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abstract

Feature selection is a widely used strategy in machine learn-
ing for the reduction of feature sets to their relevant essence to
improve predictions and performance. It is also employed for
knowledge discovery in applied disciplines such as biology and
medicine to find potentially causal factors. But machine learning
models often do not represent a unique solution to a given prob-
lem, especially in high dimensional settings where redundant
factors are likely and spurious correlations exist.

Basing decisions about causal elements on feature selection is
therefore inaccurate or wrong when not considering the presence
of redundant but also relevant features. Most existing selection
algorithms are specifically removing redundancies and not suit-
able for the task of all-relevant feature selection, or they require
careful parametrization and are hard to interpret, which makes
them difficult to use.

This thesis is focused on feature selection methods for the
analytical use case to facilitate understanding of potential causal
factors, for linear and non-linear problems. We propose several
new algorithms and methods for all-relevant feature selection
to improve knowledge discovery, enabled by statistical methods
to improve the accuracy of existing solutions and allow the dif-
ferentiation between different types of relevance. Furthermore,
we offer a new heuristic to automatically group related features
together, and we analyse the definition of relevance in the con-
text of privileged information, where data is only available in
training.

We also introduce software implementations, which were
specifically designed to be modular, efficient and able to paral-
lelize for applications in high dimensional problems. The meth-
ods and implementations were evaluated on a wide range of
synthetic and real datasets to show their performance in compar-
ison with existing algorithms.

iii





acknowledgements

This thesis not only represents the culmination of a lot of
academic work but also the time spent together with awesome
people. In no particular order, I want to thank all the people who
accompanied, supported and motivated me on my way.

The several groups I was part of, which were there for aca-
demic discussions, but most were cool colleagues and friends.
The members of DiDy with regular tournaments in the ‘Printer
Room’. The people from the Datamining group at SFU and the
amazing sea to summit hike. The Machine Learning group with
the best Christmas parties in the CITEC (and in general). I thank
all the co-authors and contributors working together with me.
Most important – or with strong relevance – for this thesis’ com-
pletion was Barbara Hammer, who kept me going forward and
always spread optimism.

While doing a PhD is time-consuming, there is still time
spent outside the university. For these times, I want to thank all
my friends which helped me take my mind of nagging problems
and my family for supporting me ever since.

Most grateful I am for Hannah, who always lifted my spirits,
stuck with me even when continents apart and who is the best
partner I could hope for.

v





contents

C O N T E N T S

Contents vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . 2

2 Foundations on Feature Selection 7
2.1 Feature Relevance . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Approaches . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Feature Selection Methods for Possibly Redundant Fea-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Boruta . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Feature Relevance Bounds for Linear Models . 13

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Applications of Feature Relevance Bounds 17
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Feature Classification . . . . . . . . . . . . . . . 19
3.2.2 Feature Constraints . . . . . . . . . . . . . . . . . 22
3.2.3 Grouping . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Selection Accuracy . . . . . . . . . . . . . . . . . 28
3.3.3 Interactive Use . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Feature Groups . . . . . . . . . . . . . . . . . . . 33
3.3.5 Runtime . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Ordinal Regression and the Relevance of Privileged Infor-
mation 39
4.1 Large Margin Ordinal Regression . . . . . . . . . . . . . 39

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Methodology . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Learning using Privileged Information . . . . . . . . . 53
4.2.1 Background . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Methodology . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Non-Linear Feature Selection and Classification 63
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



contents

5.2.1 Loss-based Feature Set Decomposition . . . . . 64
5.2.2 Robust Loss Comparison . . . . . . . . . . . . . 65
5.2.3 Applications of Random Forest Importance Values 66

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Implementation . . . . . . . . . . . . . . . . . . . 69
5.3.2 Benchmark Models . . . . . . . . . . . . . . . . . 70
5.3.3 Stability of Feature Importance Values . . . . . . 71
5.3.4 Parameterization for Feature Selection . . . . . . 71
5.3.5 Linear Feature Selection Accuracy . . . . . . . . 75
5.3.6 Non-Linear Feature Selection Accuracy . . . . . . 77
5.3.7 Relevance Classification . . . . . . . . . . . . . . 78

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Conclusion 81

Appendices 83

A Appendix 85
A.1 Relevance Bounds for Ordinal Regression . . . . . . . . 86

A.1.1 Feature Relevance Bounds for Ordinal Regres-
sion with Implicit Order . . . . . . . . . . . . . . 86

A.1.2 Proof of Generalization Bounds . . . . . . . . . 86
A.1.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . 87
A.1.4 Equivalence of minRel(`) and minRel∗(`) . . . 88
A.1.5 Equivalence of maxRel(`) and the optimum of

maxRel∗pos(`) and maxRel∗neg(`) . . . . . . . . . . 88
A.1.6 Scaling of Ordinal Regression Feature Selection

with Privileged Information . . . . . . . . . . . . 89
A.1.7 Features of the COMPAS dataset . . . . . . . . . 89

Glossary 93

Acronyms 95

Bibliography 97

List of Figures 109

List of Tables 111

viii



1I N T R O D U C T I O N

1 .1 motivation

At the advent of a new decade comes the time to reflect what happened
in the last and to imagine what lies ahead in the dawning one. In the
last decade, we could observe the maturing of digital technologies
and computers, earlier perceived as clunky desktop tools in offices
now growing into small, versatile companions in everybody’s pockets.
Together with the compact form factor also came the inclusion of
digital sensors, monitoring a multitude of different modalities. An
example being the acceleration sensor in mobile phones often used
to infer steps taken by the owner every day and therefore predicting
activity and health. The number of computers in all possible forms will
increase to the point where it is not even visible from the outside to
recognize one, and with it, the number of sensors, collected information
and possibilities.

With the growing amount of information also come new challenges
for computer science, trying to make sense of raw and mostly noisy
data. These challenges could already be observed in Bioinformatics,
the research field combining computer science and biology, due to in-
creasing availability of highly sensitive biotechnologies, as well as the
increasing digitalization of biomedical diagnostics. There, one could
observe a trend towards big and complex but also much more capable
machine learning models. These models try to learn an unknown
relation between input data and a known outcome and are used suc-
cessfully in medical diagnoses such as cancer prediction [Kon01; BZ08;
CW06] or Covid-19 screening [LHC20]. The input data consists of mul-
tiple variables or features, and their true meaning is often unknown,
but sometimes these features directly correspond to established mark-
ers, known as biomarkers. Knowing the true semantic meaning of a
feature is important in research, a recent important example being the
analysis of pandemic dynamics, where certain COVID-19 risk groups
could be identified through such markers [Rod+20].

Even when specific biomarkers or the semantic meaning of features
are unknown, many learning models can perform on raw data with-
out preselection of variables. While still achieving a high prediction
accuracy, they are less suited for data exploration and understanding
of the underlying relationships. For the latter, insight into the model
behaviour and its relevant driving factors is necessary [Vel+12] and
selecting and identifying features constitute the first steps to unravel
the underlying relationships by allowing interpretability. Many pre-
dictive models are not easily interpretable even in the case of low
dimensional data, or they suffer from a low ability to generalize in
high dimensional settings such that the information about features
is not transferable. A paradigm for interpretable modelling, which
alleviates those shortcomings for the analytical use case, is necessary.
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introduction

Feature Selection (FS) represents a prominent paradigm which
enables the inference of sparse and interpretable prediction mod-
els [GE03]. Sparse meaning that not all features are considered and
interpretability being a fuzzy measure [BF16] often defined regard-
ing a human overseeing a model and understanding the relationship.
Interpretability is then often achieved by just having a smaller set of
relevant features to consider for a human observer. Most of the existing
methods enforce sparsity through the removal of totally irrelevant fea-
tures as well as redundant features, which do not contain information
improving the prediction of the model.

But, the removal of redundancies is contrary to the goal stated
earlier and not an improvement in the case of high dimensional prob-
lems, because many machine learning solutions use optimizations with
non-unique solutions. Thus, in the presence of redundant but relevant
features, the selected feature set often depends on arbitrary initial-
ization or algorithmic design choices. Hence, possibly relevant but
redundant features can easily be overlooked, even though redundant
features are getting more common with a growing number of sensors.
The all-relevant feature selection problem (ARFS) deals with the chal-
lenge to determine all features, which are potentially relevant for a
given task, introduced by Kohavi et al. [KJ97] in the 90s. The all-relevant
feature set represents a good foundation for knowledge discovery
because it explicitly includes all possibly relevant features, such as
used in alternative hypotheses. Identifying the subset with all-relevant
features is generally computationally intractable but approximations
exist.

This thesis is concerned with the evaluation, application and ex-
tension of those ARFS heuristics for the analytical use case in a wide
range of data modalities and problem types such as linear classifica-
tion and ordinal regression, non-linear classification and regression,
or privileged information and classical learning settings. While taking
advantage of existing approaches we also introduce several methodic
extensions to improve their results such as a statistical feature selection
threshold and automatic grouping of related features. We present new
software implementations with visualization of important elements
and runtime improvements by parallelization.

1 .2 research questions

In this thesis, we are going to answer several research questions:

RQ 1: How to uncover all relevant features in a machine
learning setting, where a degree of redundancy in the fea-
ture space is present, with high precision and efficient run-
time?

This setting is the theoretical problem of ARFS with a focus on us-
able methodology in several scenarios. We cover the answers to this
question for linear classification in Chapter 3, for ordinal regression in
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1 .2 research questions

Chapter 4, and in Chapter 5 for non-linear classification and regression
problems. For this question, we predominantly seek an algorithmic
output of binary feature relevance for each input feature leading to
the determination of the all-relevant subset.

RQ 2: Can we distinguish weakly from strong relevant
features, and can we assess the relation of weakly relevant
ones?

This is answered in Chapters 3 to 5 by exposing the class of feature
relevance for each input feature. As such, we extend the binary output
of relevance as in RQ 1 to include weak relevance. In the following,
we denote this ternary measure as the feature class. Furthermore, we
propose a clustering method for related features in Chapter 3 resulting
in feature groups.

RQ 3: Can the relevance of privileged features in a Priv-
ileged Information (PI) setting be computed similarly to
regular features?

In addition to the classical machine learning setting, where the model’s
set of input features at the time of training is identical to the time of
prediction, we also regard the scenario in which privileged information
is used exclusively at the training stage. A definition of relevance,
methodology and evaluation for this is given in Chapter 4 in the
context of ordinal regression.

RQ 4: How does feature selection in the context of redun-
dancies perform on real data from the biomedical domain?

This question represents the initial idea for this thesis, which seeks
applicability of useful theoretical models in the biomedical domain. It
is answered in many evaluations using real data by comparing models
popular in this domain and by proposing new methods and practical
implementations such as in Chapter 3.
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introduction

Because we consider various settings and problems in this thesis,
we are going to use a table at the beginning of the relevant sections
to improve understanding. Table 1.1 shows the possible values and
relevant chapters. Not shown is Chapter 2, which contains basic defini-
tions and related methods for the ARFS problem. The problem aspect
considers binary classification, the extension of it to several classes
on an ordinal scale (ordinal regression) and prediction of continuous
values in regression. The model row differentiates between two model
capabilities: those who are limited to linear relationships and those
who can also represent non-linear dependencies. The type of machine
learning refers to the classical and privileged setting described in RQ
3. For the output, we consider the binary relevance, the ternary feature
class including the weak relevance, and the clustering of these into
feature groups.

Table 1.1: Overview of aspects considered in this thesis.

All-Relevant Feature Selection

Chapter 3 4 5

Problem classification ordinal regres-
sion

classification, re-
gression

Model linear linear non-linear
Type classical classical, privi-

leged
classical

Data synthetic, real synthetic, real synthetic, real
Output relevance,

feature class,
feature groups

relevance,
feature class

relevance,
feature class
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1 .2 research questions

Within the frame of the thesis, the following publications could be
presented to an international audience:

• Christina Göpfert, Lukas Pfannschmidt, and Barbara Hammer.
“Feature Relevance Bounds for Linear Classification”. In: Proceed-
ings of the ESANN, 24th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning. Ed. by
Michele Verleysen. Bruges: Ciaco - i6doc.com, 2017, pp. 187–192

• Christina Göpfert, Lukas Pfannschmidt, Jan Philip Göpfert, and
Barbara Hammer. “Interpretation of Linear Classifiers by Means
of Feature Relevance Bounds”. In: Neurocomputing 298 (July 12,
2018), pp. 69–79. issn: 0925-2312. doi: 10.1016/j.neucom.2017.
11.074

• Lukas Pfannschmidt, Christina Göpfert, Ursula Neumann, Do-
minik Heider, and Barbara Hammer. “FRI – Feature Relevance
Intervals for Interpretable and Interactive Data Exploration”. In:
2019 IEEE Conference on Computational Intelligence in Bioinformat-
ics and Computational Biology (CIBCB). July 2019. doi: 10.1109/
CIBCB.2019.8791489. arXiv: 1903.00719

• Lukas Pfannschmidt, Jonathan Jakob, Michael Biehl, Peter Tino,
and Barbara Hammer. “Feature Relevance Bounds for Ordi-
nal Regression”. In: ESANN 2019. ESANN 2019. Bruges: i6doc,
Feb. 20, 2019, ES2019–162. isbn: 978-2-87587-065-0. url: https:
//www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-
162.pdf

• Lukas Pfannschmidt, Jonathan Jakob, Fabian Hinder, Michael
Biehl, Peter Tino, and Barbara Hammer. “Feature Relevance De-
termination for Ordinal Regression in the Context of Feature
Redundancies and Privileged Information”. In: Neurocomputing
(Apr. 9, 2020). issn: 0925-2312. doi: 10.1016/j.neucom.2019.
12.133. arXiv: 1912.04832

• Lukas Pfannschmidt and Barbara Hammer. “Sequential Feature
Classification in the Context of Redundancies”. In: Apr. 15, 2020.
arXiv: 2004.00658. url: http://arxiv.org/abs/2004.00658
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2F O U N D AT I O N S O N F E AT U R E S E L E C T I O N

2 .1 feature relevance

Is a feature relevant?

This question alone, without further specification, can not be answered.
Despite the fact of its crucial role in many sciences, the implicit as-
sumptions needed to answer it are often not specified and can lead
to wrong conclusions. In the following, we give a short overview of
these, sometimes competing, assumptions.

Let X be data set X :=
{

xi ∈ Rd; i = 1, . . . , n
}

with n samples
and with D := {` ∈ Z; ` = 1, . . . , d} as the set of all features such
that cardinality |D| = d. The target variable y ∈ Rn is distributed
according to some potentially unknown function dependent on X such
that g(X) = y.

There are multiple ways to define feature relevance and compute
it. In general, relevance can be represented as a binary value (relevant,
irrelevant) and also as a quantitative value which denotes importance
in relation to other features. We consider feature relevance for:

1. a single function,

2. a set of functions or

3. all possible functions.

In case 1 the relevance of a feature is given by its presence or usage
in an estimating function (or model) f . The usage can be inferred
by observing the function parameters, such as the coefficients c in a
simple linear model:

f (xi) = c1 · xi,1 + c2 · xi,2 + c3 · xi,3

A feature would then be considered irrelevant if the coefficient is zero.
This also allows a relative measure of relevance when observing the
coefficients themselves, where bigger coefficients could be considered
as more relevant, given a proper normalization in the preprocessing.
If the function is not so simple, a direct attribution can be challenging.

As a proxy to direct attribution, we can instead observe the loss
function. The loss function quantifies the deviation from the true
function when approximating it with function f . Because g is not
available to us, we instead measure the absolute deviation from the
samples of g given by y. Consider an exemplary loss for a regression
problem as

L(X, y, f ) := ∑
∀i
| f (xi)− yi|

Now, to measure a feature’s usage in a model we can modify its
contained information and check this loss. We define perm(X`) as the
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foundations on feature selection

random permutation of values in X` and X � ` as the dataset where X`

was replaced by its random permutation. Then we consider ` as not
present or removed. If we observe L(X, y, f ) = L(X � `, y, f ), i. e. the
loss without ` present is identical, ` can be considered as irrelevant. If
we observe increased loss L(X, y, f ) < L(X � `, y, f ), we can deduce
` was used by the function and consider it as relevant and further,
assign it a positive relevance measure depending on the absolute loss
deviation. This view is analogous to the definition of relevance stated
in [BL97] or in probabilistic terms in [Nil+07].

In machine learning we do not know the function f beforehand,
instead, we use optimization to find a function given an objective to
minimize a loss function. The optimal function in the set of all available
functions F is then

f ? := arg min
f∈F

L(X, f ),

in the case of a unique solution. If we also consider other functions
with a similar or identical loss we get the set

F ? := {h ∈ F | L(X, h) ≈ L(X, f ?)}.

As we now consider sets of functions, the question of relevance shifts
to case 2.

We can abstract from a specific subset of functions and consider
all possible functions as in information theory [CT91]. Information
theory purely considers the information content of variables, based on
their statistical distributions, without reasoning about functions them-
selves. One of the tools in information theory is mutual information
(MI) [Sha48]. It’s defined for two variables A and B as

MI(A; B) = DKL(P(A,B)‖PA ⊗ PB),

where DKL denotes the Kullback–Leibler divergence using the joint
distribution P(A,B) and the marginal distributions PA and PB. We could
compute this for a feature ` and target y and if MI(X`; y) > 0, we could
consider the feature as relevant [Bat94]. In theory, this approach allows
the best general reasoning about relevance, but computing and ap-
proximating MI is challenging especially in high dimensional settings
and applying it can lead to problems such as in the presence of label
noise [FDV14], in some regression settings with specific conditional
estimation error [FDV13a] or when using it as a selection criterion in
classification [FDV13b].

Because of the specific needs in biomedicine, we attempt to balance
the need for predictive accuracy, interpretable and truthful relevancies,
and computational performance. Thus, for the following thesis, we
limit ourselves to the definition of relevance for a set of functions.
In our case, we specifically analyse and evaluate relevancies for two
popular classes of functions, namely linear SVM-like models, and
Random Forests (RFs).
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2 .2 feature selection

Redundancies In the literature of applied fields often the scope of
relevance is not clearly stated. Such as when only the relevance of
a unique solution given by the training data is considered [ZSR02],
even though this solution can vary greatly when new data is encoun-
tered, especially in the case of collinearity [Dor+13]. This can lead
to wrong conclusions about feature relevancies when correlated or
identical features are present, which we refer to as redundant features.
Redundant features are pairs or groups of features with a partial or
complete overlap of information, i. e. a pair of features ` and k is (in
part) redundant when MI(X`; Xk) > 0.

Because we often do not know the semantic meaning or true func-
tion of input features, reasoning about cause and effect as described
by Pearl in [Pea09] should be done carefully when employing ma-
chine learning, especially when considering spurious correlation. We
consider spuriously correlated features as having overlapping infor-
mation even though no causal relationship exists. Spurious correlation
between two or more features can occur just by chance, which gets in-
creasingly likely when considering high dimensional data sets [FZ16],
or with limited data with an unknown latent variable affecting both
features.

2 .2 feature selection

Unlike relevance determination, which assigns real values to the fea-
tures, feature selection aims for a discrete subset of features which
suffice to provide the relevant information. It can be viewed as an
extension of relevance determination with a decision threshold, which
determines a feature’s inclusion in such a subset based on its relevance.
Here, the additional challenge of finding a robust threshold arises,
which should discriminate between irrelevant noise and relevant fea-
tures. Furthermore, feature selection differs in the choice of including
or removing redundant features which results in two different types
of feature selection subsets.

Before we define the problems related to the finding of those
sets, we define several classes of feature relevance similar to [KJ97]
in terms of their use in an optimal model. Again, we consider the set
of all (near)-optimal functions F ? := {h ∈ F | L(X, h) ≈ L(X, f ?)}.
Essential features, which have no mutual information with others, are
denoted as strong relevant features with the set of all strongly relevant
features

S := {` ∈ D | ∀ f ∈ F ? : L(X, y, f ?) < L(X � `, y, f )} ,

where all optimal functions show increased loss without a feature in
S .

All features who have information overlap or redundancies with
at least one other feature are called weakly relevant features. Let us
consider a subset D∗ ⊂ D and define

W := {` ∈ D | ∃ f ∈ F ? : L(X � D∗, y, f ) < L(X � `, y, f ) ≈ L(X, y, f ?)}

9



foundations on feature selection

as the set of weakly relevant features, where the loss of a single ` does not
decrease model performance, but a subset D∗ exists where this is the case.
Here, D∗ represents the case where all features with mutual information
with ` and ` itself are permuted. Not all features inW together need to have
common mutual information, e. g. multiple redundant feature pairs could
exist, with no mutual information between different pairs. The union of S
andW is called the set of all-relevant features A := S ∪W . Lastly, there are
irrelevant features (I) which are neither strong nor weakly relevant.

In general, the task of FS is defined as finding a subset of all features in a
way that the loss of information is minimal and the reduction in set size is
maximal. It’s utilized to reduce model complexity to improve generalization
ability and computational efficiency. Further, it can reduce costs, e. g. by
minimizing necessary clinical sampling for predictive purposes or in general
by reducing the necessary sensor resolution. It is also especially important
in applications where interpretability and accountability are essential by
highlighting relevant elements in potentially highly complex data.

Problem definitions Given the different scopes of feature relevance from
Section 2.1 we also encounter different problems when wanting to select
features according to their relevance. Kohavi and John [KJ97] first identified
these different types in terms of an optimal Bayes classifier.

In general, feature selection is the task of finding a function

fs(X, y) = Ds

which takes input data and outputs a set of relevant features Ds. The output
set is defined by

D̂s := {` ∈ D | Ds fulfils feature selection criterion}

where the criterion differs between the selection problems.
The most popular type of feature selection is concerned with finding

the minimal-optimal feature set for a set of all functions F and its optimal
function f ? and represents case (2) from Section 2.1.

Definition 2.2.1 (MFS). Minimal-optimal feature selection seeks a feature
subsetM out of all features D with the smallest possible size such that pre-
dicting y with optimal function f ? is still possible, i. e. no crucial information
is lost and L(XD , y, f ?) = L(XM, y, f ?).

Problem 2.2.1 is often performed by removing irrelevant features and any
kind of redundant information such as duplicates. If the optimal function f ? is
unique, the resulting feature set also represents true relevance if membership
of the set is regarded as a binary relevance measure. In many cases, especially
in high dimensional problems with many redundant features, f ? is not unique
and thus the solution gives no true relevance.

Definition 2.2.2 (ARFS). All-relevant feature selection seeks a feature subset
A out of D including all relevant features with information about y and
smallest possible size.

