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Abstract

In this thesis, we tame the uncertainty about the volatility in interest rate models. We

treat the uncertainty about the volatility as model uncertainty or Knightian uncertainty,

resulting in robust models. That means, we model interest rates in the presence of a

family of probability measures, each corresponding to a different scenario for the volatility,

without imposing any assumptions on which is more likely to be the correct one. This

setting is naturally connected to the calculus of G-Brownian motion, which is the main

tool for the mathematical analysis.

First, we investigate the Hull-White model for the term structure of interest rates un-

der volatility uncertainty. The main question in this part is how to find an arbitrage-free

term structure, which is crucial since we can show that the classical approach, martin-

gale modeling, does not work in the presence of volatility uncertainty. We therefore need

to adjust the model to find an arbitrage-free term structure. Although the adjustment

changes the structure of the model, it is still consistent with the traditional Hull-White

model after fitting the yield curve.

Next, we examine term structure movements in the spirit of the (more general) Heath-

Jarrow-Morton methodology under volatility uncertainty. Within this part, we derive a

sufficient condition for the absence of arbitrage, known as the drift condition. The drift

condition allows to construct arbitrage-free term structure models that are completely

robust with respect to the volatility. In particular, we obtain robust versions of classical

term structure models, including the robust version of the Hull-White model from the

previous part.

In the end, we study the pricing of interest rate derivatives under volatility uncertainty,

starting from an arbitrage-free term structure as determined by the previous part. The

uncertainty about the volatility leads to a sublinear pricing measure, which complicates

the pricing procedure in several ways. We develop pricing methods for different types of

contracts in this framework to derive robust pricing formulas for all major interest rate

derivatives. The pricing procedure exhibits many interesting economic phenomena, such

as a robust expectations hypothesis and unspanned stochastic volatility.
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Introduction

Traditional models in mathematical finance are subject to model uncertainty. The stan-

dard assumption in models of mathematical finance is that there is a single, known proba-

bility measure determining the behavior of the underlying quantities on the market. This

assumption simplifies the modeling of financial markets and the pricing of derivatives

written on financial quantities, since it allows to acquire all results from probability the-

ory and stochastic calculus. In many situations, it is, however, not possible to specify the

underlying probability measure of the model. The uncertainty about using the correct

probability law is called model uncertainty. The problem of model uncertainty led to

the investigation of financial markets in the presence of a family of possible probability

measures or none at all. The overall aim is to make models in mathematical finance

robust with respect to misspecifications regarding the probability law.

A prominent example of model uncertainty is volatility uncertainty. The volatility

in mathematical finance measures the magnitude of the underlying’s short-term fluctu-

ations. Standard models in mathematical finance, such as the famous models of Black

and Scholes (1973) and Merton (1973), treat the volatility as a constant. Since there

is plenty of empirical evidence that the volatility of financial quantities is not constant,

volatility modeling is an actively studied topic. Most alternative models use a stochastic

volatility, which makes the model more realistic, but still relies on the assumption that

the probabilistic law of the volatility is known. There are several reasons why this is a

doubtful assumption, which ultimately leads to the presence of model uncertainty, termed

volatility uncertainty.

The rapidly growing literature on volatility uncertainty and, more generally, model

uncertainty in mathematical finance, referred to as robust finance, primarily focuses on

asset market models. Avellaneda, Levy, and Parás (1995) and Lyons (1995) were the

first to investigate the pricing and hedging of derivatives in asset market models under

volatility uncertainty. More recent studies on this topic include the works of Epstein

and Ji (2013) and Vorbrink (2014). Furthermore, there are various works investigating

asset markets under model uncertainty in general. The objective is to study the basic

principles in mathematical finance, i.e., the absence of arbitrage and the pricing and

hedging of derivatives, in the presence of a family of probability measures instead of one,

called multiple prior setting, or without using any reference probability measure at all,

1



called model-free setting. The fundamental theorem of asset pricing, determining cause

and effect of the absence of arbitrage, was studied (among others) by Bayraktar and

Zhou (2017), Biagini, Bouchard, Kardaras, and Nutz (2017), and Bouchard and Nutz

(2015) in a multiple prior setting and by Acciaio, Beiglböck, Penkner, and Schacher-

mayer (2016), Burzoni, Frittelli, Hou, Maggis, and Ob lój (2019), and Riedel (2015) in

a model-free setting. The pricing and hedging of derivatives was studied (among oth-

ers) by Aksamit, Deng, Ob lój, and Tan (2019), Carassus, Ob lój, and Wiesel (2019), and

Possamäı, Royer, and Touzi (2013) in a mutiple prior setting and by Bartl, Kupper,

Prömel, and Tangpi (2019), Beiglböck, Cox, Huesmann, Perkowski, and Prömel (2017),

and Schied and Voloshchenko (2016) in a model-free setting.

In addition to asset market models, there is a tremendous amount of interest rate mod-

els in the overall literature of mathematical finance, which are also called term structure

models. Since the path-breaking publications of Black and Scholes (1973) and Merton

(1973) the mathematical finance literature on the term structure of interest rates has

been rapidly growing. First notable contributions include the works of Cox, Ingersoll Jr.,

and Ross (1985) and Vasicek (1977), models of the short term interest rate that char-

acterized the term structure of interest rates by equilibrium theory and no-arbitrage

arguments, respectively. Afterwards, the trend shifted towards models taking the current

term structure as an input—instead of an output—in order to price fixed income deriva-

tives, contracts depending on the term structure of interest rates. Well-known articles on

this approach are the ones of Ho and Lee (1986) and Hull and White (1990). The break-

through of this approach was achieved by the methodology of Heath, Jarrow, and Morton

(1992); the methodology is based on directly modeling term structure movements as a

diffusion process, starting from an initially observed term structure, instead of a single

short term interest rate. Since then the number of articles on term structure models has

been growing even further by more sophisticated models.

Although interest rate models are equally exposed to volatility uncertainty, this prob-

lem is rarely studied in the literature on robust finance. The number of articles dealing

with volatility uncertainty or, more generally, model uncertainty in interest rate models

is relatively sparse in comparison to the literature on model uncertainty in asset market

models. Early contributions in this regard are due to Avellaneda and Lewicki (1996)

and Epstein and Wilmott (1999), relying on intuitive arguments rather than a rigorous

formulation. A more recent treatment of interest rates in conjunction with model uncer-

tainty appears in the works of El Karoui and Ravanelli (2009) and Lin and Riedel (2021),

which do not focus on the term structure of interest rates and arbitrage. Further related

articles of Biagini and Zhang (2019) and Fadina and Schmidt (2019) deal with credit

risk and model uncertainty. The most related work is the one of Fadina, Neufeld, and

Schmidt (2019), studying affine processes under parameter uncertainty (in the sense of

model uncertainty) and corresponding interest rate models. However, the work of Fadina,
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Neufeld, and Schmidt (2019) is restricted to models of the short term interest rate and

a superhedging argument for the pricing of contracts, which does not apply to the term

structure of interest rate, since bonds are the fundamentals of fixed income markets and

therefore cannot be hedged.

Accompanying the literature on robust finance, there is an increasing share in the

mathematics literature dealing with the mathematical problems related to volatility un-

certainty. Since the presence of volatility uncertainty is represented by a family of mutu-

ally singular probability measures, i.e., measures with different null sets, many concepts

from probability theory and stochastic calculus break down. Two classical approaches to

meet these issues were introduced by Denis and Martini (2006) and Peng (2007, 2008),

respectively. The two approaches are actually different but equivalent, as it was shown

by Denis, Hu, and Peng (2011). The difference is that the approach of Denis and Martini

(2006) starts from a probabilistic setting and relies on capacity theory, whereas the calcu-

lus of G-Brownian motion from Peng (2007, 2008) completely relies on nonlinear partial

differential equations. In contrast, Soner, Touzi, and Zhang (2011a,b, 2012, 2013) ap-

proached the problem of volatility uncertainty by using aggregation and obtained further

related results. In fact, volatility uncertainty is closely related to second-order back-

ward stochastic differential equations, introduced by Cheridito, Soner, Touzi, and Victoir

(2007). Other extensions and further results were obtained by Nutz (2012, 2013) and

Nutz and van Handel (2013). In addition, there are also approaches to a model-free

stochastic calculus (Cont and Perkowski, 2019, and references therein).

A very convenient tool to analyze volatility uncertainty is the calculus of G-Brownian

motion. The literature on G-Brownian motion is very extensive and still increasing. The

book of Peng (2019), who invented the theory of G-Brownian motion, gives a good in-

troduction to the topic with a detailed treatment of the most important results. The

calculus of G-Brownian motion extends the classical Itô calculus to a Brownian motion

with an uncertain volatility—termed G-Brownian motion. The extension is based on

nonlinear expectations and nonlinear partial differential equations. A nonlinear expecta-

tion replaces the classical (linear) expectation and leads to a worst-case measure. The

distribution of a random variable under a nonlinear expectation is characterized by a

nonlinear partial differential equation. The distribution of a G-Brownian motion is given

by a nonlinear heat equation. The letter G refers to the (nonlinear) generator of the par-

tial differential equation. A G-Brownian motion is an extension of a standard Brownian

motion, since the latter is normally distributed, i.e., its expectation solves a linear heat

equation. Interestingly enough, most results of the Itô calculus still hold in this frame-

work with some minor differences though. Although the definition and the construction of

a G-Brownian motion completely rely on nonlinear partial differential equations instead

of probabilities, there is a probabilistic framework connected to a G-Brownian motion.

Hu and Peng (2009) and Denis, Hu, and Peng (2011) showed that the G-expectation,
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that is, the nonlinear expectation related to a G-Brownian motion, can be represented as

an upper expectation of a family of probability measures. The representation of Denis,

Hu, and Peng (2011) explicitly shows that a G-Brownian motion represents volatility

uncertainty in the sense of model uncertainty.

In this thesis, we investigate volatility uncertainty in interest rate models—as opposed

to asset market models—by using the calculus of G-Brownian motion. The investigation

is divided into three different but interconnected steps and works within the same math-

ematical framework. We elaborate the three steps in Chapters 2, 3, and 4, which resulted

in three papers (Hölzermann, 2021a,c,b), respectively. In the preliminary Chapter 1, we

motivate the problem of volatility uncertainty and introduce the mathematical frame-

work used to analyze volatility uncertainty. The mathematical framework is a probabilis-

tic setting that allows to acquire the results from the calculus of G-Brownian motion;

the calculus of G-Brownian motion is the main pillar for the mathematical analysis in

the succeeding chapters. In Chapter 2, we study the presence of volatility uncertainty

in one of the most well-known models of the short term interest rate: the Hull-White

model for the term structure of interest rates. The simple nature of the model shows

the implications of volatility uncertainty on term structure models and allows to discuss

its consequences from an economic point of view. In Chapter 3, we investigate term

structure movements in the spirit of the famous Heath-Jarrow-Morton methodology un-

der volatility uncertainty. The mathematically more demanding methodology makes it

possible to generalize the results of Chapter 2 to a general class of term structure models.

In Chapter 4, we study the effects volatility uncertainty has on the pricing of interest

rate derivatives. The aim is to find robust pricing formulas for derivative contracts on the

term structure, where the latter is characterized by the results from Chapter 3. Finally,

in Chapter 5, we conclude by summarizing the results.
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Chapter 1

Volatility Uncertainty

In this preliminary chapter, we motivate the problem of volatility uncertainty in math-

ematical finance, we set up the model framework for representing such uncertainty, and

we discuss the mathematical problems resulting from such a framework. First of all,

we briefly introduce the concept of volatility in mathematical finance by considering the

most common modeling approaches. The starting point is a model driven by Brownian

motion à la Black and Scholes (1973). Within this setting, we introduce the concept of

volatility and the challenges of modeling it. Afterwards, we explain why the traditional

approaches to model the uncertainty about the volatility are problematic and propose an

alternative. To show the problematic, we relate the uncertainty about the volatility to the

concepts of model uncertainty and Knightian uncertainty, respectively. The alternative

approach is a model framework with multiple probability measures instead of one. In the

end, we discuss the mathematical issues related to the alternative model framework and

show how to deal with them. The issues arise from the fact that the family of probability

measures contains mutually singular measures. In order to overcome the issues, we use

results from the calculus of G-Brownian motion, which we briefly introduce.

1.1 Volatility in Mathematical Finance

The traditional way in mathematical finance of representing random short-term fluctu-

ations of financial quantities is to use a Brownian motion. The idea goes back to the

early work of Bachelier (1900) and was later on popularized by the famous contributions

of Black and Scholes (1973) and Merton (1973). In contrast to models in economics,

the behavior of financial quantities in models of mathematical finance is modeled exoge-

nously. Due to many short-term activities in financial markets, the behavior of financial

quantities, such as asset prices or interest rates, is affected by white noise. The latter is

modeled by a Brownian motion in most models of mathematical finance. That means,

we consider the following model framework. Let Ω := Cd
0 (R+) for d ∈ N, where Cd

0 (R+)
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denotes the space of all Rd-valued continuous paths on R+ starting in 0. We equip Ω

with the distance δ : Ω× Ω→ R, defined by

δ(ω, ω̃) :=
∞∑
i=1

2−i
(
(max
t∈[0,i]

|ωt − ω̃t|) ∧ 1
)
.

Furthermore, let F := B(Ω), where B(Ω) denotes the Borel σ-algebra on Ω, let P0 be the

Wiener measure, and let B = (B1
t , ..., B

d
t )t≥0 be the canonical process on Ω. Then the

canonical processB is a d-dimensional standard Brownian motion on the probability space

(Ω,F , P0). We denote by F = (Ft)t≥0 the filtration generated by B and completed by all

P0-null sets, which describes the information available at each time. Each component of

B represents a risk factor influencing the model in some way.

Then the behavior of financial quantities is modeled as a diffusion process driven by a

Brownian motion, which is typically scaled by a constant—the volatility, measuring the

intensity of short-term fluctuations. For example, we can describe the dynamics of an

asset price S = (St)t≥0 by a stochastic differential equation of the form

St = S0 +

∫ t

0

α(u, Su)du+

∫ t

0

β(u, Su)dBu,

where B is a one-dimensional Brownian motion in this case. In general, there could be

many risk factors driving the asset price dynamics. The functions α, β : R+×R→ R are

referred to as the drift coefficient and the diffusion coefficient and determine the average

behavior and the short-term fluctuations of S, respectively. The most well-know example

is the one of Black and Scholes (1973), given by

St = S0 +

∫ t

0

µSudu+

∫ t

0

σSudBu

for µ, σ ∈ R such that σ > 0. The constant σ represents the volatility of S and scales the

magnitude of sudden price movements.

One of the main applications of such a model framework is the pricing of derivative

contracts written on an underlying. Derivative contracts are actively traded in financial

markets and have a future payoff depending on the evolution of the underlying in the

future. Since not all derivatives are liquidly traded in the market, the seller faces the

problem of finding a suitable price for the contract. The remarkable feature of the model

specification of Black and Scholes (1973) from above is that it yields a unique price for

derivatives written on the asset price S under the assumption that the market is arbitrage-

free. This assumption differs from the economics literature, where prices are usually

characterized by an equilibrium. Nevertheless, the absence of arbitrage is a reasonable

assumption, since arbitrage opportunities in reality only exist for a short time before they
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become publicly known and prices adjust to erase them. So if we believe in the remaining

assumptions, such as a constant volatility, we can use the model framework from above

to trade derivatives in financial markets.

However, there is plenty of empirical evidence, derived from market prices, showing

that the volatility of financial quantities is not constant and, in particular, not deter-

ministic. Market data on derivative prices reveal what is known as the volatility smile

or volatility skew ; this term refers to a plot of the implied volatility as a function of the

remaining model parameters, which are observable. The implied volatility is the value

of the constant σ such that the theoretical price of Black and Scholes (1973) yields the

price observed on the market for a given (liquidly traded) derivative contract. The shape

of the plot usually turns out to be a smile or a skew and indicates that the volatility

of the underlying cannot be constant, since the latter would imply a straight line in the

plot instead of a smile or a skew. Moreover, a statistical analysis of historical asset price

movements shows that the historical volatility exhibits random characteristics.

This well-known issue is addressed by stochastic volatility models, in which the volatil-

ity of the underlying is modeled as a stochastic process. The approach consists of re-

placing the constant volatility parameter σ by a function f : R→ R+ depending on the

current realization of a stochastic process ν = (νt)t≥0 whose dynamics (in addition to the

dynamics of the underlying) are described by a stochastic differential equation. That is,

νt = ν0 +

∫ t

0

α̃(u, νu)du+

∫ t

0

β̃(u, νu)dB̃u,

where α̃, β̃ : R+ × R → R and B̃ = (B̃t)t≥0 is an additional one-dimensional Brownian

motion, possibly correlated with B. In general, there could be many risk factors influ-

encing the volatility. The famous stochastic volatility model of Heston (1993) uses the

function f : R+ → R+ defined by f(x) :=
√
x and the process ν given by

νt = ν0 +

∫ t

0

θ(µ̃− νu)du+

∫ t

0

σ
√
νudB̃u

for suitable parameters θ, µ̃, σ ∈ R. Then the model becomes more sophisticated, but it

remains tractable enough to use it for option pricing. The dynamics of the volatility in

stochastic volatility models are generally chosen such that the volatility process shares

the properties of the historical volatility, such as positivity and mean reversion, and

such that the model-implied option prices match the prices observed on the market. For

example, we could choose the model specification of Heston (1993), since it ensures that

the volatility stays positive and satisfies a mean reverting behavior, and then we would

choose the parameters such that the theoretical prices (implied by the model) of liquidly

traded contracts match the observed prices on the market.
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1.2 Model Uncertainty and Robust Finance

From a theoretical perspective, the problem with stochastic volatility models is that they

are subject to model uncertainty, which is commonly termed volatility uncertainty. Model

uncertainty refers to the uncertainty about the probabilistic law of the underlying model.

Most models in mathematical finance assume that there is a single, known probability

measure. This is a critical assumption since it is not possible to specify the probabilistic

law governing the model in many situations. Stochastic volatility models face the same

kind of uncertainty. As mentioned above, the dynamics of the volatility, which in turn

determine the probabilistic law of the underlying, are chosen to be consistent with the

historical volatility and the current option prices available on the market. However, there

could be many model specifications performing this task. Moreover, it is not sure if a

volatility specification that is consistent with the past is still valid in the future, since the

market environment can change drastically. The dynamics of the volatility are therefore

far from perfectly known, which ultimately leads to model uncertainty.

Model uncertainty essentially describes Knightian uncertainty about the probability

law. The concept of Knightian uncertainty is named after the economist Frank H. Knight.

In his book Risk, Uncertainty, and Profit, published a century ago, Knight (1921) distin-

guishes risk and uncertainty. He associates risk with something that can be measured by

a probability whereas uncertainty cannot. Uncertainty applies to events in reality that

are too complex to be assigned a probability or for which the related data are missing

to infer the probability of it to happen. Therefore, we can interprete model uncertainty

as Knightian uncertainty about the probability law; that is, we agree on the stochastic

nature of the model, but it is completely unknown which probability measure describes

the randomness best. Translated to volatility uncertainty, we are uncertain about the

probabilistic law of the underlying as we are uncertain about its volatility.

As a consequence, we simultaneously consider a family of probability measures in the

presence of model uncertainty without any assumptions on which is the right probability

measure. Instead of a single probability measure P0 (as in the previous section), we

consider a family of possible probability measures P on the measure space (Ω,F) in

the presence of model uncertainty. We call P the set of beliefs, since it contains all our

beliefs about the probabilistic nature of the model. We are completely uncertain about

which probability measure is correct; hence, we do not impose any assumptions on which

measure is more likely to be correct. The latter reflects the characteristics of Knightian

uncertainty, since it is not possible to measure the uncertainty about the probability

measure by a probability.

In the presence of volatility uncertainty, each measure in the family of probability laws

corresponds to a different belief about the correct volatility. In particular, we consider

all probability measures corresponding to a bounded volatility process. The boundedness
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assumption ensures a sufficient degree of regularity and stands for ruling out all scenarios

that are too extreme. We denote the state space for the volatility by Σ, where Σ is a

bounded, closed, and convex subset of Rd×d. For example, if d = 1, then Σ is an interval

[σ, σ], where σ and σ represent worst-case values. We denote by A the collection of

all possible volatility processes; that is, the space A consists of all Σ-valued F-adapted

processes σ = (σt)t≥0. We construct the set of beliefs P in such a way that the canonical

process B has a different volatility under each measure P ∈ P . For each σ ∈ A, we define

the process Bσ = (Bσ
t )t≥0 by

Bσ
t :=

∫ t

0

σudBu,

and we define the measure P σ to be the law of the process Bσ, that is,

P σ := P0 ◦ (Bσ)−1.

The set of beliefs P is the collection of all measures constructed in this way.

Due to the presence of multiple probability measures, we replace the classical (linear)

expectation by a sublinear expectation. The notion of expectation is a substantial con-

cept in probability theory and its applications in economics and finance. Obviously, the

classical notion of expectation depends on the underlying probability measure. Since we

consider many probability measures at the same time, there are several ways to form ex-

pectations. A typical approach is to use the upper expectation of the family of probability

measures P . We denote the upper expectation of P by Ê, which is defined by

Ê[X] := sup
P∈P

EP [X]

for each measurable random variable X such that EP [X] exists for all P ∈ P . We can in-

terprete Ê as a worst-case measure, since it yields the highest possible expectation among

all measures in P . In fact, it is a coherent risk measure if the random variables represent

financial losses. The main difference compared to the classical (linear) expectation is that

the upper expectation is sublinear.

The probabilistic setting from above is the mathematical framework we use to rep-

resent the uncertainty about the volatility and to analyze its implications. Considering

all measures in P simultaneously reflects volatility uncertainty, since diffusion processes

driven by the canonical process B (in contrast to Section 1.1) have a different volatility

under each measure. It should be noted that the volatility under each measure in the set

of beliefs is a stochastic process and not simply a constant that varies among the mea-

sures in P . In fact, most parts of the mathematical analysis in the succeeding chapters

are based on the calculus of G-Brownian motion, which does not require a probabilistic
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framework at all. We still use the probabilistic setting from above, since it is a more

natural approach to model volatility uncertainty from an economic perspective and some

notions in mathematical finance, such as the notion of arbitrage, crucially depend on

probabilities.

1.3 Mathematics of Volatility Uncertainty

The presence of volatility uncertainty leads to mathematical difficulties, since the family

of probability measures representing volatility uncertainty contains mutually singular

measures. The canonical process B has (by construction) a different volatility under each

measure in P . Thus, the quadratic variation process 〈B〉 = (〈B〉t)t≥0 differs among the

measures in P . For example, if d = 1 and Σ = [σ, σ] and we consider the measures P σ

and P σ, induced by the constant volatilities σ and σ, respectively, we have

P σ(〈B〉t = σ2t) = 1 6= 0 = P σ(〈B〉t = σ2t).

Therefore, there are measures in the set of beliefs that have different null sets, that is, the

set P contains mutually singular measures. This causes mathematical problems, since

many results from probability theory and stochastic calculus only hold up to null sets

of the underlying measure. Important examples include the definition of time consistent

conditional expectations and stochastic integrals. The former and the latter can be

solved by restricting the class of random variables and the space of admissible integrands,

respectively, which is explained at the end of this section.

The probabilistic setting from Section 1.2 is naturally connected to the calculus of

G-Brownian motion. According to Denis, Hu, and Peng (2011, Theorem 54), the upper

expectation Ê corresponds to the G-expectation on L1
G(Ω), and the canonical process B

is a G-Brownian motion under Ê, where G : Sd → R is given by

G(A) = 1
2

sup
σ∈Σ

tr(σσ′A).

The space Sd denotes the space of all symmetric d× d matrices, and ′ denotes the trans-

pose of a matrix. The connection to the calculus of G-Brownian motion allows us to

acquire all of its results. In particular, we can use the results to overcome the problems

mentioned above. The formal definition and the construction of a G-Brownian motion

can be found in Chapter A of the appendix or in the book of Peng (2019). Below, we

state some of the most important results in order to give the reader an intuition about

how the mathematical framework differs from the classical Itô calculus, and we introduce

all notions that the succeeding chapters require.

The main difference between the definition of a G-Brownian motion and the definition
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of a standard Brownian motion relates to the distribution, apart from which they basically

coincide. The function G is the generator of the nonlinear partial differential equation

that defines the G-expectation and characterizes the distribution and the uncertainty of a

G-Brownian motion. For example, the function u : R+ × Rd → R, (t, x) 7→ Ê[ϕ(x+Bt)],

for a sufficiently regular function ϕ : Rd → R, is the unique viscosity solution to the

nonlinear partial differential equation

∂tu+G(D2
xxu) = 0, u(0, x) = ϕ(x),

called G-heat equation. The operator D2
xx denotes the Hessian of a function with respect

to x. The G-expectation and the conditional G-expectation, denoted by Êt for t ∈ R+,

of a function depending on finitely many increments of a G-Brownian motion are defined

in a similar fashion. Moreover, for p ≥ 1, both can be extended to the completion of

functions of this type under the natural norm ‖ · ‖p := Ê[| · |p]
1
p , which is denoted by

LpG(Ω). The space L1
G(Ω) represents the space of all random variables for which the

G-expectation is defined. Due to the probabilistic representation of the G-expectation,

the equality of random variables in L1
G(Ω) is equivalent to random variables being equal

quasi-surely, i.e., they are equal P -almost surely for all P ∈ P . The same applies to

inequalities between elements in L1
G(Ω). We also use the terminology P-quasi-surely if

we need to indicate under which set of measures a statement holds quasi-surely.

In comparison to a standard Brownian motion, a G-Brownian motion has many in-

teresting properties. To demonstrate this, we consider the one-dimensional case, that is,

the case where d = 1 and Σ = [σ, σ]. One can use the fact that the G-expectation is

defined by the G-heat equation to show that

Ê[Bt] = 0 = −Ê[−Bt],

Ê[B2
t ] = σ2t ≥ σ2t− Ê[−B2

t ].

We call −Ê[−ξ] the lower expectation of ξ for a random variable ξ ∈ L1
G(Ω), since it has

the probabilistic representation

−Ê[−ξ] = inf
P∈P

EP [ξ].

In contrast to the upper expectation, the lower expectation yields the lowest possible ex-

pectation. Hence, a G-Brownian motion has no mean uncertainty, but it has an uncertain

variance as long as σ > σ. In addition, one can show that the quadratic variation of a

G-Brownian motion is an uncertain process (if σ > σ), satisfying

σ2t ≥ 〈B〉t ≥ σ2t.

11



Despite the differences, a G-Brownian motion is a generalization of a standard Brow-

nian motion, since the former corresponds to the latter if the uncertainty about the

volatility vanishes. If there is no uncertainty about the volatility, the state space for the

volatility Σ is a singleton consisting of the identity matrix, denoted by Id. Then the G-

heat equation becomes a linear heat equation; thus, the G-expectation coincides with the

expectation of a standard Brownian motion. Apart from that, the construction of the set

of beliefs shows that P is a singleton consisting solely of P0 if Σ = Id. Then we remain in

the traditional probabilistic framework of Section 1.1, in which the canonical process is a

standard Brownian motion instead of a G-Brownian motion. In any case, this enables us

to check if the results in the succeeding chapters are consistent with traditional models

driven by a standard Brownian motion.

It is possible to generalize most parts of the well-known Itô calculus to a G-Brownian

motion. For example, the definition of a stochastic integral with respect to a G-Brownian

motion relies on the same procedure used to define the stochastic integral with respect to

a standard Brownian motion. First, one defines the integral for simple processes, then,

thanks to the isometry property, one extends the integral to the completion of all simple

processes with respect to a suitable norm. In the same way, one can construct the integral

with respect to the quadratic variation of a G-Brownian motion. The space of admissible

integrands on [0, T ] for integrals related to a G-Brownian motion is denoted by Mp
G(0, T )

for T <∞ and p ≥ 1, and it is a Banach space under the norm

‖ · ‖M,p := Ê
[∫ T

0

| · |pdt
] 1
p

.

The formal construction of stochastic integrals and the space Mp
G(0, T ) can be found

in Chapter A of the appendix or in the book of Peng (2019). In addition, there are

extensions of various results from stochastic calculus to a G-Brownian motion, which we

use throughout the thesis by referring to the literature.

A further important generalization concerns the concept of martingales in the calculus

of G-Brownian motion. The concept of martingales is of fundamental importance in

mathematical finance, since it is related to the absence of arbitrage, and its definition

depends on the expectation under a specific probability measure. In the presence of

volatility uncertainty, we consider several probability measures simultaneously, which

ultimately leads to a sublinear expectation corresponding to the G-expectation. As the G-

expectation differs from the classical notion of expectation, the notion of martingales has

to be suitably adapted. A process M = (Mt)t≥0 is called a G-martingale if Mt ∈ L1
G(Ωt)

for all t ≥ 0 and if it satisfies

Ms = Ês[Mt]

12



for s ≤ t. That means, a G-martingale is essentially a martingale in the worst case

among all considered scenarios, if we interprete Ê as a worst-case measure. The im-

portant difference compared to the classical definition of martingales is that −M is not

necessarily a G-martingale if M is a G-martingale, which is due to the nonlinearity of

the G-expectation. We call a process M a symmetric G-martingale if M and −M are

G-martingales. The notion of symmetric G-martingales is important for the succeeding

chapters, since it rules out arbitrage opportunities.

The space of admissible random variables in the calculus of G-Brownian motion has a

probabilistic representation. For this purpose, we denote by L0(Ω) the space of all B(Ω)-

measurable functions, mapping from Ω into R. By Proposition 6.3.2 of Peng (2019),

which was originally shown by Denis, Hu, and Peng (2011), we have

LpG(Ω) =
{
ξ ∈ L0(Ω)

∣∣ ξ has a q.c. version, lim
n→∞

Ê[|ξ|p1{|ξ|>n}] = 0
}
.

We say that ξ : Ω → R is quasi-continuous (q.c.) if for all ε > 0, there exists an open

set O with supP∈P P (O) < ε such that ξ is continuous on Oc, and we say that ξ has a

q.c. version if there exists a q.c. function ξ̃ such that ξ = ξ̃ quasi-surely. In fact, the

same holds if we replace Ω by ΩT := Cd
0 ([0, T ]) for T < ∞. The space LpG(ΩT ) consists,

roughly speaking, of all random variables only depending on the trajectory of B up to

time T . The precise construction of the space LpG(ΩT ) can be found in Chapter A of the

appendix or in the book of Peng (2019).

In addition, there is a probabilistic representation of the space of admissible integrands

in the calculus of G-Brownian motion. For this purpose, we introduce the following

notation. We define the capacity c : B([0, T ]) ⊗ FT → R by c(A) := 1
T
‖1A‖pM,p, and we

define the space

Mp(0, T ) :=
{
η : [0, T ]× ΩT → R

∣∣ η is progressively measurable, ‖η‖pM,p <∞
}
.

We say that a progressively measurable process η : [0, T ]×ΩT → R is q.c. if for all ε > 0,

there exists a progressively measurable open set O ⊂ [0, T ]×ΩT such that c(O) < ε and

η is continuous on Oc. We equip [0, T ]× ΩT with the distance

δ̃
(
(t, ω), (t̃, ω̃)

)
:= |t− t̃|+ max

s∈[0,T ]
|ωs − ω̃s|.

We say that a progressively measurable process η : [0, T ] × ΩT → R has a q.c. version

if there exists a q.c. process η̃ such that c({η 6= η̃}) = 0. Then, by Theorem 6.4.5 from

Peng (2019), which was originally shown by Hu, Wang, and Zheng (2016), we have

Mp
G(0, T ) =

{
η ∈Mp(0, T )

∣∣∣∣ η has a q.c. version, lim
n→∞

Ê
[∫ T

0

|η|p1{|η|≥n}dt
]

= 0

}
.
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The restriction to the spaces from above solves the mathematical issues mentioned

at the beginning of this section. One can define a time consistent conditional sublinear

expectation, given by the conditional G-expectation, mapping from L1
G(Ω) into L1

G(Ωt).

