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1 | INTRODUCTION

Today, weather prediction is based on numerical weather
prediction (NWP) models. Such models are deterministic in

Abstract

Weather prediction today is performed with numerical weather prediction (NWP)
models. These are deterministic simulation models describing the dynamics of the
atmosphere, and evolving the current conditions forward in time to obtain a pre-
diction for future atmospheric states. To account for uncertainty in NWP models
it has become common practice to employ ensembles of NWP forecasts. However,
NWP ensembles often exhibit forecast biases and dispersion errors, thus require sta-
tistical postprocessing to improve reliability of the ensemble forecasts. This work
proposes an extension of a recently developed postprocessing model utilizing autore-
gressive information present in the forecast error of the raw ensemble members.
The original approach is modified to let the variance parameter depend on the
ensemble spread, yielding a two-fold heteroscedastic model. Furthermore, an addi-
tional high-resolution forecast is included into the postprocessing model, yielding
improved predictive performance. Finally, it is outlined how the autoregressive
model can be utilized to postprocess ensemble forecasts with higher forecast hori-
zons, without the necessity of making fundamental changes to the original model.
We accompany the new methodology by an implementation within the R package
ensAR to make our method available for other researchers working in this area.
To illustrate the performance of the heteroscedastic extension of the autoregres-
sive model, and its use for higher forecast horizons we present a case-study for a
dataset containing 12 years of temperature forecasts and observations over Germany.
The case-study indicates that the autoregressive model yields particularly strong
improvements for forecast horizons beyond 24 h.
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nature and represent the dynamical physics of the atmosphere
by a set of differential equations. The current state of the
atmosphere is evolved forward in time to predict future atmo-
spheric states. The solutions strongly depend on the initial
conditions and model formulations. Thus, NWP models suf-

[Correction added on 20 October 2020, after first online publication:

Projekt Deal funding statement has been added.]

fer from several sources of uncertainties. Common practice
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in addressing these uncertainties is the use of ensemble
prediction systems (EPS). The NWP model is run multiple
times, each time with variations in the model parametriza-
tions and/or initial and boundary conditions (Gneiting and
Raftery, 2005; Leutbecher and Palmer, 2008).

A forecast ensemble can be viewed as a probabilistic fore-
cast that allows us to assess forecast uncertainty (Palmer,
2002). However, in practice, NWP ensembles exhibit forecast
biases and dispersion errors, and require statistical postpro-
cessing to improve calibration and forecast skill by utilizing
recently observed forecast errors and observations. An addi-
tional benefit is that statistical postprocessing can yield full
predictive probability distributions (Gneiting and Raftery,
2005; Wilks and Hamill, 2007; Gneiting and Katzfuss, 2014).

Statistical postprocessing models have enjoyed increasing
popularity and success during the last decades and a variety
of models tailored to specific problems have been developed.
Many of the recently proposed models are extensions and
modifications of two generic state-of-the-art models, namely
the Ensemble Model Output Statistics approach (EMOS:
Gneiting et al., 2005) and the Bayesian Model Averaging
(BMA: Raftery et al., 2005).

The original EMOS and BMA models were designed for
Gaussian distributed weather quantities, and a variety of mod-
ifications for other weather quantities have been developed
(see, e.g., Schefzik et al., 2013; Gneiting and Katzfuss, 2014;
Hemri et al., 2014, for an overview).

Further, postprocessing models allowing us to incorpo-
rate inter-variable, spatial, or temporal dependence structures
have gained increased interest (e.g. Berrocal et al., 2007;
Kleiber et al., 2011; Pinson, 2012; Schuhen et al., 2012;
Moller et al., 2013; Schefzik et al., 2013; Baran and Moller,
2015; Feldmann et al., 2015; Hemri ef al., 2015; Vrac and
Friederichs, 2015; Wilks, 2015; Ben Bouallegue et al., 2016;
Moller et al., 2016; Schefzik and Mdller, 2018).

A general overview of various aspects of ensemble post-
processing can be found in Vannitsem et al. (2018).

In line with the need for models incorporating depen-
dencies explicitly, Moller and GroB (2016) introduced a
postprocessing model for Gaussian distributed weather quan-
tities (such as temperature) that accounts for dependencies of
the individual ensemble forecasts across time. In this regard,
the model utilizes the autoregressive information present in
the forecast error of the individual raw ensemble forecasts to
set up corrected ensemble forecasts as well as a predictive
distribution.

The work presented here extends the AR-EMOS model
of Moller and GroB3 (2016) to be of heteroscedastic (or
“non-homogeneous”) nature, meaning that the variance
parameter of the model varies with the (empirical) ensem-
ble spread. A postprocessing model using a heteroscedastic
variance parameter accounts for the well-known spread-error
correlation (Barker, 1991; Whitaker and Loughe, 1998) of

forecast ensembles, stating that there is a positive association
between the forecast error (or predictive skill) and the spread
of the ensemble. The extended AR-EMOS model incorpo-
rates heteroscedasticity in “two directions,”
time (longitudinal) for each individual member, and across
the ensemble members (cross-sectional), to account for the
above-mentioned spread-error correlation. Therefore, the
approach allows for features not possible with standard post-
processing models, such as fitting a predictive distribution
based only on a single ensemble member. This feature is
investigated on the basis of an additional high-resolution
forecast added to the ensemble, which is known to improve
predictive performance to a great extent. While in the origi-
nal article of Moller and Grof3 (2016) the AR-EMOS model
was only applied to 24 h ahead ensemble forecasts, in general
it is also applicable to (arbitrary) other forecast horizons. In
this follow-up work we explain how the AR-EMOS model
can be used for other than 24 h ahead forecast horizons and
present results on predictive performance.

The development of postprocessing models accounting for
specific problems is a quite active area of research; however,
not all of the software carrying out model fitting for these
recently proposed methods is publicly available. Prominent
examples of postprocessing software implemented under the
statistical software environment R (R Core Team, 2019) are
the state-of-the-art EMOS and BMA models (Fraley et al.,
2018; Yuen et al., 2018), a recently developed heteroscedas-
tic logistic model for ensemble postprocessing (Messner
et al., 2013; 2014; 2017), implemented in the package crch
(Messner et al., 2016), and an implementation of verifica-
tion metrics to assess probabilistic forecasts in the package
scoringRules (Jordan et al., 2017).