This problem attempts to preserve all relevant features, including redun-
dancies, and therefore correctly represents the true relevance for all possible
functions in D. Solving this problem is much harder than findingM though
and in general, requires an exponential amount of time to perform an exhaus-
tive subset search although polynomial-time algorithms exist for constrained
sub-problems [Nil+07]. While the goal of all-relevant feature selection is find-
ing all features belonging to A, it’s not identifying the detailed composition
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Figure 2.1: Representation of feature (sub-) sets considered in this thesis. The
set of strongly relevant features (S), the set of weakly relevant features (W),
irrelevant features (I), all relevant features (A) and all input features (D).
Not pictured is the minimal-optimal set (M).

of S andW as pictured in Figure 2.1. In other words, in the general problem,
the feature selection algorithm does not discriminate between strong and
weak relevance.

In this thesis, we are presenting several all-relevant feature selection
algorithms, which limit the domain to a specific class of model to overcome
the computational limitations. Furthermore, we also present methods to
perform the decomposition into S andW .

2 .2 .1 Approaches

To solve the problems described in Section 2.2 there exists a wide range of
methods [GE03; KJ97]. The majority of existing approaches are solving the
minimal-optimal feature selection problem (MFS) whereby only a handful is
solving ARFS.

In general, feature selection methods can be summarized into three
categories:

Filter Filter methods are based on the information content of features in
relation to the target, disregarding a specific model. They are based on the
relevance type 3 from Section 2.1. They can be very efficient and fast and thus
particularly suited as a screening technology for high dimensional data [YL03].
One common filtering measure is the Pearson correlation which is extremely
performant but can not capture all possible non-linear dependencies between
feature and target. As mentioned earlier, the general measure of mutual
information theoretically does not have this limitation and heuristics such as
MIFS have been already proposed nearly 30 years ago [Bat94]. Estimation
of MI is not trivial can lead to incorrect results, which was shown for MFS
on classification data [FDV13b], where the subset with maximal mutual
information did not produce the optimal model. An advantage of mutual
information is the handling of multiple features at once for higher-order
dependencies. This allows the correct representation of relationships where
multiple features are required, such as in the classical XOR problem.

Wrapper Wrapper approaches perform decisions on the feature set while
evaluating a model on a predefined measure [KJ97]. An example with loss
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function as the measure is

Ds := arg min
D∗s⊆D

L(X,D∗s , f )

where only the features in the candidate set D∗s would be used in X and the
set with minimal loss would be selected. Note that exhaustively evaluating all
possible subsets D∗s ⊆ D, with 2|D| possible candidates, is computationally
intractable for common data set sizes. Several heuristics exist to improve
upon this, such as greedy search methods which employ the strategy of
adding or removing features to or from a candidate set such as in Recursive
Feature Elimination (RFE) [GMS17]. Starting from the complete set, RFE
recursively chooses features with the smallest change in L until a termination
condition is fulfilled, such as a desired set size.

Embedded Embedded approaches use the model parameters itself to find
relevant features. They are integrated into the optimization of the model itself
which can be more efficient. A popular example is the Lasso [Tib96] which
can be used in linear models such as the Support Vector Machine (SVM). An
exemplary and simplified optimization term is

(w̃, χ̃) ∈ arg min
w, χ

‖w‖1 +
n

∑
i=1

χi

where the sum ∑n
i=1 χi represents the deviation from y. Minimizing the L1-

norm of parameter vector w leads small coefficients to converge to zero. The
non-zero coefficients can then be selected as the set

Ds := {` ∈ D | |w̃`| > 0}.

In practice, the convergence is not perfect and thresholds other than zero are
usually used.

Since embedded FS methods do not rely on iterative feature selection or
weighting, embedded approaches have the benefit that they can effectively
take into account interdependencies of groups of features if the model has
those capabilities. While complex models and optimization schemes allow for
wide applications of machine learning, the growing numbers of parameters
make embedded approaches challenging. The relation between input features
and model parameters is not always as trivial as the Lasso example suggests.

2 .3 feature selection methods for possibly redundant fea-
tures

In this thesis, we are focusing on solutions for the ARFS problem stated in
Definition 2.2.2 and related challenges such as the distinction between strong
and weak relevance. Finding an optimal solution to the ARFS problem is
computationally intractable [Kum14] but several approximations and similar
techniques exist.

In 2005 the ElasticNet (EN) [ZH05] improved upon the instability of
sparse models [LeC+95] by using a combination of multiple different regular-
ization terms which lead to better conservation of weakly relevant features
in the model weights, but the original method is lacking a selection thresh-
old such that only relevancy values are available. Because EN is simply a
combination of regularization terms it can easily be used in a wide range of
models for classification and regression.

12
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features

The statistically equivalent signature (SES) [Lag+16] approach proposes
a technology which groups mutually equivalent features into groups out of
which minimal feature subsets can be constructed.

Another proposal called stability selection uses resampling for more robust
selection especially in high dimensional problems [MB10; SS13].

In 2017 Neumann et al. presented the Ensemble Feature Selection (EFS)
method which combined multiple existing FS methods to remove their indi-
vidual biases and produced aggregated feature relevancies [NGH17; Neu+16]
but no proper selection threshold and no distinction between strong and
weak relevance.

Also noteworthy are methods from game theory such as the clustering of
features using a Nash Stable Partition [GSS11].

In the scope of this thesis, we are using and extending two particular ap-
proaches for solving the ARFS problem which are described in Sections 2.3.1
and 2.3.2.

2 .3 .1 Boruta

Boruta is a heuristic wrapper approach using an Random Forest (RF) model
internally [KR11; KR10]. The RF is an ensemble of tree models, each con-
structed using different features and samples. The relevance of input features
can be measured by counting the number of feature inclusions in each subtree
because the tree models themselves are grown by minimizing a loss function.
The authors note the advantages of this ensemble model, where features are
included randomly in the subtrees and the relevance of features is measured
independently such that redundant features are not overshadowed by others
and all redundant features exhibit a measurable relevance signal. Because
irrelevant features can also be included by chance, Boruta utilizes statistical
testing to discern between those and truly relevant ones. To create the statistic
they extend the dataset randomly generated contrast variables as a reference,
also known as shadow features. These shadow features are used to create a
statistical testing threshold, which guides the discrimination between signal
and noise features.

Originally, Boruta was presented and tested using an RF classifier but
it can also work with an RF regressor. Alternatives to the Boruta method
are discussed and evaluated in [DSS19], whereby Boruta was identified as
best performing technology among the tested ones if used for different
dimensionalities of the data.

2 .3 .2 Feature Relevance Bounds for Linear Models

Recently, Göpfert et al. discussed a novel approach to efficiently compute
the relevance of features in the presence of feature redundancies. They
investigated this for linear classification models, a particularly relevant setting
in biomedicine [Göp+18; GPH17]. Their approach efficiently assigns relevance
bounds to features, rather than simple coefficient values. These bounds mirror
the range of possible weight coefficients of a feature when considering all
possible models, hence offering detailed and complete information also in
the case of feature redundancies. The relevance bounds, therefore, enable
classification of features into relevance classes for solving the ARFS. The
work done in [Göp+18; GPH17] represents the theoretical foundation of the
feature relevance bounds. In this section, we are outlining these ideas.
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Let us consider the task of binary classification. For a classification prob-
lem, we observe data

X =
{
(x1, y1), . . . , (xn, yn) ∈ Rd × {−1, 1}

}
(2.1)

with n samples and d real-valued features which have been tied to a target or
response y by an unknown function. We assume that all d features have been
standardized at mean zero and standard deviation 1.

It is common practice to evaluate the relevance of a feature for a given
classification through the weights assigned to the feature by a linear classifier
such as an SVM [CL08]. Sparsity in the feature set, which improves the
interpretability of relevancies, can be emphasized by resorting to models
such as Lasso or sparse SVM models [Tib96; Yao+17]. Yet, provided the
solution is not unique as is often the case especially in high dimensional
data, the resulting feature relevance is to some extent arbitrary, i. e. possibly
rendering the model interpretation invalid.

Here Göpfert et al. [Göp+18] propose an alternative: instead of taking
the weights of a single model as an approximation of feature relevancies
they take multiple models into account, i. e. a class of models. A model class
is characterized by its similarity in the quality of the solution, i. e. similar
generalization ability as characterized by the size of the weight vector of the
SVM [ABR00] and similar training loss, which measures wrongly classified
samples. Through the use of a class of models, we can approximate the global
solution of the ARFS problem as shown in [Göp+18] by introducing relevance
bounds. They replace the original weight value as seen in a single model and
introduce maximal and minimal possible weights, i. e. bounds of possible
weightings per feature for all models with a similar characterization as given
by the baseline solution.

Baseline Solution

Assume we are interested in linear classifiers of the form

y 7→ sgn(w>x− b)

where w is the normal vector of the separating hyperplane, b denotes the
bias and sgn refers to the sign function.

The baseline solution is then given by an L1-regularized soft-margin
SVM: (

w̃, b̃, χ̃
)
∈ arg min

w, b, χ

‖w‖1 + C ·
n

∑
i=1

χi

s.t. for all i yi(w>xi − b) ≥ 1− χi

χi ≥ 0

Through optimization, we acquire a model fully defined by the normal vector
of a hyperplane w and its offset b from the origin. Prediction of samples is
based on the signed distance from the plane. As usual for a soft margin model,
χi are slack variables to guarantee the feasibility of the optimization problem
in case of unavoidable classification errors, e. g. noise or error in the data. C
is a regularization parameter which depends on the dataset’s distribution.
We choose the parameter guided by 3-fold stratified cross-validation and the
F1 weighted by each class support to account for possible class imbalances.

From the model with the best C, we obtain constraints for controlling the
generalization error of equivalent models: the upper limit on the L1 norm of
the weight vector

µ := ‖w̃‖1
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and error term

ρ :=
n

∑
i=1

χ̃i .

These values determine the class of equivalent classifiers, which consist of
all SVM solutions (w′, b′, χ′) such that ‖w′‖1 ≤ µ and ∑i χ′i ≤ ρ. All these
alternatives are considered equivalent since they show the same performance
for the given classification task as the baseline solution. Hence, all weight
vectors associated with an equivalent solution are relevant to determine the
relevance of a feature to the given classification problem.

Minimum and Maximum Bounds for Linear Classifiers

Using these constraints we now define feature relevance bounds for every
feature ` independently, i. e. we determine the interval of weight vectors
resulting if we take into account the weights of all possible equivalent linear
classifiers. More specifically, we want to compute extremal weight values for
each feature given a similar error to the baseline.

For the lower bound, i. e. the lowest possible value of feature `, we define
the optimization problem

minRel(X, `) : min
w, b, χ

|w`|

s.t. for all i

yi

(
w>xi − b

)
≥ 1− χi, χi ≥ 0

and
n

∑
i=1

χi ≤ ρ

‖w‖1 ≤ (1 + δ) · µ .

(2.2)

And the upper bound for ` is defined as

maxRel(X, `) : max
w, b, χ

|w`|

s.t. for all i

yi

(
w>xi − b

)
≥ 1− χi, χi ≥ 0

and
n

∑
i=1

χi ≤ ρ

‖w‖1 ≤ (1 + δ) · µ .

(2.3)

The optimization problems can be rewritten as linear optimization problems
and solved in polynomial time [Göp+18] using appropriate solvers. To ac-
count for their numerical inaccuracies the relaxation factor δ = 0.001 allows
minor deviations from µ.

2 .4 summary

Several feature selection methods exist, which supposedly can handle redun-
dant features through various means, such as a group preserving regulariza-
tion. But many do not provide an actual method to select features according
to the criterion stated in the ARFS problem.
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The relevance bound method described in Section 2.3.2 is powerful and
can solve the ARFS, but in practice, several problems such as numerical insta-
bilities can occur which make the results noisy. Because of these instabilities,
we present a statistical framework in Chapter 3 to improve feature selection
results by providing a robust feature classification threshold and demonstrate
its applicability in the context of biomedical data analysis. Furthermore, the
original approach was limited to classification, which we extend to ordinal
regression and privileged information features in Chapter 4. We also in-
troduce an automatic grouping of weakly relevant features, which helps in
highlighting possibly interesting relations.

Because the relevance bounds can only be efficiently solved in the case of
linear models we also evaluate and extend the Boruta method to handle non-
linear problems in an efficient way. While Boruta can perform all-relevant
feature selection, it does not discriminate between strong and weak relevance
because it lacks actual relevance values. In Chapter 5 we evaluate a new
approach to extend Boruta with such a discrimination approach.
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3A P P L I C AT I O N S O F F E AT U R E R E L E VA N C E
B O U N D S

Parts of this chapter are based on:
Lukas Pfannschmidt, Christina Göpfert, Ursula Neumann, Dominik Hei-

der, and Barbara Hammer. “FRI – Feature Relevance Intervals for Inter-
pretable and Interactive Data Exploration”. In: 2019 IEEE Conference on Com-
putational Intelligence in Bioinformatics and Computational Biology (CIBCB). July
2019. doi: 10.1109/CIBCB.2019.8791489. arXiv: 1903.00719

3 .1 background

In this chapter, we present an accessible and extended implementation of Context

Problem classification
Model linear
Type classical

the feature relevance bounds method described in Section 2.3.2 Here, we
only consider the classical setting of machine learning, without privileged
information. We are also only considering relevance bounds for linear clas-
sification models. Even though linear models can not be applied to every
problem, they are widely used in medicine [Hua+eb].

Together with the implementation in Python1 we also worked on extend-
ing the methodology to improve feature selection accuracy by introducing a
statistical feature selection threshold.

Furthermore, we use the relevance bounds in visualizing the model
together with the relevance classes which enables interpretability which is
important in biomedical research.

Specifically for the use case of biomarker discovery, we also propose a
model refinement and design method with automation to provide features
with similar functionality. Knowing about a group of features which could
fulfil the same role in a model can be very important in the design of diag-
nostic tests where the source of data can differ by the cost or invasiveness
of acquisition. Explicit redundancies of feature relevance then enable a prac-
titioner to avoid features if they can be substituted by others. Additionally,
feature groups could induce knowledge about novel biological relationships.
This is especially useful in gene co-expression or metabolomics experiments
where groups of functional units are common [vDam+18].

Overall, these additions can highlight elements which are crucial for
the problem at hand while also providing alternatives which have the same
information.

In summary, in this chapter, we seek answers to research questions 1, 2
and 4 from Section 1.2.

Figure 3.1 displays the structure of our proposed software pipeline called
Feature Relevance Intervals method (FRI). We have already covered the
original theoretical proposal in Section 2.3.2. In Section 3.2 we give details
of our implementation. We describe how we classify each feature into three
relevance groups and how to reduce false positives using a probe-based
threshold estimation in Section 3.2.1. Then we show how we can constrain
the use of features to certain relevance values (Section 3.2.2) to facilitate
interactive data exploration and model design. In Section 3.2.3 we show how
to automate this model design step to produce groups of related features. All
these aspects are then evaluated in Section 3.3 quantitatively using simulated
(Section 3.3.1) and biomedical data (Section 3.3.1). To check the correctness
of the related feature groups, we perform a classic clustering analysis with

1 Source code and Python package available at github.com/lpfann/fri
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dataset

parameter of model class

Feature Classification

Iterative exploration

Relevance Bounds

minRel maxRel

for all  features

Baseline Solution

linear model
with large margin classifier

+ cross-validation

Feature Context

compute context

for all  features

all-relevant feature set

feature groups

Feature Constraints

Figure 3.1: Overview of proposed pipeline implemented in the FRI tool.
Rectangles represent methods and slanted parallelograms represent input
and outputs. Also visible are the relevance interval visualizations.

known ground truth data in Section 3.3.4. Finally, we test the runtime of our
implementation in Section 3.3.5.

3 .2 methodology

The algorithm described in Section 2.3.2 is very useful in theory but applying
it in practice can be challenging. In the following sections, we are presenting

18



3 .2 methodology

improvements and extensions to the basic relevance bounds method which
are realized in our Python implementation. The focus of these extensions
is easy usability, good interpretability and efficient runtime such that non-
experts can utilize it.

3 .2 .1 Feature Classification

As a reminder, we are considering the task of binary classification. For a
classification problem, we observe data

X =
{
(x1, y1), . . . , (xn, yn) ∈ Rd × {−1, 1}

}
(3.1)

with n samples and d real-valued features which have been tied to a target or
response y by an unknown function. We assume that all d features have been
standardized at mean zero and standard deviation 1.

In Section 2.3.2 we already described the lower and upper relevance
bounds for each feature. For the lower bound, `, we defined

minRel(X, `) : min
w, b, χ

|w`|

s.t. for all i

yi

(
w>xi − b

)
≥ 1− χi, χi ≥ 0

and
n

∑
i=1

χi ≤ ρ

‖w‖1 ≤ (1 + δ) · µ .

(3.2)

And the upper bound

maxRel(X, `) : max
w, b, χ

|w`|

s.t. for all i

yi

(
w>xi − b

)
≥ 1− χi, χi ≥ 0

and
n

∑
i=1

χi ≤ ρ

‖w‖1 ≤ (1 + δ) · µ .

(3.3)

Computing these bounds for all features results in matrix

RI(X) :=


minRel(X, 0) maxRel(X, 0)
minRel(X, 1) maxRel(X, 1)

...
...

minRel(X, d) maxRel(X, d)

 (3.4)

with all lower bounds in the first column and all upper bounds in the second.
Each row contains the lower and upper relevance bound of every feature
which can also be interpreted as an interval of possible feature contributions.
These intervals indicate the degree up to which a feature can or must be used
in the classification, and they can be visualized for interpretative purposes as
seen in Figure 3.2.

In [Göp+18] the authors proposed the following feature classification
rules:
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Strongly relevant A feature is strongly relevant when its lower relevance
bound is bigger than zero. The model class defined by its prediction
accuracy is dependent on information from it.

Weakly relevant When two or more features are correlated they can replace
each other functionally in the model. These features are characterized
by a lower bound equal to zero and an upper bound bigger than zero.

Irrelevant By definition irrelevant features should have no measured rele-
vance at all. Their upper (and lower) bound should therefore be zero.

While the relevance bounds should give a truthful indication of feature
relevance, in practice the discrimination between relevant and irrelevant
features is challenging: variations of the underlying distributions of the
features imply that thresholds for feature relevance can vary for different
features. The use of slack variables in the overall model and thus the relevance
bounds allow variation in the contribution of features which improves finding
stable solutions but also adds noise. This is exacerbated by the behaviour of
linear programming solvers, which often have exhibit loss of precision. As an
example specifically for relevance bounds: even if feature ` is independent,
we often observe maxRel(`) > 0 and 0 < minRel(`) < 10−5. This shows that
a static, data-independent threshold can not discriminate between noise and
relevant features.

Statistical Feature Classification

In this section, we propose to use a threshold based on statistical estimation
of variance which allows better discrimination between noise and signal.
Instead of selecting a fixed threshold per algorithm, our proposal computes
a threshold depending on the training data and parametrization. A similar
resampling based approach was used to estimate a stopping threshold for a
forward feature selection approach in [Fra+07].

We expect for a given model class defined by Fδ(X) the same amount
of slackness in the relevancies for irrelevant variables. This slackness is
introduced by the parameters of the algorithm (δ, C) and the LP-solver’s
internal algorithm. Furthermore, we assume that the slackness is consistent
overall features because the parametrization is not changing and that it
follows a Gaussian distribution with small deviations from the mean as a
result from random fluctuations in the data. We assume that this slackness is
present for all feature relevancies, but its distribution can only be estimated
by observing independent variables.

Because independent variables are by definition irrelevant for the target
the only observable relevance in their case should result from slackness.
Therefore, we can use independent variables to estimate the distribution of
the slackness. To create independent variables we utilize randomly permuted
input features from X. We define perm(X`) as the random permutation of
values in X` and

X � `k :=

{
X, if k 6= `

perm(X`), otherwise

as the dataset where only ` was replaced by its random permutation.
Then we define random variable

π(maxRel) := maxRel(X � `, `) ` ∼ U (1, d)

where ` is an i.i.d sample from the discrete uniform distribution U over all
feature indices in D. The random variable represents the minimal or maximal
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feature relevance of the permuted randomly chosen feature, thus, we assume
that the slackness of minimal and maximal relevance is different and requires
two independent distributions. A sample population of such a distribution is
defined as

π̂(maxRel)(α) :=
(

π(maxRel)i

)
i∈{1,...,α}

and
π̂(minRel)(α) :=

(
π(minRel)i

)
i∈{1,...,α}

with α samples.
Now, we require a statistical framework to test, if the relevance of an

actual unperturbed input feature is feasibly distributed according to one of
the unknown slackness distributions. Geisser proposed predictive confidence
intervals for such a purpose in [Gei93, Chapter 2]. After sampling α times, the
predictive interval gives bounds for the most likely outcome of the sample
πα+1. The probability p that the next sample πα+1 lies in these bounds is
given by

Pr

(
π̂(α) − Tα−1(p) · σ

√
1 + (

1
α
) ≤ πα+1

≤ π̂(α) + Tα−1(p) · σ
√

1 + (
1
α
)

)
= p

where π̂(α) denotes the sample mean and σ its standard deviation and T
represents Student’s t-distribution with α− 1 degrees of freedom and denotes
p its chosen percentile.

The prediction interval is defined as

Π(minRel, α) := π̂(minRel)(α) ± Tα−1(p) · σ
(
π̂(minRel)(α)

)√
1 + (1/α)

and analogously for maxRel.
Note the ± which yields two values resulting in the interval which acts

as our new feature selection threshold. Instead of testing new samples from
permutation features, we instead use actual real features and check if their
relevance is inside this interval. The size of Π depends on parameter p and
we propose value p = 0.999 for a low false-positive rate and α ≥ 50 which
yields sufficiently robust thresholds for a common feature set sizes in our
experiments without adding too many computations to the complexity, which
we analyse in Section 4.2.2.

To classify feature ` as irrelevant we check if its relevance bounds are
inside the bounds of our prediction intervals. The following logical test uses
the prediction interval to produce the three relevance classes:

Strong relevance:

maxRel(`) /∈ Π(maxRel) ∧ minRel(`) /∈ Π(minRel)

Weak relevance:

maxRel(`) /∈ Π(maxRel) ∧ minRel(`) ∈ Π(minRel)

Irrelevance:

maxRel(`) ∈ Π(maxRel) ∧ minRel(`) ∈ Π(minRel)

Here, parameters X and α where omitted for readability.
Our method provides the set A ∈ {0, 1, 2}d, which numerically encodes

strongly (2), weakly (1) and irrelevant (0) features.
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Figure 3.2: Program output using the t21 dataset visualizing relevance bounds
for all features as coloured boxes. Colours correspond to relevance classes
assigned by FRI. (a) Shows program output without any constraints intro-
duced by the user. (b) Shows output with feature 1 GA-d (“Gestation age in
days”) set to its minimum value.

