“control group”}. If λ = 4, the clusters are more fine grained:

C1 = {“OEC treated group”}, C2 = {“MSC treated group”}, C3 = {“OEC and MSC

treated group”}, and C4 = {“control group”}. The decision whether the group name

“OEC and MSC treated group” describes a separate group is solved jointly with predict-

ing the applied treatment(s) and other properties of that specific group.

Intermediate Evaluation We provide two brief intermediate evaluations for our clus-

tering approach. First, we evaluate our binary Random Forest classifier. Our binary

clustering data set contains a total of 3,272 labeled instances. The Random Forest is

trained with 2,865 instances, of which 1,444 are positively labeled (pairs of group names

that have the same cluster membership) and 1,421 are negatively labeled. The test data

contains 407 labeled data points with 212 positive labels and 195 negative labels. The

binary classification achieves an accuracy of 0.903 compared to a majority class baseline

of 212
407 = 0.521. Second, we evaluate the k-Means clustering approach in a supervised

manner. We compute the F1 score based on the best cluster alignment. We define a

true positive as a group name that is in its correct cluster, a false positive as a group

113

Figure 6.2: Possible clusters of group names with a cluster size ranging between two
and five. The distance between two group names is based on the probability that they

belong to the same cluster.

name that is in a false cluster, and a false negative as a group name that is missing in

a cluster. We evaluate the clustering with different values of k ∈ [1..8] and report the

best performance to give an idea of the upper bound interaction of Random Forest and

k-Means. The best clustering was obtained at k = 5 with an F1 score of 0.738 with a

high precision of 0.986 and a moderate recall of 0.589.

6.2.3 Additional Features

An experimental group is a key element in describing a pre-clinical outcome. Thus,

their prediction are of particular importance to our overall goal. The corresponding

data-model, as described in Section 4.1.1, shows a high complexity involving several

other complex instance classes as property values while having a diverse cardinality

distribution. At the same time, the number of training data is comparatively small con-

sidering its complexity. To overcome this shortage, we have developed a special set of

features, which we describe below. All feature descriptions use the same notation intro-

duced in Section 5.4, and are explained using the following two examples of experimental

groups:

ExperimentalGroup1 := [

hasGroupNamesL∗ = {“first group”, “low OEC treated”},
hasTreatmentI∗ = {CompoundTreatment1 := [

hasCompoundE = 〈OlfactoryEnsheatingGliaCell, “OEC”〉,
hasDosageL = “10mg/kg”]}

hasOrganismModelI = ∅

114 Deep Domain Knowledge Graph Population

hasInjuryI = ∅]

ExperimentalGroup2 := [

hasGroupNamesL∗ = {““second group”, “high MSC treated”},
hasTreatmentI∗ = {CompoundTreatment2 := [

hasCompoundE = 〈MesenchymalStemCell, “MSC”〉,
hasDosageL = “50mg/kg”]}

hasOrganismModelI = ∅
hasInjuryI = ∅]

Note that for simplicity reasons we assume that the properties hasOrganismModel I and

hasInjuryI are not yet filled.

Group Name Clusters Given a binary factor scope ω′′ = {ŷ, ỹ, ~x, λ} where ŷ and

ỹ refer to group name variables, we measure the compatibility of the assigned group

names by capturing inter and cross co-occurrences in a pairwise fashion. In particular,

we rely on three levels of granularity: i) tokens, ii) mentions, and iii) character 3-grams.

Let Π(xi:j) be a function that, given a mention xi:j , returns the set of elements on

these three levels. For example Π(first group) = {first, group, firstgroup, fir, irs, rst,
st , t g, gr, gro, rou, oup}. The Group Name Clusters-features (GNC) are

fgnc%g1g2
(ŷ, ỹ, ~x, λ) = qgnc% (ŷ, ỹ)1{x̂=g1}1{x̃=g2} (6.4)

∀% ∈ {inter, cross} ∀〈g1, g2〉 ∈ G×G

where G = {g | g ∈ Π(xi:j) ∀y ∈ y\λs.t.Φ(y) = hasGroupNameL∗} is the set of all

elements of all assigned group names and qgnc% (ŷ, ỹ) is an observation function that

returns 1 if % = inter and ŷ and ỹ are from the same instance or if % = cross and ŷ and

ỹ are from different instances.

Example: Based on the given example, the instantiated inter-clustering features are:

fgncinter = {qgncinter1{x̂=first}1{x′=low}, . . . ,q
gnc
inter1{x̂=group}1{x′=treated}, // for ExG1

qgncinter1{x̂=second}1{x′=high}, . . . ,q
gnc
inter1{x̂=second}1{x′=MSC}} // for ExG2

In addition, the instantiated cross-clustering features are:

fgnccross = {qgnccross1{x̂=first}1{x′=second}, . . . ,q
gnc
cross1{x̂=OEC}1{x′=MSC}}

With this set of features fgnc = fgncinter ∪ f
gnc
cross, the model can learn that specific group

names probably do not belong to the same cluster such as “first group” and “second

group” while others likely do e.g. “OEC treated” and “OEC group”.

115

Name Treatment Co-Occurrence Experimental groups are often named after their

receiving treatment, thus given a binary factor scope ω′′ = {ŷ, ỹ, ~x, λ} we capture inner

and cross group name–treatment co-occurrences in the Name Treatment Co-occurrence-

feature (NTC). The instantiation of such features basically follow the previously de-

scribed procedure. The NTC features are

fntc%gt (ŷ, ỹ, ~x, λ) = qgnc% (g, t)1{x̂=g}1{x̃=t} (6.5)

∀% ∈ {inter, cross} ∀〈g, t〉 ∈ G× T

where G and qgnc% (g, t) are equivalent defined as above. The only difference is the

definition of T = {t | t ∈ Π(xi:j) ∀y ∈ y\λs.t.Φ(y) ∈ Frel(hasTreatment
I∗)[[SCIO]]}

which is the set of tokens of annotations assigned to variables that are related to the

assigned treatments. This is important as treatments do not have a certain name that

subsumes the treatments’ properties. Instead, we collect all variables that are related to

a certain property using the SPARQL query evaluation Frel(P)[[SCIO]] defined in Listing

6.1 that returns all properties related to a certain input property.

Frel(P) :=

SELECT DISTINCT ?related

WHERE

{ ?related rdfs:domain ?d

{ ?d a ?r }

UNION

{ ?d (rdfs:subClassOf)* ?r }

scio:P rdfs:range ?r

}

Listing 6.1: SPARQL query that extracts the set of properties related to the input

property P .

In words: a property Pr is related to an input property P if Pr is a property of an

ontological class that serves as possible candidate value of P . Note that the query is

recursively defined via property-paths to include transitivity.

Example: Based on the examples given above, the instantiated inter-NTC features are:

fntcinter = {qgncinter1{x̂=low}1{x̃=10 mg/kg}, . . . ,q
gnc
inter1{x̂=OEC}1{x̃=10 mg/kg}, // for ExG1

qgncinter1{x̂=MSC}1{x̃=MSC}, . . . ,q
gnc
inter1{x̂=high}1{x̃=50 mg/kg}} // for ExG2

116 Deep Domain Knowledge Graph Population

In addition, the the instantiated cross-NTC features are:

fntccross = {qntccross1{x̂=low}1{x̃=50 mg/kg}, . . . ,q
ntc
cross1{x̂=OEC}1{x̃=MSC}}

With this set of features fntc = fntcinter ∪ fntccross, the model can capture dependencies

between group names and treatments.

Treatment Type Distribution Both previous feature types compute statistics that

are only based on the textual surface form of group names and treatments, respectively.

With the following two sets of features, we focus on the actual type of the treatment

which is mainly expressed in the applied compound described by the hasCompoundE

property. The first set of features capture the treatments’ prior on the basis of single

variables given unary factor scopes ω′, the second set capture pairwise variables given

by binary factor scopes ω′′, these Treatment Type Distribution (TTD) features are

f ttd
′

%e1 (ŷ, ~x, λ) = 1{ŷ=e1}∪

f ttd
′′

%e1e2(ŷ, ỹ, ~x, λ) = qprior
′′

% (ŷ, ỹ, ~x, λ)1{ŷ=e1}1{ỹ=e2}
(6.6)

∀% ∈ {inter, cross} ∀ŷ, ỹ ∈ ~y\λ : Φ(ŷ, ỹ) ∈ Frel(hasCompoundE)[[SCIO]] ∀e1, e2 ∈ E

with ŷ ← a1 = 〈e1,xi:j〉 and ỹ ← a2 = 〈e2,xk:l〉 where qprior
′′

% (ŷ, ỹ) is an observation

function that returns true if % = inter ∧ ŷ and ỹ are from the same experimental group

or if % = cross ∧ ŷ and ỹ are from different instances.

Example: Given the example above, the instantiated TTD features are

f ttd
′ ∪ f ttd′′ = {qpriorinter1{ŷ=OlfactoryEnsheathingGliaCell},

qpriorinter1{ŷ=MesenchymalStemCell},

qpriorcross1{ŷ=MesenchymalStemCell}1{ỹ=OlfactoryEnsheathingGliaCell}}

With these prior features, on the one hand, a model may favor common combinations of

compounds, such as combining a main with a supplementary treatment that is usually

applied in addition to inject the main compound. On the other hand, a model may

prune unusual combinations, such as two main treatments.

Treatment Cardinality Prior In order to capture the property cardinality of has-

TreatmentI∗, we capture the co-occurrence of a certain compound in context of the

number of other compounds applied to that specific group. Given a unary factor scope

117

ω′, the Treatment Cardinality Prior (TCP) features are

f tcpρe (ŷ, ~x, λ) = qtcpρ (ŷ)1{ŷ=e} (6.7)

∀e ∈ E ∀ρ ≥ 1 ∀ŷ ∈ ~y\λs.t.Φ(y) = hasCompoundE

where qtcpρ (ŷ) is an observation function that returns 1 if ρ−1 is equal to the cardinality

of hasTreatmentI∗ of the experimental group that is related to ŷ.

Example: For the given example, instantiated TCP features are

f tcp = {qprior card0 (ŷ)1{ŷ=OlfactoryEnsheathingGliaCell},

qprior card0 (ŷ)1{ŷ=MesenchymalStemCell}}

With these features, the model can learn that there are some treatments that are un-

likely to be applied alone, such as supplementary treatments like biological vehicles and

matrices.

Global Cardinality Distribution We capture the global assignment and distribu-

tion of treatments among all instantiated experimental groups in the context of their

cardinality to capture whether a treatment is applied to a single group only, shared

by multiple groups, or is not (yet) assigned at all. The Global Treatment Distribution

(GTD) features are computed for unary factor scopes ω′′. The set of GTD features are

fgtdcρe (ŷ, ~x, λ) = qgtdρ (ŷ)1{ŷ=e}1{λ=c} (6.8)

∀ŷ ∈ ~y\λ ∀e ∈ E ∀ρ ≥ 1 ∀c > 1

where qgtdρ (ŷ) is an observation function that returns 1 if ρ equals the number of exper-

imental groups that are related to the variable ŷ.

Example: For the given example, instantiated GTD features are:

fgtd = {qgtdρ=1(ŷ)1{ŷ=OlfactoryEnsheathingGliaCell}1{λ=2},

qgtdρ=1(ŷ)1{ŷ=MesenchymalStemCell}1{λ=2}}

Towards learning a joint cardinality distribution of experimental groups and treatments,

we compute Joint Cardinality Distribution (JCD) features as

f cjdcρ (λ) = qcjdρ 1{λ=c} (6.9)

∀ρ ≥ 1 ∀c > 0

118 Deep Domain Knowledge Graph Population

where qcjdρ is an observation function that returns 1 if ρ is equals to the number of

annotations that are possible candidates for the property P = hasTreatmentsI∗. For the

given example, the following feature is instantiated:

f cjd = qcjdρ=21{λ=2}

6.3 Special Case: Result

The prediction of pre-clinical outcomes in their full detail is the final step in our sys-

tem architecture. Due to the large number of dependent variables involved in a single

document (> 7000) and even in a single result instance (∼ 200), the application of our

proposed MCTC methods is not feasible. Instead, we propose an evidence-based heuris-

tic where an outcome is instantiated if there is sufficient evidence in a nearby context.

In essence, evidence involves the co-occurrence of at least one value for each property

of a Result, i.e. hasTargetGroupI , hasReferenceGroupI , hasTrend I , and hasInvesti-

gationMethodE , within a close sentence range. The values of the first two properties

are instances of type ExperimentalGroup. Their extraction is based on our MCTC

methodology defined in Chapter 5 and refined in Section 6.2. Whether and which exper-

imental group is mentioned in a sentence is determined by a group name annotation and

the resolved co-reference as described in Section 6.2.2. However, in some cases, group

names that are mentioned in the context of a result rather refers to a set of experimental

groups, e.g. “all treated groups”. In order to instantiate the correct number of results, it

is important to identify the set of experimental groups to which this group name refers

to. Our approach to multi-membership resolution is discussed in Section 6.3.1. Besides

experimental groups, evidence also involves instances of type Trend and entity anno-

tations of type InvestigationMethod. Our heuristic to their extraction is discussed

in detail in Section 6.3.2. Finally, our evidence-based heuristic for predicting instances

of type Result is formally described in Section 6.3.3.

6.3.1 Group Name Multi-Membership Resolution

A special case of group names are expressions with linguistic quantifiers that refer to a

set of groups rather than to a single group, such as “all treated groups”. While a single-

group name is more likely to be found in the context of the groups’ definition and related

properties, multi-group names usually occur in the context of outcomes and resolving

their multi-membership is an important aspect of the outcome extraction. Consider the

example sentence that describes multiple outcomes in a single sentence:

119

An improvement in the walking ability was observed in the comparison of

the control group to all treated groups.

In this example, the group name “all treated groups” refers to the set of experimental

groups receiving treatment(s). Consequently, a heuristic needs to instantiate multiple

results in which the control group is compared to each group in that particular set.

Although there are several approaches to address multi-membership clustering, e.g. the

fuzzy c-Means proposed by Dunn et al. [175] or implementations of expectation maxi-

mization proposed by Nasser et al .[176], they all require a rather heterogeneous semantic

data point description. In our case, a data point (group name) is solely based on their

linguistic surface form, since no other semantic features are available. This makes it

difficult for an approach to ’understand’ and exploit the semantic meaning of certain

words, e.g. ’all’ or ’treated’. Here, the knowledge of whether a group is treated or not

is only available in a broader context of predicting the entire experimental group.

Since classical k-Means optimizes clusters only for unique memberships, we apply a

post-processing to resolve possible multi-memberships. Our approach is based on a set

of empirically developed linguistic rules that cover most of the common quantification

modifiers generally observed in group names. We classify mentions into one of the fol-

lowing classes:

• Multiple Treatment Groups (MTG): A group name is classified into this class if it

contains:

– cardinality modifying keywords such as ’both’, ’all three|four’, ’or’ etc.

as e.g. in “compared to both animal groups”

– excluding keywords such as ’but’, ’except’, ’other’ as e.g. in “compared to

all treatments except for the OEC treatment”,

– keywords such as ’single’ or ’individual’ as e.g. in “compared to all groups

that received a single treatment”.

• All Control Groups (ACG): If a group name is not classified as MTG, we classify it

as ACG if it contains plurality keywords such as ’controls’, ’shams’, or excluding

keywords such as ’untreated’ as e.g. in “compared to all untreated groups”.

• All Treatment Groups (ATG): If the group name is not classified as ACG, we check

whether it contains keywords such as ’all...treated groups’ or ’treatments’

as e.g. in “compared to animals receiving treatments”.

• All Groups (AG): If the group name is not classified as ATG it is classified as AG

if it contains the keyword all. This class comprises all groups mentioned in the

study whether they are treated or untreated groups.

120 Deep Domain Knowledge Graph Population

Note that the following set of relationships hold here: MTG∩ACG = ∅, MTG ⊂ ATG,

ATG ⊂ AG, and ATG ∪ACG = AG. If a group name can not be classified into one of

the mentioned classes, it is assumed to be a single-group name.

6.3.2 Investigation Methods and Trends

Earlier in this section, we motivated the importance of predicting instances of Trend

and entity annotations of type InvestigationMethod. While both classes are used in

our evidence-based heuristic for instantiating outcomes, we noticed that our structured

inference approach does not work sufficient enough on their prediction. The reason

why our approach performs poorly in predicting investigation methods is that they

have no other properties (see Section 4.1) and their annotation is purely based on our

entity recognition and linkage approach (cf. Section 5.5) aiming at providing a high

coverage of annotations. These are subsequently filtered out by the MCTC component.

However, we do not apply MCTC to predict outcomes but rely on a heuristic. The

main reason we do not rely on MCTC for the prediction of instances of type Trend is

the high cardinality of trends per document that must be considered which is, so far,

intractable with our proposed statistical inference. We approach the extraction of trends

and investigation methods as a sentence classification. This is motivated by their usage

within our evidence-based heuristic, which only requires evidence at the sentence level.

This simplification allows us to formulate the task as a supervised multi-label sentence

classification problem on which we rely on the state-of-the-art machine learning tool

FastText [177]. In principle, each sentence in a document is tagged with one or multiple

entity types (labels) that either refer to Trend e.g. Decrease, Increase, Positive

etc. or to InvestigtaionMethod e.g. BBBTest, AxonalRegenerationTest etc.

Consider the example annotated sentence taken from Section 4.2.2:

[145] Animals with OEG and MSC co-grafts, even though they received

six injections, showed a statistically significantPositive improvementIncrease 6

weeks after SCI, with a final BBB scoreBBBTest of 9.18 ± 0.44.

The goal of our sentence classification would thus be to annotate this example sentence

with three annotations: Positive, Increase, and BBBTest.

The second step in our heuristic deals with instantiating instances of type Trend and

finding relations between the annotated entities. Motivated by a data set analysis show-

ing that about 87% of the property values of a trend are mentioned within a single

sentence as shown in Figure 6.3, we approach the prediction of trend instances with a

simple heuristic. An ’empty’ trend instance is instantiated for each sentence labeled

121

1 2 3
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

87.42%

12.13%

0.45%

Figure 6.3: Distribution of the number of sentences that are involved in a single trend.

with at least one related entity value. The properties of this instance are populated

with all matching entity types that are assigned to this sentence. In the rare case

where a single sentence is labeled with two entity types that are possible values for a

single-valued property, e.g. Increase and Decrease (both values for hasDifferenceE),

multiple trends are instantiated. Based on the example written above, a single trend

would be instantiated:

Trend1 := [

hasSignificanceE = 〈Positive〉,
hasDifferenceE = 〈Increase〉]

The annotation of the investigation method would simple be the entity type 〈BBBTest〉.

Intermediate Evaluation We train FastText with labeled sentences extracted from

our corpus for both previously mentioned classes individually. In the data sets, each

data point (sentence) is labeled with the ground truth set of entity types that occur in

the sentence, or with the NILL class label if no annotations are mentioned. For both

classes, FastText is trained for 50 epochs (empirically determined) and initialized with

pre-trained word embeddings of 200 dimensions computed on the PubMed biomedical

text corpus.

The investigation method data set contains 93 entity-types related to Investigation-

Method. There are a total of 3,376 training examples, split into 2,654 negative examples

(NILL-labeled sentences) and 722 positive examples (labeled sentences with one or more

entity types). The test data contains a total of 889 sentences, split into 787 NILL-labeled

sentences and 102 (multi-)labeled sentences. The multi-label classification on the test

data set yields an F1 score of 0.323 with 0.308 in precision and 0.341 in recall.

122 Deep Domain Knowledge Graph Population

The trend data set contains 21 entity types related to Trend. There are a total of 3,993

training examples, split into 2,274 negative examples and 1,719 positive examples. The

test data contains a total of 1,006 sentences, split into 755 NILL-labeled sentences and

251 (multi-)labeled sentences. The multi-label classification on the test data set yields

an F1 score of 0.455 with 0.543 in precision and 0.391 in recall.

6.3.3 Evidence-based Inference

The prediction of pre-clinical outcomes, i.e. instances of type Result, is the final

component in our pipeline architecture. Although this is the most complex class in our

data-model, we propose a fairly simple heuristic for the following two reasons: first, the

number of variables involved that need to be evaluated during inference is very high

(see Table 6.1) so that statistical inference is hardly feasible. Secondly, the prediction

of outcomes is based on unnamed entities that are not explicitly mentioned in the text.

Here, NERL-based approaches fail, but their instantiation is based more on evidence

found in a narrow context.

Consider the two example sentences from Section 4.2.2, on which we illustrate our

evidence-based heuristics.

[141] The control animalsExperimentalGroup2 achieved BBB scoresBBBTest of

7.08 ± 0.24 at the end of the experiment (9 weeks after SCI, 8 weeks after

transplantation) but never supported their body weight on their hind legs.

[145] Animals with OEG and MSC co-graftsExperimentalGroup1 , even though

they received six injections, showed a statistically significantPositive

improvementIncrease 6 weeks after SCI, with a final BBB scoreBBBTest of

9.18 ± 0.44.

In essence, we instantiate an instance when at least one group name, one trend, and one

investigation method occur in a single sentence. In the example, this is sentence 145.

In case the second experimental group does not occur in the same sentence, we search

the previous sentences for a group name that is not a member of the already assigned

group. In this example, it is found in sentence 141.

123

The informational evidence found in these two sentence signifies that a pre-clinical out-

come is described and an instance of type Result needs to be instantiated which is:

Result1 := [

hasInvestigationMethodE = 〈BBBTest〉
hasTrendI = Trend1 := [

hasSignificanceE = 〈Positive〉,
hasDifferenceE = 〈Increase〉]

hasTargetGroupI = ExperimentalGroup1 := [

hasGroupNamesL∗ = {“OEG and MSC co-grafts”}
...

]

hasReferenceGroupI = ExperimentalGroup2 := [

hasGroupNamesL∗ = {“control animals”}
...

]]

Formally, let s ∈ S be the set of sentence indices for a given input document. Further,

let G(s) be a function that returns the set of predicted instances of type Experimental-

Group that refer to the group name mentioned in the sentence with index s. Accord-

ingly, let T (s) be a function that returns the set of instances of type Trend, and I(s)

be a function that returns the set of entity annotations that refer to Investigtaion-

Method. Our heuristic that predicts the set of instances of type Result for a given in-

put document is provided in Algorithm 5. Here, the First-function returns the instance

of the experimental group whose co-referring name is mentioned first in the sentence.