In line with the need for publicly available postprocessing
software, this follow-up work to the methodology presented
in Moller and Grof3 (2016) is accompanied by an implementa-
tion within an R package called ensAR, which can currently
be installed from the Git repository hosting service GitHub by
following the link given in the references section (Grof3 and
Moller, 2019) and for example, making use of the package
devtools (Wickham and Chang, 2018).

A case-study for temperature forecasts of the Euro-
pean Centre for Medium-range Weather Forecasts (ECMWF)
(Buizza et al., 2007) over Germany is carried out to illustrate
the performance and properties of the proposed heteroscedas-
tic autoregressive postprocessing model.

namely across

2 | METHODS
2.1 | Individual ensemble member
postprocessing

Suppose that (ensemble) forecasts are initialized at a fixed
time point and predict a weather quantity a fixed time step
ahead (forecast horizon), which is (for now) not greater than
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24 h. In the following, upper case (Latin) letters refer to the
underlying random variable, and lower case (Latin) letters to
the respective observed value. If # denotes the time point (day
and hour) for which the forecast is valid, the data consists
of forecasts x;(¢), ... ,.xy(#), and a matching observation y()
of the underlying weather quantity Y (¢), forr =1, ...,T. For
example, if a forecast is initialized at 1200 UTC and predicts
18 h ahead, the forecast is valid at 0600 UTC of the follow-
ing day. Given the initialization time of the forecasts is fixed
(which would usually be the case) the data (observation and
ensemble members) is a collection of evenly (24 h) spaced
time series referring to the respective validation time point.

Let
Zn(®) =Y () — xn(?) (D

be the time series of forecast errors of the individual ensemble
members X, ().

Moller and Grof3 (2016) found that the observed individ-
ual error series z,(f) can exhibit substantial autoregressive
behaviour. The authors propose to utilize this residual autore-
gressive information to obtain a corrected (AR-adjusted) fore-
cast ensemble and to define a predictive distribution based on
this AR-adjusted ensemble forecast.

In this regard, it is assumed that each {Z,,(¢)} follows an
autoregressive process of order p,,, denoted by AR(p,,), that
is,

pm
Zn(t) =t = Y B j 1 Zn(t = ) = ] + Em(0),
j=1

where {e,,(#)} is white noise with expectation E(g,,(t)) = 0
and variance Var(g,,(t)) = 2. Then the random variable Y (r)
representing the weather quantity can be written as

Y(t) = Xn(t) + () »
where

Pm
(1) = X (0) + @+ Y B [0 = J) = Xt = ) = t]
j=1
can be viewed as a “corrected” forecast member for Y(r)
based on the original ensemble member x,,(?), x,,(t — 1), ...,
Xm(t — py) at past time points up to and including ¢, and the
observation y(t — 1), ..., y(t — pm).

Performing the described procedure for each ensemble
member x,,(f) individually yields an “AR-adjusted” or “cor-
rected” forecast ensemble X1, ... ,Xy.

This approach of obtaining a corrected fore-
cast ensemble rather than a predictive probability
distribution/density has a connection to so-called
“member-by-member-postprocessing” (MBMP: Van Schaey-
broeck and Vannitsem, 2015; Schefzik, 2017). MBMP
approaches have gained increased interest, as they retain the
dependence structure inherent in the original raw forecast
ensemble, while this implicit dependence information is
often lost when performing (univariate) postprocessing.

Royal Meteorological Society
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The variance of the autoregressive process {Z,(f)} in
Equation 1, Var(Z,(t)) =: y2(t), is given as

Forecast error variance

o2

- , 2
1= funipm(l)—---— ﬂm,pmpm(Pm)

et =

where p,,(k) is the autocorrelation function of the process
{Z.,(®)} at lag k, see for example Cryer and Chan (2008,
equation 4.3.31). In R, the autocorrelation function of an
autoregressive moving average (ARMA) process can be com-
puted with the function ARMAacf.

23 |

If the (ensemble) forecasts are less than or equal to 24h
ahead, it is obvious how to obtain the corrected ensemble
forecasts X, based on the AR-fit to the error series Z,,(¢),
as the values x,,(7), x,(t—1), ..., xu(t—pm), as well as
y(t—1), ..., y(t—pn) are readily available at time point .
So the required parameters of the AR process can be directly
estimated from the (observed) training series z(f—s),...,
z2(t—2), z(t — 1) of length s.

However, if the considered forecast horizon is in the inter-
val (24h, 48h] and ¢ is any time point (day and hour) for which
the forecast(s) are valid, then the observed error z(t — 1) is
not available, as y(z — 1) has not yet been observed. Therefore,
a pre-processing step is introduced before the AR-adjusted
ensemble can be obtained. To compensate for the unavailable
observed error z(t — 1), an AR process is fitted in advance to
z2(t—s5),...,z2(t—3), z(t — 2), and z(t — 1) is predicted from the
respective AR model fit.

After predicting z(r—1), the complete error series
z2(t—s),..., z(t—2), z(t — 1) is available again, and is then
processed as described in section 2.1 by re-fitting the respec-
tive AR model to the full series, yielding the AR-adjusted
ensemble valid at time point 7.

For forecast horizons greater than 48 h, the observed errors
at more time steps than 7 — 1 are missing (e.g. for 72 h z(r — 1)
and z(¢ — 2) are missing, and so on). The same procedure can
then be applied to predict the missing errors from a fitted
AR-model based on the past errors still available.

For prediction of future time-series values from a
time-series model fit see also Shumway and Stoffer (2006,
Sect. 3.5). In R the function ar.predict can be used for
prediction from an autoregressive model.

Different forecast horizons

2.4 | Heteroscedastic autoregressive
predictive distribution

Moller and Grof (2016) assume the predictive distribution for
Y (¢) to be Gaussian, that is

Y(0) | x1(), ..o, xm (1) ~ N(u(0), 6%(1)), 3)
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where pu(¢) may be a function of the ensemble members and
62(f) may be a function of the ensemble variance.

