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Summary

This thesis is divided into three parts, which are essentially independent of each other,

although the equations studied in the first two parts overlap to some degree. In Parts I

and II, we study parabolic Fokker–Planck–Kolmogorov equations (FPK equations), which

are second-order differential equations for measures. In both parts, we prove structural

results, which are of particular interest in cases of nonuniqueness of solutions.

More precisely, in Part I, we select solution flows for FPK equations, i.e. under suitable

assumptions on the coefficients, we choose a particular solution for each initial condition,

such that the selected family fulfills the flow property. The selection is made either in the

whole class of solutions or in suitable subclasses. Moreover, we show that such a solution

flow is unique if and only if the equation is well-posed in the respective solution classes.

Our results blend into results of Markovian selections for stochastic problems and, in a

lose sense, are parallel to Markovian selections to martingale problems by Stroock and

Varadhan. We prove our results in the case of linear and nonlinear equations for measures

on Rd, as well as for linear equations for measures on R∞.

In Part II, we study deterministic and stochastic nonlinear FPK equations on Rd. In

spirit of the recent work [190], we use and extend the linearization of such equations.

More precisely, it is known that deterministic nonlinear FPK equations admit a naturally

associated linear first-order continuity equation for curves in the space of measures P(P).

In this case, we prove a superposition principle between solutions to these equations,

without imposing any regularity on the coefficients. This result is in the spirit of well-

known superposition principles for ordinary and stochastic differential equations and their

corresponding first- and second-order linear FPK equations. In our case, the nonlinear

FPK equation replaces the ordinary differential equation, and the continuity equation for

curves in P(P) replaces the linear FPK equation for measures on Rd. Moreover, we extend

the linearization to the case of stochastic nonlinear FPK equations by showing that such

equations are associated to deterministic second-order equations for curves in P(P). Also

in this case, we prove a corresponding superposition principle.

In Part III, which can be considered entirely independent of the previous parts, we

apply the method of convex integration to the incompressible fractional Navier–Stokes

equations on the 3D torus, with the exponent α of the fractional Laplacian in the range

0 < α < 1/2, perturbed by an additive Brownian noise. Similar to comparable existing

results for other stochastic equations, we prove nonuniqueness in law for analytically and

probabilistically weak solutions. In comparison with the existing literature for stochastic

equations, we obtain our new result by a use of simpler building blocks for the construction

of a solution with anomalous energy behavior. Notably, we construct a solution, which is

even probabilistically strong up to a strictly positive stopping time.
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1

Chapter 0

General notation and basic facts

Symbols. We use the conventions N = {1, 2, 3, . . . }, N0 = N∪{0}, and R+ = [0,∞), and

the symbols Q,R,C for the fields of rational, real and complex numbers, respectively. For

z ∈ C, z̄ denotes its complex conjugate. The lower and upper Gauss brackets are denoted

by b·c and d·e, respectively. For x, y ∈ R, we write x ∧ y and x ∨ y for their minimum and

maximum, respectively.

Euclidean space, analysis and matrices. In Rd, ei, 1 ≤ i ≤ d, denotes the canonical

i-th unit vector, and for a = (a1, . . . , ad) and b = (b1, . . . , bd) ∈ Rd, we write a · b := 〈a, b〉Rd
for the usual Euclidean inner product with induced norm |a|2 := a · a. We use the same

notation A · b :=
(
(Aij)1≤i≤d · b

)
1≤j≤d1 ∈ Rd1 for a d× d1-matrix A, and also write

x · y :=

∞∑
k=1

xkyk, x, y ∈ `2,

for the usual inner product in the space of square-summable real sequences `2. S2 ⊆ R3

denotes the unit sphere, id the identity on Rd, a⊗ b := (akbl)1≤k,l≤d the outer product of

a, b ∈ Rd, and a×b ∈ R3 the usual cross product. The linear span of vectors v1, . . . , vn ∈ Rd

is denoted by 〈v1, . . . , vn〉. Br(x) is the ball centered at x ∈ Rd with radius r > 0.

Analysis. For once and twice differentiable functions ϕ : Rd → R, we use the standard

notation ∂iϕ, ∂ijϕ for the first- and second-order partial derivatives in direction ei, and ei
and ej , respectively. For i = j, we also write ∂2

i instead of ∂ij . If ϕ is partially differentiable

in a distinguished variable t ∈ R, we denote the partial derivative by ∂tϕ. In the case

d = 1, we write ϕ′ for the derivative of ϕ. We use the standard symbols ∇ϕ and ∆ϕ for

the Euclidean gradient and Laplace operator, respectively. For vector fields F : Rd → Rd,
we denote the divergence of F by divF and, in the case d = 3, the curl-operator by curlF .

Matrices. We write Id for the d × d-identity matrix in any dimension d. For real

d × d-matrices A,B, we write AT for the transpose of A, and A : B :=
∑d

i,j=1AijBij .

We use the same notation for A = (Aij)i,j≥1, B = (Bij)i,j≥1, if either A or B contain

only finitely many nontrivial entries. S+
d is the space of symmetric positive semidefinite

d× d-matrices. We denote the trace-free part of a matrix A by Å, and write a⊗̊b in the

case A = a⊗ b.
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Topology and measure theory. Let X,Y be topological spaces. We denote the Borel

σ-algebra of X by B(X), the space of continuous, bounded real functions on X by Cb(X),

and the space of continuous functions from X to Y by C(X,Y ). For x ∈ X, we generally

write πx : C(X,Y ) → Y , πx : f 7→ f(x) for the canonical projection on C(X,Y ). If

X = [t, T ], we also write Ct,TY . If t = 0 or if X = R+, we write CTY and CY , respectively.

For a subset A ⊆ X, we write B(X)|A for the trace σ-algebra of A with respect to X. We

say A ⊆ X is precompact, if each sequence in A has a limit point in X. If Y is embedded

into X, we write Y ↪→ X. A metric d1 is compatible with the topological space X, if d1

induces the prescribed topology on X. A second metric d2 on X is weakly equivalent to

d1, if both metrics induce the same topology on X. The topological closure of a set A is

denoted by Ā. The support of a function f : X → R is supp f := {x ∈ X : f(x) 6= 0}.

Measure theory. If I is some index set and C is a fixed σ-algebra on Y , for mappings

fi : X → Y , i ∈ I, we denote the σ-algebra on X generated by {fi, i ∈ I} by σ(fi, i ∈ I),

which is the smallest σ-algebra A on X such that each fi is A/C-measurable. By A1
∨
A2,

we denote the σ-algebra generated by A1 and A2, i.e. the smallest σ-algebra containing A1

and A2. By a measure µ we mean a nonnegative, σ-additive function on the σ-algebra F
of a measurable space (X ,F), and say µ is bounded or finite, provided µ(X ) < ∞. If µ

also assumes negative values, we call it a signed measure. If X is a topological space and

F = B(X ), µ is a Borel measure. In this case, we denote by suppµ the support of µ, i.e.

the set of all points x ∈ X such that µ(Nx) > 0 for every open neighborhood Nx of x. For

x ∈ X , δx is the usual Dirac measure in x. A set N ⊆ X is µ-negligible, if there is a set

M ∈ F such that N ⊆M and µ(M) = 0. The Lebesgue measure on B(Rd) is denoted by

dx (we also write dt in the case d = 1, if R is considered as the axis of time). A set of

functions G ⊆ Cb(X ) is measure separating, if µ(g) = ν(g) for each g ∈ G implies µ = ν for

each pair of bounded Borel measures µ, ν on X . For an interval I ⊆ R, a family (µt)t∈I of

finite Borel measures on (X ,B(X )) is a Borel curve, if t 7→ µt(A) is Borel measurable for

each A ∈ B(X ). Two such curves are versions of each other, if there is a dt-negligible set

N ⊆ I such that both curves coincide for each t ∈ N c.

Operators. For normed spaces U,H, L(U,H) is the vector space of linear continuous

(equivalently: bounded) operators T : U → H, with the usual operator norm || · ||L(U,H). If

U,H are Hilbert spaces, we denote by L2(U,H) the subspace of L(U,H) of Hilbert–Schmidt

operators T : U → H, i.e. the space of operators T such that
∑∞

k=1 ||Tek||2H <∞ for some

(equivalently: any) orthonormal basis (ONB) {ek}k∈N of U . If U = H, we shortly write

L(H) and L2(H), respectively. The trace of an operator T : H → H on a Hilbert space

(H, 〈·, ·〉H) is TrT :=
∑∞

k=1〈Tek, ek〉H for a fixed ONB {ek}k∈N on H. If T : U → H is an

unbounded operator, we denote its domain by D(T ) ⊆ U .

Function spaces. If X,Y are metric spaces and X is not compact, we also write

Cloc(X,Y ) instead of C(X,Y ) to stress that the space is endowed with the topology of

locally uniform convergence. If X = R+, we also write CY or ClocY . If Y carries a norm

|| · ||Y and the spaces are given from the context, we write ||ϕ||∞ := supx∈X ||ϕ(x)||Y .
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Hölder functions. For a normed space (Y, || · ||Y ), a < b and α ∈ (0, 1], we denote

the space of α-Hölder continuous functions ϕ : [a, b] 7→ Y by Cα([a, b], Y ), with norm

||ϕ||Cα([a,b],Y ) := ||ϕ||∞ + [ϕ]Cα , where

[ϕ]Cα := [ϕ]Cα([a,b],Y ) := sup
t6=r,

t,r∈[a,b]

||ϕ(t)− ϕ(r)||Y
|t− r|α

.

If [a, b] is replaced by R+, we write CαlocY for the space of locally Hölder continuous functions

with the usual topology of local convergence with respect to the norms || · ||Cα([a,b],Y ) on

any compact interval [a, b].

Differentiable functions. For an open set A ⊆ Rd, we denote by Ckb (A) and Ckc (A)

the spaces of functions ϕ : A → R with continuous (bounded and compactly supported,

respectively) partial derivatives up to order k. We write Cb(Rd) and Cc(Rd) in the case

k = 0, and C∞b (A) and C∞c (A) for
⋂
k≥1C

k
b (A) and

⋂
k≥1C

k
c (A), respectively. In both

cases, for k <∞, these spaces are normed with || · ||Ck ,

||ϕ||Ck := ||ϕ||∞ +

k∑
l=1

[ϕ]Cl ,

where, using the usual notation ∂αϕ := ∂α1
1 · · · ∂

αd
d ϕ for a multiindex α = (α1, . . . , αd) of

length |α| = α1 + · · ·+ αd, we define the semi norm on Ckb (A) for 0 ≤ l ≤ k as

[ϕ]Cl :=
∑
|α|=l

||∂αϕ||∞.

For (a, b) ⊆ R, we denote by Ck,lb
(
(a, b)×Rd

)
and Ck,lc

(
(a, b)×Rd

)
the spaces of functions

ϕ : (a, b)× Rd → R with k continuous (bounded and compactly supported, respectively)

derivatives with respect to t ∈ (a, b) and l continuous (bounded and compactly supported,

respectively) partial derivatives with respect to x ∈ Rd. If k = l, we write Ckb
(
(a, b)×Rd

)
and

Ckc
(
(a, b)×Rd

)
. We also setC∞b

(
(a, b)×Rd

)
:=
⋂
k≥1C

k
b

(
(a, b)×Rd

)
andC∞c

(
(a, b)×Rd

)
:=⋂

k≥1C
k
c

(
(a, b)× Rd

)
.

Lp-spaces. For n ≥ 1, p ∈ [1,∞), and a Borel measure µ on Rd, we denote by

Lp(Rd,Rn;µ) the space of equivalence classes (with respect to equality µ-a.e.) of Borel

functions ϕ : Rd → Rn such that

||ϕ||pLp := ||ϕ||p
Lp(Rd,Rn;µ)

:=

ˆ
Rd
|ϕ(x)|pdµ(x) <∞.

If p = 2, this norm is induced by the scalar product

〈f, g〉L2 := 〈f, g〉L2(Rd,Rn;µ) :=

ˆ
Rd
f · gdµ.

For an interval I ⊆ R and a normed space (Y, || · ||Y ), we denote by Lp(I, Y ) := Lp(I, Y ; dt)

the space of equivalence classes (with respect to equality dt-a.e.) of Borel functions ϕ : I → Y

such that

||ϕ||pLp(I,Y ) :=

ˆ
I
||ϕ||pY dt <∞.
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If Y = R, we simply write Lp(I). For p =∞, we denote by L∞(Rd,Rn;µ) and L∞(I, Y )

the usual spaces of equivalence classes of Borel functions, which are bounded up to a

negligible set, and we use the same notation || · ||∞ for the essential supremum norm, as

in the case of differentiable functions above. For p ∈ [1,∞], the usual local Lp-spaces are

denoted by L∞loc(Rd,Rn;µ) and Lploc(I, Y ), with abbreviations as in the global case above.

Probability theory. A filtered probability space (Ω,F , (Ft)0≤t≤T ,P) is complete, if both

F and F0 contain all P-negligible sets N ⊆ Ω. We write EP[X] =
´

ΩXdP for the expectation

of a random variable X : Ω → R, and simply E[X], if the measure P is given from the

context. A finite-dimensional Brownian motion B = (Bt)0≤t≤T on such a probability space

is an (Ft)0≤t≤T -Brownian motion, if Bt is (Ft)0≤t≤T -adapted and Bu −Bt is independent

of Ft for each 0 ≤ t ≤ u ≤ T . The quadratic variation of a stochastic process t 7→ Xt is

denoted by t 7→ 〈〈X〉〉t. Likewise, if Y is a second stochastic process, we write t 7→ 〈〈X,Y 〉〉t
for the covariation of X and Y .

Probability measures and weak topology. For a topological space X, P(X) is the

space of Borel probability measures on X. We endow P(X) with the topology of weak

convergence of measures, i.e. with the initial topology of the maps µ 7→
´
ϕdµ, ϕ ∈ Cb(X).

If X is Polish, then so is P(X). In particular, with this topology, the map x 7→ δx is

continuous. If X = Rd, we write P = P(Rd), if no confusion on the dimension d can arise.

A family of probability measures (µi)i∈I on the Borel σ-algebra B(X) of a Polish space

X is tight, if for each ε > 0 there exists a compact set Kε ⊆ X such that µi(K
c
ε) ≤ ε

for all i ∈ I. Tightness of such a family is equivalent to its precompactness with respect

to the weak topology. A sufficient condition for tightness is the existence of a compact

function V : X → R+ (i.e. V has compact sublevel sets {V ≤ c}, c > 0) such that

supi∈I
´
X V dµi <∞.

Subprobability measures and vague topology. SP is the set of Borel subprobability

measures on Rd, i.e. the set of Borel measures µ with µ(Rd) ≤ 1. We consider SP with

the vague topology, i.e. the initial topology of the maps µ 7→
´
ϕdµ, ϕ ∈ Cc(Rd). Its Borel

σ-algebra is denoted by B(SP). SP with the vague topology is Polish and compact. In

particular, P(SP), the space of Borel probability measures on SP, is a Polish space with

the weak topology of probability measures on (SP,B(SP)). In case of vague convergence

µn −→ µ in SP as n→∞ with µn(Rd) ≤ c for some c ∈ [0, 1] for all but finitely many n ≥ 1,

µ(Rd) ≤ c follows. In particular, for each c ∈ [0, 1], the set SPc := {µ ∈ SP : µ(Rd) ≤ c}
are closed in SP, so that we obtain

P =

( ⋃
q∈[0,1)∩Q

SPq
)c
∈ B(SP).

We have B(P) = B(SP)|P . Hence, we can consider measures Γ ∈ P(P) as elements in

P(SP) with mass on P . Standard references for these and further basics on (sub)probability

measures can be found in [27, 17, 35].



Part I

Solution flows for

Fokker–Planck–Kolmogorov

equations
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Abstract. We study Fokker–Planck–Kolmogorov equations and prove the existence of

a solution flow {µs,ν}(s,ν)∈[0,T ]×SP for such equations, i.e. µs,ν = (µs,νt )t∈[s,T ] solves the

equation with initial condition (s, ν) ∈ [0, T ] × SP and the flow property µs,νt = µr,µ
s,ν
r

t

prevails. Moreover, we show that the well-posedness of such equations is equivalent to the

uniqueness of the flow. We obtain these results for linear and nonlinear Fokker–Planck–

Kolmogorov equations for measures on Rd, as well as for linear equations for measures on

R∞. The results of this part of the thesis contain and extend the contents of our paper

[187].

Chapter 1

Introduction

1.1 Introduction to Fokker–Planck–Kolmogorov equations

In the present part, as well as in Part II of this thesis, we study parabolic Fokker–Planck–

Kolmogorov equations (FPK equations), which are second-order equations for measures.

We are mostly concerned with equations for measures on Rd, but study equations for

measures on R∞ in Chapter 4 as well. In the former case, we are interested in linear and

nonlinear equations.

In the linear, finite-dimensional case, the principal object of interest is the time-

dependent second-order differential operator L,

Ltϕ(x) =

d∑
i,j=1

aij(t, x)∂ijϕ(x) +

d∑
i=1

bi(t, x)∂iϕ(x), ϕ ∈ C2(Rd), (1.1)

for coefficients a = (aij)1≤i,j≤d ∈ Rd×d, b = (bi)1≤i≤d ∈ Rd on [0, T ]× Rd. The linear FPK

equation associated to these coefficients, to be solved for curves of Borel measures t 7→ µt
on Rd, is

∂tµt = L∗tµt, t ∈ [0, T ], (FPK)

where T ∈ (0,∞), L∗ denotes the formal dual operator of L, and the equation is understood

in weak (”distributional”) form, see Definition 2.1.1. In general, such equations make

sense for Borel curves of bounded, signed measures, but for all considerations of this thesis,

we restrict our attention to curves of (sub)probability measures. Consideration of such

equations dates back at least to works by physicists Fokker [104] and Planck [185] from

1914 and 1917, respectively, and to Kolmogorov [138, 139, 140] about twenty years later.

See also [208] and [63]. Since then, FPK equations have become an extensively studied

field in physics, quantum mechanics, partial differential equations and stochastic analysis,
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and there is an enormous literature on historic and recent progress in the field. A full

account on the available literature is beyond the scope of this thesis, but we particularly

refer the reader to the extensive monograph [38] for a systematic introduction and for a

vast list of references, see for example the comment section starting on p.283 in [38]. The

book contains large parts of the available results on existence, uniqueness and regularity of

solutions to (FPK), as well as the interesting topic of elliptic FPK equations, which we do

not touch in this thesis.

Stochastic analytic background. Among several directions from which one can mo-

tivate equations of type (FPK), the approach via stochastic analysis and the theory of

diffusion processes and stochastic differential equations is of particular interest to us. Here,

we briefly outline this connection. Suppose t 7→ Xt is a stochastic process governed by the

stochastic equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈ [0, T ], (1.2)

where B is a d1-dimensional Brownian motion on a probability space (Ω,F ,P), b = (bi)1≤i≤d
is as above and σ(t, x) ∈ Rd×d1 is a diffusion coefficient. Then, by Itô’s formula, the curve

of one-dimensional marginals of Xt, µt := P ◦X−1
t , is a solution to (FPK) with coefficients

b and a = 1/2σσT , see Appendix B for more details. More generally, the same is true for

the transition probabilities P (0, x, t, dy), (t, x) ∈ [0, T ]× Rd, for any diffusion process with

moderate assumptions on its drift and diffusion coefficient b and a, respectively, see [38,

Prop.1.3.1] and also [230, 144] for background on the topic. Recall that for B ∈ B(Rd),
P (s, x, t, B) intuitively gives the probability that Xt ∈ B, conditioned on the event Xs = x.

In the special case P (s, x, t, dy) = ρ(s, x, t, y)dy, i.e. that the transitions are absolutely

continuous with respect to Lebesgue measure, one rewrites (FPK) as a second-order partial

differential equation for the densities ρ(s, x, t, y) in (t, y) as

∂tρ(s, x, t, y) = ∂ij
(
aij(t, y)ρ(s, x, t, y)

)
− ∂i

(
bi(t, y)ρ(s, x, t, y)

)
,

which is also called the Kolmogorov forward equation (in this case, (s, x) is considered a

fixed initial condition). However, we stress that in general equations of type (FPK) need

to be understood for curves of measures and only in special cases these measures admit

densities with respect to Lebesgue measure.

The connection between FPK equations and diffusion processes and stochastic analysis

is not only fruitful due to recent results, such as various highly interesting superposition

principles (on which we comment in more detail in the introduction in Chapter 5), but

it can also be considered one of the original motivations for the development of the field.

Indeed, in the fundamental work [138], Kolmogorov posed the question of existence and

uniqueness of solutions µs,x = (µs,xt )t∈[s,T ] to equations of type (FPK) with initial condition

(s, δx) ∈ R+ × P, and asked whether such solutions fulfill the Chapman-Kolmogorov

equations

µs,xt =

ˆ
Rd
µr,yt dµs,xr (y), s ≤ r ≤ t ≤ T. (CK)
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Roughly, this amounts to the question whether solutions to (FPK) can be understood as

the marginal distributions of a Markov process on Rd. Related questions will be the main

objective of this first part of the thesis, see in particular Section 2.5.

1.1.1 Nonlinear FPK equations

The theory of linear equations of type (FPK) is complemented by that of nonlinear

FPK equations, which are governed by coefficients aij and bi, 1 ≤ i, j ≤ d, defined

on [0, T ] ×M × Rd, for some set of bounded, signed Borel measures M on Rd. More

precisely, similar to the linear case, one considers the associated second-order operator Lt,µ,

(t, µ) ∈ [0, T ]×M,

Lt,µϕ(x) =
d∑

i,j=1

aij(t, µ, x)∂ijϕ(x) +
d∑
i=1

bi(t, µ, x)∂iϕ(x), ϕ ∈ C2(Rd), (1.3)

and the corresponding nonlinear FPK equation

∂tµt = L∗t,µtµt, t ∈ [0, T ], (NL-FPK)

in weak (”distributional”) sense, to be solved for Borel curves of signed, bounded measures

(µt)t∈[s,T ], as before. We study such type of equations in Chapter 3 and in Part II of

this thesis, and we restrict attention to solution curves of (sub)probability measures. In

particular, we are only interested in cases with M⊆ SP.

The nonlinearity of equations of type (NL-FPK) arises from the dependence of the

coefficients on the solution, which, comparable in spirit to the field of PDEs, renders the

theory of well-posedness of such equations a more delicate issue compared to the linear

case. See [105] for an introduction and overview of the field, as well as the content on

nonlinear equations in [38]. Applications of such equations range from description of porous

media and neurophysics to population dynamics and computational science, as explained

in [105]. A typical nonlinear dependence of the coefficients is through convolution-type

kernels, e.g. b(t, µ, x) =
´
K(t, x, y)dµ(y) for a Borel function K, which often fulfills

|K(t, x, y)| −→ ∞ as |y| → ∞, see [45, 95, 145, 146] for the important and historic example

of Vlasov equations.

Here, we give a brief account on the close and very natural connection to interact-

ing particle systems and McKean–Vlasov equations. As in the deterministic case, it is

straightforward to check that the time-marginals of solution processes to certain stochastic

differential equations fulfill an equation of type (NL-FPK). More precisely, consider the

distribution-dependent SDE (McKean–Vlasov equation)

dXt = b(t,LXt , Xt)dt+ σ(t,LXt , Xt)dBt, t ∈ [0, T ], (1.4)

where LX denotes the distribution of a random variable X, and b and σ are coefficients

similar to the case of equation (1.2), which here additionally depend on µ ∈ M. For

example, such equations describe particle movement in stochastic regimes, where the

particle’s behavior is governed both by its local position and its global distribution. Such

equations arise in the theory of filtering [79] and multi-agent systems [44, 26], and as the
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governing equation in the particle limit of weakly interacting particle systems. Among the

huge literature on such distribution-dependent stochastic equations and their connection

to interacting particle systems, we refer to the classical works [106, 172, 227, 95, 216], as

well as to the more recent papers [175, 114, 118, 173, 229, 126]. Moreover, we point out

the recent comprehensive presentation in [61].

Similarly to the linear case, it is readily seen by Itô’s formula that the curve of

one-dimensional distributions µt := LXt of any solution to (1.4) solves (NL-FPK) with

coefficients b and a = 1/2σσT . Indeed, by fixing LXt in b and σ in (1.4), t 7→ Xt is, of

course, in particular a solution to a linear stochastic equation of type (1.2). Hence, by

the observation for the linear case in the previous paragraph, it follows that t 7→ µt solves

(NL-FPK). This connection to linear equations was exploited in [21, 22] by Barbu and

Röckner in order to solve equations of type (1.4) via the corresponding nonlinear FPK

equations (NL-FPK): the authors establish a nonlinear superposition principle in order to

lift solutions to the latter to a solution to the former equation (see Chapter 5 for a review

and references). For further recent progress on nonlinear FPK equations, we also mention

the works [119, 19, 20].

Connection to PDEs. Let us temporarily restrict attention to absolutely continuous

solutions t 7→ µt = ρt(x)dx to (NL-FPK), and assume the following special type of

dependence of the coefficients aij(t, µ, x), bi(t, µ, x) on µ ∈M, with M equal to the set of

measures absolutely continuous with respect to Lebesgue measure:

(t, ρ(y)dy, x) 7→ aij(t, ρ(x), x), bi(t, ρ(x), x), 1 ≤ i, j ≤ d,

i.e. in contrast to the general situation, the dependence of the coefficients in the measure

component is not global, but local in the argument of the density ρ of µ. To ensure

measurability of the coefficients as a function in (t, x), one usually considers the Lebesgue

version in the dx-equivalence class of ρ. Such coefficients are often called Nemytskii-type

coefficients. Then, one rewrites the nonlinear FPK equation as a nonlinear PDE as

∂tρt = ∂ij
(
aij(t, ρt, x)ρt

)
− ∂i

(
bi(t, ρt, x)ρt

)
. (1.5)

Still, the equation is understood in weak sense, except for the special case that aij and bi
are sufficiently regular to make sense of their respective first- and second-order derivatives.

This way, one can study the well-posedness in the class of absolutely continuous solutions to

equations with Nemytskii-type coefficients by methods from the field of partial differential

equations or, vice versa, one can aim to transfer existence and uniqueness results for FPK

equations to PDEs of type (1.5). We point out that since equation (1.5) may still be

considered a FPK equation, one can study its Cauchy problem with general measures as

initial conditions. There are very interesting results on the existence of function-valued

solutions to PDEs of type (1.5) with a completely degenerate initial condition, e.g. a Dirac

measure δx, x ∈ Rd, which are bounded after an infinitesimally short time, see [20] for such

a result in the case of a generalized porous medium equation with a first-order perturbation

term. There are also results on the uniqueness of such function-valued solutions to (1.5) in

the case of a general bounded measures as initial data, at least in the case of a general

porous medium equation without first-order perturbation, i.e. b ≡ 0, cf. [48, 184].
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Nemytskii-type coefficients pose several delicate problems, in particular since even a

continuity assumption in the measure argument on aij , bi with respect to the weak topology

does not imply continuity of (t, x) 7→ aij(t, ρt(x), x) and (t, x) 7→ bi(t, ρt(x), x), because

weak convergence of a sequence of absolutely continuous measures (with respect to Lebesgue

measure) does not imply the pointwise convergence of their densities. For the remainder of

the thesis, we will not consider such Nemytskii-type coefficients explicitly, but we point

out already now that our results in Part II contain the case of such irregular coefficients.

1.1.2 FPK equations for measures on infinite-dimensional spaces

FPK equations for measures on infinite-dimensional spaces arise naturally in the context

of stochastic partial differential equations, which are usually studied on infinite-dimensional

state spaces. Similarly to the relation of finite-dimensional SDEs and the corresponding

FPK equations for measures on Rd, also in the infinite-dimensional case, solutions to SPDEs

t 7→ X(t) induce solution curves to FPK equations via their one-dimensional marginals.

Often, such processes X assume values in a separable Hilbert space H ∼= `2 ⊆ R∞. In this

case, one can consider the marginals of X as Borel probability measures on R∞. If the drift

and diffusion coefficients of the SPDE, b(t, x) and σ(t, x), are defined on [0, T ] ×H (or,

in the framework of a Gelfand triple, on some Banach space V ↪→ H), one extends these

coefficients to R∞ (possible by the value ∞) and considers the operator L, defined via

Ltϕ(x) :=

∞∑
i,j=1

aij(t, x)∂ijϕ(t, x) +

∞∑
i=1

bi(t, x)∂iϕ(t, x), (1.6)

for ϕ : x 7→ Φ(x1, . . . , xd), Φ ∈ C2(Rd), d ∈ N, and (aij)i,j≥1 = 1/2σσT . Hence, both ap-

pearing sums contain only finitely many nontrivial summands. L is the infinite-dimensional

analogue to the infinitesimal generator L in the finite-dimensional setting in (1.1). We

study the corresponding linear FPK equation for Borel measures on R∞

∂tµt = L∗tµt, t ∈ [0, T ], (FPK∞)

where, as before, L∗ denotes the formal dual operator to L, and the equation is understood

in the weak sense in duality with test functions of type ϕ = Φ ◦ Pd, Φ ∈ C2(Rd), with

Pd : R∞ → Rd, Pd : x 7→ (x1, . . . , xd). See Section 4.1 for details.

Besides this connection to infinite-dimensional stochastic differential equations, it should

be noted that infinite-dimensional FPK equations arise from the study of finite-dimensional

equations. In this direction, we refer to [1, 128, 130, 131, 129, 132, 134, 133, 136, 135].

The literature on such infinite-dimensional equations is vast, although equations of type

(FPK∞) are less studied than the finite-dimensional linear and nonlinear equations (FPK)

and (NL-FPK). Since the infinite-dimensional case is not in the center of our attention, we

do not aim to provide a complete list of references. For an introduction to the field, we refer

the reader to [38, Ch.10], and to the works [197, 81, 33, 31, 34] and the references therein

for recent results on existence and uniqueness of solutions to such equations. We only

briefly mention that one can, of course, also study nonlinear FPK equations for measures

on R∞. We do not pursue this direction in this work, but mention the references listed in

[38, Sect.10.5(ii)].



12 CHAPTER 1. INTRODUCTION

1.2 Selection theorems for stochastic systems

Before we turn our attention to the main objective of this first part of the thesis, which

is to study solution flows to the Cauchy problem of equations of type (FPK), (NL-FPK)

and (FPK∞), we briefly shed light on some well-known results, which are in a similar spirit.

1.2.1 From Markov processes to FPK equations, SDEs, and the martin-

gale problem

For the moment, the central point of our considerations is the Markov process X

(whose existence we assume for the moment) in Rd, whose evolution in time t ∈ [0, T ] is

governed by the infinitesimal drift vector field b(t, x) =
(
bi(t, x)

)
1≤i≤d and covariance matrix

a(t, x) =
(
aij(t, x)

)
1≤i,j≤d, where the latter takes its values in the space of symmetric,

nonnegative definite matrices. In other words, we would like to study the Markov process

t 7→ X(t), such that if X(t) = x0 and h > 0 is small, the increment X(t + h) −X(t) is

approximately normally distributed with mean b(t, x0) and covariance matrix a(t, x0). Often,

one is primarily interested in the path distribution of X, i.e. in the family of probability

measures Ps,x ∈ P(Cs,TRd) such that for C ∈ B(Cs,TRd), Ps,x(C) is the probability that

[s, T ] 3 t 7→ Xt is a path in C, conditioned on the event Xs = x. For the existence of such

coefficients for Markov processes in quite general situations, see for example [215, Ch.0].

Among the enormous list of introductory and advanced books on Markov processes, we

mention [97, 192, 214, 24]. From such a Markov process X, natural connections to the

area of PDEs, as well as to stochastic analysis arise as follows.

FPK equations. On the one hand, under broad assumptions on the coefficients, the

transition probabilities P (s, x, t, dy) of X fulfill the FPK equation (FPK) with coefficients

b and a. Assume temporarily that solutions to (FPK) are unique, so that P (s, x, t, dy),

0 ≤ s ≤ t ≤ T, x ∈ Rd, are uniquely determined by (the Cauchy problem of) (FPK). Since

Ps,x as the law of a Markov process is uniquely determined by its one-dimensional marginals

P (s, x, t, dy), s ≤ t ≤ T , in this case the (Cauchy problem of the) FPK equation (FPK)

characterizes X in terms of its family of path laws {Ps,x}(s,x)∈[0,T ]×Rd . However, obtaining

well-posedness of (FPK) is usually a difficult analytic task, even in the case when the

transition probabilities are absolutely continuous with respect to Lebesgue measure, in

which case one rewrites (FPK) as a PDE, as discussed above.

Stochastic differential equations. On the other hand, a more probabilistic approach

towards a description of X is offered by the aforementioned intuition that X(t+ h)−X(t)

is approximately normally distributed with mean b(t,X(t)) and covariance a(t,X(t)), i.e.

in differential form, one suggestively writes

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈ [0, T ], (1.7)

where σ = (2a)1/2 and B is a Brownian motion. More precisely, σ ∈ Rd×d1 such that

a = 1/2σσT , and B is d1-dimensional, where d1 is, in principle, arbitrary. Thanks to the

celebrated work by Itô [123], (1.7) is meaningful as a stochastic differential equation, with

the second summand on the right-hand side interpreted as a stochastic Itô integral. Hence,
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if (1.7) is well-posed (for initial conditions Xs = x), such stochastic differential equations

characterize the Markov process X.

While this approach is very natural from a probabilistic viewpoint and has proven

to be a powerful method in the area of Markov processes and beyond, the rather strong

conditions on the coefficients necessary to obtain well-posedness of (1.7) by probabilistic

methods pose a certain restriction to this direction.

Martingale problem. Another way to approach the process X is the Stroock-Varadhan

theory of the associated martingale problem. Recall that we write πt for the canonical

projection πt(f) = f(t), s ≤ t ≤ T , on Cs,TRd. Both from the connection of the process X

to (FPK) and to (1.7), by the Markov property of {Ps,x}(s,x)∈[0,T ]×Rd , it is easily seen that

for each ϕ ∈ C∞c (Rd), we have that for the operator L as in (1.1), the process

ϕ ◦ πt −
ˆ t

s
Luϕ(πu)du, t ∈ [s, T ], (1.8)

is a Ps,x-martingale with respect to the canonical filtration on Cs,TRd for each 0 ≤ s ≤ T .

See [215, Ch.0,Ch.6] for details. As our objective is to characterize the Markov process X

in terms of b and a, the martingale approach seems advantageous, as it does not contain

intervening quantities between the path laws Ps,x and the coefficients (in contrast to the

approaches via (FPK) or (1.7), which are based on the marginals P (s, x, t, dy), and the

additional coefficient σ and the Brownian motion B, respectively). Again, it is clear that

in the case that for each (s, x), Ps,x is the only measure P ∈ P(Cs,TRd) such that the

processes (1.8) are P -martingales, the martingale problem characterizes X in terms of its

laws Ps,x. A fundamental introduction to the theory of martingale problems can be found

in the classical book [215].

Summarizing the above repetition of these well-known connections, under suitable

assumptions on the coefficients b and a (that is, conditions sufficient for the well-posedness

of either of the above corresponding equations), the Markovian dynamics with respect to b

and a are characterized via its marginals by a FPK equation, via its diffusive evolution as

a solution to an SDE, or via its path laws as the solution to a martingale problem.

1.2.2 Markovian selections in nonuniqueness regimes

So far, we assumed the existence of a unique Markov process X associated to the

coefficients b and a. One may also go in the opposite direction, i.e. start from either the

corresponding FPK equation (FPK), the SDE (1.7) or the processes (1.8) of the martingale

problem with respect to b and a, assume one of these problems to be well-posed, and

ask whether the corresponding solutions give rise to a unique Markov process. In all

three cases, the answer is affirmative. More precisely, if solutions (P (s, x, t, dy))t∈[s,T ],

(s, x) ∈ [0, T ]× Rd, are unique for the Cauchy problem of (FPK), then by the stability of

solutions to (FPK) under convex combinations, it is straightforward to check that these

solutions fulfill the Chapman-Kolmogorov equations (CK) (with P (s, x, t, dy) replacing

µs,xt ). Consequently, by a classical result, the existence of a unique Markovian family of

path laws {Ps,x}(s,x)∈[0,T ]×Rd such that Ps,x has one-dimensional marginals P (s, x, t, dy)

follows, see [24].
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Similarly, under broad assumptions on b and a, (strong) well-posed of the stochastic

equation (1.7) implies that the family of solutions is a Markov process. Also in the case of

well-posedness of the martingale problem (1.8), the unique martingale solutions Ps,x such

that Ps,x(πs = x) = 1 form a Markov process, see [215, Thm.6.2.2].

As mentioned before, well-posedness of either (FPK), (1.7) or the martingale problem

(1.8) holds only under rather strong assumptions on the coefficients b and a. As an example,

we mention that in the case of (FPK), uniqueness results are obtained under the assumption

of local Lipschitz continuity of aij and locally uniform ellipticity of a = (aij)1≤i,j≤d (together

with further local and global integrability conditions on b and a, see [38, Thm.9.4.3]). For

the martingale problem, the assumption of nondegeneracy of a is not necessary, if one

assumes, for example, aij , bi ∈ C2(Rd) [215, Cor.6.3.3]. Despite gradual improvements of

such results, there are inevitable examples of ill-posedness of these problems, even for very

nice coefficients, see for example [38, Exe.9.8.48] for the case of a = Id and b ∈ C∞(R).

In such ill-posedness situations, there is no a priori natural notion of (the) Markovian

dynamics with respect to b and a, since it is neither clear of which solutions to the Cauchy

problem such a Markov process with respect to b and a should consist, nor how to select

these solutions among the possibly large class of solutions for each initial condition such

that the Markov property prevails. Consequently, one poses the interesting question:

If for either (FPK), (1.7) or (1.8) several solutions exist, can one select a family of

solutions, which gives rise to a Markov process? (Q1)

Moreover, if the answer is affirmative, it is natural to ask whether, and in which sense,

such a selected Markov process is unique, i.e. we are also interested in the question:

Is it possible to characterize the well-posedness of (FPK), (1.7) or (1.8) in terms of

uniqueness of the selected Markov process? (Q2)

Since the martingale problem (1.8) and (weak solutions to) the stochastic equation (1.7)

are equivalent (at least for bounded coefficients, see [213]), we restrict these questions to

the FPK equation and the martingale problem.