3 .2 .2 Feature Constraints

The mathematical formalization of relevance intervals introduced in Sec-
tion 2.3.2 opens up the opportunity to integrate prior knowledge about
feature relevancies and to iteratively explore solutions by integrating addi-
tional constraints for specific features. By solving the problem using Linear
Programs (LPs), the addition of constraints is easy. One way to leverage this
is the possibility of adding relevance constraints to the optimization.

Given the set of all features D and a feature ` we define a set of additional
constraint ranges K. A constrained feature ` is defined by

K` := (K`,min, K`,max) (3.5)

such that
K :=

{
K` | ` ∈ D

}
(3.6)

is the set of all constrained features. Note that K` ≥ 0 because relevancies
are by definition positive. Each constraint pair K` sets new bounds in the
optimization for the usage in the model. In the case of K`,min = K`,max we
consider the model’s usage of feature ` as fixed to a static value. Although
the values in K can be chosen arbitrarily under the given restrictions, in
practice one should stick within the relevance bounds in RI. Otherwise, most
models would be infeasible to solve under the restrictions of similar model
parameters introduced in Section 2.3.2.

To compute relevance bounds including individual feature constraints,
we have to extend the set of existing constraints in the optimization from
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Section 2.3.2. The minimum relevance bound with constraints is defined as

minRelC(X, `, K) : min
w, b, χ

|w`|

s.t. for all i

yi

(
w>xi − b

)
≥ 1− χi, χi ≥ 0

and
n

∑
i=1

χi ≤ ρ

‖w‖1 ≤ (1 + δ) · µ
Kk,min ≥ |wk| ≥ Kk,max ∀k ∈ K .

(3.7)

New is the last constraint bounding |wk| in between the given Kk. The
maxRelC is defined analogously with a maximization objective. To rewrite
the new absolute term |w`| as a convex problem, we utilize the baseline
solution w̃, which allows us to use the sign of the coefficient w̃` turning the
non-convex absolute term into a simple convex one.

By changing the amount of contribution allowed for one feature, we can
observe varying relevance bounds for others and infer potential dependencies
between them as in Figure 3.2 (b). In our tool, we provide the means to easily
define ranges or values for all features. These preset values can freely be
chosen but the following calculation according to the feature relevance bound
algorithm is constrained by the initial model values. That can lead to infeasible
solutions. To circumvent this we provide a method to only change one or few
features while the rest of features is left variable.

3 .2 .3 Grouping

While the method in Section 3.2.2 can facilitate manual model design, we also
looked into making this process automatic. The overall goal is to find groups
of features that have a similar function in the model, which should be visible
by correlated feature relevancies. Feature grouping in general aims to find
similar features to facilitate dimensionality reduction or as a part of feature
selection. This can be done purely unsupervised based on interdependence
measures or supervised in conjunction with a learning model. Examples of
this are feature clustering approaches [Büh+13] or linear learning models
with integrated grouping terms [Kam+16].

We propose to use the changes in relevance bounds observed in differ-
ent contexts of constrained subproblems. We use these changes as a proxy
for functional similarity, and we measure these changes systematically and
interpret them as pairwise similarities. This allows inferring a connected
tree representation using hierarchical clustering which can be used as a vi-
sual interpretation aid. Furthermore, we can approximate a clustering of the
features where each cluster contains similar features.

Feature Context First, to compute relevance changes systematically we
fix feature relevancies to their extremal values RImin/max

` and observe how
these choices affect other features. The following situations can occur:

1. Feature information dependency: The information within feature `
(at least partially) depends on another feature k if the latter is required
to use the information of the former. This can be observed by setting
Kk to its minimum value and observing whether this causes a decrease
of the maximum relevance of `. Alternatively, feature dependency can
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also manifest itself in the fact that setting Kk to its maximum value
increases the minimum value of a feature k, i. e. k can only optimally
be used if also ` is present

2. Feature information redundancy: The information of feature k can be
(at least partially) substituted by feature `. This can be observed in two
cases: when setting Kk to a minimum value the minimum relevance
of feature ` is increased. Conversely, when setting Kk to a maximum
value, the maximum relevance of feature ` is decreased. This can be
observed in highly correlated feature pairs.

Functional similar features behave similarly in similar contexts. For every
feature `, we can measure the impact of setting Kk to the minimal and
maximal possible relevance bounds for all other features. In other words, we
express each feature’s functional behaviour by observing it in two contexts:

• When set to the minimal relevance bound, i. e.
Kmin
` :=

(
RImin

` , RImin
`

)
• When set to the maximal relevance bound, i. e.

Kmax
` := (RImax

` , RImax
` )

This yields a vectorial description for all features which we can use to group
features through a clustering algorithm. Note that K only contains one feature
` for this use case such that

K =
{

K`

}
and |K| = 1.

We represent each feature in its functional context to other features as
defined by the feature relevance bounds. In the following, we are always ap-
plying the algorithm on X such that minRel(X, `) is shortened to minRel(`).
Now, similar to the array

RI := (minRel(i), maxRel(i))d
i=0

we define relevance intervals with a single feature (k) constrained as

RIC(k, min) :=


minRelC(0, Kmin

` ) maxRelC(0, Kmin
` )

minRelC(1, Kmin
` ) maxRelC(1, Kmin

` )
...

...
minRelC(d, Kmin

` ) maxRelC(d, Kmin
` )

 (3.8)

where Kmin
` is minRel(k). We apply the algorithm from Section 2.3.2 again

with one feature constrained to its minimum relevance bounds. Analogous is
the definition for the maximum:

RIC(k, max) :=
(

minRelC(i, Kmax
` ) maxRelC(i, Kmax

` )
)d

i=0
(3.9)

Because we are not interested in the absolute values but in the relative
changes, we take the difference to the initial unconstrained feature relevance
RI. Additionally, we combine both arrays (3.8) and (3.9) as

context(k) := (RI−RIC(k, min), RI−RIC(k, max)) ∈ R2d (3.10)

where “−” is used as the element-wise difference such that

RI−RIC(k, min) =


minRel(0) − minRelC(0, Kmin

` )
maxRel(0) − maxRelC(0, Kmin

` )
...

minRel(d) − minRelC(d, Kmin
` )

maxRel(d) − maxRelC(d, Kmin
` )

 . (3.11)
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3 .2 methodology

Hence, we measure the change in size and position of all other relevance
intervals when k is set to a fixed value. In this case, the fixed values are
both the upper and lower relevance bound of k. This definition captures
the functional role of feature k for the classification prescription since it
accumulates the information in how far feature k is redundant / dependent
to other features. Note that context(k)k is set to the neutral element 0 because
RIC(k, min)k and RIC(k, max)k are static by definition.

Similarity measure For a clustering method, one has to decide on a
similarity measure which follows the characteristics of the given data. Give
two features ` and k, we propose to take the Euclidean distance difference in
between two functional context vectors as dissimilarity measure, whereby we
modify the contexts by omitting values ` and k of the vectors:

δ(`, k) :=

√√√√√√
d

∑
i=0
i 6=`
i 6=k

(context(`)i − context(k)i)
2

In this distance function, we exclude the contribution of ` and k and only
observe the relation to all other features. This removes a direct pairwise
influence like strong direct correlation would produce and focuses on the
more general functional dependencies. It also enforces symmetry of the
dissimilarity measure which would be violated when one feature would
be dependent on the other. In general, however, this choice is no longer
necessarily a metric since it might violate the triangle inequality.

Visual Clustering With this measure we can now group features utilizing
any suitable clustering technology which relies on pairwise dissimilarities.
Here, we opt for a parameterless technology which is offered by classical
hierarchical clustering methods in the form of agglomerative clustering. In
agglomerative clustering, the features get grouped bottom-up starting from
the most similar pair.

To link groups together one has to decide on a linkage function, which
defines the similarity for sets. In our case we are using the single linkage
which is defined for two sets of features A and B as

link(A,B) := min
a∈A, b∈B

δ(a, b).

This linkage takes the minimal existing distance between all possible pairs
of elements. The choice for this linkage is promoting the imputation of
function by using the transitive similarity of single features. For example
in the biosciences with regulatory elements as features, if one feature of a
group is very similar to another feature in another group, they can often be
considered part of a common pathway.

The clustering now iteratively aggregates features into growing groups
as long as more than one group exists. If all features are in one group the
algorithm stops and this final group can be interpreted as a tree. Starting
from the root of the tree, i. e. the final group, the edges represent the linkage
distance. The distances are balanced such that all inner sibling nodes have
the same distance to their direct parent.

We propose to use this tree representation as a visual aid together with a
relevance bound visualization to highlight similar features. In Figure 3.3 this
visual combination can be seen where the root is at the top.
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applications of feature relevance bounds

Figure 3.3: Combined figure provided by the methods plotting function.
Bottom subplot shows the calculated relevance bounds represented as bars.
Top subplot shows the corresponding tree clustering. The vertical length of
the lines represents the linkage distance used in the agglomerative clustering.

Flat Clustering To turn a tree structure into distinct groups, i. e. discon-
nected components, one can cut the edges at an equal length coming from the
root, here named linkcut. While the true parameter linkcut cannot be known
in practice, one can decide based on the given application on how to set it.
For this, we recommend using the visualization as shown in Figure 3.3 and
deciding on a linkcut interactively by integrating possibly existing knowledge
as guidance. Furthermore, if one expects a certain number of groups k, the
parameter can also be set accordingly to cut at the right length to produce
that amount of clusters.

Even if the number of clusters k is not known beforehand, several ap-
proximations exist to estimate it even though the quality of the resulting
clustering is questionable. In our implementation, we include a cutting heuris-
tic which takes the maximum linkage distance in the tree and cuts all edges
at that distance. We use that heuristic to perform a quantitative evaluation in
Section 3.3.4.

3 .3 evaluation

To evaluate the different aspects shown in Section 3.2 we perform several
evaluations in the following sections. In Section 3.3.1 we describe several
synthetic and real datasets which were used in those evaluations. Subsection
3.3.2 focuses on the performance when regarding classical feature selection,
Section 3.3.3 demonstrates the interactive use case involving our feature
constraints from Section 3.2.2 and Section 3.3.4 highlights the automatic
variant. Finally, in Section 3.3.5 we analyse the runtime.

3 .3 .1 Data

For our evaluations, we utilize two types of data: (1) simulated data with
known properties and ground truth and (2) real data mainly coming from
the biomedical sciences.
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Table 3.1: Characteristics of simulated datasets. Each set consists of 30 features
with 500 samples.

Number of features

data Strongly relevant Weakly relevant Irrelevant

Sim1 4 4 22
Sim2 12 8 10
Sim3 4 0 26
Sim4 18 0 12
Sim5 0 20 10

Simulation Data

All our simulation sets are sampled from a binary classification problem.
To generate a multidimensional classification problem, we use a randomly
generated prototype vector which defines a hyperplane. The defining features
of this plane are strongly relevant. Now points are sampled in this feature
space and the class is determined by the side of the hyperplane the points
lie on. Weakly relevant features are constructed by replacing a feature of
the original feature space with its linear combination. The elements of this
combination are highly correlated and produce a set of redundant features.
By removing the original feature and replacing it with those elements we
achieve weak relevance by definition. Irrelevant features are sampled from a
standard normal distribution.

Sim1 and Sim3 have a sparse relevant feature space while Sim2 and
Sim4 are dense. Additionally, in Sim1 and Sim2 weakly relevant features are
present, while they are missing completely in Sim3 and Sim4. Sim5 had all
strongly relevant features removed.

Biomedical Data

The biomedical datasets are gathered from multiple studies and differ in size
and type:

t21 This set stems from a series of prenatal examinations of pregnant women
with the goal of early diagnosis of chromosomal abnormalities, such
as trisomy 21. The study covers sociodemographic, ultrasonographic
and serum parameters which result in 18 usable features. The original
set contains over 50.000 samples but only a low percentage (≈ 0.8%)
of abnormal samples. It was collected by the Fetal Medicine Centre at
King’s College Hospital and University College London Hospital in
London [Nic+05].

flip This set is used for the prediction of fibrosis. The diagnosis of fibrosis is
represented as a score which is based on sociodemographic and serum
parameters. The set consists of samples of 118 patients and 19 features
and was provided by the Department of Gastroenterology, Hepatology
and Infectiology of the University Magdeburg [Sow+13].

spectf The spectf dataset consists of 44 features describing cardiac Single
Proton Emission Computed Tomography (SPECT) images. Each of the
267 patients’ images were diagnosed as either normal or abnormal.

wbc The wbc dataset contains 32 markers for cell image-based breast cancer
diagnostics from 569 patients.
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colposcopy A set with 69 extracted structural features from videos acquired
during colposcopies [FCF17]. Classification of practitioners clinical
judgment using the Schiller modality.

Sets spectf, wbc and colposcopy were acquired through the UCI Machine Learn-
ing Repository [DK17]. The biomedical datasets are preprocessed before
analysis. Samples with over 90% missing values are removed. Sets are split
into stratified training and testing subsets. If samples still contain missing
feature values, we replace them with the feature’s training set mean in both
subsets. Similarly, the z-score transformation is based on the training set and
applied to both. In case the original set is imbalanced, we use the Synthetic
Minority Over-sampling Technique (SMOTE) [Cha+02] in combination with
the Nearest Neighbour cleaning rule [Wil72; Lau01] as described in [BPM04].
In one case (t21) with an extremely large majority class, we only perform
downsampling.

3 .3 .2 Selection Accuracy

The most important aspect of our proposed method is the performance of
the feature selection. Performance in this context is the precision and recall
of selected relevant features in the set of all input features D. We assess the
performance with known ground truth using quantitative measures, and we
analyse it qualitatively on real sets.

Benchmark methods To evaluate the method in context we run this
analysis with several methods:

• Boruta [KR11]

• Ensemble Feature Selection (EFS) [NGH17]

• ElasticNet (EN) using an equal contribution of L1 and L2 regularization
[ZH05]. Lasso performed very similar to EN such that we only included
the latter.

• Stability Selection (SS) [MB10; SS13]

• Feature Relevance Intervals method (FRI) is the implementation of the
methods proposed in Section 3.2

For all methods, the proposed default parameters are used. Hyperparameters
are selected according to a cross-validation scheme. For EN, we choose the
feature set depending on the coefficients ci of the model where ci > 10−5

counts as selected.

Supervised

In this section, we focus on the aspect of the all-relevant feature selection
problem (ARFS) and compare the match of the selected feature set and the
known ground truth of all relevant features. In detail, we measure several
key quantities:

True Positives (TPs): The number of correctly identified relevant features.

False Positives (FPs): The number of irrelevant features identified as rele-
vant.

True Negatives (TNs): The number of correctly identified irrelevant features.

False Negatives (FNs): The number of relevant features not identified as ir-
relevant.
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Table 3.2: Average training set accuracy on simulation data. In the case of
Boruta the internal RF score was reported. For EFS accuracy is not defined.

accuracy

data Boruta EFS EN FRI Stability Selection (SS)

Sim1 0.99 - 1.00 0.92 1.00
Sim2 0.97 - 1.00 0.96 1.00
Sim3 0.99 - 1.00 0.96 1.00
Sim4 0.97 - 1.00 0.93 1.00
Sim5 1.00 - 1.00 0.91 1.00

These absolute quantities can be combined in relative measures: precision
and recall. The recall is defined as the ratio between TP and (TP+FN), i. e.

recall :=
TP

TP+ FN
.

It denotes how many of the relevant features were selected which is crucial
when looking for the all relevant feature set.

Precision is defined by

precision :=
TP

TP+ FP

and describes what rate of false positives are part of the feature set.
Because of the typical trade-off between precision and recall one can also

use the F1measure which is the harmonic mean of the two former:

F1 := 2 · precision · recall
precision + recall

For the supervised analysis, we utilize the simulation datasets from
Section 3.3.1. Due to known ground truth, we can explicitly evaluate the
validity of selected features. All simulation sets consist of 30 features and
500 samples. They differ in the density of the relevant feature space which
is defined by the amount of strongly, weakly and irrelevant variables which
are listed in Table 3.1. According to these parameters, 50 sets were generated
per configuration and the following evaluation refers to the averaged scores
which can be seen in Table 3.3.

Before we evaluate the selection measures, we confirm that all models
had a proper fit. Listed in Table 3.2 are the training accuracies. Instead of
comparing feature quantities, these are the training accuracy on the training
samples, i. e. the typical model prediction accuracy. One can see in the table
that most classification models had accuracy values over 90% which signifies
a sufficient fit of the data. EFS is an ensemble of a variety of statistical models
and methods and has no score defined.

To evaluate the feature selection performance we mainly observe the F1
score in Table 3.3. Here our proposed method FRI takes the lead overall with
a nearly perfect score in all simulation sets. Depending on the presence of
weakly relevant features, the other methods show loss of recall which leads
to a reduced F1 score. This is especially evident for Sim2 and Sim4 in the case
of SS and EFS. The worst recall is achieved by SS for Sim5 where it did not
select any of the weakly relevant variables. SS still achieves slightly better
scores in Sim3 where no weakly relevant features are present.
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Table 3.3: Feature selection score on simulated datasets. Values are showing
the performance of each method to classify the relevance of input features.

score data Boruta EFS EN FRI SS

F1

Sim1 0.98 0.96 0.62 0.98 0.77
Sim2 0.82 0.76 0.84 0.98 0.75
Sim3 0.91 0.71 0.44 0.99 1.00
Sim4 0.82 0.84 0.82 0.99 0.91
Sim5 0.98 0.94 0.80 0.99 0.27

precision

Sim1 0.99 0.93 0.46 0.98 1.00
Sim2 1.00 1.00 0.74 1.00 1.00
Sim3 0.87 0.57 0.28 0.98 1.00
Sim4 1.00 1.00 0.69 0.99 1.00
Sim5 1.00 1.00 0.67 1.00 1.00

recall

Sim1 1.00 1.00 1.00 0.99 0.62
Sim2 0.72 0.62 0.98 0.97 0.60
Sim3 0.98 0.98 1.00 1.00 1.00
Sim4 0.70 0.73 1.00 0.98 0.83
Sim5 0.95 0.90 1.00 0.99 0.16

Table 3.4: Average training set accuracy on real data. In the case of Boruta
the internal RF score was reported. For EFS accuracy is not defined.

accuracy

data Boruta EFS EN FRI SS

colp. 1.00 - 0.99 0.97 0.99
flip 1.00 - 0.90 0.82 0.90
spectf 1.00 - 0.99 0.92 0.98
t21 1.00 - 0.98 0.93 0.98
wbc 1.00 - 1.00 0.98 1.00

Unsupervised

To assess the quality of the feature selection on real datasets, we have to rely
on the problem performance itself since no ground truth feature relevance is
available.

First, we observe the model accuracy on the training set samples. Most
models show very high accuracies. One exception is the case FRI for the
flip dataset which is only at 82% which could be accounted to the model’s
simplicity in comparison with the alternatives.

Now we again focus on the resulting feature sets. We expect an FS
method to pick features which contain information and a loss of features
with crucial information is signified in a decrease of performance. Notable
exceptions are redundant features, which can decrease performance when
their presence increases model complexity and lead to bad generalization.
Instead of looking at each model’s internal accuracy score, we evaluate the
selected feature sets by their discriminative power, whereby the latter is
uniformly evaluated by a logistic regression model, which is a very popular
model for predictive purposes in medical applications [BWG01] and very
fast to evaluate. The model is trained using only the predicted feature set.
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Table 3.5: ROC-AUC values of a logistic regression model using features
selected by listed models. The values are averaged over 50 bootstraps.

ROC-AUC

data Boruta EFS EN FRI SS

colposcopy 0.568 0.586 0.640 0.661 0.625
flip 0.804 0.652 0.815 0.743 0.705
spectf 0.871 0.874 0.867 0.880 0.888
t21 0.971 0.977 0.971 0.975 0.978
wbc 0.997 0.998 0.998 0.998 0.999

Finally, for this selected model the receiver operation characteristics (ROC)
on the holdout validation set is recorded. ROC denotes the trade-off between
recall and the false positive rate over all possible threshold parameter choices.
For the comparison, we look at its area under the curve (AUC) such that an
area of 1 is the maximum possible area and also the best possible score, as
it signifies perfect recall with no false positives. We perform the test on 50
bootstrap replicates with sample size 0.7 · n where samples are chosen from
the original set with replacement. The averaged results are given in Table 3.5.
Here the AUC on the five datasets shows no clear overall superior method
which is in line with the common expectation that the minimal optimal set is
the objective of most methods and sufficient for prediction. On the spectf, t21
and wbc datasets most methods produce very similarly performing feature
sets. In the case of colposcopy, the feature set selected by FRI achieves the best
performance. SS produces sightly better sets in two cases. The EN performs
solidly in all cases based on its very conservative selection method where
informative features are not removed often.

Evaluating our goal, the selection of redundant features, is not discernible
when analysing prediction performance. In the search for a complete feature
set, we need to take the selected set size into account. Table 3.6 lists the
average feature set sizes over all experiments. Because FRI provides additional
information by not only conserving all weakly relevant features but also by
denoting the feature class (strong/weak relevance) we can explicitly list those
as well. As mentioned in the last paragraph, we can easily see that EN is
very conservative in its selection. It produces by far the biggest feature sets
with many false positives in the case of the Sim sets but also most likely in
the real datasets. Similarly, Boruta achieves better precision in the simulated
data but shows seemingly inflated set sizes. SS on the other hand exhibits
very good precision overall. Interestingly, the size of the sets chosen by SS is
very similar to FRIs, the set of strongly relevant features chosen by FRI. This
indicates that FRI can find strongly relevant features with high precision, but
also highlights the additional information provided by the weakly relevant
features contained in FRIw.

3 .3 .3 Interactive Use

By having additional information available in the potential set of weakly
relevant features FRIw we can gain insights into the structure of the data. We
can improve the design of models and diagnostic tests in biomedical applica-
tions. Our framework given in Section 3.2.2 allows introducing constraints
into the model. This makes it possible to limit the contribution of certain
features to specific intervals or a fixed value. These limits can come from
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Table 3.6: Average selected feature set size. Additionally, for FRI the size of
the strongly(s) and weakly (w) relevant feature set is available.

data
feature set size composition

Boruta EFS EN SS FRI FRIs FRIw

Sim1 8.1 8.7 17.8 5.0 8.1 5.1 3.0
Sim2 14.3 12.3 26.6 12.1 19.4 12.4 7.0
Sim3 4.6 7.2 14.8 4.0 4.1 4.0 0.1
Sim4 12.6 13.2 26.2 15.0 17.9 17.9 0.0
Sim5 19.1 17.9 29.7 3.2 19.9 0.0 19.9
colp. 35.1 25.4 46.5 41.5 20.3 5.9 14.4
flip 18.8 8.1 16.9 9.1 8.9 8.8 0.1
spectf 44.0 20.3 43.1 5.9 19.9 5.9 14.0
t21 15.5 7.9 14.2 9.6 9.6 6.6 3.0
wbc 29.9 12.5 26.9 4.7 15.6 4.0 11.6

prior knowledge of the practitioner and represent design goals or existing
hypotheses. Depending on the chosen values the model and the resulting
relevance bounds change and can be visualized again which lends itself to an
iterative and interactive process. In the following, we are going to evaluate
that use case on simulated data and the t21 data set.