To account for the well-known spread-error correlation
in ensemble forecasts, this follow-up work proposes an
improved model for the predictive variance ¢2(¢) in a similar
fashion as the variance term is defined in the EMOS model
(Gneiting et al., 2005).

The predictive mean u(f) is defined as the average over
the AR-adjusted ensemble members (as in the original
AR-EMOS model)

M
1 ~
uy =+ le Xn(t) 4)

However, for the standard deviation (SD) o(t) of the
predictive distribution an extended model is now suggested
which combines longitudinal (time series) and cross-sectional
(ensemble forecast) variation. The longitudinal part is defined
as

o1(t) =

thus employing the average of the variances y2(t) obtained
from the autoregressive processes Z,(f) associated with the
respective m ensemble members. The variances y2(t) are
solely based on information from past forecast errors (up to t),
see Equation 2. The cross-sectional part is defined by

o2(t) = \/ S2(1) |

where §2(t) is the empirical variance of the AR-corrected
ensemble members at the current time point z.

An intuitive and simple approach to incorporate both parts
into a model for the predictive SD is to employ a convex
combination of the form

o(1) = wo (1) + (1 — w)o(0), &)

where w € [0,1] is a weight obtained by minimizing the
continuous ranked probability score (CRPS) over an (addi-
tional) training period. A solely longitudinal variance model
can be obtained as a special case by setting w = 1, a solely
cross-sectional variance model (in the fashion of standard
EMOS) by setting w = 0. The simple model Equation 5 intro-
duced above yields good results in terms of predictive perfor-
mance as will be seen in the subsequent case-study. However,
other more involved variance models might be considered in
future research.

The EMOS model is also known by the term
non-homogeneous regression, due to a variance model
that is non-constant (non-homogeneous/heteroscedastic)
with respect to the spread in the ensemble. Therefore, the

modification of the AR-EMOS model with the variance
model Equation 5 incorporating the ensemble spread is called
heteroscedastic AR-EMOS - following the EMOS nomen-
clature. As the AR-EMOS method is based on a time-series
model, and does not only consider the variation in the ensem-
ble spread (cross-sectional part), but also the variation across
time (longitudinal part), the more general (and in statistics
more common) term heteroscedastic is used rather than the
term non-homogeneous.

25 |

To fit the AR-EMOS model presented in section 2.4 (with
the basic methodology in section 2.1), first the model param-
eters &y,,Ppm.1, .- »fmpm for each member x,, are estimated by
fitting an AR(p,,) process to the observed error series {z,}
from a rolling training period by Yule—Walker estimation as
carried out by the function ar; see also Shumway and Stoffer
(2006, Sect. 3.6). The order p,, is automatically selected by
a modified Akaike information criterion (AIC) proceeding as
if the required variance estimate were obtained by maximum
likelihood; see function ar (R Core Team, 2019).

This procedure is invoked with a default training length
of 90 days, which has been found appropriate by Méller and
Grof} (2016).

To obtain the predictive mean u(¢) and SD o(f) a sec-
ond rolling training period is required to estimate the weight
parameter w used in the heteroscedastic variance model
Equation 5 such that the average CRPS with respect to the pre-
dictive distribution N(u(#),6%(¢)) is minimized for the training
period. In the case-study following later, the default for the
additional training window is set to 30 days length. In this set-
ting, the 90 training days to estimate the parameters of the
AR process directly precede the 30 additional training days to
estimate the weights.

Therefore, to estimate all model parameters a training
period of in total 120days (with the default choices) is
required, which is employed as a rolling window throughout
the available dataset. This means the very first (out-of-sample
in time) verification day is, for example, in the case of 24
h ahead forecasts, the day directly following the first 120
training days.

Estimation

2.6 |

When there exists a single distinguished forecast x:(¢), for
example, the high-resolution forecast xp.s(¢) described below,
it is still possible to obtain a corresponding predictive distri-
bution by the described AR-EMOS method.

The parameters u.(f) and o.(¢) are in principle estimated
in the same way as those corresponding to the regular mem-
bers. However, the mean in Equation 4 and the longitudinal
part of the variance formula in Equation 5 reduce to a single

Postprocessing a single forecast
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summand, and the second part of the variance model in
Equation 5 becomes zero. Nonetheless, the variance y2 of the
error series corresponding to the individual member x.,.(¢) can
still be computed — on the basis of past values and the AR-fit.
Thus, the original AR-EMOS approach and its refined version
presented here both allow us to estimate the variance param-
eter and fit a predictive distribution based only on a single
ensemble forecast.

Note that in case standard EMOS postprocessing
approaches, as for example, Gneiting et al. (2005), define
the variance parameter as a function of the ensemble sam-
ple variance computed with respect to at least two ensemble
members at some time point ¢, the predictive distribution
cannot be estimated based only on a single ensemble member
without further ado.

2.7 | Postprocessing the raw ensemble mean

In order to make efficient use of the exchangeability of the
raw ensemble, one might think of applying the autoregres-
sive correction described above to the raw ensemble mean
X only, thereby deducing the predictive distribution from
the single forecast x, = X. Such an approach would yield a
reduced number of parameters to estimate. This procedure,
though perfectly applicable in accordance with our method
described in sections 2.1 to 2.4, has already been found to
be inferior with respect to evaluation measures for predictive
performance in the earlier work by Moller and Grof3 (2016).
Analysis of the data described in section 4 leads to the same
conclusions, so that this approach is not further pursued here.

2.8 |

In this section we describe how the high-resolution forecast
known to improve predictive performance (e.g. Kann et al.,
2009; Gneiting, 2014; Persson, 2015) can be included into
the AR-EMOS postprocessing model. We call the AR-EMOS
model including the additional forecast an extended model.