The Second-function returns the instance of the experimental group whose co-referring

name is mentioned second in the sentence. The NotSameInstance-function returns

true if the two mentioned group names do not refer to the same experimental group

instance.

Proof Of Concept Evaluation In the following, we explore the potential of our

evidence-based heuristic by evaluating its performance in 4 different settings. In the

first setting, we evaluate the general idea of the heuristic (oracle). In this setting, we

assume that all property values, i.e. instances of ExperimentalGroup (including

group names) and Trend, as well as the annotations of InvestigationMethod are

correctly predicted by an oracle. This performance can be considered as an upper bound

performance our heuristic is able to reach. In the other three settings, we replace the

oracle prediction of each component with the actual prediction of our system, i.e. the

MCTC method for ExperimentalGroup and dependent properties, and the sentence

classification heuristics for the prediction of Trend and InvestigationMethod. We

124 Deep Domain Knowledge Graph Population

Algorithm 5 Evidence-based heuristic to predict pre-clinical outcomes from a given
input document.

1: input: S
2: initialize: R ← ∅, (R,Gref , Gtar)← ∅
3: for s in S do
4: for δ ∈ [0..5] do
5: if G(s− δ) 6= ∅ then
6: C ← G(s)× G(s− δ)× T (s)× I(s)
7: for 〈G1

s, G
2
s, Ts, Is〉 in C do

8: if notSameInstance(G1
s, G

2
s) then

9: R← new Result
10: R.hasTargetGroupI = First(G1

s, G
2
s)

11: R.hasReferenceGroupI = Second(G1
s, G

2
s)

12: R.hasTrendI = Ts
13: R.hasInvestigationMethodI = Is
14: R.add(R)

15: return: R

compute precision, recall, and F1 as formulated in Section 7.1. The performances in

each setting are shown in Table 6.4.

The performances show that our heuristic is in principle capable of reaching an F1 score

of about 0.80 which signifies that we have developed a reasonable heuristic. The highest

impact on the overall score has the ablation of the oracle prediction of the Experi-

mentalGroup. The score decreases about 18 points in F1 to 0.62. This is partially

explainable by our proposed fine-grained evaluation metric (cf. Section 7.1) which,

in essence, sums up the erroneous variables in a recursive manner through the nested

structures, and thus the (negative) impact increases with higher instance complexity

(cf. Table 6.1). Further, there are no huge differences between trend and investigation

method.

predicted F1 P R

ExperimentalGroup 0.620 0.540 0.729

Trend 0.784 0.808 0.761

InvestigationMethod 0.778 0.853 0.715

oracle 0.795 0.850 0.747

Table 6.4: Intermediate evaluation for extracting outcomes investigating the impact
of predicting the required evidence instead of relying on an oracle.

Chapter 7

Experiments and Evaluation

Chapter Overview: In this chapter, we describe our experiments and evaluation re-

sults on the overall problem of predicting pre-clinical outcomes in the domain of spinal

cord injury for populating deep domain knowledge graphs. We describe our fine grained

evaluation metric necessary for complex nested structures. We evaluate the performance

of the system in a real-world application scenario where no oracle is used and individu-

ally investigate the impact of the two main tasks our system needs to solve, the candidate

generation and the relation extraction. To understand the weaknesses and strengths of

our proposed system, we provide a detailed error analysis of each model, a comparison

with the reliability of the annotated data set and compare our system to a baseline model.

7.1 Evaluation Metrics and Experimental Settings

In this section, we describe the evaluation metric used to qualify the predicted output of

our system based on the data set described in Section 4.3. The same metric is used by

our objective function, as described in Section 5.2.1, and in the intermediate evaluation

of our evidence-based heuristic, as described in Section 6.3.3.

7.1.1 Metric

One challenge that we face in our work is to compare multiple instances predicted by

our automatic information extraction system with ground truth instances annotated by

domain experts. The main challenge here is to compare two sets of variable cardinality

containing deeply nested structures of variable depth. To compare a variable number of

125

126 Experiments and Evaluation

predicted instances to a set of ground truth instances, we need to compute an injective1

alignment of elements from the predicted set to elements from the ground truth set.

Although the pairwise comparison of elements is only of quadratic complexity, finding

the correct (best) alignment is a computationally intensive task, as it requires computing

all possible alignments, which grows factorial with increasing cardinality. Therefore, we

adopt a two-fold strategy here. For the case where the number of instances is less than 9,

we perform an exhaustive search in the space of all possible alignments, which requires

computing the Cartesian product of similarities over the two sets of instances. In the

case where there are more than 9 instances for a given class, we perform a beam search

with a beam size of 20 instead of an exhaustive search. Our fallback strategy is mostly

applied during the evaluation of instances with type Result and Trend (cf. Table 6.1).

Instance Evaluation The similarity of two instances is calculated recursively in a

bottom up fashion through the hierarchical structure as defined by the corresponding

data-model. In essence, the harmonic F1 score, as defined in Equation (7.1), is computed

in terms of true positives (tp), false positives (fp), and false negatives (fn) for each

individual (nested) instance, passing the computed values to the parent structure until

the topmost instance is reached.

prec =
tp

tp+ fp
, rec =

tp

tp+ fn
, F1 =

2tp

2tp+ fp+ fn
. (7.1)

Note that tp, fp and fn are defined differently for the three elements of an instance.

In particular, two entities are only compared based on their entity type, regardless of

their textual mention or position in the text. Two literals are compared based on their

(interpreted) textual surface form. For example, the following set of possible expressions

describing a particular weight of an animal are all equal {“200 g”,“200g”,“200 gram”,

“0.2 kg”}. If the interpretation is not available for certain literals only the surface forms

are compared.

Cardinality Evaluation In addition to comparing the properties of an instance, we

also evaluate our system in terms of predicting its cardinality. We compute precision, re-

call, and F1 by comparing the predicted cardinality cp with the ground truth cardinality

cg, where

tp = min(cp, cg), fp = max(0, (cp − cg)), and fn = max(0, (cg − cp)). (7.2)

1If either the predicted or the ground truth set are padded with empty elements so that both sets
have the same cardinality, a bijective alignment is required

127

Figure 7.1: Example showing the evaluation of deep nested instances. The left side
shows the ground truth injury instance while the right side shows the predicted instance.
Property dependencies are depicted as simple lines while value passing is depicted in
dashed lines. Overall, the comparison of the two instances sums up to 7 tp, 6 fp, and

4 fn resulting in a precision, recall and F1 of 0.54, 0.64, and 0.58, respectively.

Example As an example, consider two instances for the Injury class as shown in

Figure 7.1. The left side shows the ground truth instance, while the right side shows

a (partially correct) predicted instance. In the example, each correct match is marked

with a +1 tp and an incorrect match is marked with a +1 fp on the prediction side

(right). A false negative (a missing value in the predicted instance) is marked with a

+1 fn on the ground truth side (left).

In this example, the comparison of two entities based on their type is exemplarily shown

by the type of injury. Both the ground truth and the predicted injury are of type Com-

pression and thus counted as a true positive even though the surface forms are different,

namely “compression” and “balloon compression” for the prediction and ground truth,

respectively. A mismatched property value can be seen in the single-valued property

hasUpperVertebraeE , resulting in counting one false positive on the prediction side and

one false negative on the ground truth side. A positive example of comparing two literals

is given by the hasDosageL property for the aligned Ketamine instances. The literal on

the prediction side is “36 mg/kg extra corporal”, while the literal on the ground truth

side is “36 mg/kg”. However, both values can be automatically interpreted by our sys-

tem as value=36 and unit=mg/kg and are thus treated equal.

Note that in this comparison there is already a given alignment of values in the property

hasAnaestethicI∗. The ground truth set contains two instances g = {H1
g,K

0
g} while the

128 Experiments and Evaluation

Ketamine4p Halothane2p Xylazine3p

tp fp fn F1 tp fp fn F1 tp fp fn F1

Ketamine0g 2 1 0 0.67 0 2 2 0.00 1 2 1 0.40
Halothane1g 1 2 2 0.33 1 1 2 0.40 0 3 3 0.00
- 0 3 0 0.00 0 2 0 0.00 0 3 0 0.00

Table 7.1: Comparison of two unequally sized sets of instances of type Anaesthetic.
We provide tp, fp, fn, F1 for each comparison. The smaller set (ground truth) is padded

with empty instances. The best alignment is shown bold.

prediction contains three instances p = {H2
p,K

4
p, X

3
p}. This creates |g| ∗ |p| = 2 ∗ 3 = 6

pairs to compare: {〈H1
g, H

2
p〉, 〈H1

g,K
4
p〉 , . . . , 〈K0

g,X
3
p〉} and 3 additional pairs that emerge

through padding the smaller set with empty values: [〈−,H2
p〉, 〈−,K4

p〉, 〈−,X3
p〉]. For the

comparison of two (unequally sized) sets of instances (in this example instances of type

Anaesthetic), we apply the previously mentioned alignment strategy. The Cartesian

comparison of values is given in Table 7.1. The best alignment that is used in this

example is highlighted.

7.1.2 Settings and Interpretations

We evaluate our system for each main class with three different settings:

• Real-World Evaluation: We compute the performance of our system in a real-world

application scenario. This includes a variety of dependent predictions. First, at

the bottom of the architecture, the system needs to find entities and literals in

the text. Secondly, dependent on the extracted group name literals, the system

needs to resolve their co-references and multi-memberships. Thirdly, predicting

instances of each class along the hierarchical dependency structure of our system

architecture including i) the cardinality prediction of templates to fill, and ii)

the performing actual slot-filling (relation extraction) task. In this real-world

evaluation, we measure the performance of the system in an end-to-end fashion

that includes the propagation of potentially erroneous outputs from one component

to the next.

• Relation-Extraction Evaluation: In this setting, we study the impact of error prop-

agation on the overall performance by assuming that the candidate generations

for the properties are provided by an oracle. That is, given the data-model to

be predicted, all relevant entities and literals for entity-typed and literal-typed

properties, respectively, are correctly annotated in the document according to the

ground truth. Furthermore, all instances that are relevant candidates for instance-

typed properties are also correctly annotated and available as property candidates.

129

Thus, the task of the system reduces to performing relation extraction i.e. filling

the properties of the instance to predict with the correct candidates provided by

the ground truth annotations. In this setting, there are two important tasks for

the system. First, it needs to decide whether or not to fill a property with a value

and in case of multi-valued properties determine the correct number of values.

Secondly, it needs to select the correct value(s) from the set of possible candidates.

• Candidate-Generation Evaluation: In the previous setting, the candidates are pro-

vided by the ground truth annotations and the system only needs to perform rela-

tion extraction. In this setting, the relation extraction is done by some oracle and

only the candidates need to be provided by the system. Given a set of predicted

candidates, the relations between them, i.e., the filling of properties, is always cor-

rectly done according to the ground truth but only if the correct property value is

present in the set of generated candidates. This reduces the task of the system to

generate property candidates for entities and literals for entity- and literal-typed

properties, respectively, at the bottom of the hierarchy, and (recursively predicted)

instances for instance-typed properties.

The interplay of performances yield in these three settings shed light on the errors that

rather occur in the candidate generation or in the relation extraction and provide a

better understanding of the system’s overall ability to predict complete instances in

each step of the pipeline. Since the two tasks of candidate generation and relation

extraction (slot-filling) are strongly coupled, it is difficult to study their performances

separately. Instead, we propose to look at the results in 4 different combinations. Their

interpretation are briefly explained below:

1. A large difference between the relation-extraction and the real-world performance

indicates that either (a) the correct candidates are missing (errors in candidate

generation process) or (b) the relation extraction generally fails:

(a) An additional large difference between the real-world and the candidate-

generation performance is a negative sign that indicates that the relation

extraction generally fails. In this case, the system is not able to find the

candidates in the text, nor predict the relations if the candidates are found.

An example provides the hasDeliveryMethodL property in Table 7.6.

(b) An additional small difference between the real-world and the candidate-

generation performance indicates that most errors are due to missing candi-

date values which the system is not able to locate in the input text. When

130 Experiments and Evaluation

investigating differences in instance-typed properties they show the actual im-

pact of error propagation. An example provides the hasInjuryDeviceI prop-

erty in Table 7.7.

2. A small difference between the relation-extraction and the real-world performance

indicates that the candidate generation process generally provides the correct val-

ues while the relation extraction generally produces either (a) more errors or (b)

less errors:

(a) An additional large difference between the real-world and the candidate-

generation performance indicates that the relation extraction rather fails.

An example provides the hasLowerVertebraeE property in Table 7.4.

(b) An additional small difference between the real-world and the candidate-

generation performance is a positive sign that indicates that the system’s

performance is close to the respective upper bounds. An example provides

the hasGenderE property in Table 7.2.

7.2 Experimental Results and Error Analyses

In the following section, we present our evaluation results for each main class. The

reported performances are the macro F1-means of a 10-fold cross-validation, i.e. 90%

training data and 10% test data. We mainly focus on the evaluation results obtained

in the real-world application scenario and discuss challenges and common prediction

errors. In addition, we briefly relate the performance to the two upper bound settings.

Finally, we compare our real-world performance for predicting entity-typed properties

to a majority vote baseline model as well as to the reliability of the data set as given by

the inter annotator agreement scores.

7.2.1 Organism Model

The organism model, as introduced in Section 4.1.1.1, is the subject of a pre-clinical

experiment that is injured and to which a treatment is applied. Each instance of type

OrganismModel is described by two literal-type properties hasWeightL and hasAgeL

and three entity-type properties hasSpeciesE , hasAgeCategoryE and hasGenderE , which

have 25, 4, and 4 possible candidates corresponding to the data-model. Table 7.2 sum-

marizes the performances.

131

OrganismModel real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

hasAgeL 0.603 0.636 0.573 0.911 0.917 0.906 0.697 0.738 0.660

hasAgeCategoryE 0.888 0.898 0.878 0.998 1.000 0.997 0.918 0.928 0.908

hasGenderE 0.940 0.951 0.929 0.983 0.983 0.983 0.952 0.967 0.938

hasOrganismSpeciesE 0.848 0.860 0.837 0.913 0.920 0.907 0.887 0.900 0.874

hasWeightL 0.934 0.942 0.926 0.980 0.980 0.980 0.947 0.955 0.939

cardinality 0.982 1.000 0.965 0.993 0.995 0.991 0.982 1.000 0.965

overall 0.906 0.936 0.878 0.973 0.995 0.951 0.928 0.943 0.913

Table 7.2: Evaluation result for predicting instances of type OrganismModel.

Our system yields a generally a high performance in F1 ranging between 0.60 for hasAgeL

to 0.94 for hasGenderE . The cardinality is predicted with an F1 score of 0.98 which

leads to an overall extraction performance of F1 = 0.91 in the real-world application

scenario.

These values show that the prediction of organism models is very accurate. The pre-

diction clearly benefits from the fact that most relevant information of an instance is

mentioned within a single sentence as shown in the real-world example from Section 4.2.

Another observation is the limited linguistic variance for many property values, which

increase the accuracy of the annotation process for entities and literals. For example

there are not many ways to express the gender (male vs female) or age category (adult,

mature, young) of an animal. Candidates of high accuracy consequently lead to higher

accuracy in the subsequent structure prediction.

In principle, there are no major differences when comparing performance in the real-

world with the other two settings. Compared to the candidate-generation evaluation,

the only large difference with 31 points in F1 is observed for the property hasAgeL.

This difference can be explained by the large number of semantically homogeneous age

candidates that, however, are used in different contexts. For example, the literal “two

weeks” is a probable age of young animals, but also a probable time span between two

experimental observations. This contrasts with candidates of the other literal property

“hasWeightL. Here candidate values, i.e. literals of type weight, are more heterogeneous,

e.g. “300 g”, which is a common rat weight while “0.15 g” is certainly not but rather

a common injury device attribute. In these cases, the prediction clearly benefits from

the proposed data type features. The comparison of the real-world evaluation with

the relation-extraction setting underscores the observation that the main problem in

predicting the correct age is an erroneous relation extraction rather than an inadequate

candidate provision.

In the real-world scenario, prediction errors can be roughly divided into three categories:

132 Experiments and Evaluation

• Encoding Errors: The proposed recognition heuristic often fails at interpreting

encoding errors in the document for example “2Y3 mo old” (correct: 2–3 mo old)

or “220,ào240 g” (correct: 220–240 g). A more sophisticated entity recognition

and linking approach could eliminate such errors.

• Underspecified Annotations: The structured inference system is trained to favor

leaf classes of SCIO, i.e. to favor the more specific entity types over the less specific

ones. However, not all ground truth annotations are labeled with a leaf class. For

example, rat species not covered by the ontology are labeled with the less specific

type RatSpecies. Such errors can be reduced as the coverage of the ontology

increases.

• Cardinality Errors: There is a very strong bias towards predicting a single organ-

ism model per document in the data set and about 95% of the documents have

only a single organism model mentioned. However, in a few cases there are two

(11 documents) or even three and four organism models (1 document each) that

our system fails to predict.

7.2.2 Injury Device

The injury device is an instrument used to injure the spinal cord of a subject in an

experimental study, as introduced in Section 4.1.1.5. With respect to the extraction of

such devices, the most important task is to predict the actual type, which is reflected in

the typeE property. There are 28 different devices in our data-model, the most common

are WeightDrop, Scissors, and Clip. Depending on the type of device, specific

property sets need also be predicted. For example, a weight drop is described by a

weight and a distance and/or a force, while a balloon is described by a volume. The

evaluation results for predicting injury devices are summarized in Table 7.3.

InjuryDevice real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

typeE 0.720 0.723 0.717 0.903 0.908 0.899 0.878 0.884 0.873

hasDistanceL 0.442 0.442 0.442 0.694 0.694 0.694 0.769 0.769 0.769

hasDurationL 0.000 0.000 0.000 0.333 0.333 0.333 0.200 0.200 0.200

hasForceL 0.655 0.655 0.655 0.655 0.655 0.655 0.931 0.931 0.931

hasVolumeL 0.200 0.200 0.200 0.600 0.600 0.600 0.000 0.000 0.000

hasWeightL 0.407 0.407 0.407 0.622 0.622 0.622 0.475 0.475 0.475

cardinality 0.994 1.000 0.988 0.903 0.908 0.899 0.907 0.913 0.902

overall 0.681 0.662 0.702 0.876 0.908 0.846 0.850 0.834 0.866

Table 7.3: Evaluation result for predicting instances of type InjuryDevice.

133

In the real-world scenario, our system yields an F1 score of 0.72 for predicting the type

of injury device. Extracting the properties hasDistanceL, hasForceL, hasVolumeL, and

hasWeightL yields an F1 value of 0.44, 0.66, 0.20, and 0.41, respectively. No correct

predictions are made for the property values of hasDurationL, resulting in an F1 value

of 0.00. The cardinality of devices is predicted with a nearly perfect F1 score of 0.99,

leading to a total extraction performance of F1 = 0.68.

Comparing the real-world performances with the two upper bound settings, two ob-

servations stand out. First, the prediction errors for hasForceL and hasDistanceL are

largely due to incorrect literal extraction, which translates into a much higher score

in the relation-extraction setting, while the prediction of hasWeightL and hasVolumeL

would benefit from stronger relation extraction. Second, note that our system is unlikely

to make correct predictions for both hasVolumeL and hasDurationL. An analysis shows

that most of the errors in this context are due to incorrect prediction of the type of injury

device, which is due to the strong bias of the data set towards devices such as Weight-

Drop and Scissors. In fact, there are only 6 injury devices of type Balloon and 7

times Clip, which have the properties hasVolumeL and hasDurationL, respectively. As

a result, there is not enough training and test data available to properly evaluate them,

which is also expressed by the poor performance of their upper bounds.

Most errors in the real-world setting fall into four categories:

• Spurious Ground Truth Annotations: In some cases, ground truth annotations are

spurious, leading to errors in prediction. For example, the ground truth annotation

of type distance on the token “injections” is obviously spurious and cannot be

predicted correctly, resulting in an error.

• Cascading Errors: The type of properties the system has to predict depends on

the type of the inferred injury device. If it is a weight drop, a property hasWeightL

must be inferred; if the injury device is a balloon, a property hasVolumeL must be

inferred and so on. Errors in predicting the main type thus lead to further errors,

as the model is forced to fill in values for properties that do not apply.

• Disregarding Document Structure: Some errors arise from inferring property values

from sections of the study that are unlikely to contain this information, e.g. sec-

tions such as related work or references. An interesting observation is that these

types of sections have a high density of information compared to their length.

Incorporating hard constraints could solve this problem.

• Wrong Context: In some cases, candidates for the literal-typed attributes are taken

from the wrong context. In most of these errors, the model favors candidates that

134 Experiments and Evaluation

belong to other SCIO-related instances, such as anesthesia attributes or of cited

devices.

7.2.3 Injury Location

The injury location, as introduced in Section 4.1.1.6, is the area of the spine that is

damaged during the surgical procedure. The main distinction that is made by the IE

system is reflected in the typeE property, whose value corresponds to either a single

vertebra or a complete vertebral region that was damaged. In the latter case, the

vertebral area is defined by two properties: hasLowerVertebraE and hasUpperVertebraE ,

which indicate the boundary of the injured area. All three properties are of entity type

receiving the same set of candidates for which the corresponding data-model contains

26 different values. The prediction performances are summarized in Table 7.4.

InjuryLocation real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

typeE 0.627 0.646 0.609 0.982 0.985 0.980 0.893 0.914 0.872

hasLowerVertebraeE 0.235 0.235 0.235 0.897 0.897 0.897 0.235 0.235 0.235

hasUpperVertebraeE 0.397 0.397 0.397 0.912 0.912 0.912 0.382 0.382 0.382

cardinality 0.979 1.000 0.958 0.997 1.000 0.995 0.979 1.000 0.958

overall 0.530 0.544 0.517 0.973 0.985 0.962 0.803 0.867 0.747

Table 7.4: Evaluation result for predicting instances of type InjuryLocation.

In the real-world evaluation, the type of injury location, which determines whether a

single vertebra or an entire region is damaged, is predicted with an F1 value of 0.63. The

properties hasUpperVertebraE and hasLowerVertebraE are extracted with an F1 score

of 0.40 and 0.26, respectively. The system yields an F1 score of 0.98 for predicting the

cardinality of the injury locations, resulting in an overall F1 score of 0.53.