The simulated set was generated according to Section 3.3.1. It consists of
8 features, 4 of which are strongly relevant, 3 of which are weakly relevant
and one noise feature. Figure 3.4 (a) shows the output of FRI without any
constraints. The four strongly relevant features (1-4) are visible as four small
rectangles with lower relevance bounds (the bottom part of the rectangle)
bigger than zero. The model parameters allow some variation in their contri-
bution to the model. Three weakly relevant features (5-7) are visible as three
taller rectangles with equal height because they are perfectly correlated in the
normalized space. They can replace each other in the model. This is apparent
when we set one of them (e. g. feature 5) to the minimum and maximum
relevance bound, i. e. we calculate

minRelC(X, `, K)

and
maxRelC(X, `, K)

for all ` 6= 5 and K = {K5}. K5 is then either RImin
5 or RImax

5 , i. e. fixed to a
static value.

In Figure 3.4 (b) feature 5 is set to the minimum bound and the relevance
bounds of other features are identical. That is because the other two features
are still a correlated pair which allows the same degree of variability in
contribution. When feature 5 is set to its maximum relevance bound in (c)
we see that feature 6 and 7 no longer have a contribution. Additionally, all
other relevance bounds are reduced to single values because the model in
this state does not allow any more variability.

It is now interesting to apply this procedure on real data with functional
associations between features. In Figure 3.2 (a) the normal FRI output of the
t21 set is presented. As a reminder, this set consists of samples acquired in
prenatal examinations of mothers and their unborn children. Features in the
study included socioeconomic factors as well as ultrasound imaging metrics.
Notably in the output of FRI are two weakly relevant features 1 and 6. Feature
1 represents the gestational age of the fetus in days (‘GA-d’) and feature 6 the
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crown-rump length (‘CRL’) of the fetus, which is the length as indicated on an
ultrasound machine. By intuition, we expect an association between the two
measures. If we set one of the two features to its minimum relevance bound
(Figure 3.2 (b)), we see that feature 6 becomes strongly relevant in the model.
This highlights the association between the two which is very useful in cases
where it is not clear a priori. Furthermore, we can use this as a design tool
to easily select ‘better’ features. If we find functional alternatives, we can
exclude more expensive features in future experiments or tests.

3 .3 .4 Feature Groups

While an interactive workflow is desirable in many situations, in others the
automatic variant is suited better. In this section, we look at the output from
the automatic grouping from Section 3.2.3. First, we do a quantitative and
supervised evaluation using generated data. After that, we use some data
sets from Section 3.3.1 to do a qualitative analysis using already known
associations from literature as a reference.

Supervised

To evaluate the quality of the grouping we performed a supervised clustering
experiment. Here we exploit the fact, that we have ground-truth knowledge
about the groups in simulated data. As such this evaluation is suitable to
show if the proposed grouping is sensitive to the functions of features.

We used the commonly used clustering metric V-measure [RH07] to
check for the clustering quality. It is the harmonic mean of homogeneity and
completeness. Homogeneity measures if one cluster contains only points from
the same class. Completeness is symmetrical to homogeneity and measures if
all points of the class are in the same cluster. With the harmonic mean of
both values, we get an aggregated measure for the overall truthfulness of the
clustering. If a method is truthful, it should put all the features of a given
group into the same clusters which would result in a value of 1. A nonsense
clustering would result in a value of 0.

The V-measure is defined with a given ground truth labelling of clusters.
Because clear labelling is seldom found in nature, we use the data generation
method from Section 3.3.1. To imitate groups of functional similar features
we create identical feature pairs. One pair is considered a related group or
cluster.

We generate sets with n = 100 and given the following characteristics:

• Set 1: 20 overall features, 5 pairs of identical relevant features, 10
random noise features

• Set 2: 18 overall features, 3 unique relevant features, 5 pairs, 5 noise
features

• Set 3: 10 overall features, only 5 identical pairs, no noise features

Unique features are considered to be in a cluster with size 1. Irrelevant
noise features could also be considered unique and handled as such but in
this evaluation, we set them to be in a single outlier group. Directly related
features are considered to be in one cluster.

We compare several clustering approaches:

• HDBSCAN [MHA17; MH17]: this density-based clustering has several
advantages for a comparison. It does not need a parameter k before-
hand, instead, it expects a minimum cluster size, in our case set to
2.
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Figure 3.4: Three subplots showing feature relevance bounds in different
constraint situations according to Section 3.2.2. Classification data were simu-
lated and consisted of 4 strongly relevant features (1–4), 3 weakly relevant
(5–7) and one noise feature (8). Subplot (a) had no feature constraints. Subplot
(b) shows the output when feature 5 is constrained to its minimum relevance
value and (c) to its maximum value.
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Table 3.7: Comparison of flat clustering results from FRI, correlation-based
distances and HDBSCAN approach. V-measure was computed over 5 inde-
pendent runs with provided ground truth. Runtime is given in milliseconds.

V-measure runtime (ms)

model data

corr-clust
Set 1 0.72 1.11
Set 2 0.89 0.93
Set 3 1.00 0.90

FRI
Set 1 1.00 38464
Set 2 0.90 30186
Set 3 1.00 14520

HDBSCAN
Set 1 0.79 1.17
Set 2 0.81 1.02
Set 3 1.00 0.98

• FRI: the method implemented as described in Section 3.2.3 using vari-
ation in relevance bounds as a similarity proxy and with the cutting
heuristic

• corr-clust: agglomerative clustering and cutting as described in Sec-
tion 3.2.3 but using Pearson correlation instead of relevance variations

The HDBSCAN method was run on data X; corr-clust used the pairwise
correlation of all features.

The experiment was performed 10 times and the average V-measure
values are given in Table 3.7. Additionally, the runtime in milliseconds is
given.

When considering the V-measure in the first set with many noise features
FRI scores perfect and much better than the alternatives. In Set 2 the results
are close but FRI has the best score with 0.9. Only in the third set, all methods
achieve perfect scores. It is noticeable, that both correlation clustering and
HDBSCAN can not handle noise features as well as FRI. Still, the results of
correlation clustering are not far off from FRI. When also considering the
runtime, which is many magnitudes higher for FRI, the alternatives are much
faster. It is arguable if the additional value of FRI, in this case, is worth the
extreme differences in computational requirements.

Unsupervised

To replicate a typical use case for our method we compare the combined
results in our given visualization to references in literature.

When looking at Figure 3.5, we can observe some closely related fea-
ture pairs. One of those pairs is “HDL” and “Bloodsugar” which are two
quantitative markers for the corresponding levels in the blood. A functional
relation between the two is already known [Leh+13]. The pair exhibits a slight
correlation between them (−0.11). Another pairing with very high correlation
(0.99) exists between “HbA1C” and “K”.

The results in Figure 3.2 on page 22 for the t21 set show the case where
multiple features, which are most likely irrelevant, achieve a high functional
similarity. This grouping of likely noise features could be used in advantage
by truncating the tree in the future. Other than this, the results also show
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Figure 3.5: Visual output of FRI on the fibrosis dataset. Shown on top is the
tree representation of the relevance variance as described in Section 3.2.3 and
at the bottom the bars representing relevance bounds with colours indicating
inferred relevance class as shown in Section 3.2.1.

multiple feature pairs. One pair with a small distance is “GA-d” which stands
for the gestation age in days and “CRL” which denotes the rump length of
the fetus and which are highly correlated (0.99).

3 .3 .5 Runtime

The computational runtime of a method is not only an indicator for its
feasibility on bigger datasets but also especially important in the interactive
use case where an analyst is actively involved in model refinement. Because
relevance bounds can be solved independently in parallel, we provide the
means to speed up computation by utilizing all available CPU cores on the
machine. Additionally, we also tested running our program in conjunction
with the distributed computation framework Dask which allows scaling up
to any amount of separate computing nodes in a high-performance cluster
such as Grid Engine or even in cloud backends.

In this evaluation, we focus on the runtime when considering the feature
selection only. Earlier we showed the runtime when considering the feature
grouping in Section 3.3.4. In Figure 3.6 we display aggregated mean runtime
of the methods used in our evaluations on a single CPU thread. Because
only FRI and one other method provided a parallel implementation (SS) the
computations were limited to one thread, so an advantage of the parallel
processing is not taken into account. EN performed best followed by SS.
Both show steady runtimes over all types of data. Boruta’s runtime is very
dependent on the density of the feature space and shows some variance in the
case of t21. The runtime of FRI is similar to Boruta in most cases but takes a
hit in smaller datasets because of the constant factor of sampling permutated
features for feature classification. EFS shows the slowest performance in most
cases, which stems from its use of multiple complex underlying models at
the same time.
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Figure 3.6: Average runtime over all bootstraps with confidence intervals.

3 .4 conclusion

In this chapter, we have presented the software library FRI to produce all
relevant feature sets for general feature selection as well as perform inter-
active data exploration. We described how we implemented the algorithm
from [Göp+18] and extended the method to allow a practitioner to include
new constraints and experiment. We also proposed a threshold estimation
method to reduce false positives which are common in all-relevant selection
tasks.

In comparison with other methods, we showed that FRI can detect all
relevant features in synthetic datasets while minimizing noise through its
threshold estimation. On real datasets, we showcased good selection perfor-
mance and additional information provided by the weakly relevant feature
set. Our underlying method ensures to conserve all relevant variables while
still maintaining interpretability. This is facilitated by the three relevance
classes our method produces as well as the relevance bar representation
which should enable better understanding for biological and medical experts
in the future. In addition to facilitating understanding, we also provide a
way to incorporate prior knowledge to manipulate the model and highlight
related features using a tree representation which should help in the design
of new experiments and biomarkers for prediction models. Furthermore, we
also experimented with automatically grouping related features into clusters
and evaluated this on theoretical data.
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4O R D I N A L R E G R E S S I O N A N D T H E R E L E VA N C E
O F P R I V I L E G E D I N F O R M AT I O N

Parts of this chapter are based on:

• Lukas Pfannschmidt, Jonathan Jakob, Michael Biehl, Peter Tino, and
Barbara Hammer. “Feature Relevance Bounds for Ordinal Regression”.
In: ESANN 2019. ESANN 2019. Bruges: i6doc, Feb. 20, 2019, ES2019–
162. isbn: 978-2-87587-065-0. url: https://www.elen.ucl.ac.be/
Proceedings/esann/esannpdf/es2019-162.pdf

• Lukas Pfannschmidt, Jonathan Jakob, Fabian Hinder, Michael Biehl,
Peter Tino, and Barbara Hammer. “Feature Relevance Determination
for Ordinal Regression in the Context of Feature Redundancies and
Privileged Information”. In: Neurocomputing (Apr. 9, 2020). issn: 0925-
2312. doi: 10.1016/j.neucom.2019.12.133. arXiv: 1912.04832

In the following chapter, we will introduce feature relevance learning
in the context of redundant features for ordinal regression (Section 4.1) and
privileged information (Section 4.2) based on the theoretical feature rele-
vance bounds [Göp+18] described in Section 2.1 including the improvements
demonstrated in Chapter 3.

4 .1 large margin ordinal regression

4 .1 .1 Background

While many applied problems are binary classification problems, as discussed Context

Problem ordinal regression
Model linear
Type classical

in Chapter 3, many applications require an extension. Ordinal regression
refers to the task to assign data to a finite number of classes or bins, which
are ordered qualitatively along a preference scale. Ordinal data often occur in
sociodemographic, financial or medical contexts where it is difficult to give
absolute quantitative measurements but easily possible to compare samples
and assign those to different bins, which are qualitatively ordered, such as
the severity of a disease or the risk of a financial transaction. Another popular
example of ranking on ordinal scales takes place in customer feedback or
product ranking by humans [HK16]. Here, the quality is often represented by
a five-star rating scale, where five stars correspond to the best rating and one
star to the worst. Indeed, many human ratings are represented on an ordinal
scale rather than absolute values.

The Ordinal Regression Problem (ORP) is the task to embed given data
in the real numbers such that they are ordered according to their label, i. e.
the target bin. An error is encountered whenever an ordering of two data
points assigned to different bins is violated. Although the problem can be
treated as a regular regression or classification problem, dedicated techniques
are often preferred since they can account for the fact that the distance
between ordinal classes in the data is unknown and not necessarily evenly
distributed. Examples of ordinal regression include treatments such as the
multi-class classification problem [FH01] and extensions of standard models
such as the support vector machine (SVM) or learning vector quantization
(LVQ) to ordinal regression tasks [SL02; CK07; FT12; TT17]. Recent work
proposed an incremental and sparse Bayesian approach with favourable
scaling properties [LdR18]. Often, ordinal regression is treated as a pairwise
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ranking problem [CMR19]. Further, there does exist recent theoretical work
which establishes consistency of some surrogate losses for ordinal regression,
which have better numeric properties [PBG17].

While several methods exist to solve the ordinal prediction problem
itself, only a few consider the specific task of feature selection. The approach
in [Gen+07] uses a minimal redundancy formulation based on a feature
importance score to find the subset of relevant features. The work in [BES10]
focuses on multiple filter methods which are adapted to ranking data. These
models deliver sparse ordinal regression models which enable some insight
into the underlying classification prescription. Yet, their result is arbitrary in
the case of correlated or redundant features: if there does not exist a unique
minimum relevant feature set, it often depends on arbitrary initialization or
algorithmic design choices, which feature from a set of redundant features is
chosen. Hence, weakly relevant features as described in Section 2.2 can easily
be overlooked.

In this chapter, we will rely on the SVM-like treatments of the ORP due
to the mathematical elegance and flexibility of this formulation [SL02; CK07;
FT12]. We adapt the feature relevance bounds formulation first proposed for
classification in [Göp+18] for this highly relevant setting as a solution to the
all-relevant feature selection problem (ARFS) and demonstrate the benefit of
this approach in comparison to alternative popular feature selection models
such as Lasso or EN.

Besides formal mathematical modelling using linear optimization tasks,
we will also demonstrate the suitability of the model to investigate the role
of critical features for an ORP. As an example, the integration of criteria
such as age, gender, or ethnicity might improve the prediction accuracy of
a given model as measured by an appropriate cost function—yet, it might
be debatable if these features can have any relevance for the given task as
regards a causal relationship on the one hand; on the other hand, it might
be unethical or impossible to gather such features for a prediction model
in its daily use. Examples for a questionable impact of such characteristics
on a formal model have recently been debated under the umbrella of model
fairness [Kea17]. We will discuss how feature relevance profiles, in particular
the identification of weakly relevant features, enable further insight into such
settings, by explicitly quantifying the possible impact of such features.

In Section 4.1.2 we recapture two large margin ordinal regression formal-
izations, which differ in the type of constraints they enforce on ordinal classes,
namely implicit and explicit constraints. We propose a new extension to de-
termine feature relevance bounds, which can be transferred to several linear
optimization problems and enables accurate all-relevant feature selection
using the methodology proposed in Chapter 3. In Section 4.1.3 we perform
several benchmarks to highlight the feature selection accuracy using quan-
titative measures on synthetic and real data. In summary, we seek answers
to research questions 1, 2 and 4 from Section 1.2 in the context of ordinal
regression, and additionally, in Section 4.2 we answer research question 3 by
introducing privileged information.

4 .1 .2 Methodology

We consider the following ordinal regression learning task: We assume class
labels L = {1, 2, . . . , l}, which are ordered; w.l.o.g. we represent those as
natural numbers. We assume training data are given, X = {xj

i ∈ Rn | i =
1, . . . , mj, j ∈ L} where data point xj

i is assigned the class label j ∈ L, i. e. xj
i

is contained in bin number j. The full data set has size m := m1 + · · ·+ ml .
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4 .1 large margin ordinal regression

Here the index j refers to the ordinal target variable the data point xj
i belongs

to. The ORP can be phrased as the search for a mapping f : Rn → R, which
preserves the ordering of bins as indicated by the label information. That
means the inequality f (xj1

i1
) < f (xj2

i2
) should hold for all pairs of class labels

j1 < j2 and data indices i1 and i2 in these bins.
In the following, we will restrict to the case of a linear function, i. e.

f (x) = w>x with parameter w ∈ Rn. In particular, in the case of high
dimensional data, such a linear prescription is often sufficient to model the
underlying regularity. Further, it enables a particularly strong link of feature
relevancies and the underlying model, as already elaborated in popular
sparse models such as Lasso [Tib96]. There do exist different possibilities
to model the ORP learning problem. Here, we will introduce two existing
optimization problems, which rely on large margins, and which treat the
inequality constraints in two different ways.

Explicit Order Constraints One way to model ordinal regression is by
an embedding of data in the real numbers via f , whereby the bins are
separated by adaptive thresholds bj, which are learned accordingly. A popular
formulation which is inspired by support vector machines imposes a margin
around all thresholds bj for this embedding [CK07]:

min
w,b,χ,ξ

1
2
‖w‖1 + C ∑

i,j

(
χ

j
i + ξ

j
i

)
(4.1)

s.t. for all i,j

w>xj
i − bj ≤ −1 + χ

j
i

w>xj+1
i − bj ≥ +1− ξ

j+1
i

bj ≤ bj+1

χ
j
i ≥ 0, ξ

j
i ≥ 0

(4.2)

where χ
j
i and ξ

j
i are slack variables. The thresholds bj for j = 1, . . . , l− 1 deter-

mine the boundaries which separate the classes, bj referring to the boundary
in between bin j and bin j + 1. The hyper-parameter C > 0 controls the
trade-off between the margin and the number of errors and it can be chosen
through cross-validation. We adapt the problem from [CK07], which uses L2
regularization, and use L1 regularization in (4.1), aiming for sparse solutions.
In this definition, the linear ordering of classes is enforced explicitly through
constraint bj ≤ bj+1. When we refer to 4.2 in the future, we specifically refer
to the constraints of the problem.

Implicit Order Constraints Another definition highlighted in [CK05]
enforces the ordering implicitly, by requiring that all data of bin 1 to j are
embedded below the threshold bj, all data from bins j + 1 to l are above the
threshold. This leads to the implicitly constrained problem:

min
w,b,χ,ξ

1
2
‖w‖1 + C

l−1

∑
j=1

(
j

∑
k=1

nk

∑
i=1

χ
j
ki +

l

∑
k=j+1

nk

∑
i=1

ξ
j
ki

)
subject to

w>xk
i − bj ≤ −1 + χ

j
ki, χ

j
ki ≥ 0,

for k = 1, . . . , j and i = 1, . . . , mk;

w>xk
i − bj ≥ +1− ξ

j
ki, ξ

j
ki ≥ 0

for k = j + 1, . . . , l and i = 1, . . . , mk.

(4.3)
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Again, we adapt the existing problem from [CK05] and replace the existing
regularization ‖w‖2 with ‖w‖1 to induce sparsity. In this definition, not
only neighbouring classes are contributing to the overall loss of in between
boundaries, but all other classes, as well. This can lead to more robust re-
sults in particular in the case of outliers, as shown in [CK05], but higher
computational demand.

Modelling Relevance Bounds for ORP

In the following, we introduce feature relevance bounds for the explicit
variant which is an extension from existing work for linear classification
in [Göp+18] and Chapter 3. The definition for the implicit variant is very
similar and can be found in Appendix A.1.1.

Assume a training set X is given. We denote an optimum solution of
problem (Equation (4.1)) as (w̃, b̃, ξ̃, χ̃). This solution induces the value

µX :=
1
2
‖w̃‖1 + C ·∑

i,j

(
χ̃

j
i + ξ̃

j
i

)
which is uniquely determined by X. The quantity µX is unique by definition,
albeit the solution (w̃, b̃, ξ̃, χ̃) is not.

We are interested in the class of equivalent good hypotheses, i. e. all
weight vectors w which yield (almost) the same quality as regards the regres-
sion error and generalization ability as the function induced by w̃. This class
might contain an infinite number of alternative hypotheses: in the context
of correlated features, for example, we can trade one feature for the other.
However, the function class cannot explicitly be computed, since the general-
ization ability is unknown for future data. We use the following surrogate
induced by µX

Fδ(X) :=
{

w ∈ Rn | ∃b, ξ, χ such that constraints Equation (4.2) hold,
1
2
‖w‖1 + C ·∑

i,j

(
ξ

j
i + χ

j
i

)
≤ (1 + δ) · µX

}
These constraints ensure the following properties:

1. The empirical error of equivalent functions in Fδ(X) is minimum, as
measured by the slack variables.

2. The loss of the generalization ability is limited, as guaranteed by a
small L1-norm of the weight vector and learning theoretical guarantees
as provided, e. g. by Theorem 7 in [Aga08] and Corollary 5 in [Zha02].

The parameter δ ≥ 0 quantifies the tolerated deviation to accept a function
as yet good enough, C is determined by Problem (Equation (4.1)).

Solutions w in Fδ(X) are sparse in the sense that irrelevant features are
uniformly weighted as 0 for all solutions in Fδ(X). Relevant but potentially
redundant features can be weighted arbitrarily, disregarding sparsity, sim-
ilar in spirit to the EN; yet the latter weights mutually redundant features
equally and can therefore hide the relevance in the case of many redundant
features [ZH05].

Feature selection and classification can be done with the rules from
Section 3.2.1.

A feature is irrelevant for Fδ(X) if it is neither strongly nor weakly
relevant. The questions of strong and weak relevance can be answered via
the following optimization problems:
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Problem minRel(`):

min
w,b,χ,ξ

|w`| (4.4)

s.t. for all i, j Equation (4.2) holds and
1
2
‖w‖1 + C ·∑

k,l

(
χl

k + ξ l
k

)
≤ (1 + δ) · µX

Here |w`| denotes the absolute value of feature ` in w. Feature ` is strongly
relevant for Fδ(X) iff minRel(`) yields an optimum larger than 0.

Problem maxRel(`):

max
w,b,χ,ξ

|w`|

s.t. for all i, j Equation (4.2) holds and
1
2
‖w‖1 + C ·∑

k,l

(
χl

k + ξ l
k

)
≤ (1 + δ) · µX

Now, features can be classified using the statistical threshold proposed in
Section 3.2.1.

These two optimization problems span a real-valued interval for every
feature ` with the result of minRel(`) as lower and maxRel(`) as upper
bound. This interval characterizes the range of weights for ` occupied by good
solutions in Fδ(X). Hence, besides information about a feature’s relevance,
some indication about the degree up to which a feature is relevant or can be
substituted by others is given. Note, however, that the solutions are in general
not consistent estimators of an underlying ‘true’ weight vector as regards its
exact value, as has been discussed, e. g. for Lasso [ZY06]. For consistency, it
is advisable to use L2 regularization after the selection of a set of relevant
features.