Let again x;(¢), ..., xp(¢) denote the forecast ensemble.
However, this time the M members comprise the regular
(exchangeable) forecasts described in section 2.1 and the
additional high-resolution forecast xp.s(#). That means the
(total) number M of forecasts utilized is actually increased by
one. As described in section 2.1 it is again assumed that the
forecast errors Z,,,(t), m =1, ..., M follow an AR(p,,) process,
yielding the AR-corrected ensemble X1 (7), ... , Xp(2), Xnres(?),
which is the basis for estimating mean and variance of the
predictive distribution.

As the high-resolution forecast has somewhat different
properties than the regular ensemble members, an apparent
approach may be to treat them as two different groups with
respect to the parameters of the predictive distribution. This
course of action is quite common in ensemble postprocessing
models: ensemble members belonging to a certain group are

High-resolution forecast
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considered exchangeable, and thus can be assumed to share
the same coefficients in the model (Gneiting, 2014).

To account for the above-mentioned groups, each param-
eter in the AR-EMOS model is defined as the (equally
weighted) sum of the respective group-wise parameters,
that is,

u(t) = %(uensa) T s (1),

o() = %(aens(o + Omes(1).

Here, pens(?) is estimated as already stated in Equation 4.
The parameters pnres(f) and opes(f) corresponding to the
high-resolution forecast are estimated as described in the
previous subsection.

Assigning each of the group-specific parameters fixed and
equal weights is a first relatively straightforward approach for
demonstrating the general idea. In the case-study it will be
shown that this simple version already yields good results for
predictive performance.

Of course this rather simple method can be modified to be
more data-driven, that is using weights for the group-specific
parameters directly estimated from data, for example, by min-
imum CRPS estimation. Furthermore, the approach based on
two groups (regular ensemble members and high-resolution
forecast) can be generalized to include multiple groups of
exchangeable forecast members, which need not necessarily
contribute equally to predictive performance. Such a more
general setting would make it reasonable to estimate the
weights for the group-specific parameters from data.

One possibility for a more general definition of an
AR-EMOS group model can be accomplished for example
by combining (group-wise) predictive distributions with the
spread-adjusted linear pool already employed by Moller
and Grofl (2016) and shortly described in the following
subsection.

2.9 | Combination of predictive
distributions

Moller and Grofl (2016) proposed to combine the pre-
dictive distribution of classical EMOS and AR-EMOS in
a spread-adjusted linear pool (SLP: Gneiting and Ranjan,
2013). For the special case of combining n =2 predictive dis-
tributions, the SLP combination has cumulative distribution
function (CDF)

X — M
F(x) = w1G1(x) + w2 Ga(x), Gi(x) = < — > ,
I
I = 1,2, where w; is a non-negative weight parameter,
wy; = 1— wj, and c is a strictly positive spread adjust-
ment parameter. Here, ® denotes the cumulative distribution
function (CDF) of the standard normal distribution. The two
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distributions G'; and G, can be fitted separately by postpro-
cessing models of choice, and the weights are obtained by
minimizing a verification score (specifically the CRPS, see
Equation 6, section 3) over a training period, for fixed and
given G, G;.

The original approach was proposed with the aim to
improve predictive performance by combining two predictive
distributions coming from different sources (see also Gneit-
ing and Ranjan, 2013; Baran and Lerch, 2015; 2016; 2018).
In principle, these approaches may be extended to a (finite)
number n > 2 of predictive distributions.

3 | TOOLS TO ASSESS
PREDICTIVE PERFORMANCE

31 |

A common tool to assess the quality of probabilistic forecasts
are (proper) scoring rules. They assign a scalar to a pair (y, F),
where y is the verifying observation and F' the forecasting dis-
tribution (Gneiting et al., 2007; Gneiting and Raftery, 2007;
Gneiting, 2011). Scoring rules are negatively orientated such
that smaller values indicate better performance.

A well-known and popular score is the continuous ranked
probability score (CRPS), assessing calibration and sharpness
simultaneously. For a predictive distribution represented by
its cumulative distribution function (CDF) F(y) and observa-
tion yobs the CRPS is given as

Scoring rules

CRPS(F, yobs) = / {(F(y) -1y 2 yobs)}zdy» (6)

where 1(y > yobs) equals 1 if y > y,,s and O otherwise; see also
Wilks (2011, Sect. 8.5.1).

To have a comparison of predictive performance with
respect to scoring rules addressing different aspects of the pre-
dictive distribution, we employ two further frequently used
scoring rules in the case-study.

The Dawid—Sebastiani score (DSS) is based only on the
first two moments of the predictive distribution F. If up
and 0'12, denote the mean and variance of F, the Dawid and
Sebastiani (1999) score is given by

(yobs - )uF)2

2
OF

DSS(F, yobs) = +21In(oF); (7N

see also Gneiting and Katzfuss (2014).

The logarithmic or ignorance score is a local scoring rule
evaluating the negative logarithm of the predictive proba-
bility density function (PDF) f(y) (locally) at the verifying
observation. The score is defined as

IGN(f, yobs) = — In(f (Yobs)); ()

see also Wilks (2011), and Gneiting and Katzfuss (2014).

In case the predictive density f(y) is Gaussian with param-
eters u and o2, the ignorance score and the DSS have an
explicit linear relationship given by

DSS =2 -IGN — In(27);

see, for example, Wilks (2011).

Because of the above-mentioned linear relationship
between IGN and DSS in the Gaussian case, considering
the ignorance score only yields additional information in a
comparative study to non-Gaussian predictive distributions.
Therefore, we compute the IGN score in addition to the
DSS when we compare EMOS and AR-EMOS with the SLP
combination (which is a mixture of Gaussians).

3.2 | Visual assessment

To visually assess calibration of a probabilistic forecast,
verification rank histograms and PIT histograms are
employed (Wilks, 2011).

Here, the verification rank histogram (VRH) or Talagrand
diagram is used to assess a forecast ensemble xi, ... ,xy. It
can be obtained by computing the rank of the observation y
within the ensemble (for each forecast case). If the ensem-
ble members xi, ... ,x) and the observation y are statistically
indistinguishable (exchangeable), the rank of the observation
with respect to the ensemble members has a discrete uni-
form distribution on {1, ..., M + 1}. The VRH then plots the
empirical frequency of the observation ranks.