The conditional G-expectation basically satisfies the same properties as Ê. In addition,

it satisfies the tower property—namely, it holds Ês[Êt[ξ]] = Ês∧t[ξ] for s, t ∈ R+ and

ξ ∈ L1
G(Ω)—and it holds Êt[ξ] = ξ for t ∈ R+ and ξ ∈ L1

G(Ωt). The regularity of the

conditional G-expectation is due to the fact that it is defined via the G-heat equation.

Moreover, one can define the stochastic integral
∫ T

0
ηtdBt, mapping into L2

G(ΩT ), for a

process η ∈ M2
G(0, T ) for T ∈ R+. The definition relies on the isometry property of the

stochastic integral with respect to B, which, in turn, relies on the time consistency of the

conditional G-expectation. In any case, we can circumvent the mathematical problems

arising in the presence of volatility uncertainty by using the spaces LpG(Ω) and Mp
G(0, T ).

However, the disadvantage compared to the traditional Itô calculus is that we need to

restrict to random variables and stochastic processes that have a q.c. version and satisfy

some kind of uniform integrability condition, as the representation of the spaces LpG(Ω)

and Mp
G(0, T ) shows. As mentioned in the introduction, there are several approaches to

model volatility uncertainty and a lot of extensions. In particular, there are extensions

to spaces greater than LpG(Ω) and Mp
G(0, T ). Yet we stick to the classical spaces to use

all of the results from the literature on G-Brownian motion.
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Chapter 2

The Hull-White Model

In the present chapter, we study the Hull-White model for the term structure of interest

rates under volatility uncertainty. The Hull-White model is based on modeling the in-

stantaneous spot interest rate, called short rate, as a diffusion process. As in the classical

Hull-White model, we describe the evolution of the short rate by a diffusion process of

Ornstein-Uhlenbeck type. This ensures that the short rate satisfies a mean reverting

behavior, which is a typical feature of interest rates. The difference compared to the

traditional model is that the volatility is uncertain in the sense of model uncertainty. As

in Section 1.2, we represent the uncertainty about the volatility by a family of probability

measures, termed set of beliefs, and it is completely uncertain which one is correct. In

particular, we consider all measures such that the volatility is bounded by two extreme

values. Since this setting naturally leads to a G-Brownian motion (as we described in

Section 1.3), the driver of the short rate dynamics then becomes a G-Brownian motion.

Thus, the short rate evolves as an Ornstein-Uhlenbeck process driven by a G-Brownian

motion. Then the variance of the short rate is uncertain while its mean is not.

The main question in this chapter is how to find an arbitrage-free term structure in

the presence of volatility uncertainty, that is, how to price zero-coupon bonds such that

the related bond market is arbitrage-free when the volatility is uncertain. The crucial

characteristic of volatility uncertainty is that it is represented by a nondominated set of

beliefs. That means, there is no measure dominating all measures in the set of beliefs.

Hence, it is not possible to find a single equivalent martingale measure for the related bond

market. The discussion about arbitrage thus becomes a subtle issue in this framework.

If we want to follow a martingale modeling approach, we need to choose the bond prices

in such a way that the discounted bonds are symmetric G-martingales, which means that

they are martingales in each possible scenario for the volatility. Martingale modeling

is a common approach in short rate models, but we can unfortunately show that this

approach does not work under the initially given set of beliefs.

In order to find an arbitrage-free term structure, we consider sublinear expectations

defined by a linear G-backward stochastic differential equation. By standard results on
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G-backward stochastic differential equations, we can define consistent sublinear expecta-

tions by this procedure. Since the G-backward stochastic differential equation is linear,

there exists an explicit solution. The representation of the solution shows that the re-

sulting sublinear expectation corresponds to the expectation under an equivalent change

of measure. We can also formally show that sublinear expectations defined in this way

are in some sense equivalent to the initial one. As a consequence, the bond market is

arbitrage-free if there exists a sublinear expectation of this particular type under which

the discounted bonds are symmetric G-martingales.

We show that there exists a sublinear expectation of the above kind under which there

is a unique arbitrage-free term structure. If we choose a particular process as a coefficient

in the linear G-backward stochastic differential equation defining equivalent sublinear

expectations, we obtain a sublinear expectation under which there is a unique expression

for the bond prices such that the discounted bonds are symmetric G-martingales. The

choice might seem special, but it can be justified by economic arguments. Due to the

Girsanov transformation for G-Brownian motion, the process represents an adjustment

factor, adjusting the short rate by its uncertain variance. Alternatively, we can interpret

the process as the market price of risk. Since the model is not only subject to risk but

also subject to uncertainty, we also refer to the process as the market price of uncertainty.

The resulting bond prices are different—though similar—to the prices from the traditional

model without volatility uncertainty. In particular, they have an affine structure with

respect to the short rate and the market price of uncertainty.

Even though the structure of the model is different from the traditional one, we are

yet consistent with the classical Hull-White model after fitting the yield curve. Since

we consider an equivalent sublinear expectation, the Girsanov transformation for G-

Brownian motion implies that the dynamics of the short rate—as well as the bond prices—

differ from the ones of the traditional model. As in the classical model, we use the mean

reversion level of the short rate to fit the bond prices of the model to an initial yield

curve, observable on the market. Surprisingly, then the short rate dynamics and the

bond prices are again consistent with the ones from the classical Hull-White model; they

are consistent in the sense that the short rate dynamics and the bond prices coincide

with the classical ones if we drop the uncertainty about the volatility.

In addition, we study an extension of the model driven by multiple risk factors. For

the sake of simplicity, we derive the results mentioned above in the presence of a single risk

factor; that is, the short rate is driven by a single G-Brownian motion. Such a framework

simplifies the interpretation and the intuition of the results and enables us to compare the

results with the classical Hull-White model. Empirical studies, however, show that more

factors are needed in order to explain term structure movements (Adrian, Crump, and

Moench, 2013; Dai and Singleton, 2003; Joslin, Priebsch, and Singleton, 2014). Therefore,

we consider a model extension in which the short rate is affected by several risk factors
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with uncertain volatilities and uncertain correlations. We are able to extend all of the

previous results to the general case.

The chapter is organized as follows. In Section 2.1, we present the framework for

modeling volatility uncertainty and the short rate process, and we study the properties

of the latter. Section 2.2 introduces the related bond market. In Section 2.3, we adapt

the concept of martingale modeling to volatility uncertainty and show that martingale

modeling does not work in the presence of volatility uncertainty. Hence, we define equiva-

lent sublinear expectations in Section 2.4, which we can use to find an arbitrage-free term

structure. In Section 2.5, we show that there exists an equivalent sublinear expectation

under which we obtain a unique arbitrage-free term structure. Section 2.6 demonstrates

how to fit the model to an initially observed term structure. In Section 2.7, we extend the

model to a version driven by multiple risk factors. Section 2.8 discusses further related

investigations.

2.1 Short Rate Dynamics

In the traditional Hull-White model—without volatility uncertainty—the behavior of the

short rate is described by an Ornstein-Uhlenbeck process driven by a standard Brownian

motion. Let us consider the probability space (Ω,F , P0), which we introduced in Section

1.1, with the canonical process B = (Bt)t≥0 and the filtration F = (Ft)t≥0, which is

generated by B and completed by all P0-null sets. We assume that d = 1 in this chapter

(except in Section 2.7); that is, the canonical process B is a one-dimensional standard

Brownian motion under P0. The classical Hull-White model, without volatility uncer-

tainty, assumes that the short rate process r = (rt)t≥0 satisfies the stochastic differential

equation

rt = r0 +

∫ t

0

(
µ(u)− θru

)
du+ σBt (2.1)

for a suitably integrable function µ : R+ → R and constants θ, σ > 0. Then the short

rate is a mean reverting process with a time dependent mean reversion level µ, a constant

mean reversion speed θ, and a constant volatility σ. The mean reversion level is time

dependent to make the model more realistic and to ensure a perfect fit of the model to

market data, called yield curve fitting. The mean reversion speed and the volatility are

kept constant for tractability reasons.

In the presence of volatility uncertainty, we consider a family of probability measures

that leads to a G-Brownian motion. That means, we consider the set of beliefs P from

Section 1.2, in which each measure represents a different belief about the volatility. Since

we assume that d = 1, the state space for the (uncertain) volatility Σ is given by an

interval [σ, σ], where we assume that σ ≥ σ > 0. The constants σ and σ represent worst-
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case values for the volatility. So the set of beliefs consists of all measures such that the

volatility of the canonical process is a [σ, σ]-valued F-adapted process. As described in

Section 1.3, the upper expectation of the set of beliefs,

Ê[·] = sup
P∈P

EP [·],

corresponds to the G-expectation on L1
G(Ω), and the canonical process B is a G-Brownian

motion under Ê. In this case, the nonlinear generator G : R→ R of the G-heat equation

is given by

G(a) = 1
2

sup
σ∈[σ,σ]

{σ2a},

and the canonical process B is a one-dimensional G-Brownian motion.

We describe the behavior of the short rate by an Ornstein-Uhlenbeck process driven

by a G-Brownian motion. We choose the same structure as in the classical Hull-White

model. The difference is that we include volatility uncertainty by replacing the constant

volatility and the standard Brownian motion by aG-Brownian motion. Hence, we suppose

that the short rate process r is given by the G-stochastic differential equation

rt = r0 +

∫ t

0

(
µ(u)− θru

)
du+Bt (2.2)

for a suitably integrable function µ : R+ → R and a constant θ > 0. A G-stochastic

differential equation refers to a stochastic differential equation driven by a G-Brownian

motion. Then the short rate has a time dependent mean reversion level, which is deter-

ministic, and a time dependent volatility, which is uncertain. This is desirable since we

can use the mean reversion level for yield curve fitting and we do not have to specify any

volatility structure. It should be noted that (2.2) corresponds to (2.1)—i.e., the classical

case without volatility uncertainty—if σ = σ = σ.

The G-stochastic differential equation describing the dynamics of the short rate has a

closed-form solution. By a classical result on the existence and the uniqueness of solutions

to G-stochastic differential equations (Peng, 2019, Theorem 5.1.3), we know that (2.2)

has a unique solution in M̄2
G(0, T ) for every T <∞; the space M̄2

G(0, T ) is a subspace of

M2
G(0, T ). Therefore, the short rate r is a regular process and, in particular, an admissible

integrand. As in the classical case, we can explicitly solve (2.2).

Proposition 2.1. The solution to the G-stochastic differential equation (2.2) is given by

rt = e−θtr0 +

∫ t

0

e−θ(t−u)µ(u)du+

∫ t

0

e−θ(t−u)dBu. (2.3)

Proof. This can be verified by using Itô’s formula for G-Brownian motion (Li and Peng,
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2011, Theorem 5.4). The verification works totally analogous to the classical case with a

standard Brownian motion.

The short rate has no mean uncertainty, but it has an uncertain variance. We can

easily show that the upper expectation of the short rate coincides with its lower expec-

tation. Thus, the mean of the short rate is deterministic. In addition, we can show that

the upper, respectively lower, expectation of the squared deviation of the short rate from

its mean is given by the variance from the classical Hull-White model with the highest,

respectively lowest, possible volatility. Hence, the short rate has an uncertain variance,

which is bounded by two extreme values.

Theorem 2.2. For all t, the short rate rt satisfies

Ê[rt] = e−θtr0 +

∫ t

0

e−θ(t−u)µ(u)du = −Ê[−rt], (2.4a)

Ê
[
(rt − Ê[rt])

2
]

= σ2

2θ
(1− e−2θt) ≥ σ2

2θ
(1− e−2θt) = −Ê

[
− (rt − Ê[rt])

2
]
. (2.4b)

Proof. First, we sketch how to obtain (2.4a). The first two summands on the right-

hand side of (2.3) are deterministic. We know that the upper expectation and the lower

expectation of an integral with respect to a G-Brownian motion vanish. Therefore, it

holds (2.4a).

In order to compute the upper and the lower expectation in (2.4b), we use the non-

linear Feynman-Kac formula from Hu, Ji, Peng, and Song (2014). We define the process

X = (Xt)t≥0 as the deviation of r from its mean; that is,

Xt := rt − Ê[rt] =

∫ t

0

e−θ(t−u)dBu.

By Proposition 2.1, we know that X solves the G-stochastic differential equation

Xt = −
∫ t

0

θXudu+Bt.

Then the nonlinear Feynman-Kac formula implies Êt[X2
T ] = u(t,Xt) for t ≤ T (Hu, Ji,

Peng, and Song, 2014, Theorems 4.4, 4.5), where the function u : [0, T ] × R → R is the

unique viscosity solution to the nonlinear partial differential equation

∂tu+G(∂2
xxu)− θx∂xu = 0, u(T, x) = x2.

One can verify that the solution to the nonlinear partial differential equation is given by

u(t, x) = σ2

2θ
(1− e−2θ(T−t)) + e−2θ(T−t)x2.
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This proves the first equality in (2.4b); the second follows by the same procedure.

2.2 Related Bond Market

The corresponding bond market consists of a money-market account and zero-coupon

bonds for all possible maturities. First of all, we fix a finite time τ < ∞ and suppose

that all trading takes place within the finite time horizon [0, τ ]. The market consists of

the following investment opportunities. The first one is to invest in the money-market

account, which grows by the short rate r. The money-market account is a process denoted

by M = (Mt)0≤t≤τ , and it is given by

Mt := exp

(∫ t

0

rsds

)
.

In addition to the money-market account, the market offers zero-coupon bonds for all

maturities within the time horizon. For T ≤ τ , the price of a bond with maturity T at

time t is denoted by Pt(T ) for t ≤ T . The bond has a terminal payoff of 1; that is,

PT (T ) = 1

for all T . Henceforth, we use the money-market account as a numéraire. That means,

we restrict to the discounted bonds P̃ (T ) = (P̃t(T ))0≤t≤T for T ≤ τ , defined by

P̃t(T ) := M−1
t Pt(T ).

We assume that the discounted bond P̃ (T ), for all T , is a diffusion process driven by the

G-Brownian motion B; i.e.,

P̃t(T ) = P̃0(T ) +

∫ t

0

αu(T )du+

∫ t

0

βu(T )dBu +

∫ t

0

γu(T )d〈B〉u

for processes α(T ) = (αt(T ))0≤t≤T , β(T ) = (βt(T ))0≤t≤T , and γ(T ) = (γt(T ))0≤t≤T in

M2
G(0, T ). This is a technical assumption to make the following definition work. The

assumption is satisfied in all of the succeeding scenarios.

The agents can participate in the market by choosing a trading strategy to create

a portfolio. Choosing a market strategy means that they can select a finite number of

discounted bonds they want to trade and decide on how much of them they want to

buy or sell at each time within the time horizon. The value of the related portfolio is

the integral of the market strategy with respect to the price processes—that means, we

implicitly assume that the trading strategy is self-financing.

Definition 2.3. An admissible market strategy (π, T ) is a couple consisting of a bounded
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process π = (π1
t , ..., π

n
t )0≤t≤τ in M2

G(0, τ ;Rn) and a vector T = (T1, ..., Tn) ∈ [0, τ ]n for

some n ∈ N. The corresponding portfolio value at terminal time is defined by

ṽτ (π, T ) :=
n∑
i=1

∫ Ti

0

πitdP̃t(Ti).

The restriction to trading a finite number of discounted bonds could be generalized by

using methods from large financial markets (Klein, Schmidt, and Teichmann, 2016) or

by allowing for measure-valued trading strategies (Björk, Di Masi, Kabanov, and Rung-

galdier, 1997). Here we restrict to trading finitely many discounted bonds, since such a

generalization is not the objective of the present chapter.

We use a quasi-sure notion of arbitrage. The classical definition of arbitrage depends

on the underlying probability measure of the model. Since we are dealing with more than

one measure in the presence of volatility uncertainty, we have to consider a definition

slightly different from the classical one. The following definition of arbitrage corresponds

to the one that is commonly used in the literature on robust finance (Biagini, Bouchard,

Kardaras, and Nutz, 2017; Bouchard and Nutz, 2015).

Definition 2.4. An admissible market strategy (π, T ) is called arbitrage strategy if

ṽτ (π, T ) ≥ 0 quasi-surely, P
(
ṽτ (π, T ) > 0

)
> 0 for at least one P ∈ P .

Moreover, we say that the bond market is arbitrage-free if there is no arbitrage strategy.

This is a weaker version than requiring that the strategy has to be an arbitrage in the

classical sense with respect to all measures. The difference is that the probability of a

strictly positive win does not have to be strictly positive under each measure.

2.3 Martingale Modeling

Most short rate models use a martingale modeling approach to ensure that the related

bond market is arbitrage-free. A standard result in mathematical finance is that the

market is arbitrage-free if and only if the traded quantities on the market are martingales

under a measure equivalent to the real world measure, termed fundamental theorem of

asset pricing. The common practice in short rate models is martingale modeling, since

bond markets are incomplete; incomplete means that there is not a unique martingale

measure but many of them. Thus, one usually supposes that the short rate satisfies

certain dynamics under a given martingale measure, and then the bond prices are chosen

such that the discounted bonds are martingales under the exogenously given martingale

measure in order to exclude arbitrage.
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In the presence of volatility uncertainty, martingale modeling requires that the dis-

counted bonds are symmetric G-martingales under Ê. If there is volatility uncertainty,

the set of beliefs contains mutually singular measures. Hence, there is no dominating

measure for the set of beliefs, which implies that it is not possible to find a single martin-

gale measure equivalent to all measures in the set of beliefs. A fundamental theorem of

asset pricing under a possibly nondominated set of beliefs was established by Bouchard

and Nutz (2015), for the discrete-time case, and Biagini, Bouchard, Kardaras, and Nutz

(2017), for the continuous-time case. Roughly speaking, the theorem says that the ab-

sence of arbitrage is equivalent to the existence of a set of martingale measures that is

in some sense equivalent to the set of beliefs—that means, the price processes have to be

martingales under each measure in the equivalent set of measures. Therefore, if we want

to follow a martingale modeling approach in the presence of volatility uncertainty, we

need to assume that our set of beliefs is a set of exogenously given martingale measures.

Then we need to choose the bond prices such that the discounted bonds are martingales

under each measure in the set of beliefs. Being a martingale under each measure in the

set of beliefs is equivalent to being a symmetric G-martingale under Ê. The sufficiency of

this martingale modeling approach for the absence of arbitrage is shown by the following

proposition.

Proposition 2.5. The bond market is arbitrage-free if the discounted bond P̃ (T ) is a

symmetric G-martingale under Ê for all T .

Proof. We suppose that there exists an arbitrage strategy (π, T ) and show that this

leads to a contradiction. By Definition 2.4, it holds ṽτ (π, T ) ≥ 0. Hence, we know that

|ṽτ (π, T )| = ṽτ (π, T ), which implies

Ê[|ṽτ (π, T )|] = Ê[ṽτ (π, T )].

Using Definition 2.3 and the sublinearity of Ê, we obtain

Ê[ṽτ (π, T )] ≤
n∑
i=1

Ê
[∫ Ti

0

πitdP̃t(Ti)

]
.

By the representation theorem for symmetric G-martingales (Song, 2011, Theorem 4.8),

for all T , there exists a process H(T ) = (Ht(T ))0≤t≤T in M2
G(0, T ) such that

P̃t(T ) = P̃0(T ) +

∫ t

0

Hu(T )dBu.

Since πi is a bounded process in M2
G(0, τ), we have πiH(Ti) ∈M2

G(0, Ti) for all i. Thus,

Ê
[∫ Ti

0

πitdP̃t(Ti)

]
= Ê

[∫ Ti

0

πitHt(Ti)dBt

]
= 0
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for all i. Combining the previous steps, we get ṽτ (π, T ) = 0, which is a contradiction to

P
(
ṽτ (π, T ) > 0

)
> 0 for at least one P ∈ P .

Therefore, there is no arbitrage strategy.

Unfortunately, we can show that the martingale modeling approach in the Hull-White

model does not work in the presence of volatility uncertainty. Martingale modeling only

works in the classical case when there is no uncertainty about the volatility. In that case,

the bond prices are obviously given by the bond prices from the classical Hull-White

model.

Theorem 2.6. The discounted bond P̃ (T ) is a symmetric G-martingale under Ê if and

only if σ = σ and the bond price is given by

Pt(T ) = exp
(
Aσ(t, T )−B(t, T )rt

)
(2.5)

for all t, where Aσ, B : [0, τ ]× [0, τ ]→ R, for σ > 0, are defined by

Aσ(t, T ) :=

∫ T

t

(
1
2
σ2B(s, T )2 − µ(s)B(s, T )

)
ds, (2.6a)

B(t, T ) := 1
θ
(1− e−θ(T−t)), (2.6b)

respectively.

Proof. First, let us suppose that the discounted bond P̃ (T ) is a symmetric G-martingale

under Ê. We show that the expectation of the discount factor is the same under each

measure in the set of beliefs. The definition of symmetric G-martingales and the terminal

condition of the bond implies

P̃t(T ) = Êt[P̃ (T, T )] = Êt[M−1
T ],

P̃t(T ) = −Êt[−P̃ (T, T )] = −Êt[−M−1
T ]

for all t. Combining the previous equations and setting t = 0 yields

sup
P∈P

EP [M−1
T ] = inf

P∈P
EP [M−1

T ], (2.7)

which in turn implies that the expectation of M−1
T is the same under each measure.

Now we use the expression for the bond prices from the classical Hull-White model

to show that (2.7) implies σ = σ and (2.5). Let us consider the measures P σ, P σ ∈ P
induced by the highest and the lowest possible volatility, respectively. The expectations
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of M−1
T under P σ and P σ are given by

EPσ [M−1
T ] = exp

(
Aσ(0, T )−B(0, T )r0

)
,

EPσ [M−1
T ] = exp

(
Aσ(0, T )−B(0, T )r0

)
,

respectively (Björk, 2004, Subsection 22.4.4). By (2.7), the latter expressions are equal.

From (2.6a) and (2.6b), we see that this only holds if σ = σ. Since σ = σ implies

P = {P σ}, we are back in the classical case without volatility uncertainty. In that case,

the bond price is given by (2.5).

Next, let us suppose that σ = σ and the bond price is determined by (2.5). Then

we are again back in the classical case without volatility uncertainty, and the discounted

bond is clearly a martingale under P σ. Since P = {P σ}, the discounted bond is also a

symmetric G-martingale.

2.4 Equivalent Sublinear Expectations

In order to find an arbitrage-free term structure, we consider the following type of

sublinear expectations defined by a G-backward stochastic differential equation. Let

λ = (λt)0≤t≤τ be a bounded process in Mp
G(0, τ) for some p > 1. For ξ ∈ LpG(Ωτ ) with

p > 1, we define the sublinear expectation Ē by Ēt[ξ] := Y ξ
t , where Y ξ = (Y ξ

t )0≤t≤τ solves

the G-backward stochastic differential equation

Y ξ
t = ξ +

∫ τ

t

λuZudu−
∫ τ

t

ZudBu − (Kτ −Kt).

Then Ē is a time consistent sublinear expectation (Hu, Ji, Peng, and Song, 2014, Theorem

5.1). The reader may refer to the paper of Hu, Ji, Peng, and Song (2014) for all details

related to G-backward stochastic differential equations.

We can show that a sublinear expectation of the above kind is equivalent to the

initial sublinear expectation in the sense that the null spaces induced by the natural

norms related to both sublinear expectations are the same.

Lemma 2.7. For ξ ∈ LpG(Ωτ ) with p > 1, it holds ξ = 0 if and only if Ē[|ξ|] = 0.

Proof. Before we show the assertion, we explicitly solve the G-backward stochastic dif-

ferential equation defining Ē. For this purpose, we consider the extended G̃-expectation

space (Ω̃τ , L
1
G̃

(Ω̃τ ), Ẽ) with the canonical process (B, B̃) = (Bt, B̃t)t≥0, where we set

Ω̃τ := C2
0([0, τ ]) and the generator G̃ : S2 → R is given by

G̃(A) := 1
2

sup
σ∈[σ2,σ2]

tr

((
σ 1

1 σ−1

)
A

)
.
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Then, by Theorem 3.2 of Hu, Ji, Peng, and Song (2014), we know that Y ξ is given by

Y ξ
t = E−1

t Ẽt[Eτξ],

where the process E = (Et)0≤t≤τ is defined by

Et := exp

(∫ t

0

λudB̃u − 1
2

∫ t

0

λ2
ud〈B̃〉u

)
.

Now we show the assertion by representing Ẽ and Ē as an upper expectation of a

family of probability measures. It suffices to show that Ẽ[|ξ|] = 0 if and only if Ē[|ξ|] = 0

for ξ ∈ LpG(Ωτ ) with p > 1, since we know that Ẽ[ξ] = Ê[ξ] for all ξ ∈ L1
G(Ω). As in

Section 1.2, we can construct a family P̃ of probability measures on (Ω̃τ ,B(Ω̃τ )) such

that

Ẽ[ξ] = sup
P̃∈P̃

EP̃ [ξ]

for all ξ ∈ L1
G̃

(Ω̃τ ). Moreover, the process E solves the G-stochastic differential equation

Et = 1 +

∫ t

0

λuEudB̃u.

This implies that E is a symmetric G-martingale, satisfying Ẽ[Eτ ] = 1. Thus, for P̃ ∈ P̃ ,

we can define a probability measure on (Ω̃τ ,B(Ω̃τ )) by Q(P̃ ) := Eτ · P̃ . Since Eτ > 0

P̃-quasi-surely, we know that Q(P̃ ) ∼ P̃ . If we now define Q := {Q(P̃ )|P̃ ∈ P̃}, we

obtain

Ē[ξ] = sup
Q∈Q

EQ[ξ]

for all ξ ∈ LpG(Ωτ ). Since Q consists of equivalent measures, we get ξ = 0 P̃-quasi-surely

if and only if ξ = 0 Q-quasi-surely. Hence, the proof is complete.

As a consequence, we can show that there is no abitrage on the bond market if there

exists an equivalent sublinear expectation of the above kind under which the discounted

bonds are symmetric G-martingales.

Proposition 2.8. The bond market is arbitrage-free if the discounted bond P̃ (T ) is a

symmetric G-martingale under Ē for all T .

Proof. We proceed as in the proof of Proposition 2.5 by using Lemma 2.7 and the Gir-

sanov transformation for G-Brownian motion from Hu, Ji, Peng, and Song (2014). Let

us suppose that there exists an arbitrage strategy (π, T ). By Definition 2.4, it holds
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ṽτ (π, T ) ≥ 0, which implies |ṽτ (π, T )| = ṽτ (π, T ). By Lemma 2.7, we have

Ē[|ṽτ (π, T )|] = Ē[ṽτ (π, T )].

Using Definition 2.3 and the sublinearity of Ē, we obtain

Ē[ṽτ (π, T )] ≤
n∑
i=1

Ē
[∫ Ti

0

πitdP̃t(Ti)

]
.

By the Girsanov transformation for G-Brownian motion (Hu, Ji, Peng, and Song, 2014,

Theorem 5.2), the process B̄ = (B̄t)0≤t≤τ , defined by

B̄t := Bt −
∫ t

0

λudu,

is a G-Brownian motion under Ē. Since P̃ (T ) is a symmetric G-martingale under Ē, for

all T , there exists a process H(T ) = (Ht(T ))0≤t≤T in M2
G(0, T ) such that

P̃t(T ) = P̃0(T ) +

∫ t

0

Hu(T )dB̄u.

Thus, as in the proof of Proposition 2.5, we have

Ē
[∫ Ti

0

πitdP̃t(Ti)

]
= Ē

[∫ Ti

0

πitHt(Ti)dB̄t

]
= 0

for all i. Combining the previous steps, we get ṽτ (π, T ) = 0 by Lemma 2.7, which is a

contradiction to

P
(
ṽτ (π, T ) > 0

)
> 0 for at least one P ∈ P .

Therefore, there is no arbitrage strategy.

2.5 Arbitrage-Free Term Structure

There exists an equivalent sublinear expectation of the above kind under which the dis-

counted bonds are symmetric G-martingales. We define the process q = (qt)0≤t≤τ by

qt :=

∫ t

0

e−2θ(t−u)d〈B〉u.

26



By applying Itô’s formula for G-Brownian motion, we observe that q satisfies

qt = 〈B〉t −
∫ t

0

2θqudu.

If we use the process q to define an equivalent sublinear expectation as in Section 2.4,

we obtain a sublinear expectation under which there is a unique expression for the bond

prices such that the discounted bonds are symmetric G-martingales. A justification for

choosing the process q follows the proof of the succeeding theorem.

Theorem 2.9. Let λ = q. Then the discounted bond P̃ (T ) is a symmetric G-martingale

under Ē if and only if the bond price is given by

Pt(T ) = exp
(
A(t, T )−B(t, T )rt − 1

2
B(t, T )2qt

)
(2.8)

for all t, where A,B : [0, τ ]× [0, τ ]→ R are defined by

A(t, T ) := −
∫ T

t

B(s, T )µ(s)ds (2.9)

and (2.6b), respectively.

Proof. First of all, we show that the process X = (Xt)0≤t≤T , defined by

Xt := exp

(
A(t, T )−B(t, T )rt − 1

2
B(t, T )2qt −

∫ t

0

rsds

)
,

is a symmetric G-martingale under Ê. Applying Itô’s formula for G-Brownian motion to

X leads to the dynamics

Xt = X0 +

∫ t

0

∆uXudu−
∫ t

0

B(u, T )XudBu +

∫ t

0

∆̃uXud〈B〉u,

where the drift terms ∆ = (∆t)0≤t≤T and ∆̃ = (∆̃t)0≤t≤T are given by

∆t := ∂tA(t, T )− ∂tB(t, T )rt −B(t, T )∂tB(t, T )qt

−B(t, T )
(
µ(t)− θrt

)
+B(t, T )2θqt − rt

=
(
∂tA(t, T )− µ(t)B(t, T )

)
−
(
∂tB(t, T )− θB(t, T ) + 1

)
rt

−B(t, T )
(
∂tB(t, T )− θB(t, T )

)
qt,

∆̃t := − 1
2
B(t, T )2 + 1

2
B(t, T )2 = 0,
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respectively. The functions A and B satisfy

∂tA(t, T ) = µ(t)B(t, T ),

∂tB(t, T ) = θB(t, T )− 1,

respectively. Thus, we get

Xt = X0 +

∫ t

0

B(u, T )Xuqudu−
∫ t

0

B(u, T )XudBu.

Since the previous equation is a linear G-stochastic differential equation with bounded

coefficients, it has a unique solution, which is in M2
G(0, T ). Hence, it holds X ∈M2

G(0, T ),

which implies Xt ∈ L2
G(Ωt) for all t. By the Girsanov transformation for G-Brownian

motion, the process B̄ = (B̄t)0≤t≤τ , defined by

B̄t := Bt −
∫ t

0

qudu,

is a G-Brownian motion under Ē. Therefore, X is a symmetric G-martingale under Ē.

Using the first step, we now prove the assertion. If P̃ (T ) is a symmetric G-martingale

under Ē, for all t, it holds

P̃t(T ) = Ēt[P̃T (T )] = Ēt[M−1
T ].

Since X is also a symmetric G-martingale under Ē and A(T, T ) = 0 = B(T, T ), we get

Xt = Ēt[XT ] = Ēt[M−1
T ]

for all t. Thus, we have P̃t(T ) = Xt for all t, which is equivalent to (2.8). Conversely, if

(2.8) holds, we get P̃t(T ) = Xt for all t; consequently, we know that P̃ (T ) is a symmetric

G-martingale by the first step of the proof.