Generalization Bounds At the beginning of Section 4.1.2 we introduced
the set Fδ(X) of all equivalent good hypotheses which yield (almost) the same
quality regarding regression error and generalization ability. However, the
impact of the norm of w and the high loss ∑i,j

(
χ̃

j
i + ξ̃

j
i

)
are not considered

separately, i. e. a low norm of w allows a high loss and vice versa. We would
like to control the generalization error with L1-regularization. To do so, we
consider both quantities separately, i. e. we define

Hδ(w̃) :={
w ∈ Rd | ∃b, ξ, χ such that constraints in Equation (4.2) hold,

‖w‖1 ≤ (1 + δ)‖w̃‖1 , ∑
i,j

(
ξ

j
i + χ

j
i

)
≤∑

i,j

(
ξ̃i

j
+ χ̃

j
i

) }
This allows us to extend the results from [Göp+18] to our scenario, i. e. show
that the generalization error of all hypothesis with the same or a lower
high loss is bounded through the L1-regularization. A proof is provided in
Appendix A.1.2.

Feature Relevance Bounds as Linear Problem

The problems in the previous section are not yet linear, but they can be
transferred to linear optimization problems, for which particularly efficient
solvers are available.
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Theorem 1. Problem minRel(`) is equivalent to the following linear optimization
problem:

minRel∗(`) : min
w,w,b,χ,ξ

ŵ` s.t. for all i, j

Equation (4.2) holds
1
2 ∑

k
ŵk + C ·∑

k,l

(
χl

k + ξ l
k

)
≤ (1 + δ) · µX (4.5)

wi ≤ ŵi, −wi ≤ ŵi (4.6)

Problem maxRel(`) can be solved by taking the optimum of the following two
linear optimization problems:

maxRel∗pos(`) : max
w,w,b,χ,ξ

ŵ` s.t. for all i, j

Equation (4.2) holds
1
2 ∑

k
ŵk + C ·∑

k,l

(
χl

k + ξ l
k

)
≤ (1 + δ) · µX

wi ≤ ŵi, −wi ≤ ŵi

ŵ` ≤ w` (4.7)

and the problem

maxRel∗neg(`) : max
w,w,b,χ,ξ

ŵ` s.t. for all i, j

Equation (4.2) holds
1
2 ∑

k
ŵk + C ·∑

k,l

(
χl

k + ξ l
k

)
≤ (1 + δ) · µX

wi ≤ ŵi, −wi ≤ ŵi

ŵ` ≤ −w`.

The proof can be found in Appendix A.1.3.

In practice, it might be a good strategy to split the model constraint such
as (4.5) into two, limiting the weight vector separately

1
2 ∑

k
ŵk ≤ (1 + δ) · ‖w̃‖1

and error term
∑
k,l

(
χl

k + ξ l
k

)
≤∑

k,l

(
χ̃l

k + ξ̃ l
k

)
where the symbols marked ·̃ refer to the optimum solution of the original
margin-based ordinal regression problem. This split enables better control
of the loss of generalization ability and error terms, and it also mediates
the dependency on the hyper-parameter C of the space of equivalent good
functions. At a small down-side, this split depends on the found solution
and it is no longer uniquely defined by the given training data, albeit we did
not observe large variation in practical applications.

4 .1 .3 Evaluation

In this section, we show the quality of feature selection by evaluating the
results of both the explicit and the implicit variant of our method, on theo-
retically generated data with known ground truth. Also, we compare both
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Table 4.1: Artificially created data sets with known ground truth. The model
of which the data is drawn from is based on the strongly relevant features.
The weakly relevant features are linear combinations of strong ones. Char-
acteristics of the sets are taken from [Göp+18] and [GPH17]. All sets have
target variables with five ordinal classes.

Dataset #Instances #Strong #Weak #Irrelevant

Set 1 150 6 0 6
Set 2 150 0 6 6
Set 3 150 3 4 3
Set 4 256 6 6 6
Set 5 512 1 2 11
Set 6 200 1 20 0
Set 7 200 1 20 20
Set 8 1000 10 20 10
Set 9 1000 10 20 200

variants concerning their classification accuracy and run time on standard
benchmark datasets. The accuracy is measured using the Macro-averaged
Mean Absolute Error (MMAE) which is specifically designed for ordinal
regression data with imbalanced classes:

MMAE =
1
l

l

∑
j=1

∑
mj
i=1

∣∣∣j− f (xj
i)
∣∣∣

mj
, (4.8)

where l is the number of bins, f refers to the bin the sample xj
i is assigned

to by the learned model, and mj refers to the number of samples in class j.

Feature Selection Performance

We adapt the generation method presented in [Göp+18] and Section 3.3.1 for
ordinal regression. By using equal frequency binning we convert a continuous
regression variable into an ordered discrete target variable with five ordinal
classes. The data is generated from a suitable set of informative features.
From those, we form strongly relevant features by simply picking the desired
number out of the informative set. Weakly relevant features are created as
linear combinations of informative features. Finally, irrelevant features are
drawn from random Gaussian noise. All features are normalized to zero
mean and unit variance. The exact characteristics of the datasets used in our
experiments are shown in Table 4.1.

For evaluation, we use the F1-measure as defined in Section 3.3.2 to
quantify the detection of the all relevant feature set found by our method
(dubbed feature relevance interval - FRI)1 concerning the true all-relevant
features of the data. Our method utilizes the statistical feature selection
threshold proposed in Section 3.2.1.

Because of the lack of other feature selection methods in this context we
emulate the behaviour of Lasso [Tib96] and the EN (EN) [ZH05]. For that
we utilize a Recursive Feature Elimination with Cross-Validation (RFECV)2,
using the ordinal regression model given by Equation (4.1) with an EN
penalty and parameter p. The parameter p, controlling the ratio between

1 Implementation in Python: https://github.com/lpfann/fri
2 Implementation in Python: RFECV from scikit-learn
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the L1 and L2 norm of the EN model, is optimized with a search over the
values p ∈ {0, 0.01, 0.1, 0.2, 0.5, 0.7, 1}. Setting p = 0 corresponds to a Lasso
like sparsity constraint, and we test that scenario explicitly. Our surrogates
are called ML1

e (Lasso) and ML1+L2
e (EN), both based on the explicit variant.

Hyper-parameters are selected according to 5-fold cross-validation, and all
scores are averaged over 30 independent runs.

The results are given in Tables 4.2 and 4.3, where FRIe and FRIi denote
the explicit and the implicit variant respectively. Because Lasso and EN per-
formed nearly identical we only give the results for the EN. The results show
that FRI in both variants is superior to ML1+L2

e on every data set, especially
for clean data where it scores nearly perfect on every measure. It only shows
slightly worse precision in Set 9 where the feature space is big. ML1+L2

e on
the other hand is very precise in that setting but selects only 37% of relevant
features. Having shown that, we are now interested in which of the two
FRI variants is performing better. Since they both score perfectly on clean
data, we increase the challenge by adding Gaussian noise with a standard
deviation of σ = 0.5 to all sets. The theory, as given in [CK05], indicates
that the implicit variant should perform better on noisy data, because for
every decision boundary to be determined it has access to more data samples
than the explicit variant, thus gaining an advantage in stability. However,
our experiments do not support this notion as both variants of FRI perform
equally well on noisy data. Interestingly, the ML1+L2

e improved its perfor-
mance on those sets with a lot of weakly relevant features. This could be
explained by assuming that the model has to rely on more of the weak, thus
inter-correlated features, to regain the information that was lost due to the
introduction of the noise.
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Table 4.2: Artificially created data sets with known ground truth and evalu-
ation of the identified relevant features by the methods as compared to all
relevant features. The score is averaged over 30 independent runs. ML1+L2

e
represents the surrogate model for the EN with RFECV.

Clean data

score data ML1+L2
e FRIe FRIi

F1

Set 1 0.94 1.0 1.0
Set 2 0.79 1.0 1.0
Set 3 0.81 1.0 1.0
Set 4 0.83 1.0 1.0
Set 5 0.83 1.0 1.0
Set 6 0.25 1.0 1.0
Set 7 0.49 1.0 1.0
Set 8 0.95 1.0 1.0
Set 9 0.53 0.98 0.98

Precision

Set 1 0.90 1.0 1.0
Set 2 0.86 1.0 1.0
Set 3 0.95 1.0 1.0
Set 4 0.95 1.0 1.0
Set 5 0.89 1.0 1.0
Set 6 1.0 1.0 1.0
Set 7 0.97 1.0 1.0
Set 8 0.91 1.0 1.0
Set 9 1.0 0.97 0.97

Recall

Set 1 1.0 1.0 1.0
Set 2 0.82 1.0 1.0
Set 3 0.74 1.0 1.0
Set 4 0.77 1.0 1.0
Set 5 0.84 1.0 1.0
Set 6 0.15 1.0 1.0
Set 7 0.41 1.0 1.0
Set 8 1.0 1.0 1.0
Set 9 0.37 1.0 1.0
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Table 4.3: Artificially created data sets with known ground truth and eval-
uation of the identified relevant features by the methods as compared to
all relevant features. The data was generated and Gaussian noise (standard
deviation σ = 0.5) was added to the predictors. The score is averaged over 30
independent runs. ML1+L2

e represents the surrogate model for the EN with
RFECV.

Noisy data

score data ML1+L2
e FRIe FRIi

F1

Set 1 0.92 0.95 0.98
Set 2 0.89 0.97 0.98
Set 3 0.85 0.97 0.96
Set 4 0.80 0.96 0.97
Set 5 0.86 1.0 1.0
Set 6 0.56 0.94 0.94
Set 7 0.46 0.90 0.91
Set 8 0.80 0.98 0.98
Set 9 0.60 1.0 1.0

Precision

Set 1 0.87 1.0 1.0
Set 2 0.86 1.0 1.0
Set 3 0.90 1.0 1.0
Set 4 0.91 1.0 1.0
Set 5 0.81 1.0 1.0
Set 6 1.0 1.0 1.0
Set 7 0.84 1.0 1.0
Set 8 0.95 1.0 1.0
Set 9 1.0 1.0 1.0

Recall

Set 1 0.99 0.92 0.96
Set 2 0.94 0.96 0.96
Set 3 0.83 0.95 0.93
Set 4 0.74 0.93 0.94
Set 5 0.99 1.0 1.0
Set 6 0.40 0.89 0.89
Set 7 0.35 0.84 0.86
Set 8 0.70 0.97 0.97
Set 9 0.43 1.0 1.0
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Real Data

Here, we evaluate the model on benchmark data as described in [ZH05;
Sán+13] without regarding feature selection. The imbalanced ordinal regres-
sion data sets used in the experiments are listed in Table 4.4. All samples are
normalized to zero mean and unit variance.

Model Accuracy We replicate the experiments which have been presented
in [FT12; TT17] to evaluate the performance of our two possible underlying
SVM models as stated in Section 4.1. Our models, which we will call ML1

e and
ML1

i in the following, were tuned using 5-fold cross-validation and used all
available features previous feature selection, i. e. the models do not use the
procedure described in Section 3.2.1 and the scores are based on all features
without retraining. The results are averaged over the same 30 folds as used
in [TT17] and evaluation is based on the MMAE as defined in (4.8). We
compare our models with p-OGMLVQ and a-OGMLVQ, the best performing
methods for the given data as stated in [FT12]. Results for the EN surrogate
ML1+L2

e were omitted because they were nearly identical to ML1
e .

The outcomes for MMAE are reported in Table 4.5. Overall the explicit
variant ML1

e outperforms the implicit variant ML1
i in all cases except one

when considering MMAE. Similarly, the runtime is given in Table 4.6. We
can see that ML1

e is at least two times faster, in some cases even over 20 times
faster. When comparing with the existing results of a-OGMLVQ, we can see
ML1

e outperforming it in 5 cases while being worse in 5 others, it can beat
p-OGMLVQ in 6 cases and closely ties in one case (TAE).

Feature Set Size For feature relevance, no ground truth is available for
the given data, rendering us unable to perform the same evaluation as for the
artificial sets. We are only able to compare the number of features provided
by our method with feature selection (FRI) and the previously used model
ML1+L2

e as a surrogate for EN with RFECV. Table 4.7 lists the average number
of features identified as relevant for both techniques. For three data sets
(Squash-stored, Squash-unstored, TAE), FRI identifies a smaller number of
relevant features than the alternative, while yielding the same accuracy. For
three further data sets (Automobile, Eucalyptus, Pasture), FRI identifies more
(weakly relevant) features. In all cases, FRI potentially offers more information

Table 4.4: Real ordinal regression benchmark data sets with imbalanced
classes taken from [Sán+13], where d is the number of features, and K is the
number of classes.

Dataset #Instances d K Ordered Class Distribution

Automobile 205 71 6 (3,22,67,54,32,27)
Bondrate 57 37 5 (6,33,12,5,1)
Contact-lenses 24 6 3 (15,5,4)
Eucalyptus 736 91 5 (180,107,130,214,105)
Newthyroid 215 5 3 (30,150,35)
Pasture 36 25 3 (12,12,12)
Squash-stored 52 51 3 (23,21,8)
Squash-unstored 52 52 3 (24,24,4)
TAE 151 54 3 (49,50,52)
Winequality-red 1599 11 6 (10,53,681,638,199,18)
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Table 4.5: Comparison of both proposed variants of ordinal regression models
from Section 4.1. Benchmark on real ordinal datasets [Sán+13] by averaged
MMAE. Folds are identical to [TT17] and are comparable.

MMAE

data p-OGMLVQ a-OGMLVQ ML1
e ML1

i

Automobile 0.482 0.446 0.532 0.516
Bondrate 0.768 0.737 0.939 0.949
Contact-lenses 0.243 0.221 0.190 0.265
Eucalyptus 0.450 0.477 0.390 0.390
Newthyroid 0.124 0.097 0.043 0.045
Pasture 0.307 0.318 0.374 0.430
Squash-stored 0.415 0.411 0.371 0.371
Squash-unstored 0.488 0.228 0.280 0.300
TAE 0.553 0.537 0.552 0.664
Winequality-red 1.078 1.069 0.868 0.790

Table 4.6: Comparison of both proposed variants of ordinal regression models
from Section 4.1. Recorded is the aggregated runtime in seconds over 30 folds
on real ordinal datasets [Sán+13].

Runtime (s)

data ML1
e ML1

i

Automobile 151.6 876.8
Bondrate 49.7 133.6
Contact-lenses 23.7 53.9
Eucalyptus 768.7 3280.3
Newthyroid 37.5 92.3
Pasture 28.6 57.0
Squash-stored 36.0 68.9
Squash-unstored 35.9 69.4
TAE 43.3 83.4
Winequality-red 349.4 8359.4

than EN by discriminating between weakly and strongly relevant features
and giving more candidate features to consider which can then be verified in
practice.

50



4 .1 large margin ordinal regression

Table 4.7: Average feature set size of FRI model with explicit constraints and
EN surrogate model (ML1+L2

e ) with RFECV on real datasets [ZH05; Sán+13].
FRI allows extra discrimination between strong (FRIs) relevance and weak
(FRIw) relevance.

Average Feature Set Size

data FRIs
e FRIw

e ML1+L2
e

Automobile 4.5 ∪ 12.6 4.0
Bondrate 0.0 ∪ 5.4 2.0
Contact-lenses 0.9 ∪ 1.1 2.0
Eucalyptus 2.1 ∪ 33.2 15.6
Newthyroid 0.0 ∪ 4.7 2.0
Pasture 0.0 ∪ 15.5 6.0
Squash-stored 2.4 ∪ 7.9 11.1
Squash-unstored 1.8 ∪ 3.3 8.0
TAE 1.9 ∪ 5.4 16.8
Winequality-red 0.0 ∪ 7.6 5.4

Qualitative Evaluation on COMPAS

To showcase a possible application of our approach, we use FRI to examine
the COMPAS dataset. This data was created by Propublica, a journalistic
collective from New York, and consists of personal information regarding
the criminal history of 11757 people from Broward County in Florida. Data
like this has been used to predict an individuals risk of recidivism after
a criminal offence. Hereby, previous analyses have shown [Ang+16] that
racial bias is incorporated in at least one standard algorithmic prediction tool,
meaning that African American individuals receive higher risk scores than
Caucasian people. While it remains an open research question if and how
an algorithm should use socially sensitive attributes [HD13; Har+16] we are
now interested which information is used by our linear ordinal regression
model based on the FRI analysis on the given data. As such we try to find
possible causes for direct or indirect discrimination [PRT08] and facilitate
careful model design, which seems to be necessary when aiming for long
term impact of fair machine learning[Liu+18]. From the originally 28 features
of the dataset, we scale down to ten by eliminating all identifying and time-
related information, which do not contribute information to the prediction
task. These features are described in detail in Appendix A.1.7. We build a
predictive model on the data, showing the relevancy of our features to that
model. The result is shown in the upper plot in Figure 4.1. In this kind of plot,
the relevance intervals are shown as vertical bars such that the maximum
and minimum heights represent maxRel and minRel. For better comparison,
the values are normalized to the L1 norm of the optimal model (‖w̃‖1). We
also add the maximum element in Π(maxRel) as horizontal dashes, which
represents the threshold which is used to classify between weakly relevant
and irrelevant features.

The predictive accuracy is 66.73% which is line with results from the
Propublica analysis. Note that the models used in practice deviate from the
ones considered here, and the former are not available to us. Thus, we discuss
properties of the linear models found by the proposed ORP only, not any
other model.

Two features are strongly relevant, namely, the count of prior charges and
the age group 17-25 which show a big contribution in absolute terms. Many
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Figure 4.1: Relevance plots for the COMPASS dataset. Top: Relevance inter-
vals (bars) for all features including ethnicity. Bottom: Relevance intervals
for all features when ethnicity is eliminated from the data. Ethnicity is not
a relevant factor for the model on top, so if those variables are eliminated,
the relevancy of the other features do not change profoundly. The y-axis
represents the computed feature relevance normalized to the L1 norm of the
optimal model.

other features, such as the count of juvenile felonies and misdemeanours,
or the degree of criminal changes are weakly relevant. More interestingly,
socially sensitive features such as sex and race are also considered weakly
relevant. In the case of sex, both male and female exhibit the same maximal
relevance which hints at the anti-correlation between the two features. In
the case of race, being African-American, Caucasian or Native American is
considered weakly relevant. When compared with the Propublica analysis,
our relevance bounds are in line with their results.

To measure the contribution of the ethnic features in the model, we repeat
the experiment with all those features removed. Hereby, the accuracy does
not drop significantly, yielding 65.99%. The bottom plot of Figure 1 shows the
relevance for all remaining features. Compared to the previous model, there
are two notable changes. The count of juvenile offences and the information
about violent recidivism become relevant which are intuitively much more
important to the problem at hand and do not reiterate a potential bias in
society.
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4 .2 learning using privileged information

4 .2 .1 Background

The scenario of privileged information phrases the situation, that some fea- Context

Problem ordinal regression
Model linear
Type privileged

tures are available during the training phase, but not during the testing phase,
e. g. due to the costs, computational load or any other restrictions. In classical
machine learning, it is commonly assumed, that training and test set have an
identical statistical distribution and utilize the same predictive features. In
contrast, the Learning using privileged information (LUPI) paradigm [VV09]
considers additional privileged information only available at training time.
This paradigm can be understood as an intelligent teacher feeding the learner
extra information to improve the learning process [VI15]. Additional infor-
mation could be the output of another model (‘machines-teaching-machines’)
or input from a human expert itself, who intuitively knows which examples
in the data are hard to discriminate. Examples are medical measurements
which require invasive techniques or measurements which require too much
time in daily use but would be affordable for training.

To incorporate privileged information the authors in [VV09] proposed
a variant of the SVM that uses privileged information for training. The
modelling replaces or enriches slack variables, which are required by the
soft-margin SVM to correct for hard training samples. This specific approach
is known as similarity control [VI15]. The approach in [VV09] introduces the
SVM+ in which a smooth function based on the Privileged Information (PI)
is used at training time to improve learning in non-separable classification
settings. The method [Tan+15] refrained from fully replacing the slack vari-
ables and combined them with a smooth function based on PI. It achieved
better generalization ability and lower complexity models. Furthermore, this
approach also extends the SVM+ to ordinal regression problems.

While approaches to incorporate privileged information exist, and it has
been shown that LUPI has the potential to speed up learning [PV10], the
analysis of feature relevancies in the context of redundant feature information
is still new. Especially the solution to the ARFS is not considered anywhere.

In this section, we will expand upon the work done in Section 4.1 and
introduce feature relevance bounds for privileged ordinal regression to solve
the ARFS and answer research question 3 from Section 1.2 and allows us to
define relevance for privileged features.

4 .2 .2 Methodology

Let us shortly recall the classical setting considered so far: Given ordered class
labels L = {1, 2, . . . , l} and training data X = {xj

i ∈ Rn | i = 1, . . . , mj, j ∈ L}
where data point xj

i is assigned the class label j ∈ L. The full data set has
size m := m1 + · · ·+ ml . Here the index j refers to the ordinal target variable
(represented by bj) the data point xj

i belongs to.
In the LUPI setting, we work with two sets of data X and X∗ = {x∗i

j ∈
Rn∗ | i = 1, . . . , mj ; j ∈ L} which is a set of additional information PI where
n∗ is the number of privileged features we have available. The information is
privileged in the sense that it is not available in the testing and prediction
phase, and it is only present when training the model. This fact does not nec-
essarily imply that the privileged information is of higher quality or exhibits
correlation with the label at all. Rather, there are reasons why it cannot be
gathered at prediction time: examples are too costly computations (such as
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extensive feature preprocessing), unavailability of sensors, unavailability of
the information (such as information which is available only in retrospec-
tive), or privacy issues which prevent gathering the data (such as personal
information). X and X∗, in general, do not have to share the same space or
modality. As an example, X could cover numerical features, and X∗ could be
textual input from an expert.

Modelling Slacks in Ordinal Regression There are several ways to
integrate privileged information into the learning model [Lop+16]. In the
following, we only consider similarity control where privileged information is
interpreted as the teacher giving hints about the difficulty for each training
example. These hints can be incorporated into an SVM through slack variables
which was shown in [Tan+15] already. In the following, we will extend our
explicit definition of ordinal regression to handle privileged information by
adapting similarity control as used in [Tan+15].

We recall that in the explicit variant two types of slacks are used. Each
slack value represents a deviation from the classification rule. In the LUPI
case, we replace χ

j
i by

pj
χ(x∗i ) :=

(
w∗χ · x

∗j
i + dχ

)
and ξ

j
i by the function

pj
ξ(x∗i ) :=

(
w∗ξ · x

∗j
i + dξ

)
.