To assess calibration of a full predictive probability distri-
bution, the frequencies of the Probability Integral Transform
(PIT) values are plotted in equidistant bins. An observation y
can be interpreted as a random sample from the “true” distri-
bution F for the respective weather quantity. If the predicted
distribution Fy is identical to F, then p = F(y) can be consid-
ered as realization of a uniformly distributed random variable
on [0,1] and the plot of the frequencies of the PIT values p
results in a uniform histogram.

3.3 | Further verification measures

The variance of the PIT values provides further information
on the dispersion properties of the predictive distribution,
a neutral dispersion being indicated by a variance equal to
1/12 = 0.0833, the variance of the uniform distribution on
[0,1], see Gneiting and Ranjan (2013).

The root mean variance (RMV) is used as a sharpness mea-
sure of predictive probability distributions. A main principle
of probabilistic forecasting is “maximizing the sharpness of
the predictive distribution subject to calibration” (Gneiting
and Katzfuss) (e.g. Gneiting and Katzfuss, 2014), therefore
the sharpness should be investigated in conjunction with the
calibration.
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3.4 | Testing for improvement in predictive
performance

The statistical relevance of improvement in the verifica-
tion scores may be investigated by testing for equal predic-
tive performance of the two considered methods with the
Diebold—Mariano test for time series; see Gneiting and Katz-
fuss (2014).

Let 51(t), s2(#) denote the time series of score values (e.g.
the CRPS, the DSS, or another verification score) obtained
from two competing methods as for example EMOS and
AR-EMOS, for a verification period of length T (say). Then
the large-sample standard normal test statistic adapted from
Diebold and Mariano (1995) is given as

S=yVr—=~4

h-1

Y Pa(r)

t=—(h-1)

where

d=

el

T
D d@), d) = s1() - (1),
t=1

is the average score differential and

T
pum) =2 Y (@0 -dxda-leh - )

t=|7|+1

are the empirical autocovariances. The index & refers to the
truncation choice for the lags at which autocovariances are
incorporated in case of h-step ahead forecasts. As h-step
ahead forecast errors in theory exhibit at most dependencies at
h —1lags (Diebold and Mariano, 1995), a typical recommen-
dation is & = 1 in the case of forecast horizons in the interval
[1,24] hours, & = 2 in case of forecast horizons in the interval
(24,48], and so on.

4 | APPLICATIONTO ECMWF
TEMPERATURE FORECASTS

4.1 | Data description and data
pre-processing

The data considered for our case-study contains the 50 mem-
ber forecast ensemble by the ECMWEF, see e.g. Molteni et al.,
1996; Buizza et al., 2007. The data consist of 24, 48 and 72 h
ahead forecasts initialized at 1200 UTC for 2 m surface tem-
perature in Germany along with the verifying observations at
187 different stations in the time period ranging from 1 Jan-
uary 2002 to 20 March 2014; see also Hemri et al. (2014). In
addition, there is one high-resolution forecast and one control
forecast.
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FIGURE 1 Seventy-six stations in Germany, chosen for

admitting a modest occurrence of missing values in the raw dataset

For the application of time-series methods it is of impor-
tance to investigate whether the dates appear in chronological
order and if some dates are missing. In the statistical software
package R, missing values/cases are denoted by “NA” (not
available).

From the full dataset with 187 stations, only those stations
are retained which do not reveal NA gaps longer than 1. There
are 76 stations which do match this rather strict specification.
The new dataset still contains missing values.

The remaining missing values can in R be replaced by
values obtained from linear interpolation using the func-
tion na.approx from the package zoo (Zeileis and
Grothendieck, 2005).

Figure 1 shows the 76 stations retained for the subsequent
analysis, where the station map was produced with the R pack-
age ggmap (Kahle and Wickham, 2013). In the subsequent
analysis the station Magdeburg in eastern Germany will be
considered for illustration purposes in the case-study.

To find possible outliers in the data, the test statistic from
Chang et al. (1988) for detecting additive outliers is applied,
being implemented as function detectAO in the R package
TSA (Chan and Ripley, 2018). It requires the fit of an Autore-
gressive Integrated Moving Average (ARIMA) model to the
series, which can, for example, be achieved by the function
auto.arima from the R package forecast (Hyndman
and Khandakar, 2008).
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FIGURE 2 Estimated weights w associated with longitudinal
part o4 (?) of the predictive SD o(¢) for station Magdeburg

In order to find strong outlying observations, the signif-
icance level in detectAO is put to the very small value
a =0.00001. By applying the above procedure to each sta-
tion, it is found that six stations reveal suspicious values. From
these, only two observations are removed from the dataset.
At date 20 January 2003 and station Hannover the temper-
ature observation is —90.8 °C, which is clearly impossible.
At date 23 November 2002 and station Niirnberg, the tem-
perature observation is —20.1 °C, which is very unusual with
respect to preceding and succeeding temperature values and,
in addition, is by far the smallest value in the complete series.

Removal is done by setting the outlying value to NA and
then applying linear interpolation.

4.2 | Comparison of EMOS
and heteroscedastic AR-EMOS

First, the state-of-the-art EMOS model is compared to the
heteroscedastic AR-EMOS model (called AR-EMOS in the
following) presented in section 2.4, where each model is
based on the 50 regular ECMWF 24 h ahead ensemble fore-
casts. The parameters of the postprocessing models are esti-
mated station-wise, based only on the data available for the
respective station (so-called local approach).

A first analysis investigates the performance of the dif-
ferent models at the station Magdeburg in eastern Germany.
Then, in a second step the analysis is carried out for all 76
stations in the dataset.

The AR-EMOS model is fitted as described in section
2.5. The EMOS model is fitted with the R package
ensembleMOS. Estimating parameters of EMOS usually
requires a training period of length between 20 to 40 days
(Gneiting, 2014, Sect. 4), where in the subsequent study
30 days are chosen.

4.2.1 | Comparison at a single station

Figure 2 shows a boxplot of the weights w associated with the
longitudinal part ¢ (¢) of o(#) from Equation 5. The median is
at 0.617.