The comparison between the real-world setting and the upper bound performances shows

that most of the property errors are due to an incorrect relation extraction, as can be

seen from the high performance in the candidate-generation setting, while the entity

candidates are almost entirely provided by our approach leading to F1 score around 90

for both properties. This is further underlined by the fact that the real-world scores

do not change compared to the relation-extraction scores. Our intuition is that this is

due to the rather simple linguistic expression of the single vertebra candidates, such as

“T1 ” refers to the first vertebra at thoracic level, “C2 ” refers to the second cervical

vertebra, etc. The strong cardinality prediction is favored by the bias of the data set.

Approximately 91% of the documents contain only a single injury location instance,

135

while 13 documents contain 2, and 2 documents contain 3 and 4 instances. The system

essentially follows this bias during prediction and, therefore, performs quite well.

Real-world prediction errors can be divided into two categories:

• Cascading Errors: Similar to the injury device, the properties can only be correctly

classified if the type of the injury location is also correct. A major difficulty that

arises in this context are discontinuous annotations that are not currently captured.

For example, consider the mention “7–9th”, which indicates a range of vertebrae,

namely from the 7th to the 9th thoracic spine. However, the standard tokenizer we

propose decomposes the phrase into three tokens “7 ”, “–”, and “9th”. The first

token is no longer identifiable as a thoracic vertebra and is not labeled correctly

by our recognition approach.

• Invalid Vertebral Range In a few cases, the predicted range of a vertebra is invalid

from a semantic point of view. E.g. T11-T11 (same vertebra) or T11-T6 (lower

vertebra is below upper vertebra). This problem can be overcome by modeling

appropriate range constraints.

7.2.4 Delivery Method

The delivery method, as introduced in Section 4.1.1.4, specifies how a particular drug

or anesthetic is administered to the animal subject in an experiment. The type of

delivery, e.g. InjectionDelivery or InhalationDelivery, is stored in the typeE

property and is the most important attribute to be predicted in this context. There are 7

different delivery method types included in the corresponding data-model. Each instance

is further described by two properties: hasDurationL and hasLocationsE∗. Note that the

location property is of entity type and its candidates do not depend on the previously

described injury locations, as they are anatomically different. The data-model contains

78 candidate locations. The prediction performances are given in Table 7.5.

DeliveryMethod real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

typeE 0.778 0.706 0.867 0.946 0.965 0.928 0.782 0.903 0.690

hasDurationL 0.000 0.000 0.000 0.107 0.107 0.107 0.000 0.000 0.000

hasLocationsE∗ 0.298 0.262 0.345 0.621 0.681 0.570 0.486 0.588 0.414

cardinality 0.838 0.756 0.939 0.946 0.965 0.928 0.795 0.918 0.701

overall 0.525 0.484 0.574 0.773 0.846 0.711 0.618 0.754 0.523

Table 7.5: Evaluation result for predicting instances of type DeliveryMethod.

136 Experiments and Evaluation

Our system yields a strong F1 value of 0.78 for the prediction of the delivery method

type and poor F1 values of 0.0 and 0.30 for the two properties hasDurationL and hasLo-

cationsE∗, respectively. Cardinality prediction shows an F1 value of 0.84 with a high

recall of 0.94 and a comparatively low precision of 0.76. This results in an overall F1

performance of 0.53.

Similar to the injury devices, the evaluation of the literal-typed property hasDurationL

does not show correct predictions in the real-world at all. However, the performances in

both settings for the upper bounds are also poor, showing an F1 = 0.11 in the candidate-

generation evaluation and F1 = 0.00 in the relation-extraction evaluation, emphasizing

the general difficulty of predicting durations.

The errors made in the real-world evaluation can be divided into two categories:

• Spurious Ground Truth Annotations: As mentioned above, errors of this type are

due to erroneous ground truth annotations. This type of error is mainly responsible

for poor performance in duration prediction. An example of such an incorrect

annotation of a duration is “100 nl/min”, which represents a dosage and not a

duration.

• Cardinality Errors: The instance cardinality can be predicted with a high recall

of 0.94, which means that the correct number of instances is generally overes-

timated. Compared to the previous classes, this cardinality distribution draws

a more heterogeneous histogram. 83 documents contain only a single instance,

while 57 documents mention 2 instances, and 23 documents mention 3 instances,

as shown in Figure 7.2.

1 2 3 4 5
0

50

100

150

200

250

300

83

57

23
3 0

245

24
2 2 1

DeliveryMethod hasLocations

number of instances / property values

nu
m

be
r

of
 d

oc
um

e
nt

s
/ i

ns
ta

nc
es

Figure 7.2: Cardinality histogram showing the distribution of instances per document
and property values per instance for the class DeliveryMethod and the property

hasLocationsE∗, respectively.

Investigating the property cardinality distribution of hasLocationsE∗ shows that

about 90% of the instances contain only a single property value. Thus, the errors

137

in predicting the multi-valued property are mainly due to difficulties in relation

extraction (cf. lower candidate-generation evaluation performance) and are only

partially due to missing candidates. This is also expressed in the higher relation-

extraction evaluation performance.

Further, their incorrect prediction has a significant impact on the overall system

since an incorrect delivery method leads to errors along the entire hierarchical

structure predicted by the information extraction system. In fact, an incorrect

delivery method penalizes the overall score 2 times, as it is a property value of the

two classes Treatment and Anaesthetic.

7.2.5 Anaesthetic

The anaesthetic, as introduced in Section 4.1.1.3, is the substance of anesthesia ad-

ministered to a subject during surgery. An instance is specified mainly by the type of

anesthetic, e.g. Ketamine or SodiumPentobarbital, which is stored in the typeE

property. Our data-model contains 9 different anesthetic types. In addition, each in-

stance is refined by the literal-type property hasDosageL and the instance-type property

hasDeliveryMethod I as previously evaluated in Section 7.2.4. The evaluation results re-

garding anaesthetics are given in Table 7.6.

Anaesthetic real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

typeE 0.655 0.806 0.552 0.973 0.978 0.969 0.805 0.981 0.683

hasDeliveryMethodI 0.362 0.448 0.303 0.769 0.773 0.765 0.663 0.807 0.563

hasDosageL 0.351 0.438 0.293 0.840 0.878 0.806 0.225 0.263 0.197

cardinality 0.818 1.000 0.692 0.994 1.000 0.988 0.818 1.000 0.692

overall 0.471 0.562 0.406 0.886 0.932 0.844 0.680 0.917 0.540

Table 7.6: Evaluation result for predicting instances of type Anaesthetic.

The most important property for anesthetics is typeE , which can be predicted with

an F1 score of 0.66 at a comparatively high precision of 0.81 and a low recall of 0.55.

Literal values of hasDosageL can be correctly predicted with an F1 score of 0.35, while

for hasDeliveryMethod I the system yields a performance of F1 = 0.36. The cardinality

shows a perfect precision of 1.0 and a recall of 0.69, leading to an overall prediction of

F1 = 0.47.

Comparing the real-world evaluation with the upper bound performance, we find that

most of the errors are due to relation extraction errors shown by the strong candidate-

generation performance.

138 Experiments and Evaluation

As the hasDeliveryMethod I property is populated with previously extracted candidates,

errors made during the delivery method extraction are propagated to the anesthesia

prediction. The impact of error propagation can be seen by comparing the real-world to

the relation-extraction performance which is about 1− 0.36
0.66 = 45% (∼30 points in F1).

The errors in the real-world evaluation can be classified into three main categories:

• Cardinality Errors: The cardinality histogram in Figure 7.3 shows that about 91%

of the documents have either one (69 cases) or two (80 cases) instances. We archive

perfect precision in cardinality prediction, which means that our system tends to

underestimate the true number of instances.

1 2 3 4
0

10

20

30

40

50

60

70

80

90

69

80

12

3

Anaesthetic

number of instances

nu
m

be
r

of
 d

oc
um

e
nt

s

Figure 7.3: Cardinality histogram showing the distribution of instances per document
for the class Anaesthetic.

Due to the fine-grained evaluation metric, the errors in determining the number

of anaesthetics have a certain negative impact on the overall score.

• Error Propagation: An anaesthetic is described in terms of a delivery method

that the anaesthetic is linked to. An error in predicting the delivery method is

propagated to the anaesthetic, correspondingly negatively affecting the F1 score

of the anaesthetic.

• Unrecognizable Annotations: Mentions of dosages can be quite complex e.g. “0.75mg

in 150 ¬µl per 200 g body weight” which are not recognizable and interpretable by

our proposed heuristic.

7.2.6 Injury

A spinal cord injury, as introduced in Section 4.1.1.2, describes the process leading to

the lesion of the subjects’ spinal cord. In this context, predicting the type of injury is

the most important information to be inferred by our system. The corresponding data-

model contains 17 different injury types, the three most common are: Compression,

139

Contusion, and Transection. In addition, an injury is refined by three single-valued

properties hasInjuryIntensityE with 4 distinct candidate values, hasInjuryDeviceI and

hasInjuryLocationI , and the multi-valued property hasAnaesthesiaI∗, as evaluated pre-

viously in Section 7.2.2, 7.2.3, and 7.2.5, respectively. The system performances of

predicting the injury is summarized in Table 7.7.

Injury real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

typeE 0.636 0.655 0.618 0.979 0.980 0.978 0.891 0.920 0.864

hasAnaesthesiaI∗ 0.401 0.480 0.345 0.454 0.531 0.397 0.803 0.994 0.673

hasInjuryDeviceI 0.642 0.628 0.657 0.645 0.628 0.662 0.915 0.925 0.906

hasInjuryIntensityE 0.312 0.319 0.305 0.955 0.964 0.946 0.762 0.788 0.737

hasInjuryLocationI 0.474 0.487 0.462 0.487 0.488 0.486 0.948 0.980 0.918

cardinality 0.970 1.000 0.942 0.999 1.000 0.998 0.970 1.000 0.942

overall 0.485 0.509 0.464 0.637 0.786 0.536 0.855 0.974 0.762

Table 7.7: Evaluation result for predicting instances of type Injury.

Our system can predict the injury type with an F1 score of 0.66. The prediction of the

single-valued properties hasInjuryIntensityE , hasInjuryDeviceI , and hasInjuryLocationI

show a performance of F1 = 0.31, F1 = 0.64 and F1 = 0.47, respectively, while the

prediction of the multi-valued property hasAnaesthesiaI∗ yields an F1 of 0.40. With

a near-perfect cardinality prediction of F1 = 0.97, the overall performance sums up to

F1 = 0.49, led by a precision of 0.51 and a slightly weaker Recall of 0.46.

When comparing the real-world evaluation with the two upper bounds, it can be seen

that the relation-extraction setting shows higher performance than the candidate-generation

setting for all but the entity-typed property hasInjuryIntensityE . This effect again em-

phasizes the influence of error propagation. In contrast, most of the errors for the two

entity-typed properties typeE and hasInjuryIntensityE are more likely due to incorrect

relation extraction.

Errors for predicting the injury in the real-world setting can be classified into three

categories:

• Error Propagation: Three out of four properties are filled with previously pre-

dicted instances of their respective types. Errors in their prediction are passed on

to the injury, resulting in propagation errors. Their individual effects are approx

30% (∼27 points in F1) for hasInjuryDeviceI , 50% (∼47 points in F1) for hasIn-

juryDeviceI , and 50% (∼40 points in F1) for hasAnaesthesiaI which performance

additionally suffers from cardinality errors.

140 Experiments and Evaluation

1 2 3 4
0

20

40

60

80

100

120

140

160

180

200
179

22

1 0

92 92

11
3

Injury hasInjuryAnaesthesia

number of instances / property values

nu
m

be
r

of
 d

oc
um

e
nt

s
/ i

ns
ta

nc
es

Figure 7.4: Cardinality histogram showing the distribution of instances per document
and property values per instance for the class Injury and property hasInjuryAnaes-

thesiaI∗, respectively.

• Cardinality Errors: The cardinality histogram in Figure 7.4 shows a strong bias

towards a single instance per document, which explains the very strong cardinality

performance. Only in 21 cases there are two injuries mentioned in one document.

The cardinality property for hasAnaesthesiaI∗ shows that most injury instances

have one (92 cases) or two (92 cases) anesthesia values. This more balanced distri-

bution also negatively affects recall performance for the property prediction. This

occurs especially when anesthesia is described as a general procedure rather than

in the close context of the injury.

• Area vs. Selective Location: A large negative influence on the location property

prediction can be attributed to the semantic relationship between a vertebral region

and a single vertebra. The system must decide whether a mention describes either

a single vertebra or a part of a larger area. For example, consider the mention

“7-8T”, which clearly describes a range of thoracic vertebrae 7T to 8T. However,

the “7 ” token alone is hardly recognized as a vertebra. On the other hand, “8T”

is already a valid injury location and is thus favored by our system as a single

vertebra location instead of being part of a larger area.

7.2.7 Treatment

A treatment, as introduced in Section 4.1.1.7, is the therapeutic intervention for spinal

cord injuries applied to the subject in a study. In this work, we focus only on treatments

that involve the administration of a compound. Since only 2% of the treatments in our

data set are of other types, such as surgery or rehabilitative treatments, etc., this limita-

tion seems justified. However, the erroneous prediction of other treatments is correctly

reflected in the evaluation results.

If we focus on instances with type CompoundTreatment, the most important prop-

erty to predict is hasCompoundE . Our data-model contains 100 different types, including

141

non-leaf entities covering less specific compounds such as Matrix or Substance. Each

instance is further refined by hasDeliveryMethod I , as evaluated in Section 7.2.4, has-

DosageL, hasDirectionE∗, and hasApplicationInstrumentE , where for the latter two the

number of distinct candidate values is 13 and 15, respectively.

Treatment real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

hasApplicationInstrumentE 0.357 0.375 0.341 0.699 0.784 0.630 0.545 0.622 0.485

hasCompoundE 0.343 0.411 0.294 0.892 1.000 0.805 0.700 0.862 0.589

hasDeliveryMethodI 0.298 0.348 0.260 0.366 0.436 0.315 0.666 0.784 0.579

hasDirectionE∗ 0.000 0.000 0.000 0.897 0.957 0.844 0.208 0.327 0.153

hasDosageL 0.061 0.063 0.060 0.247 0.348 0.191 0.523 0.545 0.503

cardinality 0.809 0.954 0.702 0.999 1.000 0.998 0.810 0.753 0.876

overall 0.252 0.347 0.198 0.626 0.868 0.489 0.540 0.613 0.483

Table 7.8: Evaluation result for predicting instances of type Treatment.

For the overall prediction of treatment instances, our system yields an F1 score of 0.25,

mainly due to high cardinality prediction of 0.81 and intermediate performance for has-

CompoundE , hasDeliveryMethod I , and hasApplicationInstrumentE with 0.34, 0.30, and

0.36 in F1, respectively. Poor performances are obtained for the multi-valued property

hasDirectionE∗ and the literal-typed property hasDosageL with 0.00 and 0.06 in F1,

respectively.

The cardinality histogram for both instances per document and values per property

hasDirectionE∗ is given in Figure 7.5. The instance cardinality shows a Gaussian distri-

bution around 2, while the property cardinality is strongly biased also at 2. In the real-

world evaluation, the prediction of instance cardinality shows a very strong precision of

0.95, which means that the system tends to underestimate the cardinality of treatments

per document. Comparing the prediction performance of the multi-valued property with

the upper bound settings, we see that most of the errors are due to incorrect relation

extraction. In the candidate-generation evaluation, the system performs with F1 = 0.90.

This contrasts with the prediction of hasDosageL, which is particularly poor in candi-

date generation. The impact of the propagated errors for hasDeliveryMethod I is around

52% (∼37 points in F1), which is similar to that of Anaesthetic.

The main errors in the real-world setting can be classified into four categories:

• Missing Context: A main error is that dosage annotations are used as property

fillers for multiple treatments without considering their linguistic context or the

corresponding compound applied. This leads to errors where the dosage-compound

combination is very unusual. For example, dosages expressed as percentages, e.g.

142 Experiments and Evaluation

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

7

42
34

19 18
11

6 3 1 1

20

120

8 5
0 0 0 0 0 0

Treatment hasDirection

number of instances / property values

nu
m

be
r

of
 d

oc
um

e
nt

s
/ i

ns
ta

nc
es

Figure 7.5: Cardinality histogram showing the distribution of instances per docu-
ment and property values per instance for the class Treatment and property hasDi-

rectionE∗, respectively.

0.001%, may be used for solutions (e.g. PBS) but not for solid compounds (e.g.

tissue matrices) for which dosages are typically expressed in the form: n × m

mm. Thus, the preference for the same dosage for multiple treatments suggests

that the system is not able to properly use contextual information. This could

be addressed by incorporating syntactic knowledge or by incorporating domain

knowledge to ensure that certain types of dosages are only applicable to certain

types of treatments, e.g. dosage of a gas mixture is not applicable to a liquid

treatment, etc.

• Empty Treatments: Although the cardinality score is quite high, the error analysis

shows that many treatments instantiated during inference remain largely empty

in the sense that property values are not predicted. This could be solved by

forcing the system to actually predict at least some core properties of the treatment

(e.g. the compound). However, this cannot be enforced for all properties, since

sometimes the information is not contained in the text.

• Underspecified Annotations: The system is trained to favor more specific entity

types over less specific ones. However, not all annotations in the ground truth are

labeled with a leaf class, e.g. if the ontology does not contain the desired entity

type. Most errors can be attributed to underspecified connections. For example,

the mention “ONFs” (short for: olfactory nerve fibroblasts) is annotated with the

very general class Cell, whereas there is, for example, an entity type for olfactory

ensheathing glial cells (short for: “OEC ”).

• Descriptive Ground Truth Annotations: Some ground truth annotations of dosages

are complex in their linguistic expressiveness, e.g. “5×104 cells of each in 5 µL

DMEM, and for the mixed suspension a half concentration of each was made”.

Such dosage annotations are not recognizable and interpretable by our proposed

literal recognition heuristic.

143

ExperimentalGroup real-world candidate-generation relation-extraction

Macro F1 P R F1 P R F1 P R

hasInjury 0.330 0.340 0.320 0.342 0.352 0.333 0.754 0.754 0.754
hasOrganismModel 0.580 0.584 0.577 0.621 0.625 0.618 0.755 0.755 0.755
hasTreatment 0.177 0.214 0.151 0.193 0.250 0.157 0.558 0.562 0.554

cardinality 0.847 0.790 0.914 0.895 1.000 0.810 0.891 0.856 0.928

overall 0.374 0.423 0.335 0.424 0.531 0.353 0.711 0.717 0.705

Table 7.9: Evaluation result for predicting instances of type ExperimentalGroup.

7.2.8 Experimental Group

The experimental group, as introduced in Section 4.1.1.8, is a collection of an organism

model, an injury model, and a treatment model in the context of a study. Each instance

is thereby mainly described by the three instance-type properties hasOrganismModel I ,

hasInjuryI and the multi-valued property hasTreatmentI∗, as previously evaluated in

Section 7.2.1, 7.2.6 and 7.2.7. Note that we have already evaluated the group names

in Section 6.2 and therefore omit the performances of this auxiliary property in the

following. The performances of our system for predicting the experimental groups of a

study are summarized in detail in Table 7.9.

Our system yields an overall performance of F1 = 0.37 for predicting experimental

groups in the real-world setting. Considering the wide spread cardinality distribution

shown in Figure 7.6, the cardinality prediction shows a strong F1 score of 0.85 with a

high recall of 0.91 and a slightly lower precision of 0.79, indicating that the system tends

to overestimate the number of distinct experimental groups mentioned in a single trial.

Treatment prediction achieves an F1 score of 0.18 with a precision of 0.21 and a recall

of 0.15. The extraction of the organism model and injury yield F1 scores of 0.62 and

0.34, respectively.

The comparison of the real-world setting to the upper bounds shows that generally

the impact of candidate generation, and thus error propagation, is higher than for the

relation extraction. In fact, relying on a perfect relation extraction increases the score

for predicting the properties in F1 by between 1 and 4 points only.

The errors made in predicting the experimental groups fall into four main categories:

• Error Propagation: The largest source of error can be attributed to errors prop-

agated from previous extractions. For example, consider the hasOrganismModel I

property filled with a previously predicted instance of type OrganismModel,

which yielded an overall F1 performance of 0.91 having an impact of about 23%

(∼ 17 points in F1). The impact of propagation errors for hasInjuryI is about

144 Experiments and Evaluation

1 2 3 4 5 6 7 8
0

50

100

150

200

250

6

42
25 18

8 7 2 1

191

89

32
21

6 2 0 0

ExperimentalGroup hasTreatment

number of instances / property values

nu
m

be
r

of
 d

oc
um

e
nt

s
/ i

ns
ta

nc
es

Figure 7.6: Cardinality histogram showing the distribution of instances per document
and property values per instance for the class ExperimentalGroup and property

hasTreatmentI∗, respectively.

56% (∼42 points in F1) while for hasTreatmentI∗ is about 69% (∼38 points in F1)

which additionally suffers from cardinality errors.

• Unfilled Properties: However, the hasOrganismModel I population results in a F1

performance of ’only’ 0.62. This lower score is due to the fact that in many cases

the system does not predict a value for certain properties. This could certainly be

mitigated by forcing the system to always make a prediction. There are similar

observations for hasInjuryI . The poor performance in predicting hasTreatmentI∗

is mainly due to performance problems in predicting the treatments themselves

(F1 = 0.25) and partly due to determining the cardinality.

• Cardinality Errors: Predicting the cardinality of experimental groups, i.e. how

many distinct groups are involved in a study, yields a very strong performance

of 0.85 in F1, although the cardinality distribution is quite widespread. Most

cardinality errors occur for the multi-valued property hasTreatmentI∗.

• Wrong Group Name Membership: Correctly predicting the membership of a group

name to its corresponding experimental group plays an important role in both

cardinality prediction and property assignment. Some errors are due to the dif-

ficult task of group name extraction and clustering, which serve as the basis for

instantiating the correct number of experimental groups. As an illustrative ex-

ample, consider the decision of whether two mentioned compounds belong to one

treatment or to separate treatments. An incorrectly clustered group name, e.g.

assigning the group names “OEC ” and “OEC and MSC ” to the same cluster,

can have a large impact on property prediction, since not only treatments re-

lated to OEC (OlfactoryEnsheathingGliaCell) but also related to MSC

(MesenchymalStemCell) are considered correct. Indeed, an important task

that the information extraction system has to solve is to find out whether two

compounds mentioned represent a composition or belong to two different groups.