Markovian selections for the martingale problem. Needless to say, we are by no

means the first to raise these questions. The topic of Markovian selections from nonunique

solutions to stochastic equations has been considered in several past and present works.

To the best of our knowledge, the first major contribution in this direction is due to

Krylov [147], who established a general Markovian selection procedure for a large class

of stochastic equations. In a somewhat similar spirit, in their classical book [215, Ch.12],

Stroock and Varadhan provide the following positive answer to question (Q1): in the

case of time-independent, continuous and bounded coefficients b and a, one can select a

strong Markov family {Ps,x}(s,x)∈[0,T ]×Rd such that Ps,x ∈ P(Cs,TRd) is a solution to the

martingale problem (1.8) with initial condition (s, x) (i.e. Ps,x(πs = x) = 1). From [215,

Ch.6,Ch.7], it is clear that for such coefficients, solutions to the martingale problem exist,

but need not be unique. Their idea essentially amounts to realizing that under the above

assumptions on the coefficients, the set of solutions to the martingale problem with a



1.3. MAIN RESULTS: LINEAR CASE 15

common initial condition (s, x) is weakly compact in P(Cs,TRd). This allows them to select

a unique element among each of these solution sets, which they characterize by iteratively

maximizing a suitable sequence of continuous functionals, chosen such that the Markov

property holds for the family of the selected extremal elements. Moreover, as a direct

consequence of their maximizing procedure, they prove that such a Markovian selection is

unique if and only if the martingale problem is well-posed, which also settles question (Q2)

in this case.

Further results in this direction are known for martingale problems with respect to

Lévy-type operators [149, 97] and for martingale solutions to stochastic partial differential

equations, including but not limited to the Navier–Stokes equations [110, 103, 47], see also

[30, 80, 91].

Selections for FPK equations. Naturally, the question arises whether a similar selec-

tion is possible for the FPK equation (FPK). On this level, one is interested in a family

of solutions to the Cauchy problem of (FPK) with initial condition (s, δx), now denoted

by µs,x = (µs,xt )t∈[s,T ] ∈ Cs,TP, (s, x) ∈ [0, T ]× Rd, such that the Chapman-Kolmogorov

equations (CK) are fulfilled. As mentioned at the beginning of the present subsection, to

such {µs,x}(s,x)∈[0,T ]×Rd , one associates a unique family of path laws {Ps,x}(s,x)∈[0,T ]×Rd ,

which is then considered a Markovian evolution emerging from (FPK). It is not difficult

to see that any Markovian selection {Ps,x}(s,x)∈[0,T ]×Rd for the corresponding martingale

problem induces a family of solutions to (FPK) {µs,x}(s,x)∈[0,T ]×Rd , which fulfills (CK), via

its one-dimensional marginals µs,xt := Ps,x ◦π−1
t . However, one may ask whether a selection

is possible without the detour via the corresponding martingale problem, in particular

in order to obtain results under weaker assumptions on the coefficients and via analytic

methods, which do not apply to the setting of the martingale problem.

FPK equations can be considered differential equations for measures. For such equations,

there is another notion of dynamical behavior, namely the usual flow property for solutions

to differential equations: one may additionally ask whether there is a way to select a

solution family {µs,ν}(s,ν)∈[0,T ]×P , which is a flow in the sense that

µs,νt = µr,µ
s,ν
r

t , 0 ≤ s ≤ r ≤ t ≤ T, ν ∈ P. (1.9)

Then, it is natural to ask whether the flow property (1.9) and the Chapman-Kolmogorov

equations are different notions of dynamical regularity for (FPK), or whether one implies

the other. In this regard, it is easy to see that any family fulfilling (CK) induces a solution

flow, see Proposition 2.5.4 for details. Moreover, in the case of uniqueness, clearly the

family of solutions to the Cauchy problem of (FPK) fulfills the flow property (1.9). Hence,

our questions of interest arise only in the case of ill-posed equations. For quite general

recent results on flow selections to a large class of ordinary and partial differential equations,

we refer to [60, 59].

1.3 Main results: linear case

As mentioned above, any solution family satisfying the Chapman-Kolmogorov equations

gives a flow of solutions to (FPK) in the sense of (1.9). This raises hopes that selecting
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a solution flow to (FPK) might be possible without appealing to a Markovian selection

to the martingale problem in the sense of Stroock and Varadhan. Moreover, in analogy

to question (Q2), it is interesting to characterize the well-posedness of (FPK) in terms

of the selected flow. In this part of the thesis, we provide affirmative results to both

questions. In a more general context than described so far, we establish a selection method

for a solution flow in suitable flow-admissible systems {As,ν}(s,ν)∈[0,T ]×SP of subclasses

of subprobability solutions to the Cauchy problem of (FPK). Furthermore, we call an

initial condition (s, ν) admissible, if As,ν 6= ∅. See Definition 2.2.1 for the definition of such

flow-admissible families and Remark 6.3.4 for an explanation why the more general setting

of subprobability solution curves is technically more suitable for our goal. More precisely,

our first main result is the following.

Theorem 1.3.1. Let {As,ν}(s,ν)∈[0,T ]×SP be a flow-admissible family of sets of solutions

to (FPK) such that As,ν is compact in Cs,TSP for each admissible initial condition (s, ν).

Then, there exists a solution flow to (FPK) with respect to {As,ν}(s,ν)∈[0,T ]×SP .

We also investigate the measurability of the selected solution flow in Subsection 2.3.1.

The assumption of compactness is crucial to our approach, and we will present several

examples and applications. In particular, our results apply in the case of locally bounded

and continuous (in x ∈ Rd) coefficients, which are integrable in time, see Proposition 2.4.3,

as well as in the case of the presence of a suitable Lyapunov function, see Corollary 2.4.8.

As it turns out, the selection method used in the proof of the previous theorem allows

to obtain a characterization of the well-posedness of the Cauchy problem of (FPK) in

terms of the uniqueness of the selected flow. This is contained in the following result, which

is our second main theorem.

Theorem 1.3.2. Under the assumptions of Theorem 1.3.1, the following are equivalent.

(i) There exists at most one solution flow with respect to {As,ν}(s,ν)∈[0,T ]×SP .

(ii) For each (s, ν) ∈ [0, T ]× SP, solutions in As,ν are unique.

The observation that the selection method for the proof of Theorem 1.3.1 allows to

easily deduce the characterization of Theorem 1.3.2 is similar to the case of the somewhat

analogue results in [215, Ch.12], which we explained in the previous section. Concerning the

question whether any solution flow fulfills the Chapman-Kolmogorov equations, we obtain

a positive answer in Proposition 2.5.5 under rather strong assumptions on the coefficients,

which coincide with the assumptions in [215, Ch.12]. To the best of our knowledge, the

above results and considerations mentioned above have not been considered in the literature

before. We note that to date, to our knowledge, it is open whether the same results are

true under significantly weaker assumptions on the coefficients. We plan to investigate this

question in the future.

1.3.1 Idea of proof

The reader familiar with the selection proof for the martingale problem in [215, Ch.12]

will immediately note the (in spirit) parallels to our proof. We aim to select a unique

solution curve µs,ν = (µs,νt )t∈[s,T ] among the elements in As,ν , and we do so by characterizing
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each µs,ν as the unique element, which iteratively maximizes a prescribed sequence of

linear, continuous functionals on Cs,TSP ⊇ As,ν . Roughly, these functionals {Gk}k∈N (the

notation in the proof in Section 2.3 is more involved) are chosen as

Gk : µ 7→
ˆ
Rd
hkµqk , µ = (µt)t∈[s,T ] ∈ Cs,TSP,

where hk ∈ Cc(Rd), and {qk}k∈N ⊆ Q ∩ [s, T ] is chosen to be dense in [s, T ]. Compactness

of As,ν ⊆ Cs,TSP implies that the supremum of G1 on As,ν is attained on some nonempty,

compact set M1 ⊆ As,ν . The same is true for G2, with As,ν replaced by M1. Iterating this

procedure, we obtain the nonempty set
⋂
k∈NMk ⊆ As,ν . If the family {hk}k∈N is chosen

such that it separates measures on Rd, it is easy to note that this intersection is a singleton,

whose element we denote by µs,ν . From here, the flow-admissibility of the sets As,ν yields

the flow property (1.9).

Concerning the proof of Theorem 1.3.2, the main observation is that one may freely

choose the separating functions hk and the order of the functionals Gk. This way, assuming

the existence of two solutions µ1, µ2 to (FPK) for a common initial condition such that

µ1 is part of the solution flow (which is assumed to be unique), we choose an ordering of

the functionals Gk, k ∈ N, such that the supremum of G1 is attained in µ2, but not in

µ1. Consequently, the flow with respect to this ordering, constructed as in the proof of

Theorem 1.3.1, cannot comprise µ1 and, hence, does not coincide with the initially given

(unique) flow. Thus, we arrive at a contradiction.

1.4 Nonlinear and infinite-dimensional equations

1.4.1 Nonlinear FPK equations

Inspecting the proofs of Theorems 1.3.1 and 1.3.2, it is clear that neither of them

depends on the linearity of the equation (FPK). Indeed, it is readily seen that once

compactness of the sets As,ν holds, the proofs remain valid, if one replaces the linear

equation with nonlinear ones of type (NL-FPK). Thereby, in Chapter 3, we obtain similar

results on the existence of solutions flows to such nonlinear equations, and we also provide

a characterization of the well-posedness of (NL-FPK) similar to the linear case. However,

the nonlinearity renders compactness of subclasses of solutions As,ν a delicate issue, for

which we have to assume additional regularity assumptions on the nonlinearity argument

of the coefficients. Compare the assumptions B1-B3 with the assumptions A1-A3 from the

linear case.

1.4.2 FPK equations for measures on R∞

Similarly, also in the case of infinite-dimensional equations (FPK∞), the proofs apply

without changes, and yield the main results Theorems 4.2.1 and 4.2.2, stated in Chapter

4. Again, there are no a priori assumptions on the coefficients, but the proof is entirely

based on the compactness of the solution classes As,ν one considers. However, verifying

compactness of solutions, which are curves of measures on R∞, turns out to be difficult.

After the formulation of the main results in Chapter 4, we present a few examples. Since

the infinite-dimensional case is not in the center of our attention, most of these examples
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are preliminary in the sense that additional assumptions need to be verified for the flow-

admissible family {As,ν}(s,ν)∈[0,T ]×P(R∞), as it is the case in Propositions 4.3.2 and 4.3.4.

A full example is provided in Corollary 4.3.7.

Organization of Part I. The remaining contents of Part I of this thesis are organized

as follows. In Chapter 2, we treat the linear finite-dimensional case, to which we devoted

the majority of this introduction. The first section contains the notion of solution to the

Cauchy problem of (FPK). In Section 2.2, we introduce the exact notion of flow-admissible

solution systems and solution flows with respect to such systems, and present several

examples. In Section 2.3, we prove both main results of this chapter and also discuss

measurability of the selected flow. Afterwards, in Section 2.4, we present several examples

and applications to our results. Finally, in the last section of the chapter, we investigate

the relation to Markovian selections, i.e. families of solutions to (FPK), which fulfill the

Chapman-Kolmogorov equations.

In Chapter 3, we treat the case of nonlinear (still finite-dimensional) equations. After

introducing the notion of solution in this case in the first section, we state the main results

(Theorems 3.2.2 and 3.2.3), and briefly discuss how their proofs follow as in the linear case

in Section 3.2. Section 3.3 contains examples of situations to which our results apply.

We close this part with a presentation of our results in the case of infinite-dimensional

(linear) FPK equations in Chapter 4. After presenting the framework of solutions to such

equations in Section 4.1, we formulate the main results in Section 4.2. The chapter finishes

with a few examples in Section 4.3. Finally, Appendix A contains auxiliary results on FPK

equations.

Chapter 2

Solution flows for linear equations

2.1 Linear FPK equations

Let T > 0, consider a = (aij)1≤i,j≤d and b = (bi)1≤i≤d with B([0, T ])⊗B(Rd)-measurable

coefficients

aij , bi : [0, T ]× Rd → R,

and let L denote the second-order differential operator as in (1.1). Since it is common in

the literature and natural from, e.g., a stochastic analysis point of view, where one often

has a = 1/2σσT for some diffusion coefficient σ ∈ Rd×d1 , we also assume that a takes

values in S+
d , although large parts of the subsequent presentation also work without this
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assumption. We study the Cauchy problem of the linear FPK equation (FPK) with initial

condition (s, ν) ∈ [0, T ]× SP, i.e. {
∂tµt = L∗tµt,
µs = ν,

(FPK)

in the sense of the following definition.

Definition 2.1.1. (i) A vaguely continuous curve t 7→ µt ∈ SP on [s, T ] is a solution

to (FPK), if ˆ T

s

ˆ
K
|aij(t, x)|+ |bi(t, x)|dµt(x)dt <∞ (2.1)

holds for all 1 ≤ i, j ≤ d and any compact set K ⊆ Rd, and for any ϕ ∈ C∞c (Rd), it

holds

ˆ
Rd
ϕ(x)dµt −

ˆ
Rd
ϕ(x)dν =

ˆ t

s

ˆ
Rd
Luϕ(x)dµu(x)du, t ∈ [s, T ]. (2.2)

(ii) A solution t 7→ µt to (FPK) is a probability solution, if µt ∈ P for each t ∈ [s, T ].

Of course, any probability solution is weakly continuous as a vaguely continuous curve

of measures with constant mass. In the case of an initial condition (T, ν), the notion of

solution reduces to the single measure ν.

Remark 2.1.2. In general, one can consider solutions to FPK equations as discontinuous

Borel curves of (signed) bounded measures. In the absence of (vague) continuity, one

requires (2.2) to hold for each ϕ ∈ C∞c (Rd) for t ∈ Jϕ ⊆ (s, T ) such that Jcϕ is dt-negligible.

Equivalently, t 7→ µt fulfills

ˆ T

s

ˆ
Rd
∂tφ(t, x) + Ltφ(t, x)dµt(x)dt = 0 (2.3)

for each φ ∈ C∞c ((s, T )× Rd), and for each ϕ ∈ C∞c (Rd), there exists a set Iϕ ⊆ (s, T ) of

full dt-measure such that

ˆ
Rd
ϕ(x)dν(x) = lim

t→s,t∈Iϕ

ˆ
Rd
ϕ(x)dµt(x), (2.4)

see [38, Prop.6.1.2].

However, we will exclusively study vaguely continuous subprobability solutions as in the

previous definition.

We state the next lemma to convince the reader that confining to vaguely continuous

solution curves is not restrictive.

Lemma 2.1.3. Let (µt)t∈(s,T ) be a Borel curve of nonnegative bounded measures with

µt ∈ SP for dt-a.e. t ∈ (s, T ), such that for each compact set K ⊆ Rd and 1 ≤ i, j ≤ d, we

have ˆ T

s

ˆ
K
|aij(t, x)|+ |bi(t, x)|dµt(x)dt <∞. (2.5)
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If (µt)t∈(s,T ) fulfills (2.3), then there exists a unique vaguely continuous version (µ̃t)t∈[s,T ],

which fulfills (2.2). Furthermore, if (µt)t∈(s,T ) satisfies (2.4), then µ̃s = ν, i.e. (µ̃t)t∈[s,T ]

solves the Cauchy problem (FPK).

Proof. Choosing φ(t, x) = ζ(t)ϕ(x) with ζ ∈ C∞c ((s, T )), ϕ ∈ C∞c (Rd), (2.3) gives

ˆ T

s
ζ ′(t)

(ˆ
Rd
ϕ(x)dµt(x)

)
dt = −

ˆ T

s
ζ(t)

(ˆ
Rd
Ltϕ(x)dµt(x)

)
dt. (2.6)

Therefore, and since t 7→
´
Rd Ltϕdµt ∈ L

1((s, T )) by assumption, the map t 7→
´
Rd ϕdµt

belongs to the usual Sobolev space W 1,1((s, T )) with weak derivative t 7→
´
Rd Ltϕdµt dt-a.s.

Hence, choosing a countable set F ⊆ C∞c (Rd), which is dense in Cc(Rd), there exists a

real-valued map (ϕ, t) 7→ F (ϕ, t) on F × [s, T ] such that for each ϕ ∈ F , t 7→ F (ϕ, t) is an

absolutely continuous version of t 7→
´
ϕdµt. Let T denote the set of all t ∈ [s, T ] such

that µt ∈ SP and F (ϕ, t) =
´
ϕdµt for all ϕ ∈ F . By assumption, T c is dt-negligible. If

t ∈ T , then

|F (ϕ, t)− F (ϕ′, t)| ≤
ˆ
Rd
|ϕ− ϕ′|dµt ≤ ||ϕ− ϕ′||∞, (2.7)

whereby ϕ 7→ F (ϕ, t) is uniformly continuous on F and hence uniquely extends to a

continuous linear map on all of Cc(Rd) (again denoted F (·, t)) via

F (ϕ, t) := lim
n→∞

F (ϕn, t) = lim
n→∞

ˆ
ϕndµt =

ˆ
ϕdµt.

Here and for the rest of the proof, (ϕn)n≥1 ⊆ F denotes any sequence converging to ϕ in

Cc(Rd). Thus, F (·, t) = µt for each t ∈ T as elements in the dual space of Cc(Rd) (with

the identification µt(f) =
´
fdµt). For t ∈ T c, we have for ϕ ∈ F

F (ϕ, t) = lim
n→∞

F (ϕ, tn) = lim
n→∞

ˆ
Rd
ϕ(x)dµtn(x). (2.8)

Here and below, (tn)n≥1 ⊆ (s, T ) ∩ T is any sequence converging to t. In particular, F (·, t)
is linear and uniformly continuous on F . For ϕ ∈ Cc(Rd)\F , we set F (ϕ, t) := lim

l→∞
F (ϕl, t)

(with (ϕl)l≥1 as above), which is well-defined due to the uniform continuity of ϕ 7→ F (ϕ, t)

on F and is hence a linear, positive functional on Cc(Rd) with ||F (·, t)||L(Cc(Rd),R) ≤ 1

(the inequality holds, since µt is a subprobability measure for each t ∈ T ). Therefore, the

Riesz-Markov-Kakutani representation theorem implies the existence of a unique element

µ′t ∈ SP such that F (·, t) = µ′t, see Theorem D.0.3. For t ∈ [s, T ], define

µ̃t :=

{
µt, t ∈ T
µ′t, t ∈ T c.

(2.9)

By definition, [s, T ] 3 t 7→
´
ϕdµ̃t is continuous for each ϕ ∈ F . Since for each ϕ ∈

Cc(Rd)\F , we have

ˆ
ϕdµ̃t = lim

l→∞

ˆ
ϕldµ̃t = lim

l→∞
lim
n→∞

ˆ
ϕldµ̃tn = lim

n→∞
lim
l→∞

ˆ
ϕldµ̃tn = lim

n→∞

ˆ
ϕdµ̃tn ,

(2.10)
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it follows that t 7→ µ̃t is vaguely continuous and, by construction, coincides with (µt)t∈(s,T )

dt-a.s. Since for vaguely continuous curves, (2.3) is equivalent to (2.2), (µ̃t)t∈[s,T ] fulfills

(2.2). Since the final assertion concerning the initial condition is obvious, the proof is

complete.

Remark 2.1.4. (i) The proof of Lemma 2.1.3 still works on each (r1, r2) instead of

(s, T ) with s < r1 < r2 < T , if one replaces (2.5) by the weaker assumption

ˆ r2

r1

ˆ
K
|aij(t, x)|+ |bi(t, x)|dµt(x)dt <∞, ∀s < r1 < r2 < T, K ⊆ Rd compact.

Considering a sequence of intervals (rn1 , r
n
2 ) with rn1 ↘ s and rn2 ↗ T as n→∞, one

obtains unique vaguely continuous versions (µ̃nt )t∈[rn1 ,r
n
2 ] of (µt)t∈(rn1 ,r

n
2 ), which are

consistent in the sense that for each n ≥ 1 we have µ̃n+1
t = µ̃nt whenever both curves

are defined in t ∈ (s, T ). Hence, there exists a unique vaguely continuous version

(µ̃t)t∈(s,T ) of (µt)t∈(s,T ). If µt −→ ν vaguely as t↘ s, then also µ̃t −→ ν vaguely and

we set µ̃s := ν and write (µ̃t)t∈[s,T ). However, in this situation, this version might

not extend to t = T and (2.2) does not necessarily hold for t = T , since in this case,

the right-hand side of (2.2) need not be integrable.

(ii) If µt ∈ P for each t, the unique vaguely continuous version (µ̃t)t∈[s,T ] need not consist

of probability measures for each t (but clearly for dt-a.e. t). To have µt ∈ P for each

t ∈ [s, T ], one needs, for instance, either a global integrability assumption or tightness

of (µt)t∈(s,T ).

For the remainder of this part of the thesis, Remarks 2.1.2 and 2.1.4 and Lemma 2.1.3

are of no further importance, since we exclusively consider vaguely continuous solutions on

[s, T ] as in Definition 2.1.1. The purpose of these statements was to present a glimpse to

possible more general situations.

2.2 Solution flows

Our main objective is to construct solution flows to the Cauchy problem (FPK). In this

section, we introduce the notion of such flows and discuss several examples. Throughout,

we use the following notation, where by solution, we always mean a vaguely continuous

curve t 7→ µt ∈ SP as in Definition 2.1.1.

Ms,ν := {µ = (µt)t∈[s,T ] : µ solution to (FPK) with initial condition (s, ν)},
M1

s,ν := {µ = (µt)t∈[s,T ] : µ probability solution to (FPK) with initial condition (s, ν)},

Ms :=
⋃
ν∈SP

Ms,ν , M1
s :=

⋃
ν∈P
M1

s,ν .

Our principal objective is to select a family {µs,ν}(s,ν)∈[0,T ]×SP such that µs,ν ∈ Ms,ν ,

which fulfills (1.9). However, since the iterative selection method we apply to find such

a selection only works on compact sets of solutions (see the proof of Theorem 1.3.1), we

possibly need to restrict to proper subsets As,ν ⊆Ms,ν . For instance, this is the case when

selecting probability solutions µs,ν ∈M1
s,ν in regimes with unbounded coefficients a and b.
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In such cases, it is necessary to impose natural compatibility-conditions on the sets As,ν .
To this end, we introduce the following notion of flow-admissibility.

Definition 2.2.1. (i) A family {As,ν}(s,ν)∈[0,T ]×SP with As,ν ⊆Ms,ν is flow-admissible,

if it fulfills the following properties for any 0 ≤ s ≤ r ≤ T and ν ∈ SP.

(a) If (µt)t∈[s,T ] ∈ As,ν , then (µt)t∈[r,T ] ∈ Ar,µr .

(b) If (µt)t∈[s,T ] ∈ As,ν and (ηt)t∈[r,T ] ∈ Ar,µr , then µ ◦r η ∈ As,ν , where we define

the curve µ ◦r η by

(µ ◦r η)t :=

{
µt, t ∈ [s, r]

ηt, t ∈ (r, T ].
(2.11)

(ii) For s ∈ [0, T ], the set of ν ∈ SP such that As,ν 6= ∅ is denoted by As. Initial

conditions (s, ν) with ν ∈ As are called admissible.

Note that a flow-admissible family consists of a set As,ν ⊆Ms,ν for each initial condition

(s, ν), but in general As may be a strict subset of SP , i.e. there may exist initial conditions

(s, ν) with As,ν = ∅. If ν ∈ A0, i.e. for ν ∈ SP there exists a solution η ∈ A0,ν , then

ηs ∈ As for each s ∈ [0, T ] by (a) of the above definition, and thus each As is nonempty.

We consider As ⊆ SP as a topological space with the induced subspace topology from SP ,

i.e. the corresponding Borel σ-algebra B(As) = B(SP)|As is the trace σ-algebra of As on

SP.

Definition 2.2.2. (i) Let {As,ν}(s,ν)∈[0,T ]×SP be flow-admissible. A solution flow to

(FPK) (with respect to {As,ν}(s,ν)∈[0,T ]×SP) is a family of solutions {µs,ν} to (FPK)

such that µs,ν ∈ As,ν , which fulfill (1.9) for all 0 ≤ s ≤ r ≤ T and ν ∈ As.

(ii) A flow is called measurable, if for each 0 ≤ s ≤ t ≤ T , the transition map of the flow

U st : As → SP, U st : ν 7→ µs,νt ,

is B(As)/B(SP)-measurable.

Remark 2.2.3. (i) By virtue of the transition maps U st , an alternative formulation of

the flow-property (1.9) is

U rt ◦ U sr (ν) = U st (ν), 0 ≤ s ≤ r ≤ t ≤ T, ν ∈ As. (2.12)

(ii) If (µt)t∈[s,T ] solves (FPK) with initial condition (s, ν), then for any s ≤ r ≤ T ,

(µt)t∈[r,T ] solves (FPK) with initial condition (r, µr). Moreover, if (µ′)t∈[r,T ] is another

solution with initial condition (r, µr), then µ ◦r µ′ is a solution on [s, T ] with initial

condition (s, ν). Therefore, the family (Ms,ν)(s,ν)∈[0,T ]×SP is flow-admissible.

We proceed with the presentation of several examples to the terms introduced above.

Example 2.2.4. (i) Entire subprobability-flow. As mentioned in Remark 2.2.3 (ii), the

family {Ms,ν}(s,ν)∈[0,T ]×SP is flow-admissible. If {As,ν}(s,ν)∈[0,T ]×SP is such that all

initial conditions are admissible, i.e. As = SP for each s ∈ [0, T ], then a corresponding
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solution flow consists of a selected solution curve µs,ν for each initial condition (s, ν).

We call such a subprobability flow entire.

In this case, the transition maps U st are transformations U st : SP → SP, which

describe the transport of SP along the flow from time s to time t.

(ii) Entire probability-flow. Similarly to the previous case, the family given by

As,ν :=

{
M1

s,ν , if ν ∈ P
∅ , else

(2.13)

is flow-admissible. If As = P for each s ∈ [0, T ], a flow with respect to this family

consists of probability solutions starting from each (s, ν) ∈ [0, T ]×P. We call such

a flow an entire probability flow. If the flow is measurable, each U st is B(P)/B(P)-

measurable, since the Borel σ-algebras of P with respect to the vague and weak

topology, respectively, coincide, and the former is equal to B(SP)|P .

(iii) Flow subject to a Lyapunov function. Let V : Rd 7→ R+ be lower semicontinuous,

α : [0, T ]→ R a nonnegative map and set

As :=

{
(µt)t∈[s,T ] : µt ∈ P,

ˆ
V dµt ≤ α(t) ∀t ∈ [s, T ]

}
.

Then, the sets As,ν := As ∩ Ms,ν form a flow-admissible family and the set of

admissible initial conditions is a subset of {(s, ν) : ν ∈ P,
´
V dν ≤ α(s)}.

2.3 Proofs of main results

In this section, we prove the main results of this chapter, Theorems 1.3.1 and 1.3.2.

Before we do so, we introduce the following notation and topological prerequisites. Through-

out, we consider Cs,TSP as a normed space with the usual supremum-norm, i.e. the

induced topology is the topology of uniform convergence with respect to the vague topology

on SP. Recall that for t ∈ [s, T ], we denote by πt the natural continuous projection

πt : (µt)t∈[s,T ] 7→ µt on Cs,TSP.

Remark 2.3.1. The topology of uniform convergence on Cs,TSP coincides with the

compact-open topology, i.e. the topology with the subbase consisting of the sets V (K,U) :=

{f ∈ Cs,TSP : f(K) ⊆ U}, for any compact K ⊆ [s, T ] and open U ⊆ SP. In particu-

lar, this topology is independent of the metric used to metrize the vague topology on SP.

Moreover, Cs,TSP is separable and the map

(µt)t∈[s,T ] 7→
ˆ
Rd
h(x)dµt(x) (2.14)

is continuous on Cs,TSP for any t ∈ [s, T ] and h ∈ Cc(Rd).

The idea for the proof of Theorem 1.3.1 is to select a particular element from each

As,ν by iteratively maximizing a sequence of suitable functionals on Cs,TSP of type (2.14).

Next, we introduce the necessary terms concerning this iteration and subsequently present

the proof of the theorem. Below, we set QT
s := Q ∩ [s, T ] for 0 ≤ s ≤ T .
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Definition 2.3.2. (i) We call a bijection ξ : N×QT
0 → N0 an enumeration. For a given

enumeration and k ∈ N0, we write (nk, qk) := ξ−1(k).

(ii) For s ∈ [0, T ], denote by (ms
k)k∈N0 the enumerating sequence of N×QT

s with respect

to a given enumeration ξ, i.e. there exist exactly k elements (n, q) in N×QT
s with

ξ(n, q) < ms
k. Put differently, ξ−1(ms

k) is the k-th element in N×QT
s according to ξ.

Note that for 0 ≤ s ≤ r ≤ T , the sequence (mr
l )l∈N0 is a subsequence of (ms

l )l∈N0 .

Proof of Theorem 1.3.1. Let H = {hn, n ∈ N} ⊆ Cc(Rd) be measure separating and let

ξ be an enumeration, for which we use the notation introduced in Definition 2.3.2. Let

(s, ν) ∈ [0, T ]× SP be an arbitrary, fixed admissible initial condition and consider

Gs,ν0 : Cs,TSP → R, µ = (µt)t∈[s,T ] 7→
ˆ
Rd
hnms0

dµqms0
,

us,ν0 := sup
µ∈As,ν

Gs,ν0 (µ),

M s,ν
0 := (Gs,ν0 )−1(us,ν0 ) ∩ As,ν ,

and iteratively, for k ∈ N0,

Gs,νk+1 : Cs,TSP → R, (µt)t∈[s,T ] 7→
ˆ
Rd
hnms

k+1
dµqms

k+1
,

us,νk+1 := sup
µ∈Ms,ν

k

Gs,νk+1(µ),

M s,ν
k+1 := Gs,νk+1

−1
(us,νk+1) ∩M s,ν

k .

By Remark 2.3.1, and since each hn belongs to Cc(Rd), Gs,ν0 is continuous. Furthermore,

since (s, ν) is admissible, As,ν is nonempty and compact by assumption, so that M s,ν
0 is

nonempty and compact as well. The same is iteratively true for Gs,νk+1 and M s,ν
k+1 for each

k ∈ N0. Since by construction M s,ν
k is decreasing in k and Cs,TSP is Hausdorff, this implies

M s,ν :=
⋂
k≥0

M s,ν
k 6= ∅.

Now assume µi = (µit)t∈[s,T ] ∈M s,ν for i ∈ {1, 2}. By construction, this implies

ˆ
Rd
hnms

k
dµ1

qms
k

=

ˆ
Rd
hnms

k
dµ2

qms
k

, k ∈ N0. (2.15)

Since {(nmsk , qmsk), k ∈ N0} = N×QT
s , this yields

´
hndµ

1
q =

´
hndµ

2
q for all (n, q) ∈ N×QT

s

and hence µ1
q = µ2

q for all q ∈ QT
s , because {hn}n≥1 is measure separating. Since both µ1

and µ2 are vaguely continuous, µ1 = µ2 follows. Consequently, M s,ν ⊆ As,ν is a singleton,

i.e. Ms,ν = {µs,ν}.

It remains to show that the family of all such µs,ν forms a solution flow. To this end, let

(s, ν) be admissible, and fix 0 ≤ s ≤ r ≤ t ≤ T . Consider the admissible initial condition
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(r, µs,νr ) and let γ = (γt)t∈[r,T ] ∈M r,µs,νr be the corresponding unique solution selected in

the first part of the proof, i.e. in our notation γ = µr,µ
s,ν
r . We need to show

γt = µs,νt , t ∈ [r, T ]. (2.16)

To this end, set ζ := µs,ν ◦r γ ∈ As,ν . Due to the iteratively maximizing selection procedure

of the first part of the proof, we have

ˆ
Rd
hnms0

dµs,νqms0
≥
ˆ
Rd
hnms0

dζqms0
. (2.17)

If qms0 ∈ [s, r), then ζqms0
= µs,νqms0

and we have equality in (2.17). If qms0 ∈ [r, T ], then

qms0 = qmr0 and by the characterizing property of γ in Ar,µs,νr , and since (µs,νt )t∈[r,T ] ∈ Ar,µs,νr ,

we obtain ˆ
Rd
hnms0

dµs,νqms0
≤
ˆ
Rd
hnms0

dγqms0
=

ˆ
Rd
hnms0

dζqms0
,

and hence we have equality in (2.17) in any case. Next, consider ms
1: since (2.17) is an

equality, both (µs,νt )t∈[s,T ] and (ζt)t∈[s,T ] belong to M s,ν
0 . Hence, using the characterization

of µs,ν again, we obtain ˆ
Rd
hnms1

dµs,νqms1
≥
ˆ
Rd
hnms1

dζqms1
, (2.18)

clearly with equality if qms1 ∈ [s, r). If qms1 ∈ [r, T ] and qms0 ∈ [s, r), then ms
1 = mr

0, i.e.

ˆ
Rd
hnms1

dµs,νqms1
≤
ˆ
Rd
hnms1

dγqms1
=

ˆ
Rd
hnms1

dζqms1
(2.19)

by the characterizing property of γ, which gives equality in (2.18). If qms0 , qms1 ∈ [r, T ], then

ms
0 = mr

0, ms
1 = mr

1 and both µs,ν and γ are in M r,µs,νr
0 , which also gives (2.19). Hence,

equality in (2.18) holds in any case. Iterating this procedure yields

ˆ
Rd
hnms

k
dµs,νqms

k

=

ˆ
Rd
hnms

k
dζqms

k
, k ∈ N0,

and hence, since H is measure separating,

µs,νq = ζq, q ∈ QT
s ,

so in particular µs,νq = ζq = γq for all q ∈ QT
r . Since both curves are vaguely continuous,

we obtain (2.16).

Remark 2.3.3. We point out that one may freely choose the measure separating family

H and the corresponding enumeration ξ, as well as the dense, countable subset of [s, T ]

(which is QT
s in the above setting). Clearly, the selected solution flow may depend on these

choices.

Let us now derive the proof of Theorem 1.3.2 as a simple consequence of the selection

procedure of the previous proof.

Proof of Theorem 1.3.2. The implication (ii) =⇒ (i) is obvious and we focus on

(i) =⇒ (ii). Assume there is an admissible initial condition (s′, ν ′) ∈ [0, T ] × SP with
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|As′,ν′ | ≥ 2. As mentioned in Remark (2.3.3), we may choose an enumeration ξ and

a family of measure separating functions H = {hn, n ∈ N} ⊆ Cc(Rd) such that h ∈ H
implies −h ∈ H. Consider the flow {µs,ν} with (s, ν) running through all admissible initial

conditions, constructed as in the proof of Theorem 1.3.1 subject to these choices. By

assumption, there exists γ ∈ As′,ν′ with µs
′,ν′ 6= γ, and since both solution curves are

vaguely continuous, there is q ∈ QT
s′ such that µs

′,ν′
q 6= γq. Thus, considering −h instead of

h if necessary, we may assume that there is h ∈ H such that

ˆ
Rd
hdγq >

ˆ
Rd
hdµs

′,ν′
q . (2.20)

Now consider a new enumeration ξ′ such that according to ξ′ we have (hn0 , qn0) = (h, q)

and denote the flow subject to H and ξ′ by {ηs,ν} (again, with (s, ν) running through

all admissible initial conditions, which remain the same as before). Comparing with the

beginning of the proof of Theorem 1.3.1, we have by construction

ˆ
Rd
hdηs

′,ν′
q = sup

µ∈As′,ν′

( ˆ
Rd
hdµq

)
and γ ∈ As′,ν′ . Therefore, taking into account (2.20), we conclude

ˆ
Rd
hdηs

′,ν′
q ≥

ˆ
Rd
hdγq >

ˆ
Rd
hdµs

′,ν′
q .

Hence, ηs
′,ν′ 6= µs

′,ν′ , which contradicts (i) and finishes the proof.

2.3.1 Measurability of the selected solution flow

Furthermore, under the additional Assumption A1 stated below, we have the following

information concerning the measurability of the selected solution flow. For the notation of

this subsection, we refer to Appendix E.

Assumption A1.

(A1.i)
´ T

0 supx∈K
(
|aij(t, x)|+ |bi(t, x)|

)
dt <∞ ∀K ⊆ Rd compact and 1 ≤ i, j ≤ d.

(A1.ii) x 7→ aij(t, x) and x 7→ bi(t, x) are continuous for dt-a.e. t ∈ (0, T ) and each 1 ≤ i, j ≤
d.

Note that in the case of time-homogeneous coefficients a(t, x) = ā(x), b(t, x) = b̄(x), (A1.ii)

implies (A1.i). Of course, (A1.i) is fulfilled, if a and b are bounded on (0, T )×B for each ball

B ⊆ Rd. Moreover, we assume the following stability assumption for {As,ν}(s,ν)∈[0,T ]×SP :

If νn −→ ν in As ⊆ SP and µνn ∈ As,νn converges to µ ∈Ms,ν in Cs,TSP, then µ ∈ As,ν .

(2.21)

In this situation, we obtain the following auxiliary result.

Lemma 2.3.4. If the coefficients a and b satisfy Assumption A1 and (2.21) holds, then,

the map As 3 ν 7→ As,ν ∈ comp(Cs,TSP) is Borel measurable.
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Proof. We want to apply Lemma E.0.2 to deduce the assertion. Hence, in view of the

assumption (2.21), it remains to prove the following: whenever (νn)n∈N converges to ν

vaguely in As and µn ∈ As,νn , then there exists a subsequence (µnk)k∈N converging in

Cs,TSP with a limit point µ ∈Ms,ν . To this end, it suffices to prove precompactness of⋃
ν∈As As,ν in Cs,TSP and closedness ofMs ⊆ Cs,TSP . Indeed, it is clear that then µ has

initial condition (s, ν), i.e. µ belongs to Ms,ν . Concerning the latter, let (µn)n≥1 ⊆Ms

be a converging sequence with limit µ ∈ Cs,TSP . Then, by Assumption A1, µ fulfills (2.1),

and we have for each ϕ ∈ C∞c (Rd) and t ∈ [s, T ]

ˆ
Rd
ϕ(x)dµnt (x) −→

n→∞

ˆ
Rd
ϕ(x)dµt(x)

as well as, using Lebesgue’s dominated convergence theorem,

ˆ t

s

ˆ
Rd
Luϕ(x)dµnu(x)du −→

n→∞

ˆ t

s

ˆ
Rd
Luϕ(x)dµu(x)du.