The plots displayed in Figure 3 show a comparison of the
predictive mean and SD of the EMOS and (heteroscedastic)

Predictive Mean Predictive Standard Deviation

EMOS
-10 10 30
EMOS

05 10 15 20 25 3.0
AR AR

Predictive Standard Deviation

o —_— —_— ~ (2]
& - 8
el 10 ] © ]
29 ] | ] o §
o] | -
‘T B T T T T
EMOS AR EMOS AR

FIGURE 3 Comparison of predictive mean and predictive SD
obtained by EMOS and (heteroscedastic) AR-EMOS for station
Magdeburg

TABLE 1 Verification metrics of EMOS and
(heteroscedastic) AR-EMOS for station Magdeburg aggregated
over 4,341 verification dates

CRPS DSS RMV Var(PIT)
EMOS 0.8415 2.0918 1.3670 0.0946
AR-EMOS 0.8309 1.9149 1.3825 0.0876

AR-EMOS predictive distribution for Magdeburg. The pre-
dictive means of both methods exhibit a strong relationship
(squared correlation coefficient equal to 0.9963), while the
predictive SD differ to a certain extent (squared correlation
coefficient equal to 0.5142). So, although AR-EMOS pro-
ceeds in a quite different way to estimate the predictive mean,
the result does apparently not differ from EMOS very much.
The different approaches to estimating the variance obviously
also yield different results; the AR-EMOS SD have a tendency
to be smaller than those of EMOS. The boxplots for the SD
also show that for EMOS there is much more variation in the
estimated SD than for AR-EMOS.

Table 1 presents the CRPS, the DSS, the root mean vari-
ance (RMV) and the PIT variance for both methods at station
Magdeburg. The top row in Figure 4 additionally shows the
PIT histograms of both methods at station Magdeburg.

The PIT values of both models have a variance greater
than 1/12 = 0.0833, indicating under-dispersion of the pre-
dictive distributions. This under-dispersion is visible in the
respective PIT histograms as well. However, the PIT variance
of AR-EMOS is much closer to 1/12 than the PIT variance
of EMOS. When looking at the PIT histograms, the EMOS
histogram indicates a slightly more pronounced bin for small
PIT values, indicating a stronger forecast bias. On the con-
trary, the EMOS predictive distribution is slightly sharper
than the AR-EMOS one, however obviously at the expense of
dispersion accuracy.

When looking at the verification scores providing an over-
all judgment on predictive performance (CRPS, DSS), we can
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FIGURE 4 PIT histograms of EMOS and (heteroscedastic)
AR-EMOS aggregated over 4,341 verification days (top row), as well
as PIT histograms of both methods aggregated over 4,341 X 76
verification cases (dates and stations, bottom row)
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TABLE 2 Verification metrics of EMOS and
(heteroscedastic) AR-EMOS aggregated over 4,341 X 76
verification cases (dates and stations)

further conclude that AR-EMOS performs better than EMOS
with respect to the average CRPS as well as to the average
DSS at station Magdeburg.

As the difference in CRPS values is relatively small, we
investigate whether AR-EMOS provides a statistically signif-
icant improvement in CRPS over state-of-the-art EMOS, by a
one-sided Diebold—Mariano test for the alternative

H, : CRPSAr-EMos < CRPSEmOs-

For station Magdeburg, the resulting p-value is given
as .01722. Thus, the test shows that the CRPS values of
AR-EMOS are (on average) indeed significantly smaller than
those of EMOS.
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In a second step the analysis performed for a single example
station is carried out for all 76 stations in the dataset, and the
results are aggregated. For this, a local approach is used, that
is, the considered models are estimated at each station individ-
ually, resulting in location-specific model parameters based
only on the data of a specific station.

When aggregating over all 76 stations, for each station
4,341 verification days are available, yielding in total 329,916
forecast cases to aggregate over. Table 2 shows the resulting
verification metrics for EMOS and AR-EMOS.

The verification scores indicate that the predictive distri-
bution of AR-EMOS has comparable but slightly different
properties than EMOS, similar to the comparison at a single
station. While CRPS and DSS of AR-EMOS are (slightly)
smaller than those of EMOS, the RMV is slightly larger,
indicating the AR-EMOS predictive distribution to be less

Comparison at all stations

CRPS DSS RMV Var(PIT)
EMOS 0.9057 2.1523 1.4907 0.0954
AR-EMOS 0.9033 2.0129 1.5322 0.0883
24-h ahead (Ensemble) 24-h ahead (Ensemble plus HRES)
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FIGURE 5 Station-wise p-values of the Diebold-Mariano
one-sided test comparing EMOS and (heteroscedastic) AR-EMOS.
(Truncation index i = 1 for 24 h ahead, & = 2 for 48 h ahead, and 7 = 3
for 72 h ahead forecasts)

sharp than its EMOS counterpart. However, the sharper dis-
tribution of EMOS comes at the expense of calibration, the
PIT variance of EMOS is much larger than 1/12, indicating
under-dispersion, while the PIT variance of AR-EMOS is rel-
atively close to 1/12, indicating a distribution with dispersion
properties close to neutral dispersion. These observations are
consistent with the PIT histograms in (the bottom row of)
Figure 4, where the EMOS PIT histogram clearly exhibits a
U-shape, with indicates under-dispersion, while the U-shape
is much less pronounced in the AR-EMOS PIT histogram.

To find statistical evidence about the significance of the
difference in predictive performance between the two meth-
ods, the one-sided Diebold—Mariano test is conducted again,
this time for the CRPS time series at each of the 76 stations
individually.