145

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 37 39 42 58 64
0

1

2

3

4

5

6

7

8

9

10

Trend InvestigationMethod

number of instances

nu
m

be
r

of
 d

oc
um

e
nt

s

Figure 7.7: Cardinality histogram showing the distribution of instances per document
for the classes Trend and InvestigationMethod, respectively.

In the above example, OEC and MSC are considered as separate treatments. How-

ever, a purely string-based non-semantic clustering approach, as proposed in this

work, faces clear limitations and may not generate the correct clusters.

7.2.9 Trend

A trend, as introduced in Section 4.1.1.9, reflects a measured difference between the refer-

ence and the target group. Each instance is described by three single-valued properties:

the literal-type property hasPValueL and two entity-type properties hasSignificanceE

with 3 candidate values and hasDifferenceE with 13 candidates mentioned in the corre-

sponding data-model. The latter property reflects the objective type of difference and

is thus the most important property to predict. The evaluation results of our proposed

heuristic (see Section 6.3.2) are given in Table 7.10.

Trend real-world candidate-generation relation-extraction

macro F1 P R F1 P R F1 P R

hasPValueL 0.288 0.240 0.373 0.424 0.865 0.287 0.858 0.905 0.818

hasSignificanceE 0.438 0.343 0.649 0.533 0.863 0.392 0.824 0.861 0.795

hasDifferenceE 0.548 0.459 0.693 0.613 0.922 0.463 0.842 0.859 0.827

cardinality 0.505 0.348 0.935 0.648 0.929 0.502 0.902 0.889 0.919

overall 0.255 0.189 0.416 0.485 0.927 0.333 0.794 0.813 0.780

Table 7.10: Evaluation results of predicting the Trend.

Although the cardinality distribution has a large variance across trials, as shown in

Figure 7.7, our system achieves a reasonably good performance for cardinality prediction

of 0.51 in F1. The properties can be predicted with F1 values of 0.29, 0.44, and 0.55

for hasPValueL, hasSignificanceE , and hasDifferenceE , respectively. This results in an

overall score of F1 = 0.26.

146 Experiments and Evaluation

The main negative impact on the overall performance lies in the fact that the system

tends to overestimate the number of trends expressed in a document, reflected in the

high recall of 0.96, i.e. all trends are found, but at a comparatively low precision of

0.35. Comparing real-world performance with the candidate-generation setting, it is

noticeable that considerably few errors are due to the sentence-based heuristic that

resolves relationships between entities of a trend, as described in Section 6.3.2. On

the contrary, most errors are due to candidate generation as provided by the FastText

sentence classifier. Given perfect relation extraction, our system is able to yield an F1

score of 0.49, while given perfect candidates, our heuristic achieves an F1 score of 0.79.

7.2.10 Investigation Method

The investigation method is the type of test used to measure differences between the ref-

erence and target groups, e.g. examining the walking ability after treatment. Although

the investigation method is not an instance but a ’simple’ entity type, it is worth a closer

look due to its importance in the evidence-based heuristics for predicting outcomes. Ta-

ble 7.11 provides the sentence classification results from the interim evaluation already

presented in Section 6.3.2.

InvestigationMethod F1 P R

typeE (sentence classification) 0.323 0.308 0.341

Table 7.11: Evaluation results for labeling sentences with entity types related to
InvestigtaionMethod.

The multi-label sentence classification for investigation methods performs with an F1

score of 0.32 with 0.31 in precision and 0.34 in recall. An error analysis shows that in

some cases the incorrectly assigned entity type is semantically strongly related to the cor-

rect entity type. This is particularly noticeable in tests that examine axons, such as Ax-

onalRegenerationTest, AxonalSproutingTest, AxonalChangeTest. They

often share identical surface forms, e.g. “axonal”, which are also common in other con-

texts. To choose the correct label, the system would need detailed context information

and access to external domain knowledge, since some tests are only applicable to certain

injuries, etc. Another set of errors trace back to the very specific human annotation

policies that are not yet fully considered in the systems’ inference strategy. For exam-

ple, the rule that only the first instance of a given investigation method is annotated

and used as property-filling value is not taken into account in the automated annota-

tion process. Our classifier, FastText, is purely based on surface form representations,

i.e. word embeddings and predicts each sentence individually. This lack of structural

document information often leads to prediction errors. A simple post-processing could

147

Result real-world candidate-generation relation-extraction

Macro F1 P R F1 P R F1 P R

hasInvestigationMethodE 0.208 0.237 0.186 0.687 0.812 0.595 0.698 0.719 0.678
hasReferenceGroupI 0.347 0.471 0.275 0.553 0.581 0.528 0.812 0.843 0.783
hasTargetGroupI 0.336 0.441 0.271 0.531 0.580 0.490 0.826 0.839 0.814
hasTrendI 0.234 0.417 0.163 0.726 0.889 0.613 0.616 0.659 0.578

cardinality 0.638 0.768 0.545 1.000 1.000 1.000 0.851 0.872 0.831

overall 0.331 0.448 0.262 0.552 0.608 0.506 0.818 0.840 0.797

Table 7.12: Evaluation result of predicting the Result.

remove all annotations except for the first annotation of certain types, thus solving this

particular problem. However, it has been shown that high coverage (high recall) in entity

recognition is usually better than striving for high precision, since incorrect annotations

are filtered out in subsequent structure predictions and heuristics.

7.2.11 Result

A pre-clinical result, as introduced in Section 4.1.1.10, is the most complex structure

we aim to predict in this work. An instance of class Result is mainly defined by

four single-valued properties. While hasInvestigationMethodE is the only entity-type

property with 94 possible candidates, whose evaluation is described in Section 7.2.10,

the remaining three hasTrend I , hasTargetGroupI , and hasReferenceGroupI are instance-

typed and filled with previously extracted instances, which are evaluated in Section 7.2.9

and 7.2.8, respectively.

The result instances are predicted with our evidence-based heuristics described in Section

6.3. The assignment of the investigation method results in an F1 score of 0.21. A

slightly higher performance is obtained for the assignment of the trend with F1 = 0.23.

The experimental group assignments yield similar results for the target and reference

roles. Both properties perform with an F1 value of about 0.34 and 0.35, respectively.

Observing the cardinality distribution shown in Figure 7.8, the cardinality prediction

yields a strong F1 performance of 0.64 with a high precision of 0.77 and a moderate

recall of 0.55, resulting in an overall F1 of 0.33 with a precision of 0.45 and a recall of

0.26.

At first glance, the overall prediction performance of 0.32 in F1 appears relatively poor.

However, note that the results are from a real-world application scenario and, compared

to the complexity (in terms of the total number of dependent variables that need to

be predicted), are still promising. Most of the errors made are propagated through the

entire hierarchical extraction architecture and thus have a large impact on the overall

score. The impacts of error propagation for the three properties are about 58% (∼47

148 Experiments and Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 20 21 22 24 25 26 28 30 31 36 37 38 40 43 45 48 53 57 62 67 68 69 78 84 92
0

1

2

3

4

5

6

7

8

9

Result

number of instances

nu
m

be
r

of
 d

oc
um

e
nt

s

Figure 7.8: Cardinality histogram showing the distribution of instances per document
for the class Result.

points in F1) for hasReferenceGroupI , 60% (∼49 points in F1) for hasTargetGroupI , and

62% (∼38 points in F1) for hasTrend I .

7.3 Discussion

In the following, we briefly discuss the main errors of our system and set the performances

in context with the inter-annotator agreement scores as well as with a majority-vote

baseline for entity-typed properties.

Entity Recognition Errors At the bottom of our pipeline architecture is the named

entity recognition and linking procedure. We rely on a threesome of approaches, a set of

regular expressions for literals, a dictionary-based heuristic, and a sliding-window CRF

for named-entity candidates. We aim at a high recall to maximize the coverage assuming

that the subsequent structure prediction procedure is able to filter out spurious entities.

This approach is in contrast to many related work that focuses on maximizing the

correctness of the entity provision step independent of any downstream processing steps

[149, 150]. We chose this approach because we are working with a very rich set of entity

types (more than 670; compared to 20 in [113] or 3 main entity types in [111] in similar

contexts), while at the same time we have only a comparatively small training data

set. Although the error analysis shows that our system is able to distinguish between

incorrect and correct candidates in most cases, the performance of the entity linking

step can certainly be improved in future work. Our proposed a heuristic for extracting

and interpreting literal candidates shows mixed results. While this heuristic works for

literals with rather simple linguistic structures such as ages (“2 weeks”), weights (“200

grams”), powers (“0. 5 kdyn”) and distances (“3mm”), it mostly fails with literals

describing durations (“every 3, 4,6 and 7 min ”) and dosages (“15 µl/kg-bw”).

149

Relation Extraction Errors An important source of error in property prediction

(or relation extraction) is the prediction of the wrong cardinality for multi-valued prop-

erties. A priori, it is not known how many different instance values such as anesthetics,

experimental groups, treatments, etc. are described in a publication. While the problem

of predicting the correct cardinality of instances and entities is not considered at all in

the literature, we have shown that it is a challenging problem that can be addressed

within our methodology of MCTC-based structure prediction. Indeed, most works that

approach relation extraction as a binary classification or triple extraction assume that re-

lations are functional, and thus extract only a single object for a given subject-predicate

pair [29, 178]. As shown in the relation-extraction setting, under the assumption that all

candidates are correctly extracted, our system provides good performances with respect

to F1 even for difficult classes.

Error Propagation While at the lower hierarchical level of classes most of the errors

are due to incorrect entity recognition or relation extraction, the predictions at the

upper level suffer mainly from error propagation. The actual impact for each main class

can be determined by comparing the instance-typed properties of the real-world to the

relation-extraction evaluation. The performance losses range from 1 − 0.642
0.915 = 30% in

F1 for the hasInjuryDeviceI property of the Injury class to 1 − 0.336
0.826 = 60% in F1 for

the hasTargetGroupI property of the Result class.

Cardinality Errors Cardinality prediction errors for certain classes and properties

have a large impact on the overall performance. Although cardinality prediction shows

relatively solid results in most instances, the impact of errors is quite high, especially

in upper level structures since the evaluation metric, as described in Section 7.1, is

very conservative and strictly designed. The negative impact of missing a single in-

stance/property value, i.e. predicting one less than described in ground truth, depends

on the complexity of the instance itself. The higher the complexity of an individual in

terms of the number of (nested) properties, the higher the impact of this instance on

the evaluation. Furthermore, if a spurious instance that has no counterpart in the gold

standard is predicted by the IE system, every single (nested) property of this predicted

instance counts false positives.

Comparison to a Majority Vote Baseline The data set described in Section 4.3

and used in this evaluation has not yet been used by other researchers. Therefore, we

cannot compare our system with other work. However, due to the general complexity of

the task, developing a reasonable baseline is fairly difficult. To address this shortcoming,

we rely on a rather simple majority-vote baseline model that builds on the maximum

150 Experiments and Evaluation

property majority system

hasOrganismSpeciesE 0.43 0.85
hasAgeCategoryE 0.77 0.88
hasGenderE 0.66 0.94
hasLowerVertebraeE 0.09 0.31
hasUpperVertebraeE 0.08 0.34
hasDirectionE∗ 0.17 0.04
hasApplicationInstrumentE 0.00 0.34
hasCompoundE 0.38 0.36
hasLocationsE∗ 0.45 0.31
hasInjuryIntensityE 0.00 0.31
hasInvestigationMethodE 0.13 0.20
hasSignificanceE 0.45 0.41
hasDifferenceE 0.38 0.37

typeE majority system

InjuryDevice 0.30 0.68
DeliveryMethod 0.73 0.78
InjuryLocation 0.32 0.62
Anaesthetic 0.28 0.66
Injury 0.26 0.66
InvestigationMethod 0.11 0.32

Table 7.13: F1 comparison of the majority vote baseline to the real-world evaluation
performance.

probability mass bias as described in Section 4.3. In essence, the baseline model works

as follows: a single-valued entity-typed property is always populated with the entity

candidate that is the most frequent filler to that particular property in the training

data. A multi-valued property is always populated with a single value only, using the

same majority vote procedure. Note that the majority-vote also considers empty values

for properties. Due to the intrinsic complexity of literals and instance-type properties,

they are not considered in this baseline. In the following, we compare the evaluation

results of our system in the real-world setting with this baseline model and briefly discuss

the results. The evaluation results are shown in Table 7.13.

For 8 out of 13 properties, our system outperforms the baseline by between 7 and 42

points in F1 for hasInvestigationMethodE and hasOrganismSpeciesE , respectively. For

the 2 multi-valued properties hasDirectionE∗ and hasLocationsE∗, the baseline yields

significantly better results, which highlights the difficulty of predicting the correct car-

dinality of property values. In 3 cases, the performance does not show much difference.

Here, the strong performance of the baseline for hasDifferenceE and hasSignificanceE

can be explained by the general publication bias of pre-clinical results. The fact that

predominantly positive results are published, is also reflected in the associated properties

that reflect the success of the result. The strong baseline performance forhasCompoundE

is mainly due to the selective data set corpus. As mentioned in Section 4.3, the corpus

consists mainly of publications describing an OEC or chondroitinase ABC treatment,

which are the most common compounds in this corpus. Finally, in cases where the base-

line yields an F1 of 0.00, e.g. for hasApplicationInstrumentE the property remains empty

151

class agreement system ratio

OrganismModel 0.93 0.91 97%
DeliveryMethod 0.38 0.53 140%
Anaesthetic 0.68 0.47 69%
InjuryDevice 0.88 0.64 73%
InjuryLocation 0.60 0.52 87%
Injury 0.72 0.54 75%
Treatment 0.50 0.26 52%
ExperimentalGroup 0.69 0.37 53%
Trend 0.62 0.26 39%
InvestigationMethod 0.52 0.32 61%
Result 0.65 0.32 49%

Table 7.14: F1 scores of the inter annotator agreement and the overall performance
of the systems output in the real-world application scenario.

according to the majority-vote. Since we do not reflect true negative values, which can

be seen as counting empty properties that were correctly be predicted as empty, the F1

score is 0 for these cases.

For all 6 instances that have the typeE property, our system outperforms the baseline

with a range between 40 F1 points for injury type prediction and 5 F1 points for the

type of delivery method.

Comparison to the Inter Annotator Agreement The inter-annotator agreement,

as given in Table 4.3, is a reference value for the reliability of the data set, but also gives

information about the difficulty of certain extraction tasks. In general, the higher the

agreement, the more reliable the data and as the reliability increases, the system should

perform correspondingly better. In this sense, it is interesting to compare the IAA with

the performance of the systems summarized in Table 7.14. We report the F1 scores of

the inter-annotator agreement and the overall performance of the systems in the real-

world application scenario and provide their ratio. The table shows that our system

provides about 50% of the performance of a human annotator in almost all cases, from

0.97% for the organism models to 39% for the trends. Even for the most complex class

of results at their full detail, our system yields 49% of a human’s performance. Note

that the extraction of delivery methods shows a ratio of 140%, which may be due to two

reasons. First, the documents involved in the IAA are not sufficiently representative for

this particular instance class. Second, there is some degree of freedom in annotating

delivery methods according to the annotation guidelines. However, in both cases this

ratio should be seen in the sense that the data set and the guidelines need further

refinement.

Chapter 8

Applications

Chapter Overview: In this chapter, we provide a brief overview of various applications

and tools developed as part of this thesis. We begin with the description of our annotation

tool, which was developed specifically for annotating highly relational and nested data

structures. We then describe the application of our system to a new large text corpus to

construct a deep domain knowledge graph. Finally, we explain our exploration tool that

provides easy access to the extracted knowledge for evidence aggregation and automatic

therapy grading.

8.1 Annotating Complex Relational Data with SANTO

The entire annotation process has been performed using the SANTO [40] framework,

which efficiently allows multiple users to annotate highly relational data without being

limited to sentence boundaries and cumbersome visualizations. As a backbone, SANTO

uses an ontology, SCIO in the context of this work, that defines all relevant entities and

relational structures to be annotated. The annotation process is roughly divided into two

parts. First, entity types are annotated at the token level across the entire document,

i.e. each relevant token, phrase or sentence is annotated with one or more entities. In a

second step, these annotations are set into relation using predefined schema templates

derived from SCIO and correspond to our proposed main classes as described in Section

4.1. SANTO allows to annotate relations between entities distributed throughout the

entire text, which makes it applicable for annotating complete documents with several

hundred sentences, as required in our domain. We provide a screenshot of this tool in

Figure 8.1. The left side shows the annotation of entities at the token level. The right

side shows an organism model template partially filled with these entity annotations.

The populated template shown on the right side would be translated into the following

153

154 Applications

Figure 8.1: Screenshot of the SANTO framework. The left side shows the annotation
of entities at a textual level. The right side shows the template filling.

5 triples:

1 〈scir:OrgModel 0, scio:hasWeight, “270–300 g”〉
2 〈scir:OrgModel 0, scio:hasAgeCategory, scio:Adult〉
3 〈scir:OrgModel 0, scio:hasGender, scio:Male〉
4 〈scir:OrgModel 0, scio:hasOrganismSpecies, scio:WistarRat〉
5 〈scir:OrgModel 0 rdf:type, scio:OrganismModel〉

8.2 System Application: Populating a Knowledge Graph

We have applied our developed system to a new corpus of unlabeled textual publications

describing pre-clinical studies in domain of spinal cord injury. In this context, we trained

a full-fledged model using all available ground truth documents as training data and ap-

plied the trained model to a corpus of approximately 5, 700 articles. The extracted deep

domain knowledge graph consists of a total of 535, 596 triples that describe more than

130.000 instances of the proposed main classes. Additional statistics are given in Table

8.1. We report the number of distinct instances for each main class, as well as the num-

ber of triples related to each class. The knowledge graph in triple format is available for

download at: http://psink.techfak.uni-bielefeld.de/SCI-KG/; accessed March 6

2021.

http://psink.techfak.uni-bielefeld.de/SCI-KG/

155

class distinct instances triples

OrganismModel 3.412 13.716
DeliveryMethod 2.938 2.965
Anaesthetic 2.642 2.642
InjuryDevice 16 3.380
InjuryLocation 85 3.125
Injury 3.412 15.889
Treatment 10.930 61.527
ExperimentalGroup 14.863 202.861
Trend 29.515 77.567
InvestigationMethod 25.806 25.806
Result 38.227 535.596

total 131.846 535.596

Table 8.1: Statistics of the populated deep domain knowledge graph.

8.3 Exploration of Knowledge with SCIExplorer

One application that uses our deep domain knowledge graph is the SCIExplorer [39],

which has been developed to support a novel way of literature search. SCIExplorer is a

tool that generates an overview of all results available in the underlying knowledge graph,

providing charts and diagrams in order to give an expert a comprehensive overview of

existing knowledge. Using the filters on the left side of the tool, the user can filter

down the results relevant to a specific search, e.g. filtering for ’adult male Wistar rats’

(three filters). In this way, it is possible to reduce the knowledge aggregation to that

which is relevant to a particular population, injury, treatment, etc. By clicking on the

bars in the graphs, an expert gets a tabular overview of the aggregated results. This

makes exploring the available evidence simple and straightforward and reduces the risk

of researchers overlooking a particular piece of evidence. The tool is available here:

http://psink.techfak.uni-bielefeld.de/SCIExplorer/; accessed March 6 2021. A

screenshot of the application is shown in Figure 8.2. The entry point into the exploration

requires the selection of a particular treatment of interest shown at the top of the

application. In the example, this is the compound entity Erythropoietin. The left side

shows the filter applied to the data. In this case, we are aggregating knowledge about

male rats (two filters). The right side shows the view of the basic data representation,

grouped by pre-selected classes, e.g. Injury, Dosage, or DeliveryMethod, etc.

The histograms show the aggregated pre-clinical results that match the selected filters,

grouped by their outcome, i.e. Positive (green), Negative (red), or Neutral (gray),

respectively.

http://psink.techfak.uni-bielefeld.de/SCIExplorer/

156 Applications

Figure 8.2: Screenshot of the SCIExplorer framework. The left side shows the avail-
able filter. The right side shows the basic data presentation view. The data is grouped

by the compound treatment Erythropoietin.

8.4 Answering Competency Questions

In the following section, we show how our knowledge graph can be used to explore the

evidence by answering specific questions that researchers are typically interested in. An

example question is:

Is the effect of a treatment in the lesion volume test mainly dependent on the

organism species?

The corresponding SPARQL query that provides evidence to answer this question is

given in Listing 8.1. Similar questions can be asked and answered by translating the

natural language question into SPARQL queries. A website that allows to execute

a few pre-designed competency questions is available here http://psink.techfak.

uni-bielefeld.de/psink/; accessed March 2021.

http://psink.techfak.uni-bielefeld.de/psink/
http://psink.techfak.uni-bielefeld.de/psink/

157

SELECT ?pubmedID ?result ?judgement ?target

WHERE

{ ?publication scio:hasPubmedID ?pubmedID ;

a scio:Publication ;

scio:describes ?experiment .

?experiment scio:hasResult ?result .

?result scio:hasInvestigationMethod ?investigationMethodInstance ;

scio:hasJudgement ?judgementInstance ;

scio:hasTargetGroup ?treatmentGroup .

?judgementInstance a ?judgement .

?investigationMethodInstance a/(rdfs:subClassOf)* scio:LesionVolumeTest .

?treatmentGroup scio:hasOrganismModel ?organismModel .

?organismModel scio:hasOrganismSpecies ?target .

}

}

Listing 8.1: SPARQL query to retrieve evidence for answering the example compe-
tency question: Is the effect of a treatment in the lesion volume test mainly dependent

on the organism species?

8.5 Automated Grading

Finally, a second important application of our knowledge graph is the (automatic) grad-

ing of therapies according to some criteria. The most prominent example in the field of

spinal cord injury is the grading scheme proposed by Kwon et al. [38]. These grading

criteria can be formalized with SPARQL queries over an SCI knowledge graph structured

by SCIO. This allows an automatic calculation of scores for each SCI therapy based on

the results of the SPARQL queries. For example, according to the pre-clinical rating

scale, a therapy gets 4 points if efficacy has been shown in a rat model of traumatic SCI.