Indeed, the latter convergence follows, since Ltϕ ∈ Cc(Rd) for each t ∈ [s, T ] due to

assumption (A1.ii). Consequently, µ = (µt)t∈[s,T ] ∈Ms,ν .

Concerning precompactness of
⋃
ν∈As As,ν ⊆ Cs,TSP, note that for each t ∈ [s, T ] the

set πt(
⋃
ν As,ν) ⊆ SP is precompact, since the latter is a compact space. Moreover, in

Section 2.4, even equicontinuity of Ms ⊆ Cs,TSP is shown under the same assumptions

on a and b. By Proposition 2.4.1, this yields the desired precompactness and the assertion

follows.

Proposition 2.3.5. Consider the situation of Theorem 1.3.1 and let {µs,ν} be the solution

flow with respect to {As,ν}(s,ν)∈[0,T ]×SP constructed in the proof of that theorem. If the

coefficients a and b satisfy Assumption A1 and (2.21) holds, then this flow is measurable

in the sense of Definition 2.2.2 (ii).

Proof. In fact, we prove the following stronger measurability property for each s ∈ [0, T ],

where by µs,ν we denote the selected solution from As,ν according to the proof of Theorem

1.3.1:

ν 7→ µs,ν is a Borel map from As to Cs,TSP. (2.22)

From here, the measurability of each U st follows from the measurability of the projections

πt : Cs,TSP → SP. In order to verify (2.22), it suffices to prove measurability of

As 3 ν 7→ {µs,ν} ∈ comp(Cs,TSP). (2.23)

Indeed, from here (2.22) follows, since Cs,TSP is a separable metric space, so that we can

apply Lemma E.0.3. Concerning (2.23), for N ≥ 0 consider (using the notation of the proof

of Theorem 1.3.1) the maps

XN : As → comp(Cs,TSP), XN : ν 7→
N⋂
k=0

M s,ν
k = M s,ν

N .

Since each function Gs,νk of the proof of Theorem 1.3.1 is continuous on Cs,TSP , finitely many

iterative applications of Lemma E.0.1 together with Lemma 2.3.4 yield the measurability
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of XN . Finally, the map (2.23) is the pointwise limit of XN as N → ∞ with respect to

the Hausdorff distance on comp(Cs,TSP), see Appendix E, which implies its measurability.

This concludes the proof.

2.4 Applications and examples

Here, we apply Theorems 1.3.1 and 1.3.2 to several examples. We start by discussing

some topological prerequisites. In particular, we need the theorem by Arzela-Ascoli in the

following formulation, see [178, Thm.47.1,p.290]. We recall that we consider Cs,TSP with

the compact-open topology, c.f. Remark 2.3.1.

Proposition 2.4.1 (Arzela-Ascoli). Let (X, dX) be a compact metric space, let Y be

metrizable and dY a compatible metric on Y . A subset F ⊆ C(X,Y ) is precompact with

respect to the compact-open topology if and only if

(i) F is pointwise precompact, i.e. πx(F) ⊆ Y is precompact for any x ∈ X.

(ii) F is equicontinuous with respect to dY , i.e. for any x0 ∈ X and ε > 0, there exists

δ = δ(ε, x0) > 0 such that

dX(x0, x) ≤ δ =⇒ sup
f∈F

dY (f(x0), f(x)) ≤ ε.

Remark 2.4.2. Below, we apply this result to subsets of Cs,TSP. The following observation

is crucial to our approach: in general, the notion of equicontinuity depends on the metric

of the state space. On the other hand, the compact-open topology on C(X,Y ) is defined in

terms of the topologies on X and Y only and does not depend on the specific compatible

metric on Y . Therefore, (pre)compactness of F ⊆ C(X,Y ) is invariant under a change of

compatible metrics on Y . Of course, this is also true for (i) of the above proposition. Hence,

for X and Y as above, it turns out that equicontinuity of F ⊆ C(X,Y ) is independent of the

compatible metric on Y , provided F fulfills (i). Therefore, in order to show equicontinuity

of F ⊆ Cs,TSP, we may consider any metric on SP, which is compatible with the vague

topology.

Due to the previous remark, we decide to consider the following type of metric on SP.

For ν1, ν2 ∈ SP, set

d(ν1, ν2) :=
∑
l≥1

2−lC−1
l

[(ˆ
Rd
fldν1 −

ˆ
Rd
fldν2

)
∧ 1

]
, (2.24)

where Cl ≥ 1 and {fl, l ∈ N} ⊆ C2
c (Rd) is dense in Cc(Rd) with respect to uniform

convergence. Due to this choice of {fl, l ∈ N}, it is clear that such metrics are compatible

with the vague topology on SP . From here on, we fix such a family {fl, l ∈ N} and assume

without loss of generality that each fl has nontrivial support. Particular choices for Cl will

be made below as needed.

Entire subprobability flow. Here, we consider the case that for each initial condition

(s, ν) ∈ [0, T ]× SP , there exists at least one vaguely continuous subprobability solution to
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the Cauchy problem (FPK) and we construct a solution flow {µs,ν}, which comprises a

solution µs,ν ∈Ms,ν for every initial condition (s, ν) ∈ [0, T ]× SP , i.e we set As,ν =Ms,ν

and As = SP. We call such a solution flow entire.

We point out that we do not assume nondegeneracy of a = (aij)1≤i,j≤d, which is a

source for possible nonuniqueness of solutions. Consider Assumption A1 introduced in the

previous section.

Proposition 2.4.3. Suppose Assumption A1 is fulfilled for the Borel coefficients aij , bi,

1 ≤ i, j ≤ d, and suppose Ms,ν is nonempty for each (s, ν) ∈ [0, T ] × SP. Then, there

exists an entire solution flow {µs,ν}(s,ν)∈[0,T ]×SP . Furthermore, this flow is measurable.

Proof. By assumption, each initial condition (s, ν) ∈ [0, T ]× SP is admissible. In light of

Theorem 1.3.1, it suffices to prove compactness of Ms,ν ⊆ Cs,TSP , for which we evoke the

result by Arzela-Ascoli as stated in Proposition 2.4.1. Since SP with the vague topology

is compact, precompactness of πt(Ms,ν) ⊆ SP for each t ∈ [s, T ] follows immediately.

Concerning equicontinuity, consider the metric d as in (2.24), with constants Cl := 1 +Dl,

where

Dl := max
1≤i,j≤d

{||∂ifl||∞, ||∂ijfl||∞} > 0.

By (2.2), for each solution µ = (µt)t∈[s,T ] ∈Ms,ν , we have for t1, t2 ∈ [s, T ]

d(µt1 , µt2) ≤
∑
l≥1

2−lC−1
l

ˆ t1∨t2

t1∧t2

ˆ
Rd
|Ltfl(x)|dµt(x)dt

≤
∑
l≥1

2−lC−1
l Dl

ˆ t1∨t2

t1∧t2
max

1≤i,j≤d
sup
x∈Kl

(
|aij(t, x)|+ |bi(t, x)|

)
dt

≤
∑
l≥1

2−l
ˆ t1∨t2

t1∧t2
max

1≤i,j≤d
sup
x∈Kl

(
|aij(t, x)|+ |bi(t, x)|

)
dt, (2.25)

with Kl := supp fl. For any fixed t1 ∈ [s, T ] and ε > 0, by (A1.i) there is δ = δ(t1, ε) > 0

such that

t2 ∈ [s, T ], |t1 − t2| ≤ δ =⇒
ˆ t1∨t2

t1∧t2
max

1≤i,j≤d
sup
x∈Kl

(
|aij(t, x)|+ |bi(t, x)|

)
dt < ε,

which implies equicontinuity of Ms,ν ⊆ Cs,TSP with respect to d by (2.25). Finally,

concerning closedness of Ms,ν , let µn, n ≥ 1, µn = (µnt )t∈[s,T ] be a converging sequence in

Ms,ν with limit µ = (µt)t∈[s,T ] ∈ Cs,TSP and let ϕ ∈ C∞c (Rd). Clearly,

ˆ
Rd
ϕ(x)dµnt (x) −→

n→∞

ˆ
Rd
ϕ(x)dµt(x), t ∈ [s, T ],

and µs = ν. Furthermore, Ltϕ(x)dµt(x) ∈ L1([0, T ]) by (A1.i) and, due to (A1.ii), we have

Ltϕ ∈ Cc(Rd) dt-a.s. Consequently,

ˆ
Rd
Ltϕ(x)dµnt (x) −→

n→∞

ˆ
Rd
Ltϕ(x)dµt(x) dt-a.s.,
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and Lebesgue’s dominate convergence theorem gives

ˆ t

s

ˆ
Rd
Luϕ(x)dµnu(x)du −→

n→∞

ˆ t

s

ˆ
Rd
Luϕ(x)dµu(x)du.

Therefore, µ ∈Ms,ν . Altogether, we have shown compactness of Ms,ν ⊆ Cs,TSP and may

therefore apply Theorem 1.3.1 to obtain the first claim.

Concerning the measurability of {µs,ν}, it suffices to note that Proposition 2.3.5 applies

to the present situation, because (2.21) is trivially fulfilled for the choice As,ν =Ms,ν .

Remark 2.4.4. Proposition 2.4.3 applies in the situation of [38, Thm.6.7.3]. Indeed,

the assumptions therein imply Assumption A1 with c ≡ 0, and in this case, elements

µ ∈ Mν as in [38, Thm.6.7.3] are curves of subprobability measures dt-a.s. for ν ∈ SP
(note that the existence results of [38, Thm.6.7.3] is stated for ν ∈ P only, but obviously

extends to ν ∈ SP). For each such solution curve µ, Lemma 2.1.3 yields the existence of a

vaguely continuous version µ̃ ∈Ms,ν , which shows that indeed in this situation each initial

condition is admissible. Of course, also our second main result, Theorem 1.3.2, applies in

this situation.

Entire probability-flow. Due to the fruitful connection to stochastic analysis and

Markov processes as outlined in Chapter 1, often one is primarily interested in probability

solutions, see also Section 2.5. In this paragraph, we apply Theorem 1.3.1 to select an

entire probability flow, i.e. a solution flow {µs,ν} consisting of a solution µs,ν ∈ M1
s,ν for

each ν ∈ P. We consider the following refined version of Assumption A1.

Assumption A2.

(A2.i)
´ T

0 supx∈Rd
(
|aij(t, x)|+ |bi(t, x)|

)
dt <∞.

(A2.ii) x 7→ aij(t, x) and x 7→ bi(t, x) are continuous for dt-a.e. t ∈ (0, T ) and each 1 ≤ i, j ≤
d.

In other words, (A2.ii) coincides with (A1.ii), and (A1.i) is a global (in space) version of

(A1.i).

Remark 2.4.5. In this situation, any solution (µt)t∈[s,T ] ∈Ms,ν is a probability solution,

provided ν ∈ P. Indeed, due to the global integrability assumption (A2.i), considering (2.2)

for (µt)t∈[s,T ] and choosing a nonnegative sequence {ϕn}n≥1 ⊆ C2
c (Rd), which increases

pointwise to 1 such that supn≥1 ||ϕn||C2 <∞, we obtain µt(Rd) = ν(Rd) for any t ∈ [s, T ].

In particular, any such t 7→ µt is weakly continuous.

We select the solution flow from the sets

As,ν =

{
Ms,ν , if ν ∈ P
∅ , if ν ∈ SP\P.

(2.26)

More precisely, we have the following result.
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Corollary 2.4.6. Suppose the Borel coefficients aij , bi, 1 ≤ i, j ≤ d, satisfy Assumption

A2 and the set Ms,ν is nonempty for each (s, ν) ∈ [0, T ]× P. Then, there exists an entire

probability flow, consisting of weakly continuous probability solutions {µs,ν}(s,ν)∈[0,T ]×P .

Moreover, this flow is measurable.

Proof. The family (2.26) is flow-admissible and, as explained above, any element in Ms,ν ,

ν ∈ P, is a weakly continuous probability solution. Compactness of As,ν ⊆ Cs,TSP is

proven proven exactly as in the proof of Proposition 2.4.3. Hence, by Theorem 1.3.1, there

exists an entire probability solution flow. Since Assumption A2 implies Assumption A1 and

the choices of As,ν in (2.26) clearly satisfy (2.21), this flow is measurable, which completes

the proof.

We point out that without the global in space integrability assumption (A2.i), we

cannot prove that each solution with initial condition ν ∈ P is a probability solution, which

is, however, crucial to obtain flow-admissibility of the family (2.26). Also, without global

integrability, we cannot replace Ms,ν by M1
s,ν in (2.26), since for these sets we are not

able to prove closedness in Ms,ν (again, due to the lack of global boundedness). Moreover,

considering Cs,TP with the weak topology on P seems to be of no advantage, since in

this case, in general we do not know how to prove pointwise precompactness of families

F ⊆ Cs,TP.

Remark 2.4.7. An alternative proof for the case of bounded coefficients on [0, T ]×Rd, which

satisfy (A2.ii) is given in [187]. The proof is based on the close connection between probability

solutions to (FPK) and the corresponding martingale problem via the superposition principle,

as explained in Chapter 1. However, the approach presented in this part of the thesis seems

to be more general in the sense that it also applies to subprobability flows and nonlinear

equations, as well as to infinite-dimensional version of (FPK) and under weaker assumptions

on the coefficients a and b.

Moreover, note that even global boundedness and spatial continuity of the coefficients

does not imply uniquenss of probability solutions to (FPK) (nonuniqueness may, for example,

be caused by degeneracy of a = (aij)1≤i,j≤d). Hence, under Assumption A1 or A2, the

selection of a solution flow is a nontrivial problem.

Flow with respect to a Lyapunov function. Here, we temporarily consider situations

of unbounded coefficients. We are interested in cases where the lack of global boundedness

is compensated by a suitable control on the growth of the coefficients at infinity in terms

of a so-called Lyapunov function.

We call a nonnegative function ψ ∈ C2(Rd) with compact sublevel sets {ψ ≤ c} ⊆ Rd,
c ≥ 0, a compact function. It is clear that ψ ∈ C2(Rd) is compact if and only if limψ(x) =∞
if |x| → ∞. For such ψ, we denote by Pψ the set of all ν ∈ P such that ψ ∈ L1(ν). Assume

there is such ψ, for which it holds

Ltψ(x) ≤ C + Cψ(x) dxdt-a.s. in [0, T ]× Rd (2.27)

for some C ≥ 0. Such functions are usually called Lyapunov function. Due to the spatial

continuity of a and b, (2.27) then holds pointwise in x ∈ Rd for dt-a.e. t ∈ [0, T ]. Let
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ν ∈ Pψ. By Lemma 3.3.3, any probability solution (µt)t∈[s,T ] (which, by our definition is

weakly continuous) to (FPK) with initial condition (s, ν) fulfills, for each t ∈ [s, T ],

ˆ
Rd
ψdµt ≤

ˆ
Rd
ψdν +C(t− s) +Cexp(Ct)

ˆ t

s
exp(−Cr)

[ˆ
Rd
ψdν +C(t− r)

]
dr. (2.28)

We aim to select a solution flow from the sets

As,ν =

{
M1

s,ν , if ν ∈ Pψ
∅ , else.

(2.29)

Since (2.28) is valid for each element of any As,ν , and since the right-hand side of (2.28) is

finite, these sets form a flow-admissible family.

Corollary 2.4.8. Suppose the Borel coefficients aij , bi, 1 ≤ i, j ≤ d, fulfill Assumption

A1 and there exists a compact function ψ such that (2.27) holds. If the sets M1
s,ν are

nonempty for each initial condition (s, ν) ∈ [0, T ]×P such that ν ∈ Pψ, then there exists a

solution flow of probability solutions with respect to the family As,ν as in (2.29).

In this situation, the flow evolves in the subset Pψ ⊆ P. Any measure with bounded

support belongs to Pψ, i.e. in particular each Dirac measure. It is clear that Pψ 6= P and

that Pψ is not closed in P.

Proof. Since the sets introduced in (2.29) are flow-admissible, due to Theorem 1.3.1, it

is sufficient to prove compactness of As,ν ⊆ Cs,TSP for each admissible initial condition

(s, ν) (that is, for each s ∈ [0, T ] and ν ∈ Pψ). For any such admissible condition (s, ν)

and any t ∈ [s, T ], precompactness of πt(As,ν) ⊆ P holds even with respect to the weak

topology, because (2.28) holds for any (µt)t∈[s,T ] ∈ As,ν and the right-hand side of (2.28) is

independent of (µt)t∈[s,T ] and finite, which yields

sup
µt∈πt(As,ν)

ˆ
Rd
ψ(x)dµt(x) <∞. (2.30)

Thus, πt(As,ν) ⊆ P is tight and hence precompact with respect to the weak topology.

Equicontinuity of As,ν ⊆ Cs,TSP follows as in the proof of Proposition 2.4.3. Concerning

closedness of As,ν ⊆ Cs,TSP, it suffices to observe that the validity of (2.28) for each

solution µ ∈M1
s,ν , with the right-hand side of (2.28) being independent of µ, implies that

the limit of any converging sequence (µn)n∈N in Cs,TSP is a curve of probability measures

and solves (FPK). The latter follows exactly as in the proof of Proposition 2.4.3. This

completes the proof.

Consider the situation of Theorem 3.1 in [36] and assume additionally that bi, 1 ≤ i ≤ d,

satisfies (A1.i) and (A1.ii). Note that in this case, aij , 1 ≤ i, j ≤ d has a version, which

fulfills these assumptions due to (C1) and (C2) of [36]. Indeed, by the Sobolev embedding

theorem, each aij(t, ·) has a (Hölder) continuous version, which is bounded on balls in Rd,
independently of t. Then, for any (s, ν) ∈ [0, T ] × P, [36, Thm.3.1] yields the existence

of a weakly continuous probability solution (µs,νt )t∈[s,T ), so that Corollary 2.4.8 applies.

However, in this situation, solutions possibly do not extend to the endpoint t = T and
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hence the flow is only constructed on [0, T ). Corollary 3.4 of [36] gives another application

of Proposition 2.4.8, if one assumes boundedness of the coefficients on [0, T ]×B instead of

[0, T )×B for any bounded set B ⊆ Rd.

2.5 Comparison to Markovian semigroups

In this section, we study the comparison and connection of solutions flows to Markovian

semigroups in the case of coefficients a and b such that

Assumption A3. For each 1 ≤ i, j ≤ d,

sup
(t,x)∈[0,T ]×Rd

|aij(t, x)|+ |bi(t, x)| <∞ and x 7→ aij(t, x), bi(t, x) is continuous for t ∈ [0, T ]

is fulfilled, which is the strongest set of assumptions we have imposed so far. Therefore,

all results established under the validity of assumptions A1 and A2 hold, e.g. we have

Ms,ν =M1
s,ν for each (s, ν) ∈ [0, T ]× P. In particular, the proof of the following lemma

follows exactly as in Corollary 2.4.6 and Proposition 2.4.3. We also note that Assumption

A3 yields that any solution set M1
s,ν , ν ∈ P , is nonempty, see for example [38, Prop.6.7.3]

and Remark 2.4.4.

Lemma 2.5.1. Let Assumption A3 be fulfilled. Then, for any (s, ν) ∈ [0, T ]× P, M1
s,ν is

compact in Cs,TSP.

Below, we write µ or η for curves (µt)t∈I or (ηt)t∈I , respectively, for a time interval I.

In contrast, single measures are denoted ν and γ. Furthermore, for any measurable family

of probability measures {γx}x∈Rd and ν ∈ P , the Borel probability measure
´
Rd γxdν(x) is

defined via
( ´

Rd γxdν(x)
)
(A) :=

´
Rd γx(A)dν(x) for A ∈ B(Rd).

Definition 2.5.2. A family of solutions {µs,x}(s,δx)∈[0,T ]×P , µs,x ∈ M1
s,x, to (FPK) is

called Markovian semigroup (on [0, T ]), if for any 0 ≤ s ≤ r ≤ t ≤ T , x 7→ µs,xt is

B(Rd)/B(P)-measurable and the Chapman-Kolmogorov equations

µs,xt =

ˆ
Rd
µr,yt dµs,xr (y) (2.31)

are fulfilled for any x ∈ Rd. For a Markovian semigroup, define µs,ν :=
´
Rd µ

s,ydν(y) for

any non-Dirac initial condition ν ∈ P and call the extended family {µs,ν}(s,ν)∈[0,T ]×P the

convex extension of {µs,x}(s,δx)∈[0,T ]×P .

Note that the assumed measurability ensures the well-definedness of the appearing

integrals in the above definition.

Remark 2.5.3. Let a and b fulfill the boundedness part of Assumption A3. In this case, for

any measurable family of solutions x 7→ µs,x ∈M1
s,δx

and any ν ∈ P, the weakly continuous

curve of probability measures t 7→
´
µs,yt dν(y) belongs to M1

s,ν . Indeed, this is readily seen

from the linearity of equation (FPK) and the boundedness of aij and bi. Hence, the convex

extension of any Markovian semigroup as in the above definition is a family of solutions to

(FPK).
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We want to compare the Chapman-Kolmogorov equations (2.31) to the flow property

(1.9). Such a comparison requires any initial condition (s, x) to be admissible for the

flow, because the Chapman-Kolmogorov equations (2.31) require the existence of solutions

µs,x ∈M1
s,x.

It turns out that at least under Assumption A3, both notions are equivalent. The

following simple proposition establishes the first part of the equivalence of Markovian

semigroups and a (entire probability) solution flow.

Proposition 2.5.4. The convex extension of any Markovian semigroup {µs,x}(s,δx)∈[0,T ]×P
is an entire probability flow in the sense of Example 2.2.4.

Proof. For any 0 ≤ s ≤ r ≤ t ≤ T and ν ∈ P, we have

µs,νt =

ˆ
Rd
µs,yt dν(y) =

ˆ
Rd

( ˆ
Rd
µr,zt dµs,yr (z)

)
dν(y) =

ˆ
Rd
µr,zt dµs,νr (z) = µr,µ

s,ν
r

t ,

where we used the definition of the convex extension for the first, third and last equality

and the Chapman-Kolmogorov equations (2.31) for the second one.

Note that the above result does not require any assumptions on the coefficients aij and

bi. The following proposition, which establishes the converse relation to Proposition 2.5.4,

is more involved, both in terms of the required assumptions and the method of proof.

Proposition 2.5.5. Assume the coefficients aij , bi fulfill Assumption A3. Then, any entire

probability flow {µs,ν}(s,ν)∈[0,T ]×P selected as in the proof of Theorem 1.3.1 is the convex

extension of a Markovian semigroup. In particular, the family {µs,x}(s,δx)∈[0,T ]×P fulfills

the Chapman-Kolmogorov equations (2.31).

In combination with Lemma 2.5.1 and our main result, Theorem 1.3.1, we obtain the

following result.

Corollary 2.5.6. Let the coefficients aij , bi satisfy Assumption A3. Then, there exists an

entire probability flow to (FPK), which is the convex extension of a Markovian semigroup.

In particular, there exists a Markovian semigroup of solutions to (FPK).

Proof of Proposition 2.5.5. Consider an entire probability flow {µs,ν}(s,ν)∈[0,T ]×P selected

as in the proof of Theorem 1.3.1. It suffices to prove µs,νt =
´
µs,yt dν(y) for all 0 ≤ s ≤ t ≤ T

and ν ∈ P. Indeed, then the flow is the convex extension of {µs,x}(s,δx)∈[0,T ]×P and (2.31)

holds, since in this case, for all 0 ≤ s ≤ r ≤ t ≤ T and ν ∈ P, we have

µs,xt = µr,µ
s,x
r

t =

ˆ
Rd
µr,yt dµs,xr (y).

By Lemma 2.5.9 below, the weakly continuous curve ηs,ν , ηs,νt :=
´
Rd µ

s,y
t dν(y), is an

element of M1
s,ν (indeed, the measurability of y 7→ µs,yt for any t follows by Lemma 2.5.8).

Using the notation of the proof of Theorem 1.3.1, we have

ˆ
Rd
hnms0

dµs,νqms0
≥
ˆ
Rd
hnms0

dηs,νqms0
, (2.32)

where the notation is with respect to the specific measure separating family {hn, n ∈ N}
and the enumeration used within the selection of µs,ν as in the proof of Theorem 1.3.1.
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Since Lemma 2.5.9 yields µs,ν =
´
Rd µ

ydν(y) for some measurable family {µy}y∈Rd with

µy ∈M1
s,δy

ν-a.s. (we suppress the dependence of µy on s in the notation) and the selection

process of any µs,y in M1
s,δy

implies

ˆ
Rd
hnms0

dµs,yqms0
≥
ˆ
Rd
hnms0

dµyqms0
, ν-a.s., (2.33)

we deduce

ˆ
Rd
hnms0

dηs,νqms0
=

ˆ
Rd

(ˆ
Rd
hnms0

dµs,yqms0

)
dν(y)

≥
ˆ
Rd

(ˆ
Rd
hnms0

dµyqms0

)
dν(y) =

ˆ
Rd
hnms0

dµs,νqms0
. (2.34)

Hence, equality holds in (2.32). In turn, also (2.34) is a chain of equalities, which particularly

gives that (2.33) is an equality. Iterating these arguments, (2.32), (2.34) and (2.33) hold with

equality for any index pair (nmsk , qm
s
k
), k ∈ N0. Using continuity of t 7→ µs,νt and t 7→ ηs,νt ,

we conclude µs,ν = ηs,ν , i.e. µs,νt =
´
µs,yt dν(y) for each t ∈ [s, T ], and the claim follows.

For the above proof, we used the following lemmas. We use the notation of the

proof of Theorem 1.3.1 as follows. For a measure separating family {hn, n ∈ N} ⊂ Cc(Rd)
and an enumeration ξ, the sets M s,x

k = M s,δx
k and maps Gs,xk = Gs,δxk are as defined in the

proof of Theorem 1.3.1 with As,x =M1
s,δx

=Ms,δx (the second equality holds due to the

boundedness part of Assumption A3).

Lemma 2.5.7. The map P 3 ν 7→ Ms,ν is B(P)/B(comp(Cs,TSP))-measurable.

Proof. We want to apply Lemma E.0.2. To this end, we prove: if (νn)n∈N converges to

ν weakly and for any n ∈ N there is µn ∈ Ms,νn , then there is a limit µ ∈ Ms,ν of a

subsequence (µnk)k∈N in Cs,TSP. However, this can be proven as in Lemma 2.3.4. Since

in the present case, we have As,ν =Ms,ν , the additional assumption (2.21) is fulfilled.

Lemma 2.5.8. For each (s, x) ∈ [0, T ] × Rd, let µs,x ∈ M1
s,δx

denote the solution curve

selected by the iterative selection method presented within the proof of Theorem 1.3.1, i.e.

{µs,x} =
⋂
k≥0

M s,x
k .

Then, the mapping x 7→ µs,x is B(Rd)/B(Cs,TP)-measurable. In particular, for each

t ∈ [s, T ], x 7→ µs,xt is B(Rd)/B(P)-measurable.

Proof. It suffices to prove Borel measurability of

x 7→
⋂
k≥0

M s,x
k (2.35)

from Rd to comp(Cs,TSP), since then Lemma E.0.3 implies the measurability of x 7→ µs,x ∈
Cs,TSP and the claim follows, since µs,x ∈ Cs,TP and B(SP) restricted to P coincides

with the Borel σ-algebra of P with respect to the weak topology. Since the mapping (2.35)
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can be rewritten as x 7→ lim
N→∞

XN (x) (the limit is taken in comp(Cs,TSP), see Appendix

E), with

XN : x 7→
⋂

10≤k≤N
M s,x
k = M s,x

N ∈ comp(Cs,TSP),

it suffices to prove measurability of each XN . By definition of M s,x
0 and lemmas 2.5.7

and E.0.1, X0 is measurable (indeed, the map Gs,y0 is continuous on Cs,TSP). Iteratively

applying Lemma E.0.1 to the maps M s,x
k 7→M s,x

k+1 and using the continuity of each Gs,xk ,

the measurability of each XN follows. The final assertion follows immediately by the

measurability of the projection maps πt : Cs,TSP 7→ SP.

Lemma 2.5.9. Let (s, ν) ∈ [0, T ) × P and assume Assumption A3 is fulfilled. Then,

µ ∈ M1
s,ν if and only if there exists a family {µx}x∈Rd such that µx ∈ M1

s,x ν-a.s. and

x 7→ µxt is B(Rd)/B(P)-measurable for each t ∈ [s, T ] such that µt =
´
Rd µ

x
t dν(x).

Proof. Clearly, for any family {µx}x∈Rd as in the assertion, the curve t 7→ µt :=
´
Rd µ

x
t dν(x)

is weakly continuous and a solution to (FPK) with initial condition µs = ν, i.e. µ ∈M1
s,ν .

Conversely, for any solution curve µ ∈ M1
s,ν , there exists a probability measure

P = P (µ) ∈ P(Cs,TRd), which is a solution to the martingale problem associated to the

coefficients a, b with P ◦π−1
t = µt for each t ∈ [s, T ], see [100] as well as the introduction in

Chapter 5 for details. Disintegrating P with respect to P ◦ π−1
s , we obtain a ν−a.s. unique

family {Px}x∈Rd of probability measures on Cs,TRd, such that x 7→ Px is measurable and

P =
´
Rd Pxdν(x). Furthermore, Px is a solution to the associated martingale problem

with initial condition (s, δx) for ν-a.e. x ∈ Rd, see [223, Prop.2.8]. Since the curve of

one-dimensional marginals of any solution to the martingale problem with initial condition

(s, ν) is a weakly continuous probability solution to the corresponding FPK equation

with initial condition (s, ν), we have (Px ◦ π−1
t )t∈[s,T ] ∈ M1

s,δx
for ν−a.e. x ∈ Rd and

µt =
´
Rd Px ◦ π

−1
t dν(x), i.e. the claim follows with µxt := Px ◦ π−1

t .

To us, it is unclear whether under weaker assumptions on the coefficients, any entire

probability flow as in the proof of Theorem 1.3.1 gives rise to a Markovian semigroup.

Chapter 3

Solution flows for nonlinear

equations

In this chapter, we study nonlinear Fokker–Planck–Kolmogorov equations (FPK equa-

tions) of type (NL-FPK). Our goal is to prove results on the existence and uniqueness of
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solution flows, comparable to the linear case of the previous chapter. To this end, we observe

that the proofs of Theorems 1.3.1 and 1.3.2 do not rely on the linearity of the equations of

type (FPK), but carry over to a nonlinear setting as well. It turns out that the nonlinearity

of the coefficients renders compactness of (subclasses of) solutions a more delicate issue,

which in comparison with the linear case requires additional regularity assumptions, see

Section 3.3. We recall that nonlinear FPK equations of type (NL-FPK) naturally arise as

the equations fulfilled by the marginal curves of solutions to McKean–Vlasov stochastic

differential equations, in particular in connection to interacting particle systems. Moreover,

such parabolic equations for measures are widely used in the area of statistical mechanics

and physics, see Chapter 1 for more details and references for these interesting connections

and origins.

3.1 Nonlinear FPK equations

As before, we study equations on the finite time interval [0, T ] for some T > 0. Let

S0 ⊆ SP and suppose that for each µ ∈ S0, the coefficients

aij(·, µ, ·), bi(·, µ, ·) : [0, T ]× Rd → R, 1 ≤ i, j ≤ d,

are B([0, T ])⊗ B(Rd)-measurable such that a(t, µ, x) := (aij(t, µ, x))1≤i,j≤d ∈ S+
d for each

(t, µ, x) ∈ [0, T ] × S0 × Rd. Via the (strict) subset S0 ⊆ SP, we take into account the

possibility that the coefficients may only be defined for a certain subclass of subprobability

measures. More generally, one could allow dependence of S0 on t. Similar to the notation in

the previous chapter, for (t, µ) ∈ [0, T ]× S0, we use the notation Lt,µ for the second-order

differential operator as introduced in (1.3).

Given such coefficients, we study the Cauchy problem for nonlinear second-order

parabolic equations for measures with initial condition (s, ν) ∈ [0, T ]× SP of type{
∂tµt = L∗t,µtµt,
µs = ν,

(NL-FPK)

according to the following definition. In contrast to the previous chapter, here the depen-

dence of the coefficients on the solution renders (NL-FPK) a nonlinear equation.

Definition 3.1.1. A vaguely continuous curve t 7→ µt ∈ SP is a solution to (NL-FPK), if

(t, x) 7→ aij(t, µt, x) and (t, x) 7→ bi(t, µt, x) are B([0, T ])⊗ B(Rd)-measurable and

(i)
´ T
s

´
K |aij(t, µt, x)|+ |bi(t, µt, x)|dµt(x)dt <∞, ∀K ⊆ Rd compact , 1 ≤ i, j ≤ d.

(ii) For all ϕ ∈ C∞c (Rd), we have

ˆ
Rd
ϕ(x)dµt −

ˆ
Rd
ϕ(x)dν =

ˆ t

s

ˆ
Rd
Lu,µuϕ(x)dµu(x)du, t ∈ [s, T ]. (3.1)

In particular, the definition requires µt ∈ S0 for each t ∈ [0, T ]. Similarly to Definition

2.1.1, a solution t 7→ µt is a probability solution, provided µt is a probability measure for

each t ∈ [s, T ]. In this case, the solution is weakly continuous.
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Remark 3.1.2. More generally, one may consider discontinuous curves of signed, bounded

measures t 7→ µt as solutions to (NL-FPK). Furthermore, the dependence of aij and bi
on (µt)t∈[s,T ] may be nonlocal in time, i.e. writing µ̄ := µtdt as a measure on Rd × [0, T ],

coefficients may be of type aij(t, µ̄, x) and bi(t, µ̄, x) instead of aij(t, µt, x) and bi(t, µt, x).

An example in dimension d = 1 is the typical case of a convolution kernel

b(t, µ̄, x) =

ˆ t

0

ˆ
Rd
K(x, y, s)dµs(y)ds

for some Borel function K : Rd × Rd × [0, T ] 7→ R. For classical works on equations with

convolution-type coefficients, see [45, 146, 145, 146], and also the more recent work [170],

whose more general approach covers the former classical works.

Solutions to (NL-FPK) as solutions to linear equations. We would briefly like to

stress the following immediate, yet very important observation. Any solution t 7→ µt to

(NL-FPK) becomes a solution to a linear FPK equation of type (FPK) with coefficients

(t, x) 7→ aij(t, µt, x), bi(t, µt, x) by freezing the curve t 7→ µt in the argument of the measure-

component of aij and bi. This way, many results are recovered from the linear situation,

for example one proves results parallel to Lemma 2.1.3 and Remark 2.1.4. To this end,

note that Definition 3.1.1 (ii) is not sensitive to changes of t 7→ µt on dt-negligible sets, as

long as these changes occur in the ”domain” S0.

The method of freezing the nonlinearity-coefficient in (NL-FPK) is frequently employed

for proofs of existence and uniqueness via fixed point theorems, see for example [69, 170], as

well as in order to establish a connection between the existence of solutions to nonlinear FPK

equations and the corresponding distribution-dependent stochastic differential equation

via superposition of solutions, see [21, 22] and the introduction to Part II of this thesis in

Chapter 5 for details.

3.2 Nonlinear solution flows and main results

For the remainder of this chapter, we use the same notation as introduced in the linear

case at the beginning of Section 2.2, i.e. we denote by Ms,ν the set of all solutions to the

Cauchy problem (NL-FPK) with initial condition (s, ν) ∈ [0, T ]× SP, by M1
s,ν its subset

of probability solutions, and by Ms and M1
s the union of Ms,ν and M1

s,ν over ν ∈ SP
and ν ∈ P, respectively.

3.2.1 Nonlinear solution flows

As in the linear case, it might be necessary to restrict the selection of a solution

flow to subclasses As,ν ⊆ Ms,ν , (s, ν) ∈ [0, T ] × SP. To this end, we use the notion

of a flow-admissible family {As,ν}(s,ν)∈[0,T ]×SP and a solution flow {µs,ν} (with respect

to {As,ν}(s,ν)∈[0,T ]×SP) exactly as in Definitions 2.2.1 and 2.2.2, respectively. Again, we

denote by As ⊆ SP the set of ν ∈ SP such that As,ν 6= ∅ and call such (s, ν) admissible.

We also use the notion of entire (sub)probability flow as in the previous chapter.

Remark 3.2.1. Since we only consider cases in which the dependence of t 7→ µt on the

coefficients is local in time in the sense aij(t, µt, x) and bi(t, µt, x), i.e. we do not consider
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the more general case of coefficients aij(t, µ̄, x) and bi(t, µ̄, x) with µ̄ = µtdt as in Remark

3.1.2, it is straightforward to see that the family {Ms,ν}(s,ν)∈[0,T ]×SP is flow-admissible.

3.2.2 Nonlinear case: Main results.

Now, we formulate the main results for the case of nonlinear equations, i.e. Theorems

3.2.2 and 3.2.3 below. Both are in complete analogy to our main results for linear equations,

Theorems 1.3.1 and 1.3.2.

Theorem 3.2.2. Let {As,ν}(s,ν)∈[0,T ]×SP be a flow-admissible family of sets of solutions

to (NL-FPK) such that As,ν is compact in Cs,TSP for each admissible initial condition

(s, ν). Then, there exists a solution flow to (NL-FPK) with respect to {As,ν}(s,ν)∈[0,T ]×SP .

Theorem 3.2.3. In the situation of Theorem 3.2.2, the following are equivalent.

(i) There exists at most one solution flow to (NL-FPK) with respect to {As,ν}(s,ν)∈[0,T ]×SP .

(ii) For each (s, ν) ∈ [0, T ]× SP, solutions to (NL-FPK) in As,ν are unique.