We use the process q to obtain an arbitrage-free term structure, since it serves as

an adjustment factor for the uncertain volatility. The proof of Theorem 2.6 shows that

the discounted bond cannot be a symmetric G-martingale under Ê in the presence of

volatility uncertainty, as the expectation of the discount factor is not the same for every

measure in the set of beliefs. The expectation differs among the measures in P , since the

short rate has a different variance under each of them, as Theorem 2.2 shows. So in order

to unify the expectation of the discount factor under each measure, we need to adjust the

short rate by the uncertainty about its variance. The following identity shows that the

process q is a suitable adjustment factor, since it contains the same information as the

variance of the short rate. By Proposition 2.1, Theorem 2.2, and a standard property of
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integrals with respect to G-Brownian motion (see Proposition A.19), we have

Ê[(rt − Ê[rt])
2] = Ê

[(∫ t

0

e−θ(t−u)dBu

)2]
= Ê

[∫ t

0

e−2θ(t−u)d〈B〉u
]

= Ê[qt].

We therefore set λ = q and use the Girsanov transformation for G-Brownian motion

to adjust the short rate by its variance. Then the short rate evolves according to the

dynamics

rt = r0 +

∫ t

0

(
µ(u)− θru + qu

)
du+ B̄t.

Another important observation, which can be deduced from the dynamics of q, is that

the process q mean reverts twice as fast as the short rate towards the quadratic variation

of the G-Brownian motion—that is, towards the quadratic variation of the short rate.

So the process always adjusts towards the correct belief about the volatility, which is

unknown beforehand.

From an economic point of view, setting λ = q is reasonable as well. In the proof

of Theorem 2.9, we see that the instantaneous excess return of a zero-coupon bond with

maturity T over the money-market account at time t is B(t, T )qt. Dividing by the dif-

fusion coefficient, given by −B(t, T ), we obtain the market price of risk, given by −qt.
In general, the market price of risk measures how much better we are doing with a bond

compared to investing in the money-market account per one unit of risk. Since q is pos-

itive, we use a negative market price of risk. This is appropriate because the bonds are

not risky in this model. They have a certain payoff of 1 at the maturity; i.e., there is no

default risk. On the other hand, investing in the money-market account is risky, since the

short rate is stochastic and uncertain. Hence, we use a process representing the variance

of the short rate to measure the risk and the uncertainty of the money-market account.

So one may also refer to −q as the market price of uncertainty.

In order to compare the bond prices from Theorem 2.9 with the prices from the

traditional model, we derive an adjustment factor, linking both expressions. We denote

the bond price from the traditional Hull-White model with constant volatility σ by P σ
t (T ),

which is defined by

P σ
t (T ) := exp

(
Aσ(t, T )−B(t, T )rt

)
,

where Aσ(t, T ) and B(t, T ) are defined by (2.6a) and (2.6b), respectively. The bond price

of the Hull-White model with volatility uncertainty, denoted by Pt(T ), is given by (2.8).
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Then it holds

Pt(T )

P σ
t (T )

= exp

(
−
∫ T

t

1
2
σ2B(s, T )2ds− 1

2
B(t, T )2qt

)
.

The expression on the right-hand side represents an adjustment factor, which we can use

to migrate from the traditional model to the model with volatility uncertainty.

Examining the adjustment factor, we note the following differences between the tra-

ditional and the present model. Since the adjustment factor is less than one, the bond

prices in the present model are less than the prices in the classical model without volatility

uncertainty. Moreover, we see that the squared term, depending on the volatility param-

eter σ, is missing in Pt(T ); instead, we have an additional term in Pt(T ), depending on

the market price of uncertainty. Thus, the prices are independent of the volatility as well

as the bounds for the volatility, which is the case in most models dealing with pricing

under volatility uncertainty. It also implies that the bond price at the initial time corre-

sponds to the price in the deterministic version of the Hull-White model without white

noise, since the additional part in the exponential vanishes at the initial time. Though,

this also applies to the standard Hull-White model after fitting it to the initial yield

curve. In contrast to classical affine models, the bond price is now affine with respect

to the short rate and the market price of uncertainty. The affine structure is similar

to short rate models with a stochastic volatility (Fong and Vasicek, 1991; Longstaff and

Schwartz, 1992). However, the additional factor in the bond price is not the volatility

but a process adjusting towards the current value of the quadratic variation of the short

rate. A surprisingly similar structure can be found in the short rate model from Casassus,

Collin-Dufresne, and Goldstein (2005), displaying unspanned stochastic volatility.

The most important implications of the prices in this model are as follows. Primarily,

we manage to obtain a term structure that is robust with respect to the volatility itself

and the bounds for the volatility. So we do neither have to estimate the future volatility

of the short rate nor its bounds. Admittedly, there is a price we have to pay for this.

We have to specify the market price of uncertainty, which appears in the bond prices.

The market price of uncertainty depends on the past evolution of the quadratic variation

of the G-Brownian motion, which corresponds to the quadratic variation of the short

rate in the Hull-White model. The past evolution of the quadratic variation of the short

rate is observable and can be inferred from market data. Alternatively, one could also

estimate the variance of the short rate as an approximation for the market price of un-

certainty. Moreover, in accordance to the short rate model of Casassus, Collin-Dufresne,

and Goldstein (2005), the bond prices are completely unaffected by the structure of the

volatility. The bounds for the volatility presumably enter the model when it is used for

pricing derivatives on bonds—that is, nonlinear contracts. Therefore, we conjecture that

the model, despite its simple structure, displays unspanned stochastic volatility, which
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was introduced by Collin-Dufresne and Goldstein (2002). The pricing of derivatives and

a detailed discussion about unspanned stochastic volatility is, however, postponed to

Chapter 4.

2.6 Yield Curve Fitting

As in the classical Hull-White model, we can use the time dependent mean reversion level

to fit the theoretical bond prices to an initially observable term structure. We introduce

the following notions and assumptions, which are common in term structure models. Let

us assume that there is an initial forward curve f ∗0 : [0, τ ] → R, which is observed on

the market. We assume that the initial forward curve f ∗0 is differentiable and satisfies

f ∗0 (0) = r0. For T ≤ τ , the theoretical forward rate of the model is denoted by ft(T ) for

t ≤ T and defined by

ft(T ) := −∂T logPt(T ).

The following theorem gives a necessary and a sufficient condition for the theoretical

forward curve matching the observable one at inception, which characterizes the mean

reversion level of the short rate.

Theorem 2.10. Let the bond price be given by (2.8). Then it holds f ∗0 (T ) = f0(T ) for

all T if and only if the mean reversion level of the short rate, for all t, satisfies

µ(t) = θf ∗0 (t) + ∂tf
∗
0 (t). (2.10)

Proof. First, we derive the initial forward rate f0(T ) for T ≤ τ when the bond price is

given by (2.8). Taking the derivative of the logarithm of the bond price at time 0 and

changing the sign, for T ≤ τ , we obtain

f0(T ) =

∫ T

0

µ(t)e−θ(T−t)dt+ e−θT r0.

Let us suppose that f ∗0 (T ) = f0(T ) for all T . By the equation from above, we have

eθTf ∗0 (T ) =

∫ T

0

µ(t)eθtdt+ r0

for all T . Differentiating the latter equation with respect to T yields

θeθTf ∗0 (T ) + eθT∂Tf
∗
0 (T ) = µ(T )eθT

for all T . Hence, the mean reversion level satisfies (2.10).
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If we suppose that the mean reversion level satisfies (2.10), we can plug it into the

first equation of the proof and check, by reversing the above calculations, that it holds

f ∗0 (T ) = f0(T ) for all T .

After fitting the yield curve, the model is consistent with the classical Hull-White

model. In general, the model is not consistent with the traditional Hull-White model,

since the short rate dynamics and the bond prices differ from the ones in the traditional

model—even if there is no volatility uncertainty. The adjusted short rate dynamics are

given by

rt = r0 +

∫ t

0

(
µ(u) + qu − θru

)
du+ B̄t,

which clearly differ from the Hull-White short rate dynamics. The bond prices also

differ from the ones obtained in the Hull-White model—as the comparison from the

previous section shows. However, the model becomes consistent with the classical one

after fitting the model to the yield curve. After inserting (2.10) and the definition of q

in the (adjusted) short rate dynamics, one can check that these are the same dynamics

as in the fitted Hull-White model if there is no volatility uncertainty, i.e., if σ = σ = σ

(Brigo and Mercurio, 2001, Subsection 3.3.1). Furthermore, inserting (2.10) in A(t, T ),

which is defined in (2.9), and performing some calculations, yields

A(t, T ) = −
∫ T

t

f ∗0 (s)ds+ f ∗0 (t)B(t, T ).

Plugging the above expression into (2.8) and dividing by the fitted bond price from the

traditional Hull-White model with volatility σ (Brigo and Mercurio, 2001, Subsection

3.3.2) leads to

Pt(T )

P σ
t (T )

= exp
(

1
2
B(t, T )2

(
σ2

2θ
(1− e−2θt)− qt

))
.

Thus, the adjustment factor is now determined by the difference between the variance of

the short rate with constant volatility and the uncertain variance of the short rate with

volatility uncertainty. Hence, the adjustment factor is equal to 1 if σ = σ = σ.

The consistency with the classical Hull-White model further justifies the choice of q

as the market price of uncertainty. The discussion from above shows that the adjustment

factor q, appearing in the short rate dynamics, is actually included in the dynamics of

the classical model after fitting the theoretical prices to the observed ones. Hence, the

process q naturally appears in the risk-neutral dynamics of the short rate, which gives

another justification for choosing the market price of uncertainty in this particular way.

The interesting thing is, however, that in the classical model, this expression is used for
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yield curve fitting, whereas in this model, the expression is needed in order to have an

arbitrage-free model.

In order to completely calibrate the model, one has to establish a robust estimation

procedure for the mean reversion speed. Theorem 2.10 characterizes the mean reversion

level in terms of an initially observable term structure. However, the term structure

still involves a parameter: the mean reversion speed θ. A typical approach in short rate

models to estimate parameters is to use a maximum likelihood approach. The maximum

likelihood approach heavily relies on the probabilistic law of the short rate. In the presence

of volatility uncertainty, there is a family of possible probabilistic laws for the short rate,

and we are uncertain about which one is correct. Therefore, one has to use a robust

approach to calibrate the model instead of the classical maximum likelihood approach.

2.7 Multifactor Extension

The previous model can be generalized to a model driven by multiple risk factors. For this

purpose, we consider the probabilistic setting from Section 1.2 for a general d ∈ N, and

we replace the state space of the volatility, given by [σ, σ], with a general bounded, closed,

and convex subset Σ ⊂ Rd×d. We need to assume that Σ is such that the generator G is

non-degenerate, which we formalize in the next chapter, to be able to apply all required

results from the calculus of G-Brownian motion. In the one-dimensional setting, this

assumption is satisfied if σ > 0, which we assume in the previous sections. In contrast to

the previous sections, the d-dimensional case allows us to consider a possible uncertain

correlation between the risk factors. As described in Section 1.3, this setting leads to a

d-dimensional G-Brownian motion B = (B1
t , ..., B

d
t )t≥0. In particular, then Bi = (Bi

t)t≥0

is a one-dimensional Gi-Brownian motion for a suitable generator Gi : R → R for all

i = 1, ..., d. In this setting, the short rate process r is defined by

rt := µ(t) +
d∑
i=1

X i
t ,

where µ : R+ → R is a suitably integrable function and the factor X i = (X i
t)t≥0 satisfies

X i
t = −

∫ t

0

θiX
i
udu+Bi

t

for some constant θi > 0 for all i. The process X i is given by

X i
t =

∫ t

0

e−θi(t−u)dBi
u

for all i and represents a risk factor that affects the short rate.
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Such a multifactor extension does not lead to an arbitrage-free term structure. Similar

to the discussion in Section 2.3, we can show that the short rate dynamics from above

are not suitable for martingale modeling. As in Theorem 2.6, we can prove that the

discounted bonds can be symmetric G-martingales under Ê if and only if there is no

volatility uncertainty, that is, if and only if Σ is a singleton. This can be done, as in the

proof of Theorem 2.6, by considering two different beliefs about the volatility, which lead

to different bond prices.

We consider sublinear expectations defined by a G-backward stochastic differential

equation and equivalent to the initial sublinear expectation in order to find an arbitrage-

free term structure. Let λ = (λ1
t , ..., λ

d
t )0≤t≤τ be a d-dimensional bounded process in

Mp
G(0, τ ;Rd) for some p > 1. For ξ ∈ LpG(Ωτ ) with p > 1, we define the sublinear

expectation Ē by Ēt[ξ] := Y ξ
t , where Y ξ = (Y ξ

t )0≤t≤τ solves the G-backward stochastic

differential equation

Y ξ
t = ξ +

d∑
i=1

∫ τ

t

λiuZ
i
udu−

d∑
i=1

∫ τ

t

Zi
udB

i
u − (Kτ −Kt).

Then we can show, as in Proposition 2.8, that the bond market is arbitrage-free if the

discounted bonds are symmetric G-martingales under Ē.

We obtain an arbitrage-free term structure by considering a particular sublinear ex-

pectation of the above form. Let us define the process q = (q1
t , ..., q

d
t )0≤t≤τ by

qit :=
d∑
j=1

qijt ,

where qij = (qijt )0≤t≤τ is defined by

qijt :=

∫ t

0

e−(θi+θj)(t−u)d〈Bi, Bj〉u.

By applying Itô’s formula for G-Brownian motion, we know that qij, for all i, j, satisfies

qijt = 〈Bi, Bj〉t −
∫ t

0

(θi + θj)q
ij
u du.

If we use the process q to define a sublinear expectation as above, then there is a unique

arbitrage-free term structure.

Theorem 2.11. Let λ = q. Then the discounted bond P̃ (T ) is a symmetric G-martingale
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under Ē if and only if the bond price is given by

Pt(T ) := exp

(
−
∫ T

t

µ(s)ds−
d∑
i=1

Bi(t, T )X i
t − 1

2

d∑
i,j=1

Bi(t, T )Bj(t, T )qijt

)

for all t, where Bi : [0, τ ]× [0, τ ]→ R, for all i, is defined by

Bi(t, T ) := 1
θi

(1− e−θi(T−t)).

Proof. As in the proof of Theorem 2.9, the assertion follows if we show that the process

X = (Xt)0≤t≤T , defined by

Xt := exp

(
−
∫ T

0

µ(s)ds−
d∑
i=1

Bi(t, T )X i
t − 1

2

d∑
i,j=1

Bi(t, T )Bj(t, T )qijt −
d∑
i=1

∫ t

0

X i
sds

)
,

is a symmetric G-martingale. Applying Itô’s formula for G-Brownian motion to X yields

Xt = X0 +

∫ t

0

∆uXudu−
d∑
i=1

∫ t

0

Bi(u, T )XudB
i
u +

d∑
i,j=1

∫ t

0

∆ij
uXud〈Bi, Bj〉u,

where the drift terms ∆ = (∆t)0≤t≤T and ∆ij = (∆ij
t )0≤t≤T , for all i, j, are given by

∆t := −
d∑
i=1

∂tBi(t, T )X i
t − 1

2

d∑
i,j=1

(
∂tBi(t, T )Bj(t, T ) +Bi(t, T )∂tBj(t, T )

)
qijt

−
d∑
i=1

Bi(t, T )(−θiX i
t)− 1

2

d∑
i,j=1

Bi(t, T )Bj(t, T )
(
− (θi + θj)q

ij
t

)
−

d∑
i=1

X i
t

= −
d∑
i=1

(
∂tBi(t, T )− θiBi(t, T ) + 1

)
X i
t

− 1
2

d∑
i,j=1

Bj(t, T )
(
∂tBi(t, T )− θiBi(t, T )

)
qijt

− 1
2

d∑
i,j=1

Bi(t, T )
(
∂tBj(t, T )− θjBj(t, T )

)
qijt ,

∆ij
t := − 1

2
Bi(t, T )Bj(t, T ) + 1

2
Bi(t, T )Bj(t, T ) = 0,

respectively. Since the function Bi, for all i, satisfies

∂tBi(t, T ) = θiBi(t, T )− 1

35



and qij = qji for all i, j, we obtain

Xt = X0 +
d∑
i=1

∫ t

0

Bi(u, T )Xuq
i
udu−

d∑
i=1

∫ t

0

Bi(u, T )XudB
i
u.

We can use the same argument as in the proof of Theorem 2.9 to show that Xt ∈ L2
G(Ωt)

for all t. The Girsanov transformation for G-Brownian motion implies that the process

B̄ = (B̄1
t , ..., B̄

d
t )0≤t≤τ , defined by

B̄i
t := Bi

t −
∫ t

0

qiudu,

is a G-Brownian motion under Ē. Therefore, the process X is a symmetric G-martingale

under Ē.

We can use the function µ to fit the model to an initially observed term structure.

Let us assume that there is a sufficiently regular forward curve f ∗0 : [0, τ ] → R, which is

currently observed on the market. Then one can check that the theoretical forward curve

implied by the model matches the observed one at inception if and only if µ(t) = f ∗0 (t)

for all t.

2.8 Equilibrium and Empirical Analysis

From an economic point of view, a first question for further research (outside the scope

of this thesis) is whether the proposed term structure and the particular choice of the

market price of uncertainty can be supported by an equilibrium in a representative agent

economy. The present approach is purely based on no-arbitrage pricing; instead, one could

investigate a structural model in the spirit of Cox, Ingersoll Jr., and Ross (1985) under

model uncertainty. Gagliardini, Porchia, and Trojani (2009) examined a structural model

with ambiguity—that is, model uncertainty. The representative agent in the model faces

ambiguity about the drift of the underlying risk factors. Since she is ambiguity averse,

the agent has to solve a max-min expected utility problem. The solution determines the

uncertain drift process, which is termed market price of ambiguity. In a similar fashion,

one could examine a structural model in which the representative agent faces ambiguity

about the volatility. For this purpose one could adapt the framework of Epstein and Ji

(2013) to find out if there is an equilibrium in a representative agent economy supporting

the specific market price of uncertainty used in the present model.

Apart from that, it would be interesting to test the empirical performance of the

model—especially in comparison to traditional term structure models. One could, e.g.,

test if the model is able to explain the violation of the expectations hypothesis, as it was

done, for instance, by Dai and Singleton (2003) and Gagliardini, Porchia, and Trojani
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(2009), and if it does better than traditional models. Fama and Bliss (1987), Campbell

and Shiller (1991), and Cochrane and Piazzesi (2005) empirically tested the expectations

hypothesis by regressing changes in the yield curve onto the slope of the yield curve, which

shows that the expectations hypothesis is violated. The regression produces negative

coefficients, decreasing with respect to the maturity. Dai and Singleton (2003) tested

the ability of several term structure models to explain the empirical findings. For this

purpose, they fitted the models to data and simulated term structures from the fitted

models. Then they ran regressions as above and compared the regression coefficients from

the simulated data with the ones from real data. A successful model is supposed to match

the coefficients from real data. In order to test the performance of the present model in

this regard, one has to use a robust approach to calibrate the model, as it is described

at the end of Section 2.6. Moreover, one has to develop a simulation procedure that

works in the presence of volatility uncertainty. The volatility is uncertain in the sense of

Knightian uncertainty. By its definition, Knightian uncertainty cannot be measured by

any probability. Thus, standard simulation procedures cannot be used. Instead, one has

to construct a robust simulation procedure.

A further interesting comparison is to study the relation between the present model

and regime switching term structure models both from a theoretical point of view and

from an empirical perspective. Using regime switching models is a different, though

related, approach to overcome the stylized facts about the volatility of financial quantities

(as explained in Section 1.1 in the case of asset market models). Regime switching

term structure models assume that the volatility of the short rate follows a continuous-

time Markov chain, which jumps between a finite number of values. The literature

on regime switching term structure models shows that these models offer advantages

compared to classical term structure models (Dai, Singleton, and Yang, 2007; Gourieroux,

Monfort, Pegoraro, and Renne, 2014; Monfort and Pegoraro, 2007). The comparison of

models with volatility uncertainty to regime switching models is particularly well-suited

in contrast to other stochastic volatility models, since the volatility process in regime

switching models is also bounded (as it has a finite state space). In the present chapter,

we consider all volatility processes bounded by two extreme values; thus, we basically

also consider trajectories described by regime switching term structure models. This

is, however, just a pathwise argument. One needs to enlarge the probability space of

the model in order to obtain the same Markov chain considered by regime switching

term structure models, since the probability of the Markov chain jumping to a different

state is usually independent from the remaining risk factors. Then one can compare the

approaches and the corresponding results in detail.
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Chapter 3

The Heath-Jarrow-Morton Model

In the present chapter, we study term structure movements in the spirit of Heath, Jarrow,

and Morton (1992) (HJM) under volatility uncertainty. The HJM methodology is based

on modeling the instantaneous forward rate as a diffusion process as opposed to the short

rate. As in the classical HJM framework, we model the behavior of the forward rate as

a general diffusion process. The forward rate determines all quantities on the related

bond market. The difference compared to the classical framework is that we consider

the probabilistic setting from Section 1.2 to model the uncertainty about the volatility,

where, in contrast to the previous chapter, we consider a general state space for the

uncertain volatility, leading to a d-dimensional G-Brownian motion. As a consequence,

the forward rate dynamics are driven by a d-dimensional G-Brownian motion in the

presence of volatility uncertainty. Compared to the classical HJM model, the forward

rate has uncertain drift terms in addition to the classical (certain) drift term, since the

quadratic covariations of a G-Brownian motion are uncertain processes (as mentioned

in Section 1.3). Despite the differences, the present model is still consistent with the

classical HJM model. We impose some assumptions on the coefficients of the forward

rate dynamics in order to get a sufficient degree of regularity.

Similar to the traditional HJM model, the main result of the present chapter is a drift

condition that implies that the related bond market is arbitrage-free. The traditional

HJM drift condition relates the absence of arbitrage to the existence of a market price

of risk and shows that the risk-neutral dynamics of the forward rate are completely

characterized by its diffusion coefficient. In order to derive a drift condition in the presence

of volatility uncertainty, we set up a suitable market structure for the related bond market

in this setting. In contrast to the traditional HJM model, the drift condition in the

presence of volatility uncertainty requires the existence of several market prices. We

call the additional market prices—in addition to the market price of risk—the market

prices of uncertainty. As in the traditional HJM model, the risk-neutral dynamics of

the forward rate are completely determined by its diffusion term—with the addition that

the uncertainty of the diffusion term determines the uncertainty of the drift. If the
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uncertainty about the volatility vanishes, the drift condition reduces to the traditional

one. The proof of the main result is based on deriving the dynamics of the discounted

bonds and using a Girsanov transformation for G-Brownian motion together with some

results on G-backward stochastic differential equations.

The drift condition derived in this chapter is a very powerful tool, since it allows to

construct arbitrage-free term structure models that are completely robust with respect to

the volatility. In the classical case without volatility uncertainty, almost every (arbitrage-

free) term structure model corresponds to a specific example in the HJM methodology.

Due to the main result of the present chapter, we are able to obtain arbitrage-free term

structure models in the presence of volatility uncertainty by considering specific exam-

ples. In particular, we recover robust versions of classical term structure models: the

examples include the Ho-Lee term structure, the Hull-White term structure—which ac-

tually corresponds to the term structure from the previous chapter—and the Vasicek

term structure. The examples show that the drift of the risk-neutral short rate dynamics

and the bond prices, which still have an affine structure, include an additional uncertain

factor when there is uncertainty about the volatility. As in the previous chapter, with this

procedure, we obtain term structure models that are robust with respect to the volatility

as well as its worst-case values, which differs from most works on pricing under volatility

uncertainty.

In order to make the analysis from above work, we construct a space of admissible

integrands for the forward rate dynamics. The forward rate is a diffusion process pa-

rameterized by its maturity and needs to be integrable with respect to its maturity to

compute the bond prices. Therefore, the integrands in the forward rate dynamics need

to be regular with respect to the maturity apart from being admissible stochastic pro-

cesses in a diffusion driven by a G-Brownian motion. In order to achieve this, we use the

space of Bochner integrable functions; that is, Banach space-valued functions that are

sufficiently measurable and integrable, where the functions are mapping from the set of

maturities into the space of admissible stochastic processes in this particular case. For

such functions, we can define the Bochner integral, mapping into the space of admissible

stochastic processes. This ensures that the forward rate is integrable with respect to its

maturity. Moreover, we derive further necessary results for the HJM model, including

a version of Fubini’s theorem for stochastic integrals. We give a sufficient condition for

functions to be Bochner integrable, which applies to all considered examples.

In addition, we provide a sufficient condition ensuring that the discounted bonds and

the portfolio value related to the bond market are well-posed. Each discounted bond is an

exponential of a diffusion process driven by a G-Brownian motion, and the portfolio value

consists of integrals with respect to the discounted bonds, respectively. First, we have

to make sure that the discounted bonds are well-posed; second, we need to ensure that

the dynamics of each discounted bond are sufficiently regular to imply that the portfolio
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value is well-posed. For this purpose, we use a condition similar to G-Novikov’s condition

of Osuka (2013) to obtain the desired regularity. As in the classical case, the advantage

of such a condition is that it can be easily verified compared to other conditions implying

that the exponential of an Itô diffusion is integrable. One can verify that all examples

considered in this article satisfy this condition.

The chapter is organized as follows. Section 3.1 introduces the forward rate, deter-

mining all quantities on the related bond market, and the framework representing the

uncertainty about the volatility. In Section 3.2, we set up the market structure for the

related bond market and derive the drift condition, ensuring the absence of arbitrage.

In Section 3.3, we study examples, including the Ho-Lee term structure, the Hull-White

term structure, and the Vasicek term structure, and discuss their implications. In Section

3.4, we construct the space of admissible integrands for the forward rate dynamics and

derive related results. Section 3.5 provides the sufficient condition for the discounted

bonds to be well-posed.

3.1 Term Structure Movements

In the traditional HJM framework—without volatility uncertainty—term structure move-

ments are driven by a standard Brownian motion. That means, we consider the canonical

process B = (B1
t , ..., B

d
t )t≥0, for d ∈ N, on the probability space (Ω,F , P0), introduced in

Section 1.1, and the filtration F = (Ft)t≥0, which is generated by B and completed by all

P0-null sets. Then the canonical process B is a d-dimensional standard Brownian motion

under P0. For T ≤ τ , where τ <∞ is a fixed terminal time, we denote the forward rate

with maturity T at time t by ft(T ) for t ≤ T . In the classical HJM model, the dynamics

of the forward rate process f(T ) = (ft(T ))0≤t≤T , for all T , are given by

ft(T ) = f0(T ) +

∫ t

0

αu(T )du+
d∑
i=1

∫ t

0

βiu(T )dBi
u

for some initial (observable) forward curve f0 : [0, τ ] → R, which is integrable, and

sufficiently regular processes α(T ) = (αt(T ))0≤t≤τ and β(T ) = (β1
t (T ), ..., βdt (T ))0≤t≤τ . So

instead of modeling a single interest rate and determining the term structure of interest

rates endogenously (as in the previous chapter), we directly model the evolution of the

whole term structure, represented by the forward rate, starting from an initial term

structure observed on the market.

The forward rate determines all remaining quantities on the bond market. The market

offers zero-coupon bonds for all maturities, which are discounted by the money-market
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account. The bond price process, denoted by P (T ) = (Pt(T ))0≤t≤T , is defined by

Pt(T ) := exp

(
−
∫ T

t

ft(s)ds

)
for all T ≤ τ , and the money-market account, denoted by M = (Mt)0≤t≤τ , is defined by

Mt := exp

(∫ t

0

rsds

)
,

where r = (rt)0≤t≤τ is the short rate, defined by rt := ft(t). We use the money-market

account as a numéraire; i.e., we focus on the discounted bonds, which are denoted by

P̃ (T ) = (P̃t(T ))0≤t≤T for all T ≤ τ and defined by

P̃t(T ) := M−1
t Pt(T ).

In the presence of volatility uncertainty, we consider a family of probability measures

resulting in a d-dimensional G-Brownian motion. That is, we consider the set of beliefs P
from Section 1.2, consisting of all beliefs about the volatility. In contrast to the previous

chapter, we use a general state space Σ without assuming that d = 1. Then, as in Section

1.3, the sublinear expectation

Ê[·] = sup
P∈P

EP [·]

corresponds to the G-expectation, and the canonical process B is a d-dimensional G-

Brownian motion. We assume that the generator G : Sd → R, which is given by

G(A) = 1
2

sup
σ∈Σ

tr(σσ′A),

is non-degenerate; namely, there exists a constant C > 0 such that

G(A)−G(B) ≥ Ctr(A−B)

for all A ≥ B. The latter is required by some results from the calculus of G-Brownian

motion we need for the subsequent analysis.

As a consequence, term structure movements are driven by a G-Brownian motion in

the presence of volatility uncertainty. That means, for all T , the forward rate dynamics

are now given by

ft(T ) = f0(T ) +

∫ t

0

αu(T )du+
d∑
i=1

∫ t

0

βiu(T )dBi
u +

d∑
i,j=1

∫ t

0

γi,ju (T )d〈Bi, Bj〉u

41



for some initial forward curve f0 : [0, τ ] → R, which is integrable, and for functions

α, γi,j : [0, τ ] → M1
G(0, τ) and βi : [0, τ ] → M2

G(0, τ). Since the space Mp
G(0, τ) consists

of stochastic processes that are admissible integrands in the definition of all stochastic

integrals related to a G-Brownian motion, the forward rate and the short rate are well-

defined in the sense that for all T , ft(T ), rt ∈ L1
G(Ωt) for all t.

In contrast to the traditional HJM model, the forward rate has additional, uncertain

drift terms when there is volatility uncertainty. The additional drift terms of the forward

rate are uncertain due to the fact that they depend on the quadratic covariation pro-

cesses of the G-Brownian motion. In the presence of volatility uncertainty, the quadratic

covariations of the driving process are uncertain processes, since they differ among the

measures in the set of beliefs (as it is described in Section 1.3). Moreover, it can be

shown that the additional drift terms cannot be included in the first drift term (Song,

2013, Corollary 3.3). Hence, we have to add them to the forward rate dynamics instead

of including them in the first drift term. In this way, we can distinguish between the part

of the drift that is driven by uncertainty and the part that is not.

When there is no volatility uncertainty, the model corresponds to a classical HJM

model. If we drop the uncertainty about the volatility, then B becomes a standard

Brownian motion, and its quadratic covariation processes are no longer uncertain. That

means, if Σ = {Id}, then for all i, we have 〈Bi, Bi〉t = t and 〈Bi, Bj〉t = 0 for all j 6= i.

In that case, the forward rate dynamics are given by

ft(T ) = f0(T ) +

∫ t

0

(
αu(T ) +

d∑
i=1

γi,iu (T )

)
du+

d∑
i=1

∫ t

0

βiu(T )dBi
u

for all T ; that is, the model corresponds to a classical HJM model in which the drift is

given by the sum of α and
∑d

i=1 γ
i,i.

We henceforth impose the following two regularity assumptions. The first assumption

ensures that the forward rate and the short rate are integrable and that all succeeding

computations are feasible.

Assumption 3.1. There exists a p > 1 such that α, γi,j ∈ M̃p
G(0, τ) and βi ∈ M̃2p

G (0, τ)

for all i, j.