According to Kwon et al. efficacy means that a functional and a nonfunctional benefit

has been shown in at least one study with that therapy. The following SPARQL query

finds publications (Pubmed ids) that meet efficacy requirements for rats:

158 Applications

SELECT DISTINCT ?pubmedID

WHERE

{ ?publication scio:hasPubmedID ?pubmedID ;

a scio:Publication ;

scio:describes ?experiment .

?experiment scio:hasResult ?funcResult ;

scio:hasResult ?nonFuncResult .

?funcResult scio:hasInvestigationMethod ?funcMethod ;

scio:hasJudgement ?functionJudgement ;

scio:hasTargetGroup ?funcTargetGroup .

?nonFuncResult scio:hasJudgement ?nonFunctionJudgement ;

scio:hasInvestigationMethod ?nonFuncMethod ;

scio:hasTargetGroup ?nonFuncTargetGroup .

?funcTargetGroup scio:hasOrganismModel ?funcOrganismModel .

?funcOrganismModel scio:hasOrganismSpecies ?funcRats .

?funcRats a/(rdfs:subClassOf)* scio:RatSpecies .

?nonFuncTargetGroup scio:hasOrganismModel ?nonFuncOrganismModel .

?nonFuncOrganismModel scio:hasOrganismSpecies ?nonFuncRats .

?nonFuncRats a/(rdfs:subClassOf)* scio:RatSpecies .

?functionJudgement a scio:Positive .

?nonFunctionJudgement a scio:Positive .

?funcMethod a ?funcTest .

?funcTest a/(rdfs:subClassOf)* scio:FunctionalTest .

?nonFuncMethod a ?nonFuncTest .

?nonFuncTest a/(rdfs:subClassOf)* scio:NonFunctionalTest .

}

Listing 8.2: SPARQL query to retrieve publications that match the efficacy require-

ments for rats according to the Kwon score.

Chapter 9

Conclusion

Chapter Overview: In this chapter, we conclude our work and answer our research

questions. We begin with a brief summary of the previous chapters and point out the

key findings and address related research questions. Finally, we discuss limitations of

the approach and provide an outlook for future work.

9.1 Summary

This thesis is about the development of general methodologies for the automatic extrac-

tion of highly relational data from unstructured input text with the goal of populating a

deep domain knowledge graph. We applied the developed methods to extract pre-clinical

outcomes in the domain of spinal cord injuries aiming at a level of detail that supports

automatic knowledge aggregation as required by evidence-based decision making. In

the first chapter, we introduced and motivated our main research topic and provided

the terminology, an informal description, as well as a simple example of the informa-

tion extraction task. We outlined challenges and requirements on the basis on which

we formulated our main contributions and research questions. In the second chapter,

we provided theoretical and technical preliminaries. We focused on the background of

related semantic web elements such as knowledge graphs, ontologies, as well as pro-

tocol and query languages. Our technical focus lied on conditional random fields, the

core component of our probabilistic information extraction system. The third chapter

provided related work and relevant information extraction problems that arise in the

context of knowledge graph population particularly in the medical field. While the first

three chapters provided the preliminaries to our work, the main contributions and find-

ings that answer the research questions were presented in Chapters 4 to 7, which are

summarized in more detail below. As further contributions, in Chapter 8, we showed

159

160 Conclusion

applications and tools developed in the context of this work, and finally applied our

developed system to a new unseen corpus of approx. 5700 documents.

Chapter 4: Domain Our work was developed in the domain of spinal cord injury. In

particular, we focused on the automatic extraction of pre-clinical outcomes from stud-

ies written in natural language at a level of detail that enables knowledge aggregation

for various applications such as evidence-based medicine, automatic therapy grading,

etc. A pre-clinical outcome is comprehensively defined by the Spinal Cord Injury On-

tology. SCIO contains about 670 classes, 100 different relations and more than 620

taxonomic class dependencies and is the backbone of several applications developed as

part of this work. Most important, SCIO played a vital role in the inference method-

ology and system architecture we developed by defining a data-model that we aimed

to extract. We showed that a pre-clinical outcome can be sufficiently described by 11

main classes, which are: OrganismModel, InjuryDevice, InjuryLocation, Deliv-

eryMethod, Anaesthetic, Injury, Treatment, ExperimentalGroup, Trend,

InvestigationMethod, and Result where each class is described by a set of be-

tween 2 and 40 properties that need to be populated with values during inference.

In order to model dependencies and relations, we mainly distinguished between three

types of properties, literal-typed, entity-typed and instance-typed. We further moti-

vated the presented level of detail with a real-world example taken from our data set

which contained a natural language description of an single outcome. Our data set anal-

ysis showed that each pre-clinical document contains approximately 21 of such outcomes

in average, with each outcome being a composition of up to 198 dependent study pa-

rameters. We presented a manually annotated corpus comprising 205 documents with

5, 151 annotated instances described by 56, 323 triples in total. In the remainder of this

chapter, we provided several data-set statistics and a reliability analysis based on clas-

sical inter-annotator agreement scores. Most important, we calculated the similarity of

the annotated instances based on two annotators. The class with the highest IAA of

0.93 was OrganismModel. The most complex class, i.e. Result, achieved an IAA of

0.65. Surprisingly, the least similarity was obtained by the comparatively simple class

DeliveryMethod with 0.38.

Chapter 5: Method We presented a new methodology that automatically extracts

deeply nested knowledge structures from pre-clinical publications. Our main methodol-

ogy follows the model-complete text comprehension paradigm introduced in our previous

work [37], which exploits the structure of a given data-model to endow a system with

knowledge to systematically search for all relevant information in a text. We showed that

the main advantage of this approach is that the IE system is able to ’understand’ what

161

knowledge need to be extracted and infers information even though it is not explicitly

mentioned or linked in the text (RQ 2.3). Essentially, we situated our method in the

context of structure prediction and relied on conditional random fields and factor graphs

to model conditional probabilities. We focused on the problem of predicting the correct

cardinality for instances while at the same time extracting the their properties. Our

developed inference method allows us to approach these tasks as a joint problem where

nested target vectors with adapting length representing the instances to predicted are

efficiently explored (RQ 1.1). We showed that this representation is capable of model-

ing arbitrary complex ontological classes, their properties, and interdependent relations

between while the adapting length is capable of modeling cardinality prediction (RQ

1.2). We have presented our factor graph that models the joint prediction of variables

in a pairwise fashion to balance complexity and performance . Our statistical inference

method is based on Gibbs Sampling, which constructs multiple Markov chains in parallel

to model cardinality prediction (RQ 2.1 & RQ 2.2). We identified three basic require-

ments to sufficiently model approximate inference. First, inference performance can be

enhanced by guiding it through the given data-model so that only syntactically valid and

semantic potentially meaningful instantiations are explored. Secondly, inference must

be able to infer cardinalities and parameters of instances in a joint fashion. Third, a

strategy must cover inference over unnamed entities that are not explicitly mentioned in

the input document (RQ 2.1 & RQ 2.3). We presented our method for entity detection

and linking, as well as literal extraction and interpretation, which is used for candidate

provision during sampling. To maximize coverage, we combined a sliding-window CRF,

a dictionary lookup heuristic, and a set of regular expressions for literals. Our interim

evaluation showed that this approach achieves a recall (coverage) of 0.78 for the task of

candidate generation (RQ 4.5). Finally, we presented our developed features used to

model sufficient statistics in our CRF. With the focus on developing general methodolo-

gies, we were predominantly aiming at modeling domain agnostic features to compute

sufficient statistics for joint instance cardinality and property prediction. We showed

that a wide variety of natural language features capturing pairwise interdependencies

between random variables are often sufficient to describe the target structures, while in

some cases domain and problem specific features are additionally required (RQ 1.3).

Chapter 6: Application We presented a domain model-based IE system that auto-

matically extracts outcomes from pre-clinical studies in full detail to populate a deep

domain knowledge graph. In particular, our proposed system architecture was designed

for extracting knowledge as defined by our SCIO-based data-model. In a complexity

analysis, we showed that the joint extraction of variables within a single document and

even a single result is beyond the current capabilities of modern machines. In fact, a

162 Conclusion

single document consists on average of more than 1, 571 variables that need to be pre-

dicted. Therefore, we proposed an ontology-based problem decomposition strategy that

decomposes the overall task into (semi-)independent sub-tasks following the ontologi-

cal structure in a bottom-up fashion. Based on this decomposition, we designed our

semi-joint system architecture with a unidirectional information flow. In the systems’

pipeline, each component receives as input the output of the previous components along

the hierarchical structure of the data-model (RQ 3.1). We start by predicting entity

and literal candidates that are passed to the MCTC component that predicts instances

of the class OrganismModel, for instance. The predicted organism models serve as

candidate values in the subsequent MCTC component related to the class of Experi-

mentalGroup (RQ 3.3).

We identified several domain-specific challenges and special cases that required the de-

velopment of additional approaches, features and heuristics. We found that group names

play an important role in predicting experimental groups, as they serve as anchors to

related information distributed throughout the entire document and can be used to ini-

tialize cardinality prediction (RQ 2.2 & RQ 3.2). To extract them, we developed

an approach that combines the syntactic structure of a sentence with manually defined

linguistic rules. Our interim evaluation showed that we achieve a recall (coverage) of

0.83 in a bag-of-strings evaluation (RQ 4.5).

In order to make the extracted group names meaningful, their co-reference must be

resolved, which we addressed with a two-fold clustering approach. First, group names

were binary clustered with a supervisley trained Random Forest relying on linguistic

features. In a second step, they were clustered using a k-Means approach that relies on

the binary class probability as a distance function. Our interim evaluation showed that

the best clustering is achieved with a number of 5 clusters yielding an F1 score of 0.74

(RQ 4.5). For the extraction of experimental groups in MCTC, we developed a specific

set of features to sufficiently capture cluster and cluster property statistics.

Finally, we found that applying our MCTC approach to the prediction of outcomes is an

infeasible task due to its high complexity and cardinality. Therefore, we developed an

evidence-based heuristic for instantiating instances of outcomes (RQ 3.2). Our heuristic

relies on the availability of sufficient evidence mentioned in close context. In particular,

a new result is instantiated when an experimental group, a trend, and an investigation

method are mentioned in a single sentence. Our interim evaluation shows that this

heuristic is in principle able to achieve an F1 score of 0.80 for predicting outcomes in

their full detail, given that the evidence is correctly predicted (RQ 4.5).

Chapter 7: Results We applied our system to our previously described corpus con-

sisting of 205 manually annotated pre-clinical studies in the domain of spinal cord injury.

163

Towards developing a proper evaluation, we provided a detailed description of the evalu-

ation metric to compare complex, deeply nested structures. Since this metric is also used

by our objective / loss function called during training we relied on a very fine-grained

metric to compute the similarity of two instances. In essence, the metric involved the

recursive collection of true positives, false positives, and false negatives over the (nested)

properties of an instance. We encountered the problem of comparing unordered sets of

nested structures, which requires computing a bijective alignment of the elements in

both sets. Since the complexity of finding the best alignment grows exponentially with

the number of elements, we proposed a beam search as a fallback strategy in case the

number of elements exceeds a certain threshold (RQ 4.1).

Our main experiments involved evaluating the prediction of main instance classes in

three settings. We evaluated a real-world application scenario in which we tackle can-

didate generation and relation extraction to predict instances along the full hierarchy

of nested structures. Here, predicted instances and candidates were passed through the

entire pipeline along the system, correctly accounting for error propagation. The pre-

diction performance of our system yielded F1 scores of between 0.91 for the organism

models and 0.32 for the pre-clinical outcomes in full detail, which are approximately

97% and 49% of the performance of a human annotator, respectively. Moreover, our

system outperforms a majority-vote baseline for entity-typed properties in 14 out of 19

cases (RQ 4.2).

We performed a detailed error analysis of the real-world performance, which included

the examination of common prediction errors, but also a comparison to two other set-

tings. In the candidate-generation evaluation, we evaluated the performance of our

system with respect to errors attributed to incorrect relation extraction. Here, given

a set of predicted candidates, the correct relations (properties) were chosen by an ora-

cle. We observed widespread performance differences between 0 and 66 points in F1 for

certain properties compared to the real-world setting (RQ 4.4). Second, in the relation-

extraction evaluation, we examined the errors due to incorrect candidate extraction and

error propagation. Here, candidates were given by an oracle such that our system only

focused on relation extraction. We observed performance differences between 3 and 50

points in F1 for certain properties compared to the real-world evaluation (RQ 4.3).

9.2 Outlook

Although this work provides answers to most of the relevant research questions regarding

the development of a holistic system to populate a deep domain knowledge graph, and in

particular in the domain of spinal cord injury, some research questions and opportunities

remain, which we will briefly outline in the following.

164 Conclusion

9.2.1 Relevance and Adaptation to Clinical Domain

Our information extraction system provides the basis for automatically populating a

deep domain knowledge graph that summarizes key findings from the pre-clinical litera-

ture. As shown in Chapter 8, such a knowledge graph supports researchers and clinicians

in the task of exploring the available evidence for automatic grading of therapies and

helps to answer competency questions. It thus provides a valuable resource to support

the generation of systematic reviews and to promote decisions about the translation of

promising therapeutic candidates into clinical practice. Finally, it helps to avoid redun-

dant or highly overlapping studies, fill knowledge gaps, and sheds light on areas where

pre-clinical studies have not yet been conducted. With respect to the clinical context, it

is common to describe an experimental study using the PICO concepts (Patient/Prob-

lem (P), Intervention (I), Comparison (C) and Outcome (O)). Therefore, a mapping

between the SCIO and the PICO can help clinicians to properly translate pre-clinical

knowledge. This mapping is provided in Figure 9.1 and can be formally described as:

• the Population describes the model of animals that are used in the experiments

and the type of inflicted injury. The population is represented in SCIO by the

classes OrganismModel and Injury.

• the Intervention describes the treatment applied to the target experimental group,

this is represented in SCIO by the classes ExperimentalGroup and Treat-

ment.

• the Comparison comprises a reference group to which the target experimental

group is compared. In contrast to the treated group, the reference group receives

a placebo or scham treatment, or is treated with some other baseline treatment.

• the Outcome comprises the investigation method applied as well as the main ex-

perimental results obtained, this is described by the SCIO classes Result, Trend,

and InvestigationMethod.

Although we have applied our system to the population of a knowledge graph for pre-

clinical studies, the principal structure of our system is not specific to them and can

equally be applied to clinical trials or other (therapeutic) areas. This in turn requires

replacing the underlying ontology with an ontology geared towards representing the do-

main of interest, for example clinical trials, such as C-TrO proposed by [179]. The main

requirement is that the new domain ontology provides a level of detail sufficient for the

desired tasks such as answering competency questions, etc. Furthermore, the ontology

not only defines the content of the knowledge graph, but also guides the inference method

165

Figure 9.1: High level depiction of SCIO set into relation with PICO elements.

of the automatic information extraction system in terms of defining the search space and

the data-models to be extracted. Therefore, a thoroughly defined ontology (data-model)

is key to successfully extracting data for populating deep domain knowledge graphs. In

the presence of a new domain ontology, no (major) adaptations of the IE system are

required in principle. However, the performance of classical machine learning methods

(like CRFs) strongly depends on manually defined features. Although most of the fea-

tures developed in this work are domain-agnostic, improving the performance of the

system requires domain-dependent feature engineering. In this context, the adaptation

to a new domain also requires the provision of sufficient training data, which is a time-

consuming task depending on the desired domain and its complexity. An important

prerequisite for the annotation of a reliable training corpus is the well-defined ontol-

ogy, as it also serves as a backbone in the SANTO annotation tool we have developed

[40]. Finally, in Chapter 6, we have shown that for some classes, additional heuristics

have been developed to overcome certain problems and improve the performance of the

systems. Although these heuristics are not theoretically necessary in general but were

mainly developed to overcome the shortage of sufficient training data, similar problems

may arise in other domains that require adequate problem handling.

9.2.2 Limitations and Future Work

A big barrier for the use of our system in a real-world settings is the relatively high num-

ber of errors that our information extraction system make. In future single components

of the system can be improved by designing domain specific features, hard constraints on

inference etc. However, it remains an important avenue to develop semi-automatic ap-

proaches in which a human-in-the-loop is guided efficiently by certain interfaces to verify

the results of the information extraction system. As such, the knowledge graph could

166 Conclusion

clearly mark which extraction results for which study have been manually validated and

allow to limit the inspection and aggregation of results to these human-validated studies.

It remains to be seen if such a semi-automatic cycle can be realized efficiently and pro-

ductively taking into account the cost-benefit ratio. Towards increasing the reliability

of the automatically extracted knowledge, we briefly sketch three ideas for future work

below.

Integrating Domain Knowledge At the heart of our system is the probabilistic

inference approach, which relies on a set of manually defined features that model suf-

ficient statistics to describe and qualify the prediction of the model. In developing

the methodology for automatic extraction of deeply nested structures, our focus on

feature engineering lied in general-purpose features that are applicable to any consid-

ered instance class. A clear exception is given for the extraction of experimental groups,

here instance-dependent features drastically improved the extraction performance which

shows the potential of domain-adapted features.

Although we developed and optimized these features for our specific domain, they are

in principle agnostic to the underlying domain. On the one hand, this reduces model

complexity and development time, and on the other hand, integrating domain knowledge

such as

• The upper and lower vertebra of an areal injury location need to be in the correct

order.

• The application of BBB tests are only considered on rats.

• Olfactory mucosa rats are not used as animal models for experiments.

can have a large positive impact on overall extraction performance.

In principle, there are two ways to integrate such domain knowledge into our method.

First, relying on hard constraints. Here, the domain constraints directly affect and limit

the inference procedure. For example, a concrete application in our domain could be:

“if the investigation method is a BBB test and the observed animal is not a rat species,

the instantiated result is discarded”. Hard constraints reduce search space complexity

and can prevent the system from predicting clearly erroneous instances. The disadvan-

tage of hard constraints is that they reduce the amount of available training data that

could be used as negative examples. Furthermore, if, for example, the organism model

is only partially misclassified, e.g. predicting the species as olfactory mucosa breed, but

the rest of the organism model is correct, the system will be prevented from selecting

that particular instance despite a large number of correctly classified parameters. These

167

example only sketch the impact of hard constraints, however their particular impact,

whether positive or negative, could be investigated in more detail in future.

The second way to integrate domain knowledge is to learn soft domain constraints via

learned compatibility functions, as proposed in our earlier work [44]. This is, in principle,

a straightforward implementation task. The difficulty of integrating domain knowledge

in general is that it requires a deep understanding of concepts, terminologies, and depen-

dencies beyond those explicitly modeled in the domain ontology. One way to overcome

this problem is to rely on existing external knowledge bases, as proposed in our earlier

work [45].

Exploiting Syntactical Class Dependencies Our system design implements a com-

plex processing architecture that relies on a conditional random field as a core compo-

nent to jointly identify all instances of certain classes along with their properties. In

this manner, we proposed a problem decomposition strategy based on the ontological

dependencies, i.e., in essence, not directly related classes are predicted independently

from each other. This is not necessarily the best strategy, since not only semantic but

also syntactic document dependencies can be considered. We have partially addressed

syntactical information with our document section features, where we prefer information

that occurs in certain sections. However, we also obtained erroneous predictions that fall

under this category due to insufficiently learned model parameters. Other syntactic con-

cepts that could be integrated as soft or hard constraints, are e.g. discourse progression

features at the entity level, but also at the instance level. For example, “the organism

model is usually fully defined before mentioning the injury model” or “The treatment

is usually defined close to the definition of the organism model”. A main benefit here,

is that the extraction of the organism model is a rather simple task on which further

prediction can built on. These types of syntactical knowledge can be used to inform the

automatic system to increase prediction performance.

Deep Learning According to a recent survey by Hahn and Oleynik. [180], the ap-

plication of deep learning methods in the field of medical information extraction is

steadily increasing and generally superior to traditional machine learning methods such

as CRFs, SVMs, random forests, etc. in many tasks. However, most of the described

(shared) tasks in the two surveys mentioned above deal with classical NLP problems

with low structural complexity such as entity linking, co-reference resolution, and literal

extraction. Relation extraction tasks usually deal with binary relations, e.g. drug-drug

interactions or disease-drug interactions.

The work of Fu et al. [163] describes several neural approaches in the clinical domain

focusing on recurrent neural networks, convolutional neural networks, and transformers.

List of Figures Conclusion

They mention that recent neural architectures, including LSTMs, are able to perform

long-range context modeling through attention mechanisms. However, the text segments

that current state-of-the-art deep learning models can handle are limited in size to less

than approx. 100 words. This does not cover a full publication as required in this work

with an average document length of 8000 words.

Deep neural architectures typically require a larger number of training samples to opti-

mize their complex models. While larger data sets are available for simpler NLP tasks

such as named-entity recognition, binary relation extraction, etc., they are generally not

suitable for complex semantic interpretation tasks where several thousand of variables

need to be predicted based on a few annotated documents, as in our work.

A second drawback of deep learning methods is that they typically do not model de-

pendencies between output variables well, and they generally lack good document-level

representations. Recently, however, there have been some approaches that leverage the

power of neural networks. Efforts have been made to perform structure prediction with

energy networks [105, 106] (SPENs), nonlinear output transformations [181], or induc-

tion of event graph schemes using pathway language models [182]. Harnessing the power

of neural networks and pre-trained language models such as BERT [103] should definitely

be explored in future work as heuristics are replaced by sophisticated machine learning

methods.