Concerning the proof of Theorem 3.2.2, it suffices to note that the entire proof of

Theorem 1.3.1 does not use the definition of solution to the linear equation (FPK), but

is solely based on the compactness of As,ν ⊆ Cs,TSP and the specific iterative selection

procedure. Hence, under the assumptions of Theorem 3.2.2, the proof follows in the exact

same way.

Similarly, it is apparent that one can mimic the proof of Theorem 1.3.2 to prove Theorem

3.2.3. Indeed, the former does not take into account the linear equation (FPK), but is only

based on the specific selection method employed in the proof of Theorem 1.3.1.

3.3 Applications and examples

For the following applications and examples to the main results in the case of nonlinear

equations, Theorems 3.2.2 and 3.2.3, we recall and use Proposition 2.4.1, Remark 2.4.2

and the prototype of metric d on SP, as introduced in (2.24).

Entire subprobability flow. The first rather straightforward application to the above

results arises under the following assumptions on a and b. Suppose that S0 ⊆ SP is closed

with respect to the vague topology.

Assumption B1.

(B1.i)
´ T

0 sup(µ,x)∈S0×K
(
|aij(t, µ, x)| + |bi(t, µ, x)|

)
dt < ∞ holds for all compact K ⊆ Rd

and 1 ≤ i, j ≤ d.

(B1.ii) x 7→ aij(t, µ, x), bi(t, µ, x) is continuous for each 1 ≤ i, j ≤ d, t ∈ [0, T ] and µ ∈ S0.

(B1.iii) If µn −→ µ vaguely in S0 for n → ∞, then aij(t, µn, x) −→ aij(t, µ, x) and

bi(t, µn, x) −→ bi(t, µ, x) locally uniformly in x ∈ Rd for each t ∈ [0, T ].
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The first two assumptions are comparable to Assumption A1 from the previous chapter,

and the rather strong additional assumption (B1.iii) is necessary in order to show closedness

of Ms,ν , which is more delicate than in the linear case (see the proof of Proposition 3.3.1).

Proposition 3.3.1. Suppose Assumption B1 is fulfilled and suppose Ms,ν is nonempty for

each (s, ν) ∈ [0, T ]×SP. Then, there exists an entire solution flow {µs,ν} of subprobability

solutions to (NL-FPK).

Proof. Comparable to the proof of Proposition 2.4.3, we evoke the Arzela-Ascoli theorem in

order to prove precompactness of Ms,ν ⊆ Cs,TSP. Of course, the range of each projection

πt(Ms,ν) ⊆ SP, t ∈ [0, T ], is precompact as a subset of the compact space SP. Replacing

assumption (A1.i) by (B1.i), equicontinuity of Ms,ν can be proven exactly as in the proof

of Proposition 2.4.3. Therefore, Ms,ν ⊆ Cs,TSP is precompact.

Concerning closedness, assume µn = (µnt )t∈[s,T ] converges to µ = (µt)t∈[s,T ] in Cs,TSP
as n → ∞. Then, (µt)t∈[s,T ] ⊆ S0, since we assume S0 to be closed in SP. Since

aij(t, µ
n
t , x) −→ aij(t, µt, x) for each (t, x) ∈ [0, T ] × Rd as n → ∞ by (B3.iii), it follows

that (t, x) 7→ aij(t, µt, x), 1 ≤ i, j ≤ d, is Borel measurable. The same is true for bi,

1 ≤ i ≤ d. Of course, (B1.i) gives the integrability condition (i) of Definition 3.1.1.

Therefore, it remains to prove

ˆ t

s

ˆ
Rd
Lu,µnuϕ(x)dµnu(x)du −→

n→∞

ˆ t

s

ˆ
Rd
Lu,µuϕ(x)dµu(x)du (3.2)

for each ϕ ∈ C∞c (Rd) and t ∈ [s, T ]. This can, for example, be realized by rewriting

ˆ
Rd
Lu,µnuϕ(x)dµnu(x) = C∗c

〈
µnu,Lu,µnuϕ

〉
Cc
,

where C∗c

〈
µ, f

〉
Cc

denotes the dual pairing of f ∈ Cc(Rd) and a bounded Borel measure µ,

considered as an element in the dual space of Cc(Rd). Since the vague topology on SP
coincides with the weak-∗ topology in the dual space of Cc(Rd), and since assumptions

(B1.i) and (B1.iii) yield that Lu,µnuϕ −→ Lu,µuϕ in Cc(Rd) as n→∞ (i.e. the convergence

is uniform in x ∈ Rd), it follows that

ˆ
Rd
Lu,µnuϕ(x)dµnu(x) −→

n→∞

ˆ
Rd
Lu,µuϕ(x)dµu(x), u ∈ [s, T ].

From here, (3.2) follows by (B1.i) and Lebesgue’s dominated convergence theorem.

We point out that in general it is a hard task to solve (NL-FPK) for every initial

condition ν ∈ SP. Existence results for subclasses of initial conditions are, for example,

obtained in [175] via the corresponding McKean–Vlasov equation, by semigroup methods

in [21, 22], and by a fixed point argument in [170]. In the recent paper [20], existence of a

solution for any probability measure as initial value is shown. However, in the situation of

that paper, our Assumption B1 is not fulfilled.

Entire solution flow under relaxed assumptions of [69]. Another existence and

uniqueness result for solutions to (NL-FPK) for arbitrary initial conditions ν ∈ SP via

the corresponding McKean–Vlasov equation is [69, Thm.5.3]. Indeed, set σ ≡ 0 in [69,
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Eq.(1.1)] to recover equation (NL-FPK). In this case, existence of solutions holds, if the

Borel coefficients aij , bi : [0, T ] × SP × Rd → R are uniformly bounded, uniformly (in

(t, x)) Lipschitz continuous in µ with respect to the Kantorovich-Rubinstein metric (which

metrizes weak convergence in SP), and uniformly (in (t, µ)) Lipschitz continuous in x.

Additionally, uniqueness of the solution is obtained in [69, Thm.5.4] under the additional

rather strong assumption

sup
(t,µ)∈[0,T ]×SP

||aij(t, µ, ·)||Cm <∞, sup
(t,µ)∈[0,T ]×SP

||bi(t, µ, ·)||Cm <∞,

for some m > d/2 + 2. Our next aim is to apply our selection result Theorem 3.2.2 to

equations with coefficients a and b fulfilling an intermediate set of conditions. For the

present situation, we have S0 = SP . More precisely, suppose the Borel coefficients aij and

bi are defined on [0, T ]× SP × Rd and fulfill

Assumption B2.

(B2.i) (t, µ, x) 7→ aij(t, µ, x) and (t, µ, x) 7→ bi(t, µ, x) are bounded on [0, T ]× SP × Rd.

(B2.ii) x 7→ aij(t, µ, x), bi(t, µ, x) are continuous for each 1 ≤ i, j ≤ d, t ∈ [0, T ] and µ ∈ SP.

(B2.iii) If µn −→ µ weakly in SP for n → ∞, then aij(t, µn, x) −→ aij(t, µ, x) and

bi(t, µn, x) −→ bi(t, µ, x) locally uniformly in x ∈ Rd for each t ∈ [0, T ].

Of course, these assumptions are fulfilled in the situation of [69, Thm.5.3] as described

at the beginning of this paragraph. At the same time, Assumption B2 is considerably

weaker than the assumptions in [69, Thm.5.4], since we do not impose Lipschitz continuity

in either x or µ and also no Cm-regularity in x for m > 0. Hence, under Assumption

B2, we have existence of solutions for each initial condition (s, ν) ∈ [0, T ]× SP, but not

necessarily uniqueness. We claim that in this ill-posedness situation, we can select an entire

subprobability flow. Note that (B2.iii) is weaker than (B1.iii).

Proposition 3.3.2. Suppose the Borel coefficients aij , bi, 1 ≤ i, j ≤ d, fulfill Assumption

B2. Then, there exists an entire subprobability solution flow to (NL-FPK).

Proof. In view of the assertion and the proof of Proposition 3.3.1, precompactness of

Ms,ν ⊆ Cs,TSP holds, and it only remains to prove closedness of Ms,ν . To this end, and

in view of (B1.iii), inspecting the proof of Proposition 3.3.1, it is clear that (B1.iii) is

only needed for the case µn = µnt and µ = µt such that (µnt )t∈[s,T ] ∈ Ms,ν converges to

(µt)t∈[s,T ] in Cs,TSP as n → ∞. But in this situation, Lemma A.0.2 yields tightness of

{µnt }n∈N, so that the vague convergence µnt −→ µt is actually weak. From here, (B2.iii)

gives (B1.iii) and the assertion follows as in the proof of Proposition 3.3.1.

In the presence of Assumption B2, one can, of course, also select an entire probability

flow, i.e. a solution flow with respect to the solution classes As,ν as in (2.26). Indeed, this

family is flow-admissible, by a reasoning similar to Remark 2.4.5.
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Entire solution flow for nonuniqueness examples from [203]. Several examples

of nonuniqueness for McKean–Vlasov equations of type (1.4) with σ = 0 are presented in

the classical work [203]. In particular, [203, Counterex.3] states the existence of several

solutions in a one-dimensional case with coefficient b(t, µ, x) :=
´
hdµ, for some h ∈ Cc(R).

Clearly, in this case, Assumption B2 is fulfilled. That this equation has a solution for each

initial distribution ν ∈ P can, for example, be observed by applying Theorem 5.3. from

[69]. Since any solution to a McKean–Vlasov equation induces a probability solution to

the corresponding nonlinear FPK equation of type (NL-FPK) (with coefficient b as above

and a = 0), it is clear that there exists a solution to the Cauchy problem (NL-FPK) for

each (s, ν) ∈ [0, T ]× SP (because any subprobability measure is, of course, a probability

measure up to a normalizing constant). Consequently, Proposition 3.3.1 applies and yields

the existence of an entire solution flow of subprobability measures. As described at the

end of the previous paragraph, one can also construct an entire probability flow.

Restricted flow subject to a Lyapunov function. Here, we consider the case of

unbounded coefficients in presence of a Lyapunov function. We use the notation Pm :=

{µ ∈ P : | · |m ∈ L1(µ)} for m ∈ N. Suppose we are given coefficients

aij , bi : [0, T ]× P4 × Rd → R, 1 ≤ i, j ≤ d,

such that t 7→ aij(t, µt, x) and t 7→ bi(t, µt, x) are Borel measurable for each x ∈ Rd and

each Borel curve t 7→ µt from [0, T ] to P4. As usual, we set b = (bi)1≤i≤d and assume

a(t, µ, x) = (aij(t, µ, x))1≤i,j≤d ∈ S+
d for each (t, µ, x) ∈ [0, T ]×P4×Rd. Assume there is a

continuous, nonnegative function C∗ on [0, T ] such that the coefficients satisfy

Assumption B3.

(B3.i) supµ∈P4

∑d
i,j=1 |aij(t, µ, x)|+ supµ∈P4

∑d
i=1 |bi(t, µ, x)| ≤ C∗(t) +C∗(t)|x|, x ∈ Rd.

(B3.ii) x 7→ aij(t, µ, x), bi(t, µ, x) is continuous for 1 ≤ i, j ≤ d and each (t, µ) ∈ [0, T ]× P4.

(B3.iii) If µn −→ µ weakly in P4 and the second moments of µn converge to the second

moment of µ for n → ∞ (i.e. d2(µn, µ) −→ 0, with d2 as introduced below), then

aij(t, µn, x) −→ aij(t, µ, x) and bi(t, µn, x) −→ bi(t, µ, x) locally uniformly in x ∈ Rd

for each t ∈ [0, T ].

Then, setting V : x 7→ 1 + |x|4, it is straightforward to check that for each curve

t 7→ µt ∈ P4, we have

Lt,µtV (x) ≤ C(t) + C(t)V (x), (t, x) ∈ [0, T ]× Rd (3.3)

for a continuous, nonnegative function C on [0, T ], which is easily calculated from C∗ and

the definition of V , but its exact calculation is not needed in the sequel.

In this situation, we apply the following lemma, which is a slightly simplified version of

Lemma 2.2. of [36], to obtain a bound on
´
V dµt uniformly in µ = (µt)t∈[s,T ] ∈M1

s,ν and

t.
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Lemma 3.3.3. Let t 7→ µt be a probability solution to (NL-FPK) with initial condition

(s, ν) ∈ [0, T ]× P4. Then, for coefficients aij and bi as in the beginning of this paragraph,

which fulfill (B3.i), we have for each t ∈ [s, T ]

ˆ
Rd
V dµt ≤

ˆ
Rd
V dν +

ˆ t

s
C(u)du+ c+ exp(c+t)

ˆ t

s
exp(−c−u)

[ˆ
Rd
V dν +

ˆ u

s
C(r)dr

]
du,

(3.4)

where we set c+ := maxt∈[0,T ]C(t) and c− := mint∈[0,T ]C(t).

Since the right-hand side of (3.4) is bounded independently of µ ∈M1
s,ν and t ∈ [s, T ]

by some D = D(ν, V, T ) > 0, in our present situation the previous lemma yields

sup
µ∈M1

s,ν

ˆ
Rd
V dµt ≤ D. (3.5)

Choosing a sequence (ϕk)k∈N ⊆ C∞c (Rd) such that ϕk(x) = V (x) for |x| ≤ k and

supk∈N ||∂iϕk||∞ ≤ c0||∂iV ||∞ + c0, supk∈N ||∂ijϕk||∞ ≤ c0||∂ijV ||∞ + c0, 1 ≤ i, j ≤ d,

for some c0 > 0, and considering (3.1) with ϕk instead of ϕ in the limit k → ∞, it

follows by (B3.i), Lemma 3.3.3 and Lebesgue’s dominated convergence theorem that

Lu,µuV ∈ L1(µudu) and

ˆ
Rd
|x|4dµt(x)−

ˆ
Rd
|x|4dν(x) =

ˆ t

s

ˆ
Rd
Lu,µuV (x)dµu(x)du. (3.6)

It is clear that a similar calculation holds when | · |4 is replaced by | · |m for 1 ≤ m < 4 and

V on the right-hand side is replaced by | · |m. In particular, t 7→
´
| · |mdµt is continuous

for 1 ≤ m ≤ 4, i.e. in this situation, we have M1
s,ν ⊆ Cs,TP2, where we equip P2 with the

metric

d2 : (µ, µ̃) 7→ d(µ, µ̃) +

∣∣∣∣ ˆ
Rd
|x|2dµ(x)−

ˆ
Rd
|x|2dµ̃(x)

∣∣∣∣,
where d is the same metric as fixed in the beginning of the proof of Proposition 2.4.3.

From the definition of d and since convergence with respect to d2 is equivalent to weak

convergence plus convergence of the second moments, it is clear that d2 is weakly equivalent

to the usual Wasserstein distance on P2. Our goal is to apply Theorem 3.2.2 to the

flow-admissible family As,ν ⊆ Cs,TP2,

As,ν :=

{
M1

s,ν , if ν ∈ P4,

∅ , if ν ∈ SP\P4.
(3.7)

Indeed, the admissibility of the above family follows, since we have shown by Lemma 3.3.3

that ν ∈ P4 gives (µt)t∈[s,T ] ⊆ P4 for each (µt)t∈[s,T ] ∈M1
s,ν . Before we continue, we pause

for the following observation.

Remark 3.3.4. Although we have not mentioned it before, it is evident that the proof

of Theorem 3.2.2 (as well as that of Theorem 1.3.1 in the linear case) is not specific to

the space Cs,TSP. Indeed, if we are given a flow-admissible family {As,ν} such that As,ν
is compact in Cs,TP, where P is some metric space of (sub)probability measures with a
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topology finer or equal to the vague topology, then the proof works in the exact same way.

The reason we exclusively used P = SP with the vague topology until now is that in general

it is, of course, potentially much harder to prove compactness As,ν ⊆ Cs,TP for spaces P

with a finer topology. However, in the case of nonlinear FPK equations, we typically need to

assume continuity of the coefficients in their measure argument with respect to the topology

on P in order to prove closedness of As,ν ⊆ Cs,TP, see assumptions (B1.iii), (B2.iii) and

(B3.iii). This kind of assumption becomes weaker for finer topologies on P (which, on the

other hand, renders the task of proving precompactness of As,ν ⊆ Cs,TP more difficult). In

the present situation, which we continue after this remark, the Lyapunov function V allows

to prove precompactness of As,ν in Cs,TP2, i.e. we choose P = P2. This allows to obtain

compactness of As,ν under Assumption B3, which comprises (B3.iii), which is a weaker

assumption than (B1.iii) or (B2.iii).

Using the observations of the previous remark, we arrive at the following result.

Proposition 3.3.5. Suppose the coefficients aij , bi, 1 ≤ i, j ≤ d, are as specified at the

beginning of this paragraph and fulfill Assumption B3. Moreover, assume the sets M1
s,ν

are nonempty for each (s, ν) ∈ [0, T ]×P4. Then, there exists a solution flow to (NL-FPK)

with respect to {As,ν}(s,ν)∈[0,T ]×SP as in (3.7), i.e. the flow arises in P4.

Proof. Again, we evoke the Arzela-Ascoli theorem, see Proposition 2.4.1. Fix (s, ν) ∈
[0, T ]× P4. For each t ∈ [s, T ], (3.5) implies tightness of πt(As,ν). Since a uniform bound

on the q-th moments of a weakly converging sequence of Borel probability measures implies

the convergence of their p-th moments for any 1 ≤ p < q, we obtain that the limit of any

weakly converging sequence in πt(As,ν) is even a limit with respect to d2, which proves

precompactness of πt(As,ν) ⊆ (P2, d2).

Concerning equicontinuity, note that (3.6), (3.3) and (3.5) yield

sup
(µt)t∈[s,T ]∈As,ν

∣∣∣∣ ˆ
Rd
|x|2dµt2(x)−

ˆ
Rd
|x|2dµt1(x)

∣∣∣∣ ≤ c(1+D)(t2−t1), t1, t2 ∈ [s, T ], (3.8)

for each (s, ν) ∈ [0, T ]×P4. From here, and in view of the definition of d2 and assumption

(B3.i), equicontinuity follows as in the proof of Proposition 3.3.1.

Finally, closedness of As,ν ⊆ Cs,TP2 can be proven as in the proof of Proposition

3.3.1. Indeed, in the present case, assumption (B3.iii) is sufficient, since we want to prove

closedness in Cs,TP2 instead of Cs,TSP as in the proof of Proposition 3.3.1. Taking into

account Remark 3.3.4, this concludes the proof.

Concerning existence of solutions inM1
s,ν in the present situation, one can, for example,

evoke [170, Thm.1.1.(ii)], which in comparison to Assumption B3 additionally requires
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the continuous dependence of the coefficients on x to be uniform in (t, µ), compare with

(H1)-(H3) of the above source.

Chapter 4

Solution flows for FPK equations

for measures on

infinite-dimensional spaces

We conclude this first part of the thesis with a brief account of flow selections and

the characterization of well-posedness for linear FPK equations for measures on infinite-

dimensional spaces: for equations of type (FPK∞), we prove results similar to the finite-

dimensional cases presented in the previous two chapters. The main results in this chapter

are Theorems 4.2.1 and 4.2.2. Again, both proofs readily follow as in the basic case

discussed in Chapter 2. It is not surprising that the infinite-dimensional setting renders

the compactness of solutions, as needed in the assertion of both main theorems, a difficult

issue, and the findings in this chapter should only be considered a first step towards

further investigations of similar questions in infinite-dimensional cases. We restrict the

considerations in this chapter to the case of probability-valued solutions.

4.1 FPK equations for measures on R∞

We start by presenting notation specific to the infinite-dimensional case, which is

only needed in the present chapter. Afterwards, we give the definition of a solution to

(FPK∞) and briefly discuss the continuity assumption of solutions, comparable to the

finite-dimensional case in Lemma 2.1.3.

4.1.1 Notation

For n ∈ N, en denotes the n-th unit vector in R∞, i.e. the sequence with value 1 in

its n-th entry and 0 otherwise. Let Pd be the projection from R∞ to the linear span of

{e1, . . . , ed}, i.e.

Pd : R∞ → 〈e1, . . . , ed〉 ∼= Rd, Pd : (xi)i∈N 7→ (x1, . . . , xd).

The set of probability measures on B(R∞) is denoted by P(R∞), and we still use the
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INFINITE-DIMENSIONAL SPACES

notation P for the space P(Rd), if the dimension d is given from the context. Furthermore,

we need the following spaces of cylindrical functions on R∞. For T > 0, we set

F∞c (t, x) :=
⋃
d∈N

{
ϕ : (0, T )× R∞ → R

∣∣ϕ(t, x) = Φ(t, Pd(x)), Φ ∈ C∞c
(
(0, T )× Rd

)}

and

F∞c (x) :=
⋃
d∈N

{
ϕ : R∞ → R

∣∣ϕ = Φ ◦ Pd, Φ ∈ C∞c
(
Rd
)}
.

Note that any nontrivial function φ ∈ F∞c (t, x) ∪ F∞c (x) is not compactly supported in

R∞.

4.1.2 Solutions to FPK equations for measures on R∞

Let T > 0 and consider the compact time interval [0, T ]. We endow R∞ with the

product topology, i.e. a sequence {x(n)}n∈N in R∞ converges to x = (xi)i∈N if and only if

x
(n)
i −→ xi in the Euclidean topology on R for each i ∈ N as n→∞. Recall that R∞ with

this topology is Polish. In particular, the facts about spaces of probability measure P(X)

recalled in Chapter 0 apply in the case X = R∞. Let

aij , bi : [0, T ]× R∞ → R, i, j ∈ N,

be Borel measurable and set a := (aij)i,j≥1 and b := (bi)i∈N. At this point, it is not

necessary to assume symmetry or any kind of nonnegative definiteness for a.

We consider the differential operator L as in (1.6) and study the Cauchy problem for

the corresponding linear FPK equation (FPK∞), i.e.{
∂tµt = L∗tµt,

µs = ν
(4.1)

for an initial condition (s, ν) ∈ [0, T ]× P(R∞).

Definition 4.1.1. A probability solution to (4.1) with initial condition (s, ν) ∈ [0, T ] ×
P(R∞) is a weakly continuous curve µ = (µt)t∈[s,T ] in P(R∞), such that for each i, j ≥ 1,

the coefficients aij and bi satisfy

ˆ T

s

ˆ
R∞
|aij(t, x)|+ |bi(t, x)|dµt(x)dt <∞, (4.2)

and for each ϕ ∈ F∞c (x) and t ∈ [s, T ], we have

ˆ
R∞

ϕ(x)dµt(x)−
ˆ
R∞

ϕ(x)dν(x) =

ˆ t

s

ˆ
R∞

Lrϕ(x)dµr(x)dr. (4.3)

Remark 4.1.2. (i) Since in an infinite-dimensional framework the global integrability

condition (4.2) seems more natural than an analogue of the local in space condi-

tion (2.1), here we restrict our considerations to probability solutions instead of

subprobability solutions, as in the finite-dimensional case. Under the local integra-
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bility assumption on solutions in the previous chapter, the more general setting of

subprobability measures turned out helpful, since the vague topology on SP is better

suited in the case of such local conditions. Nevertheless, also in this situation, the

results in the present chapter can immediately be extended to subprobability valued

solutions.

(ii) In general, (4.1) makes sense for discontinuous Borel curves of signed, bounded

measures on R∞. In this case, the general notion of solution is an analogue to

Remark 2.1.2, i.e. a bounded Borel curve (µt)t∈(s,T ) of measures on R∞ is a solution

to (FPK∞) on (s, T ), if it consists of probability measures dt-a.s., fulfills the global

condition (4.2), and satisfies

ˆ T

s

ˆ
R∞

(∂t + Lt)ϕ(t, x)dµt(x)dt = 0 (4.4)

for each ϕ ∈ F∞c (t, x). If in addition, for each ϕ ∈ F∞c (x) such that ϕ(t, ·) = 0 for

t ∈ [0, Cϕ] for some Cϕ > s, also

lim
t→s

ˆ
R∞

ϕ(x)dµt(x) =

ˆ
R∞

ϕ(x)dν(x) (4.5)

holds, then (µt)t∈(s,T ) is a solution to the Cauchy problem (4.1), see [38, Ch.10] for

details. Similarly to Lemma 2.1.3, in the subsequent proposition we briefly discuss

that the assumption of weak continuity for solutions to (4.1) is not restrictive in the

presence of the global condition (4.2).

Proposition 4.1.3. Let t 7→ µt be a Borel curve of bounded measures on R∞ on (s, T ),

which is a solution to (4.1) in the general sense of part (ii) of the previous remark. Then,

there exists a unique weakly continuous version t 7→ µ̃t on [s, T ], which is a solution to

(4.1) in the sense of Definition (4.1.1).

Concerning the proof, we first show the existence of a unique version, which is continuous

in duality with the function class F∞c (x). From here, the assertion is obtained by the

following lemma, whose proof we have shifted to Appendix A.

Lemma 4.1.4. Let (ηn)n∈N, η ∈ P(R∞). If

ˆ
R∞

ϕ(x)dηn(x) −→
n→∞

ˆ
R∞

ϕ(x)dη(x), ∀ϕ ∈ F∞c (x), (4.6)

then (ηn)n∈N converges to η weakly.

Proof of Proposition 4.1.3. First of all, it is clear that any Borel measurable version

t 7→ µ̃t of (µt)t∈(s,T ) still solves the Cauchy problem in the sense of Remark 4.1.2 (ii).

Moreover, for weakly continuous curves, this notion of solution is equivalent to Definition

4.1.1, see for example [32, Lem.1.1]. Hence, it remains to construct a version as in the

assertion.
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For fixed d ∈ N, choose ϕ(t, x) = f(t)g
(
Pd(x)

)
∈ F∞c (t, x) in (4.4), where f ∈

C∞c
(
(s, T )

)
and g ∈ C∞c (Rd), to observe that t 7→

´
Rd g(x)dµt ◦ P−1

d (x) belongs to the

Sobolev space W 1,1
(
(s, T )

)
with weak derivative

t 7→
ˆ
R∞

aij(t, x)∂ijg
(
Pd(x)

)
+ bi(t, x)∂ig

(
Pd(x)

)
dµt(x).

From here, we employ the same arguments as in the proof of Lemma 2.1.3 to obtain a

dt-version t 7→ µdt ∈ P(Rd) of (µt ◦ Pd)t∈(s,T ) on [s, T ], which is even weakly continuous,

due to the global integrability (4.2) of (µt)t∈(s,T ) with respect to the coefficients. Hence,

repeating these steps for each d ∈ N, we obtain a set A ⊆ [s, T ] such that Ac is dt-negligible

with

t ∈ A =⇒ µdt = µt ◦ P−1
d ∀d ∈ N,

and for t ∈ A we set µ̃t := µt.

Now let t /∈ A and let us show that the family {µdt }d∈N is consistent: For d ≥ 2, let

gd ∈ Cb(Rd) be arbitrary such that gd = gd−1 ◦ P dd−1 for some gd−1 ∈ Cb(Rd−1), where we

set

P dd−1 : 〈e1, ..., ed〉 → 〈e1, ..., ed−1〉, P dd−1(x1, .., xd) := (x1, ..., xd−1).

Choosing a sequence tn → t as n→∞ with (tn)n∈N ⊆ A, we have

ˆ
Rd
gddµ

d
t = lim

n→∞

ˆ
Rd
gddµ

d
tn = lim

n→∞

ˆ
Rd
gddµtn ◦ P−1

d = lim
n→∞

ˆ
Rd
gd−1 ◦ P dd−1dµtn ◦ P−1

d

= lim
n→∞

ˆ
Rd−1

gd−1dµtn ◦ P−1
d−1 = lim

n→∞

ˆ
Rd−1

gd−1dµ
d−1
tn =

ˆ
Rd−1

gd−1dµ
d−1
t .

For arbitrary nonempty open sets B1, ..., Bd−1 ⊆ R, approximate the function 1B1×...×Bd−1

pointwise from below by a nondecreasing sequence of nonnegative functions (gBn )n∈N ⊆
Cb(Rd−1). Then, clearly also gBn ◦P dd−1 ↗ 1B1×...×Bd−1×R and each gBn ◦P dd−1 is nonnegative,

continuous and bounded on Rd. Thus, applying the above chain of equalities to each pair

of functions gBn and gBn ◦ P dd−1 and letting n→∞ on both sides, yields

µdt (B1 × ...×Bd−1 × R) = µd−1
t (B1 × ...×Bd−1),

which gives the desired consistency. Therefore, by Kolmogorov’s extension theorem (see

Theorem D.0.5), there exists a unique element µ̃t ∈ P(R∞) such that µ̃t ◦ P−1
d = µdt for all

d ∈ N.

Altogether, we obtain a family of probability measures µ̃ = (µ̃t)t∈[s,T ] on B(R∞) such

that µt = µ̃t dt-a.s. (namely for each t ∈ A) and (µ̃t ◦ P−1
d )t∈[s,T ] is weakly continuous on

B(Rd) for each d ∈ N. In particular, (µ̃t)t∈[s,T ] fulfills (4.6), with (ηn)n∈N and η in (4.6)

replaced by any sequence (µ̃tn)n∈N and µ̃t such that tn → t as n→∞. By Lemma 4.1.4,

t 7→ µ̃t is weakly continuous. This completes the proof.

Metrizing the weak topology on P(R∞). We close this section by introducing a

metric d∞ on P(R∞), which induces the weak topology of measures on P(R∞) and only

comprises functions from the class F∞c (x). Compare with the definition of the metric d in

(2.24) from the finite-dimensional situation.
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For d ∈ N, fix a countable set Gd ⊆ C∞c (Rd), which is dense with respect to the

topology of uniform convergence, assume without loss of generality that no element in Gd
is constantly 0, and let

G :=
⋃
d∈N

Gd.

Due to the density of each Gd in C∞c (Rd) and Lemma 4.1.4, weak convergence of a sequence

of probability measures (µn)n∈N to µ ∈ P(R∞) is characterized by the convergence

ˆ
R∞

ϕdµn −→
n→∞

ˆ
R∞

ϕdµ ∀ϕ ∈ {Φ ◦ Pd |Φ ∈ Gd, d ∈ N}.

With this in mind, we introduce the metric

d∞(µ1, µ2) :=
∞∑
k=1

2−k
[∣∣ ´

R∞ ϕkdµ
1 −

´
R∞ ϕkdµ

2
∣∣

||ϕk||C2

∧ 1

]
(4.7)

on P(R∞), with {ϕk, k ∈ N} = {Φ ◦ Pd |Φ ∈ Gd, d ∈ N}, and note that d∞ induces

the topology of weak convergence on P(R∞). Here, with slight abuse of notation, for

ϕ = Φ ◦Pd, Φ ∈ Gd, we write ||ϕ||C2 := ||Φ||C2 . Clearly, the specific choices of Gd as well as

the numbering of elements of G is not relevant, in the sense that two different numberings

lead to weakly equivalent metrics on P(R∞). Whenever we refer to d∞ in the sequel, we

refer to a fixed choice of G and a fixed numbering of its elements as above. We make the

following observation.

Remark 4.1.5. (i) If we replace (2−k)k∈N in the definition of d∞ by another summable

and strictly positive sequence (αk)k∈N, we obtain a metric weakly equivalent to d∞.

(ii) The first part of Remark 2.3.1 applies in this context as well, i.e. the topology of

uniform convergence on Cs,TP(R∞) coincides with the compact-open topology on

Cs,TP(R∞), which is independent of a change of weakly equivalent metrics on P(R∞).

4.2 Main results

Since no confusion can appear, we use the notation from the previous two chapters

by writing M1
s,ν for the set of all weakly continuous probability solutions to the Cauchy

problem (4.1) with initial condition (s, ν). We also use the notion of flow-admissible

families of solutions {As,ν}(s,ν)∈[0,T ]×P(R∞), As,ν ⊆M1
s,ν , and the sets of admissible initial

conditions As as in Definition 2.2.1. We aim to select solution flows to (4.1) from such

flow-admissible families {As,ν}(s,ν)∈[0,T ]×P(R∞), as introduced in (1.9).

With this notation, our main results in the case of FPK equations for measures on

infinite-dimensional spaces are the following theorems. Let a = (aij)i,j≥1 and b = (bi)i≥1

be B([0, T ])⊗ B(R∞)-measurable.

Theorem 4.2.1. Let {As,ν}(s,ν)∈[0,T ]×P(R∞) be a flow-admissible family of sets of weakly

continuous probability solutions to (4.1) such that As,ν is compact in Cs,TP(R∞) for each

admissible initial condition (s, ν). Then, there exists a solution flow to (4.1) with respect

to {As,ν}(s,ν)∈[0,T ]×P(R∞).
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Theorem 4.2.2. In the situation of Theorem 4.2.1, the following are equivalent.

(i) There exists at most one solution flow to (4.1) with respect to {As,ν}(s,ν)∈[0,T ]×P(R∞).

(ii) For each (s, ν) ∈ [0, T ]× P(R∞), solutions to (4.1) in As,ν are unique.

Proofs of the main results. Concerning the proof of Theorem 4.2.1, it suffices to

note that the proof of the analogue result in the finite-dimensional case from Chapter

2, Theorem 1.3.1, also applies in this situation in the same way. Indeed, concerning a

countable measure separating family of functions on R∞, one may, for example, consider

a countable set of measure separating functions on Rd, say Hd = {hdn, n ∈ N} ⊆ C∞c (Rd),
and then choose H ⊆ F∞c (x) as the set of functions ϕ = hdn ◦ Pd, n, d ∈ N.

Likewise, the proof of Theorem 4.2.2 is a copy of the proof of Theorem 1.3.2, without

any mandatory changes due to the present infinite-dimensional setting.

4.3 Examples

As in the previous chapters, finding conditions for solution families As,ν and the

coefficients aij and bi, i, j ≥ 1, under which the main theorems apply, amounts to finding

sufficient conditions on these objects in order to have compactness of As,ν ⊆ Cs,TP(R∞).

As in the finite-dimensional case, we stress once more that no a priori assumptions on

the Borel coefficients are imposed. As before, the Arzela-Ascoli theorem, as stated in

Proposition 2.4.1, is our main tool to obtain the necessary compactness of As,ν .

We use the notion of an entire probability flow as in the previous chapters, i.e. this

term refers to a solution flow with respect to the solution classes As,ν = M1
s,ν for each

(s, ν) ∈ [0, T ]× P(R∞).

Remark 4.3.1. As in the finite-dimensional situation in Chapter 2, we point out that the

contents of Remark 2.4.2 apply also in the present case: the topology of uniform convergence

on Cs,TP(R∞) is the same for any metric weakly equivalent to d∞, with d∞ as in (4.7), and

the Arzela-Ascoli theorem characterizes the topological property of precompactness of sets

A ⊆ Cs,TP(R∞) in terms of equicontinuity and the topological property of precompactness

of πt(A) ⊆ P(R∞), t ∈ [s, T ]. Hence, if the latter property holds, equicontinuity of A is

independent under a change of weakly equivalent metrics to d∞.

4.3.1 Bounded and continuous coefficients

Here, we investigate our main theorems in the case of bounded Borel coefficients aij
and bi, i, j ≥ 1. The main proposition in this context is

Proposition 4.3.2. Let the Borel coefficients aij, bi, i, j ≥ 1, be globally bounded in

(t, x) ∈ [0, T ]× R∞ and continuous in x ∈ R∞. Suppose the sets M1
s,ν are nonempty for

each (s, ν) ∈ [0, T ]× P(R∞). Then, there exists a full probability flow for (4.1), provided

the sets πt(M1
s,ν) are tight for all 0 ≤ s ≤ t ≤ T and v ∈ P(R∞).

For the proof, we need the following auxiliary result.
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Lemma 4.3.3. Suppose the Borel coefficients aij and bi, i, j ≥ 1, are continuous in

x ∈ R∞ and bounded on [0, T ] × R∞. Then, M1
s,ν ⊆ Cs,TP(R∞) is closed for each

(s, ν) ∈ [0, T ]× P(R∞).

Proof. Let {µ(n)}n∈N ⊆ M1
s,ν converge to µ = (µt)t∈[s,T ] ∈ Cs,TP(R∞). In particular,

µs = limn→∞ µ
(n)
s = ν. Since the coefficients are bounded, it is clear that µ fulfills the

global integrability condition (4.2). Concerning (4.3), note that for each t ∈ [s, T ] and

ϕ ∈ F∞c (x), the function

x 7→ Ltϕ(x)

is continuous and bounded on R∞. Therefore, Lebesgue’s dominated convergence theorem

gives ˆ t

s

ˆ
R∞

Lrϕ(x)dµr(x)dr = lim
n→∞

ˆ t

s

ˆ
R∞

Lrϕ(x)dµ(n)
r (x)dr.

Since each µ(n) fulfills (4.3), the above equality implies that this is also valid for µ in place

of µ(n). Consequently, µ fulfills Definition 4.1.1.

From here, we can prove Proposition 4.3.2.

Proof of Proposition 4.3.2. In view of Lemma 4.3.3 and the Arzela-Ascoli theorem, it

remains to show equicontinuity ofM1
s,ν ⊆ Cs,TP(R∞), i.e. for each t, (tn)n∈N ⊆ [s, T ] such

that tn → t as n→∞, we need to show

sup
µ∈M1

s,ν

d∞(µtn , µt) −→n→∞ 0

for d∞ as introduced in (4.7) or (c.f. Remark 4.3.1) any metric weakly equivalent to d∞.

By the boundedness assumption on aij and bi, we have

max
1≤i,j≤k

{||aij ||∞, ||bi||∞} <∞

for every k ∈ N, where || · ||∞ is taken with respect to (t, x) ∈ [s, T ]×R∞. Recall that each

member of the fixed family {ϕk}k∈N used in (4.7) is of type ϕk = Φk◦Pd with d = d(ϕk) ∈ N.

Set

Ck := [d(ϕk)
2 + d(ϕk)] · max

1≤i,j≤d(ϕk)
{||aij ||∞, ||bi||∞} <∞.