The space M̃p
G(0, τ), which we construct in Section 3.4, consists of all functions mapping

from [0, τ ] into Mp
G(0, τ) that are strongly measurable and whose norm on Mp

G(0, τ) is

integrable. A function is called strongly measurable if it is Borel measurable and its image

is separable. For example, we know that all continuous functions mapping from [0, τ ]

into Mp
G(0, τ) belong to M̃p

G(0, τ) by Proposition 3.14. This implies that all examples

in Section 3.3 satisfy Assumption 3.1, as Example 3.15 shows. By Proposition 3.17,

Assumption 3.1 implies that the forward rate and, by Proposition 3.19, the short rate are
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integrable. The second assumption ensures that the discounted bonds and the portfolio

value are sufficiently regular.

Assumption 3.2. There exist p̃ > p∗ and q̃ > 2, where p∗ := 2pq
p−q for some q ∈ (1, p),

such that for all T ≤ τ , it holds

Ê
[∫ T

0

exp

(
p̃q̃
q̃−2

(∫ t

0

au(T )du+
d∑

i,j=1

∫ t

0

ci,ju (T )d〈Bi, Bj〉u
))

dt

]
<∞,

Ê
[∫ T

0

exp

(
1
2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biu(T )bju(T )d〈Bi, Bj〉u
)
dt

]
<∞.

The processes a(T ) = (at(T ))0≤t≤τ , b
i(T ) = (bit(T ))0≤t≤τ , and ci,j(T ) = (ci,jt (T ))0≤t≤τ , for

T ≤ τ , are defined by

at(T ) :=

∫ T

t

αt(s)ds, bit(T ) :=

∫ T

t

βit(s)ds, ci,jt (T ) :=

∫ T

t

γi,jt (s)ds,

respectively, for all i, j, for which we have a(T ), ci,j(T ) ∈Mp
G(0, τ) and bi(T ) ∈M2p

G (0, τ)

by Assumption 3.1 and Proposition 3.19. One can easily verify that all examples in

Section 3.3 satisfy Assumption 3.2. Assumption 3.2 is similar to G-Novikov’s condition

from Osuka (2013) and implies that for every maturity, the discounted bond price is

in L1
G(Ωt) at each time t. Moreover, Assumption 3.2 ensures that the dynamics of the

discounted bonds are regular enough to imply that the portfolio value, which is defined

below, is well-posed. We show both of these implications in Section 3.5, which requires

Lemma 3.7 from the succeeding section.

3.2 Arbitrage-Free Forward Rate Dynamics

In the traditional HJM model, the absence of arbitrage on the related bond market is

ensured by the HJM drift condition, which assumes the existence of a market price of risk

and characterizes the drift of the forward rate in terms of its diffusion coefficient. More

precisely, the market is arbitrage-free if there exists a suitable process λ = (λ1
t , ..., λ

d
t )0≤t≤τ

such that for all T ,

α(T )− β(T )b(T )′ + β(T )λ′ = 0,

where b(T ) = (b1(T ), ..., bd(T )). The process λ is termed market price of risk, since it

erases the drift of each discounted bond under an equivalent probability measure, called

risk-neutral measure, to make it a martingale. Then the forward rate dynamics under
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the risk-neutral measure are completely determined by its diffusion coefficient; that is,

ft(T ) = f0(T ) +

∫ t

0

βu(T )bu(T )′du+
d∑
i=1

∫ t

0

βiu(T )dB̄i
u,

where B̄ = (B̄1
t , ..., B̄

d
t )0≤t≤τ is a Brownian motion under the risk-neutral measure. This

fact is of practical importance since there is no need to specify the drift term α or the

market price of risk λ.

In order to derive a drift condition in the presence of volatility uncertainty, we first

define admissible market strategies and a suitable notion of arbitrage. As in the previous

chapter, the agents in the market are allowed to select a finite number of bonds they

want to trade. The corresponding portfolio value is determined by the gains from trade;

i.e., we restrict to self-financing strategies.

Definition 3.3. An admissible market strategy (π, T ) is a couple consisting of a bounded

process π = (π1
t , ..., π

n
t )0≤t≤τ in M2

G(0, τ ;Rn) and a vector T = (T1, ..., Tn) ∈ [0, τ ]n for

some n ∈ N. The corresponding portfolio value at terminal time is defined by

ṽτ (π, T ) :=
n∑
i=1

∫ Ti

0

πitdP̃t(Ti).

The portfolio value is well-posed, since the dynamics of P̃ (T ), which are derived in Propo-

sition 3.8 below, are sufficiently regular for each T by Assumption 3.2 and Proposition

3.25. In addition, we use the quasi-sure notion of arbitrage from the preceding chapter,

which corresponds to the definition of arbitrage frequently used in the literature on model

uncertainty (Biagini, Bouchard, Kardaras, and Nutz, 2017; Bouchard and Nutz, 2015).

Definition 3.4. An admissible market strategy (π, T ) is called arbitrage strategy if

ṽτ (π, T ) ≥ 0 quasi-surely, P
(
ṽτ (π, T ) > 0

)
> 0 for at least one P ∈ P .

Moreover, we say that the bond market is arbitrage-free if there is no arbitrage strategy.

Remark 3.5. As mentioned in the previous chapter, it is possible to generalize the no-

tion of trading strategies and—additionally—the concept of arbitrage. The notion of trad-

ing strategies can be generalized by allowing for measure-valued trading strategies (Björk,

Di Masi, Kabanov, and Runggaldier, 1997) or by using methods from large financial mar-

kets (Klein, Schmidt, and Teichmann, 2016). For example, we could use the techniques

from Section 3.4 to introduce measure-valued trading strategies. There are also other no-

arbitrage concepts related to bond markets, which are based on the theory of large financial

markets (Cuchiero, Klein, and Teichmann, 2016). We stick to the definitions from above,

since such a generalization does not alter the results of this thesis.
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In the presence of volatility uncertainty, the absence of arbitrage requires the existence

of several market prices. In that case, there is a sublinear expectation under which

the discounted bonds are symmetric G-martingales, ruling out arbitrage opportunities.

Moreover, the drift condition characterizes the dynamics of the forward rate.

Theorem 3.6. The bond market is arbitrage-free if for some p > 1, there exist bounded

processes κ = (κ1
t , ..., κ

d
t )0≤t≤τ and λi,j = (λi,j,1t , ..., λi,j,dt )0≤t≤τ in Mp

G(0, τ ;Rd) such that

α(T ) + β(T )κ′ = 0,

γi,j(T )− 1
2

(
βi(T )bj(T ) + bi(T )βj(T )

)
+ β(T )(λi,j)′ = 0

(3.1)

for almost all T for all i, j. In particular, then there exists a sublinear expectation Ē
under which P̃ (T ) is a symmetric G-martingale for all T and

ft(T ) = f0(T ) +
d∑
i=1

∫ t

0

βiu(T )dB̄i
u +

d∑
i,j=1

∫ t

0

1
2

(
βiu(T )bju(T ) + biu(T )βju(T )

)
d〈B̄i, B̄j〉u

for almost all T , where B̄ = (B̄1
t , ..., B̄

d
t )0≤t≤τ is a G-Brownian motion under Ē.

The additional market prices occuring in the drift condition represent the market

prices of uncertainty. In comparison to the classical case without volatility uncertainty,

the forward rate and (hence) the discounted bonds have additional drift terms, which are

uncertain (as explained in Section 3.1). As a consequence, we need additional market

prices in order to make the discounted bonds symmetric G-martingales, which ultimately

rules out arbitrage. Since the additional market prices relate to the uncertain drift terms

of the discounted bonds, they are termed market prices of uncertainty.

The risk-neutral dynamics of the forward rate are fully characterized by its diffusion

term, which—in contrast to the classical HJM model—does not only apply to the coef-

ficients but also to the uncertainty. We call the dynamics of the forward rate under Ē,

given in Theorem 3.6, risk-neutral dynamics, since the discounted bonds are symmetric G-

martingales under Ē. As in the classical HJM model, the diffusion coefficient β determines

the drift coefficient of the risk-neutral forward rate dynamics. In addition, the uncertain

volatility, included in the G-Brownian motion B̄, determines the uncertainty of the drift,

represented by the quadratic covariation processes of B̄. That means, arbitrage-free term

structure models also exhibit drift uncertainty in the presence of volatility uncertainty.

Despite the differences, the drift condition is still consistent with the classical HJM

drift condition. If there is no uncertainty about the volatility—that is, if Σ = {Id}—then

the forward rate satisfies for all T ,

ft(T ) = f0(T ) +

∫ t

0

(
αu(T ) +

d∑
i=1

γi,iu (T )

)
du+

d∑
i=1

∫ t

0

βiu(T )dBi
u
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as it is described in Section 3.1. The drift condition in Theorem 3.6 implies that

(
α(T ) +

d∑
i=1

γi,i(T )

)
− β(T )b(T )′ + β(T )

(
κ+

d∑
i=1

λi,i
)′

= 0

for almost all T . The latter corresponds to the classical HJM drift condition for a market

price of risk given by the process κ+
∑d

i=1 λ
i,i.

In order to prove Theorem 3.6, we first of all derive the dynamics of the discounted

bond for each maturity. This is based on the following lemma.

Lemma 3.7. For all T , the logarithm of the discounted bond satisfies the dynamics

log
(
P̃t(T )

)
= log

(
P̃0(T )

)
−
∫ t

0

au(T )du−
d∑
i=1

∫ t

0

biu(T )dBi
u −

d∑
i,j=1

∫ t

0

ci,ju (T )d〈Bi, Bj〉u.

Proof. We obtain the dynamics by applying Fubini’s theorem, which can be found in

Section 3.4. By its definition, the logarithm of the discounted bond is given by

log
(
P̃t(T )

)
= −

∫ T

t

ft(s)ds−
∫ t

0

rsds

for all T . Inserting the definition of the forward rate and the short rate, we obtain

log
(
P̃t(T )

)
= log

(
P̃0(T )

)
−
∫ T

t

∫ t

0

αu(s)duds−
∫ t

0

∫ s

0

αu(s)duds

−
d∑
i=1

∫ T

t

∫ t

0

βiu(s)dB
i
uds−

d∑
i=1

∫ t

0

∫ s

0

βiu(s)dB
i
uds

−
d∑

i,j=1

∫ T

t

∫ t

0

γi,ju (s)d〈Bi, Bj〉uds−
d∑

i,j=1

∫ t

0

∫ s

0

γi,ju (s)d〈Bi, Bj〉uds

for all T . Then an application of Corollary 3.18 yields for all i, j,∫ T

t

∫ t

0

αu(s)duds+

∫ t

0

∫ s

0

αu(s)duds =

∫ t

0

au(T )du,∫ T

t

∫ t

0

βiu(s)dB
i
uds+

∫ t

0

∫ s

0

βiu(s)dB
i
uds =

∫ t

0

biu(T )dBi
u,∫ T

t

∫ t

0

γi,ju (s)d〈Bi, Bj〉uds+

∫ t

0

∫ s

0

γi,ju (s)d〈Bi, Bj〉uds =

∫ t

0

ci,ju (T )d〈Bi, Bj〉u

for all T , which proves the assertion.

Since for all i, j, the processes a(T ), bi(T ), and ci,j(T ) are sufficiently regular for each T ,

we can use Itô’s formula for G-Brownian motion from Li and Peng (2011) to derive the

dynamics of the discounted bond for each T .
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Proposition 3.8. For all T , the discounted bond satisfies the dynamics

P̃t(T ) = P̃0(T )−
∫ t

0

au(T )P̃u(T )du−
d∑
i=1

∫ t

0

biu(T )P̃u(T )dBi
u

−
d∑

i,j=1

∫ t

0

(
ci,ju (T )− 1

2
biu(T )bju(T )

)
P̃u(T )d〈Bi, Bj〉u.

Proof. The assertion follows by Lemma 3.7 and an application of Itô’s formula for G-

Brownian motion (Li and Peng, 2011, Theorem 5.4). We are able to apply Itô’s formula

for G-Brownian motion, since a(T ), ci,j(T ) ∈ M1
G(0, T ) and bi(T ) ∈ M2

G(0, T ) for all i, j

by the contruction of the Bochner integral in Section 3.4 and Proposition 3.19.

Next, we prove Theorem 3.6 by using results on G-backward stochastic differential

equations of Hu, Ji, Peng, and Song (2014), including a Girsanov transformation for G-

Brownian motion. All details regarding G-backward stochastic differential equations can

be found in the paper of Hu, Ji, Peng, and Song (2014).

Proof of Theorem 3.6. First, we rewrite the dynamics of the forward rate and the dis-

counted bond for each maturity by using the Girsanov transformation for G-Brownian

motion from Hu, Ji, Peng, and Song (2014). For this purpose, we consider the following

sublinear expectation: for ξ ∈ LpG(Ωτ ) with p > 1, we define the sublinear expectation

Ē by Ēt[ξ] := Y ξ
t , where Y ξ = (Y ξ

t )0≤t≤τ solves the G-backward stochastic differential

equation

Y ξ
t = ξ +

∫ τ

t

κuZ
′
udu+

d∑
i,j=1

∫ τ

t

λi,ju Z
′
ud〈Bi, Bj〉u −

d∑
i=1

∫ τ

t

Zi
udB

i
u − (Kτ −Kt).

Then Ē is a time consistent sublinear expectation (Hu, Ji, Peng, and Song, 2014, Theorem

5.1), and the Girsanov transformation for G-Brownian motion implies that the process

B̄ = (B̄1
t , ..., B̄

d
t )0≤t≤τ , defined by

B̄t := Bt −
∫ t

0

κudu−
d∑

i,j=1

∫ t

0

λi,ju d〈Bi, Bj〉u,

is a G-Brownian motion under Ē (Hu, Ji, Peng, and Song, 2014, Theorems 5.2, 5.4). The

quadratic covariations of B and B̄, respectively, are the same, since the drift terms of B̄

are of bounded variation. Consequently, for each T , we can rewrite the dynamics of the
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forward rate as

ft(T ) = f0(T ) +

∫ t

0

(
αu(T ) + βu(T )κ′u

)
du+

d∑
i=1

∫ t

0

βiu(T )dB̄i
u

+
d∑

i,j=1

∫ t

0

(
γi,ju (T ) + βu(T )(λi,ju )′

)
d〈B̄i, B̄j〉u

and the dynamics of the discounted bond as

P̃t(T ) = P̃0(T )−
∫ t

0

(
au(T ) + bu(T )κ′u

)
P̃u(T )du−

d∑
i=1

∫ t

0

biu(T )P̃u(T )dB̄i
u

−
d∑

i,j=1

∫ t

0

(
ci,ju (T )− 1

2
biu(T )bju(T ) + bu(T )(λi,ju )′

)
P̃u(T )d〈B̄i, B̄j〉u.

Next, we deduce the forward rate dynamics and the dynamics of the discounted bond

under Ē from the drift condition. As κ and λi,j, for all i, j, satisfy (3.1) for almost all T ,

ft(T ) = f0(T ) +
d∑
i=1

∫ t

0

βiu(T )dB̄i
u +

d∑
i,j=1

∫ t

0

1
2

(
βiu(T )bju(T ) + biu(T )βju(T )

)
d〈B̄i, B̄j〉u

for almost all T . Additionally, we can integrate the terms in (3.1) to get for all i, j,∫ T

·

(
α(s) + β(s)κ′

)
ds = a(T ) + b(T )κ′,∫ T

·

(
γi,j(s) + β(s)(λi,j)′

)
ds = ci,j(T ) + b(T )(λi,j)′,∫ T

·

(
βi(s)bj(s) + bi(s)βj(s)

)
ds = bi(T )bj(T )

for all T , where the latter follows from Corollary 3.24. Thus, by (3.3), for all i, j, we have

a(T ) + b(T )κ′ = 0,

ci,j(T )− 1
2
bi(T )bj(T ) + b(T )(λi,j)′ = 0

for all T , which implies

P̃t(T ) = P̃0(T )−
d∑
i=1

∫ t

0

biu(T )P̃u(T )dB̄i
u.

In the end, we conclude that the market is arbitrage-free, since the discounted bonds

are symmetric G-martingales. From Assumption 3.2 and Proposition 3.25, we deduce

that for each T , we have P̃t(T ) ∈ L2
G(Ωt) for all t. In addition, the dynamics of the
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discounted bond from above imply that P̃ (T ) is a symmetric G-martingale under Ē for

all T . Then—as in the proof of Proposition 2.8—we can show that the bond market

is arbitrage-free. This relies on the fact that Ē is equivalent to the initial sublinear

expectation Ê in the sense that it holds ξ = 0 if and only if Ē[|ξ|] = 0 for all ξ ∈ LpG(Ωτ )

with p > 1 (see Lemma 2.7).

3.3 Robust Versions of Classical Term Structures

The main reason the HJM methodology is so popular is that essentially every term

structure model corresponds to a specific example in the HJM model. One can verify

that the forward rate implied by any arbitrage-free term structure satisfies the HJM drift

condition for a particular diffusion coefficient. Conversely, the diffusion coefficient fully

characterizes the risk-neutral dynamics of the forward rate, and the forward rate, in turn,

determines all other quantities of the model. Thus, one is able to construct arbitrage-free

term structure models by simply specifying the diffusion term of the forward rate.

We investigate what kind of term structure models we obtain when we consider specific

examples in the present setting. Theorem 3.6 shows that the risk-neutral dynamics

of the forward rate are also determined by its diffusion term when there is volatility

uncertainty. Therefore, the drift condition derived in the previous section enables us to

construct arbitrage-free term structure models in the presence of volatility uncertainty by

specifying the diffusion term of the forward rate, which we demonstrate in the succeeding

examples. In particular, our aim is to recover robust versions of classical term structure

models by considering the corresponding diffusion coefficients in the present framework,

respectively.

Throughout the section, we impose the following assumptions. First, we consider a

one-dimensional G-Brownian motion—i.e., we have d = 1 and Σ = [σ, σ] for σ ≥ σ > 0.

Second, we suppose that the initial forward curve is differentiable; this is necessary for the

derivation of the related short rate dynamics. Third, we assume that the drift condition is

satisfied; this assumption ensures that the model is arbitrage-free and allows us to directly

compute the risk-neutral dynamics of the forward rate. It should also be noted that the

following examples are feasible in the sense that the respective diffusion coefficients satisfy

the regularity assumptions from Section 3.1.

3.3.1 The Ho-Lee Term Structure

If we consider the diffusion coefficient of the forward rate implied by the Ho-Lee term

structure, we obtain a robust version of the Ho-Lee model.

49



Example 3.9. If we define β by βt(T ) := 1, then the short rate satisfies

rt = r0 +

∫ t

0

(
∂uf0(u) + qu

)
du+ B̄t,

and the bond prices are of the form

Pt(T ) = exp
(
A(t, T )− 1

2
B(t, T )2qt −B(t, T )rt

)
,

where the process q = (qt)0≤t≤τ is defined by

qt := 〈B̄〉t

and the functions A,B : [0, τ ]× [0, τ ]→ R are defined by

A(t, T ) := −
∫ T

t

f0(s)ds+B(t, T )f0(t),

B(t, T ) := (T − t),

respectively.

The risk-neutral short rate dynamics are determined by the risk-neutral forward rate

dynamics. According to Theorem 3.6, the latter are given by

ft(T ) = f0(T ) + B̄t +

∫ t

0

(T − u)d〈B̄〉u.

By the definition of the short rate, we have

rt = f0(t) + B̄t +

∫ t

0

(t− u)d〈B̄〉u.

Applying Itô’s formula for G-Brownian motion then yields

rt = r0 +

∫ t

0

(
∂uf0(u) + qu

)
du+ B̄t.

The bond prices follow from integrating the risk-neutral forward rate dynamics.∫ T

t

ft(s)ds =

∫ T

t

f0(s)ds+B(t, T )B̄t +

∫ T

t

∫ t

0

(s− u)d〈B̄〉uds.

If we perform some calculations on the last term, we get∫ T

t

∫ t

0

(s− u)d〈B̄〉uds = B(t, T )

∫ t

0

(t− u)d〈B̄〉u + 1
2
B(t, T )2〈B̄〉t.
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Substituting the latter in the previous equation, we obtain∫ T

t

ft(s)ds = −A(t, T ) + 1
2
B(t, T )2qt +B(t, T )rt,

which yields the bond prices from above.

3.3.2 The Hull-White Term Structure

If we use the diffusion coefficient of the forward rate implied by the Hull-White term

structure, we get a robust version of the Hull-White model.

Example 3.10. If we define β by βt(T ) := e−θ(T−t) for θ > 0, then the short rate satisfies

rt = r0 +

∫ t

0

(
∂uf0(u) + θf0(u) + qu − θru

)
du+ B̄t,

and the bond prices are of the form

Pt(T ) = exp
(
A(t, T )− 1

2
B(t, T )2qt −B(t, T )rt

)
,

where the process q = (qt)0≤t≤τ is defined by

qt :=

∫ t

0

e−2θ(t−u)d〈B̄〉u

and the functions A,B : [0, τ ]× [0, τ ]→ R are defined by

A(t, T ) := −
∫ T

t

f0(s)ds+B(t, T )f0(t),

B(t, T ) := 1
θ
(1− e−θ(T−t)),

respectively.

Again, the risk-neutral short rate dynamics are determined by the risk-neutral forward

rate dynamics. By Theorem 3.6, the latter are given by

ft(T ) = f0(T ) +

∫ t

0

e−θ(T−u)dB̄u +

∫ t

0

e−θ(T−u) 1
θ
(1− e−θ(T−u))d〈B̄〉u.

The definition of the short rate then implies

rt = f0(t) +

∫ t

0

e−θ(t−u)dB̄u +

∫ t

0

e−θ(t−u) 1
θ
(1− e−θ(t−u))d〈B̄〉u.
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Applying Itô’s formula for G-Brownian motion yields

rt = r0 +

∫ t

0

(
∂uf0(u) + θf0(u) + qu − θru

)
du+ B̄t.

We obtain the bond prices by integrating the risk-neutral dynamics of the forward rate.∫ T

t

ft(s)ds =

∫ T

t

f0(s)ds+

∫ T

t

∫ t

0

e−θ(s−u)dB̄uds

+

∫ T

t

∫ t

0

e−θ(s−u) 1
θ
(1− e−θ(s−u))d〈B̄〉uds.

The first double integral can be written as∫ T

t

∫ t

0

e−θ(s−u)dB̄uds = B(t, T )

∫ t

0

e−θ(t−u)dB̄u.

After some calculations, the second double integral becomes∫ T

t

∫ t

0
e−θ(s−u) 1

θ (1− e−θ(s−u))d〈B̄〉uds = B(t, T )

∫ t

0
e−θ(t−u) 1

θ (1− e−θ(t−u))d〈B̄〉u

+ 1
2B(t, T )2

∫ t

0
e−2θ(t−u)d〈B̄〉u.

Thus, we obtain ∫ T

t

ft(s)ds = −A(t, T ) + 1
2
B(t, T )2qt +B(t, T )rt,

which leads to the bond prices given above.

Remark 3.11. The Hull-White model under volatility uncertainty is also analyzed in

Chapter 2. In that chapter, we show how to obtain an arbitrage-free term structure in the

Hull-White model when there is uncertainty about the volatility. In order to achieve this,

the structure of the short rate dynamics has to be suitably modified. Here we get exactly

the same structure.

3.3.3 The Vasicek Term Structure

The previous example shows that the Vasicek model needs to be adjusted in order to fit

into the HJM methodology when there is volatility uncertainty.

Example 3.12. If we use the same diffusion coefficient as in the previous example, we

see that it is not possible to exactly replicate the Vasicek model in the presence of volatility

uncertainty. The forward rates implied by the Vasicek term structure and the Hull-White

term structure, respectively, have the same diffusion coefficient. If we define β as in
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Example 3.10, then the short rate dynamics are given by

rt = r0 +

∫ t

0

(
∂uf0(u) + θf0(u) + qu − θru

)
du+ B̄t,

where the process q is defined as in Example 3.10. In order to obtain the short rate

dynamics of the Vasicek model, we need to make sure that for all t,

∂tf0(t) + θf0(t) + qt = µ (3.2)

for a constant µ > 0, since the mean reversion level of the short rate is constant in

the Vasicek model. As equation (3.2) does not hold for any initial forward curve, the

equation imposes a condition on f0 that ensures a constant mean reversion level. If there

is no volatility uncertainty, one can check that the initial forward curve of the Vasicek

term structure satisfies (3.2). In the presence of volatility uncertainty, there is no initial

forward curve f0 satisfying (3.2), since then the process q is uncertain—i.e., its realization

qt is only known after time t—while f0 is observable at inception.

We can circumvent the problem by modifying the Vasicek model. Let us suppose that

the initial forward curve satisfies

∂tf0(t) + θf0(t) = µ

for all t; that means, the function f0 solves a simple ordinary differential equation with

initial condition f0(0) = r0. This yields

f0(t) = e−θtr0 + µB(0, t)

for all t, where the function B is defined as in Example 3.10. Then the short rate satisfies

rt = r0 +

∫ t

0

(µ+ qu − θru)du+ B̄t,

and (as in Example 3.10) the bond prices are of the form

Pt(T ) = exp
(
A(t, T )− 1

2
B(t, T )2qt −B(t, T )rt

)
,

where the function A, for all t and T , now satisfies

A(t, T ) = −µ
∫ T

t

B(s, T )ds.

So instead of exactly replicating the Vasicek model, we can obtain a version of the Vasicek

model in which the mean reversion level of the short rate is adjusted by the process q.
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Remark 3.13. The problem mentioned in Example 3.12 does not occur in Example 3.10

due to the time dependent mean reversion level in the Hull-White model. Since the mean

reversion level can be time dependent and possibly uncertain, equation (3.2) only imposes

a condition on the mean reversion level but not on the initial forward curve.

In fact, the problematic is related to the ability of term structure models to match

arbitrary forward curves observed on the market, since the HJM methodology is based

on modeling the forward rate starting from an arbitrary initial forward curve. The Hull-

White model—as well as the Ho-Lee model—involves a time dependent parameter; hence,

it offers enough flexibility to fit the model-implied term structure to any term structure

obtained from data. On the other hand, the Vasicek model has only three (constant)

parameters, restricting the model to a small class of term structures it can fit. Therefore,

one has to impose further assumptions on f0 to reproduce the Vasicek model in the HJM

methodology in general, which, however, does not work when there is volatility uncertainty.

3.3.4 Economic Consequences

The examples show that arbitrage-free term structure models in the presence of volatility

uncertainty exhibit an additional uncertain factor. In all examples we consider, there

is an uncertain process, always denoted by q, which enters the short rate dynamics and

the bond prices. The process q is uncertain, since it depends on the quadratic variation

process. It emerges due to the fact that the risk-neutral forward rate dynamics display

drift uncertainty (as Theorem 3.6 shows). That means, the additional factor is required

in order to make the model arbitrage-free when the volatility is uncertain. Despite this

difference, the short rate dynamics and the bond prices still have an affine form. In fact,

the resulting term structure models (except the one in Example 3.12) are consistent with

the classical ones. If there is no volatility uncertainty—that is, if σ = σ—then Examples

3.9 and 3.10 correspond to the traditional Ho-Lee model (Filipović, 2009, Subsection

5.4.4) and the traditional Hull-White model (Brigo and Mercurio, 2001, Subsections 3.3.1,

3.3.2), respectively. In that case, the process q is no longer uncertain. Hence, the process

q is actually included in the Ho-Lee model and in the Hull-White model, but it is hidden

as there is no volatility uncertainty in the traditional models. The Vasicek model does

not include such a factor; thus, it needs to be adjusted in order to be arbitrage-free in

the presence of volatility, as demonstrated in Example 3.12.

The term structure models resulting from the examples are completely robust with

respect to the volatility. The bond prices in the examples are completely independent of

the volatility. They do not even depend on the extreme values of the volatility (given

by σ and σ), which usually happens in option pricing under volatility uncertainty. Of

course, such a degree of robustness has its price: instead of the volatility, the bond prices

depend on the additional factor q, which is determined by the quadratic variation of the
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driving risk factor. That means, the term structure models we construct do not require

any knowledge about how the volatility evolves in the future; all necessary information is

included in the quadratic variation of the driver—that is, in the historical volatility. From

a theoretical point of view—especially regarding the motivation of volatility uncertainty

given in Chapter 1—it is desirable to have a term structure model that does not impose

any assumptions on the future evolution of the volatility. The need to specify the evalu-

ations of the process q instead is not a problem, since this (in principle) can be done by

inferring the evolution of the historical volatility from data. How these models perform

in practice is, however, a challenging question for future research, as many applications of

term structure models involve estimation procedures and simulations (Dai and Singleton,

2003), which is a nontrivial task in the presence of a family of probability measures (see

Section 2.8).

3.4 Admissible Integrands for the Forward Rate

We construct the space of admissible integrands for the forward rate dynamics as follows.

For T <∞, let us consider the measure space ([0, T ],B([0, T ]), λ), where B([0, T ]) denotes

the Borel σ-algebra on [0, T ] and λ is the Lebesgue measure on [0, T ], and the space of

admissible stochastic processes Mp
G(0, T ) for p ≥ 1, which is a Banach space with respect

to the norm ‖ · ‖p, defined by

‖η‖p := Ê
[∫ T

0

|ηt|pdt
] 1
p

for a process η = (ηt)0≤t≤T in Mp
G(0, T ). Then we define by M̃p,0

G (0, T ) the space of all

simple functions mapping from [0, T ] into Mp
G(0, T )—i.e., functions φ : [0, T ]→Mp

G(0, T )

such that

φ(s) =
n∑
i=1

ϕi1Ai(s),

where (ϕi)ni=1 is a finite sequence of processes ϕi = (ϕit)0≤t≤T in Mp
G(0, T ) and (Ai)

n
i=1 is

a finite sequence of pairwise disjoint sets Ai in B([0, T ]). On the space M̃p,0
G (0, T ), we

introduce the seminorm ‖ · ‖∼,p, defined by

‖φ‖∼,p :=

∫ T

0

‖φ(s)‖pds.

By considering the quotient space with respect to the null space

M̄p
G(0, T ) :=

{
φ ∈ M̃p,0

G (0, T )
∣∣ ‖φ‖∼,p = 0

}
,
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still denoted by M̃p,0
G (0, T ), we get a normed space. The completion of M̃p,0

G (0, T ) under

the norm ‖ · ‖∼,p is denoted by M̃p
G(0, T ), being the space of admissible integrands.

There is an explicit representation of the space of admissible integrands. It can be

shown that the abstract completion of M̃p,0
G (0, T ) is given by the following space of func-

tions (Prévôt and Röckner, 2007, Section A.1):

M̃p
G(0, T ) =

{
φ : [0, T ]→Mp

G(0, T )
∣∣ φ is strongly measurable, ‖φ‖∼,p <∞

}
,

where we say that a function φ : [0, T ] → Mp
G(0, T ) is strongly measurable if it is

B([0, T ])/B(Mp
G(0, T ))-measurable and φ([0, T ]) is separable. Therefore, we know that

φ ∈ M̃p
G(0, T ) is a regular stochastic process for a fixed s; that is, we have φ(s) ∈Mp

G(0, T )

for each s.

Due to the explicit representation of M̃p
G(0, T ), we can give a sufficient condition for

functions to lie in this space.

Proposition 3.14. Let φ : [0, T ]→Mp
G(0, T ) be continuous. Then φ ∈ M̃p

G(0, T ).

Proof. First, we show that φ is strongly measurable. Since φ is continuous, it is clearly

B([0, T ])/B(Mp
G(0, T ))-measurable. Furthermore, the interval [0, T ] is separable, and the

image of a continuous function with separable domain is separable. Hence, the image

φ([0, T ]) is separable, which proves the strong measurability.

It is left to show that the norm of φ is finite. The norm ‖ ·‖p is obviously a continuous

function; thus, the function f : R→ R, s 7→ ‖φ(s)‖p is continuous, since φ is continuous.

Therefore, we have ‖φ‖∼,p <∞.