Then the model is defined as

min
w,b,w∗ ,d

1
2
‖w‖1 +

γ

2
(‖w∗χ‖1 + ‖w∗ξ‖1) + C

l

∑
j=1

nk

∑
i=1

(
pj

χ(x∗i ) + pj
ξ(x∗i )

)
s.t. for every j = 1, . . . , l − 1

w>xj
i − bj ≤ −1 + pj

χ(x∗i )

w>xj+1
i − bj ≥ +1− pj+1

ξ (x∗i )

bj ≤ bj+1

pj
χ(x∗i ) ≥ 0, pj

ξ(x∗i ) ≥ 0 .

(4.9)

The parameter γ scales the influence of privileged information. This allows us
to reject nonsense PI by simplifying the model and relying solely on X when
considering a cross-validation scheme where we expect better generalization
ability by a simpler model. The adaption of [Tan+15] now enables us to define
relevance bounds as in Section 4.1.2.

Formalization

We now consider two sets of features. In the following, we define bounds for
both regarding their relevance to the machine learning procedure when both
sets are present. Because PI features are not present while predicting they
are always irrelevant for that phase. They are relevant to speed up learning
by mediating the distribution of slack variables.

Assume a training set
X = {xj

i ∈ Rn}
with PI

X∗ = {x∗i
j ∈ Rn∗}.
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We define

L := C
l

∑
j=1

nk

∑
i=1

(
pj

χ(x∗i ) + pj
ξ(x∗i )

)
as the total slack loss of problem (Equation (4.9)). Denote an optimum solution
to the problem as

(w̃, b̃, w̃∗χ, w̃∗ξ , d̃χ, d̃ξ)

and its total loss as L̃. Analogous to Section 4.1.2, this solution induces the
value

µX,X∗ :=
1
2
‖w̃‖1 +

γ

2
(‖w̃χ‖1 + ‖w̃ξ‖1) + L̃.

Furthermore, we use the following proxy induced by µX,X∗

Fδ(X, X∗) :=
{

w ∈ Rn, w∗χ, w∗ξ ∈ Rn∗ | ∃b, dχ, dξ

s.t. Equation (4.9) holds and
1
2
‖w‖1 +

γ

2
(‖w∗χ‖1 + ‖w∗ξ‖1) + L ≤ (1 + δ) · µX,X∗

}
This proxy allows us to define similar feature relevancy rules as proposed

in [Göp+18]. While the rules are defined in relation to a numerical 0, in
practice we instead use the statistical bound proposed in Section 3.2.1, which
yields higher accuracy. For brevity, we here utilize the original formulation,
and define the rules for non-privileged feature ` in X as:

Strong relevance of feature ` for Fδ(X, X∗): Is feature ` relevant for all
hypotheses in Fδ(X, X∗), i. e. all weight vectors w ∈ Fδ(X, X∗) yield
F` 6= 0?

Weak relevance of feature ` for Fδ(X, X∗): Is feature ` relevant for at least
one hypothesis in Fδ(X, X∗) in the sense that one weight vector w ∈
Fδ(X, X∗) exists with F` 6= 0, but this does not hold for all weight
vectors in Fδ(X, X∗)?

Irrelevance of feature ` for Fδ(X, X∗): Is feature ` irrelevant for every hy-
pothesis in Fδ(X, X∗), i. e. all weight vectors w ∈ Fδ(X, X∗) yield
F` = 0?

and similarly for feature p in X∗ with

w∗• := {w∗χ, w∗ξ | (w∗, w∗χ, w∗ξ ) ∈ Fδ(X, X∗)} :

Strong relevance of feature p for Fδ(X, X∗): Is feature p relevant for all
hypotheses in Fδ(X, X∗), i. e. for all w∗• in Fδ(X, X∗) at least one weight
vector in w∗• for one bin of the ordered classes yields w∗•p 6= 0?

Weak relevance of feature p for Fδ(X, X∗): Is feature p relevant for at least
one hypothesis in Fδ(X, X∗) in the sense that one weight vector w∗•
exists with w∗•p 6= 0, but this does not hold for all w∗• in Fδ(X, X∗)?

Irrelevance of feature p for Fδ(X, X∗): Is feature p irrelevant for every hy-
pothesis in Fδ(X, X∗), i. e. all weight vectors w∗• yield w∗•p = 0?

A feature is irrelevant for Fδ(X, X∗) if it is neither strongly nor weakly
relevant.

The questions of strong and weak relevance can be answered via the
following optimization problems:
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Problem minRel(p):

max
•∈{χ,ξ}

min
w,w∗• ,b,d•

|w∗•p| s.t. for all i, j Equation (4.9) holds and

1
2
‖w‖1 +

γ

2
(‖w∗χ‖1 + ‖w∗ξ‖1) + L ≤ (1 + δ) · µX,X∗

Because of two slack functions and the corresponding weights w∗χ
and w∗ξ we need to optimize two inner feature relevancies |w∗•p|. To
aggregate them to a global feature relevance we take the maximum to
express that a feature could be used only in one of both functions, i. e.
it is not relevant for all slack functions but at least in one. One could
define an additional relevance classification by taking into account
cases where the min min > 0, i. e. the feature is relevant for all slack
functions. In the following, we limit ourselves to the former case.
Feature p is strongly relevant for Fδ(X, X∗) iff minRel(p) yields an
optimum larger than 0.

Problem maxRel(p):

max
•∈{χ,ξ}

max
w,w∗• ,b,χ,ξ

|w∗•p| s.t. for all i, j Equation (4.9) holds and

1
2
‖w‖1 +

γ

2
(‖w∗χ‖1 + ‖w∗ξ‖1) + L ≤ (1 + δ) · µX,X∗

Similar to the first problem we consider the maximum inner feature
relevance to express the global feature relevance.
Feature p is weakly relevant for Fδ(X, X∗) iff minRel(p) yields an
optimum 0 and maxRel(p) yields an optimum larger than 0.
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Linear Problem Formulation

Both problems from the previous section can be transferred to linear opti-
mization problems:

Theorem 2. Problem minRel(p) is equivalent to taking the maximum over follow-
ing two linear optimization problems

minRel∗χ(p) : min
w,ŵ,w∗χ ,ŵ∗χ ,w∗ξ ,ŵ∗ξ ,

b,dχ ,dξ

ŵ∗χp

s.t. for all i, j Equation (4.9) holds and

1
2 ∑

k
ŵk +

γ

2 ∑
k

ŵ∗χk +
γ

2 ∑
k

ŵ∗ξk + L ≤ (1 + δ) · µX

wi ≤ ŵi, −wi ≤ ŵi

χi ≤ χ̂i, −χi ≤ χ̂i

ξi ≤ ξ̂i, −ξi ≤ ξ̂i

and
minRel∗ξ (p) : min

w,ŵ,w∗χ ,ŵ∗χ ,w∗ξ ,ŵ∗ξ ,
b,dχ ,dξ

ŵ∗ξ p

s.t. for all i, j Equation (4.9) holds and

1
2 ∑

k
ŵk +

γ

2 ∑
k

ŵ∗χk +
γ

2 ∑
k

ŵ∗ξk + L ≤ (1 + δ) · µX

wi ≤ ŵi, −wi ≤ ŵi

χi ≤ χ̂i, −χi ≤ χ̂i

ξi ≤ ξ̂i, −ξi ≤ ξ̂i .

For maxRel(p) we define the linear optimization problem

maxRel∗λ,•(p) : max
w,ŵ,w∗χ ,ŵ∗χ ,w∗ξ ,ŵ∗ξ ,

b,dχ ,dξ

ŵ∗•p

s.t. for all i, j Equation (4.9) holds and

1
2 ∑

k
ŵk +

γ

2 ∑
k

ŵ∗χk +
γ

2 ∑
k

ŵ∗ξk + L ≤ (1 + δ) · µX

wi ≤ ŵi, −wi ≤ ŵi

χi ≤ χ̂i, −χi ≤ χ̂i

ξi ≤ ξ̂i, −ξi ≤ ξ̂i

ŵ∗•p ≤ λ · w∗•p .

Then
maxRel(p) := max

λ∈{−1,+1},
•∈{χ,ξ}

maxRel∗λ,•(p),

is the maximum of four linear problems.

The proof for this is analogous to Appendix A.1.5.
To improve the stability of feature selection we utilize the same procedure

already proposed in Section 3.2.1.
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Time complexity

In the following, we outline the scaling behaviour of our proposed method
for feature selection. Our method can be divided into three separate com-
putational steps which differ in their algorithmic complexity. We consider a
problem with n samples and d features.

The initial baseline solution is analogue to a standard ordinal regression
SVM solution which can be solved using the sequential minimal optimization
(SMO) algorithm [Pla98; CK07] which is in O(n3). The relevance bounds are
given by a set of LPs for which interior point methods exist [Kar84; Vai89;
CLS19] which are in O(n2.5). This complexity bound is very general and one
could reformulate and adapt these problems using existing outlines [Joa06;
Hsi+08]. In the normal setting, we consider the constant z = 3 for the number
of LPs needed (Section 4.1.2) and z = 6 in the LUPI setting (Section 4.2.2)
such that the relevance interval for each feature is in O(zn2.5). This results in
O(dzn2.5) for all relevance bounds. Additionally, we employ a permutation
test approach which adds a constant c additional LPs to achieve statistical
stability which is overall in O(cn2.5). Overall our method is in O(n3 + (dz +
c)n2.5) when considering n > d.

Because the dz + c LPs are a significant factor, we propose to solve them
in parallel, which we evaluate in Appendix A.1.6.

4 .2 .3 Evaluation

The following section evaluates our approach for the LUPI paradigm, i. e. our
method handling privileged information, that we denote FRI∗. From here,
we focus on the explicit variant, after showing its superiority over the implicit
version in Section 4.1.3 as regards computational complexity, leading to the
notation FRI∗e . Again, we show the quality of our feature selection by testing
on artificially created data with known ground truth. Due to a lack of specific
LUPI benchmark datasets, we conclude this section with a semantic analysis
of a FRI∗e model on one demonstrative example.

Artificial Data

We use the generation method presented in [Lop+16] to create artificial
datasets containing regular as well as privileged information by sampling
triplets (xi, x∗i , yi) from

x∗i ∼ N (0, Id)

εi ∼ N (0, Id)

xi ← x∗i + ε

yi ← f (〈ω, x∗i 〉)

where f denotes a function that assigns the correct ordinal bin to the label
yi based on the value of the dot product between the weight vector and a
privileged sample x∗i .

Hereby, the privileged information X∗ consists of clean versions of the
noisy regular features X. Both the regular and the privileged feature space
contain strong, weak and irrelevant features. These are created in the same
way as described in Section 4.1.3. The characteristics of the data used in
our experiments are shown in Table 4.8. The last two sets differ from the
generation method mentioned above. Their regular information is created
similarly to the sets in Table 4.1, to which three irrelevant privileged features
are added from random Gaussian noise. All features are normalized to zero
mean and unit variance.
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Table 4.8: Artificially created data with regular and privileged features under
known ground truth. For the first six sets, the privileged features consist of
clean versions of the regular information. The last two sets are regular ordinal
regression sets with random noise as additional privileged information.

Regular Features Privileged Features

Dataset #Instances #Str #Weak #Irr #Str #Weak #Irr

Set 1 200 6 0 3 6 0 3
Set 2 200 0 12 3 0 12 3
Set 3 200 6 6 0 6 6 0
Set 4 200 3 6 0 3 6 0
Set 5 200 1 4 0 1 4 0
Set 6 200 1 40 10 1 40 10

Set 7 200 4 2 2 0 0 3
Set 8 200 0 4 2 0 0 3

Evaluation closely follows Section 4.1.3. Again, we use the F1-measure as a
quantifying metric for the detection of the all-relevant feature set and compare
our method to the EN surrogate model ML1+L2

e . While FRI∗e differentiates
between the two feature spaces in the data, the EN receives both the regular
and the privileged set as one. With that, we want to showcase the advantages
of a LUPI model for feature selection over a purely regular model.

The results are given in Table 4.9. FRI∗e achieves a perfect score on
the regular feature set and only stumbles once, for set 6, on the privileged
information. The EN, on the other hand, performs considerably worse on the
regular set but shows significant improvements on the privileged set, albeit
it cannot match the performance of our method. The improvements on the
privileged data are easy to explain since this information is the clear original
information as opposed to the noisy features in the regular set.
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Table 4.9: Artificially created datasets with known ground truth and evalu-
ation of the identified relevant features by the methods as compared to all
existing relevant features. The EN surrogate model (ML1+L2

e ) receives both
feature sets as one but the evaluation is done separately for the regular and
privileged feature set. The score is averaged over 10 independent runs.

Regular Features Privileged Features

score data ML1+L2
e FRI∗e ML1+L2

e FRI∗e

F1

Set 1 0.44 1.0 0.89 1.0
Set 2 0.48 1.0 0.85 1.0
Set 3 0.65 1.0 0.91 1.0
Set 4 0.58 1.0 0.88 1.0
Set 5 0.67 1.0 0.92 1.0
Set 6 0.40 1.0 0.69 0.99
Set 7 0.93 1.0 1.0 1.0
Set 8 0.70 1.0 1.0 1.0

Precision

Set 1 0.72 1.0 0.91 1.0
Set 2 0.75 1.0 0.98 1.0
Set 3 1.0 1.0 1.0 1.0
Set 4 0.90 1.0 1.0 1.0
Set 5 0.80 1.0 1.0 1.0
Set 6 0.98 1.0 0.97 1.0
Set 7 0.94 1.0 1.0 1.0
Set 8 1.0 1.0 1.0 1.0

Recall

Set 1 0.37 1.0 0.88 1.0
Set 2 0.38 1.0 0.78 1.0
Set 3 0.52 1.0 0.84 1.0
Set 4 0.48 1.0 0.80 1.0
Set 5 0.62 1.0 0.88 1.0
Set 6 0.26 0.99 0.54 0.98
Set 7 0.93 1.0 1.0 1.0
Set 8 0.55 1.0 1.0 1.0

Semantic Analysis

Performing evaluations similar to Section 4.1.3 on real data is not possible
because of the lack of public LUPI benchmarks. Alternatively, we consider
one illustrative example to demonstrate the semantic implications of the FRI
framework for LUPI. We generate a set with 400 samples and six features.
Initially, there are three strongly relevant features and three irrelevant ones
drawn from random Gaussian noise. We divide the samples into four groups,
each with 100 members. The first group has Gaussian noise with a standard
deviation of 0.1 added to the first strongly relevant feature. The second group
has a noise level of 0.5 added to the second feature. Similarly, the third one has
Gaussian noise on the last strong feature with a standard deviation of 2. The
data in the last group is noise-free. The idea is to provide the insight which
samples of the dataset are hard to classify as privileged information to the
model. Therefore, the privileged set consists of three features, incorporating
the noise that was added to the groups, with the first privileged feature
corresponding to the first group and so on.
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Figure 4.2: Relevance plots for the semantic analysis. (a) Relevance of the
regular features for the LUPI model. (b): Relevance of the privileged features
for the LUPI model.

The plots in Figure 4.2 show the relevancy for the (a) regular features and
(b) privileged features. Our method correctly dismisses the three irrelevant
features and also classifies all strongly relevant features. More importantly,
all privileged features were also correctly classified, and their relevance
correlates with the noise level. With that, we show that FRI∗e can discriminate
between the usefulness of multiple privileged features and utilize those that
are necessary for this setting.

4 .3 conclusions

In this chapter, we presented the adaption of the feature relevance bounds
approach to ordinal regression data using the explicit order variant. The
optimization problem was phrased by approximating the generalization
ability of the model with a bound on the L1-margin. The resulting problem
can be transferred to a linear problem. For its solution, we used another
approximation by splitting the objective into the margin and slack variables
separately, for larger robustness. Further, we applied our resampling-based
method from Chapter 3 to allow precise feature selection. Based on the
experiments we showed that the explicit variant is comparable to the implicit
variant for this use case on the given data as regards the accuracy and
more efficient. Our method can provide a near-perfect all-relevant feature
set approximation while being significantly faster than the other variant.
Although not many feature selection approaches exist for that specific context
we could also showcase the feature selection performance in comparison with
another popular approach on toy and real data. The feature sets produced
by our approach represents additional information useful in analytic use
cases for model and experiment design, subject for further evaluation, and
it constitutes a possible starting point to investigate, e. g. the information
which restricted or protected features can provide for the class of linear ORP
models.

Furthermore, we also defined feature relevance bounds when additional
information is present in the context of learning using privileged informa-
tion. Here we defined a feature’s relevance in relation to the training phase
itself. Similar to the classical context, our method achieved very good feature
selection sensitivity in both the regular and privileged feature set, this way
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enabling a strategy to choose suitable features or teacher information to
facilitate training.
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5N O N - L I N E A R F E AT U R E S E L E C T I O N A N D
C L A S S I F I C AT I O N

Parts of this chapter are based on:

• Lukas Pfannschmidt and Barbara Hammer. “Sequential Feature Clas-
sification in the Context of Redundancies”. In: Apr. 15, 2020. arXiv:
2004.00658. url: http://arxiv.org/abs/2004.00658

5 .1 background

In Section 2.2 we described several types of feature subsets given a specific Context

Problem classification
regression

Model non-linear
Type classical

class of functions. These are the set of strongly relevant features (S), the set
of weakly relevant features (W) and irrelevant features (I). The union of S
andW is the set of all-relevant features A := S ∪W . The goal of all relevant
feature selection is finding all features belonging to A, and not to identify
the detailed composition of S andW . Most existing methods only produce
information about membership of A, except the relevance bounds method
described in Section 2.3.2, which yields both S andW in the linear case. For
the non-linear case, there exists no approach which can make this distinction.
Knowing about a feature’s type can not only improve understanding of
causal factors but also help in biomarker design, where robust feature sets
are needed [HY10].

One existing all-relevant selection method is called Boruta [KR10]. It
builds on the information metrics acquired by observing the single trees of
an RF model. Because the scores are not consistent with their real significance
[Rud+06], Boruta employs an extended information system. Extended in
the way, that additional to normal features Boruta adds shadow features.
Shadow features are randomly shuffled clones of existing features to remove
correlation with the target. Through the addition of those, one can estimate
a contrast distribution of features, which are by design irrelevant. It then
tests the real features against the shadow features iteratively, increasing the
significance threshold, until all features are tested conclusively. Boruta’s
comparison with a null distribution inspired one aspect of our proposed
method, which we come back to later. More importantly, by comparing
with a null distribution multiple times and introducing stochastic noise by
repeatedly running an RF model, Boruta can identify the A set with high
precision.

In this chapter, we present a method which extends the Boruta method
with a feature classification step which produces the same discrimination
between strong and weak relevance as seen in Chapter 3 for linear models
and answer research question 2 from Section 1.2.

We combine the advantages of Boruta and FRI while achieving more
efficient run times. Decisions about the feature relevance can be made based
on the accuracy of the model when excluding a single feature in question.
In Section 5.2.1 we describe our approach of efficiently decomposing the
overall feature set into subsets with different characteristics to produce the
distinction between strong and weak relevant features without testing all
available features.

We improve existing methods to find set M by using statistical based-
thresholds and introduce a robust score testing scheme in Section 5.2.2 to
improve feature classification.
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In Section 5.3 we analyse the general feature selection performance
against other established approaches in the context of redundant features
and answer research question 4.

5 .2 methods

5 .2 .1 Loss-based Feature Set Decomposition

Let X be data set X :=
{

xi ∈ Rd; i = 1, . . . , n
}

with n samples and with
D := {` ∈ Z; ` = 1, . . . , d} as the set of all features such that cardinality
|D| = d. Target variable y ∈ Rn is distributed according to some unknown
function dependent on X such that g(X) = y. Without loss of generality, we
limit y to be continuous and g to be a regression function. Let f ? := ĝ be the
optimal estimator of g with minimal estimation loss. Consider the estimation
loss as

L(X, f ) := ∑
∀i
| f (xi)− yi|

where x ∈ X which denotes the deviation from g if no random noise is
involved.

We are interested in all functions, including non-linear ones, with similar
L and possibly different composition of input features:

F ? := { f ∈ F | L(X, f ) ≈ L(X, f ?)}

Before, we observed the set of data X with all features in D, i. e.

X = XD .

Now we also consider the data set with specific subsets of features, e.g. the
dataset with feature ` removed is denoted as

XD\`.

Having found the set of all relevant features A for function class F ?, one
could trivially classify all features in D which are not in A, as irrelevant:

I := D \A.

To decompose A into S and W we have to identify membership with
at least one of them. We can check for strong relevance by repeatedly fit-
ting models and checking the behaviour of the loss function similar to the
approach in [Nil+07]. A feature ` is strongly relevant if

min
f
L(XD\`, f ) > min

h
L(X, h). (5.1)

This comparison would have to be performed for all ` ∈ A. While |A| � |D|
in most cases, i. e. the feature space is often sparse and most of the features
can be ignored, we still can improve on this naive approach.

Earlier, we considered the specific problem of all-relevant feature se-
lection. In general when feature selection is performed, one considers the
minimal-optimal feature set (M). In the following, we are using a new effi-
cient importance value threshold approach to find M. Importance values
are internal parameters which correspond to input features similar to the
weights of linear models and schemes such as Lasso. Because we utilize
Boruta, we consider the importance values of an RF model. In Section 5.2.3
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we describe in detail how we find M with a sparse parameterization and
statistical method to overcome inconsistent importance values. For now, we
considerM as given by this efficient approach, but alternatives such as RFE
could also be applied.

By definition,M⊂ A and S ⊂ M. All features in the minimal optimal
setM are also included in A and furthermore, all strongly relevant features
are included inM. Instead of iterating and testing all features in A we only
have to consider the features inM. In most cases when redundant relevant
features are preset, i. e. |M| � |A|, it is much more efficient to only check
features in the subsetM.

Therefore, it is sufficient to identify S inM through comparing the loss
after the elimination of each feature and identifyW through

W := A \ S . (5.2)

Having said that, comparison of the loss is not straightforward as it requires
a robust threshold to test against.

5 .2 .2 Robust Loss Comparison

In practice, we cannot perform a simple comparison between a reduced (set
with feature ` removed) and a normal feature set. Due to the stochastic nature
of RFs, even fitting the same data set without feature removal can lead to
variable models and thus to differing average losses. In the following, we
assume and estimate a normal distribution of L. The distribution should
represent likely values which we regard as insignificant changes, similar to
how our model would change if an irrelevant feature would be removed.
Then, we test for the deviation from this using a predictive interval test as
described in [Gei93, Chapter 2]. This approach is similar to the one from
Section 3.2.1, where we applied this for feature relevancies.