According to Remark 4.1.5, we can replace (2−k)k∈N in (4.7) by

αk :=
1

2k(Ck + 1)

and denote the corresponding metric dα. Using this metric, we have

sup
µ∈M1

s,ν

dα(µtn , µt) = sup
µ∈M1

s,ν

[ ∞∑
k=1

αk

(
|
´
ϕkdµtn −

´
ϕkdµt|

||ϕk||C2

∧ 1

)]

= sup
µ∈M1

s,ν

[ ∞∑
k=1

αk

(∣∣ ´ t∨tn
t∧tn

´
Lrϕk(x)dµr(x)dr

∣∣
||ϕk||C2

∧ 1

)]
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≤ sup
µ∈M1

s,ν

[ ∞∑
k=1

αk

(
|tn − t| · Ck||ϕk||C2

||ϕk||C2

∧ 1

)]

≤ |tn − t| ·
∞∑
k=1

Ck
2k(Ck + 1)

−→
n→∞

0.

Here, the second equality follows from (4.3), which holds for each element in M1
s,ν . Hence,

equicontinuity ofM1
s,ν follows, so thatM1

s,ν ⊆ Cs,TP(R∞) is compact by the Arzela-Ascoli-

theorem, and Theorem 4.2.1 applies.

Of course, the above proof implies equicontinuity of any subclass of solutions As,ν ⊆
M1

s,ν . Therefore, under the present assumptions on the coefficients, Theorem 4.2.1 also

applies to a flow-admissible family {As,ν}(s,ν)∈[0,T ]×P(R∞), such that As,ν ⊆ Cs,TP(R∞) is

closed and the sets πt(As,ν) ⊆ P(R∞) are precompact. The latter can, for example, be

obtained in the presence of a Lyapunov function, see the existence results in [32].

4.3.2 Coefficients on an embedded Hilbert space in the presence of Lya-

punov functions

In many cases, the assumptions of global boundedness in (t, x) ∈ [0, T ]×R∞ and spatial

continuity on the whole space R∞ are a too strong set of conditions on aij and bi. Instead,

one may encounter situations in which solution curves are concentrated on an embedded

Hilbert space, on which a and b can be estimated from above by a Lyapunov function V .

Below, we present this setting and apply our main theorems to it.

Consider the space of square-summable real sequences `2 with its usual Hilbert space

topology, and denote the set of Borel probability measures on (`2,B(`2)) by P(`2). The

setting we investigate is the following.

Assume there exists a Borel function V : R∞ → [1,∞] such that V (x) < ∞ if and

only if x ∈ `2, with compact sublevel sets {V ≤ R} ⊆ R∞, R > 0, and assume there exist

constants Cij > 0 and mij ∈ N for all i, j ∈ N with

|aij(t, x)|+ |bi(t, x)| ≤ CijV mij (x) ∀ (t, x) ∈ [0, T ]× R∞. (4.8)

In particular, this does not impose any bound on the coefficients on R∞\`2. In this

situation, we consider flow-admissible families {As,ν}(s,ν)∈[0,T ]×P(R∞) such that As,ν = ∅, if

ν is not concentrated on `2, and assume that for each admissible initial condition (s, ν) ∈
[0, T ]×P(`2) and each m ∈ N, there is a measurable, bounded function Fm,s,ν : [s, T ]→ R+

such that for each t ∈ [s, T ], we have

sup
µ∈As,ν

ˆ
R∞

V m(x)dµt(x) ≤ Fm,s,ν(t). (4.9)

In particular, since V ≡ ∞ on R∞\`2, each curve µ ∈ As,ν then consists of elements in

P(`2).

For a general existence theorem to which our above framework applies, see [32, Thm.3.1].

The main result for this case is the following proposition.
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Proposition 4.3.4. Suppose (4.8) holds. Assume {As,ν}(s,ν)∈[0,T ]×P(R∞) is flow-admissible

such that each As,ν is nonempty and closed in Cs,TP(R∞), and such that for any admissible

initial condition (s, ν), (4.9) holds. Then, there exists a solution flow for (4.1) with respect

to {As,ν}(s,ν)∈[0,T ]×P(R∞).

Proof. Closedness of As,ν ⊆ Cs,TP(R∞) holds by assumption. For 0 ≤ s ≤ t ≤ T and any

admissible initial condition (s, ν), tightness of πt(As,ν) follows, because V has compact

sublevel sets and since (4.9) yields

sup
µ∈As,ν

ˆ
R∞

V (x)dµt(x) <∞.

Concerning equicontinuity, we exploit the same idea as in the proof of Proposition 4.3.2,

i.e. we consider a suitable metric dβ on P(R∞), for which we show

sup
µ∈As,ν

dβ(µtn , µt) −→n→∞ 0

for each (tn)n∈N, t ∈ [s, T ] such that tn → t as n→∞. More precisely, we consider d∞ as in

(4.7) and replace (2−k)k∈N by (βk)k∈N with (using the notation of the proof of Proposition

4.3.2 and of (4.8) and (4.9))

βk :=
1

2k(Dk,s,ν + 1)
, mk := max

1≤i,j≤d(ϕk)
mij ,

Dk := [d(ϕk)
2 + d(ϕk)] · max

1≤i,j≤d(ϕk)
Cij , Dk,s,ν := Dk||Fmk,s,ν ||∞,

and denote the corresponding metric β. Here, Fmk,s,ν is as in (4.9). Then, we calculate

sup
µ∈As,ν

dβ(µtn , µt) = sup
µ∈As,ν

[ ∞∑
k=1

βk

( | ´R∞ ϕkdµtn − ´
R∞ ϕkdµt|

||ϕk||C2

∧ 1

)]

= sup
µ∈As,ν

[ ∞∑
k=1

βk

(∣∣ ´ t∨tn
t∧tn

´
R∞ Lrϕkdµrdr

∣∣
||ϕk||C2

∧ 1

)]

≤ sup
µ∈As,ν

[ ∞∑
k=1

βk

(
Dk||ϕk||C2

´ t∨tn
t∧tn

´
R∞ V

mkdµrdr

||ϕk||C2

)]

≤
∞∑
k=1

βkDk

ˆ t∨tn

t∧tn
Fmk,s,ν(r)dr

≤
∞∑
k=1

|tn − t|βkDk||Fmk,s,ν ||∞

≤ |tn − t|
∞∑
k=1

Dk,s,ν

2k(Dk,s,ν + 1)
−→
n→∞

0.

Here, the second equality follows from (4.3). The first inequality is due to (4.8), and the

second one follows from (4.9). Thereby, each As,ν ⊆ Cs,TP(R∞) is compact and the result

follows by Theorem 4.2.1.
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Remark 4.3.5. We point out that this situation does not require any a priori continuity

assumption on a and b. However, it is clear that certain regularity of the coefficients helps

to find flow-admissible families, which are closed in Cs,TP(R∞).

4.3.3 Finitely based coefficients

Here, we assume that aij and bi, i, j ≥ 1, are globally bounded on [0, T ] × R∞ and

continuous in x ∈ R∞. Moreover, we assume the coefficients depend only on a finite number

of spatial variables. More precisely, we consider the case that

aij(t, x) = āij
(
t, Pmax(i,j)(x)

)
, bi = b̄i

(
t, Pi(x)

)
, i, j ≥ 1, (4.10)

for Borel functions āij : [0, T ]×Rmax(i,j) → R, b̄i : [0, T ]×Ri → R, which are continuous in

their spatial arguments and bounded in (t, x). In this situation, the tightness assumption

of Proposition 4.3.2 is fulfilled and we obtain the following result.

Proposition 4.3.6. Let {As,ν}(s,ν)∈[0,T ]×P(R∞) be such that each As,ν ⊆ Cs,TP(R∞) is

closed and nonempty. If the coefficients aij and bi satisfy (4.10), then there is a solution

flow for (4.1) with respect to {As,ν}(s,ν)∈[0,T ]×P(R∞).

Recalling Lemma 4.3.3, we immediately obtain the following corollary.

Corollary 4.3.7. If in the situation of (4.10) for each (s, ν) ∈ [0, T ]×P(R∞) there exists

a probability solution to (4.1), then there exists a full probability flow for (4.1).

Let us prove Proposition 4.3.6. The main idea is to use assumption (4.10) to apply a

precompactness result for finite-dimensional FPK equations, as investigated in Chapter 2.

Recall that for natural numbers l ≤ d, P dl denotes the canonical projection from 〈e1, . . . , ed〉
to 〈e1, . . . el〉.

Proof of Proposition 4.3.6. In view of the Arzela-Ascoli theorem, it remains to prove

equicontinuity of As,ν and tightness of πt
(
As,ν

)
⊆ P(R∞) for each s ≤ t ≤ T and any

admissible initial condition (s, ν). Concerning tightness, in view of Lemma A.0.4, it suffices

to prove tightness of {µr ◦ P−1
d |(µt)t∈[s,T ] ∈ As,ν} as Borel probability measures on Rd for

each d ∈ N. For each d ∈ N, considering (4.3) for ϕ = Φ ◦ P−1
d from F∞c (x), every element

(µt)t∈[s,T ] ∈ As,ν fulfills

ˆ
Rd
Φdµt ◦ P−1

d −
ˆ
Rd
Φdν ◦ P−1

d

=

ˆ t

s

ˆ
Rd
āij
(
u, P dmax(i,j)x

)
∂ijΦ(x) + b̄i(u, P

d
i x)∂iΦ(x)dµu ◦ P−1

d (x)du

for each Φ ∈ C∞c (Rd), where the suppressed sums on the right-hand side comprise i, j ≤ d
and i ≤ d, respectively. Hence, t 7→ µt ◦ P−1

d solves the d-dimensional FPK equation with

space-continuous and bounded coefficients āij(·, P dmax(i,j)), b̄i(·, P
d
i ), 1 ≤ i, j ≤ d, and initial

condition (s, ν ◦ P−1
d ) ∈ [0, T ]×P. Clearly, this solution curve is also weakly continuous.

By Section 2.4, the set of all weakly continuous probability solutions to a finite-dimensional

equation with such coefficients for a common initial condition is compact in Cs,TP. In

particular, {µt ◦ P−1
d | (µt)t∈[s,T ] ∈ As,ν} is tight, so that Lemma A.0.4 applies.
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Of course, equicontinuity of As,ν follows exactly as in the proof of Proposition 4.3.2.

We close this chapter (and with it the first part of the thesis) with the following remark,

which might be interesting for future considerations.

Remark 4.3.8. In principle, there is a certain degree of freedom to the techniques we use

to apply our main results. In particular, a careful analysis of the proof of Theorem 4.2.1

shows that in the present situation, it is at no point necessary to equip Cs,TP(R∞) with the

topology of uniform convergence, since all we ever use is pointwise convergence. Of course,

we choose this approach to have the Arzela-Ascoli theorem at hand in order to characterize

compactness of subsets of Cs,TP(R∞). However, in principle it is much easier to find

compact subsets in Cs,TP(R∞) when this space is endowed with the coarser topology of

pointwise convergence. Thus, if one has a family {As,ν}(s,ν)∈[0,T ]×P(R∞) of compact subsets

with respect to the pointwise topology on Cs,TP(R∞), then our results apply as well. In

fact, for the proofs of our main results, there is no natural topology on Cs,TP(R∞), which

should be used for intrinsic reasons. Of course, this remark also prevails accordingly in the

finite-dimensional situation of the previous chapters.

Appendix A

Auxiliary results on FPK

equations

Lemma A.0.2.

The objective of this part of the appendix is to prove Lemma A.0.2, which we use in

the proof of Proposition 3.3.2. Below, we denote by Br the Euclidean ball with radius

r > 0 centered at 0, and by Br its closure. First of all, we need the following auxiliary

result. Recall that we call a function compact, if it has compact sublevel sets.

Lemma A.0.1. For any ν ∈ SP, there exists a nonnegative compact function V = Vν ∈
C2(Rd) such that max1≤i,j≤d(||∂iV ||∞, ||∂ijV ||∞) <∞ and

´
Rd V dν <∞.

Proof. Since every single Borel probability measure on Rd is tight, there exists a sequence of

strictly increasing radii Rn > 0, n ≥ 1, such that ν
(
BRn

c) ≤ n−3. Without loss of generality,

we may assume Rn+1 ≥ Rn + 1. Set Wν(x) := 1 on BR1 and Wν(x) := n on BRn+1\BRn .
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Clearly, Wν is nonnegative, radial and has compact sublevel sets {Wν ≤ c} = BRbcc+1
for

c ≥ 1 and {Wν ≤ c} = ∅ for c < 1. Furthermore, note that

ˆ
Rd
Wνdν ≤

∑
n≥1

n−2 <∞.

Now consider, for each n ≥ 1, a function hn, defined via

hn(r) :=


n , r ∈ [Rn+1, Rn+1 + 1

4 ],

gn(r) , r ∈ (Rn+1 + 1
4 , Rn+1 + 3

4),

n+ 1 , r ∈ [Rn+1 + 3
4 , Rn+2],

for a suitable increasing C2-function gn : R → R with bounded first- and second-order

derivatives such that hn ∈ C2([Rn, Rn+1]). Note that we used the assumption Rn+1 ≥ Rn+1

for the definition of hn. Clearly, the family {gn}n≥1 can be chosen with uniformly (in n)

bounded first- and second-order derivatives. Compounding these functions, we note that

Vν : Rd → R,

Vν(x) :=

{
1 , x ∈ BR2 ,

hn(|x|) , x ∈ BRn+2\BRn+1 , n ≥ 1,

is a nonnegative function in C2(Rd) such that Vν(x) −→ ∞ as |x| → ∞ with uniformly

bounded first- and second-order partial derivatives and compact sublevel sets, i.e. it is a

compact function as in the assertion. Finally, since Vν ≤Wν by construction,
´
Vνdν <∞

follows, which completes the proof.

Lemma A.0.2. Let the Borel coefficients aij , bi, 1 ≤ i, j ≤ d, be defined on [0, T ]×SP×Rd

and suppose they fulfill (B2.i) and (B2.ii) of Assumption B2 in Section 3.3. Then, for each

0 ≤ s ≤ t ≤ T and ν ∈ SP, the set πt(Ms,ν) is tight.

Proof. Fix (s, ν) ∈ [0, T ] × SP and t ∈ [s, T ]. Consider a function V = Vν ∈ C2(Rd)
with the properties stated in Lemma A.0.1 and let {ϕl}l≥1 ⊆ C2

c (Rd) have the following

properties: ϕl is nonnegative, increases pointwise to V as l→∞ such that ϕl = V on Bl
and such that ∂iϕl, ∂ijϕl are bounded uniformly in 1 ≤ i, j ≤ d and l > 1 by some number

0 < D <∞. Then, for any (µt)t∈[s,T ] ∈Ms,ν , (B2.i) entails

sup
l≥1

∣∣∣∣ ˆ t

s

ˆ
Rd
aij(u, µu, x)∂ijϕl(x) + bi(u, µu, x)∂iϕl(x)dµu(x)du

∣∣∣∣ < C, (A.1)

with C = C(D) > 0 independent of the particular solution (µt)t∈[s,T ] ∈Ms,ν , and hence,

using (3.1),

sup
l≥1

∣∣∣∣ˆ
Rd
ϕldµt −

ˆ
Rd
ϕldν

∣∣∣∣ <∞,
which, together with supl≥1

´
ϕldν =

´
Vνdν < ∞, entails a uniform in Ms,ν bound on´

Vνdµt. Therefore, πt(M1
s,ν) is a tight family of subprobability measures, as claimed.
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Proof of Lemma 4.1.4.

We begin by stating and proving two preliminary results. Denote by Fb(x) the set of

bounded continuous cylindrical functions, i.e. the functions ϕ : R∞ → R of type ϕ = Φ ◦Pd
for Φ ∈ Cb(Rd) and d ∈ N.

Lemma A.0.3. Let K ⊆ R∞ be compact and f ∈ Cb(R∞). For every ε ∈ (0, 1), there

exists a function ψ = ψ(ε) ∈ Fb(x) such that supx∈K |f(x)− ψ(x)| ≤ ε. Furthermore, for

ε ∈ (0, 1), ψ(ε) may be chosen such that

sup
x∈R∞

|ψε(x)| ≤ ||f ||∞ + 1.

Proof. Recall that R∞ with the topology of pointwise convergence is Polish. Moreover,

Fb(x)|K
(
the set of all R-valued functions on K, which are restrictions of elements of Fb(x)

)
is a subalgebra of C(K,R), which contains the constant functions and separates points in

K. Hence, the first claim follows by the Stone-Weierstraß theorem, see Theorem D.0.4.

Concerning the second claim, note that ψ = Ψ ◦ Pd for some d ∈ N, Ψ ∈ Cb(Rd), and

hence

sup
x∈Pd(K)

|Ψ(x)| ≤ ||f ||∞ + 1.

Since Pd(K) ⊆ Rd is closed, we may change Ψ on Pd(K)c such that the function remains

continuous and attains its supremum on R∞ on Pd(K), and such that the approximation

of f by ψ on K remains true.

Lemma A.0.4. Let I be some index set and {µi}i∈I a family in P(R∞) such that for each

d ∈ N, the family {µi ◦P−1
d }i∈I is tight as Borel probability measures in Rd. Then, {µi}i∈I

is tight in P(R∞) as well.

Proof. Fix ε > 0. By tightness of {µi ◦ P−1
d }i∈I , we find Zεd ∈ R+ such that

µi
(
Pd ∈ {R× ...× R︸ ︷︷ ︸

d−1 times

×[−Zεd, Zεd]c}
)
≤ ε · 2−d (A.2)

for all i ∈ I and d ∈ N. Set Kε :=
∏∞
d=1[−Zεd, Zεd], which is compact in R∞. We have

µi(K
c
ε) = µi

( ⋃
d∈N

P−1
d

(
R× ...× R× [−Zεd, Zεd]c

))

≤
∞∑
d=1

µi

(
P−1
d

(
R× ...× R× [−Zεd, Zεd]c

))
≤ ε

∞∑
d=1

2−d = ε

uniformly in i ∈ I, which yields tightness of {µi}i∈I as elements in P(R∞).

Proof of Lemma 4.1.4. Let (ηn)n∈N converge to η in the sense of (4.6). First, recall

that weak convergence of Borel probability measures on Rd is characterized by convergence

of integrals against all C∞c (Rd)-functions (if the limit is a priori known to be a probability

measure as well). Hence, weak convergence

ηn ◦ P−1
d −→

n→∞
η ◦ P−1

d (A.3)
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holds for each d ∈ N by assumption. In particular, (ηn ◦ P−1
d )n∈N is tight for each d ∈ N.

By Lemma A.0.4, we obtain tightness of (ηn)n∈N in P(R∞).

Now, let f ∈ Cb(R∞), ε ∈ (0, 1) and Kε ⊆ R∞ compact such that

max
(
sup
n∈N

ηn(Kc
ε), η(Kc

ε)
)
≤ ε. (A.4)

Such a set exists, since any single probability measure on a Polish space is tight. Furthermore,

due to Lemma A.0.3 we may choose ψε ∈ Fb(x) with supx∈Kε |ψε(x) − f(x)| ≤ ε and

supx∈R∞ |ψε(x)| ≤ ||f ||∞ + 1. Then, setting Cf := ||f ||∞ + 1 <∞, we obtain∣∣∣∣ ˆ
R∞

fdη −
ˆ
R∞

fdηn

∣∣∣∣
≤
ˆ
R∞
|f − ψε|dη +

∣∣∣∣ˆ
R∞

ψεdη −
ˆ
R∞

ψεdηn

∣∣∣∣+

ˆ
R∞
|ψε − f |dηn

≤ 2(1 + 2Cf )ε+

∣∣∣∣ ˆ
R∞

ψεdη −
ˆ
R∞

ψεdηn

∣∣∣∣ −→n→∞ 2(1 + 2Cf )ε.

Here, the second inequality follows by splitting the first and third summand into integrals

over Kε and Kc
ε , together with the approximation of f by ψε on Kε and (A.4). The final

convergence holds due to (A.3), and since ψε ∈ Fb(x). Since Cf is independent of ε, the

claim follows.
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Abstract. We prove a superposition principle for solutions to nonlinear Fokker–Planck–

Kolmogorov equations (FPK equations) and the associated linear continuity equations for

curves in P(SP): Under rather mild global integrability assumptions, any solution curve to

the latter arises as the curve of one-dimensional marginals of a superposition of solutions to

the former. To this end, we use the well-known linearization of nonlinear FPK equations,

which is based on a geometric manifold-like structure on SP . In the second half, we derive

a similar superposition result for stochastic nonlinear FPK equations. To do so, we extend

the geometric structure on SP in order to associate a linear equation of second order for

curves in P(SP) to such stochastic equations. As a consequence, in both cases, we can

transfer existence and uniqueness results between the nonlinear equation and its associated

linearized equation. The contents of this part are a slightly extended version of the recent

preprint [186].

Chapter 5

Introduction

For a general short introduction to (nonlinear) Fokker–Planck–Kolmogorov equations,

we refer to Section 1.1.

5.1 Superposition principle for finite-dimensional equations

Before we turn to the framework and the main results of this part of the thesis, let

us first describe the underlying classical situation in finite dimensions, i.e. the case of

(stochastic) differential equations on Rd. Later on, we replace these equations by (stochastic)

Fokker–Planck–Kolmogorov equations (FPK equations) for curves in SP. The principal

ideas for the geometric approach to our main results in Chapters 6 and 7 stem from a

comparison to this finite-dimensional case.

5.1.1 The deterministic case

Well-posed equations. Let d ∈ N, b : [0, T ] × Rd → Rd be a Borel vector field and

consider the ordinary differential equation on [0, T ]{
γ̇t = bt(γt),

γ0 = x
(ODE)

for an initial value x ∈ Rd. Under suitable assumptions, e.g. in the classical Cauchy-

Lipschitz situation, where b is continuous in (t, x) and globally Lipschitz continuous in
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its spatial variable, the set of solutions ACT (b, x) to (ODE) with initial value x (i.e. the

absolutely continuous curves t 7→ γt such that γ̇t = bt(γt) dt-a.s. and γ0 = x) is a singleton

for each x and the unique solutions t 7→ γxt depend continuously on the initial value. To the

differential equation (ODE), one naturally associates an equation for curves of measures

t 7→ µt on the state space of (ODE), namely the continuity equation (in distributional

sense)

∂tµt = −∇ · (btµt). (CE)

Note that this is a linear equation (for measures), while (ODE) is a nonlinear equation (for

curves in Rd). However, in contrast to the finite-dimensional ODE, (CE) is an equation on

an infinite-dimensional space of measures. This equation makes sense for curves of signed

Borel measures on Rd, but with regard to our subsequent considerations, we temporarily

restrict attention to weakly continuous solutions t 7→ µt ∈ P. In this situation, the

connection between (ODE) and (CE) is given by the following well-known observation, see

for example [12, Lem.8.1.6].

Proposition 5.1.1. Let µ0 ∈ P and let γ : (t, x) 7→ γxt denote the flow map of (ODE).

Define µt := µ0 ◦ γ−1
t ∈ P. If

ˆ T

0

ˆ
Rd
|bt(x)|dµt(x)dt <∞, (5.1)

then t 7→ µt is a weakly continuous solution to (CE).

In particular, the proposition applies in the case µ0 = δx0 , and then µt = δγx0t
. Under

the present assumptions on b, the continuity equation (CE) is well-posed in the space

of weakly continuous curves t 7→ µt ∈ P such that (5.1) holds [12, Prop.8.1.7]. It is not

difficult, yet very interesting to observe, that in this situation, the uniqueness of (ODE)

and (CE) together with the above proposition yields the following representation result for

the solution to (CE), see [12, Prop.8.1.8].

Proposition 5.1.2. Let t 7→ µt ∈ P be a weakly continuous solution to (CE) such that

(5.1) holds. Then, µt = µ0 ◦ γ−1
t for each t ∈ [0, T ].

This representation result may be considered a first instance of the so-called superposition

principle: Solutions t 7→ µt to (CE) are obtained by mixing, or superposing, solution curves

to the corresponding (ODE) in a compatible way with respect to the initial distribution

µ0. However, in the present situation, for each x in the support of µ0, this mixing involves

at most one curve with initial value x (the unique ODE solution t 7→ γxt ) and, hence, does

not constitute a true superposition of paths with common initial value.

Superposition principle (CE) =⇒ (ODE). An extensively studied question is that of

existence and uniqueness of solutions to (ODE) and (CE) under weaker assumptions on b,

and whether such results can be transferred between these equations. On the one hand, the

celebrated DiPerna-Lions theory establishes existence and uniqueness of a so-called regular

Lagrangian flow of solutions to (ODE) via the corresponding continuity equation for the

case of Sobolev vector fields [94]. Roughly, a Lagrangian flow is a selection of solutions γxt
to (ODE), which is compatible with the usual flow property of differential equations up to
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dx-negligible sets. Subsequently, these results where extended to the case of BV vector

fields b by Ambrosio [6]. For (an overview of) further results in this direction, see also

[8, 78, 10, 77] and the references therein.

On the other hand, and closer to the results of the present part of this thesis, the

question arises whether a representation formula for solutions to (CE) similar to Proposition

5.1.2 holds in the case that (ODE) does not have unique solutions. In this case, the simple

representation as in Proposition 5.1.2 cannot hold in general. Indeed, it is easily seen

that any measure η ∈ P(CTRd) concentrated on solutions to (ODE) with the integrability

property ˆ
CTRd

ˆ T

0
|bt(πt)|dtdη <∞ (5.2)

induces a weakly continuous solution t 7→ µt ∈ P to (CE) via

µt := η ◦ π−1
t , t ∈ [0, T ] (5.3)

(recall that πt : CTRd → Rd denotes the projection πt : f 7→ f(t), t ∈ [0, T ]). In particular,

supp η ∩ ACT (b, x) need not be a singleton, i.e. the solution curve t 7→ µt arises by a

possibly nontrivial mixing of (ODE)-solutions with initial value x, according to a probability

measure µ0 on these initial values. Such solutions µt (and, sometimes, the corresponding

measure η) are usually called superposition solutions. In the previously mentioned case of a

Lipschitz vector field b, any such measure η is necessarily given by η(·) =
´
Rd δγx(·)dµ0(x)

for some µ0 ∈ P , i.e. in this case, the curve in (5.3) takes the form µt = µ0 ◦ γ−1
t , where γ

denotes the unique flow of (ODE). By Proposition 5.1.2, it follows that in this Lipschitz

case, any weakly continuous solution to (CE) with (5.1) is of this type.

The natural question which arises is the following: Under which low regularity and inte-

grability assumption on bt(x) is a weakly continuous (CE)-solution t 7→ µt a superposition

solution?

Remarkably, it turns out that no regularity assumption on b is needed at all. Indeed,

the following well-known superposition principle holds.

Superposition principle (CE) =⇒ (ODE). Let bt(x) be a Borel vector field. If t 7→
µt ∈ P is a weakly continuous solution to (CE), which fulfills the global integrability con-

dition (I), then there exists a measure η ∈ P(CTRd), concentrated on solutions to (ODE)

such that µt = η ◦ π−1
t for each t ∈ [0, T ].

The first result in this direction appears to be [12, Thm.8.2.1], with the condition (I)

being ˆ T

0

ˆ
Rd
|bt(x)|pdµt(x)dt <∞, p > 1. (I.1)

In [169], this result is extended to the case p = 1, and a inhomogeneous version of the

continuity equation is treated as well. To the best of the author’s knowledge, the most
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general form of the global integrability (I) is given in [7], where the above conditions are

replaced by the substantially weaker assumption

ˆ T

0

ˆ
Rd

|bt(x)|
1 + |x|

dµt(x)dt <∞. (I.2)

As shown in [7], this superposition principle may be used to deduce existence and uniqueness

of a regular Lagrangian flow for the corresponding (ODE). Moreover, it follows that

uniqueness of the ODE yields uniqueness of the continuity equation.

In a nutshell, proofs of such superposition results proceed as follows. First, one

approximates b by regular (say, Lipschitz) vector fields bε, ε > 0, and uses the representation

of Proposition 5.1.2 for the unique solutions t 7→ µεt of the corresponding equations (CEε),

hence obtaining superposition measures (ηε)ε>0 ⊆ P(CTRd). Under a suitable choice of bε,

one obtains tightness of this family, and hence the existence of a weak limit point η. The

specific choice of the approximations bε and µεt (usually obtained via convolution of b and

µt with suitable mollifiers) yields that any such limit point η is a superposition measure as

in the assertion.

For further results and recent surveys of the field, we refer the reader to [7, 11, 13, 14, 211]

and the references therein. In particular, the last three sources study the question addressed

above in the general framework of metric measures spaces, a direction which we do not

pursue in this thesis. For a partial result and interesting counterexamples in the case of

signed bounded measure-valued solutions to the continuity equation, see [9, 41].

5.1.2 The stochastic case

From a probabilistic viewpoint, it is natural to ask to which extent these interesting

results for ODEs and their corresponding continuity equations are valid for the respective

stochastic counterparts as well. Consider the stochastic differential equation{
dXt = bt(Xt)dt+ σt(Xt)dBt

L(X0) = µ,
(SDE)

where b is a time-dependent Borel vector field as before, σ : [0, T ]× Rd → Rd×l is a Borel

diffusion coefficient, formally multiplied by the increments of an l-dimensional Brownian

motion B = (Bt)t∈[0,T ], and the initial condition L(X0) = µ ∈ P means that X0 should

have distribution µ. The second term on the right-hand side of (SDE) is understood as

the usual finite-dimensional stochastic Itô integral.

Let t 7→ Xt be a solution on a probability space (Ω,F , (Ft)0≤t≤T ,P) with Brownian

motion B, and denote by µt := P ◦X−1
t its one-dimensional marginals. By Itô’s formula, it

is straightforward to check that t 7→ µt solves the FPK equation{
∂tµt = L∗tµt,
µ0 = µ,

(FPK)

in distributional sense, where L∗t denotes the formal dual of the second-order differential

operator Ltϕ(x) = bit(x)∂iϕ(x) + aijt (x)∂ijϕ(x) with coefficients bt = (bit)1≤i≤d, at =
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(aijt )1≤i,j≤d = 1/2σtσ
T
t . We refer the reader to the general introduction to equations of

type (FPK) in Section 1.1. Hence, in analogy to the deterministic case, a solution to the

nonlinear differential equation (SDE) induces a solution curve for the linear equation of

measures (FPK) on the state space of (SDE).

Superposition of solutions to (FPK). The question arises what one can say about

a converse result under low regularity and integrability assumptions on b and σ or a,

respectively.

To this end, one usually studies the connection between the FPK equation and the

corresponding martingale problem. A solution to the martingale problem with respect to b

and a with initial value µ (at time t = 0) is a probability measure η ∈ P(CTRd) such that

(i) η ◦ π−1
0 = µ and

´
CTRd

´ T
0 |bt(πt)|+ |at(πt)|dtdη <∞.

(ii) The process

t 7→ ϕ(πt)−
ˆ t

0
Lsϕ(πs)ds

is a η-martingale on CTRd with respect to the canonical filtration for each ϕ ∈
C∞c (Rd).

The martingale formulation and the differential equation (SDE) are essentially equivalent,

see [213, Thm.2.6] for the case of bounded coefficients (without any regularity assumption).

The enormous and diverse interest in the martingale problem in connection with the theory

of diffusion processes dates back at least to Stroock and Varadhan’s celebrated book [215],

to which we refer for a complete introduction to the area. It is readily seen be integration

with respect to
´
CTRd dη and Fubini’s theorem that any martingale solution η induces a

weakly continuous solution t 7→ µt ∈ P to (FPK) via

µt := η ◦ π−1
t , t ∈ [0, T ], (5.4)

and, in analogy to the deterministic setting, we call such a solution µt a superposition

solution. Now, the question proposed above can be stated as follows: Under which low

regularity and integrability assumption on b and σ is a weakly continuous (FPK)-solution

t 7→ µt a superposition solution?

As in the deterministic case, an affirmative answer holds under moderate global inte-

grability assumptions without any regularity on b and σ:

Superposition principle (FPK) =⇒ (SDE). Let bt(x) and at(x) be Borel maps. If

t 7→ µt ∈ P is a weakly continuous solution to (FPK), which fulfills the global integrability

condition (I’), then there exists a solution η ∈ P(CTRd) to the corresponding martingale

problem such that µt = η ◦ π−1
t for each t ∈ [0, T ].

The first result in this direction is a remarkable theorem by Figalli [100], who proved

the above superposition principle under the assumption of bounded coefficients b and a.

The boundedness assumptions on b and a were notably replaced by Trevisan [223] by the

weaker condition ˆ T

0

ˆ
Rd
|bt(x)|+ |at(x)|dµt(x)dt <∞. (I’.1)
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Finally, Bogachev, Röckner and Shaposhnikov [37] extended the result to the (to date)

optimal assumption

ˆ T

0

ˆ
Rd

|bt(x) · x|+ |at(x)|
1 + |x|2

dµt(x)dt <∞. (I’.2)

It is easy to see that in the deterministic case, i.e. for a = 0, martingale solutions are

exactly the path measures on CTRd with mass on solution curves to (ODE). Therefore,

the deterministic results are contained in the stochastic case. In this sense, for a = 0,

(I’.2) contains the best known assumption for the deterministic case. We point out that a

pure local integrability assumption is not sufficient for a superposition principle, since even

for a = Id, situations are known in which the martingale problem has a unique solution,

while the corresponding FPK equation has multiple probability solutions, compare [215,

Cor.10.1.2] and [38, Sect.9.2].

Very roughly, and leaving aside delicate technical difficulties, the idea of proof is similar

to the deterministic case: For smooth and bounded coefficients, the superposition principle

is a simple consequence of the classical well-posedness results for martingale problems and

FPK equations. Starting from this base case, one considers solutions µt to equations with

less regular coefficients and uses suitable approximations, similar to (but possibly distinct

from) the deterministic case, in order to obtain a sequence of approximating coefficients

and corresponding solutions (bε, aε, µεt ). The main task is to choose these approximations

such that the corresponding superposition measures (ηε)ε>0 ⊆ P(CTRd) are tight, and

hence, have a limit point η, for which one shows (5.4). For a thorough presentation of this

procedure, see [223, App.A].

Similar to the deterministic case, the superposition principle allows to transfer existence

of solutions to FPK equations to existence of solutions to the martingale problem for

irregular coefficients. Dual to this, uniqueness for the martingale problem (for a fixed initial

value µ ∈ P) implies uniqueness for the FPK equation (with initial value µ). This transfer

between the martingale (equivalently: SDE) and FPK level renders such superposition

results a significant tool for the study of stochastic differential equations and FPK equations

with low regularity coefficients, see (among others) [199, 235]. We point out that beyond

this transfer of existence and uniqueness, the superposition principle is also used to develop

a notion of regular Lagrangian flow, see [223]. However, we do not pursue this interesting

direction in this thesis.

5.1.3 Further results

Here, we briefly mention further results in the spirit of the above mentioned superposition

principles. In [198], the authors prove a superposition result for nonlocal FPK equations.

Concerning the connection of nonlinear FPK equations and distribution-dependent SDEs

(McKean–Vlasov equations), superposition-type results are obtained in [21, 22] (see also

[200]). Interestingly, these results build on the aforementioned superposition results for

linear FPK equations. We also mention the PhD-thesis [93], in which the author studies a

superposition principle for linear and nonlinear equations on Hilbert spaces.

Finally, we point out that Ambrosio and Trevisan established a superposition principle

for equations on R∞ and on general metric measures spaces [13, Thm.7.1, Thm.7.6]. The
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former result is also obtained in [222], where also a result for stochastic equations on R∞

is included, see Theorem 7.1. therein. The superposition principle on R∞ will be of great

importance within the proof of our main results, both in the deterministic and stochastic

case.

5.2 Superposition principle for (stochastic) nonlinear FPK

equations

Summarizing, the results recalled in the Euclidean situation is twofold, i.e. it consists

of a linearization and superposition, which leads to the (somewhat formal) well-known

equivalence (ODE) ⇐⇒ (CE):

• (ODE) =⇒ (CE): The nonlinear differential equation is linearized to a linear equation

for curves of measures on its state space in the sense that any solution to the former

induces a solution to the latter.

• (CE) =⇒ (ODE): Any solution to this linear equation for measures with suitable

moderate global integrability is actually a superposition of solution curves to the

differential equation.

The corresponding results in the stochastic case are summarized by a similar equivalence

between (SDE) and (FPK).

5.2.1 Deterministic nonlinear FPK equations

The first objective of this part of the thesis is to replace the finite-dimensional equation

(ODE) and the corresponding continuity equation (CE) by the nonlinear FPK equation

∂tµt = L∗t,µtµt, t ∈ [0, T ], (NLFPK)

and its corresponding linear equation for measures on the space of measures SP

∂tΓt = L∗tΓt, t ∈ [0, T ], (SP-CE)

and to establish a superposition principle similar to the one in Subsection 5.1.1. Here, as

already in Part I of this thesis, L∗t,µ denotes the formal dual of the second-order nonlinear

differential operator

Lt,µϕ(x) =

d∑
i,j=1

aij(t, µ, x)∂ijϕ(x) +

d∑
i=1

bi(t, µ, x)∂iϕ(x) (5.5)

for Borel coefficients b and a on [0, T ]×SP×Rd. We refer to Section 1.1 for a brief account

of nonlinear FPK equations and relevant references. For reasons to be explained later,

we consider vaguely continuous subprobability solutions to (NLFPK), i.e. the associated

solutions to (SP-CE) are curves in P(SP), see Definitions 6.1.1 and 6.2.4. In [190],

the authors introduce the first-order linear operator L, acting on suitable test functions

F : SP → R via

LtF : µ 7→
〈
∇SPF, bt + at∇

〉
L2(Rd,Rd;µ)

(5.6)
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and show that any solution t 7→ µt to (NLFPK) induces a curve of measures t 7→ Γt := δµt ∈
P(SP), which solves (SP-CE) in distributional sense. Here, ∇SP is a natural gradient on

SP, which is derived in [190, App.A] as the natural operator arising in the derivation of

the equation solved by t 7→ δµt , see Section 6.2 for details.

The analogy to the classical Euclidean case is that the ansatz for the derivation of

(SP-FPK) stems from considering (ODE) as an equation on the manifold Rd, compare

Appendix B and Subsection 6.2.2. Treating SP as a manifold-like space as well, one can

mimic the derivation of the linearized equation associated to (ODE) in order to derive

the linear equation associated to (NLFPK). With this viewpoint, one considers (NLFPK)

as a nonlinear differential equation on SP (in distributional sense). This derivation is a

nowadays well-known technique, see the pioneering works [5, 4] as well as [183], due to

which ∇SP is often called Otto-gradient, and also [2, 3, 168, 196].