By Proposition 3.14, we have the following examples of functions in M̃p
G(0, T ). First, we

know that continuous real-valued functions on [0, T ]× [0, T ] belong to M̃p
G(0, T ).

Example 3.15. The function φ : [0, T ] → Mp
G(0, T ), s 7→ f(·, s) belongs to M̃p

G(0, T ),

where f : [0, T ] × [0, T ] → R is continuous. The function φ maps into Mp
G(0, T ), since

f(·, s) is a continuous function for all s; this can be deduced from the representation of

the space Mp
G(0, T ) (Hu, Wang, and Zheng, 2016, Theorem 4.7). The continuity of φ

follows from

‖φ(s)− φ(s̃)‖p =

(∫ T

0

|f(t, s)− f(t, s̃)|pdt
) 1

p

and dominated convergence. Thus, by Proposition 3.14, it holds φ ∈ M̃p
G(0, T ).

Second, the product of a continuous real-valued function on [0, T ] and an admissible

stochastic process lies in the space M̃p
G(0, T ).
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Example 3.16. The function φ : [0, T ] → Mp
G(0, T ), s 7→ f(s)η belongs to M̃p

G(0, T ),

where f : [0, T ] → R is continuous and η = (ηt)0≤t≤T belongs to Mp
G(0, T ). Clearly, the

function φ maps into Mp
G(0, T ). The continuity of φ follows from

‖φ(s)− φ(s̃)‖p = ‖η‖p|f(s)− f(s̃)|.

Hence, Proposition 3.14 implies that φ ∈ M̃p
G(0, T ).

We are able to define integrals and—more importantly—double integrals for functions

in M̃p
G(0, T ). First, we define the Bochner integral for simple functions. For a function

φ ∈ M̃p,0
G (0, T ) with a representation as introduced at the beginning of this section, we

define ∫ T

0

φ(s)ds :=
n∑
i=1

ϕiλ(Ai).

The Bochner integral is a linear operator mapping from M̃p,0
G (0, T ) into Mp

G(0, T ). In

addition, the operator is continuous, since we have the inequality∥∥∥∥∫ T

0

φ(s)ds

∥∥∥∥
p

≤
∫ T

0

‖φ(s)‖pds. (3.3)

Thus, we can extend the operator to the completion M̃p
G(0, T ), still satisfying (3.3). For

A ∈ B([0, T ]), we define
∫
A
φ(s)ds :=

∫ T
0

1A(s)φ(s)ds. Since the integral maps into

Mp
G(0, T ), we can define the double integral

∫ T
0

∫
A
φt(s)dsdB

i
t for φ ∈ M̃2

G(0, T ), mapping

into L2
G(ΩT ), and the double integrals

∫ T
0

∫
A
ψt(s)dsdt and

∫ T
0

∫
A
ψt(s)dsd〈Bi, Bj〉t for

ψ ∈ M̃1
G(0, T ), mapping into L1

G(ΩT ), for all i, j = 1, ..., d.

We can also define double integrals for the reversed order of integration and inter-

change the order of integration. For this purpose, we use a classical result from the theory

of Bochner integration (Prévôt and Röckner, 2007, Proposition A.2.2).

Proposition 3.17. Let φ ∈ M̃p
G(0, T ) and let F : Mp

G(0, T )→ X be a continuous linear

operator, where X is a Banach space. Then we can define the integral
∫
A
F (φ(s))ds,

mapping into X, and it holds∫
A

(F ◦ φ)(s)ds = F

(∫
A

φ(s)ds

)
.

All stochastic integrals related to a G-Brownian motion are continuous linear operators.

Thus, Proposition 3.17 allows us to define the integral
∫
A

∫ T
0
φt(s)dB

i
tds for φ ∈ M̃2

G(0, T ),

mapping into L2
G(ΩT ), and the integrals

∫
A

∫ T
0
ψt(s)dtds and

∫
A

∫ T
0
ψt(s)d〈Bi, Bj〉tds for

ψ ∈ M̃1
G(0, T ), mapping into L1

G(ΩT ), for all i, j = 1, ..., d. Moreover, we obtain a version

of Fubini’s theorem, which is an essential tool in the HJM model.
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Corollary 3.18. Let φ ∈ M̃2
G(0, T ) and ψ ∈ M̃1

G(0, T ). Then for all i, j, it holds∫
A

∫ T

0

φt(s)dB
i
tds =

∫ T

0

∫
A

φt(s)dsdB
i
t,∫

A

∫ T

0

ψt(s)dtds =

∫ T

0

∫
A

ψt(s)dsdt,∫
A

∫ T

0

ψt(s)d〈Bi, Bj〉tds =

∫ T

0

∫
A

ψt(s)dsd〈Bi, Bj〉t.

In addition to the double integrals from above, we need to define more complex

integrals. In order to achieve this, we need the following proposition:

Proposition 3.19. Let φ ∈ M̃p
G(0, T ) and ψ : [0, T ] → Mp

G(0, T ), s 7→ 1[0,s]φ(s). Then

we have ψ ∈ M̃p
G(0, T ).

Proof. First, we decompose ψ into several functions to show that it is strongly measurable.

Let us define the subspace

Mp :=
{
η ∈Mp

G(0, T )
∣∣ η = 1[0,a] for some a ∈ [0, T ]

}
⊂Mp

G(0, T ).

Furthermore, we define the functions g : [0, T ]→Mp×Mp
G(0, T ), s 7→ (f(s), φ(s)), where

f : [0, T ] → Mp, s 7→ 1[0,s], and h : Mp ×Mp
G(0, T ) → Mp

G(0, T ), (η, ζ) 7→ ηζ. Then we

have ψ = h ◦ g.

We deduce the measurability of ψ from the measurability of the decomposition. The

function f is continuous, since

‖1[0,a] − 1[0,ã]‖p = |a− ã|

for a, ã ∈ [0, T ]; thus, we know that f is B([0, T ])/B(Mp)-measurable. By assumption,

the function φ is B([0, T ])/B(Mp
G(0, T ))-measurable, and so we know that the function g

is B([0, T ])/B(Mp) ⊗ B(Mp
G(0, T ))-measurable. Now it is left to show that the function

h is B(Mp) ⊗ B(Mp
G(0, T ))/B(Mp

G(0, T ))-measurable to deduce the measurability of ψ.

We equip Mp ×Mp
G(0, T ) with the norm ‖ · ‖, defined by

‖(η, ζ)‖ := max{‖η‖p, ‖ζ‖p}.

For a, ã ∈ [0, T ] and ζ = (ζt)0≤t≤T and ζ̃ = (ζ̃t)0≤t≤T in Mp
G(0, T ), we have

‖1[0,a]ζ − 1[0,ã]ζ̃‖p ≤ ‖ζ − ζ̃‖p + ‖1[a,ã]ζ̃‖p,

where the last term converges to 0 as a converges to ã. The function h is therefore

continuous. So we need to show that M ∈ B(Mp) ⊗ B(Mp
G(0, T )) for an arbitrary open

set M ⊂Mp×Mp
G(0, T ) to obtain the measurability of h. If M is open, we can represent
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it as a union of open balls in Mp ×Mp
G(0, T ). By the definition of ‖ · ‖, every open ball

in Mp ×Mp
G(0, T ) can be written as a rectangle whose sides are open balls in Mp and

Mp
G(0, T ), respectively. Hence, we can represent M as a rectangle whose sides are open

sets in Mp and Mp
G(0, T ), respectively. Therefore, we get M ∈ B(Mp)⊗ B(Mp

G(0, T )).

We show that the image of ψ is separable by using the continuity from the second step.

By assumption, the image of φ is separable. Moreover, the interval [0, T ] is separable,

and f is continuous; thus, the image of f is separable. This implies that the image of g is

separable. We also have that h is continuous. Hence, the image h(g([0, T ])) is separable.

Since ψ = h ◦ g, it follows that ψ([0, T ]) is separable.

It is left to show that the norm of ψ is finite. We have∫ T

0

‖ψ(s)‖pds ≤
∫ T

0

‖φ(s)‖pds <∞,

which completes the proof.

Due to Proposition 3.19, we are able to define integrals of the form
∫ T

0

∫ T
t
φt(s)dsdB

i
t and,

by Proposition 3.17, integrals of the form
∫ T

0

∫ s
0
φt(s)dB

i
tds for φ ∈ M̃2

G(0, T ), mapping

into L2
G(ΩT ), for all i. Moreover, Corollary 3.18 implies that for all i,∫ T

0

∫ T

t

φt(s)dsdB
i
t =

∫ T

0

∫ s

0

φt(s)dB
i
tds.

The same holds if we replace dBi
t and the spaces M̃2

G(0, T ) and L2
G(ΩT ) by dt—as well as

d〈Bi, Bj〉t for all j—and the spaces M̃1
G(0, T ) and L1

G(ΩT ), respectively.

In the end, we deal with the differentiability of integrals and (especially) the differen-

tiability of products of two integrals, used for the calculations on the diffusion coefficient

of the forward rate. As the classical Lebesgue integral, integrals of functions in M̃p
G(0, T )

are, loosely speaking, differentiable and absolutely continuous.

Proposition 3.20. Let φ ∈ M̃p
G(0, T ) and Φ : [0, T ] → Mp

G(0, T ), s 7→
∫ s

0
φ(u)du. Then

the following properties hold.

(i) The function Φ is almost everywhere differentiable and Φ′ = φ.

(ii) For all ε > 0, there exists a δ > 0 such that

n∑
i=1

‖Φ(si)− Φ(s̃i)‖p < ε

for every sequence of disjoint open intervals ((s̃i, si))
n
i=1 such that

∑n
i=1(si− s̃i) < δ.

Proof. We deduce all statements from the inequality (3.3) and the properties of the
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Lebesgue integral. By (3.3), we have

∥∥ 1
s−s̃

(
Φ(s)− Φ(s̃)

)
− φ(s̃)

∥∥
p
≤
∣∣ 1
s−s̃

(
f(s)− f(s̃)

)∣∣,
where f : [0, T ]→ R is defined by f(s) :=

∫ s
0
‖φ(u)−φ(s̃)‖pdu. Due to the differentiability

of the Lebesgue integral, the expression on the right-hand side of the previous inequality

converges to 0 as s converges to s̃ for almost all s̃. Therefore, the function Φ is almost

everywhere differentiable and Φ′ = φ. Furthermore, we can use (3.3) to obtain

‖Φ(s)− Φ(s̃)‖p ≤ |g(s)− g(s̃)|,

where g : [0, T ] → R is defined by g(s) :=
∫ s

0
‖φ(u)‖pdu. Since the Lebesgue integral is

absolutely continuous, for all ε > 0, we can find a δ > 0 such that

n∑
i=1

‖Φ(si)− Φ(s̃i)‖p ≤
n∑
i=1

|g(si)− g(s̃i)| < ε

for every sequence of disjoint open intervals ((s̃i, si))
n
i=1 such that

∑n
i=1(si − s̃i) < δ.

Conversely, we have a version of the fundamental theorem of calculus for functions in

M̃p
G(0, T ) that are differentiable and absolutely continuous.

Proposition 3.21. Let Φ : [0, T ] → Mp
G(0, T ) be almost everywhere differentiable and

Φ′ = φ, where φ ∈ M̃p
G(0, T ). If for all ε > 0, there exists a δ > 0 such that

n∑
i=1

‖Φ(si)− Φ(s̃i)‖p < ε

for every sequence of disjoint open intervals ((s̃i, si))
n
i=1 such that

∑n
i=1(si− s̃i) < δ, then

it holds

Φ(s)− Φ(0) =

∫ s

0

φ(u)du.

Proof. We prove the assertion by using a consequence of the Hahn-Banach theorem and

the fundamental theorem of calculus for Lebesgue integrals. Let F : Mp
G(0, T )→ R be a

continuous linear functional. Then we have

|(F ◦ Φ)(s)− (F ◦ Φ)(s̃)| ≤ C‖Φ(s)− Φ(s̃)‖p

for some constant C > 0. Due to the last assumption on Φ, we deduce that F ◦ Φ

is absolutely continuous. The fundamental theorem of calculus for Lebesgue integrals
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implies that F ◦ Φ is almost everywhere differentiable, its derivative is integrable, and

(F ◦ Φ)(s)− (F ◦ Φ)(0) =

∫ s

0

(F ◦ Φ)′(u)du.

Furthermore, it holds (F ◦Φ)′ = F ◦ φ, since the continuity and the linearity of F imply

|(F ◦ Φ)′(s̃)− (F ◦ φ)(s̃)| ≤
∣∣(F ◦ Φ)′(s̃)− 1

s−s̃

(
(F ◦ Φ)(s)− (F ◦ Φ)(s̃)

)∣∣
+ C

∥∥ 1
s−s̃

(
Φ(s)− Φ(s̃)

)
− φ(s̃)

∥∥
p

for some constant C > 0, where the terms on the right-hand side converge to 0 as s

converges to s̃ for almost all s̃. Hence, we obtain

(F ◦ Φ)(s)− (F ◦ Φ)(0) =

∫ s

0

(F ◦ φ)(u)du.

By Proposition 3.17 and the linearity of F , it holds

F

(
Φ(s)− Φ(0)−

∫ s

0

φ(u)du

)
= 0.

Since this holds for every continuous linear functional, the Hahn-Banach theorem implies

the assertion.

In order to derive a product rule for differentiable and absolutely continuous functions,

we use the following lemma:

Lemma 3.22. Let φ, ψ ∈ M̃2p
G (0, T ) and υ : [0, T ] → Mp

G(0, T ), s 7→ φ(s)ψ(s), where φ

is continuous. Then υ ∈ M̃p
G(0, T ).

Proof. First of all, we know that υ maps into Mp
G(0, T ), since one can show (by Hölder’s

inequality) that the product of two processes in M2p
G (0, T ) belongs to Mp

G(0, T ).

Next, we show that υ is strongly measurable. The strong measurability follows as

in the proof of Proposition 3.19 if the function f : M2p
G (0, T ) ×M2p

G (0, T ) → Mp
G(0, T ),

defined by f(η, ζ) := ηζ, is continuous, where we equip M2p
G (0, T ) ×M2p

G (0, T ) with the

norm ‖ · ‖, defined by

‖(η, ζ)‖ := max{‖η‖2p, ‖ζ‖2p}.

By applying Hölder’s inequality, for (η, ζ) = (ηt, ζt)0≤t≤T and (η̃, ζ̃) = (η̃t, ζ̃t)0≤t≤T in

M2p
G (0, T )×M2p

G (0, T ), we have

‖ηζ − η̃ζ̃‖p ≤ ‖η‖2p‖ζ − ζ̃‖2p + ‖η − η̃‖2p‖ζ̃‖2p.
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Therefore, the function f is continuous, since ‖η‖2p and ‖ζ̃‖2p are finite and ‖η − η̃‖2p

and ‖ζ − ζ̃‖2p converge to 0 as (η, ζ) converges to (η̃, ζ̃).

Finally, we deduce that the norm of υ is finite. The function s 7→ ‖φ(s)‖2p is contin-

uous due to the continuity of φ and the norm; hence, it is bounded. Thus,∫ T

0

‖υ(s)‖pds ≤
∫ T

0

‖φ(s)‖2p‖ψ(s)‖2pds ≤ C

∫ T

0

‖ψ(s)‖2pds <∞

for some constant C > 0, which completes the proof.

With the help of Lemma 3.22, we obtain the desired product rule.

Proposition 3.23. Let Φ,Ψ : [0, T ]→M2p
G (0, T ) be almost everywhere differentiable and

Φ′ = φ and Ψ′ = ψ, where φ, ψ ∈ M̃2p
G (0, T ). If for all ε > 0, there exists a δ > 0 such

that

n∑
i=1

‖Φ(si)− Φ(s̃i)‖p,
n∑
i=1

‖Ψ(si)−Ψ(s̃i)‖p < ε

for every sequence of disjoint open intervals ((s̃i, si))
n
i=1 such that

∑n
i=1(si− s̃i) < δ, then

it holds

Φ(s)Ψ(s)− Φ(0)Ψ(0) =

∫ s

0

φ(u)Ψ(u) + Φ(u)ψ(u)du.

Proof. We show that Υ : [0, T ] → Mp
G(0, T ), s 7→ Φ(s)Ψ(s) satisfies the assumptions of

Proposition 3.21 to deduce the assertion. Using Hölder’s inequality, we have

‖Υ(s)−Υ(s̃)‖p ≤ ‖Φ(s)‖2p‖Ψ(s)−Ψ(s̃)‖2p + ‖Φ(s)− Φ(s̃)‖2p‖Ψ(s̃)‖2p.

The last assumption implies that s 7→ ‖Φ(s)‖2p and s̃ 7→ ‖Ψ(s̃)‖2p are continuous; thus,

they are bounded. Hence, for all ε > 0, we can find a δ > 0 such that

n∑
i=1

‖Υ(si)−Υ(s̃i)‖p < ε

for every sequence of disjoint open intervals ((s̃i, si))
n
i=1 such that

∑n
i=1(si − s̃i) < δ. Let

υ : [0, T ]→Mp
G(0, T ), s 7→ φ(s)Ψ(s) + Φ(s)ψ(s). By Lemma 3.22, we have υ ∈ M̃p

G(0, T ),

since φ, ψ ∈ M̃2p
G (0, T ) and Φ and Ψ are continuous and belong to M̃2p

G (0, T ) by the

assumptions. Furthermore, we have

∥∥ 1
s−s̃

(
Υ(s)−Υ(s̃)

)
− υ(s̃)

∥∥
p
≤
∥∥ 1
s−s̃

(
Υ(s)− Φ(s̃)Ψ(s)

)
− φ(s̃)Ψ(s)

∥∥
p

+ ‖φ(s̃)Ψ(s)− φ(s̃)Ψ(s̃)‖p
+
∥∥ 1
s−s̃

(
Φ(s̃)Ψ(s)−Υ(s̃)

)
− Φ(s̃)ψ(s̃)

∥∥
p
.
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The three terms on the right-hand side converge to 0 as s converges to s̃ for almost all s̃.

The first term converges almost everywhere to 0, since

∥∥ 1
s−s̃

(
Υ(s)− Φ(s̃)Ψ(s)

)
− φ(s̃)Ψ(s)

∥∥
p
≤
∥∥ 1
s−s̃

(
Φ(s)− Φ(s̃)

)
− φ(s̃)

∥∥
2p
‖Ψ(s)‖2p,

the function Φ is almost everywhere differentiable, it holds Φ′ = φ, and s 7→ ‖Ψ(s)‖2p is

continuous. The second term converges to 0, since

‖φ(s̃)Ψ(s)− φ(s̃)Ψ(s̃)‖p ≤ ‖φ(s̃)‖2p‖Ψ(s)−Ψ(s̃)‖2p,

we have φ(s̃) ∈M2p
G (0, T ), and s 7→ ‖Ψ(s)‖2p is continuous. The third term converges to

0 almost everywhere, since

∥∥ 1
s−s̃

(
Φ(s̃)Ψ(s)−Υ(s̃)

)
− Φ(s̃)ψ(s̃)

∥∥
p
≤ ‖Φ(s̃)‖2p

∥∥ 1
s−s̃

(
Ψ(s)−Ψ(s̃)

)
− ψ(s̃)

∥∥
2p
,

we have Φ(s̃) ∈ M2p
G (0, T ), the function Ψ is almost everywhere differentiable, and it

holds Ψ′ = ψ. Therefore, the function Υ is almost everywhere differentiable and Υ′ = υ.

This completes the proof.

Combining Proposition 3.20 and Proposition 3.23, we have the following result, which we

apply to the diffusion coefficient of the forward rate.

Corollary 3.24. Let φ, ψ ∈ M̃2p
G (0, T ) and let Φ,Ψ : [0, T ] → Mp

G(0, T ) be defined by

Φ(s) :=
∫ s

0
φ(u)du and Ψ(s) :=

∫ s
0
ψ(u)du, respectively. Then it holds

Φ(s)Ψ(s) =

∫ s

0

φ(u)Ψ(u) + Φ(u)ψ(u)du.

3.5 Regularity of the Discounted Bonds

In order to show that the discounted bonds are sufficiently regular, we consider the

exponential of a diffusion process driven by a G-Brownian motion. Let us define the

process X = (Xt)0≤t≤T by

Xt := exp

(∫ t

0

audu+
d∑
i=1

∫ t

0

biudB
i
u +

d∑
i,j=1

∫ t

0

ci,ju d〈Bi, Bj〉u
)
,

where a = (at)0≤t≤T and ci,j = (ci,jt )0≤t≤T belong to M1
G(0, T ) and bi = (bit)0≤t≤T belongs

to M2
G(0, T ) for all i, j = 1, ..., d. Then the dynamics of X are given by

Xt = 1 +

∫ t

0

auXudu+
d∑
i=1

∫ t

0

biuXudB
i
u +

d∑
i,j=1

∫ t

0

(ci,ju + 1
2
biub

j
u)Xud〈Bi, Bj〉u
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by Itô’s formula for G-Brownian motion.

The following result provides a sufficient condition ensuring that the dynamics of the

process X are regular. As a consequence, we obtain that X itself is well-posed.

Proposition 3.25. If there exists a p > 1 such that a, ci,j ∈Mp
G(0, T ) and bi ∈M2p

G (0, T )

for all i, j = 1, ..., d and there exist p̃ > p∗ and q̃ > 2, where p∗ := 2pq
p−q for some q ∈ (1, p)

such that

Ê
[∫ T

0

exp

(
p̃q̃
q̃−2

(∫ t

0

audu+
d∑

i,j=1

∫ t

0

ci,ju d〈Bi, Bj〉u
))

dt

]
<∞,

Ê
[∫ T

0

exp

(
1
2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)
dt

]
<∞,

then we have X ∈ Mp∗

G (0, T ). In particular, this implies aX, (ci,j + 1
2
bibj)X ∈ M1

G(0, T )

and biX ∈M2
G(0, T ) for all i, j = 1, ..., d.

Proof. In order to show that X ∈ Mp∗

G (0, T ), we use the characterization of the space

Mp∗

G (0, T ) from Hu, Wang, and Zheng (2016). The space Mp∗

G (0, T ) consists of all pro-

gressively measurable processes η = (ηt)0≤t≤T that have a quasi-continuous version and

satisfy ‖η‖p
∗

p∗ <∞ and

lim
n→∞

Ê
[∫ T

0

|ηt|p
∗
1{|ηt|≥n}dt

]
= 0

(Hu, Wang, and Zheng, 2016, Theorem 4.7). Since a, ci,j ∈Mp
G(0, T ) and bi ∈M2p

G (0, T )

for all i, j, we know that X is progressively measurable and has a quasi-continuous version.

Therefore, since

Ê
[∫ T

0

|Xt|p
∗
1{|Xt|≥n}dt

]
≤ 1

np̃−p∗
Ê
[∫ T

0

|Xt|p̃dt
]
,

it is left to show that ‖X‖p̃p̃ <∞ in order to deduce that X ∈Mp∗

G (0, T ). We have

Ê
[∫ T

0

|Xt|p̃dt
]

= Ê
[ ∫ T

0

exp

(
p̃

d∑
i=1

∫ t

0

biudB
i
u − 1

2
p̃2q̃

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)

× exp

(
1
2
p̃2q̃

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)

× exp

(
p̃

(∫ t

0

audu+
d∑

i,j=1

∫ t

0

ci,ju d〈Bi, Bj〉u
))

dt

]
.
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By Hölder’s inequality, we get

Ê
[∫ T

0

|Xt|p̃dt
]
≤ Ê

[∫ T

0

exp

(
p̃q̃

d∑
i=1

∫ t

0

biudB
i
u − 1

2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)
dt

] 1
q̃

× Ê
[∫ T

0

exp

(
1
2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)
dt

] 1
q̃

× Ê
[∫ T

0

exp

(
p̃q̃
q̃−2

(∫ t

0

audu+
d∑

i,j=1

∫ t

0

ci,ju d〈Bi, Bj〉u
))

dt

] q̃−2
q̃

.

By assumption, we know that the second and the third term on the right-hand side are

finite; hence, it is left to show that the first term is also finite. We can use the classical

Fubini theorem and the last assumption to get

EP
[
exp

(
1
2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)]
<∞

for almost all t for all P ∈ P . Thus, we know that Novikov’s condition is satisfied, which

implies that

EP
[
exp

(
p̃q̃

d∑
i=1

∫ t

0

biudB
i
u − 1

2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)]
= 1

for almost all t for all P ∈ P . Integrating and using Fubini’s theorem once more, we

obtain

EP
[∫ T

0

exp

(
p̃q̃

d∑
i=1

∫ t

0

biudB
i
u − 1

2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)
dt

]
= T

for all P ∈ P , which implies

Ê
[∫ T

0

exp

(
p̃q̃

d∑
i=1

∫ t

0

biudB
i
u − 1

2
(p̃q̃)2

d∑
i,j=1

∫ t

0

biub
j
ud〈Bi, Bj〉u

)
dt

]
<∞.

We are left to show that aX, (ci,j + 1
2
bibj)X ∈ M1

G(0, T ) and biX ∈ M2
G(0, T ) for all

i, j. By the argument from the first step, we need to show that ‖aX‖qq < ∞ in order to

deduce that aX ∈M1
G(0, T ). By Hölder’s inequality, it holds

Ê
[∫ T

0

|atXt|qdt
]
≤ Ê

[∫ T

0

|at|pdt
] q
p

Ê
[∫ T

0

|Xt|
1
2
p∗dt

] p−q
p

.

The two terms on the right-hand side are finite, since a ∈Mp
G(0, T ) and X ∈Mp∗

G (0, T ).
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Thus, we obtain ‖aX‖qq < ∞. We can show that (ci,j + 1
2
bibj)X ∈ M1

G(0, T ) and biX ∈
M2

G(0, T ) for all i, j in the same way.

If a, bi, and ci,j, for all i, j, satisfy the assumptions of Proposition 3.25, we getXt ∈ L1
G(Ωt)

for all t by Itô’s formula. If—in addition—it holds a = 0 = ci,j + 1
2
bibj for all i, j, we even

have Xt ∈ L2
G(Ωt) for all t.
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Chapter 4

Pricing Interest Rate Derivatives

Starting from an arbitrage-free term structure, the present chapter deals with the pricing

of interest rate derivatives in the presence of volatility uncertainty. As in Chapters 2 and

3, we represent the uncertainty about the volatility by the family of probability measures

introduced in Section 1.2, where we assume that the state space for the volatility is such

that the resulting d-dimensional G-Brownian motion is uncorrelated and its generator

is non-degenerate. The framework for modeling the term structure of interest rates is

the one of Chapter 3—i.e., we model the forward rate as a diffusion process driven by a

G-Brownian motion—since this is a general framework that covers the model considered

in Chapter 2 (as shown in Example 3.3.2). The remaining quantities on the bond market

are defined in terms of the forward rate in accordance with the HJM methodology. We

model the forward rate in such a way that it satisfies the drift condition from the previous

chapter, ensuring the absence of arbitrage on the bond market. Additionally, we assume

that the diffusion coefficient of the forward rate is deterministic, which results in analytical

pricing formulas and corresponds to an HJM model in which the foward rate is normally

distributed.

In the presence of volatility uncertainty, we obtain a sublinear pricing measure for

additional contracts we add to the bond market. Within the framework described above,

we consider additional contracts, which we want to price without admitting arbitrage.

The pricing of contracts under volatility uncertainty is different from the classical ap-

proach, since the expectation—which corresponds to the pricing measure in the classical

case without volatility uncertainty—is sublinear in this setting. In contrast to the clas-

sical case, we use the sublinear expectation to determine the price of a contract or its

bounds; hence, we refer to it as the risk-neutral sublinear expectation. To show that this

approach indeed yields arbitrage-free prices, we extend the notions of trading strategies

and arbitrage, respectively, to the bond market extended by the additional contract.

Then we show that the extended bond market is arbitrage-free, meaning that we can use

this approach to price contracts as desired.

To simplify the pricing of cashflows, we introduce a counterpart of the forward mea-
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sure, called forward sublinear expectation. The forward sublinear expectation is defined

by a G-backward stochastic differential equation and corresponds to the expectation un-

der the forward measure. The forward measure, invented by Geman (1989), is used for

pricing contracts in classical models without volatility uncertainty (Brace and Musiela,

1994; Geman, El Karoui, and Rochet, 1995; Jamshidian, 1989). Similar to the forward

measure, the forward sublinear expectation has the advantage that computing the sub-

linear expectation of a discounted payoff reduces to computing the forward sublinear

expectation of the payoff, discounted with the bond price. Under the forward sublinear

expectation, we obtain several results needed for pricing cashflows of typical fixed income

products. Moreover, we obtain a robust version of the expectations hypothesis under

the forward sublinear expectation and show how to price bond options. In many typical

cases, prices of bond options are characterized by pricing formulas of models without

volatility uncertainty.

In addition, we develop pricing methods for contracts consisting of several cashflows.

In traditional models without volatility uncertainty, there is no distinction between pric-

ing single cashflows and pricing a stream of cashflows, since the pricing measure is linear.

However, when there is uncertainty about the volatility, the nonlinearity of the pricing

measure implies that we cannot generally price a stream of cashflows by pricing each

cashflow separately. Therefore, we provide different schemes for pricing a family of cash-

flows. If the cashflows of a contract are sufficiently simple, we can price the contract

as in the classical case. In general, we use a backward induction procedure to find the

price of a contract, which we can use to price—for example—a stream of bond options.

In typical situations, the price of the latter is determined by the pricing formulas from

models without volatility uncertainty.

With the tools mentioned above, we derive robust pricing formulas for all major

interest rate derivatives. We consider typical linear contracts, such as fixed coupon bonds,

floating rate notes, and interest rate swaps, and nonlinear contracts, such as swaptions,

caps and floors, and in-arrears contracts. Due to the linearity of the payoff, we obtain

a single price for fixed coupon bonds, floating rate notes, and interest rate swaps; the

pricing formula is the same as the one from classical models without volatility uncertainty.

Due to the nonlinearity of the payoff, we obtain a range of prices for swaptions, caps and

floors, and in-arrears contracts; the range is bounded from above, respectively below, by

the price from classical models with the highest, respectively lowest, possible volatility.

Therefore, the pricing of common interest rate derivatives under volatility uncertainty

reduces to computing prices in models without volatility uncertainty.

The pricing formulas show that volatility uncertainty naturally leads to unspanned

stochastic volatility. According to empirical evidence, volatility risk in fixed income

markets cannot be hedged by trading solely bonds, which is termed unspanned stochastic

volatility. Collin-Dufresne and Goldstein (2002) empirically showed that interest rate
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derivatives exposed to volatility risk are driven by factors that do not affect bond prices.

These findings contradict traditional term structure models. The empirical investigation

has led to the development of models that are able to exhibit unspanned stochastic

volatility (Casassus, Collin-Dufresne, and Goldstein, 2005; Filipović, Larsson, and Statti,

2019; Filipović, Larsson, and Trolle, 2017). Since the presence of volatility uncertainty

naturally leads to market incompleteness, the pricing formulas mentioned above show that

it is no longer possible to hedge volatility risk in fixed income markets with a portfolio

consisting solely of bonds when there is uncertainty about the volatility. Moreover, the

pricing formulas are in line with the empirical findings of Collin-Dufresne and Goldstein

(2002).

The remainder of this chapter is organized as follows. Section 4.1 introduces the

overall setting of the model: an arbitrage-free bond market under volatility uncertainty.

In Section 4.2, we show that we can use the risk-neutral sublinear expectation as a

pricing measure for additional contracts. In Section 4.3, we define the forward sublinear

expectation and derive related results for the pricing of single cashflows. Section 4.4

provides schemes for pricing contracts consisting of a stream of cashflows. In Section

4.5, we derive pricing formulas for the most common interest rate derivatives. Section 4.6

discusses market incompleteness and shows that volatility uncertainty leads to unspanned

stochastic volatility. Some minor technical parts are deferred to Section 4.7.