List of Figures

1.1 Structural comparison of shallow and deep domain knowledge graphs.
Left side shows the classical structure where each node refers to a basic
informational unit such as entities and literals (BIU; ovals). The right
side shows the deep domain structure where only leaf-nodes are considered
BIUs and holistically defined sub-graphs are referred to as basic structural
units (BSU; squares). 4

1.2 Example depiction of a domain and a populated knowledge graph. The
left side shows the template structure of this example domain describ-
ing a treatment. The right side shows a deep domain knowledge graph
consisting of two treatment instances and a single delivery method instance. 5

2.1 Example factor graph with four random variables (circles) and four factors
(black boxes) connected by four edges connecting variables and factors. . 32

3.1 An example showing entity recognition and linking as well as literal ex-
traction. 42

3.2 An example showing relation extraction between informational units in a
document. 44

3.3 An example showing classical slot-filling. A template structure with three
slots that describe a person is filled with informational snippets from the
text. 45

3.4 An example showing document-level slot-filling. A template structure
with three slots that describe a person is filled with disambiguated entities
recognized in the input text. 46

3.5 An example showing document-level slot-filling and cardinality prediction
based on a template structure that describes the animal model in the
spinal cord injury domain. The relevant information is collected from
multiple sentences. 47

3.6 An example showing (classical) entity-centric co-reference resolution. . . . 48

3.7 An example showing template-based co-reference resolution with an in-
ferred antecedent resource. 50

4.1 Schematized data-model structure of an instance of type OrganismModel. 54

4.2 Schematized data-model structure of an instance of type Injury. 55

4.3 Schematized data-model structure of an instance of type Anaesthetic. . 56

4.4 Schematized data-model structure of an instance of type DeliveryMethod. 56

4.5 Schematized data-model structure of an instance of type InjuryDevice. 57

4.6 Schematized data-model structure of an instance of type InjuryLocation. 58

4.7 Schematized data-model structure of an instance of type CompoundTreat-
ment. 59

169

List of Figures LIST OF FIGURES

4.8 Schematized data-model structure of an instance of type Experimental-
Group. 60

4.9 Schematized data-model structure of an instance of type Trend. 60

4.10 Schematized data-model structure of an instance of type Result. 61

4.11 Schematized data-model in full detail. 62

4.12 Relational dependencies between all variables that describe the pre-clinical
outcome from the example excerpt. 65

5.1 Unrolled factor graph over two example instances showing the factoriza-
tion into unary property factors and binary property factors. Both types
of factors are additionally connected to the cardinality value λ of the re-
spective instance class. We omit the input variables, assuming them to
be fully observed. 78

5.2 Parallel multi chain inference plus cross over model updates. Proposal
state generation follows the breadth-first Gibbs Sampling. 80

5.3 Example of Breadth First Gibbs Sampling. The sampled path of output
variables [y3 → y2 → y3 → · · · → y1] is highlighted. 82

5.4 Depiction of the breadth-first Gibbs Sampling procedure showing up-
dates to the output variables. In this example, the output vector con-
tains three variables {y1, y2, y3} with search spaces Y1 = {a1, a2, a3}, Y2 =
{b1, b2, b3}, Y3 = {c1, c2, c3}. The sampled path over the output variables,
that is [y3 → y2 → y3 → · · · → y1], is highlighted. 84

5.5 State transition example and unrolled factor graphs for a sliding window
inference CRF. Black boxes correspond to unary factors Ψ′ while grey
boxes correspond to binary factors Ψ′′ . 98

5.6 Exhaustive proposal state generation with a sliding window exploration.
Sliding window sizes range from 1 to mi (dependent on ei), each window
is instantiated for each entity type ei ∈ E. 99

6.1 System architecture with uni-directional information flow between all
data-model predictions showing their input and output dependencies and
applied approaches and heuristics (grey boxes). 106

6.2 Possible clusters of group names with a cluster size ranging between two
and five. The distance between two group names is based on the proba-
bility that they belong to the same cluster. 113

6.3 Distribution of the number of sentences that are involved in a single trend.121

7.1 Example showing the evaluation of deep nested instances. The left side
shows the ground truth injury instance while the right side shows the
predicted instance. Property dependencies are depicted as simple lines
while value passing is depicted in dashed lines. Overall, the comparison
of the two instances sums up to 7 tp, 6 fp, and 4 fn resulting in a precision,
recall and F1 of 0.54, 0.64, and 0.58, respectively. 127

7.2 Cardinality histogram showing the distribution of instances per document
and property values per instance for the class DeliveryMethod and the
property hasLocationsE∗, respectively. 136

7.3 Cardinality histogram showing the distribution of instances per document
for the class Anaesthetic. 138

List of Figures 171

7.4 Cardinality histogram showing the distribution of instances per document
and property values per instance for the class Injury and property has-
InjuryAnaesthesiaI∗, respectively. 140

7.5 Cardinality histogram showing the distribution of instances per document
and property values per instance for the class Treatment and property
hasDirectionE∗, respectively. 142

7.6 Cardinality histogram showing the distribution of instances per document
and property values per instance for the class ExperimentalGroup and
property hasTreatmentI∗, respectively. 144

7.7 Cardinality histogram showing the distribution of instances per document
for the classes Trend and InvestigationMethod, respectively. 145

7.8 Cardinality histogram showing the distribution of instances per document
for the class Result. 148

8.1 Screenshot of the SANTO framework. The left side shows the annotation
of entities at a textual level. The right side shows the template filling. . . 154

8.2 Screenshot of the SCIExplorer framework. The left side shows the avail-
able filter. The right side shows the basic data presentation view. The
data is grouped by the compound treatment Erythropoietin. 156

9.1 High level depiction of SCIO set into relation with PICO elements. 165

List of Tables

2.1 Example compatibility table for possible pairwise variable assignments.
The specific example assignments V0 = vt, V1 = vt, V2 = vf , and V3 = vt

are highlighted. 31

4.1 Basic statistics for each main class considered in our corpus. We provide
information about the number of documents annotated with the respec-
tive property / instance (doc), the number of distinct instances / property
values (num), and the avg. number of annotations per documents (avg). . 68

4.2 Complexity of all entity-typed properties considered in our data-model
structures. We provide the number of possible candidates, the coverage,
the maximum probability mass (MPM), and the Gini coefficient. 71

4.3 Inter annotator agreement scores for the main classes of SCIO considered
in this work. We compute Cohen’s Kappa for the exact NER task (exact
NER) and the Dice Coefficient for annotations at a sentence level (sen-
tence NER) and for bag of entities (entities). The similarity of annotated
instances are computed with the F1 score (instances). 73

5.1 Intermediate evaluation results of the three approaches to entity and lit-
eral annotation. 102

6.1 Complexity analysis showing i) the minimum, maximum, and average
number of variables averaged over instances and documents, respectively,
ii) the minimum, maximum, total, and distinct number of instances av-
eraged over all documents, as well as the ratio of the latter both. 105

6.2 Overview of the applied heuristics and MCTC system configurations in-
cluding the number of training epochs (e), the inference minimum (α) and
maximum (β) cardinality parameter, as well as the set of active features. . 108

6.3 Intermediate evaluation results for the group name recognition. We com-
pare the performance of i) NP tail-filtered, ii) VP head-filtered, iii) their
combination, iv) the manually defined set of regular expression, and v)
taken all together. 111

6.4 Intermediate evaluation for extracting outcomes investigating the impact
of predicting the required evidence instead of relying on an oracle. 124

7.1 Comparison of two unequally sized sets of instances of type Anaes-
thetic. We provide tp, fp, fn, F1 for each comparison. The smaller
set (ground truth) is padded with empty instances. The best alignment
is shown bold. 128

7.2 Evaluation result for predicting instances of type OrganismModel. . . . 131

7.3 Evaluation result for predicting instances of type InjuryDevice. 132

173

List of Tables LIST OF TABLES

7.4 Evaluation result for predicting instances of type InjuryLocation. . . . 134

7.5 Evaluation result for predicting instances of type DeliveryMethod. . . 135

7.6 Evaluation result for predicting instances of type Anaesthetic. 137

7.7 Evaluation result for predicting instances of type Injury. 139

7.8 Evaluation result for predicting instances of type Treatment. 141

7.9 Evaluation result for predicting instances of type ExperimentalGroup. 143

7.10 Evaluation results of predicting the Trend. 145

7.11 Evaluation results for labeling sentences with entity types related to In-
vestigtaionMethod. 146

7.12 Evaluation result of predicting the Result. 147

7.13 F1 comparison of the majority vote baseline to the real-world evaluation
performance. 150

7.14 F1 scores of the inter annotator agreement and the overall performance
of the systems output in the real-world application scenario. 151

8.1 Statistics of the populated deep domain knowledge graph. 155

Abbreviations

A-Box Assertion Box

ACE Automatic Content Extraction

ACG All Control Groups

ALL Aall Groups

ANG Annotation NGram

ATG All Treatment Groups

BFGS Breadth First Gibbs Sampling

BIU Basic Informational Unit

BOA Bag of Annotations

BOE Bag of Entities

BOS Bag of Strings

BSU Basic Structural Unit

CBA Context Between Annotation

CRF Conditional Random Fields

CRR Co-Reference Resolution

CNG Context NGram

DBO DBpedia Ontology

DBR DBpedia Resource

DC Dice Coefficient

DKG Domain Knowledge Graph

DDKG Deep Domain Knowledge Graph

DS Document Section

DT Data Type

ETC Entity Type Context

ETP Entity-Typed Property

175

Abbreviations ABBREVIATIONS

GNC Group Name Clusters

GTD Global Treatment Distribution

IAA Inter Annotator Agreement

IE Information Extraction

IC Inference Complexity

ITP Instance-Typed Property

KG Knowledge Graph

KGP Knowledge Graph Population

LOD Linked Open Data

LOC Pairwise Locality

LTP Literal-Typed Property

BI-LSTM Bidirectional Long Short Term Memory

MAP Maximum-A-Posteriori

MCMC Markov Chain Monte Carlo

MCTC Model-Complete Text Comprehension

MeSH Medical Subject Headings

MH Metropolis–Hastings

MTG Multiple Treatment Groups

MPM Maximum Probability Mass

NERL Named Entity Recognition and Linking

NLP Natural Language Processing

NN Neural Network

NTC Name Treatment Co-occurrence

OBIE Ontology Based Information Exctraction

OWL Web Ontology Language

PCP Property Cardinality Prior

PGM Probabilistic Graphical Models

PICO Patient, Intervention, Comparison, and Outcome

POS Part of Speech

RDF Resource Description Framework

RE Relation Extraction

SCI Spinal Cord Injury

SCIO Spinal Cord Injury Ontology

Abbreviations 177

STC Single Token Context

T-Box Terminology Box

TCP Treatment Cardinality Prior

TTD Treatment Type Distribution

URI Uniform Resource Identifier

Appendix A

Group Name Recognition

Expressions

Extracting values for hasGroupNameL:

(\W)[\w-\+ ’[^\x20 -\x7E]]{3 ,20} (treated|grafted|

transplanted |(un)?trained)(?=\W)

(\) |;|:) ?((\(\w\) ?)?([\w-\+ ’ ,\.]|[^\x20 -\x7E]){5 ,100})

(\(?)?n\W?=\W?\d{1,2}(?\))?(?=(,|\.|;))

([\w’]+?(with | and | plus | ?(\+| -|/) ?))*[\w’

]+?(-|[^\x20 -\x7E])(animals|mice|rats|cats|dogs|

transplantation)

([^]+? (with|and|plus| ?(\+| -|/) ?) [^]+?) ?\((n)\W?=\W

?\d{1 ,2}\)

received both ([^]+ (with |/|and|plus| ?(\+| -) ?) [^]+)

((only|or))?([a-z][^]+?) ?\((n)\W?=\W?\d{1 ,2}\)

179

Abbreviations Group Name Recognition Expressions

(a|the|in) ([\w-\+ ’]{3 ,20} (group|animals|mice|rats|cats

|dogs|transplantation))

(,(?and ?)?|;) ([\w-\+ ’]{3 ,20} ?(group|animals|mice|rats

|cats|dogs|transplantation))

(\) |;|:) ?((\(\w\) ?)?([\w-\+ ’ ,\.]|[^\x20 -\x7E]){5 ,100})

(\(?)?n\W?=\W?\d{1,2}(?\))?(?=(,|\.|;))

in(jured)? (animals|mice|rats|cats|dogs).{1 ,10}(receiv

.{3 ,20}(,|;|\.| injections ?| treatments ?))

(the|a|\)|in) ([\w-\+ ’]{3 ,20}(treated|grafted|

transplanted |(un)?trained) ((control |sham)?((injury

)?(only)?))? (group|animals|mice|rats|cats|dogs|

transplantation))

([\w’]+?(and | plus | ?(\+| -|/|[^\x20 -\x7E]) ?))*[\w’

]+?(-|[^\x20 -\x7E]|) {1,2}(treated\W|grafted\W|

transplanted\W|(un)?trained\W)((control |sham)?((

injury)?(only)?))?(group|transplantation|animals|mice

|rats|cats|dogs)

((control |sham)?((injury)?(only)?))?(group|animals|

mice|rats|cats|dogs) that were (treated|grafted|

transplanted |(un)?trained) with .+?

([\w’]+?(with | and | plus | ?(\+| -|/) ?))*[\w’]+? ?

treatment

((control|sham) ((injury)?(only)?))(treatment|grafting|

transplantation|training|operation)

Appendix B

Regular Expressions for Literal

Extraction

Extracting values for hasWeightL:

(?<about >(~| <| >|(^|\b|(?<=))about [^\d\w\.,])?)((?<

pattern1GroupName >(?< p1Numbers1 >((\d+\.\d+)|\d+))[^\d\

w\.,]?(?<p1Unt1 >(((m(milli)?|(k(ilo)?)))?g((ra)?ms?)?|

kilo|lbs)(?![^\d\w\. ,]?/))([^\d\w\.,](to|and)[^\d\w

\. ,]|[^\d\w\. ,]?((\+? -) |\+(/|\\) -|+-|[^\d\w\.,])[^\d\w

\.,]?)(?<p1Numbers2 >((\d+\.\d+)|\d+))([^\d\w\.,]?(?<

p1Unit2 >(((m(milli)?|(k(ilo)?)))?g((ra)?ms?)?|kilo|lbs

)(?![^\d\w\. ,]?/)))?)|(?< pattern2GroupName >(?<

p2Numbers1 >((\d+\.\d+)|\d+))([^\d\w\.,](to|and)[^\d\w

\. ,]|[^\d\w\. ,]?((\+? -) |\+(/|\\) -|+-|[^\d\w\.,])[^\d\w

\.,]?)(?<p2Numbers2 >((\d+\.\d+)|\d+))[^\d\w\.,]?(?<

p2Unit1 >(((m(milli)?|(k(ilo)?)))?g((ra)?ms?)?|kilo|lbs

)(?![^\d\w\. ,]?/)))|(?< pattern3GroupName >(?<p3Numbers1

>((\d+\.\d+)|\d+))[^\d\w\.,]?(?< p3Unit1 >(((m(milli)?|(

k(ilo)?)))?g((ra)?ms?)?|kilo|lbs)(?![^\d\w\. ,]?/))))

([^\d\w\.,]? weight)?($|\b|(?=))

181

Abbreviations Regular Expressions for Literal Extraction

Extracting values for hasVolumeL:

(?<about >(~|(^|\b|(?<=))about [^\d\w\.,])?)((?<

pattern1GroupName >(?< p1Numbers1 >((\d+\.\d+)|\d+))[^\d\

w\.,]?(?< p1Unit1 >(µl|µl|cm\W?3|ll?))([^\d\w\.,](to|and

)[^\d\w\. ,]|[^\d\w\. ,]?((\+? -) |\+(/|\\) -|+-|[^\d\w

\.,])[^\d\w\.,]?)(?<p1Numbers2 >((\d+\.\d+)|\d+))[^\d\w

\.,]?(?< p1Unit2 >(µl|µl|cm\W?3|ll?))?)|(?<

pattern2GroupName >(?< p2Numbers1 >((\d+\.\d+)|\d+))([^\d

\w\.,](to|and)[^\d\w\. ,]|[^\d\w\. ,]?((\+? -) |\+(/|\\)

-|+-|[^\d\w\.,])[^\d\w\.,]?)(?<p2Numbers2 >((\d+\.\d+)

|\d+))[^\d\w\.,]?(?< p2Unit1 >(µl|µl|cm\W?3|ll?)))|(?<

pattern3GroupName >(?< p3Numbers1 >((\d+\.\d+)|\d+))[^\d\

w\.,]?(?< p3Unit1 >(µl|µl|cm\W?3|ll?))))($|\b|(?=))

Extracting values for hasDosageL:

(^|\b|(?<=))((?< dosagePatternName1 >(?< digitsName1 >\d

{1 ,3}((\.)\d)?\d{0 ,3})(\s?(?<unitName1 >([^\x20 -\x7E]+|

µ|m)?(u(nits?)?|g|%|l|cfu|mol|cm3|kg|i?(|\.)?u\.?))(\

sof .{2 ,5})?\s?(\/| per|in|[^\x20 -\x7E]+)\s?((?<

digitsName2 >\d{1 ,3}((\.)\d)?\d{0,3})\s?)?(?<unitName2

>([^\x20 -\x7E]+|µ|m)?(h(ours?)?|k?g|l|%|cm3|day))(?<

ofBW >(\W|\Wof\W)?((body\Wweight)|bw))?))|(?<

dosagePatternName2 >(?< digitsName3 >\d{1 ,3}((\.)\d)?\d

{0,3})(\W?(?<unitName3 >(i?u|(µ|[^\x20 -\x7E]+)l|ml|mm|l

|%| cm3|(µ|[^\x20 -\x7E]+)g|mg|g)))))($|\b|(?=))

Extracting values for hasPValueL:

(?<pattern1GroupName >(p[^\d\w\.,])?(?< operatorGroup >[^\

x20 -\x7E]+|=|>| <) [^\d\w\.,]?(?< numGroup >((\d+\.\d+)|\d

+)))($|\b|(?=))

Abbreviations 183

Extracting values for hasForceL:

(^|\b|(?<=))((?< forcePatternName1 >(?< digitsName1 >\d

{1 ,3}((\.)\d)?\d{0 ,3})(\s?(?<unitName1 >([^\x20 -\x7E]+|

µ)?(g\.?))(\sof .{2 ,5})?\s?(times|per|x| -|[^\x20 -\x7E

]+)\s?((?< digitsName2 >\d{1 ,3}((\.)\d)?\d{0,3})\s?)?(?<

unitName2 >([^\x20 -\x7E]+m|mm|cm|µm))))|(?<

pattern3GroupName >(?< p1Numbers1 >\d{1 ,3}((\.)\d)?\d

{0,3}) [^\d\w\.,=]?(? < p1Unit1 >(N|k?dyne?s?))([^\d\w

\.,=](to|and)[^\d\w\. ,=]|[^\d\w\. ,=]?((\+? -) |\+(/|\\)

-|+-|[^\d\w\.,=])[^\d\w\. ,=]?)(?<p1Numbers2 >\d

{1 ,3}((\.)\d)?\d{0 ,3})[^\d\w\. ,=]?(? < p1Unit2 >(N|k?dyne

?s?))?)|(?< pattern4GroupName >(?<p2Numbers1 >\d

{1 ,3}((\.)\d)?\d{0 ,3}) ([^\d\w\. ,=](to|and)[^\d\w

\. ,=]|[^\d\w\. ,=]?((\+? -) |\+(/|\\) -|+-|[^\d\w\.,=]) [^\

d\w\. ,=]?)(?<p2Numbers2 >\d{1 ,3}((\.)\d)?\d{0 ,3})[^\d\w

\.,=]?(?< p2Unit1 >(N|k?dyne?s?)))|(?< pattern5GroupName

>(?<p3Numbers1 >\d{1 ,3}((\.)\d)?\d{0,3}) [^\d\w\.,=]?(?<

p3Unit1 >p1Unit2))|(?< forcePatternName2 >(?< digitsName3

>\d{1 ,3}((\.)\d)?\d{0 ,3})(\W?(?<unitName3 >(N|k?dyne?s

?)))))([^\d\w\. ,=]? force)?($|\b|(?=))

Abbreviations Regular Expressions for Literal Extraction

Extracting values for hasDurationL:

(?<about >(~|(^|\b|(?<=))about [^\d\w\.,=])?)((?<

pattern1GroupName >(?< p1Numbers1 >((\d+\.\d+)|\d+))[^\d\

w\. ,=]?(? < p1Unit1 >(s(econds ?)?|m(ins?)?| minutes ?|h((

ours?)|r)?|d(ays?)?|w(eeks?)?| months ?|y(ears?)?))([^\d

\w\. ,=](to|and)[^\d\w\. ,=]|[^\d\w\. ,=]?((\+? -)

|\+(/|\\) -|+-|[^\d\w\. ,=])[^\d\w\. ,=]?)(?<p1Numbers2

>((\d+\.\d+)|\d+))[^\d\w\.,=]?(?< p1Unit2 >(s(econds ?)?|

m(ins?)?| minutes ?|h((ours?)|r)?|d(ays?)?|w(eeks?)?|

months ?|y(ears?)?))?)|(?< pattern2GroupName >(?<

p2Numbers1 >((\d+\.\d+)|\d+))([^\d\w\. ,=](to|and)[^\d\w

\. ,=]|[^\d\w\. ,=]?((\+? -) |\+(/|\\) -|+-|[^\d\w\.,=]) [^\

d\w\. ,=]?)(?<p2Numbers2 >((\d+\.\d+)|\d+))[^\d\w

\.,=]?(?< p2Unit1 >(s(econds ?)?|m(ins?)?| minutes ?|h((

ours?)|r)?|d(ays?)?|w(eeks?)?| months ?|y(ears?)?)))|(?<

pattern3GroupName >(?< p3Numbers1 >((\d+\.\d+)|\d+))[^\d\

w\. ,=]?(? < p3Unit1 >(s(econds ?)?|m(ins?)?| minutes ?|h((

ours?)|r)?|d(ays?)?|w(eeks?)?| months ?|y(ears?)?))))($

|\b|(?=))

Extracting values for hasDistanceL:

(^|\b|(?<=))((height|distance) of)?(?<about >(~|(^|\b

|(? <=))about [^\d\w\.,=])?)((?< pattern1GroupName >(?<

p1Numbers1 >((\d+\.\d+)|\d+))[^\d\w\. ,=]?(? < p1Unit1 >(µm

|mm|cm))([^\d\w\. ,=](to|and)[^\d\w\. ,=]|[^\d\w

\. ,=]?((\+? -) |\+(/|\\) -|+-|[^\d\w\. ,=]) [^\d\w\. ,=]?)

(?<p1Numbers2 >((\d+\.\d+)|\d+))[^\d\w\.,=]?(?< p1Unit2

>(µm|mm|cm))?)|(?< pattern2GroupName >(?<p2Numbers1 >((\d

+\.\d+)|\d+))([^\d\w\.,=](to|and)[^\d\w\. ,=]|[^\d\w

\. ,=]?((\+? -) |\+(/|\\) -|+-|[^\d\w\. ,=]) [^\d\w\. ,=]?)