Remember that we fit an RF model on a reduced dataset where one
feature is eliminated and then observe the loss of the resulting model. The
distribution should emulate this given setting and as such we would have
to eliminate one feature in our sampling procedure as well. However, we
cannot remove any feature from the initial feature set without the possibility
of removing another relevant feature by chance. To emulate the changes
in model size we, therefore, permute a randomly chosen feature (via the
uniform distribution U ) and add it to the dataset. We define perm(X`) as the
random permutation of values in X` and

X � `k :=

{
X, if k 6= `

perm(X`), otherwise

as the dataset where only ` was replaced by its random permutation. A
feature created by perm(X`) has no dependence on the target variable and
represents an irrelevant feature.

We then define the random population

π̂(X, f ?, α) :=
(
L(X � `, f ?)i

)
i∈{1,...,α} ` ∼ U (1, d) (5.3)

with parameter α ∈ Z as the number of samples i used in the following
shortened to π̂(α).
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We define an interval of plausible values, based on a normal distribution
and the likely deviation from the mean with a t-distribution, as

Π(α, τ)max := π̂(α) + Tα−1(τ) · σ(π̂(α))
√

1 + (1/α) (5.4)

and

Π(α, τ)min := π̂(α) − Tα−1(τ) · σ(π̂(α))
√

1 + (1/α). (5.5)

Here πα denotes the sample mean and σ(·) the standard deviation, and T
represents Student’s t-distribution with α− 1 degrees of freedom. Together
these two values define the interval

Π :=
[
Π(α, τ)min, Π(α, τ)max

]
. (5.6)

The size of Π depends on the parameter τ � 1 which represents the per-
centile of the distribution which is used to reject values, and the number of
samples α. In our experiments α ≥ 50 yields robust thresholds for common
feature set sizes. The interval only has to be computed once and is valid for
all feature comparisons as it represents the distribution of irrelevant features
and not a feature specific one.

With this interval, we can now make robust comparisons for individual
features. Feature ` is strongly relevant if

L(XD\`, f ?) < Π

which means we only have to check the lower bound min of the prediction
interval.

Using this procedure and checking all features inM leads to the com-
plete set of strongly relevant features S and therefore also W as seen in
Equation (5.2).

5 .2 .3 Applications of Random Forest Importance Values

Deep learning models with many hidden layers can be opaque in their attri-
bution of the input features in relation to the output layer. For Random Forest
(RF) models exist several measures of feature importance. They commonly
express a feature’s importance by averaging an information measure over
all splits in the decision forest, which were part of the ensemble. Examples
are the average information gain of the objective function or the number of
correct classifications with and without the feature. In the following let’s
consider the information gain measure as

imp(X, f ?) ∈ Rd. (5.7)

The improvement of the splitting criterion averaged over all trees and splits
where feature ` is used as the split feature is then imp(X, f ?)`.

If an importance measure correlates to the relevance of the input feature,
we could use it in deciding which features are relevant. Also, we would
expect correlated or identical features to exhibit the same feature importance.
In practice, some features are implicitly preferred because of small differences
in information content or pure stochastic reasons. We demonstrate this in
Figure 5.3 where some features have much bigger importance values and
others only have small or zero importance. This is an example of correlation
bias [TL11] which is a common problem for many importance measures in
general.
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Algorithm 1: Estimating stochastic bounds for loss and irrele-
vant feature importance

Data: X, y
Input : Model, NSamples
π̂ ← Ø (empty set)
γ̂ ← Ø
s← 0
while s < NSamples; s++ do

s← generatePermFeature(X)
X � ` ← X∪ s

// Fit model
ext-model← Model(Xs, y)

// loss samples Section 5.2.2
loss← loss(ext-model, X � `, y)
// importance samples Section 5.2.3
irrel_imp← importance (ext-model, s)

π̂ ← π̂ ∪ loss
γ̂ ← γ̂ ∪ irrel_imp

end
// Equation (5.6)
LossBounds← t-statistic(π̂)
IrrelBounds← t-statistic(γ̂)
Output: LossBounds, IrrelBounds

An important parameter in fitting an RF is the feature fraction which
denotes how many features are included for each tree bootstrap. When
this fraction is high (≈ 100%), most features are included. To circumvent
correlation bias, we use a feature fraction of only 10% in our experiments
which yields a more even distribution of importances and is close to the
recommended optimum of

√
d [DA06] as is demonstrated in Figure 5.2.

While being more homogeneous, a decrease in feature fraction leads to
higher variance. In the next two sections, we utilize statistical distributions to
make the applications of feature importance values for RF robust.

Minimal Feature Set

As mentioned in Section 5.2.1, we do not use an existing minimal feature
selection method to decide which features are part ofM. Instead, we propose
to use feature importance values from the RF model to efficiently decide
which features are relevant. In contrast to Boruta, we are interested in a sparse
solution of the feature set without redundant features, which representsM.

Similar to linear models using a sparse regularization, we could force
redundant features to exhibit low importance in the model. Lasso uses L1
regularization which leads to many zero entries in the model’s weight-vector
and features with non-zero weights are considered part of the feature set.
By parameterizing the RF to have a high feature fraction we force a similar
sparsity as can be seen on page 72 in Figure 5.4. There, the majority of
features (0–14) are relevant to the target but it’s apparent in the figure that
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Algorithm 2: Iterative Decomposition Algorithm
Data: X,y
Input : RF
S ← Ø
W ← Ø
A ← Boruta(RF, X, y)
M← ImpSelection(RF, X, y) (Equation (5.12))

// Reduce dataset X to relevant features
V ← select(X, A)

// loss bounds using Algorithm 1
Π ← lossBounds(RF, V , y)

// iterate over subset M
for feature ` inM do

// Remove current feature
I ← V without feature `
// find best model without `
reduced_model← fit(RF, I , y)
// compute score
lossj ← loss(reduced_model, I , y)
// add current feature to S if significantly worse
if lossj not in Π then
S ← S ∪ {`}

end
end
// decomposition(Equation (5.2))
W ← A \ S
Output: S ,W

even irrelevant features do not have an importance value equal to zero and a
fixed threshold at zero would lead to noise. Thus, important for this approach
is a well-defined threshold to decide which value is considered irrelevant. A
simple measure like the mean of all importance values (blue horizontal line
in the figure) does not work in general. If we could characterize the behaviour
of importance values for irrelevant features with a statistical distribution, we
could use it to set the threshold depending on the parameters.

In Section 3.2.1 we proposed a statistics-based approach to estimate a
dynamic feature threshold for the linear models. We used randomly permuted
real features to simulate irrelevant variables and observe their relevancies in
the model over many samples. In Section 5.2.2 we used a similar approach
to test for insignificant loss changes in the RF model. We now extend the
statistics from Section 5.2.2 to include the importance values of randomly
permuted features. Again, we assume that the importance values of irrelevant
features follow a normal distribution given many samples.

In Equation (5.3) we already used randomly permuted features for the loss
distribution, where we already fit models on the data and feature importance
values can be recorded. Therefore, in practice, we can reuse the same sample
population for efficient computation. For the distribution in Section 5.2.2,
we focused on the score, whereby here we focus on the feature importance
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values, i. e. we use the same models to create the distributions. For clarity,
we define the importance value statistics explicitly as a separate sample
population.

The samples for the distributions are defined as

γ̂s(X, f ?, α) :=
(

imp(X � `, f ?, `)i

)
i∈{1,...,α}

` ∼ U (1, d) (5.8)

where f ? represents the optimal model on X � `, imp(X � `, f ?, `) represents
the importance value of feature ` in f ?, and parameter α ∈ Z is the number
of samples used. Each sample i consists only of the importance of a single
permuted feature ` in the model f ?. In the following, we shorten all samples
to γ̂s(α). The bounds are then defined as

Γs(α, τ)max := γ̂s(α) + Tα−1(τ) · σ(γ̂s(α))
√

1 + (1/α) (5.9)

and

Γs(α, τ)min := γ̂s(α) − Tα−1(τ) · σ(γ̂s(α))
√

1 + (1/α). (5.10)

Here γ̂s(α) denotes the sample mean and σ(γ̂s(α)) the standard deviation, and
T represents Student’s t-distribution with α− 1 degrees of freedom. Together
these two values define the interval

Γs :=
[
Γs(α, τ)min, Γs(α, τ)max

]
. (5.11)

To produce the minimal-optimal feature set M we fit a random forest
with a high allowed feature fraction. This leads to the behaviour seen in
Figure 5.3 where only a subset of correlated features shows significant im-
portance. We then compare each feature’s importance value with Γs which
represents the distribution of importance values we consider as irrelevant.
The minimal-optimal set is then given as

M := {imp(X, f ?)` > Γs | ∀` ∈ A}. (5.12)

Figure 5.1 shows the upper bound (5.9) of the interval in use with an RF
model on toy data.

5 .3 results

5 .3 .1 Implementation

For the experiments, we implemented the algorithms in Section 5.2 in Python
utilizing several existing libraries. The methods such as Boruta or our im-
portance selection method are wrappers which require the definition of an
inner model. Because we are fitting this model many times, we opted for a
very efficient RF implementation, which is provided by the LightGBM library
[Ke+17].

The Boruta [KR10] method is implemented in the boruta_py library1.
Other utility functions are used from scikit-learn [Ped+11]. The complete im-
plementation (nicknamed ‘Squamish‘) and source code is publicly available.2

1 https://github.com/scikit-learn-contrib/boruta_py
2 https://github.com/lpfann/squamish
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Figure 5.1: Importance values per feature (bars) of an RF model and upper
feature selection threshold of Γs (5.9). The lower threshold as defined in (5.10)
is below zero and excluded in this figure. Colours denote the membership of
features toM.

5 .3 .2 Benchmark Models

To show the characteristics of our methods we ran several benchmarks against
established feature selection methods. Here we specifically focus on the
performance of the all-relevant feature selection in a setting where redundant
features are present.

We compare the following approaches

EN A linear model using the EN method which combines both L2 and
L1 regularization. The combination can be weighted linearly and al-
lows for more sensitivity of redundant features. In our experiments,
we fit this parameter through grid search in combination with cross-
validation. Features are selected according to RFE which is guided by
a cross-validated model performance [ZH05].

RF An RF model (LightGBM) with RFE as the selection method where the
number of features is decided by cross-validation [Ke+17].

FRI The feature relevance interval method [PJ20; Pfa+19a] as the only repre-
sentative with a distinction between strong and weak relevance.

The sequential feature class decomposition method presented in Algorithm 2
and implemented as described in Section 5.3.1. Parameters for the
statistical test where α = 50 and τ = 10−6

Hyper-parameters for all methods were decided by cross-validation. The tree
models are based on LightGBM and are using the default parameters except:

num_leaves = 32

max_depth = 5
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boosting_type = rf

bagging_fraction = 0.632

bagging_freq = 1

The feature_fraction parameter was left to default = 1 for the RF method.
In SQ for the loss comparison, it was set to 0.8. SQ utilizes Boruta which in
turn also encapsulates another tree model. This inner tree model was set to
feature_fraction= 0.1.

All scripts and data generation methods are publicly available and results
can be reproduced.3

5 .3 .3 Stability of Feature Importance Values

The proposed method is utilizing RF importance values to decide about the
relevance of features. In the following, we perform a short analysis of the
variance of these importance values over multiple model fits on the same
dataset. We employ an RF model as described in the section before with two
different parameter choices. The first choice is a low feature_fraction = 0.1
and the second the maximum feature_fraction = 1 such that all features
are allowed in each tree generation.

We generate a simple linear classification dataset with 17 features and
300 samples. Features 0-4 are considered strongly relevant, features 5-14
are weakly relevant with in-between correlations, and features 15-16 are
irrelevant.

The test consisted of fitting the model on the dataset 10 times in a row
and record the feature importance gain measure as defined in Section 5.2.3.
The resulting distributions are visualized in Figure 5.4 for each parameter
choice. One can see, that even without any variation of the data, the values
show high variance in both settings and do not correlate to the real mutual
information with the target variable. Furthermore, the choice of a high feature
fraction leads to some variables overshadowing the importance of others such
as seen in feature 12 which contains the same information as all other weakly
relevant in this case. A lower fraction leads to a more evenly distributed
importance signature.

5 .3 .4 Parameterization for Feature Selection

Based on the evaluation in Section 5.3.3 we also perform further analysis
on the consequences of the parameter for feature selection. We extend the
experiment with a feature selection step. Compared is RFE guided by cross-
validation with Boruta.

We record the number of times each feature was selected in the feature set.
This results in the frequency of selection or the probability that a feature is
selected. The frequencies for feature_fraction = 0.1 are given in Figure 5.7
and for feature_fraction = 1 in Figure 5.8. We can see that a lower feature
fraction is beneficial in the case of all-relevant feature selection where the
Boruta model recognizes all relevant features 0–14 without selecting random
features. The RFE procedure on the other hand suffers in this case and loses
precision by selecting irrelevant features 50% of the time. It performs better
with a high feature fraction parameter and selects strongly relevant features
(0–4) consistently but shows a higher variance in the case of weakly relevant
features.

3 instructions available at https://github.com/lpfann/squamish_experiments

71

https://github.com/lpfann/squamish_experiments


non-linear feature selection and classification

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

Distribution of importance values

Figure 5.2: feature_fraction = 0.1
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Figure 5.3: feature_fraction = 1.0

Figure 5.4: Distribution of feature gain importance values of RF classifier
over multiple bootstrap iterations on toy example where features 0-14 are
correlated and 15-16 are irrelevant. Mean of all importance values is given as
blue horizontal line. Subplots 5.2 and 5.3 represent the different fraction of
features allowed in tree construction.
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Figure 5.5: RFECV, feature_fraction = 0.1
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Figure 5.6: Boruta, feature_fraction = 0.1

Figure 5.7: Frequency of feature selection for a dataset with 5 strongly relevant
features (0-4), 10 weakly relevant features (5-14) and 2 irrelevant features
(15-16) as described in Section 5.3.3. Vertical bars represent the probability
that each feature was included in the selected feature set for RFECV and
Boruta. The RF model used a different setting for feature_fraction.
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Figure: RFECV, feature_fraction = 1
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Figure: Boruta, feature_fraction = 1

Figure 5.8: Frequency of feature selection for a dataset with 5 strongly relevant
features (0-4), 10 weakly relevant features (5-14) and 2 irrelevant features
(15-16) as described in Section 5.3.3. Vertical bars represent the probability
that each feature was included in the selected feature set for RFECV and
Boruta. The RF model used a different setting for feature_fraction.
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5 .3 .5 Linear Feature Selection Accuracy

The most relevant metric for feature selection methods is the accuracy of
selected features. When the ground truth is known, we can explicitly evaluate
the validity of the selected features. We focus on the all-relevant feature
selection problem where we use the following measures to evaluate the
match of the detected feature set and the known ground truth of all relevant
features: precision and recall. The recall is defined by TP / (TP+FN) with TP =
number of true positives and FN = number of false negatives. It denotes how
many of the relevant features were selected which is crucial when looking
for the all relevant feature set. Precision is defined by TP / (TP+FP) with FP
= number of false positives and describes the frequency of false positives
part of the feature set. One can use the F1 measure as the harmonic mean of
precision and recall:

F1 = 2 · precision · recall
precision + recall

(5.13)

In this evaluation, we compare the methods from Section 5.3.2 by high-
lighting the F1 measure.

First, we compare all methods on a linear classification dataset to allow
a fair comparison with the linear models. To generate a multidimensional
classification problem, we use a randomly generated prototype vector which
defines a hyperplane. The defining features of this plane are strongly relevant.
Sample points are generated in this feature space and the class is determined
by the side of the hyperplane the points lie on. Weakly relevant features are
constructed by replacing a feature of the original feature space with its linear
combination. The elements of this combination are highly correlated and
produce a set of redundant features. By removing the original feature and
replacing it with those elements we achieve weak relevance by definition.
Irrelevant features are sampled from a standard normal distribution.

We generate 8 datasets with a different feature set composition as given
by Table 5.1. For example, Set 1 consists of 150 samples (n), 6 strongly relevant
features (strong), no weak relevant features (weak) and 6 irrelevant random
features (irr).

All models given in Section 5.3.2 are repeatedly fit on bootstraps of these
datasets, resulting in 10 results per dataset per model which are averaged in
the following. The prediction accuracy on the datasets is listed in Table 5.2
with sufficient accuracy for all models.

The results of the F1 measure evaluation are given in Table 5.3. Addi-
tionally, we recorded the runtime of all methods while performing feature
selection which is given in Table 5.4.

Most evident is the perfect score of FRI in this setting while being the
slowest method. SQ follows second and performs very good feature selection
in all cases while being the second-fastest. The RFE scheme using an RF (RF)
performed worst, not selecting weakly relevant features such as in Set 6 and
7. The EN also not as sensitive in this experiment, but showing the fastest
runtime given its simplicity.
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Table 5.1: Parameters of synthetically generated datasets for a linear separable
classification problem as described in Section 5.3.5. Columns denote the
number of features with corresponding characteristics: n (number of samples),
strong (number of strongly relevant features), weak (number of weakly relevant
features), irr (number of irrelevant features).

n strong weak irr
Set

Set 1 150 6 0 6
Set 2 150 0 6 6
Set 3 150 3 4 3
Set 4 256 6 6 6
Set 5 512 1 2 11
Set 6 200 1 20 0
Set 7 200 1 20 20
Set 8 2000 10 10 50

Table 5.2: Training accuracy of models on linearly separable classification data
generated according to Table 5.1.

ElasticNet FRI RF SQ

Set 1 0.97 0.99 0.83 1.00
Set 2 0.99 0.99 1.00 1.00
Set 3 0.98 0.99 0.86 1.00
Set 4 0.98 0.99 0.87 1.00
Set 5 0.98 1.00 0.95 1.00
Set 6 0.97 1.00 0.89 0.99
Set 7 0.98 0.99 0.90 1.00
Set 8 0.98 1.00 0.91 1.00

Table 5.3: Average F1 measure on linearly separable data sets regarding feature
classification.

model ElasticNet FRI RF SQ
type data

score f1

Set 1 0.91 1.00 0.86 0.98
Set 2 0.75 1.00 0.29 0.92
Set 3 0.83 1.00 0.67 0.97
Set 4 0.86 1.00 0.68 0.93
Set 5 0.85 1.00 0.77 0.99
Set 6 0.52 1.00 0.17 0.99
Set 7 0.38 1.00 0.17 0.95
Set 8 0.83 1.00 0.65 0.99
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Table 5.4: Runtime in seconds (rounded) for the experiment described in
Section 5.3.5.

model ElasticNet FRI RF SQ
data

runtime

Set 1 0 2 0 1
Set 2 0 2 0 1
Set 3 0 2 0 1
Set 4 0 3 1 3
Set 5 0 5 2 6
Set 6 0 4 1 2
Set 7 0 6 3 3
Set 8 2 201 138 80

5 .3 .6 Non-Linear Feature Selection Accuracy

While many problems can be tackled using linear models, many relations
are non-linear in nature. In this experiment, we generate data which can not
be separated with a linear hyperplane. Our assumption is, that the linear
models EN and FRI should not perform well in this case.

We utilize the classification data generation function from scikit-learn4 to
create binary classification data with multiple opposing clusters of samples
(parameter n_clusters_per_class = 2). We then process the informative
features to produce weakly relevant (redundant) features and additional
irrelevant features.5

Again, we generate sets with different feature configurations which are
given in Table 5.5. We fit all models on 20 newly generated sets and compute
the average metric values. The combined metrics are given in Table 5.6 per
dataset and more concise in Table 5.7 averaged over all sets. Both linear
models show low training accuracy at ≈ 70% which hints that the linear
models can not replicate the non-linear relation. The RF-based models (SQ,
RF) fare better with accuracies ≥ 83%. While not exceptional, it highlights
the difficulty of this toy classification problem.

First, we analyse the general feature selection accuracy without discrim-
inating between the relevance class subsets. Overall the selection accuracy

4 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_classification.html

5 Generation function available at https://github.com/lpfann/arfs_gen

Table 5.5: Parameters of generated datasets for non-linearly separable clas-
sification data. Numeric difference between n_features and strong (n_strel)
and weak (n_redundant) relevant features is filled with irrelevant features, i. e.
NL 1 contains 10 irrelevant features.

Set NL 1 NL 2 NL 3 NL 4

n_features 20 20 50 80
n_strel 10 4 10 10
n_redundant 0 10 10 10
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Table 5.6: Statistics of a benchmark with non-linearly separable classification
data as generated according to Table 5.5. Precision, recall and f1 quantify
the feature selection performance, whereby accuracy denotes the training
accuracy (quality of model fit).

model ElasticNet FRI RF SQ
dataset

precision

NL 1 0.88 1.00 0.71 0.97
NL 2 0.86 1.00 0.67 1.00
NL 3 0.41 1.00 1.00 0.80
NL 4 0.21 1.00 1.00 0.62

recall

NL 1 0.70 0.53 1.00 1.00
NL 2 0.86 1.00 0.86 1.00
NL 3 0.55 0.77 0.55 0.63
NL 4 0.50 0.89 0.45 1.00

f1

NL 1 0.78 0.69 0.83 0.98
NL 2 0.86 1.00 0.75 1.00
NL 3 0.47 0.87 0.71 0.70
NL 4 0.30 0.94 0.62 0.77

accuracy

NL 1 0.66 0.67 0.79 0.82
NL 2 0.70 0.75 0.81 0.83
NL 3 0.60 0.66 0.87 0.89
NL 4 0.73 0.74 0.86 0.90

Table 5.7: Mean over all datasets of a benchmark with non-linearly separable
classification data as in Table 5.6.

precision recall f1 accuracy
model

ElasticNet 0.59 0.65 0.60 0.67
FRI 1.00 0.80 0.88 0.71
RF 0.85 0.71 0.73 0.83
SQ 0.85 0.91 0.86 0.86

of all methods got worse which is apparent in Table 5.7. The EN scores
last, with an average recall of 0.65 followed by the RF with greedy feature
elimination (RF) with 0.71. It is beat by FRI with a recall of 0.8 even though
it can not handle non-linear separable data. SQ has the highest recall with
91% of relevant features recognized. When also considering the precision,
we see that FRI scores perfect precision with no false positives such that the
overall result is better than SQ here with an F1 of 0.88. This emphasizes, that
FRI with its generalization bounds is much more sensitive to the true feature
relevance but misses out on features with a non-linear contribution because
of its roots as a linear SVM.

5 .3 .7 Relevance Classification

The general feature selection accuracy evaluation in the sections before
does not consider the difference between strong and weak relevance. From
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Table 5.8: Analysis of feature selection accuracy grouped by relevance class
subsets on linearly separable data.