The upper-left panel of Figure 5 shows the station-wise
p-values of the Diebold—Mariano test for EMOS vs.
AR-EMOS. Small p-values give statistical evidence for the
alternative hypothesis that the values of the AR-EMOS
CRPS series are on average smaller than the values of the
EMOS CRPS series, thus indicating superior performance of
AR-EMOS compared to EMOS. At 31 stations the p-value
is <.1, thus indicating superior performance of AR-EMOS;
see the vertical red dashed line in (the upper left panel of)
Figure 5.
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TABLE 3 Verification metrics of EMOS*, (heteroscedastic) AR-EMOS*, and SLP
combination SLP* of both, aggregated over 4,251 verification dates at station Magdeburg

CRPS IGN
EMOS* 0.8223 1.9341
AR-EMOS* 0.8097 1.8391
SLP* 0.8000 1.8598

4.3 | Incorporating the high-resolution
forecast with group approach

The ECMWF ensemble also comprises a single
high-resolution run, whose importance for statistical post-
processing is described, for example, by Gneiting (2014). As
indicated in section 2.8, extended postprocessing models are
now considered, which include the high-resolution forecast.

For the ECMWF data considered here, there are 50
exchangeable (that is, statistically indistinguishable) fore-
cast members forming one group, while the high-resolution
forecast is regarded as a second group due to its different
properties.

Within the ensemb1eMOS package, the group member-
ship of each ensemble forecast can be directly specified. As
described in section 2.8, a straightforward ad hoc way to
implement a 2-group AR-EMOS model is to represent the
model parameters as a sum of the two group-specific param-
eters and assign the group-specific parameters (fixed) equal
weight.

Furthermore, the SLP combination of EMOS and
AR-EMOS proposed in Moller and Grof3 (2016) is revis-
ited. However, in contrast to the original analysis, here the
SLP combination of EMOS and AR-EMOS based on the
50 exchangeable members and the additional high-resolution
forecast is investigated (which we called extended models,
denoted by EMOS* and AR-EMOS¥*, respectively).

As additional training data are needed to estimate the
weights in the SLP combination, the final number of ver-
ification days considered differs from the above analyses
comparing only EMOS and AR-EMOS. Here, the results at
the station Magdeburg are aggregated over 4,251 verification
days. When aggregating over all 76 stations (each with 4,251
verification days) as well, the results are based on 323,076
forecast cases in total.

Results for verification scores at the station Magdeburg are
presented in Table 3. It is clearly visible that in terms of CRPS,
ignorance score and DSS AR-EMOS#* improves over EMOS*
to a large extent. The improvement in CRPS and DSS is much
more pronounced than in the case where the high-resolution
forecast was not incorporated into both models. The SLP*
combination of the two models improves the CRPS even more
in comparison to EMOS*.

Concerning sharpness as measured by the RMV, the
AR-EMOS* model yields the sharpest predictive distribution,

DSS RMV Var(PIT)
2.0304 1.3714 0.0908
1.8404 1.3663 0.0849
1.9043 1.3965 0.0854

with a PIT variance extremely close to 1/12 at the same
time. EMOS* and the SLP* combination of both models
are less sharp (with EMOS* being slightly sharper than
SLP¥*); however, while EMOS* has a PIT variance indicating
under-dispersion (larger than 1/12), the SLP* combination
has a PIT variance close to neutral dispersion. Therefore, at
the station Magdeburg, the sharpness-calibration properties
of AR-EMOS* seem to be appropriate and better than those
of the other predictive distributions.

Although the improvement in CRPS of AR-EMOS*
compared to EMOS* is much more obvious as in the
respective analysis at Magdeburg presented in Table 1, a
one-sided Diebold-Mariano test for H; : CRPSAr-gmos* <
CRPSgMmos+ at Magdeburg is performed to investigate the sig-
nificance of the improvement. The resulting p-value is .01233,
showing that AR-EMOS¥* is indeed performing significantly
better than EMOS* at Magdeburg in terms of CRPS.
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Next, the above described comparison of EMOS*,
AR-EMOS#* and SLP* is conducted for all 76 stations, where
again the models are estimated station-wise. Due to the

Comparison of all stations

need for additional training data for the SLP combination,
the number of verification cases considered differs from the
analysis presented in Table 2 as alreadymentioned for the
station Magdeburg. Here, the aggregation in Table 4 is per-
formed over 323,076 verification cases (4,251 verification
dates at each of the 76 stations). The aggregated verification
metrics show that AR-EMOS* performs better than EMOS*
with respect to the CRPS, ignorance score and DSS. With
respect to the CRPS and ignorance score the SLP combi-
nation performs best; with respect to DSS it also performs
clearly better than EMOS*. EMOS* has the sharpest pre-
dictive distribution in terms of the RMV, while AR-EMOS*
and SLP* exhibit a similar level of sharpness. However, the
PIT variance of AR-EMOS* is much closer to that of neutral
dispersion than EMOS#*, having a PIT variance indicating
under-dispersion.

Station-wise p-values of the one-sided Diebold—Mariano
test for the CRPS series are computed to investigate whether
the improvement in CRPS is significant. The upper-right
panel of Figure 5 shows the resulting p-values at all 76 stations
for the one-sided Diebold—Mariano test for the alternative
H/ : CRPSAr-EMos* < CRPSgMOs*-
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TABLE 4 Verification metrics of EMOS¥*, (heteroscedastic) AR-EMOS*, and SLP
combination SLP* of both, aggregated over 4,251 X 76 verification cases (dates and

stations)
CRPS IGN
EMOS* 0.8712 1.9896
AR-EMOS* 0.8685 1.8825
SLP* 0.8460 1.8782

TABLE 5 Verification metrics of EMOS(ENS) and
(heteroscedastic) AR-EMOS(ENS) aggregated over 4,340 X 76 (48 h)
and 4,339 x 76 (72 h) verification cases (dates and stations)

CRPS DSS RMV Var(PIT)
EMOS 48 h 1.0101 2.4147 1.6156 0.0979
AR-EMOS 48 h 0.9897 2.1749 1.7263 0.0872
EMOS 72 h 1.1244 2.6353 1.7831 0.099
AR-EMOS 72 h 1.0949 2.3548 1.9591 0.086

Again, the dashed red line denotes the significance level
0.1. When incorporating the high-resolution forecast into the
models, the number of stations where AR-EMOS* performs
significantly better (at significance level 0.1) than EMOS*
increases to 41.
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Post-processing for higher forecast

Finally we analyze the performance of the heteroscedastic
AR-EMOS model for higher forecast horizons. In many appli-
cations, typically 24 h ahead forecasts are investigated, but
higher forecast horizons are often not considered. To illustrate
the effect, we present results for 48 and 72 h ahead forecasts.