(?<p2Numbers2 >((\d+\.\d+)|\d+))[^\d\w\.,=]?(?< p2Unit1

>(µm|mm|cm)))|(?< pattern3GroupName >(?<p3Numbers1 >((\d

+\.\d+)|\d+))[^\d\w\.,=]?(?< p3Unit1 >(µm|mm|cm))))([^\d

\w\. ,=]?(height|distance))?($|\b|(?=))

Abbreviations 185

Extracting values for hasAgeL:

(^|\b|(?<=))(?<pattern2GN >((?< fromGroup2 >((aged|age of)\

W)?(?< writtenFrom2 >(^|\b|(?<=))(one|two|three|four|

five|six|seven|eight|nine|ten|eleven|twelve|thirteen|

forteen|fifteen))|(?< digitsFrom2 >\d{1 ,3}((\.)\d)?\d

{0,3}))(\W?(?< unitsGroup2 >d(ays?)?|w(eeks?)?| months ?|y

(ears?)?)(\W?old|\Wof\Wage)?)\W?(\Wto\W|\W?-\W?|\W?[^\

x20 -\x7E]+\W?))(?<toGroup2 >(?< writtenTo2 >(^|\b|(? <=))(

one|two|three|four|five|six|seven|eight|nine|ten|

eleven|twelve|thirteen|forteen|fifteen))|(?<digitsTo2

>\d{1 ,3}((\.)\d)?\d{0,3}))\W?(\k<unitsGroup2 >)s?)|(?<

pattern1GN >(?< pattern1Full >((aged|age of)\W)?(?<

fromGroup >(?< writtenFrom >(^|\b|(?<=))(one|two|three|

four|five|six|seven|eight|nine|ten|eleven|twelve|

thirteen|forteen|fifteen))|(?<digitsFrom >\d{1 ,3}((\.)\

d)?\d{0 ,3}))\W?(\Wto\W|\W?-\W?|\W?[^\x20 -\x7E]+\W?))

?((aged|age of)\W)?(?<toGroup >(?<writtenTo >(^|\b|(?<=

))(one|two|three|four|five|six|seven|eight|nine|ten|

eleven|twelve|thirteen|forteen|fifteen))|(?<digitsTo >\

d{1 ,3}((\.)\d)?\d{0 ,3}))(\W?(?<unitsGroup >d(ays?)?|w(

eeks?)?| months ?|y(ears?)?)(\W?old|\Wof\Wage)?))($|\b

|(?=))

Bibliography

[1] David L Sackett, William M C Rosenberg, J A Muir Gray, R Brian Haynes, and

W Scott Richardson. Evidence based medicine: what it is and what it isn’t. BMJ,

312(7023):71–72, 1996. ISSN 0959-8138. doi: 10.1136/bmj.312.7023.71.

[2] Pawel Tabakow, Geoffrey Raisman, Wojciech Fortuna, Marcin Czyz, Juliusz Hu-

ber, Daqing Li, Pawel Szewczyk, Stefan Okurowski, Ryszard Miedzybrodzki, Bog-

dan Czapiga, et al. Functional regeneration of supraspinal connections in a patient

with transected spinal cord following transplantation of bulbar olfactory ensheath-

ing cells with peripheral nerve bridging. Cell transplantation, 23(12):1631–1655,

2014.

[3] Yi Kang, Han Ding, Hengxing Zhou, Zhijian Wei, Lu Liu, Dayu Pan, and Shiqing

Feng. Epidemiology of worldwide spinal cord injury: a literature review. Journal

of Neurorestoratology, 6:1–9, 2017.

[4] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language

overview. W3C recommendation, 10(10):2004, 2004.

[5] Nicole Brazda, Veronica Estrada, Tarek Kirchhoffer, Hendrik ter Horst, Matthias

Hartung, Cord Wiljes, Roman Klinger, Philipp Cimiano, and Hans Werner Müller.

Scio: The spinal cord injury ontology, a prerequisite for automated data extraction

from publications on research in spinal cord injury. In Proceedings of the 18th

Spinal Research Network Meeting (ISRT 2016), 2016.

[6] Nicole Brazda, Hendrik ter Horst, Matthias Hartung, Cord Wiljes, Veronica

Estrada, Roman Klinger, Wolfgang Kuchinke, Hans Werner Müller, and Philipp

Cimiano. Scio: an ontology to support the formalization of pre-clinical spinal cord

injury experiments. In Proceedings of the 3rd Joint Ontology Workshops (JOWO):

Ontologies and Data in the Life Sciences, volume 2050, 2017.

187

Bibliography BIBLIOGRAPHY

[7] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and eval-

uation methods. Semantic web, 8(3):489–508, 2017.

[8] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F Patel-Schneider, Sebastian

Rudolph, et al. Owl 2 web ontology language primer. W3C recommendation, 27

(1):123, 2009.

[9] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs.

SEMANTiCS (Posters, Demos, SuCCESS), 48:1–4, 2016.

[10] Jianbo Yuan, Zhiwei Jin, Han Guo, Hongxia Jin, Xianchao Zhang, Tristram Smith,

and Jiebo Luo. Constructing biomedical domain-specific knowledge graph with

minimum supervision. Knowledge and Information Systems, 62(1):317–336, 2020.

[11] Alison Callahan, Saminda W Abeyruwan, Hassan Al-Ali, Kunie Sakurai, Adam R

Ferguson, Phillip G Popovich, Nigam H Shah, Ubbo Visser, John L Bixby, and

Vance P Lemmon. Regenbase: a knowledge base of spinal cord injury biology for

translational research. Database, 2016, 2016.

[12] Yan Fan, Chengyu Wang, Guomin Zhou, and Xiaofeng He. Dkgbuilder: An archi-

tecture for building a domain knowledge graph from scratch. In International Con-

ference on Database Systems for Advanced Applications, pages 663–667. Springer,

2017.

[13] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S Weld. Open in-

formation extraction from the web. Communications of the ACM, 51(12):68–74,

2008.

[14] Oier Lopez De Lacalle and Mirella Lapata. Unsupervised relation extraction with

general domain knowledge. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, pages 415–425, 2013.

[15] Pablo Gamallo and Marcos Garcia. Multilingual open information extraction. In

Portuguese Conference on Artificial Intelligence, pages 711–722. Springer, 2015.

[16] Alexander Yates, Michele Banko, Matthew Broadhead, Michael J Cafarella, Oren

Etzioni, and Stephen Soderland. Textrunner: open information extraction on the

web. In Proceedings of Human Language Technologies: The Annual Conference

Bibliography 189

of the North American Chapter of the Association for Computational Linguistics

(NAACL-HLT), pages 25–26, 2007.

[17] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic

web, pages 722–735. Springer, 2007.

[18] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

Freebase: a collaboratively created graph database for structuring human knowl-

edge. In Proceedings of the 2008 ACM SIGMOD international conference on Man-

agement of data, pages 1247–1250, 2008.

[19] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-

base. Communications of the ACM, 57(10):78–85, 2014.

[20] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E

Alsaadi. A survey of deep neural network architectures and their applications.

Neurocomputing, 234:11–26, 2017.

[21] David Nadeau and Satoshi Sekine. A survey of named entity recognition and

classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[22] Robert Leaman and Graciela Gonzalez. Banner: an executable survey of advances

in biomedical named entity recognition. In Biocomputing 2008, pages 652–663.

World Scientific, 2008.

[23] Panče Panov, Larisa N Soldatova, and Sašo Džeroski. Generic ontology of

datatypes. Information Sciences, 329:900–920, 2016.

[24] David A Evans, Nicholas D Brownlow, William R Hersh, and Emily M Campbell.

Automating concept identification in the electronic medical record: an experi-

ment in extracting dosage information. In Proceedings of the AMIA Annual Fall

Symposium, page 388. American Medical Informatics Association, 1996.

[25] Özlem Uzuner, Imre Solti, and Eithon Cadag. Extracting medication information

from clinical text. Journal of the American Medical Informatics Association, 17

(5):514–518, 2010.

[26] Daya C Wimalasuriya and Dejing Dou. Ontology-based information extraction:

An introduction and a survey of current approaches, 2010.

Bibliography BIBLIOGRAPHY

[27] Sachin Pawar, Pushpak Bhattacharyya, and Girish Palshikar. End-to-end relation

extraction using neural networks and markov logic networks. In Proceedings of the

15th Conference of the European Chapter of the Association for Computational

Linguistics: Volume 1, Long Papers, pages 818–827, 2017.

[28] Deyu Zhou, Dayou Zhong, and Yulan He. Biomedical relation extraction: from

binary to complex. Computational and Mathematical Methods in Medicine, 2014,

2014.

[29] Peter Exner and Pierre Nugues. Entity extraction: From unstructured text to

dbpedia rdf triples. In WoLE@ ISWC, pages 58–69, 2012.

[30] Rodrigo Rafael Villarreal Goulart, Vera Lúcia Strube de Lima, and

Clarissa Castellã Xavier. A systematic review of named entity recognition in

biomedical texts. Journal of the Brazilian Computer Society, 17(2):103–116, 2011.

[31] Burr Settles. Biomedical named entity recognition using conditional random fields

and rich feature sets. In Proceedings of the International Joint Workshop on Nat-

ural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP),

pages 107–110, 2004.

[32] Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. Joint entity recog-

nition and disambiguation. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 879–888, 2015.

[33] Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task iden-

tification of entities, relations, and coreference for scientific knowledge graph con-

struction. In Proceedings Conference Empirical Methods Natural Language Process.

(EMNLP), 2018.

[34] Zhenyu Zhang, Xiaobo Sind, Tingwen Liu, Zheng Fang, and Quangang Li. Joint

entity linking and relation extraction with neural networks for knowledge base

population. In 2020 International Joint Conference on Neural Networks (IJCNN),

pages 1–8. IEEE, 2020.

[35] Paul McNamee and Hoa Trang Dang. Overview of the tac 2009 knowledge base

population track. In Text Analysis Conference (TAC), volume 17, pages 111–113,

2009.

Bibliography 191

[36] Jacqueline Aguilar, Charley Beller, Paul McNamee, Benjamin Van Durme,

Stephanie Strassel, Zhiyi Song, and Joe Ellis. A comparison of the events and

relations across ace, ere, tac-kbp, and framenet annotation standards. In Proceed-

ings of the Second Workshop on EVENTS: Definition, Detection, Coreference, and

Representation, pages 45–53, 2014.

[37] Hendrik ter Horst and Philipp Cimiano. Structured prediction for joint class

cardinality and entity property inference in model-complete text comprehension.

In Proceedings of the Fourth Workshop on Structured Prediction for NLP, pages

22–32, 2020.

[38] Brian K Kwon, Elena B Okon, Eve Tsai, Michael S Beattie, Jacqueline C Bres-

nahan, David K Magnuson, Paul J Reier, Dana M McTigue, Phillip G Popovich,

Andrew R Blight, et al. A grading system to evaluate objectively the strength

of pre-clinical data of acute neuroprotective therapies for clinical translation in

spinal cord injury. Journal of neurotrauma, 28(8):1525–1543, 2011.

[39] Alexander Borowi, Hendrik ter Horst, Matthias Hartung, Veronica Estrada, Nicole

Brazda, Hans Werner Müller, and Philipp Cimiano. Ontology-driven visual explo-

ration of preclinical research data in the spinal cord injury domain. Proceedings

of the SEMANTICS 2017 Poster and Demo Track, 2044, 2017.

[40] Matthias Hartung, Hendrik ter Horst, Frank Grimm, Tim Diekmann, Roman

Klinger, and Philipp Cimiano. Santo: a web-based annotation tool for ontology-

driven slot filling. In Proceedings of ACL 2018, System Demonstrations, pages

68–73, 2018.

[41] Hendrik ter Horst, Matthias Hartung, and Philipp Cimiano. Joint entity recog-

nition and linking in technical domains using undirected probabilistic graphical

models. In International Conference on Language, Data and Knowledge, pages

166–180. Springer, 2017.

[42] Hendrik ter Horst, Matthias Hartung, Roman Klinger, Nicole Brazda,

Hans Werner Müller, and Philipp Cimiano. Assessing the impact of single and

pairwise slot constraints in a factor graph model for template-based information

extraction. In International Conference on Applications of Natural Language to

Information Systems, pages 179–190. Springer, 2018.

Bibliography BIBLIOGRAPHY

[43] Hendrik ter Horst, Matthias Hartung, and Philipp Cimiano. Cold-start knowl-

edge base population using ontology-based information extraction with conditional

random fields. In Reasoning Web International Summer School, pages 78–109.

Springer, 2018.

[44] Hendrik ter Horst, Matthias Hartung, Philipp Cimiano, Nicole Brazda,

Hans Werner Müller, and Roman Klinger. Learning soft domain constraints in

a factor graph model for template-based information extraction. Data & Knowl-

edge Engineering, 125:101764, 2020.

[45] Hendrik ter Horst and Philipp Cimiano. Incorporating semantic dependencies

extracted from knowledge graphs into joint inference template-based information

extraction. ECAI, 2020.

[46] Sherzod Hakimov, Hendrik ter Horst, Soufian Jebbara, Matthias Hartung, and

Philipp Cimiano. Combining textual and graph-based features for named en-

tity disambiguation using undirected probabilistic graphical models. In European

Knowledge Acquisition Workshop, pages 288–302. Springer, 2016.

[47] Annika Schwitteck, Hendrik ter Horst, and Matthias Hartung. What coreference

chains tell about experimental groups in (pre-) clinical trials. Proceedings of DGf-

S/CL Poster Session, 2018.

[48] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-

phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A

web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 601–610, 2014.

[49] Xin Luna Dong. Challenges and innovations in building a product knowledge

graph. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2869–2869, 2018.

[50] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu,

Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar,

et al. Unicorn: A system for searching the social graph. Proceedings of the VLDB

Endowment, 6(11):1150–1161, 2013.

Bibliography 193

[51] Zaiwen Feng, Wolfgang Mayer, Keqing He, Selasi Kwashie, Markus Stumptner,

Georg Grossmann, Rong Peng, and Wangyu Huang. A schema-driven synthetic

knowledge graph generation approach with extended graph differential dependen-

cies (gddxs). IEEE Access, 2020.

[52] Ian Horrocks. Owl: A description logic based ontology language. In Interna-

tional conference on principles and practice of constraint programming, pages 5–8.

Springer, 2005.

[53] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and York Sure. Semantic

Web: Grundlagen. Springer-Verlag, 2007.

[54] Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of semantic

web technologies. CRC press, 2009.

[55] Eric Miller. An introduction to the resource description framework. Bulletin of

the American Society for Information Science and Technology, 25(1):15–19, 1998.

[56] Dan Brickley, Ramanathan V Guha, and Andrew Layman. Resource description

framework (rdf) schema specification. 1999.

[57] Amit Singhal. Introducing the knowledge graph: things, not strings. Official google

blog, 5, 2012.

[58] Florian Bauer and Martin Kaltenböck. Linked open data: The essentials. Edition

mono/monochrom, Vienna, 710, 2011.

[59] Gjergji Kasneci, Maya Ramanath, Fabian Suchanek, and Gerhard Weikum. The

yago-naga approach to knowledge discovery. ACM SIGMOD Record, 37(4):41–47,

2009.

[60] Sergio Oramas, Vito Claudio Ostuni, Tommaso Di Noia, Xavier Serra, and Euge-

nio Di Sciascio. Sound and music recommendation with knowledge graphs. ACM

Transactions on Intelligent Systems and Technology (TIST), 8(2):1–21, 2016.

[61] Jun Chen, Yueguo Chen, Xiaoyong Du, Xiangling Zhang, and Xuan Zhou. Seed:

a system for entity exploration and debugging in large-scale knowledge graphs.

In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages

1350–1353. IEEE, 2016.

Bibliography BIBLIOGRAPHY

[62] Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. Neural network-

based question answering over knowledge graphs on word and character level. In

Proceedings of the 26th international conference on World Wide Web, pages 1211–

1220, 2017.

[63] Samaa Elnagar and Heinz Roland Weistroffer. Introducing knowledge graphs to

decision support systems design. In Eurosymposium on systems analysis and de-

sign, pages 3–11. Springer, 2019.

[64] Paul Buitelaar, Philipp Cimiano, Stefania Racioppa, and Melanie Siegel. Ontology-

based information extraction with soba. In Proceedings of the International Con-

ference on Language Resources and Evaluation (LREC), 2006.

[65] Baoxu Shi and Tim Weninger. Open-world knowledge graph completion. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[66] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: A generic

architecture for storing and querying rdf and rdf schema. In International semantic

web conference, pages 54–68. Springer, 2002.

[67] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity

of sparql. ACM Transactions on Database Systems (TODS), 34(3):1–45, 2009.

[68] Noah A. Smith. Linguistic Structure Prediction. Morgan and Claypool, 2011.

[69] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. 2001.

[70] Andrew McCallum, Karl Schultz, and Sameer Singh. Factorie: Probabilistic pro-

gramming via imperatively defined factor graphs. In Advances in Neural Informa-

tion Processing Systems, pages 1249–1257, 2009.

[71] Irina Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages 41–46,

2001.

[72] Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov

models. ieee assp magazine, 3(1):4–16, 1986.

Bibliography 195

[73] Daphne Koller and Nir Friedman. Probabilistic Graphical Models. Principles and

Techniques. MIT Press, 2009.

[74] Mathieu Constant and Anthony Sigogne. Mwu-aware part-of-speech tagging with

a crf model and lexical resources. 2011.

[75] Pranjal Awasthi, Delip Rao, and Balaraman Ravindran. Part of speech tagging

and chunking with hmm and crf. Proceedings of NLP Association of India (NLPAI)

Machine Learning Contest 2006, 2006.

[76] Andrew McCallum and Wei Li. Early results for named entity recognition with

conditional random fields, feature induction and web-enhanced lexicons. 2003.

[77] Charles Sutton and Andrew McCallum. An introduction to conditional random

fields for relational learning. Introduction to statistical relational learning, 2:93–

128, 2006.

[78] Aron Culotta and Andrew Mccallum. Learning and inference in weighted logic

with application to natural language processing. Citeseer, 2008.

[79] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor Graphs

and Sum Product Algorithm. IEEE Transactions on Information Theory, 47(2):

498–519, 2001.

[80] Christian Robert and George Casella. Monte Carlo statistical methods. Springer

Science & Business Media, 2013.

[81] Khashayar Rohanimanesh, Michael Wick, and Andrew McCallum. Inference and

learning in large factor graphs with adaptive proposal distributions. 2009.

[82] W Keith Hastings. Monte carlo sampling methods using markov chains and their

applications. 1970.

[83] George Casella and Edward I George. Explaining the gibbs sampler. The American

Statistician, 46(3):167–174, 1992.

[84] Philip Resnik and Eric Hardisty. Gibbs sampling for the uninitiated. Technical

report, Maryland Univ College Park Inst for Advanced Computer Studies, 2010.

Bibliography BIBLIOGRAPHY

[85] M. Wick, K. Rohanimanesh, A. Culotta, and A. McCallum. SampleRank. Learning

Preferences from Atomic Gradients. In Proceedings of the NIPS Workshop on

Advances in Ranking, pages 1–5, 2009.

[86] Beth M Sundheim and Nancy Chinchor. Survey of the message understanding con-

ferences. In HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop

Held at Plainsboro, New Jersey, March 21-24, 1993, 1993.

[87] Nancy A Chinchor and Beth Sundheim. Message understanding conference (muc)

tests of discourse processing. In Proc. AAAI Spring Symposium on Empirical

Methods in Discourse Interpretation and Generation, pages 21–26, 1995.

[88] Ralph Grishman and Beth M Sundheim. Message understanding conference-6: A

brief history. In Proceedings of the 16th International Conference on Computa-

tional Linguistics (COLING), 1996.

[89] Wendy Lehnert, Claire Cardie, David Fisher, Ellen Riloff, and Robert Williams.

University of massachusetts: Description of the circus system as used for muc-

3. Technical report, MASSACHUSETTS UNIV AMHERST DEPT OF COM-

PUTER AND INFORMATION SCIENCE, 1991.

[90] Jerry R Hobbs. Sri international: Description of the tacitus system as used for

muc-3. Technical report, SRI INTERNATIONAL MENLO PARK CA, 1991.

[91] Douglas E Appelt, Jerry R Hobbs, John Bear, David Israel, and Mabry Tyson.

Fastus: A finite-state processor for information extraction from real-world text.

In IJCAI, volume 93, pages 1172–1178, 1993.

[92] Marti A Hearst. Automatic acquisition of hyponyms from large text corpora.

In Coling 1992 volume 2: The 15th international conference on computational

linguistics, 1992.

[93] Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shivaku-

mar Vaithyanathan, and Huaiyu Zhu. Systemt: a system for declarative informa-

tion extraction. ACM SIGMOD Record, 37(4):7–13, 2009.

[94] Yunyao Li, Frederick Reiss, and Laura Chiticariu. Systemt: A declarative infor-

mation extraction system. In Proceedings of the ACL-HLT 2011 System Demon-

strations, pages 109–114, 2011.

Bibliography 197

[95] Laura Chiticariu, Yunyao Li, and Frederick Reiss. Rule-based information extrac-

tion is dead! long live rule-based information extraction systems! In Proceedings

of the 2013 conference on empirical methods in natural language processing, pages

827–832, 2013.

[96] Jon Patrick and Min Li. High accuracy information extraction of medication

information from clinical notes: 2009 i2b2 medication extraction challenge. Journal

of the American Medical Informatics Association, 17(5):524–527, 2010.

[97] Bonan Min, Marjorie Freedman, and Talya Meltzer. Probabilistic inference for cold

start knowledge base population with prior world knowledge. In Proceedings of

the 15th Conference of the European Chapter of the Association for Computational

Linguistics: Volume 1, Long Papers, pages 601–612, 2017.

[98] Heng Ji, Joel Nothman, Ben Hachey, et al. Overview of tac-kbp2014 entity dis-

covery and linking tasks. In Proc. Text Analysis Conference (TAC2014), pages

1333–1339, 2014.

[99] Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. Distant supervision for

relation extraction via piecewise convolutional neural networks. In Proceedings of

the 2015 conference on empirical methods in natural language processing, pages

1753–1762, 2015.

[100] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D Man-

ning. Position-aware attention and supervised data improve slot filling. In Proceed-

ings of the 2017 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 35–45, 2017.

[101] Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. Shared embed-

ding based neural networks for knowledge graph completion. In Proceedings of the

27th ACM International Conference on Information and Knowledge Management,

pages 247–256, 2018.