4.1 Arbitrage-Free Bond Market

We represent the uncertainty about the volatility by a familiy of probability measures

leading to a d-dimensional G-Brownian motion without correlation and with a non-

degenerate generator. As in Chapter 3, we consider the set of beliefs P from Section

1.2, in which each measure corresponds to a specific belief about the volatility. Thus,

we obtain a d-dimensional G-Brownian motion B = (B1
t , ..., B

d
t )t≥0, since the sublinear

expectation

Ê[·] = sup
P∈P

EP [·]

corresponds to the G-expectation. In addition, we assume that the state space of the

uncertain volatility is given by

Σ =
{
σ ∈ Rd×d ∣∣ σ = diag(σ1, ..., σd), σi ∈ [σi, σi] for all i = 1, ..., d

}
,

where σi ≥ σi > 0 for all i; that means, we consider all scenarios in which there is no

correlation between the risk factors and the volatility is bounded by two extremes: the

matrices σ = diag(σ1, ..., σd) and σ = diag(σ1, ..., σd). For a vector (x1, ..., xd), the nota-
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tion diag(x1, ..., xd) refers to a diagonal matrix with entries x1, ..., xd on the diagonal. The

additional assumption on the state space Σ allows us to derive explicit pricing formulas

for typical interest rate derivatives. It should also be noted that the assumption implies

that the generator G is non-degenerate, which we assume in Chapter 3.

As in the previous chapter, we model the forward rate as a diffusion process in the

spirit of the HJM methodology. We denote by ft(T ) the forward rate with maturity T at

time t for t ≤ T ≤ τ , where τ <∞ is a fixed terminal time. We assume that the forward

rate process f(T ) = (ft(T ))0≤t≤T , for all T ≤ τ , evolves according to the dynamics

ft(T ) = f0(T ) +

∫ t

0

αu(T )du+
d∑
i=1

∫ t

0

βiu(T )dBi
u +

d∑
i=1

∫ t

0

γiu(T )d〈Bi〉u

for some initial integrable forward curve f0 : [0, τ ]→ R and sufficiently regular processes

α(T ) = (αt(T ))0≤t≤τ , β
i(T ) = (βit(T ))0≤t≤τ , and γi(T ) = (γit(T ))0≤t≤τ to be specified. As

described in the previous chapter, the difference compared to the classical HJM model

without volatility uncertainty is that there are additional drift terms depending on the

quadratic variation processes of the G-Brownian motion. We need the additional drift

terms in order to obtain an arbitrage-free model, which can be inferred from the drift con-

dition in Chapter 3. Since the uncertainty about the volatility implies that the quadratic

variation processes are uncertain and cannot be included in the first drift term, we add

additional drift terms to the dynamics of the forward rate (see Section 3.1).

The forward rate determines the remaining quantities on the related bond market.

The bond market consists of zero-coupon bonds for all maturities in the time horizon and

the money-market account. The zero-coupon bonds, denoted by P (T ) = (Pt(T ))0≤t≤T

for T ≤ τ , are defined by

Pt(T ) := exp

(
−
∫ T

t

ft(s)ds

)
and the money-market account, denoted by M = (Mt)0≤t≤τ , is given by

Mt := exp

(∫ t

0

rsds

)
,

where r = (rt)0≤t≤τ denotes the short rate process, defined by rt := ft(t). We use the

money-market account as a numéraire—that is, we focus on the discounted bonds, which

are denoted by P̃ (T ) = (P̃t(T ))0≤t≤T for T ≤ τ and given by

P̃t(T ) := M−1
t Pt(T ).

We model the forward rate in such a way that the related bond market is arbitrage-
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free. That means, we assume that the forward rate satisfies the drift condition from

Theorem 3.6, which implies the absence of arbitrage. In particular, we directly model

the forward rate in a risk-neutral way in order to avoid technical difficulties due to a

migration to a risk-neutral framework. More specifically, for all T , we assume that the

drift terms α(T ) and γi(T ), for all i, are defined by

αt(T ) := 0,

γit(T ) := βit(T )bit(T ),

respectively, where (as in Chapter 3) the process bi(T ) = (bit(T ))0≤t≤τ is defined by

bit(T ) :=

∫ T

t

βit(s)ds.

Under suitable regularity assumptions on T 7→ βi(T ), by Theorem 3.6, we then know that

the discounted bonds are symmetric G-martingales under Ê, which implies that the bond

market is arbitrage-free. As mentioned above, this shows that we need the additional

drift terms in the forward rate dynamics to obtain an arbitrage-free model.

In order to obtain a sufficient degree of regularity and to derive pricing formulas for

derivative contracts, we use a deterministic diffusion coefficient. We assume that βi,

for all i, is a continuous function mapping from [0, τ ] × [0, τ ] into R. Then for each T ,

βi(T ) and bi(T ), for all i, are bounded processes in the space of admissible stochastic

processes Mp
G(0, τ) for all p < ∞. Therefore, the assumption on the diffusion coefficient

ensures that the forward rate is sufficiently regular to apply the results from the previous

chapter. In addition, it enables us to obtain specific pricing formulas for common interest

rate derivatives. This is similar to the classical case without volatility uncertainty, in

which it is possible to obtain analytical pricing formulas by assuming that the diffusion

coefficient is deterministic. So the present model corresponds to an HJM model with a

normally distributed forward rate.

4.2 Risk-Neutral Valuation

Now we extend the bond market to an additional contract, for which we want to find a

price. A typical contract in fixed income markets consists of a stream of cashflows; so

we consider a contract, denoted by X, which has a payoff of ξi at each time τi for all

i = 0, 1, ..., N , where 0 < τ0 < τ1 < ... < τN = τ is the tenor structure. The price at time

t of such a contract is denoted by Xt for all t ≤ τ . As for the bonds, we consider the
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discounted payoff X̃, defined by

X̃ :=
N∑
i=0

M−1
τi
ξi,

and the discounted price X̃t for t ≤ τ , which is defined by

X̃t := M−1
t Xt.

We assume that M−1
τi
ξi ∈ L2

G(Ωτi) for all i = 0, 1, ..., N for X to be regular enough.

The pricing of contracts in the presence of volatility uncertainty differs from the tra-

ditional approach. Classical arbitrage pricing theory suggests that prices of contracts are

determined by computing the expected discounted payoff under the risk-neutral measure.

In the presence of volatility uncertainty, we call Ê the risk-neutral sublinear expectation,

corresponding to the expectation under the risk-neutral measure in the classical case,

since the discounted bonds are symmetric G-martingales under Ê. Compared to the

classical case, the important difference in the case of volatility uncertainty is that the

risk-neutral sublinear expectation is nonlinear. In particular, it holds

Ê[X̃] ≥ −Ê[−X̃], (4.1)

that is, the upper expectation does not necessarily coincide with the lower expectation.

Thus, we distinguish between symmetric and asymmetric contracts; we consider two

contracts: a contract XS, which has a symmetric payoff, and a contract XA, which has

an asymmetric payoff. Strictly speaking, this means that X̃S satisfies (4.1) with equality

and for X̃A the inequality (4.1) is strict. Of course, the discounted payoffs X̃S and X̃A

are defined as above by considering different payoffs ξSi and ξAi for all i, respectively. The

related prices are denoted by XS
t and X̃S

t and XA
t and X̃A

t for all t, respectively.

We determine the prices of contracts by using the risk-neutral sublinear expectation

to either obtain the price of a contract or the upper and the lower bound for the price.

In the case of a symmetric payoff, we proceed as in the classical case without volatility

uncertainty and choose the expected discounted payoff as the price for the contract. In

the case of an asymmetric payoff, we use the upper and the lower expectation as bounds

for the price, which is a typical approach in the literature on model uncertainty. Hence,

we assume that

X̃S
t = Êt[X̃S]
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for all t, where we recall that Êt denotes the conditional G-expectation, and

Ê[X̃A] > X̃A
0 > −Ê[−X̃A].

Since XS has a symmetric payoff, by the martingale representation theorem for symmetric

G-martingales (Song, 2011, Theorem 4.8), there exists a process H = (H1
t , ..., H

d
t )0≤t≤τ

in M2
G(0, τ ;Rd) such that for all t,

X̃S
t = X̃S

0 +
d∑
i=1

∫ t

0

H i
udB

i
u.

The latter ensures that the portfolio value (defined below) is well-posed. The reason

why we only impose assumptions on the price of the asymmetric contract at time 0 is

described below.

In order to show that this pricing procedure yields no-arbitrage prices, we extend the

notions of trading strategies and arbitrage, respectively, to the extended bond market.

As in Chapters 2 and 3, we allow the agents in the market to trade a finite number

of bonds. The symmetric contract can be traded dynamically, but we only allow static

trading strategies for the asymmetric contract. Therefore, we do not impose assumptions

on X̃A
t for t > 0. The assumption that the asymmetric contract can only be traded

statically might seem restrictive. This is a common assumption in the literature on robust

finance, since it is important for excluding arbitrage. In this case, the assumption is also

reasonable, since most contracts in fixed income markets are traded over-the-counter.

Definition 4.1. An admissible market strategy is a quadruple (π, πS, πA, T ) consisting of

a bounded process π = (π1
t , ..., π

n
t )0≤t≤τ in M2

G(0, τ ;Rn), a bounded process πS = (πSt )0≤t≤τ

in M2
G(0, τ), a constant πA ∈ R, and a vector T = (T1, ..., Tn) ∈ [0, τ ]n for some n ∈ N.

The corresponding portfolio value at terminal time is given by

ṽτ (π, π
S, πA, T ) :=

n∑
i=1

∫ Ti

0

πitdP̃t(Ti) +

∫ τ

0

πSt dX̃
S
t + πA(X̃A − X̃A

0 ). (4.2)

The three terms on the right-hand side of (4.2) correspond to the gains from trading a

finite number of bonds, the symmetric contract, and the asymmetric contract, respec-

tively. The assumptions on the processes ensure that the integrals in (4.2) are well-defined.

Similar to the previous chapters, we use the quasi-sure definition of arbitrage, which is

commonly used in the literature on model uncertainty (Biagini, Bouchard, Kardaras, and

Nutz, 2017; Bouchard and Nutz, 2015).
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Definition 4.2. An admissible market strategy (π, πS, πA, T ) is an arbitrage strategy if

ṽτ (π, π
S, πA, T ) ≥ 0 quasi-surely,

P
(
ṽτ (π, π

S, πA, T ) > 0
)
> 0 for at least one P ∈ P .

We say that the extended bond market is arbitrage-free if there is no arbitrage strategy.

The following proposition shows that we can use the risk-neutral sublinear expectation

as a pricing measure as described above, since the extended bond market is arbitrage-

free under the assumptions stated in this section. As a consequence, we can reduce

the problem of pricing a contract to evaluating the upper and the lower expectation of

the corresponding discounted payoff. The proof—apart from the asymmetric contract—

is similar to the proof of Proposition 2.5, since all other quantities on the market are

symmetric G-martingales under Ê.

Proposition 4.3. The extended bond market is arbitrage-free.

Proof. We assume that there exists an arbitrage strategy (π, πS, πA, T ) and show that

this yields a contradiction. We only examine the case in which XA is traded, i.e., it holds

πA 6= 0; if πA = 0, the proof is similar to the proof of Proposition 2.5. By the definition

of arbitrage, it holds ṽτ (π, π
S, πA, T ) ≥ 0. Then the monotonicity of Ê implies

Ê
[ n∑
i=1

∫ Ti

0

πitdP̃t(Ti) +

∫ τ

0

πSt dX̃
S
t

]
≥ Ê[−πA(X̃A − X̃A

0 )].

Due to the sublinearity of Ê and the fact that the discounted bonds are symmetric G-

martingales under Ê and XS has a symmetric payoff, we have

Ê
[ n∑
i=1

∫ Ti

0

πitdP̃t(Ti) +

∫ τ

0

πSt dX̃
S
t

]
≤ 0

by the martingale representation theorem for symmetric G-martingales (Song, 2011, The-

orem 4.8). Furthermore, if we use the properties of the G-expectation and the assumption

on X̃A
0 , we get

Ê[−πA(X̃A − X̃A
0 )] = (πA)+(Ê[−X̃A] + X̃A

0 ) + (πA)−(Ê[X̃A]− X̃A
0 ) > 0.

Combining the previous steps, we obtain a contradiction.

4.3 Pricing Single Cashflows

In the classical case without volatility uncertainty, discounted cashflows are priced under

the forward measure. Evaluating the expectation of a discounted cashflow related to an
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interest rate derivative can be very elaborate; this is due to the fact that the discount

factor—in addition to the cashflows—is stochastic. The common way to avoid this issue

is the forward measure approach. The forward measure, which was introduced by Ge-

man (1989), is equivalent to the pricing measure and defined by choosing a particular

density process. The density process is defined in such a way that the expectation of a

discounted cashflow under the risk-neutral measure can be rewritten as the expectation

of the cashflow under the forward measure, discounted by a zero-coupon bond. Thus, by

changing the measure, we can replace the stochastic discount factor by the current bond

price (which is already determined by the model).

In the presence of volatility uncertainty, we define a counterpart of the forward mea-

sure, termed forward sublinear expectation, to simplify the pricing of discounted cashflows.

In contrast to the forward measure approach, we define the forward sublinear expectation

by a G-backward stochastic differential equation (similar to the definition of the sublinear

expectations considered in Section 2.4 and in the proof of Theorem 3.6, respectively).

Definition 4.4. For ξ ∈ LpG(ΩT ) with p > 1 and T ≤ τ , we define the T -forward sub-

linear expectation ÊT by ÊTt [ξ] := Y T,ξ
t , where Y T,ξ = (Y T,ξ

t )0≤t≤T solves the G-backward

stochastic differential equation

Y T,ξ
t = ξ −

d∑
i=1

∫ T

t

biu(T )Zi
ud〈Bi〉u −

d∑
i=1

∫ T

t

Zi
udB

i
u − (KT −Kt).

By Theorem 5.1 of Hu, Ji, Peng, and Song (2014), the forward sublinear expectation is a

time consistent sublinear expectation. Again, we refer to the paper of Hu, Ji, Peng, and

Song (2014) for further details related to G-backward stochastic differential equations.

The forward sublinear expectation corresponds to the expectation under the forward

measure. This can be deduced from the explicit solution to the G-backward stochastic

differential equation defining the forward sublinear expectation. For T ≤ τ , we define

the process XT = (XT
t )0≤t≤T by

XT
t := P̃t(T )

P0(T )
.

The process XT is the density used to define the forward measure. As in Proposition 3.8,

one can verify that XT satisfies the G-stochastic differential equation

XT
t = 1−

d∑
i=1

∫ t

0

biu(T )XT
u dB

i
u.

By Theorem 3.2 of Hu, Ji, Peng, and Song (2014), the process Y T,ξ is given by

Y T,ξ
t = (XT

t )−1Êt[XT
T ξ].
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Thus, we basically arrive at the same expression as in the classical definition of the

forward measure.

We obtain the following preliminary results related to the forward sublinear expecta-

tion, which simplify the pricing of discounted cashflows. Similar to the classical case, we

find that the valuation of a discounted cashflow reduces to determining the forward sub-

linear expectation of the cashflow, which is then discounted with the bond price. Further-

more, there is a relation between forward sublinear expectations with different maturities,

and the forward rate process f(T ) and the forward price process XT,T̃ = (XT,T̃
t )0≤t≤T∧T̃ ,

defined by

XT,T̃
t := Pt(T̃ )

Pt(T )
,

for T, T̃ ≤ τ are symmetric G-martingales under the T -forward sublinear expectation.

Proposition 4.5. Let ξ ∈ LpG(ΩT ) with p > 1 and t ≤ T, T̃ ≤ τ . Then we have the

following properties.

(i) It holds

MtÊt[M−1
T ξ] = Pt(T )ÊTt [ξ].

(ii) For T ≤ T̃ , it holds

Pt(T̃ )ÊT̃t [ξ] = Pt(T )ÊTt [PT (T̃ )ξ].

(iii) The forward rate process f(T ) is a symmetric G-martingale under ÊT .

(iv) The forward price process XT,T̃ satisfies XT,T̃
t ∈ LpG(Ωt) for all p <∞ and

XT,T̃
t = XT,T̃

0 −
d∑
i=1

∫ t

0

σiu(T, T̃ )XT,T̃
u dBi

u −
d∑
i=1

∫ t

0

σiu(T, T̃ )XT,T̃
u biu(T )d〈Bi〉u,

where σi(T, T̃ ) = (σit(T, T̃ ))0≤t≤T∧T̃ , for all i, is defined by

σit(T, T̃ ) := bit(T̃ )− bit(T ),

and it is a symmetric G-martingale under ÊT .

Proof. Part (i) follows by a simple calculation; we have

MtÊt[M−1
T ξ] = Pt(T )Mt

P0(T )
Pt(T )

Êt[M−1
T

PT (T )
P0(T )

ξ] = Pt(T )(XT
t )−1Êt[XT

T ξ] = Pt(T )ÊTt [ξ].
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To show part (ii), we use some properties of G-backward stochastic differential equa-

tions. By Definition 4.4, we have ÊT̃t [ξ] = Y T̃ ,ξ
t , where Y T̃ ,ξ solves

Y T̃ ,ξ
t = ξ −

d∑
i=1

∫ T̃

t

biu(T̃ )Zi
ud〈Bi〉u −

d∑
i=1

∫ T̃

t

Zi
udB

i
u − (KT̃ −Kt).

Since ξ ∈ LpG(ΩT ), the process Y T̃ ,ξ also solves the G-backward stochastic differential

equation

Y T̃ ,ξ
t = ξ −

d∑
i=1

∫ T

t

biu(T̃ )Zi
ud〈Bi〉u −

d∑
i=1

∫ T

t

Zi
udB

i
u − (KT −Kt).

By Theorem 3.2 of Hu, Ji, Peng, and Song (2014), the solution to the latter is given by

Y T̃ ,ξ
t = (X T̃

t )−1Êt[X T̃
T ξ].

Moreover, for each t ≤ T , we have X T̃
t = XT,T̃

t X T̃ ,T
0 XT

t . Hence, we obtain

ÊT̃t [ξ] = X T̃ ,T
t XT,T̃

0 (XT
t )−1Êt[XT,T̃

T X T̃ ,T
0 XT

T ξ] = X T̃ ,T
t ÊTt [XT,T̃

T ξ],

which proves part (ii).

For part (iii), we use the Girsanov transformation for G-Brownian motion from Hu,

Ji, Peng, and Song (2014). We define the process BT = (B1,T
t , ..., Bd,T

t )0≤t≤T by

Bi,T
t := Bi

t +

∫ t

0

biu(T )d〈Bi〉u.

Then BT is a G-Brownian motion under ÊT (Hu, Ji, Peng, and Song, 2014, Theorems

5.2, 5.4). Since the dynamics of the forward rate are given by

ft(T ) = f0(T ) +
d∑
i=1

∫ t

0

βiu(T )dBi
u +

d∑
i=1

∫ t

0

βiu(T )bit(T )d〈Bi〉u,

the forward rate is a symmetric G-martingale under ÊT .

To obtain part (iv), we first show that XT,T̃
t ∈ LpG(Ωt) for all p < ∞ by using the

representation of the space LpG(Ωt) from Denis, Hu, and Peng (2011) and a proof similar

to the proof of Proposition 5.10 from Osuka (2013). The space LpG(Ωt) consists of all

Borel measurable random variables X that have a quasi-continuous version and satisfy

limn→∞ Ê[|X|p1{|X|>n}] = 0 (Peng, 2019, Proposition 6.3.2). As in Lemma 3.7, one can
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show that

XT,T̃
t = XT,T̃

0 exp

(
−

d∑
i=1

∫ t

0
σiu(T, T̃ )dBi

u −
d∑
i=1

∫ t

0

(
1
2σ

i
u(T, T̃ )2 + σiu(T, T̃ )biu(T )

)
d〈Bi〉u

)
.

Since σi(T, T̃ ) and bi(T ), for all i, are bounded processes in Mp
G(0, τ) for all p < ∞, we

already know that XT,T̃
t is measurable and has a quasi-continuous version. Now we show

that Ê[|XT,T̃
t |p̃] < ∞ for p̃ > p, which implies limn→∞ Ê[|X|p1{|X|>n}] = 0. By Hölder’s

inequality, for p̃ > p and q̃ > 1, we have

Ê[|XT,T̃
t |p̃] ≤ XT,T̃

0 Ê
[
exp

(
−p̃q̃

d∑
i=1

∫ t

0

σiu(T, T̃ )dBi
u − 1

2
(p̃q̃)2

d∑
i=1

∫ t

0

σiu(T, T̃ )2d〈Bi〉u
)] 1

q̃

× Ê
[
exp

(
p̃q̃
q̃−1

d∑
i=1

∫ t

0

(
1
2
(p̃q̃ − 1)σiu(T, T̃ )2 − σiu(T, T̃ )biu(T )

)
d〈Bi〉u

)] q̃−1
q̃

.

The two terms on the right-hand side are finite. The second term is finite since σi(T, T̃ )

and bi(T ) are bounded for all i. By the same argument, we have

Ê
[
exp

(
1
2
(p̃q̃)2

d∑
i=1

∫ t

0

σiu(T, T̃ )2d〈Bi〉u
)]

<∞.

Then we can use Novikov’s condition to show that the first term is finite, since the

exponential inside the sublinear expectation is a martingale under each P ∈ P .

Using Itô’s formula for G-Brownian motion from Li and Peng (2011) and the Girsanov

transformation of Hu, Ji, Peng, and Song (2014) completes the proof. We have

XT,T̃
t = XT,T̃

0 −
d∑
i=1

∫ t

0

σiu(T, T̃ )XT,T̃
u dBi

u −
d∑
i=1

∫ t

0

σiu(T, T̃ )XT,T̃
u biu(T )d〈Bi〉u

by Itô’s formula (Li and Peng, 2011, Theorem 5.4). Moreover, since σi(T, T̃ ) and bi(T ),

for all i, are bounded processes in Mp
G(0, τ) for all p <∞, one can then show that XT,T̃

belongs to Mp
G(0, τ) for all p <∞ (see Proposition 3.25). As in the proof of part (iii), the

Girsanov transformation for G-Brownian motion then implies that XT,T̃ is a symmetric

G-martingale under ÊT .

Due to Proposition 4.5 (iii), we obtain a robust version of the expectations hypothesis.

The traditional expectations hypothesis states that forward rates reflect the expectation

of future short rates. In the classical case without volatility uncertainty, we know that

the forward rate is a martingale under the forward measure; therefore, the expectations

hypothesis holds true under the forward measure. In our case, we obtain a much stronger

version—called robust expectations hypothesis. This is because the forward rate is a
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symmetric G-martingale under the forward sublinear expectation. Thus, the forward

rate reflects the upper expectation of the short rate and the lower expectation of the

short rate. In particular, it implies that the forward rate reflects the expectation of the

short rate in each possible scenario for the volatility.

Corollary 4.6. The forward rate satisfies the robust expectations hypothesis under the

forward sublinear expectation—that is, for t ≤ T ≤ τ , it holds

ÊTt [rT ] = ft(T ) = −ÊTt [−rT ].

For convex bond options, the upper, respectively lower, bound for the price is given

by the price in the corresponding HJM model without volatility uncertainty with the

highest, respectively lowest, possible volatility. If we consider a bond option, the payoff

is a function depending on a selection of bond prices for different maturities. We consider

the more general case when the payoff is a function depending on a selection of forward

prices, since we can express every bond option as an option on forward prices. If the payoff

function is convex and satisfies a suitable growth condition, we can use the nonlinear

Feynman-Kac formula from Hu, Ji, Peng, and Song (2014) to show that the range of

prices is bounded from above, respectively below, by the price from the classical model

when the dynamics of the forward price are driven by a standard Brownian motion with

constant volatility σ, respectively σ.

Proposition 4.7. For n ∈ N, let ϕ : Rn → R be a convex function such that

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y| (4.3)

for a positive integer m and a constant C > 0 and let 0 < t1 < ... < tn ≤ τ . Then

ÊTt [ϕ(XT,t1
t1 , ..., XT,tn

t1 )] = uσ(t,XT,t1
t , ..., XT,tn

t ),

−ÊTt [−ϕ(XT,t1
t1 , ..., XT,tn

t1 )] = uσ(t,XT,t1
t , ..., XT,tn

t )

for t ≤ t1 ≤ T ≤ τ , where the function uσ : [0, t1]× Rn → R, for σ ∈ Σ, is defined by

uσ(t, x1, ..., xn) := EP0 [ϕ(X1
t1
, ..., Xn

t1
)]

and the process X i = (X i
s)t≤s≤t1, for all i = 1, ..., n, is given by

X i
s = xi −

d∑
j=1

∫ s

t

σju(T, ti)X
i
uσjdB

j
u.

Proof. First, we characterize the forward sublinear expectation in the first equation as the

solution to a nonlinear partial differential equation by using the nonlinear Feynman-Kac
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formula of Hu, Ji, Peng, and Song (2014). With Proposition 4.5 (iv) and inequality (4.3),

one can show that ξ := ϕ(XT,t1
t1 , ..., XT,tn

t1 ) belongs to LpG(Ωt1) ⊂ LpG(ΩT ) with p > 1. By

Definition 4.4, we have ÊTt [ξ] = Y T,ξ
t , where Y T,ξ = (Y T,ξ

t )0≤t≤T solves the G-backward

stochastic differential equation

Y T,ξ
t = ϕ(XT,t1

t1 , ..., XT,tn
t1 )−

d∑
i=1

∫ T

t

biu(T )Zi
ud〈Bi〉u −

d∑
i=1

∫ T

t

Zi
udB

i
u − (KT −Kt).

Since ξ ∈ LpG(Ωt1), the process Y T,ξ also solves the G-backward stochastic differential

equation

Y T,ξ
t = ϕ(XT,t1

t1 , ..., XT,tn
t1 )−

d∑
i=1

∫ t1

t

biu(T )Zi
ud〈Bi〉u −

d∑
i=1

∫ t1

t

Zi
udB

i
u − (Kt1 −Kt),

where ϕ satisfies (4.3). From Proposition 4.5 (iv), we deduce the dynamics and the

regularity of XT,ti for all i = 1, ..., n. Then, by Theorems 4.4 and 4.5 of Hu, Ji, Peng,

and Song (2014), we have Y T,ξ
t = u(t,XT,t1

t , ..., XT,tn
t ), where u : [0, t1] × Rn → R is the

unique viscosity solution to the nonlinear partial differential equation

∂tu+G

(( n∑
k,l=1

σit(T, tk)xkσ
j
t (T, tl)xl∂

2
xkxl

u

)
i,j=1,...,d

)
= 0,

u(t1, x1, ..., xn) = ϕ(x1, ..., xn).

Now we show that uσ solves the nonlinear partial differential equation. By the classical

Feynman-Kac formula, we know that uσ, for σ ∈ Σ, satisfies

∂tuσ + 1
2
tr

(
σσ′
( n∑
k,l=1

σit(T, tk)xkσ
j
t (T, tl)xl∂

2
xkxl

uσ

)
i,j=1,...,d

)
= 0,

uσ(t1, x1, ..., xn) = ϕ(x1, ..., xn).

In addition, the convexity of ϕ implies that uσ(t, ·) is convex for each σ and t; thus,

n∑
k,l=1

σit(T, tk)xkσ
j
t (T, tl)xl∂

2
xkxl

uσ ≥ 0

for all i, j = 1, ..., d. Therefore, one can verify that uσ solves the nonlinear partial

differential equation from above, which proves the first assertion.

In order to prove the second assertion, we repeat the procedure from above. Due

to the nonlinear Feynman-Kac formula, we have ÊTt [−ξ] = u(t,XT,t1
t , ..., XT,tn

t ), where

u : [0, t1] × Rn → R is the unique viscosity solution to the nonlinear partial differential
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equation

∂tu+G

(( n∑
k,l=1

σit(T, tk)xkσ
j
t (T, tl)xl∂

2
xkxl

u

)
i,j=1,...,d

)
= 0,

u(t1, x1, ..., xn) = − ϕ(x1, ..., xn).

Then we can use the concavity of −uσ(t, ·) to show that −uσ solves the nonlinear partial

differential equation from above.

For bond options that are neither convex nor concave, we generally need to use nu-

merical procedures to obtain the pricing bounds. If we deal with a bond option having

a concave (instead of a convex) payoff function, we can use the same approach as in

Proposition 4.7 to find the pricing bounds by simply interchanging σ and σ. The con-

vexity or the concavity of the payoff function reduces the nonlinear partial differential

equation that results from the nonlinear Feynman-Kac formula of Hu, Ji, Peng, and Song

(2014) and determines the pricing bounds to a linear partial differential equation. Then

the pricing bounds coincide with the prices of traditional models when the underlying is

driven by a standard Brownian motion with volatility σ and σ, respectively. When the

payoff function is neither convex nor concave, we can still use the nonlinear Feynman-Kac

formula to obtain the pricing bounds, but then we need to solve the nonlinear partial

differential equation, since it does not reduce to a linear one. One can find the solution,

for example, by using numerical schemes similar to the ones of Nendel (2021, Section 5).

4.4 Pricing a Stream of Cashflows

Due to the nonlinearity of the pricing measure, in general, we cannot price interest rate

derivatives by pricing each cashflow separately. As in Section 4.2, we consider a contract

consisting of a stream of cashflows, which we denote by X. Then the discounted payoff

is given by

X̃ =
N∑
i=0

M−1
Ti
ξi

for a tenor structure 0 < T0 < T1 < ... < TN = τ and ξi ∈ LpG(ΩTi) with p > 1 for all

i. In order to price the contract, we are interested in Ê[X̃] and −Ê[−X̃]. When there

is no volatility uncertainty, we can simply price the contract by pricing each cashflow

individually, since the pricing measure is linear in that case. However, in the presence of
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volatility uncertainty, the pricing measure Ê is sublinear, which implies

Ê[X̃] ≤
N∑
i=0

Ê[M−1
Ti
ξi],

−Ê[−X̃] ≥
N∑
i=0

−Ê[−M−1
Ti
ξi].

Therefore, if we price each cashflow separately, we possibly only obtain an upper, respec-

tively lower, bound for the upper, respectively lower, bound of the price—which does not

yield much information about the price of the contract.

For contracts with symmetric cashflows, we can still determine the price of the contract

by pricing each of its cashflows individually. If each cashflow has a symmetric payoff under

the forward sublinear expectation, there is a single price for the contract, which coincides

with the sum of the prices of the cashflows. Hence, the pricing measure is linear on the

subspace of contracts with symmetric cashflows.

Lemma 4.8. If ξi, for all i, satisfies ÊTit [ξi] = −ÊTit [−ξi] for t ≤ T0, then it holds

MtÊt[X̃] =
N∑
i=0

Pt(Ti)ÊTit [ξi] = −MtÊt[−X̃].

Proof. We derive an upper, respectively lower, bound for the upper, respectively lower,

expectation of X̃ and show that they coincide. Using the sublinearity of Ê and Proposition

4.5 (i), for t ≤ T0, we get

MtÊt[X̃] ≤
N∑
i=0

MtÊt[M−1
Ti
ξi] =

N∑
i=0

Pt(Ti)ÊTit [ξi].

By the same arguments, for t ≤ T0, we obtain

−MtÊt[−X̃] ≥
N∑
i=0

−MtÊt[−M−1
Ti
ξi] =

N∑
i=0

−Pt(Ti)ÊTit [−ξi].

For t ≤ T0, it holds Êt[X̃] ≥ −Êt[−X̃] and ÊTit [ξi] = −ÊTit [−ξi] for all i. Therefore, all

expressions from above are equal.