In section 2.3 the procedure for applying AR-EMOS to
forecast horizons greater than 24 h is explained. EMOS is
capable of dealing with other than 24 h ahead forecasts as
well, and the forecast horizon considered can be explicitly
specified within the ensembleMOS package.

Table 5 shows the verification metrics for EMOS and
AR-EMOS, based on 48 and 72 h ahead ensemble forecasts.
For 48 h ahead forecasts the verification metrics and PIT his-
tograms are based on a total of 329,840 verification cases
(4,340 verification days for each of the 76 stations); for 72 h
ahead forecasts, they are based on 329,764 verification cases
(4,339 verification days for each station).

For both forecast horizons, it is clearly visible that
AR-EMOS improves on EMOS in terms of CRPS and DSS,
with the improvement being even more pronounced for 72 h
ahead forecasts. Compared to the results on 24 h ahead fore-
casts, the improvement of AR-EMOS over EMOS becomes
clearer the larger the forecast horizon. For both considered
horizons in Table 5, the EMOS predictive distribution is a

DSS RMV Var(PIT)
2.1412 1.4250 0.0931
1.9270 1.4950 0.0854
1.9350 1.5031 0.0860
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FIGURE 6 PIT histograms of EMOS and (heteroscedastic)
AR-EMOS for 48 h ahead (top row), and for 72 h ahead (bottom row),
aggregated over 76 stations, each with 4,340 (48 h) and 4,339 (72 h)
verification dates

bit sharper than its AR-EMOS counterpart; however, in each
case the PIT variance of EMOS indicates under-dispersion to
a larger extent than the PIT variance of AR-EMOS.

Figure 6 presents the respective PIT histograms of EMOS
and AR-EMOS, where the top panel refers to 48 h ahead, and
the bottom panel to 72 h ahead forecasts.

To investigate whether the improvement of AR-EMOS
over EMOS is indeed a significant one, again the
Diebold—Mariano test is performed at each station for the
same one-sided alternative as in the previous paragraphs. The
lower panel of Figure 5 displays the resulting p-values for 48 h
(left panel) and 72 h (right panel). For both forecast horizons
the improvement in predictive performance of AR-EMOS
over EMOS in terms of CRPS is highly significant for most
of the stations: for 48 h ahead forecasts the p-value is <.1
at 62 stations (and <.05 still at 55 stations), for 72 h ahead
forecasts even at 67 stations (and <.05 at 66 stations).

When moving to higher forecast horizons, the number of
stations where AR-EMOS is significantly superior to EMOS
increases heavily, and at more and more stations the level of
significance even gets smaller. This indicates that the perfor-
mance of AR-EMOS increases in comparison to EMOS for
higher forecast horizons.
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CONCLUSION
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This follow-up work presents some new features and exten-
sions of the AR-EMOS model introduced by Moller and
Grof} (2016), and is accompanied by an implementation of
the method within an R package called ensAR (Grof3 and
Moller, 2019). The original model for the predictive variance
is extended to incorporate the ensemble spread, yielding a het-
eroscedastic model implicitly accounting for the spread-error
correlation, in a slightly different way than the EMOS model.
The (heteroscedastic) AR-EMOS model allows us to fit a
predictive distribution to a single ensemble member, as the
longitudinal part of the (extended) predictive variance can
still be computed for a single ensemble forecast, which is
an advantage over standard postprocessing approaches such
as EMOS.

Additionally, incorporation of a high-resolution forecast
is investigated. The conducted case-study indicates that this
forecast improves predictive performance to a large extent.
To incorporate the high-resolution forecast, an AR-EMOS
group model is defined, which follows a somewhat differ-
ent approach than the EMOS group model. In the case-study,
only a simple heuristic form of the AR-EMOS group model
is considered, which already yields excellent results. How-
ever, extensions to a more general and data-driven form are
relatively straightforward and subject to future research.

Finally, a feature of the AR-EMOS model not discussed
in the original work is presented. The model allows us to
fit predictive distributions based on ensemble forecasts with
arbitrary forecast horizons. In the original work a case-study
based only on 24 h ahead forecasts is presented. However, the
AR-EMOS model can postprocess ensemble forecasts with
arbitrary forecast horizons. For forecast horizons smaller or
equal to 24 h ahead the model can be directly employed with-
out any additional modifications. For horizons larger than 48
h ahead, the model can be applied by adding only one small
pre-processing step, namely predicting the days between the
last validation date of the forecast and the verification date
with the AR model, also used to set up the AR-EMOS method
itself.

The conducted case-study indicates that for forecast hori-
zons beyond 24 h ahead (with 48 and 72 h ahead considered
as examples) the AR-EMOS performs particularly well, and
improves significantly over EMOS. Therefore, the autore-
gressive postprocessing approach shows potential for accurate
prediction at higher forecast horizons.

While in this work and in the original article by Moller
and Grof3 (2016) a univariate time series approach was
employed, multivariate time-series models, such as vec-
tor autoregressive (VAR) processes, may be investigated in
future research. Possible multivariate settings of interest could
for example involve modelling the forecast errors of each
ensemble member jointly, modelling dependencies between

ensemble forecasts and observations, or modelling depen-
dencies between observation locations by spatial time-series
models, or in a more general setting, within the framework of
space—time models.

Furthermore, the forecast error was investigated for
autoregressive behaviour only. However, considering other
(more general) stochastic processes might be beneficial in
the application of ensemble postprocessing as well, and
will be part of future research. For example, more general
ARIMA models could be considered, or Generalized AutoRe-
gressive Conditional Heteroscedasticity (GARCH) models to
account explicitly for heteroscedastic variances in the ensem-
ble forecasts. Furthermore, estimating Markov processes for
the forecast errors might be beneficial. In line with the
recently upcoming interest in application of machine learn-
ing approaches to ensemble postprocessing (e.g. Rasp and
Lerch, 2018), application of more data-driven methods such
as neural networks for time-series data could provide a highly
data-adaptive alternative to standard time-series models.
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