Main result: Deterministic case. In view of the linearization (ODE) =⇒ (CE) and

the superposition principle (CE) =⇒ (ODE) in the Euclidean case, and the linearization

(NLFPK) =⇒ (SP-CE), it is a natural next step to develop a superposition principle

(SP-CE) =⇒ (NLFPK). This is achieved by our first main result of the present part of

the thesis, which states that each weakly continuous solution (Γt)0≤t≤T to (SP-CE) with a

natural global integrability property is a superposition of solutions to (NLFPK), i.e. (now

denoting by πt the canonical projection πt : (µt)0≤t≤T 7→ µt on CTSP)

Γt = η ◦ π−1
t , t ∈ [0, T ], (5.7)

for some probability measure η concentrated on solution curves to (NLFPK). More precisely,

we obtain the following analogue to the superposition principle of Subsection 5.1.1.

Theorem 5.2.1. Let b and a be Borel coefficients on [0, T ]×SP×Rd. Then, for any weakly

continuous solution t 7→ Γt to (SP-CE) with (6.10), there exists a probability measure

η ∈ P(CTSP), which is concentrated on vaguely continuous subprobability solutions to

(NLFPK) such that (5.7) holds. Moreover, if Γ0 ∈ P(P), then η is concentrated on weakly

continuous probability solutions to (NLFPK). In particular, in this situation, we have

Γt ∈ P(P) for each t ∈ [0, T ].

We stress that no regularity of the coefficients is needed. As immediate corollaries,

we obtain the transfer of existence and uniqueness results from (SP-CE) to (NLFPK)

and vice versa, respectively, see Subsection 6.2.2. Moreover, as a further application, in

Proposition 6.4.3, we prove an open conjecture from [190]. We stress that the probability

part of the result is important, because in connection to diffusion processes and stochastic

analysis, one is typically interested in solution curves of probability measures to (NLFPK).

Nevertheless, to us it seemed indispensable to develop our results for vaguely continuous

subprobability solutions. We comment on the advantages of this approach in Remark 6.3.4

for the deterministic case and note that similar arguments apply also in the stochastic case.

Idea of proof. The proof of Theorem 5.2.1 proceeds along three steps. First, one

introduces a differential equation and a continuity equation, which resemble (NLFPK) on

R∞ and (SP-CE) on P(R∞), respectively. To do so, we use a map G : SP → R∞, which is
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a homeomorphism onto its image, see (6.5), in order to define a suitable vector field on R∞,

which gives rise to the continuity equation (R∞-CE) for curves in P(R∞). Heuristically, G

may be considered a global chart for the manifold-like space SP. Then, it is easy to show

that any solution t 7→ Γt to (SP-CE) induces a solution to the continuity equation on R∞,

via Γ̄t := Γt ◦G−1.

Secondly, in this R∞-framework, we use the superposition principle result [13, Thm.7.1]

in order to lift t 7→ Γ̄t to a superposition solution η̄ ∈ P(CTR∞) of solution curves to

(R∞-ODE). It is crucial to observe that the compactness of SP with the vague topology

yields closedness of G(SP) ⊆ R∞ and that hence η̄ is concentrated on curves in CTG(SP).

Finally, we pull η̄ back to a measure η ∈ P(CTSP) and show that η is concentrated on

solutions to (NLFPK) and fulfills (5.7), which concludes the proof. The final assertion for

probability solutions is a simple consequence of the global integrability assumption (6.10).

5.2.2 Stochastic nonlinear FPK equations

In Chapter 7, we treat the case of stochastic nonlinear FPK equations of type

∂tµt = L∗t,µtµt + div(σ(t, µt))dWt, t ∈ [0, T ], (SNLFPK)

i.e. equations of type (NLFPK) perturbed by a bounded first-order noise coefficient

σ : [0, T ]×SP×Rd → Rd×d1 driven by a d1-dimensional Brownian motion W . We consider

solutions to (SNLFPK) as vaguely continuous stochastic processes with values in SP.

Such equations appear naturally in the study of interacting particle systems with

common noise and the corresponding McKean–Vlasov-equations. Here, we only give a

very brief account on these interesting connections and refer to [69] for a more detailed

presentation (see also [151]).

Let coefficients b, a and σ be given such that α = (2a−σσT )1/2 is defined. Consider the

system of N weakly interacting particles X1,N
t , . . . , Xd,N

t in Rd, governed by the equations{
dXi,N

t = b(t,Xi,N
t , LNt ) + α(t,Xi,N

t , LNt )dBi
t + σ(t,Xi,N

t , LNt )dWt,

Xi,N
0 = Xi

0,
(5.8)

where (Bi)i≥1 and W are independent Brownian motions on the underlying probability

space (Ω,F , (Ft)0≤t≤T ,P), (Xi
0)i≥1 is a sequence of iid random variables on Ω, and LNt :=

1
N

∑
1≤i≤N δXi,N

t
denotes the empirical (random) measure of the system. This set of

stochastic equations describes particles, which weakly interact via their joint empirical

measure LNt and are experiencing an individual stochastic perturbation Bi as well as a

common noise W . On the one hand, under suitable assumptions on the coefficients, this

system is related to the McKean–Vlasov equation{
dXt = b

(
t,Xt,L(Xt|W )

)
dt+ α

(
t,Xt,L(Xt|W )

)
dBi

t + σ
(
t,Xt,L(Xt|W )

)
dWt,

X0 = Xi
0,

(5.9)

in the sense that for each i ≥ 1, Xi,N converges to a solution Xi
t to this equation as

N → ∞ [151]. Here, L(Xt|W ) denotes the conditional distribution of Xt conditioned

on the common noise W . At the same time, on the level of marginals, LNt converges to
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the conditional law µt := L(X1
t |W ) [151], and, at least under suitable assumptions on

the coefficients, t 7→ µt solves (SNLFPK), see [69]. Hence, equations of type (SNLFPK)

describe the time evolution of the particle limit distribution (conditioned on the common

noise W ) of the weakly interacting particle system (5.8) with common noise.

Linearization of (SNLFPK). In comparison to the stochastic Euclidean situation,

(SNLFPK) replaces (SDE). In a first step, we linearize this equation, i.e. we find the

suitable analogue to (FPK), which naturally turns out to be a second-order equation for

curves in P(SP). Similarly to the deterministic case, one considers the derivation of the

linearization (SDE) =⇒ (FPK) in manifold language and then mimics this procedure

for solutions to (SNLFPK), compare Appendix B and Section 7.2. In contrast to the

deterministic situation, here the linearized equation comprises a (deterministic) second-

order term, which is of course due to the stochastic perturbation div(σ(t, µt))dWt. To this

end, in Section 7.2, we extend the heuristic consideration of SP as a manifold-like space by

a natural (partial) notion of a Levi-Civita-type connection and a Hessian-like 0-2 tensor.

In this way, we find that the marginal curve t 7→ Γt = P◦µ−1
t of any vaguely continuous

solution process µ : [0, T ] × Ω → µt(ω) ∈ SP to (SNLFPK) on some probability space

(Ω,F ,P) solves in distributional sense the linear second-order Fokker–Planck–Kolmogorov-

type equation for curves in P(SP)

∂tΓt = (L
(2)
t )∗Γt, t ∈ [0, T ], (SP-FPK)

where the operator L
(2)
t is given by

(L
(2)
t F )(µ) := LtF (µ) +

1

2
(HessF )

(
σ(t, µ), σ(t, µ)

)
,

see (7.12), with L as in the deterministic case, i.e. as in (SP-CE).

Main result: Superposition principle in the stochastic case. Our second main

result is the following superposition principle (SP-FPK) =⇒ (SNLFPK), which, in spirit, is

comparable to (FPK) =⇒ (SDE) in the Euclidean situation. We assume σ to be bounded.

Theorem 5.2.2. Let t 7→ Γt be a weakly continuous solution to (SP-FPK) such that

(7.15) holds. Then, there exists a complete filtered probability space (Ω,F , (Ft)0≤t≤T ,P), an

d1-dimensional (Ft)0≤t≤T -Brownian motion W = (Wt)0≤t≤T and an SP-valued (Ft)0≤t≤T -

adapted vaguely continuous process t 7→ µt such that (µ,W ) solves (SNLFPK) and

P ◦ µ−1
t = Γt, t ∈ [0, T ].

Moreover, if Γ0 is concentrated on P, i.e. Γ0(P) = 1, then the paths t 7→ µt(ω) are P-valued

and hence even weakly continuous.

Again, we point out that no regularity on b, a or σ is assumed, and that under our

assumption of boundedness of σ, the global integrability condition on b, a is identical

to the deterministic case. The formulation immediately gives the existence transfer

(SP-FPK) =⇒ (SNLFPK). Moreover, it also implies the transfer of (probabilistic) weak

uniqueness of (SNLFPK) to uniqueness for (SP-FPK), see Corollary 7.3.12.
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In view of the results of [69], we make the following comparing remark. In [69],

the authors prove existence and uniqueness to (5.9) under Lipschitz assumptions on the

coefficients, see [69, Thm.3.3]. From these results, they deduce existence and uniqueness of

solutions to (SNLFPK) [69, Thm.5.3,Thm.5.4]. In particular, the authors use the McKean–

Vlasov equation (5.9) in order to solve (SNLFPK). In contrast, our main stochastic result,

Theorem 5.2.2, is concerned with the relation between (SNLFPK) and its corresponding

linearized second-order equation for curves in P(SP), which does not require any regularity

assumptions on the coefficients. In other words, we approach the stochastic nonlinear FPK

equation not from its associated McKean–Vlasov equation (which may be considered an

equation with two degrees of nonlinearity), but from its associated linearized equation.

This way, we transfer the equation to a much more complicated state space, namely P(SP),

instead of Rd as for the McKean–Vlasov equation (5.9).

Remark on a similar result in [153]. A result similar to Theorem 5.2.2 was obtained

completely independently of this work in [153, Thm.1.5] under the more restrictive as-

sumption of Lp-integrability, p > 1, instead of L1-integrability in (7.15) in our result. To

us, there seems to be a gap in the proof of [153]. To the best of our understanding, in

Step 4 of the proof of [153, Thm.1.5], it is not clear why one can map back the measure

Q ∈ P(CTR∞) to a probability measure on CTP without the detour via the space of

subprobability measures. This becomes apparent even in the deterministic case, compare

also with our Remark 6.3.4. In our proof of Theorems 5.2.1 and 5.2.2, this point is one

of the crucial technical steps, see Step 3 of the proof of both theorems. Another point of

distinction is the geometric approach to SP and (SNLFPK) as a second-order differential

equation on SP, which was initiated in [190] and extended in this part of the thesis, and

which is not considered in [153]. From our perspective, this geometric approach helps

to understand the true connection to the classical superposition principles for Euclidean

ordinary and stochastic differential equations, as summarized in Chapter 5.

Idea of proof. The proof follows a pattern similar to the deterministic case. In particular,

we proceed along a similar three step procedure. First, in order to handle the stochastic

integral term in (SNLFPK), we consider a homeomorphism H : SP → `2 instead of

G : SP → R∞ as in the deterministic case. By means of H, we derive suitable first-

and second-order coefficients B̄, Σ̄ and Ā on `2, which give rise to a FPK-type equation

(`2-FPK) on `2 and its corresponding martingale problem, see Definitions 7.3.1 and 7.3.3,

respectively. The choice of B̄ and Ā is made such that any solution t 7→ Γt to (SP-FPK)

induces a solution t 7→ Γ̄t to (`2-FPK) via Γ̄t := Γt ◦H−1.

Secondly, we apply the superposition principle [222, Thm.7.1] in order to lift t 7→ Γ̄t to

a solution Q̄ ∈ P(CT `
2) to the corresponding martingale problem such that

Q̄ ◦ (π∞t )−1 = Γ̄t, t ∈ [0, T ],

where π∞t , t ∈ [0, T ], denote the canonical projections on CT `
2. Comparable to the

deterministic case, it follows that Q̄ is concentrated on CTH(SP).

Thirdly, applying the representation result [181, Thm.2], we deduce the existence of a

filtered probability space (Ω,F , (Ft)t≤T ,P), a d1-dimensional (Ft)0≤t≤T -Brownian motion
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W and a process t 7→ Yt on Ω with law Q̄, which fulfills (7.23). Consequently, Y has paths in

CTH(SP), i.e. Y = H ◦µ for some vaguely continuous process µ : [0, T ]×Ω 7→ µt(ω) ∈ SP .

From here, the definitions of B̄ and Σ̄ imply that (µ,W ) is a solution to (SNLFPK) and

P ◦ µ−1
t = Γt, t ∈ [0, T ].

Organization of Part II. In Chapter 6, we consider the case of deterministic nonlinear

equations. After discussing the setting and the notion of solution to such equations in

Section 6.1, we repeat the geometric approach to the space SP as presented in [190]

with minor changes in Section 6.2, and we transfer the equations of interest to associated

equations on R∞. These considerations enable us to prove the main result of Chapter 6,

Theorem 5.2.1, in Section 6.3. We close this chapter with the discussion of immediate

corollaries on the existence and uniqueness of solutions to (NLFPK) and (SP-CE), and

prove an open conjecture of [190] in Section 6.4.

In Chapter 7, we proceed similarly for the case of stochastic equations of type (SNLFPK).

In the first section, we present the setting and the notion of solution. Then, in Section

7.2, we extend the geometric approach to SP from the deterministic case to second-order

equations on P(SP), which we consider one of our central contributions of this part of

the thesis. This way, in parallel to the deterministic case, we obtain a linearized equation

for (SNLFPK) of second order on P(SP). Afterwards, we prove the main result of the

stochastic case, i.e. Theorem 5.2.2, in Section 7.3.

Appendix B contains a brief repetition of the well-known derivation of the correspond-

ing continuity and FPK equation from its ordinary and stochastic differential equation,

respectively.

Chapter 6

Superposition principle for

deterministic nonlinear FPK

equations

In this and the next chapter, for a measurable function f : X → R on a measure space

(X ,F , µ), we write µ(f) :=
´
fdµ, whenever the integral is defined.
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6.1 Nonlinear FPK equations

Throughout, we consider the compact time interval [0, T ] for T > 0. The case T =∞
can be treated analogously. Consider coefficients a = (aij)1≤i,j≤d and b = (bi)1≤i≤d with

B([0, T ])⊗ B(SP)⊗ B(Rd)-measurable coefficients

aij : [0, T ]× SP × Rd → R, bi : [0, T ]× SP × Rd → R,

such that a takes values in S+
d . For the operator Lt,µ defined in (5.5), we study the

deterministic nonlinear FPK equation (NLFPK) in the following sense.

Definition 6.1.1. (i) A vaguely continuous curve t 7→ µt ∈ SP is a subprobability

solution to (NLFPK), if for each 1 ≤ i, j ≤ d and each compact set K ⊆ Rd, the local

integrability condition

ˆ T

0

ˆ
K
|aij(t, µt, x)|+ |bi(t, µt, x)|dµt(x)dt <∞ (6.1)

holds and for each ϕ ∈ C∞c (Rd) and t ∈ [0, T ], we have

ˆ
Rd
ϕ(x)dµt(x)−

ˆ
Rd
ϕ(x)dµ0(x) =

ˆ t

0

ˆ
Rd
Ls,µsϕ(x)dµs(x)ds. (6.2)

(ii) A probability solution to (NLFPK) is a curve t 7→ µt as in (i) with µt ∈ P for each

t ∈ [0, T ]. In this case, µt is weakly continuous.

The appearing integrals in the above definition are well-defined, since vaguely continuous

curves of measures are in particular Borel curves. Clearly, by approximation, the validity

of (6.2) immediately extends to each ϕ ∈ C2
c (Rd).

As already mentioned in Part I, there are more general notions of solutions to (NLFPK),

such as (discontinuous) curves of signed, bounded measures [38]. However, here we restrict

our attention to continuous (sub-)probability solutions.

For large parts of the following presentation, we will consider the global in space

integrability condition for subprobability solutions t 7→ µt

ˆ T

0

ˆ
Rd
|aij(t, µt, x)|+ |bi(t, µt, x)|dµt(x)dt <∞, 1 ≤ i, j ≤ d. (6.3)

Remark 6.1.2. (i) Under the global assumption (6.3), any subprobability solution t 7→
µt to (NLFPK) with µ0 ∈ P is a probability solution. Indeed, to prove this, it suffices

to show µt(Rd) = 1 for each 0 ≤ t ≤ T . In view of (6.2), it suffices to choose a

sequence ϕl, l ≥ 1, from C2
c (Rd) with the following properties: 0 ≤ ϕl ↗ 1 pointwise

such that ∂iϕl −→ 0, ∂ijϕl −→ 0 pointwise as l→∞ with all first and second-order

derivatives bounded by some M < ∞ uniformly in l ≥ 1 and x ∈ Rd. Considering

(6.2) for the limit l→∞, we obtain, by (6.3) and dominated convergence, for each

t ∈ [0, T ] ˆ
Rd

1dµt −
ˆ
Rd

1dµ0 = 0,

which gives the claim.
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(ii) By such approximations, the validity of (6.2) can be extended to each ϕ ∈ C2
b (Rd).

6.2 Geometry on SP

As mentioned in the introduction in Chapter 5, we consider SP as a manifold-like

infinite-dimensional space. For the present case of the deterministic equation (NLFPK), we

essentially follow the approach of [190, App.A], where the authors derive a natural gradient

for suitable test functions F : P → R as a section in the tangent bundle
⊔
µ∈P TµP with

tangent spaces TµP = L2(Rd,Rd;µ). Such a program is well-known, for example in the

case when P is replaced by the N-valued Radon measures on a Riemannian manifold, see

[5, 4, 2, 3, 168, 196, 183]. In this section, we repeat the derivation in [190, App.A] with

minor adjustments to our case of subprobability measures and the transfer of (NLFPK) to

R∞, which we discuss later. Let

G = {gi, i ∈ N} ⊆ C2
c (Rd)

be dense with respect to || · ||C2 such that gi 6= 0 for any i ∈ N. Clearly, any such set of

functions is measure separating and dense in Cc(Rd) with respect to uniform convergence.

We point out the following simple, but important properties of such sets G.

Lemma 6.2.1. Let G ⊆ C2
c (Rd) be as above. Then,

(i) (µn)n≥1 ⊆ SP converges vaguely to µ ∈ SP if and only if µn(gi) −→
n→∞

µ(gi) for each

gi ∈ G.

(ii) A vaguely continuous curve t 7→ µt, which fulfills (6.1), is a subprobability solution to

(NLFPK) if and only if (6.2) holds for each gi ∈ G in place of ϕ.

Proof. (i) From µn(gi) −→
n→∞

µ(gi) for each gi ∈ G, one obtains for each f ∈ Cc(Rd) and

ε > 0, by choosing gi ∈ G with ||f − gi||∞ < ε
3 ,

|µn(f)− µ(f)| ≤ |µn(f)− µn(gi)|+ |µn(gi)− µ(gi)|+ |µ(gi)− µ(f)| ≤ ε (6.4)

for all sufficiently large n ≥ 1, where we used µn(Rd), µ(Rd) ≤ 1.

(ii) Let ϕ ∈ C∞c (Rd) be approximated uniformly up to second-order derivatives by a

sequence {gik}k≥1 from G with suppϕ, supp gik ⊆ K for some compact K ⊆ Rd.
Considering (6.2) for such gik and letting k →∞, the result follows by dominated

convergence, which applies due to (6.1) and the choice of gik .

We endow R∞ with its usual product topology, i.e. with the topology of pointwise

convergence, which renders R∞ a Polish space. For G as above, we consider the map

G : SP → R∞, G : µ 7→
(
µ(gi)

)
i∈N. (6.5)

In view of the approach to SP as a manifold-like space, the forthcoming lemma yields that

G may formally be considered a global chart for SP. We consider G(SP) ⊆ R∞ with the
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natural subspace topology inherited from R∞ and, in accordance with our general notation,

write CTG(SP) for the set of elements in CTR∞ with values in G(SP).

We use the notation πt and π∞t for the canonical projections at time t on CTSP
and CTR∞, respectively, and endow both spaces with the respective topology of uniform

convergence. In particular, their Borel σ-algebras are given by

B(CTSP) = σ(πt, t ∈ [0, T ]) and B(CTR∞) = σ(π∞t , t ∈ [0, T ]),

respectively. Indeed, the Borel σ-algebra of CTX with respect to the topology of uniform

convergence coincides with the σ-algebra generated by the canonical projections whenever

the metric space X is separable. Moreover, we endow CTG(SP) with the natural subspace

σ-algebra of B(CTR∞).

Lemma 6.2.2. Let G = {gi}i≥1 ⊆ C2
c (Rd) and G be as above.

(i) G is a homeomorphism between SP and G(SP) (hence, formally, a global chart for

SP). In particular, G(SP) ⊆ R∞ is compact. Moreover, if G′ = {g′i, i ≥ 1} ⊆ C2
c (Rd)

is another set with the same properties as G with corresponding map G′ : SP → R∞,

then G′ = V ◦G for a unique homeomorphism V : G(SP)→ G′(SP).

(ii) The map

J : CTSP → CTR∞, J : (µt)0≤t≤T 7→
(
G(µt)

)
0≤t≤T

is measurable and one-to-one with measurable inverse J−1 : CTG(SP) → CTSP.

Furthermore, CTG(SP) ⊆ CTR∞ is a Borel measurable set.

Proof. (i) The continuity of G is obvious by definition of the vague topology on SP
and since G ⊆ Cc(Rd). Since SP with the vague topology is compact, compactness

of G(SP) ⊆ R∞ follows. G is measure separating on Rd, which implies that G is

one-to-one. Since by definition

G(µn) −→
n→∞

G(µ) in R∞ ⇐⇒ µn(gi) −→
n→∞

µ(gi) for each gi ∈ G,

continuity of G−1 holds due to Lemma 6.2.1 (i). The final claim follows, since for G′

as in the assertion, V : (µ(gi))i∈N 7→ (µ(g′i))i∈N is a homeomorphism.

(ii) Since G is one-to-one and measurable, so is J . Clearly, CTG(SP) is the range

of J and hence J : CTSP → CTG(SP) is a bijection between standard Borel

spaces (because SP and G(SP) with the respective topologies are Polish). This

yields the measurability of J−1. Finally, closedness of G(SP) ⊆ R∞ implies that

CTG(SP) ⊆ CTR∞ is a measurable set, because G(SP) carries the subspace topology

inherited from R∞.

In particular, due to the last assertion of part (i) of the above lemma, it is justified

from now on to consider a fixed set G as above with its corresponding homeomorphism G

as in (6.5).
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6.2.1 Tangent spaces, test functions and gradient on SP

The motivation for the definition of∇SP stems from the classical case of a d-dimensional

Riemannian manifold (M, g). Recall that in this case, the tangent space at x ∈M , TxM ,

consists of the ”directions” of smooth curves γx : [0, 1]→M passing through x, γx(0) = x.

Moreover, for a smooth function F : M → R, the gradient ∇F : M →
⊔
x∈M TxM is the

unique smooth section in the tangent bundle
⊔
x∈M TxM such that for each x ∈M , ∇F (x)

represents the cotangent element dFx with respect to the scalar product 〈·, ·〉g(x) on TxM ,

i.e. 〈∇F (x), ξ〉g(x) = dFx(ξ) for each ξ ∈ TxM . See Appendix F for more details.

In the present case, we do not consider SP as a (Fréchet) manifold in a rigorous way,

i.e. no tangent spaces TµSP are given a priori. Instead, one first of all chooses a suitable

set of curves γ : [0, 1]→ SP , which represent directions on SP . It turns out that a suitable

class is given by

γµΦ(t) := µ ◦
(

id +tΦ
)−1

, µ ∈ SP, Φ ∈ L2(Rd,Rd;µ), t ∈ [0, 1],

i.e. the SP-valued curve γµΦ starts at µ in the direction of the vector field Φ. In other

words, the set of directions at the point µ is parametrized by L2(Rd,Rd;µ). Consequently,

we define for each µ ∈ SP
TµSP := L2(Rd,Rd;µ).

Before we proceed to the definition of ∇SP , it is necessary to select a suitably large class of

test functions F : SP → R, which are differentiable along γµΦ. Similarly to [190], we choose

the test function class

FC2
b (G) := {F : SP → R|F : µ 7→ f

(
µ(g1), . . . , µ(gn)

)
, f ∈ C2

b (Rn), n ≥ 1}.

In comparison with [190], here we restrict the set of inner test functions from C2
c (Rd) to

{gi, i ∈ N} = G ⊆ C2
c (Rd) and the set of outer functions from C1

b (Rd) to C2
b (Rd). The

former restriction is necessary in order to transfer test functions F from FC2
b (G) to test

functions F̄ : R∞ → R via the homeomorphism G later on, while the latter choice is only

made for consistency with the stochastic case in Chapter 7, where we need test functions

with second-order differentiability. However, since C2
b (Rd) is dense in C1

b (Rd) with respect

to locally uniform convergence, and due to the choice of G, neither of these choices yields

an essential restriction of the class of test functions, see Remark 6.2.5 (ii).

Based on this choice of tangent bundle
⊔
µ∈SP TµSP and test function class FC2

b (G),

analogously to [190], the ansatz for a suitable notion of the gradient ∇SP is that it should

fulfill the characterizing equality(
”dFµ(Φ)” =

)
d

dt
F
(
γµΦ(t)

)
|t=0

= 〈∇SPF (µ),Φ〉L2(Rd,Rd;µ) (6.6)

for any Φ ∈ TµSP = L2(Rd,Rd;µ), F ∈ FC2
b (G) and µ ∈ SP . To this end, let F ∈ FC2

b (G)

have the representation

F (µ) = f
(
µ(g1), . . . , µ(gn)

)
(6.7)
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and observe

d

dt
F
(
γµΦ(t)

)
|t=0

=
n∑
k=1

(∂kf)
(
µ(g1), . . . , µ(gn)

)
µ(∇gk · Φ)

=
〈 n∑
i=1

(∂kf)
(
µ(g1), . . . , µ(gn)

)
∇gk,Φ

〉
L2(Rd,Rd;µ)

,

where we used d
dtγ

µ
Φ(t)(g)|t=0 = µ

(
∇g(id +tΦ) · Φ

)
|t=0

= µ(∇g · Φ) for the first equality.

Consequently, defining ∇SPF (µ) ∈ TµSP as

∇SPF (µ) :=

n∑
k=1

(∂kf)
(
µ(g1), . . . , µ(gn)

)
∇gk,

we have (6.6). In particular, ∇SPF is independent of the particular representation of F in

(6.7). For later use, we state the following observation.

Remark 6.2.3. Since ∇SPF is bounded on SP×Rd, the map Φ 7→
〈
∇SPF (µ),Φ

〉
L2(Rd,Rd;µ)

extends to L1(Rd,Rd;µ) for any µ ∈ SP. Hence, in the sequel, for Φ ∈ L1(Rd,Rd;µ) we

slightly abuse notation and write

ˆ
Rd
∇SPF (µ) · Φdµ =:

〈
∇SPF (µ),Φ〉L2(Rd,Rd;µ).

6.2.2 Linearization of (NLFPK)

Having derived a natural definition of the gradient ∇SP for test functions F ∈ FC2
b (G)

on SP , we recall the derivation of the continuity equation associated to (NLFPK) obtained

in [190]. Interpreting (NLFPK) as a differential equation on SP, the procedure resembles

the finite-dimensional Euclidean case, see Appendix B. If t 7→ µt is a subprobability solution

to (NLFPK), we obtain for any F ∈ FC2
b (G), F (µ) = f

(
µ(g1), . . . , µ(gn)

)
the calculation

d

dt
F (µt) =

n∑
k=1

(∂kf)
(
µ(g1), . . . , µ(gn)

)
∂tµt(gk)

=

n∑
k=1

(∂kf)
(
µ(g1), . . . , µ(gn)

) ˆ
Rd
Lt,µtgkdµt

=
〈 n∑
k=1

(∂kf)
(
µ(g1), . . . , µ(gn)

)
∇gk, a(t, µt, ·)∇+ b(t, µt, ·)

〉
L2(Rd,Rd;µt)

=
〈
∇SPF (µt), a(t, µt, ·)∇+ b(t, µt, ·)

〉
L2(Rd,Rd;µt)

,

where the meaning of the formal vector field a(t, µ, ·)∇ + b(t, µ, ·) is given by the third

equality above. Setting Γt := δµt ∈ P(SP) and integrating dt over [0, t] with dt leads to

ˆ
SP

F (µ)dΓt(µ)−
ˆ
SP

F (µ)Γ0(µ)

=

ˆ t

0

ˆ
SP

〈
∇SPF (µs), a(s, µs, ·)∇+ b(s, µs, ·)

〉
L2(Rd,Rd;µ)

dΓs(µ)ds.
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Consequently, the weakly continuous curve t 7→ Γt ∈ P(SP) is a distributional solution to

the linear first-order continuity-type equation

∂tΓt = −∇SP · ([b(t) + a(t)∇]Γt), 0 ≤ t ≤ T, (6.8)

in duality with test functions F ∈ FC2
b (G). Here, we abbreviated b(t) := µ 7→ b(t, µ) :=

b(t, µ, ·) and, analogously, write a(t). We introduce the time-dependent operator L, acting

on F ∈ FC2
b (G) via

(LtF )(µ) :=
〈
∇SPF (µ), a(t, µ)∇+ b(t, µ)

〉
L2(Rd,Rd;µ)

, µ ∈ SP. (6.9)

With this notation, the continuity equation (6.8) is the desired linearized equation (SP-CE)

of (NLFPK) as mentioned in the introduction in Chapter 5.

In terms of the interpretation of SP as manifold-like space, the formal vector field

a(t)∇+ b(t) (which has only rigorous meaning in its own right, if the spatial regularity of

a(t) allows to put the first-order term ∇ on a(t) via integration by parts, which we do not

assume at any point) can be considered a time-dependent section in the tangent bundle⊔
µ∈SP TµSP.

More generally, we define solutions to (6.8) (that is, to (SP-CE)) as follows.

Definition 6.2.4. A weakly continuous curve t 7→ Γt ∈ P(SP) is a solution to (6.8), if

the global integrability condition

ˆ T

0

ˆ
SP
||b(t, µ, ·)||L1(Rd,Rd;µ) + ||a(t, µ, ·)||

L1(Rd,Rd2 ;µ)
dΓt(µ)dt <∞ (6.10)

is fulfilled and for each F ∈ FC2
b (G) and t ∈ [0, T ], we have

ˆ
SP

F (µ)dΓt(µ)−
ˆ
SP

F (µ)dΓ0(µ) =

ˆ t

0

ˆ
SP

LsF (µ)dΓs(µ)ds. (6.11)

We make the following observations.

Remark 6.2.5. (i) In order to make sense of the integrals in (6.11), it is sufficient to

require the local (in space) condition

ˆ T

0

ˆ
SP
||b(t, µ, ·)||L1(K,Rd;µ) + ||a(t, µ, ·)||

L1(K,Rd2 ;µ)
dΓt(µ)dt <∞

for each compact set K ⊆ Rd. Indeed, each inner test function gk in the representation

of F : µ 7→ f
(
µ(g1), . . . , µ(gn)

)
is compactly supported. However, we need the global

condition (6.10) in our main result Theorem 5.2.1 and therefore include it directly in

Definition 6.2.4.

(ii) The choice of G implies that the validity of (6.11) can be extended to each test

function F of type F : µ 7→ f
(
µ(h1), . . . , µ(hn)

)
for n ∈ N, arbitrary hk ∈ C2

c (Rd)
and f ∈ C1

b (Rn). Indeed, let {gkl } ⊆ G be such that gkl −→ hk with respect to || · ||C2
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as l→∞ and consider FC2
b (G) 3 Fl : µ 7→ f

(
µ(g1

l ), . . . , µ(gnl )
)
. Clearly, we have for

each 0 ≤ t ≤ T ˆ
SP

Fl dΓt −→
l→∞

ˆ
SP

F dΓt

and

LtFl(µ) −→
l→∞

LtF (µ)

pointwise in (t, µ). Since {gkl : k ≤ n, l ≥ 1} is uniformly bounded with respect to

|| · ||C2 , considering (6.11) for Fl, in the limit l→∞ we obtain the validity of (6.11)

for F . In particular, the solution notion of Definition (6.2.4) is independent of the

choice of G.

In terms of the transfer of existence and uniqueness statements, we summarize the

considerations up to this point as follows. If there exists a subprobability solution t 7→ µt
to (NLFPK) with initial value µ ∈ SP, which fulfills the global assumption (6.3), then

there also exists a solution t 7→ Γt to (SP-CE) (i.e. to (6.8)) in the sense of Definition

6.2.4 with initial value Γ0 = δµ, given by Γt := δµt . Vice versa, if solutions to (SP-CE)

with initial value Γ0 = δµ are unique, then also solutions to subprobability solutions to

(NLFPK) with initial condition µ (and the global integrability condition (6.3)) are unique.

The respective reversed existence and uniqueness results follow as corollaries of the

main result of this chapter, see Subsection 6.4.1.

6.3 Proof of main result

We turn to the proof of Theorem 5.2.1. As a preparation, we transfer the equations

(NLFPK) and (SP-CE) to corresponding equations on R∞.

6.3.1 Transfer to R∞

We use the (formal) global chart G : SP → R∞ and the map J of Lemma 6.2.2

to obtain a differential equation and a continuity equation on R∞, which are closely

related to (NLFPK) and (SP-CE), respectively. To this end, we define a Borel vector

field B̄ = (B̄k)k∈N on R∞ component-wise as follows. For t ∈ [0, T ], consider the Borel set

At ∈ B(SP),

At :=

{
µ ∈ SP :

ˆ
Rd
|aij(t, µ, x)|+ |bi(t, µ, x)|dµ(x) <∞ ∀i, j ≤ d

}
and set B := (Bk)k∈N ∈ R∞ via

Bk(t, µ) :=

ˆ
Rd
Lt,µgk(x)dµ(x), (t, µ) ∈ [0, T ]×At. (6.12)

Now define B̄ : [0, T ]× R∞ → R∞ via

B̄(t, z) :=

{
B(t, G−1(z)) , if z ∈ G(At)

0 , else
,
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which is Borel measurable by Lemma 6.2.2. Consider the differential equation for curves

t 7→ zt ∈ R∞ and the continuity equation for curves t 7→ Γ̄t in P(R∞) induced by this

vector field, i.e.

żt = B̄(t, zt), t ∈ [0, T ], (R∞-ODE)

and

∂tΓ̄t = −∇̄ · (B̄Γ̄t), t ∈ [0, T ], (R∞-CE)

with ∇̄ as in (6.13). These equations can roughly be understood as (NLFPK) and (SP-CE)

transferred from SP to R∞ via the chart G. Let

pi : R∞ → R, pi
(
(zi)i∈N

)
:= zi

denote the canonical projection to the i-th component and set π(n) := (p1, . . . , pn). In

analogy to the test function class FC2
b (G) on SP, here we consider the class

FC2
b (R∞) := {F̄ : R∞ → R|F̄ = f ◦ π(n), f ∈ C2

b (Rn), n ≥ 1}.

As for FC2
b (G), the restriction to test functions possessing second-order derivatives is only

made for consistency with the stochastic (second-order) case in Chapter 7. By ∇̄ we denote

the gradient-type operator on R∞, which acts on F̄ = f ◦ π(n) ∈ FC2
b (R∞) via

∇̄F̄ (z) :=
(
(∂1f)(π(n)z), . . . , (∂nf)(π(n)z), 0, 0, . . .

)
. (6.13)

The notion of solution to equations (R∞-ODE) and (R∞-CE) is as follows. Recall that we

abuse notation for the standard Euclidean inner product and write x · y =
∑

k≥1 xkyk also

in the case x, y ∈ R∞, if either x or y contain only finitely many nontrivial summands.

Definition 6.3.1. (i) A continuous curve t 7→ zt ∈ R∞ is a solution to (R∞-ODE), if

for each i ∈ N, the real curve t 7→ pi ◦ zt is absolutely continuous with weak derivative

t 7→ pi ◦ B̄(t, zt) dt-a.s.

(ii) A weakly continuous curve t 7→ Γ̄t ∈ P(R∞) is a solution to (R∞-CE), if it fulfills

the global integrability condition

ˆ T

0

ˆ
R∞
|B̄k(t, z)|dΓ̄t(z)dt <∞, k ∈ N, (6.14)

and for each F̄ ∈ FC2
b (R∞) the identity

ˆ
R∞

F̄ (z)dΓ̄t(z)−
ˆ
R∞

F̄ (z)dΓ̄0(z) =

ˆ t

0

ˆ
R∞
∇̄F̄ (z) · B̄(s, z)dΓ̄s(z)ds (6.15)

holds for all t ∈ [0, T ].

Remark 6.3.2. It is clear that the validity of (6.15) extends to each F̄ ∈ FC1
b (R∞), i.e.

to functions of type F̄ = f ◦ π(n) for f ∈ C1
b (Rn). Indeed, for this it suffices to approximate

f ∈ C1
b (Rn) pointwise by a sequence fn ∈ C2

b (Rn) and to consider (6.15) for F̄n = fn ◦ π(n)

as n→∞.
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6.3.2 Proof of Theorem 5.2.1

The proof follows the three step procedure outlined in the introduction in Chapter

5. First, we transfer (Γt)0≤t≤T to a solution (Γ̄t)0≤t≤T to (R∞-CE). Secondly, by a

superposition principle on R∞ (cf. Proposition 6.3.3), we obtain a measure η̄ ∈ P(CTR∞)

with η̄ ◦ (π∞t )−1 = Γ̄t concentrated on solution curves to (R∞-ODE). Finally, we transfer

η̄ back to a measure η ∈ P(CTSP) with all properties claimed in Theorem 5.2.1.

We will use the following superposition principle for equations of type (R∞-ODE) and

(R∞-CE), cf. [13, Thm.7.1]. Due to Remark 6.3.2, it is no additional assumption to

consider the larger class of test functions FC1
b (R∞) in the next proposition.