For general contracts, we can use a backward induction procedure to obtain the upper

and the lower expectation of the discounted payoff. The procedure works as follows.

First, we compute the forward sublinear expectation of the last cashflow conditioned on

the second last payoff time and discount it with the bond price. Next, we compute the

forward sublinear expectation of the second last cashflow and the previous expression

conditioned on the third last payoff time and discount it with the bond price. Then
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we recursively repeat this procedure until we arrive at the first payoff. This gives us

eventually the upper expectation of the discounted payoff. The procedure for the lower

expectation is similar.

Lemma 4.9. It holds Ê[X̃] = Ỹ0 and −Ê[−X̃] = −Z̃0, where Ỹi and Z̃i are defined by

Ỹi := PTi−1
(Ti)ÊTiTi−1

[ξi + Ỹi+1],

Z̃i := PTi−1
(Ti)ÊTiTi−1

[−ξi + Z̃i+1],

respectively, for all i = 0, 1, ..., N and T−1 := 0 and ỸN+1 := 0 and Z̃N+1 := 0.

Proof. First, we exclude the last cashflow from the sum and write it in terms of ỸN . Due

to the time consistency of the G-expectation, we have

Ê[X̃] = Ê
[N−1∑
i=0

M−1
Ti
ξi + ÊTN−1

[M−1
TN
ξN ]

]
.

By Proposition 4.5 (i), we obtain

ÊTN−1
[M−1

TN
ξN ] = M−1

TN−1
PTN−1

(TN)ÊTNTN−1
[ξN ] = M−1

TN−1
ỸN .

Second, we exclude the second last cashflow from the sum and repeat the calculation

from above. Using the time consistency of Ê, we get

Ê[X̃] = Ê
[N−2∑
i=0

M−1
Ti
ξi + ÊTN−2

[M−1
TN−1

(ξN−1 + ỸN)]

]
.

Due to Proposition 4.5 (i), we have

ÊTN−2
[M−1

TN−1
(ξN−1 + ỸN)] = M−1

TN−2
PTN−2

(TN−1)ÊTN−1

TN−2
[ξN−1 + ỸN ] = M−1

TN−2
ỸN−1.

Now we work recursively backwards until we arrive at the last cashflow. Repeating

the step from above, we finally obtain

Ê[X̃] = Ê[M−1
T0
ξ0 +M−1

T0
Ỹ1] = P0(T0)ÊT0 [ξ0 + Ỹ1] = Ỹ0.

By replacing X̃, ξi, and Ỹi, for all i = 0, 1, ..., N , by −X̃, −ξi, and Z̃i, respectively,

we get Ê[−X̃] = Z̃0, which completes the proof.

If the contract can be written as a stream of convex bond options, the upper, respec-

tively lower, bound for the price is given by the price from the classical model without

volatility uncertainty with the highest, respectively lowest, possible volatility. Similar

to Proposition 4.7, if the cashflows can be written as convex functions of forward prices
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satisfying a suitable growth condition, we can show that the upper, respectively lower,

expectation of the discounted payoff is given by its linear expectation when the dynamics

of the forward price are driven by a standard Brownian motion with constant volatility

σ, respectively σ. We show this by using the backward induction procedure of Lemma

4.9 and recursively applying the nonlinear Feynman-Kac formula of Hu, Ji, Peng, and

Song (2014).

Proposition 4.10. For m,n ∈ N such that m 6= n, let Ȳi and Z̄i be defined by

Ȳi := X
ti−1+n,ti+n
ti Êti+nti [ϕi(X

ti+n,ti+m
ti+1

) + Ȳi+1],

Z̄i := X
ti−1+n,ti+n
ti Êti+nti [−ϕi(X ti+n,ti+m

ti+1
) + Z̄i+1],

respectively, for all i = 1, ..., N , where ϕi : R → R is a convex function such that (4.3)

holds and 0 = t1 < ... < tN+(m∨n) ≤ τ , and ȲN+1 := 0 and Z̄N+1 := 0. Then

Ȳ1 =
N∑
i=1

X
tn,ti+n
0 uiσ(0, X

ti+n,ti+m
0 ),

−Z̄1 =
N∑
i=1

X
tn,ti+n
0 uiσ(0, X

ti+n,ti+m
0 ),

where the function uiσ : [0, ti+1]× R→ R, for all i = 1, ..., N and σ ∈ Σ, is defined by

uiσ(t, xi) := EP0 [ϕi(X
i
ti+1

)]

and the process X i = (X i
s)t≤s≤ti+1

is given by

X i
s = xi −

d∑
j=1

∫ s

t

σju(ti+n, ti+m)X i
uσjdB

j
u.

Proof. We only compute Ȳ1; the derivation of Z̄1 can be carried out in the same way,

which is similar to the proof of Proposition 4.7.

In order to determine Ȳ1, we show, by induction, that

Ȳi =
N∑
j=i

X
ti−1+n,tj+n
ti ujσ(ti, X

tj+n,tj+m
ti )

for all i = 1, ..., N . We start by computing ȲN . We have

ȲN = X
tN−1+n,tN+n

tN
ÊtN+n

tN
[ϕN(X

tN+n,tN+m

tN+1
)].
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Since ϕN is convex and satisfies (4.3), by Proposition 4.7, we obtain

ȲN = X
tN−1+n,tN+n

tN
uNσ (tN , X

tN+n,tN+m

tN
)].

Next, we do the inductive step. For 1 ≤ i ≤ N − 1, let us suppose that

Ȳi+1 =
N∑

j=i+1

X
ti+n,tj+n
ti+1

ujσ(ti+1, X
tj+n,tj+m
ti+1

).

Then we have

Ȳi = X
ti−1+n,ti+n
ti Êti+nti

[
ϕi(X

ti+n,ti+m
ti+1

) +
N∑

j=i+1

X
ti+n,tj+n
ti+1

ujσ(ti+1, X
tj+n,tj+m
ti+1

)

]
.

We use the nonlinear Feynman-Kac formula of Hu, Ji, Peng, and Song (2014) to compute

the expectation, since we cannot apply Proposition 4.7. Thus, we obtain

Ȳi = X
ti−1+n,ti+n
ti u(ti, X

ti+n,ti+m
ti , ..., X

tN+n,tN+m

ti , X
ti+n,ti+1+n

ti , ..., X
ti+n,tN+n

ti ).

The function u : [0, ti+1]×R2(N−i)+1 → R is the unique viscosity solution to the nonlinear

partial differential equation

∂tu+G
((
Hκ,λ(t, x,Dxu,D

2
xu)
)
κ,λ=1,...,d

)
= 0,

u(ti+1, x) = ϕ(x),
(4.4)

where x = (x̂i, ..., x̂N , x̃i+1, ..., x̃N) ∈ R2(N−i)+1, the operatorDx, respectivelyD2
xx, denotes

the gradient, respectively Hessian, with respect to x, and

Hκ,λ(t, x,Dxu,D
2
xu) :=

N∑
j,k=i

σκt (tj+n, tj+m)x̂jσ
λ
t (tk+n, tk+m)x̂k∂

2
x̂j x̂k

u

+ 2
N∑
j=i

N∑
k=i+1

σκt (tj+n, tj+m)x̂jσ
λ
t (ti+n, tk+n)x̃k∂

2
x̂j x̃k

u

+
N∑

j,k=i+1

σκt (ti+n, tj+n)x̃jσ
λ
t (ti+n, tk+n)x̃k∂

2
x̃j x̃k

u

+ 1{κ=λ}(κ, λ)2
N∑

j=i+1

σκt (tj+n, tj+m)x̂jσ
κ
t (tj+n, ti+n)∂x̂ju,

ϕ(x) := ϕi(x̂i) +
N∑

j=i+1

x̃ju
j
σ(ti+1, x̂j).

It is feasible to apply the nonlinear Feynman-Kac formula, since ϕ satisfies (4.3), which
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is shown in Subsection 4.7.1. To show that ϕ satisfies (4.3), we use estimates for ujσ
for all j = i + 1, ..., N , which follow from the nonlinear Feynman-Kac formula (Hu, Ji,

Peng, and Song, 2014, Proposition 4.2). In order to solve (4.4), we define the function

u∗ : [0, ti+1]× R2(N−i)+1 → R by

u∗(t, x) := uiσ(t, x̂i) +
N∑

j=i+1

x̃ju
j
σ(t, x̂j).

Then one can check that it holds ∂2
x̂j x̂k

u∗ = 0 and ∂2
x̂j x̃k

u∗ = 0 for all j, k such that j 6= k,

it holds x̃k∂
2
x̂j x̃k

u∗ = ∂x̂ju
∗ for all j, k such that j = k, and it holds ∂2

x̃j x̃k
u∗ = 0 for all

j, k. Since ujσ(t, ·) is convex for each t and ujσ satisfies

∂tu
j
σ + 1

2
tr
(
σσ′
(
σkt (tj+n, tj+m)σlt(tj+n, tj+m)x̂2

j∂
2
x̂j x̂j

ujσ
)
k,l=1,...,d

)
= 0,

ujσ(tj+1, x̂j) = ϕj(x̂j)

for all j = i, ..., N and σ ∈ Σ, one can verify that u∗ solves (4.4) on [0, ti+1]× R2(N−i)+1
+ .

We are only interested in a solution for positive x, since the forward prices are positive.

Hence, we obtain

Ȳi =
N∑
j=i

X
ti−1+n,tj+n
ti ujσ(ti, X

tj+n,tj+m
ti )

and the proof is complete.

If the stream of cashflows consists of bond options that are neither convex nor concave,

we need to use a numerical scheme to apply the backward induction procedure from

Lemma 4.9. As in the previous section, we can price a stream of concave bond options in

the same way as in Proposition 4.10 by interchanging σ and σ. When the bond options

are neither convex nor concave, we can use the general backward induction procedure

from Lemma 4.9 and recursively solve the nonlinear partial differential equations arising

due to the nonlinear Feynman-Kac formula of Hu, Ji, Peng, and Song (2014) by numerical

procedures (as mentioned at the end of Section 4.3).

4.5 Common Interest Rate Derivatives

With the tools from the preceding sections, we can price all major derivatives traded in

fixed income markets. We consider typical linear contracts, such as fixed coupon bonds,

floating rate notes, and interest rate swaps, and nonlinear contracts, such as swaptions,

caps and floors, and in-arrears contracts. Using the general pricing techniques for whole

contracts from Section 4.4 and the valuation methods for single cashflows from Section
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4.3, we show how to derive robust pricing formulas for all these contracts. That means,

we consider a contract with discounted payoff

X̃ =
N∑
i=0

M−1
Ti
ξi

for 0 < T0 < T1 < ... < TN = τ and specifically given cashflows, and then we show how

to find Ê[X̃] and −Ê[−X̃] or MtÊt[X̃] and −MtÊt[−X̃] for t ≤ T0 if the contract has a

symmetric payoff.

4.5.1 Fixed Coupon Bonds

We can price fixed coupon bonds as in the classical case without volatility uncertainty.

A fixed coupon bond is a contract that pays a fixed rate of interest, given by K > 0, on

a nominal value, which is normalized to 1, at each payment date and the nominal value

at the last payment date. Hence, the cashflows are given by

ξi = 1{N}(i) + 1{1,...,N}(i)(Ti − Ti−1)K (4.5)

for all i = 0, 1, ..., N . Due to its simple payoff structure, the contract has a symmetric

payoff, and its price is given by the same expression as the one obtained in traditional

term structure models.

Proposition 4.11. Let ξi be given by (4.5) for all i = 0, 1, ..., N . Then for t ≤ T0,

MtÊt[X̃] = Pt(TN) +
N∑
i=1

Pt(Ti)(Ti − Ti−1)K = −MtÊt[−X̃].

Proof. Since the cashflows are constants, the assertion follows by Lemma 4.8.

4.5.2 Floating Rate Notes

We can also price floating rate notes as in the classical case without volatility uncertainty.

A floating rate note is a fixed coupon bond in which the fixed rate is replaced by a floating

rate: the simply compounded spot rate; for t ≤ T ≤ τ , the simply compounded spot rate

with maturity T at time t is defined by

Lt(T ) := 1
T−t(

1
Pt(T )

− 1).

The cashflows are then given by

ξi = 1{N}(i) + 1{1,...,N}(i)(Ti − Ti−1)LTi−1
(Ti) (4.6)
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for all i = 0, 1, ..., N . Although the cashflows are not constant, the contract yet has a

symmetric payoff. As in the classical case, the price is simply given by the price of a

zero-coupon bond with maturity T0.

Proposition 4.12. Let ξi be given by (4.6) for all i = 0, 1, ..., N . Then for t ≤ T0,

MtÊt[X̃] = Pt(T0) = −MtÊt[−X̃].

Proof. We show that the cashflows have a symmetric payoff and apply Lemma 4.8. Due

to Proposition 4.5 (ii) and (iv), we have

Pt(Ti)ÊTit [(Ti − Ti−1)LTi−1
(Ti)] = Pt(Ti−1)ÊTi−1

t [1− PTi−1
(Ti)] = Pt(Ti−1)− Pt(Ti)

for all i = 1, ..., N . In a similar fashion we can show that

−Pt(Ti)ÊTit [−(Ti − Ti−1)LTi−1
(Ti)] = Pt(Ti−1)− Pt(Ti)

for all i = 1, ..., N . The result follows by Lemma 4.8 and summation.

4.5.3 Interest Rate Swaps

The pricing formula for interest rate swaps is the same as in traditional models. An

interest rate swap exchanges the floating rate with a fixed rate at each payment date.

Without loss of generality we consider a payer interest rate swap; that is, we pay the

fixed rate and receive the floating rate. Hence, the cashflows are given by

ξi = 1{1,...,N}(i)(Ti − Ti−1)
(
LTi−1

(Ti)−K
)

(4.7)

for all i = 0, 1, ..., N . Since the payoff is the difference of a zero-coupon bond and a

floating rate note, the contract is symmetric. As in traditional term structure models,

the price is given by a linear combination of zero-coupon bonds with different maturities.

In particular, this implies that the swap rate—i.e., the value of the fixed rate that makes

the value of the contract zero—is uniquely determined and does not differ from the

expression obtained by standard models.

Proposition 4.13. Let ξi be given by (4.7) for all i = 0, 1, ..., N . Then for t ≤ T0,

MtÊt[X̃] = Pt(T0)− Pt(TN)−
N∑
i=1

Pt(Ti)(Ti − Ti−1)K = −MtÊt[−X̃].

Proof. Again, we show that the cashflows have a symmetric payoff and use Lemma 4.8
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to obtain the result. As in the proof of Proposition 4.12, we can show that

Pt(Ti)ÊTit
[
(Ti − Ti−1)

(
LTi−1

(Ti)−K
)]

= Pt(Ti−1)− Pt(Ti)− Pt(Ti)(Ti − Ti−1)K,

−Pt(Ti)ÊTit
[
− (Ti − Ti−1)

(
LTi−1

(Ti)−K
)]

= Pt(Ti−1)− Pt(Ti)− Pt(Ti)(Ti − Ti−1)K

for all i = 1, ..., N . Then the assertion follows by Lemma 4.8 and summation.

4.5.4 Swaptions

We can price swaptions by using the pricing formulas from traditional models to compute

the upper and the lower bound for the price. A swaption gives the buyer the right to

enter an interest rate swap at the first payment date. Hence, there is only one cashflow,

which is determined by Proposition 4.13—i.e.,

ξi = 1{0}(i)

(
1− PT0(Tn)−

N∑
j=1

PT0(Tj)(Tj − Tj−1)K

)+

(4.8)

for all i = 0, 1, ..., N . Due to the nonlinearity of the payoff function, the upper and the

lower expectation of the discounted payoff do not necessarily coincide; thus, the contract

has an asymmetric payoff. The related pricing bounds are given by the prices from the

classical case with the highest and the lowest possible volatility, respectively.

Theorem 4.14. Let ξi be given by (4.8) for all i = 0, 1, ..., N . Then it holds

Ê[X̃] = P0(T0)uσ
(
0, P0(T1)

P0(T0)
, ..., P0(TN )

P0(T0)

)
,

−Ê[−X̃] = P0(T0)uσ
(
0, P0(T1)

P0(T0)
, ..., P0(TN )

P0(T0)

)
,

where the function uσ : [0, T0]× RN → R, for σ ∈ Σ, is defined by

uσ(t, x1, ..., xN) := EP0

[(
1−XN

T0
−

N∑
i=1

X i
T0

(Ti − Ti−1)K

)+]

and the process X i = (X i
s)t≤s≤T0, for all i = 1, ..., N , is given by

X i
s = xi −

d∑
j=1

∫ s

t

σju(T0, Ti)X
i
uσjdB

j
u.
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Proof. We prove the claim by using Proposition 4.7. By Proposition 4.5 (i), we have

Ê[X̃] = P0(T0)ÊT0
[(

1−XT0,TN
T0

−
N∑
i=1

XT0,Ti
T0

(Ti − Ti−1)K

)+]
,

−Ê[−X̃] = − P0(T0)ÊT0
[
−
(

1−XT0,TN
T0

−
N∑
i=1

XT0,Ti
T0

(Ti − Ti−1)K

)+]
.

Hence, the assertion follows by Proposition 4.7, since the payoff of a swaption is convex

and satisfies (4.3), which is shown in Subsection 4.7.2.

4.5.5 Caps and Floors

Similar to swaptions, we can compute the upper and the lower bound for the price of

a cap by using the pricing formulas from traditional models. A cap gives the buyer the

right to exchange the floating rate with a fixed rate at each payment date. The cashflows

are called caplets and are given by

ξi = 1{1,...,N}(i)(Ti − Ti−1)
(
LTi−1

(Ti)−K
)+

(4.9)

for all i = 0, 1, ..., N . The upper and the lower bound for the price of the contract are

given by the prices from the classical case without volatility uncertainty with the highest

and the lowest possible volatility, respectively. We obtain the latter by computing prices

of put options on the forward price.

Theorem 4.15. Let ξi be given by (4.9) for all i = 0, 1, ..., N . Then it holds

Ê[X̃] =
N∑
i=1

P0(Ti−1)uiσ
(
0, P0(Ti)

P0(Ti−1)

)
,

−Ê[−X̃] =
N∑
i=1

P0(Ti−1)uiσ
(
0, P0(Ti)

P0(Ti−1)

)
,

where the function uiσ : [0, Ti−1]× R→ R, for all i = 1, ..., N and σ ∈ Σ, is defined by

uiσ(t, xi) := 1
Ki
EP0 [(Ki −X i

Ti−1
)+]

for Ki := 1
1+(Ti−Ti−1)K

and the process X i = (X i
s)t≤s≤Ti−1

is given by

X i
s = xi −

d∑
j=1

∫ s

t

σju(Ti−1, Ti)X
i
uσjdB

j
u.

Proof. According to Lemma 4.9, we need to determine Ỹ0 and Z̃0 in order to obtain Ê[X̃]
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and Ê[−X̃], respectively. We only show how to obtain Ỹ0; we can compute Z̃0 in the

same way.

We compute Ỹ0 by using Proposition 4.10. For this purpose, we need to rewrite Ỹi

for all i = 0, 1, ..., N and define a sequence of random variables to which we can apply

Proposition 4.10. For all i = 0, 1, ..., N , we have

Ỹi = PTi−1
(Ti)ÊTiTi−1

[ξi + Ỹi+1],

where ξi is given by (4.9), and ỸN+1 = 0. Since ξi ∈ L1
G(ΩTi−1

) for all i = 1, ..., N and

ξ0 = 0, we can show that

Ỹi = 1
Ki

(Ki −XTi−1,Ti
Ti−1

)+ +X
Ti−1,Ti
Ti−1

ÊTiTi−1
[Ỹi+1]

for all i = 1, ..., N and Ỹ0 = X0,T0
0 ÊT0 [Ỹ1]. Now we define Ȳi := X

Ti−2,Ti−1

Ti−2
ÊTi−1

Ti−2
[Ỹi] for all

i = 1, ..., N + 1. Then we have Ỹ0 = Ȳ1 and

Ȳi = X
Ti−2,Ti−1

Ti−2
ÊTi−1

Ti−2
[ 1
Ki

(Ki −XTi−1,Ti
Ti−1

)+ + Ȳi+1]

for all i = 1, ..., N , where ȲN+1 = 0. Moreover, we define ti := Ti−2 for all i = 1, ..., N +2.

Then it holds 0 = t1 < ... < tN+2 ≤ τ and

Ȳi = X
ti,ti+1

ti Êti+1

ti [ 1
Ki

(Ki −X ti+1,ti+2

ti+1
)+ + Ȳi+1]

for all i = 1, ..., N . Thus, we can apply Proposition 4.10 to obtain

Ȳ1 =
N∑
i=1

X
0,ti+1

0 uiσ(0, X
ti+1,ti+2

0 ),

which proves the assertion.

Floors can be priced in the same manner as caps. A floor gives the buyer the right

to exchange a fixed rate with the floating rate at each payment date. The cashflows are

called floorlets and are given by

ξi = 1{1,...,N}(i)(Ti − Ti−1)
(
K − LTi−1

(Ti)
)+

(4.10)

for all i = 0, 1, ..., N . Since the cashflows are very similar to caplets, we obtain similar

pricing bounds compared to Theorem 4.15; the only difference is that we need to compute

prices of call options on the forward price instead of put options to obtain the pricing

bounds. It is remarkable that we can show this with the put-call parity, since the non-

linearity of the pricing measure implies that the put-call parity, in general, does not hold

in the presence of volatility uncertainty.
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Theorem 4.16. Let ξi be given by (4.10) for all i = 0, 1, ..., N . Then it holds

Ê[X̃] =
N∑
i=1

P0(Ti−1)uiσ
(
0, P0(Ti)

P0(Ti−1)

)
,

−Ê[−X̃] =
N∑
i=1

P0(Ti−1)uiσ
(
0, P0(Ti)

P0(Ti−1)

)
,

where the function uiσ : [0, Ti−1]× R→ R, for all i = 1, ..., N and σ ∈ Σ, is defined by

uiσ(t, xi) := 1
Ki
EP [(X i

Ti−1
−Ki)

+]

and Ki and the process X i = (X i
s)t≤s≤Ti−1

are given as in Theorem 4.15.

Proof. Although Ê is sublinear, we can still use the put-call parity to prove the claim,

since interest rate swaps have a symmetric payoff. For all i = 1, ..., N , we have

ξi = (Ti − Ti−1)
(
LTi−1

(Ti)−K
)+ − (Ti − Ti−1)

(
LTi−1

(Ti)−K
)
.

Thus, we get X̃ = Ỹ − Z̃, where Ỹ , respectively Z̃, denotes the discounted payoff of a

cap, respectively interest rate swap; that is,

Ỹ :=
N∑
i=1

M−1
Ti

(Ti − Ti−1)
(
LTi−1

(Ti)−K
)+
,

Z̃ :=
N∑
i=1

M−1
Ti

(Ti − Ti−1)
(
LTi−1

(Ti)−K
)
.

Due to the sublinearity of Ê, we get Ê[X̃] ≤ Ê[Ỹ ] + Ê[−Z̃] and Ê[X̃] ≥ Ê[Ỹ ] − Ê[Z̃].

Hence, by Proposition 4.13, we obtain Ê[X̃] = Ê[Ỹ ]− Ê[Z̃]. In a similar fashion, we can

show that −Ê[−X̃] = −Ê[−Ỹ ] − Ê[Z̃]. Therefore, the assertion follows by the classical

put-call parity.

4.5.6 In-Arrears Contracts

The pricing procedure from the previous subsection also works for contracts in which the

floating rate is settled in arrears. The difference between the contracts from above and

in-arrears contracts is that the simply compounded spot rate is reset each time when the

contract pays off. As a representative contract, we show how to price in-arrears swaps;

other contracts, such as in-arrears caps and floors, can be priced in a similar way. In

contrast to a plain vanilla interest rate swap, the cashflows are now given by

ξi = 1{0,1,...,N−1}(i)(Ti+1 − Ti)
(
LTi(Ti+1)−K

)
(4.11)
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for all i = 0, 1, ..., N . Then the contract is not necessarily symmetric, and the pricing

bounds are given by the prices from traditional models with the highest and the lowest

possible volatility, respectively. As a consequence, there is not a unique swap rate for

in-arrears swaps.

Theorem 4.17. Let ξi be given by (4.11) for all i = 0, 1, ..., N . Then it holds

Ê[X̃] =
N∑
i=1

P0(Ti)u
i
σ

(
0, P0(Ti−1)

P0(Ti)

)
,

−Ê[−X̃] =
N∑
i=1

P0(Ti)u
i
σ

(
0, P0(Ti−1)

P0(Ti)

)
,

where the function uiσ : [0, Ti−1]× R→ R, for all i = 1, ..., N and σ ∈ Σ, is defined by

uiσ(t, xi) := EP0 [X
i
Ti−1

(X i
Ti−1
− 1

Ki
)],

for Ki as in Theorem 4.15 and the process X i = (X i
s)t≤s≤Ti−1

is given by

X i
s = xi −

d∑
j=1

∫ s

t

σju(Ti, Ti−1)X i
uσjdB

j
u.

Proof. As in the proof of Theorem 4.15, by Lemma 4.9, we need to compute Ỹ0 and Z̃0

to find Ê[X̃] and Ê[−X̃], respectively. We only show how to obtain Ỹ0; we can find Z̃0 in

the same way.

In order to find Ỹ0, we rewrite Ỹi for all i = 0, 1, ..., N and define a sequence of random

variables to which we can apply Proposition 4.10. For all i = 0, 1, ..., N , we have

Ỹi = PTi−1
(Ti)ÊTiTi−1

[ξi + Ỹi+1],

where ξi is given by (4.11) and ỸN+1 = 0. Since ξN = 0, we get ỸN = 0. For all

i = 0, 1, ..., N − 1, we obtain, by Proposition 4.5 (ii),

Ỹi = X
Ti−1,Ti+1

Ti−1
ÊTi+1

Ti−1
[X

Ti+1,Ti
Ti

(X
Ti+1,Ti
Ti

− 1
Ki+1

) +X
Ti+1,Ti
Ti

Ỹi+1].

We define Ȳi := X
Ti−1,Ti−2

Ti−2
Ỹi−1 for all i = 1, ..., N + 1. Then it holds Ỹ0 = X0,T0

0 Ȳ1 and

Ȳi = X
Ti−1,Ti
Ti−2

ÊTiTi−2
[X

Ti,Ti−1

Ti−1
(X

Ti,Ti−1

Ti−1
− 1

Ki
) + Ȳi+1]

for all i = 1, ..., N , where ȲN+1 = 0. Furthermore, we set ti := Ti−2 for all i = 1, ..., N+2.
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Then we get 0 = t1 < ... < tN+2 ≤ τ and

Ȳi = X
ti+1,ti+2

ti Êti+2

ti [X
ti+2,ti+1

ti+1
(X

ti+2,ti+1

ti+1
− 1

Ki
) + Ȳi+1]

for all i = 1, ..., N . Therefore, by Proposition 4.10, it holds

Ȳ1 =
N∑
i=1

X
t2,ti+2

0 uiσ(0, X
ti+2,ti+1

0 ),

which proves the assertion.

4.6 Market Incompleteness

Empirical evidence shows that volatility risk in fixed income markets cannot be hedged by

trading solely bonds, which is referred to as unspanned stochastic volatility and contradicts

many traditional term structure models. By using data on interest rate swaps, caps, and

floors, Collin-Dufresne and Goldstein (2002) showed that interest rate derivatives exposed

to volatility risk are driven by factors that do not affect the term structure. Therefore,

derivatives exposed to volatility risk, such as caps and floors, cannot be replicated by

a portfolio consisting solely of bonds, which implies that it is not possible to hedge

volatility risk in fixed income markets. The empirical findings of Collin-Dufresne and

Goldstein (2002) contradict many traditional term structure models, since bond prices are

typically functions depending on all risk factors driving the model and bonds can typically

be used to hedge caps and floors. As a consequence, Collin-Dufresne and Goldstein

(2002) examined which term structure models exhibit unspanned stochastic volatility;

this led to the development of new models displaying unspanned stochastic volatility

(Casassus, Collin-Dufresne, and Goldstein, 2005; Filipović, Larsson, and Statti, 2019;

Filipović, Larsson, and Trolle, 2017).

In the presence of volatility uncertainty, term structure models naturally exhibit un-

spanned stochastic volatility, since volatility uncertainty naturally leads to market incom-

pleteness. A classical result in the literature on robust finance is that model uncertainty

leads to market incompleteness: instead of perfectly hedging derivatives, one has to su-

perhedge the payoff of most derivatives, which can be inferred from the pricing-hedging

duality. Similar to the pricing-hedging duality in the presence of volatility uncertainty

(Vorbrink, 2014, Theorem 3.6), we can show that it is not possible to hedge a contract

with an asymmetric payoff with a portfolio of bonds. From Theorem 4.15 and Theorem

4.16, we can deduce that caps and floors have an asymmetric payoff if σ > σ. Therefore,

derivatives exposed to volatility risk cannot be hedged by trading solely bonds when there

is volatility uncertainty.

Moreover, the uncertain volatility affects prices of nonlinear contracts, while prices
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of linear contracts and the term structure are robust with respect to the volatility—

confirming the empirical findings of Collin-Dufresne and Goldstein (2002). In simple

model specifications, bond prices have an affine structure with respect to the short rate

and an additional factor—which can be inferred from the examples in Section 3.3. They

are, however, completely unaffected by the uncertain volatility and its bounds. The same

holds for the swap rate, since the price of an interest rate swap (by Proposition 4.13) is a

linear combination of bond prices, as in the classical case without volatility uncertainty.

On the other hand, the uncertain volatility influences prices of caps and floors, since they

depend on the bounds for the volatility (by Theorems 4.15 and 4.16). Therefore, the

prices of caps and floors are driven by an additional factor that does not influence term

structure movements and (thus) changes in swap rates.

4.7 Estimates for the Proofs

In the end, we derive the estimates used in the proofs of Proposition 4.10 and Theorem

4.14, respectively.

4.7.1 Estimate for the Proof of Proposition 4.10

Let us define the function ϕ : R2n+1 → R by

ϕ(x) := f(x̂0) +
n∑
i=1

x̃iui(x̂i),

where f : R→ R, for a positive integer m and a constant C > 0, satisfies

|f(x̂0)− f(ŷ0)| ≤ C(1 + |x̂0|m + |ŷ0|m)|x̂0 − ŷ0|

and ui : R→ R, for all i = 1, ..., n, satisfies

|ui(x̂i)| ≤ C(1 + |x̂i|m+1),

|ui(x̂i)− ui(ŷi)| ≤ C(1 + |x̂i|m + |ŷi|m)|x̂i − ŷi|.
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Then we have

|ϕ(x)− ϕ(y)| =
∣∣∣∣f(x̂0)− f(ŷ0) +

n∑
i=1

x̃iui(x̂i)− ỹiui(ŷi)
∣∣∣∣

≤ |f(x̂0)− f(ŷ0)|+
n∑
i=1

|ui(x̂i)||x̃i − ỹi|+ |ỹi||ui(x̂i)− ui(ŷi)|

≤ C(1 + |x̂0|m + |ŷ0|m)|x̂0 − ŷ0|+
n∑
i=1

C(1 + |x̂i|m+1)|x̃i − ỹi|

+ |ỹi|C(1 + |x̂i|m + |ŷi|m)|x̂i − ŷi|

≤ C(2 + |x̂0|m+1 + |ŷ0|m+1)|x̂0 − ŷ0|+
n∑
i=1

C(1 + |x̂i|m+1)|x̃i − ỹi|

+ 2C(1 + |ỹi|m+1 + |x̂i|m+1 + |ŷi|m+1)|x̂i − ŷi|

≤ 2C

(
1 + |x̂0|m+1 + |ŷ0|m+1 +

n∑
i=1

|x̂i|m+1 + |x̃i|m+1 + |ŷi|m+1 + |ỹi|m+1

)
×
(
|x̂0 − ŷ0|+

n∑
i=1

|x̂i − ŷi|+ |x̃i − ỹi|
)

≤ 2CC̃(1 + |x|m+1 + |y|m+1)|x− y|.