Weakly Strongly
FRI SQ FRI SQ

precision

Set 1 1.00 1.00 1.00 1.00
Set 2 1.00 0.87 1.00 1.00
Set 3 1.00 0.99 1.00 0.74
Set 4 1.00 0.99 1.00 0.86
Set 5 0.99 0.99 1.00 0.49
Set 6 1.00 1.00 1.00 0.50
Set 7 1.00 0.99 1.00 0.46
Set 8 0.99 1.00 1.00 0.90

recall

Set 1 1.00 1.00 1.00 0.95
Set 2 1.00 1.00 1.00 1.00
Set 3 1.00 0.72 1.00 0.99
Set 4 1.00 0.68 1.00 0.99
Set 5 1.00 0.50 1.00 1.00
Set 6 1.00 0.93 1.00 1.00
Set 7 1.00 0.88 1.00 1.00
Set 8 1.00 0.85 1.00 1.00

Table 5.9: Mean feature selection accuracy metrics grouped by relevance class
subsets and averaged over all linearly separable datasets. (Detailed: Table 5.8)

Weakly Strongly
FRI SQ FRI SQ

precision 1.00 0.98 1.00 0.74
recall 1.00 0.82 1.00 0.99

all models considered before, only FRI and SQ provide can provide this
distinction. We now present the precision and recall on the subsets S and
W recorded in the experiments in the previous evaluations on linearly and
non-linearly separable datasets. For that, we reuse the same metrics as before
and independently evaluate each subset.

In Table 5.8 we see the metrics for all linear datasets and in Table 5.9
their mean. The recall for strongly relevant features is near perfect for our
proposed method (SQ). The precision is not perfect though and sometimes FP
selections occur, as can be seen in Set 2 where the recall is 100% (all relevant
features were selected) but the precision is at 87% which hints at irrelevant
features being selected as well. Additionally, in some cases such as in Set 5
SQ tends to select weakly relevant features as strongly relevant.

We also compare both methods in the much harder task from Section 5.3.6.
The detailed results are given in Table 5.10 and their average in Table 5.11.
Here the results are mixed. FRI achieves perfect recall for weakly relevant
features but misses a lot of strongly relevant ones. This is extreme in sets NL
3 and NL 4 where it has an average recall of 0.04 and 0.01. It is more inclined
to classify strongly relevant features as weakly relevant because the precision
of the latter is decreased. SQ is also showing many false negative weakly
relevant features while also selecting false positives which hurts its score
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Table 5.10: Analysis of feature selection accuracy grouped by relevance class
subsets on non-linearly separable data.

Weakly Strongly
precision recall precision recall

dataset model

NL 1 FRI - - 1.00 0.11
SQ - - 1.00 0.59

NL 2 FRI 0.83 1.00 1.00 0.50
SQ 0.99 1.00 1.00 0.97

NL 3 FRI 0.67 1.00 1.00 0.04
SQ 0.20 0.14 0.86 0.87

NL 4 FRI 0.57 1.00 1.00 0.01
SQ 0.18 0.39 0.65 0.87

Table 5.11: Mean feature selection accuracy metrics grouped by relevance
class subsets and averaged over all non-linearly separable datasets. (Detailed:
Table 5.10)

Weakly Strongly
precision recall precision recall

model

FRI 0.69 1.00 1.00 0.16
SQ 0.46 0.51 0.88 0.82

in that setting. On the other hand, it is quite balanced in the classification
of strongly relevant features and correctly selects and classifies over 80% of
them and the runtime (Table 5.4) also scales better with dataset size.

5 .4 conclusion

In this chapter, we presented a new feature selection approach which builds
upon Boruta and statistical methods to find the all-relevant feature set includ-
ing the distinction between strong and weak relevance. We could demonstrate
the general selection accuracy in the linear and non-linear case which outper-
forms several existing approaches, which is in line with the original method.
More interestingly, we compared the identification of relevance classes with
FRI from Chapter 3. In an evaluation on linear data, it came very close to the
perfect results of FRI while being much better than other existing methods.
For the non-linear case, the results were not as clear, as SQ could recall most
of the relevant features, more than FRI and the alternatives, but was less
precise than FRI. In the discrimination between strong and weak relevance,
SQ’s results were balanced but not perfect, compared to FRI which had a
very bad recall of strong relevant features but overall better precision. Given
the overall performance, we can recommend using SQ for all-relevant feature
selection in both linear and non-linear problems in a use case where analysis
of the feature space is important.
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Discussion In this thesis, we covered several feature selection algorithms
for analytical applications, focused on aspects posed in the research questions
in Section 1.2. In the following, we discuss the results.

RQ 1: How to uncover all relevant features in a machine learning
setting, where a degree of redundancy in the feature space is
present, with high precision and efficient runtime?

In this thesis, we utilized the existing method of feature relevance bounds
with their theoretical guarantees and a definition of relevance which allows
for the selection of all relevant features in the linear problem space. In practice,
they exhibit inaccuracies because of numerical problems with the LP solvers
and are sensitive to parameter choices.

We overcame the inaccuracies using statistical thresholds to better differ-
entiate between irrelevant and relevant features and could achieve very good
accuracies on synthetic and real data.

The original feature relevance bounds were only defined for classification
data. We proposed a definition for the class of ordinal regression using
explicit order constraints.

While the linear relevance bounds are quite efficient using linear pro-
gramming for an all-relevant feature selection method, we further improved
upon this by providing a parallel implementation which makes it possible to
use them interactively on small datasets. On medium to large datasets, the
implementation also allows cluster computing over many compute nodes.
Still, the complexity for extremely large datasets is high and a conservative
preprocessing should be used to filter out likely irrelevant features, without
rejecting possible redundancies.

For non-linear problems, we looked into the existing Boruta method,
which uses efficient Random Forests and their importance values for all-
relevant feature selection, including redundant features. Its general high
accuracy was already proven in literature and in our comparison on linear
problem data it was only beat by the more specific linear relevance bounds
method.

RQ 2: In the presence of weakly relevant features, which imply
shared information, can we identify those features and their
relatives?

The original relevance bounds method could distinguish between strong
and weak relevance, which allowed insight into feature set composition,
including weak relevant features. Their presence implies that alternative
features can be used, but the identity of those alternatives is unknown and
manual experimentation is required, growing in complexity with dimension-
ality. We proposed a new grouping mechanism, which automatically tests
relevant feature alternatives using feature constraints in the LP definition
and recording the variances. They can be clustered for visualization to allow
analysing non-trivial dataset sizes. We also tested using two simpler methods
directly on the feature space and clustering them similarly. While the rele-
vance bound approach is slightly more accurate in uncovering feature groups
than simple clustering methods, its complexity and runtime is much higher.

In the non-linear problem space we extended Boruta with a sequential
feature classification, which could decompose the all-relevant feature set into
strong and weak relevant features.
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RQ 3: Can the relevance of privileged features in a Privileged In-
formation (PI) setting be computed similarly to regular features?

Together with the work on ordinal regression, we also introduced the
concept of relevance for privileged features at the time of training.
We defined the feature relevance bounds in that context and also pro-
posed an all-relevant feature selection method for it, analogous to the
non-privileged case. On synthetic data, it performed better than a feature
selection model without the distinction in normal and privileged information.

Overall, we have shown that an approximation of all-relevant feature
selection for small to medium size datasets is feasible to compute with high
accuracy. It can be applied to various settings and in conjunction with two
highly relevant models of the biomedical domain to properly select compact
feature sets including redundancies. It can also be the foundation for further
analysis of the feature set, as we have shown with an automatic grouping of
related features and as a tool for the analysis of fairness.

Outlook Now after concluding with the work achieved, it is also necessary
to describe further avenues and aspects, which could not be researched in
the scope of this thesis.

One big aspect of all-relevant feature selection is the computational
complexity involved in the solution. As said before, the approximation of
the ARFS for extremely high dimensional datasets is still intractable. Here,
a filtering preprocessing step would be necessary and it’s not clear which
filter would be the most conservative one, keeping a maximum number of
relevant features.

Another aspect is the grouping of related features in the non-linear
problem space for which our thesis does not propose a solution. While we
experimented with a grouping procedure in the context of Random Forests
and their importance values, the results were very inconsistent and further
research is necessary.
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a .1 relevance bounds for ordinal regression

a .1 .1 Feature Relevance Bounds for Ordinal Regression with Implicit Order

In the following, we are defining the relevance bounds for the implicit variant
from Section 4.1. The definition is very similar to Section 4.1.2, and the
following will be very concise.

Assume a training set X. Denote an optimum solution of problem in (4.3)
as (w̃, b̃j, ξ̃

j
i , χ̃

j
i). We define

L :=
l−1

∑
j=1

(
j

∑
k=1

nk

∑
i=1

χ
j
ki +

l

∑
k=j+1

nk

∑
i=1

ξ
j
ki

)

as the sum of all slack variables. The optimum solution induces the value

µX :=
1
2
‖w̃‖1 + C · L

which is uniquely determined by X.
The class of equivalent good hypotheses is proxied by

Fδ(X) := {w ∈ Rn | ∃ξ, χ, b such that constraints in (4.3) hold,
1
2
‖w‖1 + C · L ≤ (1 + δ) · µX}

Problem minRel(`):

min
w,b,χ,ξ

|w`| (A.1)

s.t. for all i, j conditions in (4.3) hold
1
2
‖w‖1 + C · L ≤ (1 + δ) · µX (A.2)

Problem maxRel(`):

max
w,b,χ,ξ

|w`| (A.3)

s.t. for all i, j conditions in (4.3) hold
1
2
‖w‖1 + C · L ≤ (1 + δ) · µX (A.4)

As before, this problem can be equivalently phrased as an LP.

a .1 .2 Proof of Generalization Bounds

This is proof for the generalization bounds in Section 4.1.2 as taken
from [Pfa+20]. Recall Theorem 26.15 from Understanding Machine Learn-
ing [SB14]:

Theorem 3. Suppose that D is a distribution on X×Y such that with probability
1 we have ‖x‖∞ ≤ R. Let H = {w ∈ Rd | ‖w‖1 ≤ B} and let l : H× X ×
Y → R be of the form l(w, (x, y)) = φ(〈w, x〉, y) where φ : R × Y → R is
such that for all y ∈ Y, the function a 7→ φ(a, y) is η-Lipschitz and such that
maxa∈[−RB,RB]|φ(a, y)| ≤ c. Then, for any τ ∈ (0, 1) with probability of at least
1− τ over the choice of i.i.d. sample of size n, for all w ∈ H,

E(x,y)∼D [l(w, x, y)] ≤ 1
n

n

∑
i=1

l(w, xi, yi) + 2ηRB

√
2 log(2d)

n
+ c

√
2 ln(2/τ)

n
.
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To apply this theorem we have to reformulate our classifier as a collection
of binary classifiers. Since all classes use the same subspace spanned by w
it is enough to distinguish neighbouring classes, i. e. every bj gives rise to
a classifier that allows us to decide whenever x belongs to one of 0, . . . , j or
j + 1, . . . , |L|. Consider the ramp loss

l≺j(w, b, x, y) = min{1, max{0, 1− 1y≺j(w>x− bj)}},
lj(w, b, x, y) = l≤j(w, b, x, y) + l≥j(w, b, x, y),

l(w, b, x, y) = ly(w, b, x, y)

where 1y≺j = 1 if y ≺ j and −1 otherwise for some comparison operation
· ≺ ·. Notice that l corresponds to the implicit order constrains, which is
an upper bound for the explicit loss where only neighbouring classes are
considered, rather than all classes. By using this loss function it is clear that
the loss of the original classifier is bounded by the sum of all those binary
classifiers. Since the ramp loss is 1-Lipschitz and maps to the interval [0, 1]
we may apply Theorem 3 to obtain

E(x,y)∼D [l(w, x, y)] ≤ E(x,y)∼D

[ |L|
∑
j=1

(l≤j(w, x, y) + l≥j(w, x, y))

]

=
|L|

∑
j=1

(
E(x,y)∼D

[
l≤j(w, x, y)

]
+ E(x,y)∼D

[
l≥j(w, x, y)

])

≤
|L|

∑
j=1

(
1
n

n

∑
i=1

(l≤j(w, xi, yi) + l≥j(w, xi, yi))

+4RB

√
2 log(2d)

n
+ 2

√
2 ln(2/τ)

n

)
for all w such that ‖w‖1 ≤ B with probability 1− τ over the choice of sample.
In particular, setting ρj = ∑i ξ̃

j
i + χ̃

j
i and ρ = ∑j ρj to the hinge loss of the

baseline classifier and using the fact that the hinge loss upper bounds ramp
loss, this gives rise to

LD(w̃, b̃) ≤ |L|
(

ρ

n
+ 4‖w̃‖1R

√
2 log(2d)

n
+ 2

√
2 ln(2/τ)

n

)
for the generalization error of the baseline linear classifier (w̃, b̃) and

LD(h) ≤ |L|
(

ρ

n
+ 4(1 + δ)‖w̃‖1R

√
2 log(2d)

n
+ 2

√
2 ln(2/τ)

n

)
for all h ∈ Hδ(w̃), with probability at least 1− τ over the choice of training
sample, i. e. our choice of constraints allow the generalization error upper

bound to increase by 4δ‖w̃‖1|L|R
√

2 log(2d)
n .

a .1 .3 Proof of Theorem 1

Here we give proof for Theorem 1. We rely on Theorem 4 in [Göp+18], which
states the following: Assume two optimization problems

Problem A : min
x

h1(x) s.t. x ∈ A1

Problem B : min
y

h2(y) s.t. y ∈ A2
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Assume mappings f : A1 → A2 and g : A2 → A1 exist such that for all
x ∈ A1, y ∈ A2

h2(y) < h2( f (x)) ⇒ h1(g(y)) < h1(x)
h1(x) < h1(g(y)) ⇒ h2( f (x)) < h2(y)

Then the two problems A and B are equivalent in the sense that the mappings
f and g establish direct correspondences of their global optima.

a .1 .4 Equivalence of minRel(`) and minRel∗(`)

Solutions of minRel(`) have the form(
w = (w1, . . . , wd), b = (b1, . . . , bl−1), χ = (χ1

1, . . . , χl−1
ml−1

), ξ = (ξ2
1, . . . , ξ l

ml
)
)

minRel∗(`) combines this form with an additional vector ŵ = (ŵ1, . . . , ŵd).
Define the mapping

f : (w, b, χ, ξ) 7→
(
w, ŵ = |w| := (|w1|, . . . , |wd|), b, χ, ξ

)
and the mapping

g : (w, ŵ, b, χ, ξ) 7→ (w, b, χ, ξ).

f is a mapping in between feasible sets. The same holds for g, since the
constraints (4.6) ensure ∑k ŵk ≥ ‖w‖1.

Given an element of the feasible set of the two problems, denoted by
x := (wA, bA, χA, ξA) and y := (wB, ŵB, bB, χB, ξB), respectively. Assume
h2(y) < h2( f (x)), i. e. ŵB

` < |wA
` |. Then constraints (4.6) ensure |wB

` | ≤ ŵB
` ,

hence |wB
` | < |w

A
` |, i. e. h1(g(y)) < h1(x).

Conversely, h1(x) < h1(g(y)) implies |wA
` | < |w

B
` | hence constraints (4.6)

ensure |wA
` | < ŵB

` , i. e. h2( f (x)) < h2(y).

a .1 .5 Equivalence of maxRel(`) and the optimum of maxRel∗pos(`) and
maxRel∗neg(`)

We consider two problems which are associated to maxRel(`):

• maxRelpos(`) equals maxRel(`) with the additional constraint w` ≥ 0

• maxRelneg(`) equals maxRel(`) with the additional constraint w` ≤ 0

Since these two auxiliary problems decompose the feasible set of the original
one into two halves, we can solve those and take whichever solution is
best instead of solving maxRel(`). Thus, we can show equivalence of these
two subproblems to the versions as introduced in Theorem 1. Instead of
maximization, we can focus on the minimization of the respective negative of
the original objectives, to phrase the setting within the notation of Theorem 4
in [Göp+18].

We show equivalence of maxRelpos(`) and maxRel∗pos(`). Define the map-
ping f as identity for (w, b, χ, ξ) and ŵ = |w| := (|w1|, . . . , |wd|). Define the
mapping g as projection of (w, ŵ, b, χ, ξ) onto all elements but ŵ. f and g
are mappings in between the feasible sets. Note that constraints w` ≥ 0 and
ŵ` ≤ w` are required at this step.

Given elements of the feasible sets of the problems

x := (wA, bA, χA, ξA)

y := (wB, ŵB, bB, χB, ξB).
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Assume h2(y) < h2( f (x)), i. e. −ŵB
` < −|wA

` |. Then the constraints
(4.6) and (4.7) ensure ŵB

` = wB
` and ŵB

` ≥ 0, hence −|wB
` | < −|w

A
` |, i. e.

h1(g(y)) < h1(x).
Conversely, h1(x) < h1(g(y)) implies −|wA

` | < −|w
B
` |. Hence, −|wA

` | <
−ŵB

` , i. e. h2( f (x)) < h2(y) due to constraints (4.6) and (4.7).
Similarly, equivalence of maxRelneg(`) and maxRel∗neg(`) can be shown.

f and g are as above. These are mappings in between feasible sets. Note that
constraints w` ≥ 0 and ŵ` ≤ w` are required at this step.

a .1 .6 Scaling of Ordinal Regression Feature Selection with Privileged Information

Here we evaluate the scaling of our implementation in the setting without
privileged information. We already discussed the theoretical time complexity
bounds in Section 4.2.2 where we concluded that the overall method with
feature selection is in O(n3 + (dz + c)n2.5). We now run two separate exper-
iments where we generate artificial sets as described earlier and scale up
their size to the number of instances n and number of features d. In the first
experiment we set d = 20 and scale n between 10 and 10000 and in the second
we set n = 500 and scale d between 10 and 500. Our implementation is using
the high-level library cvxpy1 and the ECOS solver [DCB13] and presents no
specific adaption for the problems at hand. The implementation runtime is
measured on a modern Intel Xeon processor. Additionally, because relevance
bounds can be computed in parallel, we run both experiments with one single
thread and 8 threads in parallel.

In Figure A.3 results for both experiments are given. One can see that
the complexity can limit the application of the method to small to medium-
sized problems. This is in line with other all relevant feature selection meth-
ods [Pfa+19a] which exhibit much higher runtimes than simple sparse meth-
ods. While slightly bigger sets with, e.g. n > 104 or d > 500 are feasible,
multiprocessing is recommended. For bigger data sets, further optimization
or filtering of the feature space is necessary.

a .1 .7 Features of the COMPAS dataset

This section describes all the features of the COMPAS dataset that we use
in our analysis in Section 4.1.3. The features are listed in Table A.1. All
categorical variables are One-Hot-Coded for the analysis. The ethnicities
are one of {African-American, Caucasian, Hispanic, Asian, Native American,
Other}, the sexes are male or female, the age is grouped into {less than 25,
25–45, greater than 45} and the charge can be one of {felony, misdemeanour,
offence}. The total number of features fed into the first model is 20. After
eliminating all ethnic information, the count reduces to 14.

1 https://www.cvxpy.org/
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Figure A.3: Plot of runtime scaling concerning the number of instances (a)
and number of features (b). Additionally, both show a comparison between
single thread (1 CPU) and multi-threaded run (8 CPU).
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Table A.1: Description of features of the COMPAS dataset used for the analysis
in Section 4.1.3.

Feature Name Type Description One-Hot
encoding

Juv_fel_count Numerical # Felonies as a juvenile No
Juv_misd_count Numerical # Misdemeanour as a juvenile No
Juv_other_count Numerical # Offences as a juvenile No
Priors_count Numerical # Prior convictions No
Is_recid Binary If recidivism happened No
Is_violent_recid Binary If violent recidivism happened No
Ethnicity Categorical One of 6 ethnicities Yes
Sex Categorical One of 2 sexes Yes
Age Categorical One of 3 age groups Yes
C_charge Categorical One of 3 charge groups Yes
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glossary

G L O S S A RY

A Set of all relevant Features. 10, 11, 21, 63–65, 68, 69, 109

I Set of all irrelevant features. 10, 11, 63, 64, 109

M Minimal optimal feature set. 11, 63–70, 109

S Set of all strongly relevant features. 9–11, 63–66, 68, 79, 109

W Set of all weakly relevant features. 9–11, 63–66, 68, 79, 109

D All Features. 11, 109

F1 Harmonic mean between Precision and Recall. 14, 29, 30, 47, 48, 60

Boruta An ensemble based wrapper model for feature selection utilizing a
statistical test to control noise. 13, 28–32, 36, 63, 67–69, 71, 73, 74, 80, 81,
109–111

corr-clust Agglomerative clustering using Pearson correlation of the feature
space.. 35

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications
with Noise. 33, 35, 111

Lasso Sparse model regularization using L1 Norm. 12, 14, 28, 40, 41, 43, 45,
46, 64, 67

precision Ratio of correctly selected Features. Shows amount of noise in-
cluded. 29–31, 46–48, 60, 71, 75, 78, 79, 112

recall Ratio of relevant Features selected. 29–31, 47, 48, 60, 75, 78, 79, 112

SQ Sequential Feature Classification. 71, 75, 77–80

V-measure Harmonic mean between homogeneity and completeness mea-
sures for clustering.. 33, 35, 111
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acronyms

A C R O N Y M S

FN False Negative. 28, 29, 75

FP False Positive. 28, 29, 75, 79

TN True Negative. 28

TP True Positive. 28, 29, 75

ARFS all-relevant feature selection problem. 2, 4, 10–16, 28, 53, 82

AUC area under the curve. 31, 111

EFS Ensemble Feature Selection. 13, 28–32, 36, 111

EN ElasticNet. 12, 28–32, 36, 40, 42, 45–51, 59, 60, 70, 75, 77, 78, 111, 112

FRI Feature Relevance Intervals method. 17, 18, 22, 28–32, 35–37, 46, 49, 51,
60, 63, 70, 75, 77–80, 109, 111

FS Feature Selection. 2, 10, 12, 13, 30

LP Linear Program. 22, 58, 81, 86

LUPI Learning using privileged information. 53, 54, 58–61, 109

MFS minimal-optimal feature selection problem. 11

MI mutual information. 8, 11

MMAE Macro-averaged Mean Absolute Error. 45, 49, 50, 111

ORP Ordinal Regression Problem. 39–41, 51, 61

PI Privileged Information. 53, 54

RF Random Forest. 8, 13, 29, 30, 63–65, 67–75, 77, 78, 109–111

RFE Recursive Feature Elimination. 12, 65, 70, 71, 75

RFECV Recursive Feature Elimination with Cross-Validation. 45, 73, 74, 110

ROC receiver operation characteristics. 31, 111

SES statistically equivalent signature. 13

SMOTE Synthetic Minority Over-sampling Technique. 28

SS Stability Selection. 28–32, 36

SVM Support Vector Machine. 12, 14, 15, 39, 40, 49, 53, 54, 58
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