Proposition 6.3.3. Let t 7→ Γ̄t be a solution to (R∞-CE) in the sense of Definition 6.3.1

(ii) with test functions FC1
b (R∞) instead of FC2

b (R∞). Then, there exists a Borel measure

η̄ ∈ P(CTR∞) concentrated on solutions to (R∞-ODE) in the sense of Definition 6.3.1 (i)

such that

η̄ ◦ (π∞t )−1 = Γ̄t, 0 ≤ t ≤ T.

We now proceed to the three step procedure in order to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. Let Γ = (Γt)0≤t≤T be a weakly continuous solution to (SP-CE)

as in Definition 6.2.4.

Step 1: From (SP-CE) to (R∞-CE). Set

Γ̄t := Γt ◦G−1, 0 ≤ t ≤ T,

with G as in Lemma 6.2.2. Since G is continuous, t 7→ Γ̄t is a weakly continuous curve of

Borel subprobability measures on R∞, and it solves (R∞-CE). Indeed, the integrability

condition (6.14) is fulfilled, since Γ fulfills Definition 6.2.4. Furthermore, since Γ solves

(SP-CE), we have for any FC2
b (G) 3 F : µ 7→ f

(
µ(g1), . . . , µ(gn)

)
and t ∈ [0, T ]

ˆ
SP

F (µ)dΓt(µ)−
ˆ
SP

F (µ)dΓ0(µ) =

ˆ t

0

ˆ
SP

LsF (µ)dΓs(µ)ds (6.16)

and hence, abbreviating Bk(t, ·) and B̄k(t, ·) by Bk,t and B̄k,t, respectively, and setting

F̄ = f ◦ π(n) for f as above, we have

ˆ t

0

ˆ
SP

LsF (µ)dΓs(µ)ds =

ˆ t

0

ˆ
SP

n∑
k=1

(∂kf)
(
µ(g1), . . . , µ(gn)

)( ˆ
Rd
Ls,µgk(x)dµ(x)

)
Γs(µ)ds

=

ˆ t

0

ˆ
SP

n∑
k=1

(∂kf)
(
µ(g1), . . . , µ(gn)

)
Bk,s(µ)dΓs(µ)ds

=

ˆ t

0

ˆ
SP

n∑
k=1

(∂kf)
(
p1 ◦G(µ), . . . , pn ◦G(µ)

)
B̄k,s ◦G(µ)dΓs(µ)ds

=

ˆ t

0

ˆ
R∞
∇̄F̄ (z) · B̄s(z)Γ̄s(z)ds.
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Moreover, for each t ∈ [0, T ], we have

ˆ
SP

F (µ)dΓt(µ) =

ˆ
SP

f
(
p1 ◦G(µ), . . . , pn ◦G(µ)

)
dΓt(µ) =

ˆ
R∞

F̄ (z)dΓ̄t(z).

Comparing with (6.16), it follows that (Γ̄t)0≤t≤T is a solution to (R∞-CE) as claimed,

because the above calculation holds for arbitrary F ∈ FC2
b (G) and hence for arbitrary

F̄ ∈ FC2
b (R∞).

Step 2: From (R∞-CE) to (R∞-ODE). Proposition 6.3.3 implies the existence of

a measure η̄ ∈ P(CTR∞) such that

(i) η̄ ◦ (π∞t )−1 = Γ̄t, 0 ≤ t ≤ T .

(ii) η̄ is concentrated on solution paths to (R∞-ODE).

Step 3: From (R∞-ODE) to (NLFPK). We show that the measure η ∈ P(CTSP)

defined as

η := η̄ ◦ (J−1)−1, (6.17)

with J as in Lemma 6.2.2, fulfills all properties of the assertion. Indeed, since

η̄ ◦ (π∞t )−1 = Γ̄t = Γt ◦G−1

for each t ∈ [0, T ], we deduce that η̄ ◦ (π∞t )−1 is concentrated on G(SP). By Lemma 6.2.2,

G(SP) ⊆ R∞ is closed. Since by construction η̄ is concentrated on continuous curves in

R∞, η̄ is concentrated on CTG(SP). Furthermore, CTG(SP) ⊆ CTR∞ is a measurable set

and J−1 : CTG(SP)→ CTSP is measurable by Lemma 6.2.2. Therefore, we may define

η ∈ P(CTSP) as in (6.17).

It remains to verify η ◦ π−1
t = Γt for all t ∈ [0, T ] and that η is concentrated on

subprobability solutions to (NLFPK). Concerning the former property, we note

η ◦ π−1
t = η̄ ◦ (J−1)−1 ◦ π−1

t = η̄ ◦ (πt ◦ J−1)−1

and

Γt = Γt ◦ (G−1 ◦G)−1 = Γ̄t ◦ (G−1)−1 = η̄ ◦ (G−1 ◦ π∞t )−1.

Since πt ◦ J−1 and G−1 ◦ π∞t coincide on CTG(SP), and we have shown above that η̄ is

concentrated on CTG(SP), we obtain η ◦ π−1
t = Γt for each t ∈ [0, T ], as desired.

Concerning the second aspect, note that by definition of η and Γ̄t and the equality

πt ◦ J−1 = G−1 ◦ π∞t on CTG(SP), assumption (6.10) for (Γt)0≤t≤T implies

ˆ
CTSP

ˆ T

0
||b(t, πt)||L1(Rd,Rd;πt) + ||a(t, πt)||L1(Rd,Rd2 ;πt)

dtdη

=

ˆ T

0

ˆ
CTG(SP)

||b(t, G−1 ◦ π∞t )||L1(Rd,Rd;G−1◦π∞t ) + ||a(t, G−1 ◦ π∞t )||
L1(Rd,Rd2 ;G−1◦π∞t )

dη̄dt

=

ˆ T

0

ˆ
SP
||b(t, µ)||L1(Rd,Rd;µ) + ||a(t, µ)||

L1(Rd,Rd2 ;µ)
dΓt(µ)dt <∞. (6.18)
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Consequently, η is concentrated on vaguely continuous curves t 7→ µt in SP with the global

integrability property (6.3) such that t 7→ G(µt) is a solution path to (R∞-ODE), i.e.

d

dt
pk ◦G(µt) = pk ◦ B̄(t, G(µt)) dt-a.s., k ∈ N. (6.19)

Each such curve t 7→ µt is a subprobability solution to (NLFPK). Indeed, by definition

of the vector field B̄ and since the previous calculation in particular gives µt ∈ At dt-a.s.,

(6.19) is equivalent to the following equality for each k ∈ N:

d

dt

ˆ
Rd
gkdµt =

ˆ
Rd
Lt,µtgkdµt dt-a.s.

⇐⇒
ˆ
Rd
gkdµt −

ˆ
Rd
gkµ0 =

ˆ t

0

ˆ
Rd
Ls,µsgkdµsds, t ∈ [0, T ].

Hence, Lemma 6.2.1 (ii) implies that t 7→ µt is a subprobability solution to (NLFPK).

It remains to prove the additional assertion about probability solutions. To this end,

assume Γ0 is concentrated on P. Then, η(π0 ∈ P) = Γ0(P) = 1, and hence the claim

follows by Remark 6.1.2 and the aforementioned observation that (6.18) implies that η is

concentrated on vaguely continuous curves t 7→ µt which fulfill (6.3).

Remark 6.3.4. Here, we explain why our basic space of measures in the entire chapter is

SP with the vague topology instead of P (with either the vague or weak topology), even

though we are mainly interested in (weakly continuous) probability solutions t 7→ µt to

(NLFPK). If we had restricted the entire approach to probability solutions, and hence to

solutions (Γt)0≤t≤T to (SP-CE) with Γt ∈ P(P), we could not have proven that η̄ as in the

above proof is concentrated on CTG(P) (in fact, we could not even show η̄(CTG(P)) > 0).

Indeed, inspecting the proof, we only could have proven that η̄ ◦π−1
t is concentrated on G(P)

for each t ≤ T . But since P with the vague topology is not closed, this does not imply that a

measure on R∞ with one-dimensional marginals Γ̄t is concentrated on CTG(P). Therefore,

in this situation it seems not possible to pull η̄ back to a measure η on CTP as in (6.17).

Considering P with the (more natural) weak topology yields similar obstacles, since the lack

of separability of the corresponding test function class Cb(Rd) yields that a map of type G

cannot have closed range in R∞.

These issues are resolved by considering SP with the vague topology, which is compact,

and the corresponding test function class Cc(Rd), which is separable. In order to recover

a result for probability measures as in the second part of the assertion of Theorem 5.2.1,

we need to assume the global integrability assumption (6.10). We point out that this global

condition can be weakened to a local assumption in the sense of Remark 6.2.5 (i), if one

omits the final assertion of Theorem 5.2.1.

6.4 Consequences: Existence, uniqueness and an application

6.4.1 Transfer of existence and uniqueness

The following observations follow readily from the superposition principle Theorem

5.2.1 and allow to transfer existence and uniqueness results between the nonlinear equation

(NLFPK) and its linearized continuity equation (SP-CE).
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Corollary 6.4.1. Let Γ ∈ P(SP) and assume there exists a solution t 7→ Γt to (SP-CE)

with initial condition Γ0 = Γ. Then, for Γ-a.e. µ ∈ SP, there exists a subprobability

solution t 7→ µt to (NLFPK) with initial condition µ0 = µ. Moreover, if Γ ∈ P(P), then

for Γ-a.e. µ, there exists a probability solution t 7→ µt to (NLFPK) with initial condition

µ0 = µ.

Proof. Under the above assumption, Theorem 5.2.1 yields the existence of a probability

measure η concentrated on subprobability solutions to (NLFPK) with η ◦ π−1
0 = Γ. Hence,

the set of µ ∈ SP for which there is no solution t 7→ µt to (NLFPK) with µ0 = µ is

Γ-negligible. Concerning the second assertion, up to a η-negligible set, each solution curve

to (NLFPK) with a probability initial condition in the support of η is a probability solution

due to the global integrability condition (6.10). This implies the claim.

Corollary 6.4.2. Let ν ∈ SP and assume there exists at most one vaguely continuous

subprobability solution t 7→ µt to (NLFPK) with µ0 = ν. Then, there exists also at most

one weakly continuous solution t 7→ Γt to (SP-CE) with initial condition δν. If ν ∈ P,

then, in the case of existence, we have Γt ∈ P(P) for each t ∈ [0, T ].

Proof. Let Γ(1) and Γ(2) be weakly continuous solutions to (SP-CE) with Γ
(i)
0 = δν for

i ∈ {1, 2}. By Theorem 5.2.1, there exist probability measures η(i), i ∈ {1, 2}, concentrated

on subprobability solutions to (NLFPK) with initial condition ν such that η(i) ◦ π−1
t = Γ

(i)
t

for all t ∈ [0, T ] and i ∈ {1, 2}. By assumption, we obtain η(1) = δµ = η(2) for a unique

curve µ : t 7→ µt in CTSP and thus also Γ(1) = Γ(2). If ν ∈ P, then µ ∈ CTP by Remark

6.1.2, which gives the second assertion.

6.4.2 Application: Coupled nonlinear-linear FPK equations

We close this chapter by applying our result to an open conjecture posed in [190]. Let us

shortly recapitulate the necessary framework. For more details, we refer to [190]. Therein,

for an operator L as in (5.5), the authors consider a coupled nonlinear-linear FPK equation

of type {
∂tµt = L∗t,µtµt
∂tνt = L∗t,µtνt,

(6.20)

i.e. comparing to our situation, the first nonlinear equation is of type (NLFPK) and the

second (linear) equation is obtained by ”freezing” a solution (µt)0≤t≤T to the first equation

in the measure argument of L. For an initial condition (µ, ν) ∈ P ×P , (6.20) has a unique

solution, if there exists a unique probability solution (µt)0≤t≤T to the first equation in the

sense of Definition 6.1.1 with the global integrability condition (6.3) such that µ0 = µ, and

a unique weakly continuous curve (νt)0≤t≤T ⊆ P such that

ˆ T

0

ˆ
Rd
|a(t, µt, x)|+ |b(t, µt, x)|dνt(x)dt <∞,

which solves the second equation of (6.20) with fixed coefficient µt with ν0 = ν in distribu-

tional sense as in (6.2).
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In [190], the authors associate a linear continuity equation on Rd × P to (6.20) in the

following sense. Let L be the operator acting on functions

C :=
{

Φ : (x, µ) 7→ ϕ(x)F (µ) : ϕ ∈ C2
c (Rd), F ∈ FC2

b (P)
}
,

via

LtΦ(x, µ) := Lt,µΦ(·, µ)(x) + LtΦ(x, ·)(µ),

with L as in (5.5) and L as in (6.9). Here, adapting the notation of [190], we denote by

FC2
b (P) the set of test functions F : P → R, F : µ 7→ f

(
µ(h1), . . . , µ(hn)

)
, f ∈ C2

b (Rn),

n ≥ 1, hi ∈ C2
c (Rd). Consider the linear continuity equation

∂tΛt = L∗tΛt, t ∈ [0, T ], (6.21)

for curves of probability measures on Rd×P . A weakly continuous curve t 7→ Λt ∈ P(Rd×P)

is a called solution to (6.21), provided

ˆ T

0

ˆ
Rd×P

||b(s, µ, ·)||L1(Rd,Rd;µ)+||a(s, µ, ·)||
L1(Rd,Rd2 ;µ)

+(|b|+|a|)(s, µ, x)Λs(dxdµ)ds <∞,

and for any G ∈ C
ˆ
Rd×P

GdΛt −
ˆ
Rd×P

GdΛ0 =

ˆ t

0

ˆ
Rd×P

LsGdΛsds, t ∈ [0, T ],

compare [190, Def.2.2]. One readily observes that a weakly continuous curve t 7→ (µt, νt) ∈
P × P solves (6.20) if and only if Λt := νt × δµt solves (6.21).

The open question of [190, Rem.4.4] can be stated as follows: If (6.20) has a unique

solution for some initial pair (µ, ν) ∈ P ×P , does it follow that t 7→ νt× δµt ∈ P(Rd×P) is

the only solution to (6.21)? By our main result of this chapter, Theorem 5.2.1, the answer

is affirmative:

Proposition 6.4.3. If (µt, νt)0≤t≤T is the unique solution to (6.20) with initial condition

(µ, ν) ∈ P × P, then Λt := (νt × δµt)0≤t≤T is the unique solution to (6.21) with initial

condition ν × δµ.

Proof. The notion of uniqueness to (6.20) in particular implies that t 7→ µt is the unique

probability solution to the first equation of (6.20) with initial condition µ0 = µ, i.e. an

equation of type (NLFPK). By Corollary (6.4.2), the unique solution to the corresponding

continuity equation (SP-CE) for curves in P(P) with initial condition δµ is t 7→ δµt . Let

(Λ
(1)
t )0≤t≤T and (Λ

(2)
t )0≤t≤T be two solutions to (6.21) with initial condition ν × δµ. It

is straightforward to check that the curves of second marginals (Λ
(1)
t ◦ Π

−1
2 )0≤t≤T and

(Λ
(2)
t ◦Π

−1
2 )0≤t≤T are probability solutions to (SP-CE) with initial condition δµ (where we

denote by Π2 : Rd ×P → P the projection from Rd ×P to the second coordinate). Hence,

we have

Λ
(1)
t ◦Π

−1
2 = δµt = Λ

(2)
t ◦Π

−1
2 , t ∈ [0, T ].

Since any probability measure on a product space with one one-dimensional marginal being

a Dirac-measure is of product type, it follows that Λ
(i)
t = σ

(i)
t × δµt for weakly continuous
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curves (σ
(i)
t )0≤t≤T ⊆ P , i ∈ {1, 2}. It is immediate to show that t 7→ σ

(i)
t solves the second

equation of (6.20) with fixed µt and initial condition ν. Hence, we obtain σ
(i)
t = νt for each

t ∈ [0, T ] and i ∈ {1, 2}, which implies Λ
(1)
t = Λ

(2)
t . Consequently, the unique solution to

(6.21) with initial condition ν × δµ is given by (νt × δµt)0≤t≤T .

Chapter 7

Superposition principle for

stochastic nonlinear FPK

equations

7.1 Preliminaries

7.1.1 Notation and conventions

On the space of square-summable real sequences `2 := {(xi)i∈N :
∑

i≥1 x
2
i < ∞}, we

consider the usual inner product 〈x, y〉`2 =
∑

i≥1 xiyi (also abbreviated x ·y, if no confusion

can appear) and the induced norm || · ||`2 . On `2 and the space CT `
2 of continuous functions

f : [0, T ]→ `2, we unambiguously use the same notation pi, π
(n) and π∞t as on R∞ and

CTR∞ from the previous chapter. In particular, we have B(CT `
2) = σ(π∞t , t ∈ [0, T ]).

Pathwise properties of stochastic processes, such as continuity, are always understood

up to a negligible exception set with respect to the underlying measure, e.g. for a process

µ : [0, T ]×Ω→ SP on a probability space (Ω,F ,P), the paths of µ are vaguely continuous

means that there is a P-negligible set N ⊆ Ω such that for each ω ∈ N c, the path t 7→ µt(ω)

is vaguely continuous.

As in the previous chapter, we consider SP as a compact Polish space with the vague

topology.

7.1.2 Stochastic nonlinear FPK-equations

In addition to B([0, T ])⊗ B(SP)⊗ B(Rd)-measurable coefficients

aij : [0, T ]× SP × Rd → R, bi : [0, T ]× SP × Rd → R, 1 ≤ i, j ≤ d,

as in the previous chapter, also let d1 ∈ N and consider σ(t, µ, x) = (σij(t, µ, x))i≤d,j≤d1
with B([0, T ])⊗ B(SP)⊗ B(Rd)-measurable coefficients σij . We still use the notation L
for the second-order differential operator with coefficients aij , bi as in (5.5). Throughout,
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we assume σ to be bounded. In contrast to the deterministic framework of the previous

chapter, now we consider nonlinear stochastic FPK-equations of type (SNLFPK) on [0, T ].

Definition 7.1.1. (i) A pair (µ,W ), consisting of an (Ft)0≤t≤T -adapted, SP-valued

stochastic process µ = (µt)0≤t≤T with vaguely continuous paths, and a d1-dimensional

(Ft)0≤t≤T -Brownian motion W = (Wt)0≤t≤T on a complete probability space

(Ω,F , (Ft)0≤t≤T ,P) is a subprobability solution to (SNLFPK), provided

ˆ T

0

ˆ
Rd
|bi(t, µt, x)|+ |aij(t, µt, x)|+ |σik(t, µt, x)|2dµt(x)dt <∞ P-a.s. (7.1)

for each i, j ≤ d, k ≤ d1, and

ˆ
Rd
ϕ(x)dµt(x)−

ˆ
Rd
ϕ(x)dµ0(x)

=

ˆ t

0

ˆ
Rd
Ls,µsϕ(x)dµs(x)ds+

ˆ t

0

ˆ
Rd
σ(s, µs, x) · ∇ϕ(x)dµs(x)dWs

(7.2)

holds P-a.s. for each t ∈ [0, T ] and ϕ ∈ C∞c (Rd).

(ii) A probability solution to (SNLFPK) is a pair (µ,W ) as above such that the paths

t 7→ µt are P-valued (and hence weakly continuous).

Of course, under the present assumption of boundedness of σ, the integrability assump-

tion on the last summand in (7.1) is fulfilled for any curve t 7→ µt ∈ SP . By approximation,

the validity of (7.2) extends to ϕ ∈ C2
c (Rd). Note that this notion of solution is proba-

bilistically weak, i.e. the probability space is part of the solution and the process µ is not

necessarily adapted to the canonical Brownian filtration.

Remark 7.1.2. (i) Since the paths t 7→ µt(ω) are vaguely continuous and the stochastic

integral t 7→
´ t

0

´
Rd σ(s, µs) · ∇ϕdµsdWs has continuous paths, the exceptional set in

the above definition can be chosen independently of t.

(ii) The first integral on the right-hand side of (7.2) is a pathwise integral (that is, for

individual fixed ω ∈ Ω) with respect to the finite measure µs(ω)ds on [0, T ]×Rd. The

second integral is a stochastic integral, which is defined since the integrand

(t, ω) 7→
ˆ
Rd
σ(t, µt(ω), x) · ∇ϕ(x)dµt(ω)(x)

is Rd1-valued, bounded, product-measurable and Ft-adapted [68, Thm.3.8]. More

precisely, it reads

ˆ t

0

ˆ
Rd
σ(s, µs, x) · ∇ϕ(x)dµs(x)dWs =

d1∑
α=1

ˆ t

0

ˆ
Rd
σα(s, µs, x) · ∇ϕ(x)dµs(x)dWα

s ,

where σα = (σiα)1≤i≤d denotes the α-th column of σ, and the components Wα,

1 ≤ α ≤ d1, of W are real, independent Brownian motions.
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Due to (7.1), and since σ is bounded, we obtain (in analogy to Remark 6.1.2) the

following conservation of mass, which we use to prove the final assertion of the main result

Theorem 5.2.2.

Lemma 7.1.3. Let (µt)0≤t≤T be a subprobability solution to (SNLFPK). If µ0 ∈ P P-a.s.,

then the paths t 7→ µt are P-valued and, in particular, weakly continuous.

Proof. Let (ϕk)k≥1 ⊆ C∞c (Rd) approximate the constant function 1 as in Remark 6.1.2.

For the continuous (Ft)0≤t≤T -martingales

Xk
t :=

ˆ t

0

ˆ
Rd
σ(s, µs, x) · ∇ϕk(x)dµs(x)dWs, k ∈ N,

we obtain by Burkholder-Davies-Gundy inequality, Itô’s isometry, and boundedness of σ

E
[

sup
t≤T
|Xk

t |
]
≤ CE

[ˆ T

0

∣∣∣∣ˆ
Rd
σ(s, µs, x) · ∇ϕk(x)dµs(x)

∣∣∣∣1/2ds] −→k→∞ 0. (7.3)

Consequently, along a subsequence {kl}l∈N, we have supt≤T |X
kl
t | −→

l→∞
0 for each ω ∈ N c

1 ,

for a P-negligible set N1. By (7.1), it is clear that the left-hand side and the first integral

on the right-hand side of (7.2) converge ω-wise to µt(Rd)− µ0(Rd) and 0, respectively, as

l →∞, i.e. in the limit of (7.2) for l →∞, we obtain the existence of a P-negligible set

N2 ⊆ Ω such that for each ω ∈ N c
1 ∩N c

2 , we have

µt(ω)(Rd) = µ0(ω)(Rd), t ∈ [0, T ],

which gives the claim.

7.2 Geometry on SP revisited: Second-order equations

As in the deterministic case in Section 6.2, we consider SP as a manifold-like space

with tangent spaces TµSP = L2(Rd,Rd;µ). However, instead of G : SP → R∞ as in 6.2.2,

now we consider a homeomorphism

H : SP → `2

in order to handle the stochastic integral term in (7.2). To this end, we replace the set of

functions G = {gi, i ≥ 1} of the deterministic case by

H := {hi, i ≥ 1}, hi := i−1 gi
||gi||C2

(7.4)

and consider the map

H : SP → `2, H : µ 7→ (µ(hi))i≥1.

The following lemma collects useful properties of H and H, which are in the spirit of

Lemma 6.2.1 and 6.2.2. We point out that we could have used the function class H instead

of G already in Chapter 6, but we decided to pass from G to H at this point in order to

stress the technical adjustments necessary due to the stochastic case.
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Lemma 7.2.1. (i) The set H is measure separating. Furthermore, a process (µt)0≤t≤T
as in Definition 7.1.1 is a solution to (SNLFPK) if and only if (7.2) holds for each

hi ∈ H in place of ϕ.

(ii) H is a homeomorphism between SP and its range H(SP) ⊆ `2, endowed with the

`2-subspace topology. In particular, H(SP) ⊆ `2 is compact.

Proof. (i) The first claim is obvious, since G is measure separating. Concerning the

second claim, it is clear that (7.2) for each hi ∈ H is equivalent to the validity of

(7.2) for each gi ∈ G. Since the latter set is dense in C2
c (Rd), for any ϕ ∈ C2

c (Rd),
there is a sequence (gik)k∈N such that ||gil − ϕ||C2 −→ 0 as k →∞. Then, by Itô’s

isometry, we have for each t ∈ [0, T ]

E
[(ˆ t

0

ˆ
Rd
σ(s, µs)·∇(gik−ϕ)dµsdWs

)2]
= E

[ˆ t

0

∣∣∣∣ ˆ
Rd
σ(s, µs)·∇(gik−ϕ)dµs

∣∣∣∣2ds]
and the right-hand side converges to 0 as k →∞ due to the boundedness of σ. Hence,

along a further subsequence, for simplicity again denoted by (ik)k∈N, we have P-a.s.

ˆ t

0

ˆ
Rd
σ(s, µs, x) · ∇gik(x)dµs(x)dWs −→

k→∞

ˆ t

0

ˆ
Rd
σ(s, µs, x) · ∇ϕ(x)dµs(x)dWs.

The ω-wise convergence of all other terms in (7.2) is clear, so that for each (t, ϕ) ∈
[0, T ]× C2

c (Rd), (7.2) holds on the complement of a P-negligible set. This gives the

claim.

(ii) By definition, H maps into `2. Since H is measure separating, it follows that H is

one-to-one, hence bijective onto its range. If (µn)n∈N converges vaguely to µ in SP,

then H(µn) converges to H(µ) in the product topology. Since for any i ≥ 1, we have

sup
n≥1
|H(µn)i| ≤ i−1,

the convergence holds in the `2-topology as well, which implies continuity of H. In

particular, H(SP) ⊆ `2 is compact. Conversely, if H(µn) converges to some z in `2,

then, by closedness of H(SP) ⊆ `2, we have z = H(µ) for a unique element µ ∈ SP
and µn −→

n→∞
µ vaguely. Indeed, the latter follows as in Lemma 6.2.2 (i).

In this chapter, we use the test function class FC2
b (H), where F ∈ FC2

b (H) if and only

if F : SP → R, F : µ 7→ f
(
µ(h1), . . . µ(hn)

)
, f ∈ C2

b (Rn), n ∈ N and hi ∈ H. Note that

FC2
b (H) coincides with FC2

b (G) from Chapter 6, since the transition from the inner test

functions gi to hi can be incorporated in the choice of f . Nevertheless, we use the new

notation FC2
b (H) in order to stress the change of test functions from G to H in comparison

to the deterministic case.

7.2.1 A natural Hessian-type operator on SP

As in the deterministic case, one can associate a linear equation for curves in P(SP) to

the stochastic nonlinear equation (SNLFPK). Of course, the basic idea stems from the
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deterministic case presented in Chapter 6. From Itô’s, formula one expects this linearized

equation to be of second order. In the finite-dimensional case, the second-order term of

the linearization comprises the Hessian operator on Rd (i.e., the Hessian matrix Hess f

for test functions f : Rd → R), cf. Appendix B. In this section, we introduce a natural

notion of an analogous Hessian-type operator on the manifold-like space SP , which will be

used later on to derive the linear second-order equation for curves in P(SP) associated

to (SNLFPK). To the best of our knowledge, such a geometric approach towards the

linearization of stochastic FPK equations has not been considered in the literature before.

Recall that for a smooth function f : M → R on a Riemannian manifold (M, g) with

tangent bundle TM , the Hessian Hess f is the 0-2 tensor, which acts on smooth vector

fields X,Y : M →
⊔
x∈M TxM as a bilinear form via

HessF (X,Y ) =
〈
∇LX∇F, Y

〉
g
. (7.5)

Here, ∇L :
⊔
x∈M TxM ×

⊔
x∈M TxM →

⊔
x∈M TxM denotes the Levi-Civita connection on

M , the unique torsion-free affine connection compatible with g, and ∇ denotes the gradient

on (M, g). We refer to Appendix F for more details. Intuitively, for another smooth vector

field Z on M ,
(
∇LXZ

)
(x) ∈ TxM denotes the change in direction X(x) of the vector field

Z at x. With this intuition in mind, in the case M = SP, it is reasonable to set

(∇L,SPX Z)(µ) =
〈
(∇SPZ)(µ), X(µ)

〉
L2(Rd,Rd;µ)

, (7.6)

provided we can make sense of the above right-hand side. This ansatz is also motivated by

the finite-dimensional case M = Rd with the standard Euclidean metric, since in this case,

for vector fields X,Z : Rd → Rd, the Levi-Civita connection is given by

(∇LXZ)(x) = (∇X(x)Z)(x) = 〈(∇Z)(x), X(x)〉Rd ∈ Rd.

For our particular case of interest, i.e. Z = ∇SPF forF ∈ FC2
b (H), F : µ 7→ f

(
µ(h1), . . . , µ(hn)

)
,

we can indeed make sense of ∇SP∇SPF , and hence of the right-hand side of (7.6), because

the gradient

µ 7→ ∇SPF (µ) =

n∑
k=1

(∂kf)
(
µ(h1), . . . , µ(hn)

)
∇hk

is a linear combination of the functions µ 7→ ∂kf
(
µ(h1), . . . , µ(hn)

)
, which are of FC2

b (H)-

type up to a missing second derivative of the outer functions ∂kf ∈ C1
b (Rn). The linear

combination has to be understood x-wise in the functions ∇hk, which do not depend on

the variable of interest µ. Denoting Fk(µ) := (∂kf)
(
µ(h1), . . . , µ(hn)

)
, we then define

(∇SP)2F (µ)(x, y) :=

n∑
k=1

(
∇SPFk(µ)

)
(y)∇hk(x), (x, y) ∈ Rd × Rd. (7.7)

From here, for σ ∈ TµSP, we consider the natural Levi-Civita connection-type operator

applied to ∇SPF , given as
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∇L,SPσ ∇SPF (µ) :=
〈
(∇SP)2F (µ), σ

〉
L2(Rd,Rd;µ)

=
n∑

k,l=1

(∂klf)
(
µ(h1), . . . , µ(hn)

)
∇hk

( ˆ
Rd
σ(y) · ∇hl(y)dµ(y)

)
∈ L2(Rd,Rd;µ).

The definition of (∇SP)2F (as well as ∇L,SPσ ∇SPF and HessF below) is independent of

the particular representation of F . Indeed, we have (c.f. [190, App.A]) for

γµσ (t) := µ ◦ (id +tσ)−1, µ ∈ SP, t ∈ [0, T ],

the following pointwise (in x ∈ Rd) equality for each µ ∈ SP, σ ∈ L2(Rd,Rd;µ)

d

dt
∇SPF

(
γσµ(t)

)
|t=0

=
n∑

k,l=1

(∂klf)
(
µ(h1), . . . , µ(hn)

)〈
∇hl, σ

〉
L2(Rd,Rd;µ)

∇hk

=
〈
(∇SP)2F (µ), σ

〉
L2(Rd,Rd;µ)

.

Since the gradient ∇SPF is independent of the particular representation of F (see Chapter

6) and σ ∈ L2(Rd,Rd;µ) is arbitrary, also (∇SP)2F is independent of the representation of

F .

In the spirit of (7.5), now we set for F ∈ FC2
b (H) and σ, σ̃ ∈ L2(Rd,Rd;µ)

HessF (µ) : (σ, σ̃) 7→
〈
〈(∇SP)2F (µ), σ

〉
L2(Rd,Rd;µ)

, σ̃
〉
L2(Rd,Rd;µ)

, (7.8)

i.e. explicitly we have

HessF (µ) : (σ, σ̃) 7→
n∑

k,l=1

(∂klf)
(
µ(h1), . . . , µ(hn)

)( ˆ
Rd
σ · ∇hldµ

)( ˆ
Rd
σ̃ · ∇hkdµ

)
,

(7.9)

which is a symmetric bilinear form on TµSP = L2(Rd,Rd;µ) for each µ ∈ SP.

7.2.2 Linearization and second-order equations on SP

Let
(
(µt)0≤t≤T , (Wt)0≤t≤T

)
be a subprobability solution to (SNLFPK) on a filtered prob-

ability space (Ω,F , (Ft)0≤t≤T ,P), and let F : µ 7→ f
(
µ(h1), . . . , µ(hn)

)
be from FC2

b (H).

As before, we abbreviate b(t, µ) := b(t, µ, ·) and similarly for a and σ = (σα)1≤α≤d1 , and

we denote the components of W by Wα, 1 ≤ α ≤ d1. By Itô’s formula, we have P-a.s.

F (µt)− F (µ0) =

ˆ t

0

〈
∇SPF (µs), b(s, µs) + a(s, µs)∇

〉
L2(Rd,Rd;µs)

ds

+
1

2

d1∑
α=1

ˆ t

0

n∑
k,l=1

(∂klf)
(
µs(h1), . . . , µs(hn)

)
·
( ˆ

Rd
σα(s, µs) · ∇hkdµs

)( ˆ
Rd
σα(s, µs) · ∇hldµs

)
ds

+MF
t ,
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where the meaning of the first-order term
´ t

0

〈
∇SPF (µs), b(s, µs) + a(s, µs)∇

〉
L2(Rd,Rd;µs)

ds

is rigorously given as in Subsection 6.2.2, and the continuous (Ft)0≤t≤T -martingale t 7→MF
t

is

MF
t =

d1∑
α=1

ˆ t

0

[ n∑
l=1

(∂lf)
(
µs(h1), . . . , µs(hn)

) ˆ
Rd
σα · ∇hldµs

]
dWα

s .

Since MF
0 = 0 P-a.s., integrating with respect to P and defining the curve of measures in

P(SP) t 7→ Γt by

Γt := P ◦ µ−1
t , 0 ≤ t ≤ T,

yields

ˆ
SP

FdΓt −
ˆ
SP

FdΓ0 =

ˆ t

0

ˆ
SP

〈
∇SPF (µ), b(s, µ) + a(s, µ)∇

〉
L2(Rd,Rd;µ)

dΓs(µ)ds

+
1

2

d1∑
α=1

ˆ t

0

ˆ
SP

n∑
k,l=1

(∂klf)
(
µ(h1), . . . , µ(hn)

)
·
(ˆ

Rd
σα(s, µ) · ∇hkdµ

)( ˆ
Rd
σα(s, µ) · ∇hldµ

)
dΓs(µ)ds.

(7.10)

Using the operator L as defined in (5.5) and the notion of HessF derived in the preceding

subsection, we rewrite (7.10) as

ˆ
SP

FdΓt −
ˆ
SP

FdΓ0 =

ˆ t

0

ˆ
SP

LtF (µ) +
1

2

d1∑
α=1

HessF (µ)
(
σα(s, µ), σα(s, µ)

)
dΓs(µ)ds.

(7.11)

Introducing the second-order operator L(2), acting on F ∈ FC2
b (H) via

(L
(2)
t F )(µ) :=

〈
∇SPF (µ), b(t, µ) + a(t, µ)∇

〉
L2(Rd,Rd;µ)

+
1

2

d1∑
α=1

HessF
(
σα(t, µ), σα(t, µ)

)
,

(7.12)

we infer from (7.10) that t 7→ Γt = P◦µ−1
t solves the linear second-order FPK-type equation

(SP-FPK) for curves in P(SP)

∂tΓt = (L
(2)
t )∗Γt, 0 ≤ t ≤ T, (7.13)

which is just equation (SP-CE) of the introduction in Chapter 5.

Remark 7.2.2. Equation (SP-CE) is the natural analogue to second-order FPK-equations

on Rd. Indeed, for the stochastic equation on Rd

dXt = bt(Xt)dt+ σt(Xt)dWt, (7.14)

by Itô’s formula, the corresponding linear second-order equation for measures in distribu-

tional form is

∂tµt =
(
L(2)
t

)∗
µt,
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with

L(2)
t f = ∇f · bt +

1

2

〈
σt,Hess f · σt

〉
,

where Hess f denotes the usual Euclidean Hessian matrix of f ∈ C2(Rd), see Appendix B

for more details. In this spirit, in comparison with (7.14), it appears natural to consider

(SNLFPK) as a stochastic equation with the state space SP replacing Rd, and (SP-CE) as

the corresponding linear FPK-type equation on SP.

By the above derivation, any subprobability solution (t, ω) 7→ µt(ω) to (SNLFPK)

induces a solution curve in P(SP) to (SP-FPK) via Γt := P ◦ µ−1
t . Of course, this is

in close analogy to the deterministic case, where we have seen that any (deterministic)

solution path t 7→ µt to (NLFPK) induces a solution t 7→ Γt := δµt to (SP-CE). More

generally, we introduce the following notion of solution to (SP-FPK).

Definition 7.2.3. A weakly continuous curve t 7→ Γt ∈ P(SP) is a solution to (SP-FPK),

if the integrability condition

ˆ T

0

ˆ
SP
||b(t, µ)||L1(Rd,Rd;µ) + ||a(t, µ)||

L1(Rd,Rd2 ;µ)
+ ||σ(t, µ)||2

L2(Rd,Rd×d1 ;µ)
dΓt(µ)dt <∞

(7.15)

holds, and for each F ∈ FC2
b (H), (7.11) holds for each t ∈ [0, T ].

7.3 Proof of main result

7.3.1 Transfer to `2

Reminiscent to the deterministic case, we use the homeomorphism H : SP → H(SP) ⊆
`2 to introduce auxiliary equations on `2 and P(`2) as follows. Again, we use the notation

At :=

{
µ ∈ SP :

ˆ
Rd
|aij(t, µ, x)|+ |bi(t, µ, x)|dµ(x) <∞ ∀ 1 ≤ i, j ≤ d

}
, t ∈ [0, T ].

For i, j ≥ 1 and 1 ≤ α ≤ d1, define the B([0, T ]) ⊗ B(SP)-measurable coefficients Bi for

(t, µ) such that µ ∈ At, and Σα
i and Aij on [0, T ]× SP, by

Bi(t, µ) :=

ˆ
Rd
Lt,µhi(x)dµ(x), (t, µ) ∈ [0, T ]×At,

Σα
i (t, µ) :=

ˆ
Rd
σα(t, µ, x) · ∇hi(x)dµ(x),

Σi(t, µ) :=
(
Σα
i (t, µ)

)
1≤α≤d1 ,

Aij(t, µ) := (Σi · Σj)(t, µ),

and set

B := (Bi)i≥1, Σ := (Σα
i )1≤α≤d1,i≥1, A := (Aij)i,j≥1.
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Now, transferring to `2, define B̄, Σ̄ and Āij on [0, T ]× `2 component-wise via

B̄i(t, z) :=

{
Bi(t,H

−1(z)) , z ∈ H(At)

0 , else
,

and

Σ̄α
i (t, z) :=

{
Σα
i (t,H−1(z)) , z ∈ H(SP)

0 , z ∈ `2\H(SP)
,

Σ̄i(t, z) :=
(
Σ̄α
i (t, z)

)
1≤α≤d1 ,

Āij(t, z) := (Σ̄i · Σ̄j)(t, z).