[102] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Ce-

likyilmaz, and Yejin Choi. COMET: commonsense transformers for automatic

knowledge graph construction. In Anna Korhonen, David R. Traum, and Llúıs

Bibliography BIBLIOGRAPHY

Màrquez, editors, Proceedings of the 57th Conference of the Association for Com-

putational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Vol-

ume 1: Long Papers, pages 4762–4779. Association for Computational Linguistics,

2019. doi: 10.18653/v1/p19-1470.

[103] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding. In Jill

Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,

MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186.

Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423.

[104] Farrokh Mehryary, Jari Björne, Sampo Pyysalo, Tapio Salakoski, and Filip Ginter.

Deep learning with minimal training data: Turkunlp entry in the bionlp shared

task 2016. In Proceedings of the 4th BioNLP shared task workshop, pages 73–81,

2016.

[105] David Belanger and Andrew McCallum. Structured prediction energy networks.

In International Conference on Machine Learning, pages 983–992. PMLR, 2016.

[106] David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for

structured prediction energy networks. In International Conference on Machine

Learning, pages 429–439. PMLR, 2017.

[107] Kareem Darwish, Hamdy Mubarak, Ahmed Abdelali, Mohamed Eldesouki, Younes

Samih, Randah Alharbi, Mohammed Attia, Walid Magdy, and Laura Kallmeyer.

Multi-dialect arabic pos tagging: A crf approach. In Proceedings of the Eleventh

International Conference on Language Resources and Evaluation (LREC 2018),

2018.

[108] Michal Konkol and Miloslav Konoṕık. Segment representations in named entity

recognition. In International Conference on Text, Speech, and Dialogue, pages

61–70. Springer, 2015.

[109] Louise Deléger, Robert Bossy, Estelle Chaix, Mouhamadou Ba, Arnaud Ferré,

Philippe Bessieres, and Claire Nédellec. Overview of the bacteria biotope task at

Bibliography 199

bionlp shared task 2016. In Proceedings of the 4th BioNLP shared task workshop,

pages 12–22, 2016.

[110] Yanshan Wang, Naveed Afzal, Sijia Liu, Majid Rastegar-Mojarad, Liwei Wang,

Feichen Shen, Sunyang Fu, and Hongfang Liu. Overview of the biocreative/ohnlp

challenge 2018 task 2: clinical semantic textual similarity. Proceedings of the

BioCreative/OHNLP Challenge, 2018, 2018.

[111] Rodney Summerscales, Shlomo Argamon, Jordan Hupert, and Alan Schwartz.

Identifying treatments, groups, and outcomes in medical abstracts. In Proceedings

of the Sixth Midwest Computational Linguistics Colloquium (MCLC). Indiana Uni-

versity, 2009.

[112] Antonio Trenta, Anthony Hunter, and Sebastian Riedel. Extraction of evidence

tables from abstracts of randomized clinical trials using a maximum entropy clas-

sifier and global constraints. CoRR, abs/1509.05209, 2015.

[113] Berry De Bruijn, Simona Carini, Svetlana Kiritchenko, Joel Martin, and Ida Sim.

Automated information extraction of key trial design elements from clinical trial

publications. In Proceedings of the AMIA Annual Symposium, volume 2008, page

141. American Medical Informatics Association, 2008.

[114] Robert Leaman and Zhiyong Lu. Taggerone: joint named entity recognition and

normalization with semi-markov models. Bioinformatics, 32(18):2839–2846, 2016.

[115] Carolyn E Lipscomb. Medical subject headings (mesh). Bulletin of the Medical

Library Association, 88(3):265, 2000.

[116] Jenny Rose Finkel, Trond Grenager, and Christopher D Manning. Incorporat-

ing non-local information into information extraction systems by gibbs sampling.

In Proceedings of the 43rd Annual Meeting of the Association for Computational

Linguistics (ACL’05), pages 363–370, 2005.

[117] Lishuang Li, Liuke Jin, Zhenchao Jiang, Dingxin Song, and Degen Huang. Biomed-

ical named entity recognition based on extended recurrent neural networks. In 2015

IEEE International Conference on bioinformatics and biomedicine (BIBM), pages

649–652. IEEE, 2015.

Bibliography BIBLIOGRAPHY

[118] Qile Zhu, Xiaolin Li, Ana Conesa, and Cécile Pereira. Gram-cnn: a deep learn-

ing approach with local context for named entity recognition in biomedical text.

Bioinformatics, 34(9):1547–1554, 2018.

[119] Jerry R Hobbs and Feng Pan. Time ontology in owl. W3C working draft, 27:133,

2006.

[120] Georgios V Gkoutos, Paul N Schofield, and Robert Hoehndorf. The units ontology:

a tool for integrating units of measurement in science. Database, 2012, 2012.

[121] Naushad UzZaman, Hector Llorens, Leon Derczynski, James Allen, Marc Verha-

gen, and James Pustejovsky. Semeval-2013 task 1: Tempeval-3: Evaluating time

expressions, events, and temporal relations. In Second Joint Conference on Lexi-

cal and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh

International Workshop on Semantic Evaluation (SemEval 2013), pages 1–9, 2013.

[122] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Relation extraction and

the influence of automatic named-entity recognition. ACM Transactions on Speech

and Language Processing (TSLP), 5(1):1–26, 2007.

[123] Alexis Mitchell, Stephanie Strassel, Shudong Huang, and Ramez Zakhary. Ace

2004 multilingual training corpus. Linguistic Data Consortium, Philadelphia, 1:

1–1, 2005.

[124] Meiji Cui, Li Li, Zhihong Wang, and Mingyu You. A survey on relation extraction.

In China Conference on Knowledge Graph and Semantic Computing, pages 50–58.

Springer, 2017.

[125] George R Doddington, Alexis Mitchell, Mark A Przybocki, Lance A Ramshaw,

Stephanie M Strassel, and Ralph M Weischedel. The automatic content extraction

(ace) program-tasks, data, and evaluation. In Lrec, volume 2, pages 837–840.

Lisbon, 2004.

[126] Kata Gábor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh,

Haifa Zargayouna, and Thierry Charnois. Semeval-2018 task 7: Semantic rela-

tion extraction and classification in scientific papers. In Proceedings of The 12th

International Workshop on Semantic Evaluation, pages 679–688, 2018.

Bibliography 201

[127] Ting Wang, Yaoyong Li, Kalina Bontcheva, Hamish Cunningham, and Ji Wang.

Automatic extraction of hierarchical relations from text. In European Semantic

Web Conference, pages 215–229. Springer, 2006.

[128] Bowen Yu, Zhenyu Zhang, Xiaobo Shu, Tingwen Liu, Yubin Wang, Bin Wang, and

Sujian Li. Joint extraction of entities and relations based on a novel decomposi-

tion strategy. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela

Milano, Senén Barro, Alberto Bugaŕın, and Jérôme Lang, editors, ECAI 2020 -

24th European Conference on Artificial Intelligence, 29 August-8 September 2020,

Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th

Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), vol-

ume 325 of Frontiers in Artificial Intelligence and Applications, pages 2282–2289.

IOS Press, 2020. doi: 10.3233/FAIA200356.

[129] Shweta Yadav, Srivastsa Ramesh, Sriparna Saha, and Asif Ekbal. Relation ex-

traction from biomedical and clinical text: Unified multitask learning framework.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020.

[130] Yifan Peng, Manabu Torii, Cathy H Wu, and K Vijay-Shanker. A generalizable

nlp framework for fast development of pattern-based biomedical relation extraction

systems. BMC bioinformatics, 15(1):285, 2014.

[131] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. Re-

lation extraction with matrix factorization and universal schemas. In Proceedings

of the 2013 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 74–84, 2013.

[132] Pankaj Gupta, Subburam Rajaram, Hinrich Schütze, and Thomas Runkler. Neural

relation extraction within and across sentence boundaries. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages 6513–6520, 2019.

[133] Natthawut Kertkeidkachorn and Ryutaro Ichise. T2kg: An end-to-end system for

creating knowledge graph from unstructured text. In AAAI Workshops, 2017.

[134] Kamel Nebhi. Ontology-based information extraction from twitter. In Proceedings

of the Workshop on Information Extraction and Entity Analytics on Social Media

Data, pages 17–22, 2012.

Bibliography BIBLIOGRAPHY

[135] Daniel Sanchez-Cisneros and Fernando Aparicio Gali. UEM-UC3M: An ontology-

based named entity recognition system for biomedical texts. In Proceedings of

the Seventh International Workshop on Semantic Evaluation (SemEval), pages

622–627. Association for Computational Linguistics, 2013.

[136] Dustin Lange, Christoph Böhm, and Felix Naumann. Extracting structured infor-

mation from wikipedia articles to populate infoboxes. In Proceedings of the ACM

International Conference on Information and Knowledge Management (CIKM),

pages 1661–1664, 2010.

[137] Mihai Surdeanu, David McClosky, Julie Tibshirani, John Bauer, Angel X Chang,

Valentin I Spitkovsky, and Christopher D Manning. A simple distant supervision

approach for the tac-kbp slot filling task. 2010.

[138] Mihai Surdeanu, Sonal Gupta, John Bauer, David McClosky, Angel X Chang,

Valentin I Spitkovsky, and Christopher D Manning. Stanford’s distantly-

supervised slot-filling system. 2011.

[139] Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. A machine learning

approach to coreference resolution of noun phrases. Computational linguistics, 27

(4):521–544, 2001.

[140] Makoto Miwa, Paul Thompson, and Sophia Ananiadou. Boosting automatic event

extraction from the literature using domain adaptation and coreference resolution.

Bioinformatics, 28(13):1759–1765, 2012.

[141] Tian Ye He. Coreference resolution on entities and events for hospital discharge

summaries. PhD thesis, Massachusetts Institute of Technology, 2007.

[142] Jiaping Zheng, Wendy W Chapman, Rebecca S Crowley, and Guergana K Savova.

Coreference resolution: A review of general methodologies and applications in the

clinical domain. Journal of biomedical informatics, 44(6):1113–1122, 2011.

[143] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Sur-

deanu, and Dan Jurafsky. Stanford’s multi-pass sieve coreference resolution sys-

tem at the conll-2011 shared task. In Proceedings of the 15th conference on com-

putational natural language learning: Shared task, pages 28–34. Association for

Computational Linguistics, 2011.

Bibliography 203

[144] Hannaneh Hajishirzi, Leila Zilles, Daniel S Weld, and Luke Zettlemoyer. Joint

coreference resolution and named-entity linking with multi-pass sieves. In Proceed-

ings of the 2013 Conference on Empirical Methods in Natural Language Processing,

pages 289–299, 2013.

[145] Sameer Singh, Sebastian Riedel, Brian Martin, Jiaping Zheng, and Andrew Mc-

Callum. Joint inference of entities, relations, and coreference. In Proceedings of

the 2013 workshop on Automated knowledge base construction, pages 1–6, 2013.

[146] Greg Durrett, David Hall, and Dan Klein. Decentralized entity-level modeling for

coreference resolution. In Proceedings of the 51st Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers), pages 114–124,

2013.

[147] Aria Haghighi and Dan Klein. Coreference resolution in a modular, entity-centered

model. In Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, pages

385–393, 2010.

[148] Jose L Martinez-Rodriguez, Ivan López-Arévalo, and Ana B Rios-Alvarado.

Openie-based approach for knowledge graph construction from text. Expert Sys-

tems with Applications, 113:339–355, 2018.

[149] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global

algorithms for disambiguation to wikipedia. In Proceedings of the 49th annual

meeting of the association for computational linguistics: Human language tech-

nologies, pages 1375–1384, 2011.

[150] Pablo N Mendes, Max Jakob, Andrés Garćıa-Silva, and Christian Bizer. Dbpedia

spotlight: shedding light on the web of documents. In Proceedings of the 7th

international conference on semantic systems, pages 1–8, 2011.

[151] Sebastian Walter, Christina Unger, and Philipp Cimiano. Atoll—a framework for

the automatic induction of ontology lexica. Data & Knowledge Engineering, 94:

148–162, 2014.

[152] Ziawasch Abedjan and Felix Naumann. Synonym analysis for predicate expansion.

In Extended semantic web conference, pages 140–154. Springer, 2013.

Bibliography BIBLIOGRAPHY

[153] Natthawut Kertkeidkachorn and Ryutaro Ichise. An automatic knowledge graph

creation framework from natural language text. IEICE TRANSACTIONS on

Information and Systems, 101(1):90–98, 2018.

[154] Xinbo Lv, Yi Guan, Jinfeng Yang, and Jiawei Wu. Clinical relation extraction

with deep learning. International Journal of Hybrid Information Technology, 9(7):

237–248, 2016.

[155] Christopher De Sa, Alex Ratner, Christopher Ré, Jaeho Shin, Feiran Wang, Sen

Wu, and Ce Zhang. Deepdive: Declarative knowledge base construction. ACM

SIGMOD Record, 45(1):60–67, 2016.

[156] R Brian Haynes, David L Sackett, W Scott Richardson, William Rosenberg, and

G Ross Langley. Evidence-based medicine: How to practice & teach ebm. Cana-

dian Medical Association. Journal, 157(6):788, 1997.

[157] Elisa Ferracane, Iain Marshall, Byron C Wallace, and Katrin Erk. Leveraging

coreference to identify arms in medical abstracts: An experimental study. In

Proceedings of the Seventh International Workshop on Health Text Mining and

Information Analysis, pages 86–95, 2016.

[158] Tobias Mayer, Elena Cabrio, and Serena Villata. Evidence type classification in

randomized controlled trials. In Proceedings of the 5th Workshop on Argument

Mining, pages 29–34. Association for Computational Linguistics, November 2018.

[159] Jin Zhao, Praveen Bysani, and Min-Yen Kan. Exploiting classification correlations

for the extraction of evidence-based practice information. In Proceedings of the

AMIA Annual Symposium, volume 2012, page 1070. American Medical Informatics

Association, 2012.

[160] Byron C Wallace, Joël Kuiper, Aakash Sharma, Mingxi Zhu, and Iain J Mar-

shall. Extracting pico sentences from clinical trial reports using supervised distant

supervision. The Journal of Machine Learning Research, 17(1):4572–4596, 2016.

[161] Douglas G Altman, Kenneth F Schulz, David Moher, Matthias Egger, Frank

Davidoff, Diana Elbourne, Peter C Gøtzsche, and Thomas Lang. The revised

consort statement for reporting randomized trials: explanation and elaboration.

Annals of internal medicine, 134(8):663–694, 2001.

Bibliography 205

[162] Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad, Sungrim Moon, Feichen

Shen, Naveed Afzal, Sijia Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn,

et al. Clinical information extraction applications: a literature review. Journal of

biomedical informatics, 77:34–49, 2018.

[163] Sunyang Fu, David Chen, Huan He, Sijia Liu, Sungrim Moon, Kevin J Peterson,

Feichen Shen, Liwei Wang, Yanshan Wang, Andrew Wen, et al. Clinical con-

cept extraction: a methodology review. Journal of Biomedical Informatics, page

103526, 2020.

[164] Takashi Amemori, Pavla Jendelová, Kateřina Růžičková, David Arboleda, and

Eva Syková. Co-transplantation of olfactory ensheathing glia and mesenchymal

stromal cells does not have synergistic effects after spinal cord injury in the rat.

Cytotherapy, 12(2):212–225, 2010.

[165] Stefan Decker, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel Klein,

Jeen Broekstra, Michael Erdmann, and Ian Horrocks. The semantic web: The

roles of xml and rdf. IEEE Internet computing, 4(5):63–73, 2000.

[166] Corrado Gini. Measurement of inequality of incomes. The economic journal, 31

(121):124–126, 1921.

[167] J Richard Landis and Gary G Koch. The measurement of observer agreement for

categorical data. biometrics, pages 159–174, 1977.

[168] Alfredo Ramirez and Charles Cox. Improving on the range rule of thumb. Rose-

Hulman Undergraduate Mathematics Journal, 13(2):1, 2012.

[169] Justin Domke. Learning graphical model parameters with approximate marginal

inference. IEEE transactions on pattern analysis and machine intelligence, 35(10):

2454–2467, 2013.

[170] Aatila Mustapha, Lachgar Mohamed, and Kartit Ali. An overview of gradient de-

scent algorithm optimization in machine learning: Application in the ophthalmol-

ogy field. In International Conference on Smart Applications and Data Analysis,

pages 349–359. Springer, 2020.

Bibliography BIBLIOGRAPHY

[171] GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Exploring various knowledge

in relation extraction. In Proceedings of the 43rd annual meeting of the association

for computational linguistics (acl’05), pages 427–434, 2005.

[172] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.

Bethard, and David McClosky. The Stanford CoreNLP natural language process-

ing toolkit. In Association for Computational Linguistics (ACL) System Demon-

strations, pages 55–60, 2014.

[173] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest.

R news, 2(3):18–22, 2002.

[174] James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[175] Joseph C Dunn. A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters. 1973.

[176] Sara Nasser, Rawan Alkhaldi, and Gregory Vert. A modified fuzzy k-means clus-

tering using expectation maximization. In 2006 IEEE International Conference

on Fuzzy Systems, pages 231–235. IEEE, 2006.

[177] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomás Mikolov. Bag

of tricks for efficient text classification. In Mirella Lapata, Phil Blunsom, and

Alexander Koller, editors, Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics, EACL 2017, Valencia,

Spain, April 3-7, 2017, Volume 2: Short Papers, pages 427–431. Association for

Computational Linguistics, 2017. doi: 10.18653/v1/e17-2068.

[178] Vincent Kŕıž, Barbora Hladká, Martin Nečaskỳ, and Tomáš Knap. Data ex-

traction using nlp techniques and its transformation to linked data. In Mexican

International Conference on Artificial Intelligence, pages 113–124. Springer, 2014.

[179] Olivia Sanchez-Graillet, Philipp Cimiano, Christian Witte, and Basil Ell. C-tro:

An ontology for summarization and aggregation of the level of evidence in clinical

trials. In JOWO, 2019.

Bibliography 207

[180] Udo Hahn and Michel Oleynik. Medical information extraction in the age of deep

learning. Yearbook of Medical Informatics, 29(1):208, 2020.

[181] Colin Graber, Ofer Meshi, and Alexander Schwing. Deep structured prediction

with nonlinear output transformations. In Advances in Neural Information Pro-

cessing Systems, pages 6320–6331, 2018.

[182] Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng Ji, Jonathan May,

Nathanael Chambers, and Clare Voss. Connecting the dots: Event graph schema

induction with path language modeling. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages 684–695,

2020.

Declaration of Authorship

I, Hendrik Roman ter Horst, declare that this thesis titled, ‘Information Extraction from

Text for Deep Domain Knowledge Graph Population’ and the work presented in it are

my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Deep Domain Knowledge Graph Population
	1.2.1 Simplified Example
	1.2.2 Terminology and Notation
	1.2.3 Involved Tasks

	1.3 Content Overview
	1.3.1 Challenges and Research Questions
	1.3.2 Contributions
	1.3.3 Outline

	1.4 Publications

	2 Foundations
	2.1 Knowledge Representation
	2.1.1 Knowledge Graphs
	2.1.2 Resource Description Framework
	2.1.3 Web Ontology Language
	2.1.4 SPARQL Protocol And RDF Query Language

	2.2 Conditional Random Fields
	2.2.1 Factor Graphs
	2.2.2 Inference and Learning

	3 Related Work
	3.1 Historical Situation
	3.2 Related Information Extraction Problems
	3.2.1 Entity Recognition and Linking
	3.2.2 Relation Extraction
	3.2.3 Slot-Filling
	3.2.4 Co-Reference Resolution

	3.3 Knowledge Graph Population in the Medical Domain

	4 Application Domain: Spinal Cord Injury
	4.1 Spinal Cord Injury Data-Model
	4.1.1 Data-Model Structures

	4.2 Real-World Example
	4.2.1 Protocol Excerpt
	4.2.2 Example Walkthrough

	4.3 Data Set
	4.3.1 Statistics
	4.3.2 Inter Annotator Agreement

	5 Model-Complete Text Comprehension
	5.1 Conditional Random Fields and Factor Graphs
	5.2 Inference and Parameter Estimation
	5.2.1 Objective Function
	5.2.2 Parallel Chain Cross Model Update Inference

	5.3 Sampling from the State Space
	5.3.1 Breadth-First Gibbs Sampling
	5.3.2 Search Space
	5.3.3 Implementation Details

	5.4 Feature Engineering
	5.4.1 General Aim
	5.4.2 Formal Implementation

	5.5 Entity and Literal Annotation
	5.5.1 Sliding Window CRF
	5.5.2 Dictionary Based Approach
	5.5.3 Regular Expressions
	5.5.4 Intermediate Evaluation

	6 Deep Domain Knowledge Graph Population
	6.1 Ontology-Specific Problem Modelling
	6.1.1 Problem Decomposition
	6.1.2 System Architecture

	6.2 Special Case: Experimental Group
	6.2.1 Group Name Recognition
	6.2.2 Group Name Co-reference Resolution
	6.2.3 Additional Features

	6.3 Special Case: Result
	6.3.1 Group Name Multi-Membership Resolution
	6.3.2 Investigation Methods and Trends
	6.3.3 Evidence-based Inference

	7 Experiments and Evaluation
	7.1 Evaluation Metrics and Experimental Settings
	7.1.1 Metric
	7.1.2 Settings and Interpretations

	7.2 Experimental Results and Error Analyses
	7.2.1 Organism Model
	7.2.2 Injury Device
	7.2.3 Injury Location
	7.2.4 Delivery Method
	7.2.5 Anaesthetic
	7.2.6 Injury
	7.2.7 Treatment
	7.2.8 Experimental Group
	7.2.9 Trend
	7.2.10 Investigation Method
	7.2.11 Result

	7.3 Discussion

	8 Applications
	8.1 Annotating Complex Relational Data with SANTO
	8.2 System Application: Populating a Knowledge Graph
	8.3 Exploration of Knowledge with SCIExplorer
	8.4 Answering Competency Questions
	8.5 Automated Grading

	9 Conclusion
	9.1 Summary
	9.2 Outlook
	9.2.1 Relevance and Adaptation to Clinical Domain
	9.2.2 Limitations and Future Work

	List of Figures
	List of Tables
	Abbreviations
	A Group Name Recognition Expressions
	B Regular Expressions for Literal Extraction
	Bibliography