4.7.2 Estimates for the Proof of Theorem 4.14

Let us define the function ϕ : RN → R by

ϕ(x) :=

(
1− xN −

N∑
i=1

xi(Ti − Ti−1)K

)+

.

Then for λ ∈ (0, 1), we have

ϕ
(
λx+ (1− λ)y

)
=

(
1−

(
λxN + (1− λ)yN

)
−

N∑
i=1

(
λxi + (1− λ)yi

)
(Ti − Ti−1)K

)+

≤ λ

(
1− xN −

N∑
i=1

xi(Ti − Ti−1)K

)+

+ (1− λ)

(
1− yN −

N∑
i=1

yi(Ti − Ti−1)K

)+

= λϕ(x) + (1− λ)ϕ(y).
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Moreover, it holds

|ϕ(x)− ϕ(y)| =
∣∣∣∣(1− xN −

N∑
i=1

xi(Ti − Ti−1)K

)+

−
(

1− yN −
N∑
i=1

yi(Ti − Ti−1)K

)+∣∣∣∣
≤
∣∣∣∣(xN − yN) +

N∑
i=1

(xi − yi)(Ti − Ti−1)K

∣∣∣∣
≤

N∑
i=1

(
1 + (Ti − Ti−1)K

)
|xi − yi|

≤
( N∑
i=1

(
1 + (Ti − Ti−1)K

)2
) 1

2

|x− y|.
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Chapter 5

Conclusion

In this thesis, we tame the uncertainty about the volatility in term structure models by

using methods from robust finance and the calculus of G-Brownian motion. As opposed to

stochastic volatility models, we consider a collection of probabilistic laws for the volatility

process instead of one. This framework is naturally connected to a G-Brownian motion

and enables us to acquire the results from the literature on G-Brownian motion. With the

tools from the calculus of G-Brownian motion, we study classical models in mathematical

finance for the term structure of interest rates and the pricing of interest rate derivatives in

the presence of volatility uncertainty. As a result, we obtain arbitrage-free term structures

that are completely robust with respect to misspecifications regarding the probabilistic

law of the volatility, and we derive robust pricing formulas for derivative contracts in

fixed income markets, depending on the term structure of interest rates.

In a first step, we investigate the traditional Hull-White model when there is uncer-

tainty about the volatility. We show that the common approach to pricing zero-coupon

bonds, martingale modeling, does not work in the presence of volatility uncertainty;

hence, we follow a different approach: by introducing a market price of uncertainty, we

adjust the short rate by its uncertain variance to obtain an arbitrage-free term structure.

The resulting term structure is completely robust with respect to the volatility: the bond

prices do neither depend on the future evolution of the volatility nor on its bounds; in-

stead, they depend on the current value of the market price of uncertainty. In particular,

the bonds are exponentially affine with respect to the short rate and the market price of

uncertainty. Due to the adjustment of the short rate, the model is inconsistent with the

traditional Hull-White model. However, the model becomes consistent with the tradi-

tional one after fitting the model prices to the yield curve. All of these results hold true

if the short rate is driven by multiple risk factors.

In order to generalize the results from the first step, we study the famous HJM

model in the presence of volatility uncertainty. The main result is a sufficient condition,

called drift condition, for the absence of arbitrage on the related bond market. In the

presence of volatility uncertainty, the absence of arbitrage requires additional market

98



prices, which are referred to as the market prices of uncertainty. The drift condition

fully characterizes the risk-neutral dynamics of the forward rate in terms of its diffusion

term. Since the latter also includes the uncertain volatility, the risk-neutral forward rate

dynamics exhibit drift uncertainty. Using the drift condition, it is possible to construct

arbitrage-free term structure models in the presence of volatility uncertainty, which we

demonstrate in examples. In particular, we obtain robust versions of the Ho-Lee term

structure and the Hull-White term structure, respectively. In examples where this is not

possible, the drift condition shows how to adjust the model in order to be arbitrage-free

when the volatility is uncertain, which we demonstrate in an example corresponding to

the Vasicek term structure. The resulting term structures do not rely on any assumptions

how the volatility evolves in the future; instead, the term structure is determined by the

historical volatility. As a consequence, the resulting term structure models are completely

robust with respect to the volatility.

In a last step, we deal with the pricing of contracts in fixed income markets under

volatility uncertainty. The starting point is an arbitrage-free bond market under volatility

uncertainty as determined by the previous results. Such a framework leads to a sublinear

pricing measure, which we can use to determine either the price of a contract or its

pricing bounds. To simplify the pricing of cashflows, we introduce the forward sublinear

expectation, under which the expectations hypothesis holds in a robust sense. We can

use the forward sublinear expectation to price bond options. Due to the nonlinearity of

the pricing measure, we additionally derive methods to price contracts consisting of a

collection of cashflows, which differs from the case without volatility uncertainty. We can

price contracts with a simple payoff structure as in the classical case; for more general

contracts, we need to use a backward induction procedure to find the price. We can use

this procedure to price contracts consisting of a stream of bond options. These results

enable us to price all major interest rate derivatives—including linear contracts, such as

fixed coupon bonds, floating rate notes, and interest rate swaps, and nonlinear contracts,

such as swaptions, caps and floors, and in-arrears contracts. We obtain a single price

for linear contracts, which is the same as the one obtained by traditional term structure

models, and a range of prices for nonlinear contracts, which is bounded by the prices

from traditional models with the highest and the lowest possible volatility, respectively.

Therefore, the pricing of typical interest rate derivatives reduces to computing prices in

the corresponding model without volatility uncertainty. Since volatility uncertainty leads

to market incompleteness, we can show that term structure models in the presence of

volatility uncertainty naturally display unspanned stochastic volatility.
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Appendix A

G-Brownian Motion Calculus

This chapter gives a brief introduction to the calculus of G-Brownian motion, which was

invented by Peng (2007, 2008). We start by introducing sublinear expectation spaces,

which can be seen as a generalization of probability spaces. Then we define distributional

properties of random variables on such spaces. These notions allow us to state the

definition of a G-Brownian motion and to construct a G-Brownian motion, proving its

existence. In addition, we discuss the most important properties of a G-Brownian motion,

and we do the first step in stochastic calculus with G-Brownian motion by defining

stochastic integrals. Further results can be found in the book of Peng (2019) and in the

related references given in the previous chapters. The exposition in this chapter closely

follows the respective parts in the book of Peng (2019), while the proofs are omitted.

A.1 Sublinear Expectation Spaces

In order to define a sublinear expectation space, we consider a set of possible states and

a particular space of random variables. Let Ω be a given set and let H be a linear space

of real-valued functions defined on Ω. The set Ω represents the set of possible states in

the future, which are presently unknown, and the space H (roughly speaking) consists of

all random variables, which yield a certain outcome for each possible state in the future.

We assume that H satisfies c ∈ H for c ∈ R and |X| ∈ H if X ∈ H. This is the minimal

assumption on H that enables us to define a sublinear expectation space. However, the

remaining definitions and results require an additional assumption on H: we assume that

ϕ(X1, ..., Xd) ∈ H if X1, ..., Xd ∈ H for d ∈ N and ϕ ∈ Cl,Lip(Rd), where Cl,Lip(Rd)

denotes the linear space of functions ϕ : Rd → R satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|n + |y|n)|x− y|

for some C > 0 and n ∈ N, both depending on ϕ. We call X = (X1, ..., Xd) a d-

dimensional random vector if Xi ∈ H for all i = 1, ..., d.
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We obtain a sublinear expectation space if we equip the set of states and the space

of random variables with a sublinear expectation, which is a sublinear functional defined

on the space of random variables.

Definition A.1. We call a functional Ê : H → R a sublinear expectation if it satisfies

the following properties for X, Y ∈ H.

(i) Monotonicity: If X ≤ Y , then Ê[X] ≤ Ê[Y ].

(ii) Constant Preserving: For c ∈ R, it holds Ê[c] = c.

(iii) Subadditivity: It holds Ê[X + Y ] ≤ Ê[X] + Ê[Y ].

(iv) Positive Homogeneity: For λ ≥ 0, it holds Ê[λX] = λÊ[X].

The tripel (Ω,H, Ê) is then called a sublinear expectation space. It should be noted that

the positive homogeneity of a sublinear expectation Ê is equivalent to

Ê[λX] = λ+Ê[X] + λ−Ê[−X]

for λ ∈ R and X ∈ H.

Next, we construct the completion of a sublinear expectation space, which is needed

in Sections A.3 and A.4. We have the following useful inequalities.

Proposition A.2. For X, Y ∈ H and 1 < p, q <∞ such that 1
p

+ 1
q

= 1, it holds

Ê[|XY |] ≤ Ê[|X|p]
1
p Ê[|Y |q]

1
q ,

Ê[|X + Y |p]
1
p ≤ Ê[|X|p]

1
p + Ê[|Y |p]

1
p .

In particular, for 1 ≤ p < p̃, it holds

Ê[|X|p]
1
p ≤ Ê[|X|p̃]

1
p̃ .

For p ≥ 1, we define Hp
0 := {X ∈ H | Ê[|X|p] = 0}, which is a linear subspace of H. Then

we take Hp
0 as our null-space in order to introduce the quotient space H/Hp

0. For each

equivalence class {X} ∈ H/Hp
0 with a representation X ∈ H, we can define a sublinear

expectation on the quotient space by Ê[{X}] := Ê[X]. Defining ‖ · ‖p := Ê[| · |p]
1
p , we

obtain a norm on H/Hp
0 by Proposition A.2. Then we extend H/Hp

0 to its completion

under the norm ‖ · ‖p, which we denote by Ĥp.

Since we can define a partial order on the completion of a sublinear expectation

space, we are able to extend the sublinear expectation to a sublinear expectation on the

completion. We define the mapping + : H → H by X+ := max{X, 0}, which can be

101



continuously extended to Ĥp, since it is a contraction mapping by the inequality

|X+ − Y +| ≤ |X − Y |.

Therefore, we can define a partial order, denoted by ≥, on the completion Ĥp—that is,

we write X ≥ Y or Y ≤ X if X − Y = (X − Y )+. Since it holds

|Ê[X]− Ê[Y ]| ≤ Ê[|X − Y |] ≤ ||X − Y ||p,

the sublinear expectation Ê can be continuously extended to a mapping on Ĥp as well,

on which it is still a sublinear expectation.

A.2 G-Normal Distribution

To introduce G-normally distributed random vectors, we first need to define some notions

related to distributions of random vectors on sublinear expectation spaces. We denote

by Cb,Lip(Rd) the space of real-valued functions on Rd that are bounded and Lipschitz

continuous, serving as the space of test functions in the following definitions.

Definition A.3. Let X and Y be two d-dimensional random vectors on a sublinear

expectation space (Ω,H, Ê). We say that X and Y are identically distributed, denoted by

X
d
= Y , if for all ϕ ∈ Cb,Lip(Rd), it holds

Ê[ϕ(X)] = Ê[ϕ(Y )].

Definition A.4. We say that a d̃-dimensional random vector Y on a sublinear expectation

space (Ω,H, Ê) is independent of a d-dimensional random vector X on (Ω,H, Ê) if for

each ϕ ∈ Cb,Lip(Rd+d̃), it holds

Ê[ϕ(X, Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Definition A.5. Let X and Y be two d-dimensional random vectors on a sublinear

expectation space (Ω,H, Ê). We call Y an independent copy of X if X
d
= Y and Y is

independent of X.

The previous definitions enable us to define G-normally distributed random vectors.

The definition generalizes the notion of normally distributed random vectors (with zero

mean) from probability theory.

Definition A.6. We say that a d-dimensional random vector X on a sublinear expecta-
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tion space (Ω,H, Ê) is G-normally distributed if

aX + bY
d
=
√
a2 + b2X

for a, b ∈ R+, where Y is an independent copy of X.

The letter G in the definition of a G-normally distributed random vector refers to a

function that characterizes its distribution. For a G-normally distributed d-dimensional

random vector X, we define the function G : Sd → R by

G(A) := 1
2
Ê[XAX ′].

By using the properties of Ê, one can check that G is a monotone, sublinear function;

that is, for A,B ∈ Sd, it satisfies

G(A) ≤ G(B) if A ≤ B,

G(λA) = λG(A) for λ ∈ R+,

G(A+B) ≤ G(A) +G(B).

(A.1)

Since G is also continuous, one can show that there exists a bounded, closed, and convex

subset Σ ⊂ Sd+ such that

G(A) = 1
2

sup
σ∈Σ

tr(σA).

The function G characterizes the distribution of a G-normally distributed random vector

in the sense that its expectation (which satisfies additional properties) is the solution to

a nonlinear partial differential equation with generator G.

Proposition A.7. Let X be a G-normally distributed d-dimensional random vector X

on a sublinear expectation space (Ω,H, Ê). Then the function u : R+×Rd → R, which is

defined by

u(t, x) := Ê[ϕ(x+
√
tX)]

for ϕ ∈ Cl,Lip(Rd), satisfies for s, t ∈ R+ and x ∈ Rd,

u(t+ s, x) = Ê[u(t, x+
√
sX)]

and for T > 0, there exist constants C, k > 0 such that

|u(t, x)− u(t, y)| ≤ C(1 + |x|k + |y|k)|x− y|,

|u(t, x)− u(t+ s, x)| ≤ C(1 + |x|k)
√
s
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for s, t ∈ [0, T ] and x, y ∈ Rd. Moreover, the function u is the unique viscosity solution

of the nonlinear partial differential equation

∂tu+G(D2
xxu) = 0, u(0, x) = ϕ(x).

Conversely, one can show that for an arbitrary monotone, sublinear, and continu-

ous function G there exists a G-normally distributed random variable, which proves the

existence of G-normally distributed random variables.

Proposition A.8. Let G : Sd → R be a continuous function that satisfies (A.1). Then

there exists a G-normally distributed d-dimensional random vector X on a sublinear ex-

pectation space (Ω,H, Ê) satisfying

G(A) = 1
2
Ê[XAX ′].

A.3 G-Brownian Motion

First of all, we introduce the definition of a G-Brownian motion, which is defined as a

special type of stochastic process on a sublinear expectation space.

Definition A.9. Let (Ω,H, Ê) be a sublinear expectation space. We call (Xt)t≥0 a d-

dimensional stochastic process if Xt is a d-dimensional random vector in H for all t.

Definition A.10. We call a d-dimensional stochastic process B = (Bt)t≥0 on a sublinear

expectation space (Ω,H, Ê) a G-Brownian motion if it satisfies the following properties.

(i) It holds B0 = 0.

(ii) For t, s ∈ R+, the increments Bt+s − Bt and Bs are identically distributed, and

Bt+s −Bt is independent of (Bt1 , ..., Btn) for n ∈ N and 0 ≤ t1 ≤ ... ≤ tn ≤ t.

(iii) It holds limt→0
1
t
Ê[|Bt|3] = 0 and Ê[Bt] = 0 = Ê[−Bt].

Similar to the G-normal distribution, the letter G in the previous definition refers to a

function that characterizes the distribution of a G-Brownian motion. For a G-Brownian

motion B, we define the function G : Sd → R by

G(A) := 1
2
Ê[B1AB

′
1].

It is the generator of the partial differential equation that characterizes the distribution

of B, which shows that a G-Brownian motion is G-normally distributed.
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Theorem A.11. Let B be a d-dimensional G-Brownian motion on a sublinear expecta-

tion space (Ω,H, Ê). Then the function u : R+ × Rd → R, defined by

u(t, x) := Ê[ϕ(x+Bt)]

for ϕ ∈ Cb,Lip(Rd), is the viscosity solution of the nonlinear partial differential equation

∂tu−G(D2
xxu) = 0, u(0, x) = ϕ(x).

In particular, then B1 is G-normally distributed and Bt
d
=
√
tB1.

Remark A.12. If B = (B1, ..., Bd) is a d-dimensional G-Brownian motion on a sublinear

expectation space (Ω,H, Ê), then for all i = 1, ..., d, we know that Bi is a one-dimensional

Gi-Brownian motion, where Gi : R→ R is given by

Gi(a) = 1
2
Ê[(Bi

1)2a].

In order to construct a G-Brownian motion, which ultimately proves its existence, we

consider the canonical process on the following spaces. Let Ω := Cd
0 (R+), equipped with

the distance δ : Ω× Ω→ R, defined by

δ(ω, ω̃) :=
∞∑
i=1

2−i
(
(max
t∈[0,i]

|ωt − ω̃t|) ∧ 1
)
.

For T ∈ R+, let ΩT := Cd
0 ([0, T ]) and let B = (Bt)t≥0 be the canonical process on Ω.

Then we define the spaces

Lip(ΩT ) :=
{
ϕ(Bt1∧T , ..., Btn∧T )

∣∣ n ∈ N, t1, ..., tn ∈ R+, ϕ ∈ Cl,Lip(Rd×n)
}

for T ∈ R+ and Lip(Ω) :=
⋃∞
i=1 Lip(Ωi). In particular, we have Bt ∈ Lip(Ω) for all t.

Next, we construct a sublinear expectation on (Ω, Lip(Ω)) such that the canonical

process B is a G-Brownian motion. For a given monotone, sublinear function G : Sd → R,

let (ξi)
∞
i=1 be a sequence of G-normally distributed d-dimensional random vectors on a

sublinear expectation space (Ω̃, H̃, Ẽ) (which exist by Proposition A.8) such that ξi+1 is

independent of (ξ1, ..., ξi) for all i. For X ∈ Lip(Ω) such that

X = ϕ(Bt1 −Bt0 , ..., Btn −Btn−1)

for ϕ ∈ Cl,Lip(Rd×n) and 0 = t0 < t1 < ... < tn <∞, where n ∈ N, we define the sublinear

expectation Ê by

Ê[ϕ(Bt1 −Bt0 , ..., Btn −Btn−1)] := Ẽ[ϕ(
√
t1 − t0ξ1, ...,

√
tn − tn−1ξn)],
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and for all i = 1, ..., n − 1, we define the related conditional sublinear expectation Êti ,
mapping into Lip(Ωti), by

Êti [ϕ(Bt1 −Bt0 , ..., Btn −Btn−1)] := ψ(Bt1 −Bt0 , ..., Bti −Bti−1
),

where the function ψ : Rd×i → R is defined by

ψ(x1, ..., xi) := Ẽ[ϕ(x1, ..., xi,
√
ti+1 − tiξi+1, ...,

√
tn − tn−1ξn)].

Then the canonical process B is a G-Brownian motion under Ê. We call the sublinear

expectation Ê, defined by this procedure, G-expectation.

The G-expectation can be extended to the completions of the spaces introduced above,

respectively. For p ≥ 1, we denote by LpG(Ω) and LpG(ΩT ) the completions of Lip(Ω)

and Lip(ΩT ) under the norm ‖ · ‖p = Ê[| · |p]
1
p , respectively, which can be constructed

as described in Section A.1. Then we can continuously extend the G-expectation to

a sublinear expectation on (Ω, L1
G(Ω)), which we still denote by Ê. In addition, the

conditional G-expectation satisfies

∥∥Êt[X]− Êt[Y ]
∥∥

1
≤ ‖X − Y ‖1;

thus, we can extend it to a continuous mapping Êt : L1
G(Ω) → L1

G(Ωt). One can show

that the conditional G-expectation satisfies the following properties—including the tower

property, which shows that the G-expectation is time consistent.

Proposition A.13. For X, Y ∈ L1
G(Ω) and s, t ∈ R+, the following properties hold.

(i) If X ≤ Y , then Êt[X] ≤ Êt[Y ].

(ii) For ξ ∈ L1
G(Ωt), it holds Êt[ξ] = ξ.

(iii) It holds Êt[X + Y ] ≤ Êt[X] + Êt[Y ].

(iv) For ξ ∈ L1
G(Ωt) bounded, it holds Êt[ξX] = ξ+Êt[X] + ξ−Êt[−X].

(v) It holds Ês[Êt[X]] = Ês∧t[X] and, in particular, it holds Ê[Êt[X]] = Ê[X].

A.4 Stochastic Integrals

We construct the space of stochastic processes that are admissible for stochastic integra-

tion as the completion of the space of simple processes. For p ≥ 1 and T > 0, we denote
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by Mp,0
G (0, T ) the collection of all processes η = (ηt)0≤t≤T that are of the form

ηt =
N∑
i=1

ξi1[ti−1,ti)(t),

where ξi ∈ LpG(Ωti−1
) for all i = 1, ..., N and 0 = t0 < t1 < ... < tN = T . For each simple

process η ∈ Mp,0
G (0, T ) with a representation from above, we define the related Bochner

integral by

∫ T

0

ηtdt :=
N∑
i=1

ξi(ti − ti−1).

Then we can define the sublinear expectation Ẽ : Mp,0
G (0, T )→ R by

Ẽ[η] := 1
T
Ê
[∫ T

0

ηtdt

]
.

Therefore, as in Section A.1, we can take the completion of Mp,0
G (0, T ), which we denote

by Mp
G(0, T ), under the norm ‖ · ‖M,p, defined by

‖η‖M,p := Ê
[∫ T

0

|ηt|pdt
] 1
p

.

We denote by Mp
G(0, T ;Rd) the space of all d-dimensional processes η = (η1, ..., ηd) such

that ηi ∈Mp
G(0, T ) for all i = 1, ..., d.

Next, we define stochastic integrals for integrands in the space of admissible stochastic

processes by using the isometry property of stochastic integrals. For this purpose, we

consider a one-dimensional G-Brownian motion B = (Bt)t≥0 with

G(a) = 1
2

sup
σ∈[σ2,σ2]

{σa}

for a ∈ R; we can define the stochastic integral of a d-dimensional stochastic process with

respect to a d-dimensional G-Brownian motion for each component separately. For each

simple process η ∈ M2,0
G (0, T ) with a representation as introduced at the beginning of

this section, we define the stochastic integral

∫ T

0

ηtdBt :=
N∑
i=1

ξi(Bti −Bti−1
),

mapping into L2
G(ΩT ). Then we have the following result, which allows us to extend the

stochastic integral to the completion of its domain.
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Lemma A.14. For η ∈M2,0
G (0, T ), it holds

Ê
[∫ T

0

ηtdBt

]
= 0,

Ê
[(∫ T

0

ηtdBt

)2]
≤ σ2Ê

[∫ T

0

η2
t dt

]
.

Hence, the stochastic integral is a continuous linear mapping, and it can be continuously

extended to a mapping from M2
G(0, T ) into L2

G(ΩT ), still satisfying the properties from

Lemma A.14. Moreover, the stochastic integral satisfies the following properties.

Proposition A.15. Let η, θ ∈ M2
G(0, T ) and 0 ≤ r ≤ s ≤ t ≤ T . Then we have the

following properties.

(i) It holds ∫ t

r

ηudBu =

∫ s

r

ηudBu +

∫ t

s

ηudBu.

(ii) For X ∈ L1
G(Ωs) bounded, it holds∫ t

s

(Xηu + θu)dBu = X

∫ t

s

ηudBu +

∫ t

s

θudBu.

(iii) For X ∈ L1
G(Ω), it holds

Êr
[
X +

∫ t

s

ηudBu

]
= Êr[X].

A.5 Quadratic Variation

First of all, we introduce the quadratic variation process of a one-dimensional G-Brownian

motion. For a one-dimensional G-Brownian motion B = (Bt)t≥0 with

G(a) = 1
2

sup
σ∈[σ2,σ2]

{σa}

for a ∈ R, we define the quadratic variation process 〈B〉 = (〈B〉t)t≥0 by

〈B〉t := lim
n→∞

N∑
i=1

(Btni
−Btni−1

)2,

where 0 = tn0 < tn1 < ... < tnN = t for each n ∈ N such that

lim
n→∞

max
i=1,...,N

{tni − tni−1} = 0.
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We know that the limit in the definition of 〈B〉 is well-defined, since we have the identity

N∑
i=1

(Btni
−Btni−1

)2 = B2
t − 2

N∑
i=1

Btni−1
(Btni

−Btni−1
),

and the sum on the right-hand side converges in L2
G(Ω) as n→∞.

In contrast to the quadratic variation of a standard Brownian motion, the quadratic

variation of a G-Brownian motion is an uncertain process. The process 〈B〉 is an increas-

ing process with 〈B〉0 = 0. Moreover, for t, s ∈ R+, the increments 〈B〉t+s−〈B〉t and 〈B〉s
are identically distributed, the increment 〈B〉t+s−〈B〉t is independent of (〈B〉t1 , ..., 〈B〉tn)

for n ∈ N and 0 ≤ t1 ≤ ... ≤ tn ≤ t, and it holds limt→0
1
t
Ê[|〈B〉t|2] = 0. Then one can

show that the quadratic variation is maximally distributed, which means that it satisfies

the following property.

Theorem A.16. For ϕ ∈ Cl,Lip(R), it holds

Ê[ϕ(〈B〉t)] = sup
σ∈[σ2,σ2]

ϕ(σt).

Therefore, the quadratic variation of a G-Brownian motion is not deterministic (unless it

holds σ = σ). Due to Theorem A.16, the process 〈B〉 is bounded from above, respectively

below, by the quadratic variation process corresponding to a standard Brownian motion

with volatility σ, respectively σ.

Corollary A.17. It holds

σ2t ≥ 〈B〉t ≥ σ2t.

We can define integrals with respect to the quadratic variation process by the same

procedure as in the previous section. For a simple process η ∈ M1,0
G (0, T ) with a repre-

sentation as introduced at the beginning of Section A.4, we define

∫ T

0

ηtd〈B〉t =
N∑
i=1

ξi(〈B〉ti − 〈B〉ti−1
),

mapping into L1
G(ΩT ). Similar to the integral with respect to a G-Brownian motion, we

have the following isometry.

Lemma A.18. For η ∈M1,0
G (0, T ), it holds

Ê
[∣∣∣∣∫ T

0

ηtd〈B〉t
∣∣∣∣] ≤ σ2Ê

[∫ T

0

|ηt|dt
]
.
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Thus, the integral can be extended to a mapping from M1
G(0, T ) into L1

G(ΩT ), which still

satisfies the inequality from Lemma A.18. We also have the following identity.

Proposition A.19. For η ∈M2
G(0, T ), it holds

Ê
[(∫ T

0

ηtdBt

)2]
= Ê

[∫ T

0

η2
t d〈B〉t

]
.

We treat the d-dimensional case by introducing the quadratic covariation process.

For a d-dimensional G-Brownian motion B = (B1
t , ..., B

d
t )t≥0, we can define the quadratic

variation process for each component separately. The only important case missing is the

quadratic covariation of two different components. For this purpose, we consider two

one-dimensional G-Brownian motions B = (Bt)t≥0 and B̃ = (B̃t)t≥0. Then we define the

quadratic covariation process 〈B, B̃〉 = (〈B, B̃〉t)t≥0 by

〈B, B̃〉t := lim
n→∞

N∑
i=1

(Btni
−Btni−1

)(B̃tni
− B̃tni−1

),

where 0 = tn0 < tn1 < ... < tnN = t for each n ∈ N such that

lim
n→∞

max
i=1,...,N

{tni − tni−1} = 0.

This definition is meaningful, since it holds

N∑
i=1

(Btni
−Btni−1

)(B̃tni
− B̃tni−1

) = 1
4

N∑
i=1

(
(Btni

+ B̃tni
)− (Btni−1

+ B̃tni−1
)
)2

+ 1
4

N∑
i=1

(
(Btni

− B̃tni
)− (Btni−1

− B̃tni−1
)
)2

and the two sums on the right-hand side converge to the quadratic variations of B + B̃

and B − B̃, respectively, which are both one-dimensional G-Brownian motions. Thus,

〈B, B̃〉t = 1
4
〈B + B̃〉t + 1

4
〈B − B̃〉t.

For η ∈M1
G(0, T ), we then define the integral∫ T

0

ηtd〈B, B̃〉t := 1
4

∫ T

0

ηtd〈B + B̃〉t + 1
4

∫ T

0

ηtd〈B − B̃〉t.
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Acciaio, B., M. Beiglböck, F. Penkner, and W. Schachermayer (2016). A model-free

version of the fundamental theorem of asset pricing and the super-replication theorem.

Mathematical Finance 26 (2), 233–251.

Adrian, T., R. K. Crump, and E. Moench (2013). Pricing the term structure with linear

regressions. Journal of Financial Economics 110 (1), 110–138.
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Carassus, L., J. Ob lój, and J. Wiesel (2019). The robust superreplication problem: A

dynamic approach. SIAM Journal on Financial Mathematics 10 (4), 907–941.

Casassus, J., P. Collin-Dufresne, and B. Goldstein (2005). Unspanned stochastic volatility

and fixed income derivatives pricing. Journal of Banking & Finance 29 (11), 2723–2749.

Cheridito, P., H. M. Soner, N. Touzi, and N. Victoir (2007). Second-order backward

stochastic differential equations and fully nonlinear parabolic PDEs. Communications

on Pure and Applied Mathematics 60 (7), 1081–1110.

Cochrane, J. H. and M. Piazzesi (2005). Bond risk premia. The American Economic

Review 95 (1), 138–160.

Collin-Dufresne, P. and R. S. Goldstein (2002). Do bonds span the fixed income markets?

Theory and evidence for unspanned stochastic volatility. The Journal of Finance 57 (4),

1685–1730.

Cont, R. and N. Perkowski (2019). Pathwise integration and change of variable for-

mulas for continuous paths with arbitrary regularity. Transactions of the American

Mathematical Society, Series B 6, 161–186.

Cox, J. C., J. E. Ingersoll Jr., and S. A. Ross (1985). A theory of the term structure of

interest rates. Econometrica 53 (2), 385–408.

112



Cuchiero, C., I. Klein, and J. Teichmann (2016). A new perspective on the fundamen-

tal theorem of asset pricing for large financial markets. Theory of Probability & Its

Applications 60 (4), 561–579.

Dai, Q. and K. Singleton (2003). Term structure dynamics in theory and reality. The

Review of Financial Studies 16 (3), 631–678.

Dai, Q., K. J. Singleton, and W. Yang (2007). Regime shifts in a dynamic term structure

model of U.S. Treasury bond yields. The Review of Financial Studies 20 (5), 1669–1706.

Denis, L., M. Hu, and S. Peng (2011). Function spaces and capacity related to a sublinear

expectation: Application to G-Brownian motion paths. Potential Analysis 34 (2), 139–

161.

Denis, L. and C. Martini (2006). A theoretical framework for the pricing of contingent

claims in the presence of model uncertainty. The Annals of Applied Probability 16 (2),

827–852.

El Karoui, N. and C. Ravanelli (2009). Cash subadditive risk measures and interest rate

ambiguity. Mathematical Finance 19 (4), 561–590.

Epstein, D. and P. Wilmott (1999). A nonlinear non-probabilistic spot interest rate

model. Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences 357 (1758), 2109–2117.

Epstein, L. G. and S. Ji (2013). Ambiguous volatility and asset pricing in continuous

time. The Review of Financial Studies 26 (7), 1740–1786.

Fadina, T., A. Neufeld, and T. Schmidt (2019). Affine processes under parameter uncer-

tainty. Probability, Uncertainty and Quantitative Risk 4 (5).

Fadina, T. and T. Schmidt (2019). Default ambiguity. Risks 7 (2), 64.

Fama, E. F. and R. R. Bliss (1987). The information in long-maturity forward rates. The

American Economic Review 77 (4), 680–692.
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