B̄ and Σ̄α take values in `2, since for z = H(µ) with µ ∈ At, we have

|B̄i(t, z)| ≤
ˆ
Rd
|Lt,µhi(x)|dµ(x) ≤ Ci−1,

where C = C(a, b, d) is a finite constant independent of i ≥ 1. A similar argument is valid

for Σ̄α. Each B̄i and Σ̄α
i is product-measurable with respect to the `2-topology due to the

measurability of B and Σα. Reminiscent to (R∞-CE) in the previous chapter, we associate

to (SP-FPK) the Fokker–Planck–Kolmogorov-type equation on `2

∂tΓ̄t = −∇̄ · (B̄(t, z)Γ̄t) + ∂ij(Āij(t, z)Γ̄t), (`2-FPK)

which we understand in the sense of the following definition, with ∇̄ as in (6.13). Subse-

quently, we denote by FC2
b (`2) the set of functions F̄ : `2 → R of type F̄ = f ◦ π(n) for

n ≥ 1 and f ∈ C2
b (Rn). Moreover, for such F̄ , set

D2F̄ :=

{
(∂ijf) ◦ π(n) , 1 ≤ i, j ≤ n
0 , else.

Consequently, both terms of the right-hand side in (7.17) contain only finitely many

nontrivial summands.

Definition 7.3.1. A weakly continuous curve t 7→ Γ̄t ∈ P(`2) is a solution to (`2-FPK), if

it fulfills the integrability condition

ˆ T

0

ˆ
`2
|B̄i(t, z)|+ |Āij(t, z)|dΓ̄tdt <∞, ∀ i, j ≥ 1, (7.16)

and for any F̄ ∈ FC2
b (`2), F̄ := f ◦ π(n), we have

ˆ
`2
F̄ (z)dΓ̄t(z)−

ˆ
`2
F̄ (z)dΓ̄0(z) =

ˆ t

0

ˆ
`2
∇̄F̄ (z) · B̄(s, z) +

1

2
D2F̄ (z) : Ā(s, z)dΓ̄s(z)ds.

(7.17)

for each 0 ≤ t ≤ T .

Due to the boundedness of σ, the integrability condition (7.16) is the same as in (6.14).
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7.3.2 Proof of Theorem 5.2.2

We turn to the proof of the main result of this chapter, Theorem 5.2.2. As in the proof

of Theorem 5.2.1, we proceed in three steps. Since parts of the proof are technically more

involved than in the deterministic case, we first present the ingredients of each step and

then state the proof as a corollary.

Step 1: From (SP-FPK) to (`2-FPK).

Lemma 7.3.2. For any solution (Γt)0≤t≤T to (SP-FPK), the curve Γ̄t = Γt ◦H−1 is a

solution to (`2-FPK).

Proof. Clearly, t 7→ Γ̄t is a weakly continuous curve in P(`2) due to the continuity of

H : SP → `2. In view of Definition 7.3.1, the integrability condition (7.16) holds,

since t 7→ Γt fulfills (7.15). Moreover, for t ∈ [0, T ], F̄ = f ◦ π(n) ∈ FC2
b (`2) and

F : µ 7→ f
(
µ(h1), . . . , µ(hn)

)
, we have

ˆ t

0

ˆ
`2
∇̄F̄ (z) · B̄(s, z) +

1

2
D2F̄ (z) : Ā(s, z)dΓ̄s(z)ds

=

ˆ t

0

ˆ
SP

n∑
k=1

(∂kf)
(
µ(h1), . . . , µ(hn)

)
Bk(s, µ)

+
1

2

d1∑
α=1

n∑
k,l=1

(∂klf)
(
µ(h1), . . . , µ(hn)

)
Σα
k (s, µ)Σα

l (s, µ)dΓs(µ)ds

=

ˆ t

0

ˆ
SP

〈
∇SPF (µ), b(s, µ) + a(s, µ)∇

〉
L2(Rd,Rd;µ)

+
1

2

d1∑
α=1

HessF
(
σα(s, µ), σα(s, µ)

)
dΓs(µ)ds

and ˆ
`2
F̄ (z)dΓ̄t =

ˆ
SP

F (µ)dΓt.

Since t 7→ Γt fulfills (7.11), the claim follows.

Step 2: From (`2-FPK) to the martingale problem (`2-MGP). Next, we intro-

duce a martingale problem on `2, which is related to (`2-FPK) in the sense of Remark 7.3.4

below and is, roughly speaking, the stochastic analogue to (R∞-ODE) from the previous

chapter.

Definition 7.3.3. A measure Q̄ ∈ P(CT `
2) is a solution to the `2-martingale problem

(`2-MGP), provided

ˆ
CT `2

ˆ T

0
|B̄i(t, π∞t )|+ |Āij(t, π∞t )|dtdQ̄ <∞, i, j ≥ 1, (7.18)

and

F̄ ◦ π∞t −
ˆ t

0
∇̄F̄ ◦ π∞s · B̄(s, π∞s ) +

1

2
D2F̄ ◦ π∞s : Ā(s, π∞s )ds (7.19)

is a Q̄-martingale on CT `
2 with respect to the natural filtration on CT `

2 for any F̄ ∈
FC2

b (`2).
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Remark 7.3.4. By construction, any such solution Q̄ induces a weakly continuous solution

(Γ̄t)0≤t≤T to (`2-FPK) via Γ̄t := Q̄ ◦ (π∞t )−1. Indeed, this is readily seen by integrating

(7.19) with respect to Q̄ and an application of Fubini’s theorem.

In view of Proposition 7.3.6 below, we extend the coefficients B̄i, Σ̄
α
i (and hence also

Āij) from `2 to R∞ via

B̄i := 0 =: Σ̄α
i on [0, T ]× R∞\`2.

We continue to use the notation B̄, Σ̄α and Ā and note that these maps are B([0, T ])⊗
B(R∞)/B(R∞)-measurable, due to Remark 7.3.5 below. Due to the same remark, we may

regard any solution (Γ̄t)0≤t≤T to (`2-FPK) as a solution to a FPK-type equation on R∞

by considering (`2-FPK) with the extended coefficients and test functions F̄ ∈ FC2
b (`2)

extended to R∞ by considering π(n) on R∞ instead of `2. Similarly, the formulation of the

martingale problem (`2-MGP) as in Definition 7.3.3 extends to R∞ in the sense that a

measure Q̄ ∈ P(CTR∞) is understood as a solution, provided the process (7.19) is a Q̄-

martingale on CTR∞ with respect to the natural filtration for each F̄ = f ◦ π(n) : R∞ → R,

f ∈ C2
b (Rn) as above.

Remark 7.3.5. We recall that `2 ∈ B(R∞) and B(`2) = B(R∞)|`2. In particular, any

probability measure Γ̄ ∈ P(`2) uniquely extends to an element in P(R∞) via Γ̄(A) :=

Γ̄(A ∩ `2), A ∈ B(R∞).

We will need the following superposition principle [222, Thm.7.1], which lifts a solution

to a FPK equation on R∞ to a solution to the associated martingale problem. Note that

in [222], the author assumes an integrability condition of order p > 1 instead of p = 1 as

in (7.16) in order to essentially reduce the proof to the corresponding finite-dimensional

result, see [222, Thm.2.14], which requires such a higher order integrability. However, since

the latter result was later extended to the case of an L1-integrability condition by the

same author [223, Thm.2.5], it is easy to see that also the infinite-dimensional result [222,

Thm.7.1] holds for solutions with L1-integrability as in Definition 7.3.1.

Proposition 7.3.6. [Superposition principle on R∞ [222, Thm.7.1]] For any weakly

continuous solution (Γ̄t)0≤t≤T ⊆ P(R∞) to the R∞-extended version of (`2-FPK), there

exists Q̄ ∈ P(CTR∞), which solves the R∞-extended version of (`2-MGP) such that Q̄ ◦
(π∞t )−1 = Γ̄t for each t ∈ [0, T ].

Note that a path t 7→ zt ∈ H(SP) is continuous with respect to the product topology

if and only if it is continuous with respect to the `2-topology. Hence, we may use the

notation CTH(SP) unambiguously and consider it as a subset of either CTR∞ or Ct`
2.

Since H(SP) ⊆ `2 is closed even with respect to the product topology, CTH(SP) belongs

to B(CT `
2) and B(CTR∞).

Lemma 7.3.7. If in the situation of the previous proposition, each Γ̄t is concentrated on

the Borel set H(SP) ⊆ R∞, then Q̄ is concentrated on CTH(SP). In particular, in this

case, Q̄ may be considered an element of P(CT `
2) and as a solution to the martingale

problem (`2-MGP) as in Definition 7.3.3.

Proof. The closedness of H(SP) ⊆ R∞ yields

Q̄(CTH(SP)) = Q̄

( ⋂
q∈[0,T ]∩Q

{π∞q ∈ H(SP)}
)

= 1,
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where the second equality is due to Q̄ ◦ (π∞t )−1 = Γ̄t for each 0 ≤ t ≤ T . In particular, we

have Q̄ ∈ P(CT `
2). It is clear that this measure fulfills Definition 7.3.3.

Hence, subsequently we may consider Q̄ as in Proposition 7.3.6 as a solution to the

martingale problem on either R∞ or `2 without differing the notation. Recall that we write

pi : `2 → R, pi(z) = zi.

Lemma 7.3.8. Let Q̄ be a solution to the martingale problem (`2-MGP) on `2. Then, for

any i ≥ 1, the process

Mi(t) := pi ◦ π∞t −
ˆ t

0
B̄i(s, π

∞
s )ds, t ∈ [0, T ], (7.20)

is a real-valued, continuous Q̄-martingale on CT `
2 with respect to the canonical filtration.

Furthermore, the covariation process t 7→ 〈〈Mi,Mj〉〉t of Mi and Mj is Q̄-a.s. given by

〈〈Mi,Mj〉〉t =

ˆ t

0
Āij(s, π

∞
s )ds, t ∈ [0, T ]. (7.21)

Proof. For i, j ≥ 1, let n ≥ max{i, j}, consider pni : Rn → R, pni (x) = xi, and let

F̄ni : `2 → R, F̄ni (z) = pni ◦ π(n)(z).

Note that F̄ni = pi on `2, independent of n ≥ max(i, j). For k ≥ 1, introduce the stopping

time τk := inf{t ∈ [0, T ] : ||π∞t ||`2 ≥ k} with respect to the canonical filtration on CT `
2.

Clearly, τk ↗ T pointwise. Consider ηk ∈ C2
c (Rn) such that ηk(x) = 1 for |x| ≤ k + 1.

Since ∂kp
n
i = δki and ∂klp

n
i = 0 for 1 ≤ k, l ≤ n, we have

Mi(t) = F̄ni ◦ π∞t −
ˆ t

0
∇̄F̄ni ◦ π∞s · B̄(s, π∞s ) +

1

2
D2F̄ni ◦ π∞s : Ā(s, π∞s )ds

and, setting F̄n,ki := (ηkp
n
i ) ◦ π(n) ∈ FC2

b (`2),

Mi(τk ∧ t) = F̄n,ki ◦ π∞t∧τk −
ˆ t∧τk

0
∇̄F̄n,ki ◦ π∞s · B̄(s, π∞s ) +

1

2
D2F̄n,ki ◦ π∞s : Ā(s, π∞s )ds.

Since the latter is a continuous Q̄-martingale for each k ≥ 1, it follows that Mi is a

continuous local Q̄-martingale up to T . Concerning (7.21), it suffices to prove that for any

F̄ ∈ FC2
b (`2), F̄ = f ◦ π(n), we have

〈〈M F̄ 〉〉t =

ˆ t

0

〈
∇̄F̄ (π∞s ), Ā(s, π∞s )∇̄F̄ (π∞s )

〉
`2
, t ∈ [0, T ], Q̄-a.s., (7.22)

with

M F̄
t := F̄ ◦ π∞t −

ˆ t

0
∇̄F̄ (π∞s ) · B̄(s, π∞s ) +

1

2
D2F̄ (π∞s ) : Ā(s, π∞s )ds.
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Indeed, from here, (7.21) follows by considering (7.22) for F̄n,ki as k →∞ and polarization

for the quadratic variation. (7.22) follows from the subsequent calculation. We abbreviate

the integrand of the integral term in the definition of M F̄ by L̄
(2)
t F̄ (π∞s ).

(M F̄
t )2 = F̄ 2(π∞t )− 2F̄ (π∞t )

ˆ t

0
L̄(2)
s F̄ (π∞s )ds+

( ˆ t

0
L̄(2)
s F̄ (π∞s )ds

)2

= M F̄ 2

t +

ˆ t

0
L̄(2)
s F̄ 2(π∞s )ds− 2

ˆ t

0
M F̄
s d

(ˆ s

0
L̄(2)
u F̄ (π∞u )du

)
− 2

ˆ t

0
L̄(2)
s F̄ (π∞s )d

(
M F̄
s

)
−
( ˆ t

0
L̄(2)
s F̄ (π∞s )ds

)2

= N F̄
t +

ˆ t

0
L̄(2)
s F̄ 2(π∞s )ds− 2

ˆ t

0
F̄ (π∞s )d

(ˆ s

0
L̄(2)
u F̄ (π∞u )du

)
+ 2

ˆ t

0

[ˆ s

0
L̄(2)
u F̄ (π∞u )du

]
d

( ˆ s

0
L̄(2)
r F̄ (π∞r )dr

)
−
( ˆ t

0
L̄(2)
s F̄ (π∞s )ds

)2

= N F̄
t +

ˆ t

0
L̄(2)
s F̄ 2(π∞s )ds− 2

ˆ t

0
F̄ (π∞s )L̄(2)

s F̄ (π∞s )ds

= N F̄
t +

ˆ t

0

〈
∇̄F̄ (π∞s ), Ā(s, π∞s )∇̄F̄ (π∞s )

〉
`2
ds,

where

N F̄
t := M F̄ 2

t − 2

ˆ t

0
L̄(2)
s F̄ (π∞s )d

(
M F̄
s

)
is a continuous Q̄-martingale on CT `

2. Since the martingale solution Q̄ particularly fulfills

ˆ
CT `2

ˆ T

0
|Āii(t, π∞t )|dtQ̄ <∞, i ≥ 1,

(7.21) implies that Mi is a martingale on [0, T ] (which is even square-integrable).

We summarize the results of this step in the following proposition.

Proposition 7.3.9. Let (Γ̄t)0≤t≤T be a weakly continuous solution to (`2-FPK) such that

Γ̄t(H(SP)) = 1 for each t ∈ [0, T ]. Then, there exists a solution Q̄ ∈ P(CT `
2) to the

martingale problem (`2-MGP) such that Q̄ is concentrated on CTH(SP) with Q̄◦ (π∞t )−1 =

Γ̄t for each t ∈ [0, T ]. Furthermore, the results of Lemma 7.3.8 apply to Q̄.

Step 3: From (`2-MGP) to (SNLFPK): If Q̄ ∈ P(CT `
2) is a solution to (`2-MGP),

set, for t ∈ [0, T ],

C := B(CT `
2)
∨
NQ̄, Ct := σ(π∞s , 0 ≤ s ≤ t)

∨
NQ̄,

where NQ̄ denotes the set of Q̄-negligible sets N ∈ B(CT `
2). Of course, C and Ct depend on

Q̄, but we suppress this dependence in the notation. We extend Q̄ to C in the canonical way,

and denote this extension again by Q̄. Then, (CT `
2, C, (Ct)0≤t≤T , Q̄) is a complete filtered

probability space. Clearly, (t, γ) 7→ Σ̄(t, π∞t (γ)) as in Subsection 7.3.1 is Ct-progressively

measurable from [0, T ]× CT `2 to L(Rd1 , `2), the space of bounded linear operators from

Rd1 to `2, with Σ̄(t, z) ∈ L(Rd1 , `2) given by Σ̄(t, z) : x 7→ (x · Σ̄i(t, z))i≥1 ∈ `2 for x ∈ Rd1 .
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Remark 7.3.10. We extend (CT `
2, C, (Ct)0≤t≤T , Q̄) as follows. Let (Ω′,F ′′, (F ′′t )0≤t≤T , P )

be a complete filtered probability space with a real-valued (F ′′t )0≤t≤T -Brownian motion β on

it. Define

Ω := CT `
2 ⊗

⊗
l≥1

Ω′, F ′ := C ⊗
⊗
l≥1

F ′′, F ′t := Ct ⊗
⊗
l≥1

F ′′t , P′ := Q̄⊗
⊗
l≥1

P,

let F and Ft be the P′-completion of F ′ and F ′t, respectively, and denote the canonical

extension of P′ to F by P. Furthermore, we denote the Brownian motion β on the i-th copy

of Ω′ by βi and extend each βi to Ω by βi(ω) := βi(ωi) for ω =
(
γ, (ωi)i≥1

)
∈ Ω. Similarly,

we extend each projection π∞t from CT `
2 to Ω via π∞t (ω) := π∞t (γ) for ω as above, but

keep the same notation for this extended process. Obviously, (π∞t )0≤t≤T is continuous and

(Ft)0≤t≤T -adapted on Ω, and each βi is an (Ft)0≤t≤T -Brownian motion on Ω under P.

Moreover, by construction, (π∞t )0≤t≤T and (βi)i≥1 are independent on Ω with respect to

P. Furthermore, it is clear that the canonical extensions of the processes Mi as in (7.20)

to Ω are P-martingales with respect to (Ft)0≤t≤T for each i ≥ 1 with covariation as in

(7.21), and that (t, ω) 7→ Σ̄(t, π∞t (ω)) ∈ L(Rd1 , `2) is (Ft)0≤t≤T -progressively measurable

on [0, T ]× Ω.

Finally, we need the following result, which is a special case of [181, Thm.2].

Proposition 7.3.11. Let Q̄ ∈ P(CT `
2) be a solution to the martingale problem (`2-MGP).

Then, there exists a complete filtered probability space with a d1-dimensional Brownian

motion W = (Wα)1≤α≤d1 with respect to the filtration of that space, and an `2-valued

adapted continuous process t 7→ Yt such that the law of Y on CT `
2 is Q̄, and for i ≥ 1 and

t ∈ [0, T ], we have almost surely

pi ◦ Yt − pi ◦X0 −
ˆ t

0
B̄i(s, Ys)ds =

d1∑
α=1

ˆ t

0
Σ̄α
i (s, Ys)dW

α
s , (7.23)

and the exceptional set can be chosen independent of t and i.

To see this, consider [181, Thm.2] with X = `2, U0 = Rd1 , D = {pi, i ≥ 1}, the processes

M(pi) given by Mi as in (7.20) on the probability space Ω of Remark 7.3.10 and

gs = Σ̄(s, π∞s ) ∈ L(Rd1 , `2).

These choices fulfill all requirements of [181], and the `2-valued process Y on Ω is given by

Yt = π∞t . Since all terms in (7.23) are continuous in t, the exceptional set may indeed be

chosen independently of t ∈ [0, T ] and i ≥ 1.

The proof of Theorem 5.2.2 now follows from the above three-step scheme as follows.

Proof of Theorem 5.2.2. Let t 7→ Γt ∈ P(SP) be a weakly continuous solution to

(SP-FPK). By Lemma 7.3.2 of Step 1, the weakly continuous curve of Borel probability

measures on `2

Γ̄t := Γt ◦H−1, t ∈ [0, T ],
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solves (`2-FPK), and each Γ̄t is concentrated on H(SP). By Proposition 7.3.9 of Step

2, there exists a solution Q̄ ∈ P(CT `
2) to the martingale problem (`2-MGP), which is

concentrated on CTH(SP) such that

Q̄ ◦ (π∞t )−1 = Γ̄t, t ∈ [0, T ].

Furthermore, Lemma 7.3.8 applies to Q̄. By Lemma 7.3.8 and Proposition 7.3.11 of Step 3,

there is a d1-dimensional (Ft)0≤t≤T -Brownian motion W = (Wα)1≤α≤d1 and an (Ft)0≤t≤T -

adapted process Y on some complete filtered probability space (Ω,F , (Ft)0≤t≤T ,P), which

fulfill (7.23) and Y ∈ CTH(SP) P-a.s., such that Q̄ is the law of Y under P.

Possibly redefining Y (ω) on a P-negligible set N ⊆ Ω (which preserves (7.23) and the

adaptedness, the latter due to the completeness of the underlying filtered probability space),

we may assume Yt(ω) = H(µt(ω)) for some µt(ω) ∈ SP for each (t, ω) ∈ [0, T ]× Ω. The

continuity of H−1 : H(SP)→ SP and t 7→ Yt(ω) implies vague continuity of

t 7→ µt(ω) = H−1 ◦ Yt(ω) (7.24)

for each ω ∈ Ω, and also gives (Ft)0≤t≤T -adaptedness of the SP-valued process t 7→ µt.

Considering (7.23), Yt = H(µt) and the definition of B̄ and Σ̄α
i , we obtain, recalling

pi(H(ν)) = ν(hi) for each ν ∈ SP,

µt(hi)− µ0(hi)−
ˆ t

0
Bi(s, µs)ds =

d1∑
α=1

ˆ t

0
Σα
i (s, µs)dW

α
s , 0 ≤ t ≤ T,

P-a.s. for each i ≥ 1. From here, it follows by Lemma 7.2.1 (i) that t 7→ µt is a solution to

(SNLFPK) as in Definition 7.1.1. Furthermore, we note

P ◦ µ−1
t = (P ◦ Y −1

t ) ◦ (H−1)−1 = Γ̄t ◦ (H−1)−1 = Γt ◦H−1 ◦ (H−1)−1 = Γt.

It remains to prove the final assertion of the theorem. To this end, note that Γ0(P) = 1

implies µ0 ∈ P P-a.s., with µ0 as in (7.24) for t = 0. From here, the assertion follows by

Lemma 7.1.3.

Besides the transfer of existence (SP-FPK) =⇒ (SNLFPK), which follows immediately

from the formulation of Theorem 5.2.2, one also obtains the following uniqueness transfer

(SNLFPK) =⇒ (SP-FPK), which is in a similar spirit to Corollary 6.4.2.

Corollary 7.3.12. Let Γ ∈ P(SP). Assume any two solutions (µ,W ) and (µ̄, W̄ ) to

(SNLFPK) on probability spaces (Ω,F , (Ft)0≤t≤T ,P) and (Ω̄,F , (F̄t)0≤t≤T , P̄) with initial

distribution P ◦ µ−1
0 = Γ = P̄ ◦ µ̄−1

0 are equal in law, i.e. P ◦ µ−1 = P̄ ◦ µ̄−1 on B(CTSP).

Then, solutions t 7→ Γt to (SP-FPK) with Γ0 = Γ are unique. If Γ ∈ P(P), then under the

above assumption, solutions t 7→ Γt ∈ P(P) to (SP-FPK) are unique.
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Appendix B

From finite-dimensional

differential to continuity equations

For comparison with the geometric approach to the derivation of the linear equations

(SP-CE) and (SP-FPK) on P(SP), here we briefly recall the corresponding classical

Euclidean situation.

Linearization (ODE) =⇒ (CE). We repeat the well-known steps to show that any

solution t 7→ γt to (ODE) induces a solution t 7→ δγt ∈ P.

If t 7→ γt ∈ Rd is absolutely continuous with γ̇t = bt(γt) dt-a.s., then for any f ∈ C1(Rd),
the chain rule and integration with respect to

´ t
0 ds for t ∈ [0, T ] yield

f(γt)− f(γ0) =

ˆ t

0
(∇f)(γs) · γ̇sds =

ˆ t

0
(∇f)(γt) · bs(γt)ds.

Setting µt := δγt , we obtain

ˆ
Rd
f(x)dµt(x)−

ˆ
Rd
f(x)dµ0(x) =

ˆ t

0

ˆ
Rd
∇f(x) · bs(x)dµs(x)ds, (B.1)

which yields that t 7→ µt solves the continuity equation (CE) in distributional sense. It is

clear that the above calculation still makes sense when the state space Rd is replaced by a

Riemannian manifold (M, g), in which case the Euclidean gradient is replaced by the gradient

on (M, g) and the integrand ∇f · bs is replaced by the scalar product 〈∇f(x), bs(x)〉g(x),

where 〈·, ·〉g(x) denotes the scalar product in the tangent space TxM at x ∈M .

Linearization (SDE) =⇒ (FPK). Let t 7→ Xt be a solution to (SDE) on a probability

space (Ω,F , (Ft)0≤t≤T ,P) and let f ∈ C2(Rd). By Itô’s formula, we obtain

f(Xt)− f(X0) =

ˆ t

0
(∇f)(Xs) · bs(Xs)ds+

1

2

ˆ t

0
(∂ijf)(Xs)a

ij
s (Xs)ds+M(t) P-a.s.
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EQUATIONS

where t 7→M(t) is a (Ft)0≤t≤T -martingale with respect to P with M(0) = 0, and we have

set as(x) = (aijs (x))1≤i,j≤d = σs(x)σs(x)T . Hence, integrating with respect to
´
Rd dP, we

have E[M(t)] = 0 and therefore, setting µt := P ◦X−1
t , we obtain

ˆ
Rd
f(x)dµt(x)−

ˆ
Rd
f(x)dµ0(x) =

ˆ t

0

ˆ
Rd
∇f(x) · bs(x) +

1

2
∂ijf(x)aijs (x)dµs(x)ds.

Consequently, the weakly continuous curve t 7→ µt in P solves (FPK). In manifold language,

the second-order term ∂ijf(x)aijs (x) may be rewritten as

d∑
i,j=1

∂ijf(x)aijs (x) =
〈

Hess f · σs(x), σs(x)
〉
Rd ,

where Hess f denotes the usual Hessian matrix of f .
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Nonuniqueness in law for

stochastic hypodissipative

Navier–Stokes equations
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.

The contents of the following third part of the thesis are based on the joint work [189]

with Andre Schenke, former student in the IRTG 2235 Bielefeld–Seoul, who is now a

postdoc at Bielefeld University. I acknowledge his valuable contributions to our preprint.

Throughout, from first ideas to the technical execution, the project was a true and equal

collaboration, with valuable contributions coming from both of us. The contents of [189]

and Part III of this thesis have not been used in a thesis or any further publication by

Andre Schenke.
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Abstract. We study the incompressible hypodissipative Navier–Stokes equations with

dissipation exponent 0 < α < 1/2 on the 3D torus perturbed by an additive Wiener noise

term, and we prove the existence of an initial condition for which distinct probabilistically

weak solutions exist. To this end, we employ convex integration methods to construct even

a probabilistically strong solution, which violates a pathwise energy inequality, up to a

suitable stopping time. This work seems to be the first to construct solutions via simple

Beltrami waves instead of intermittent jets or flows in a stochastic setting. The contents of

this part of the thesis are an extended version of the preprint [189], which is joint work

with Andre Schenke (Bielefeld University).

Chapter 8

Introduction

8.1 (Fractional) Navier–Stokes equations

8.1.1 Navier–Stokes equations: An overview

The Navier–Stokes equations (NSE) are one of the fundamental sets of equations in

the area of fluid dynamics, and arguably its most prominent one. Introduced nearly

two centuries ago by French physicist Navier and Irish mathematician Stokes [180, 212],

generations of scientists not only from mathematics have been fascinated by the intriguing,

but desperately difficult questions of its solvability. In the incompressible case, most often

considered in two or three spatial dimensions, the NSE{
∂tv + div(v ⊗ v) +∇p− ν∆v = 0,

div v = 0
(NSE)

predict the evolution of the velocity field v, describing the incompressible viscous flow of a

fluid in a region Ω ⊆ Rd. Here, ν > 0 denotes the kinematic viscosity parameter of the

fluid, and the scalar pressure term p is unknown, but may be computed from v. From now

on, we always set ν = 1 for simplicity.

The NSE may be derived from the conservation principles for momentum and mass,

respectively. For a thorough derivation based on physical principles and a concise introduc-

tion to the field, we refer to the textbooks [191, 221, 164, 209, 73] and the references therein.

Needless to say, this list is certainly not complete. The NSE can also be derived rigorously

from the Boltzmann equation, cf. [111, 23, 165]. From now on, we restrict attention to

three-dimensional cases, but note that there is a vast literature on other dimensions, in

particular for the case d = 2, cf. the above sources.
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The NSE are usually complemented by an initial condition v(0, ·) = x0 and, depending

on its underlying domain Ω ⊆ R3, by a boundary condition. On the one hand, while being

of ample physical relevance, boundary conditions add further mathematically difficulties to

the question of solvability. At the same time, it is advantageous to work on a bounded

domain in order to avoid solutions to grow as |x| → ∞. To avoid both these difficulties, it

is common to study the equations on the three-dimensional torus R3/(2πZ3) subject to

periodic boundary conditions (cf. Section 9.1).

The fight for regularity and the energy balance. The Laplacian −∆v and the

nonlinear term div(v ⊗ v) are contrary in their effect on the regularity of solutions. On

the one hand, by definition, the Laplacian harmonizes the value at a point v(t, x) and its

surroundings: locally extreme values are conformed to the average value in a neighborhood,

thereby providing a smoothing effect for solutions v.

On the other hand, the nonlinear term disrupts this regularizing effect and is, in fact,

a main source for the enormous complexity of the question of existence of global smooth

solutions. For an in-depth discussion, also from a physical point of view, we again refer to

the textbooks [191, 221, 164, 209, 73].

Here, we would like to give simple evidence of the conflictive effects of −∆v and

div(v ⊗ v), see [191, Introduction]. To this end, let us separate both terms from each

other for a moment and consider their regularization effects individually. The following

observations are based on the kinetic energy profile of solutions v, i.e. on

t 7→ ekin(v)(t) :=
1

2

ˆ
T3

|v(t, x)|2dx =
1

2
||v(t, ·)||2L2 ,

a quantity which will be of consistent interest to us.

Diffusion: the Laplacian. Focusing on the diffusive term −∆v (and disregarding the

pressure term ∇p and the incompressibility condition for a moment), the NSE boils down

to the classical heat equation

∂tv −∆v = 0. (8.1)

By standard theory [98], solutions to this equation exist globally in time and are smooth in

(t, x), even for possibly nonsmooth initial data v(0, ·) = x0 ∈ L2 = L2(T3,R3). Multiplying

(8.1) by v, integration by parts and integrating over
´ t

0

´
T3 dxdt yields

1

2

ˆ
T3

|v(t, x)|2dx =
1

2

ˆ
R3

|v(0, x)|2dx−
ˆ t

0
||∇v(t)||2L2dt, t ≥ 0. (8.2)

Consequently, the kinetic energy profile t 7→ ekin(v)(t) of any solution v to (8.1) is decreasing.

In other words, kinetic energy is dissipated, and the term
´ t

0 ||∇v(t)||2L2dx quantifies the

total dissipation up to time t. The connection of this energy dissipation and the smoothing

effect of the heat equation can be seen as follows. Assume the initial condition v(0, ·) = x0

has the Fourier series

x0(x) =
∑
ξ∈Z3

x̂0(ξ)eiξ·x.
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Then, it is standard to derive the Fourier series of the solution v to (8.1) as

v(t, x) =
∑
ξ∈Z3

x̂0(ξ)e−|ξ|
2teiξ·x.

Recall that Fourier modes x̂0(ξ)eiξ·x for larger values of |ξ| correspond to smaller length

scales and more rapid oscillations. Intuitively, the more active such small scales are, the

more irregular we expect the corresponding function to be. With this in mind, comparing

the Fourier series of v(t, ·) and x0, we note that the effect of the damping term e−t|ξ|
2

is

stronger for larger modes, i.e. the impact of small scales with rapid oscillations is reduced

significantly, which provides intuitive evidence for the strong smoothing effect for solutions

to the heat equation. Put another way, the loss of kinetic energy observed through (8.1)

essentially happens on small scales.

Advection: the nonlinear term. Concerning the nonlinear transport term div(v ⊗ v) =

(v · ∇)v (the equality holds under the incompressibility assumption div v = 0), we observe

quite the opposite effect. Indeed, still following [191, Introduction], assume the Fourier

series of a function u : T3 → R3 to be a finite sum

u(x) =
∑
|ξ|≤N

û(ξ)eiξ·x

for some N ≥ 1. A direct calculation gives

(u · ∇)u(x) =
∑
|ξ|≤2N

ŵ(ξ)eiξ·x,

where ŵ(ξ) =
∑
|ζ|≤N [û(ξ − ζ) · ζ]iû(ζ). Consequently, compared to u, the nonlinear term

(u · ∇)u activates higher oscillating modes and pumps energy into these smaller scales, an

effect which potentially may lead to a blow-up of the gradient of solutions in finite time.

Comparing with the damping effect for solutions to the heat equation, it is clear that these

effects conflict each other.

Existence and (non)uniqueness results. It is one of the remarkable oddities of

mathematics that despite enormous past and ongoing efforts of brilliant mathematicians,

the following natural question remains unanswered in the case d = 3: Is there a global in

time smooth solution for any divergence-free smooth initial vector field to the NSE? This

notoriously difficult problem has nurtured enormous interest in the NSE, in particular after

becoming one of the famous Millenium problems, postulated by the Clay Mathematics

Institute in 2000. The unbroken ambitions to tackle this million-dollar question led to

significant progress towards a comprehensive understanding of the NSE, which we would

like to briefly survey here.

While the existence of (necessarily unique) strong solutions (i.e. smooth vector fields

v : [0,∞)× T3 → R3 solving the NSE pointwise) remains to be resolved, global existence

of weak solutions is known. Taking inner product of the NSE with a strong solution

v, integration by parts and integrating over [0, T ] × T3 gives the same a priori energy

balance as in (8.2). Inspired by this necessary energy relation for strong solutions, Leray

[162] and Hopf [117] famously proved the existence of a global in time weak solution
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v ∈ Cweak(R+, L
2) ∩ L2([0,∞), H1) with respect to any initial value x0 ∈ L2, such that

(8.2) holds with an inequality, i.e.

1

2

ˆ
T3

|v(T, x)|2dx+

ˆ T

0
||∇v(t)||2L2dt ≤

1

2

ˆ
T3

|v(0, x)|2dx, T ≥ 0. (8.3)

A weak solution is a vector field v, which fulfills the equation distributionally, i.e. div v = 0

holds in distribution andˆ
[0,∞)×T3

v ·
(
∂tϕ+ (v · ∇)ϕ+ ∆ϕ

)
dxdt+

ˆ
T3

v(0) · ϕ(0)dx = 0 (8.4)

holds for any divergence-free test vector field ϕ. To date, it remains to be proven whether

such Leray–Hopf solutions are unique. In fact, the non-uniqueness in this class of solutions

was conjectured by Ladyzhenskaya [154] in 1967 but, while there is reasonable supporting

numerical evidence [124], a mathematical proof of his conjecture is yet to be found.

We do not dwell here on very interesting further topics such as local Leray–Hopf

solutions, solutions with small sets of nonsmooth times and the existence of strong solutions

locally in time, but refer to [53, Ch.1-3], [54], and the references therein.

In this regard, it is interesting that quite recently Buckmaster and Vicol [54] proved

a severe nonuniqueness result in a (possibly) strictly larger class of solutions, namely for

weak solutions as above without the energy inequality (8.3). More precisely, their result

is the following striking theorem. Here, Hβ denotes the usual fractional Sobolev space of

vector fields on T3 with integrability parameter p = 2.

Theorem 8.1.1. There is β > 0 such that for any smooth function e : [0, T ] → [0,∞),

there is a weak solution v ∈ C([0, T ], Hβ) such that ekin(v)(t) = e(t) for all t ∈ [0, T ].

In particular, there exist arbitrarily many weak solutions with trivial initial condition.

The construction is based on the methods of convex integration, which provide a powerful

tool to construct weak solutions to (fluid dynamical) PDEs with wild energy behavior.

This result shatters hopes to tackle the famous question of global well-posedness of strong

solutions by showing that the NSE are well-posed in this class of weak solutions and that

any such weak solution is strong. The question whether a similar nonuniqueness result

holds in the class of Leray–Hopf solutions remains an open problem of significant relevance.

The method of convex integration is the main technical ingredient for the present part

of the thesis. Before we review its history and basic principles, in the next section, we turn

our attention to the equations we are going to treat with them.

8.1.2 Fractional NSE

The equations of interest for this part of the thesis are not the classical NSE, but (a

stochastically perturbed version of) the fractional Navier–Stokes equations (FNSE). As

before, we assume incompressibility of the flow and work on the three-dimensional torus,

i.e. subject to periodic boundary conditions. More precisely, we study (a stochastic version

of) {
∂tv + div(v ⊗ v) +∇p+ (−∆)αv = 0,

div v = 0,
(FNSE)
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and our focus will be on the hypodissipative parameter range 0 < α < 1/2. For example,

in [174], these equations model fluid motion subject to internal friction. For details on

the operator (−∆)α and its definition via Fourier series, see Section 9.1. The following

comparison to the classical Laplacian (in the whole space) might be illuminating. First,

recall that for sufficiently regular functions f : R3 → R, we have

−∆f(x) = C lim
r→0

 
Br(x)

u(x)− u(y)

r2
dy, x ∈ R3.

On the other hand, it is standard to obtain for 0 < α < 1 [152] that

(−∆)αf(x) = C(α) lim
ε→0

ˆ
R3\Bε(x)

u(x)− u(y)

|x− y|3+2α
dy, x ∈ R3,

which allows for the following comparison. While for the classical Laplacian, −∆f(x)

is reverted to the average of f in an infinitesimally small neighborhood around x, the

averaging effect of (−∆)α comprises the whole space in a weighted sense: Values far away

from x contribute less to the average than those in proximity to x, and this long-term

effect diminishes as α↗ 1. In particular, in contrast to −∆, the fractional Laplace is a

nonlocal operator and, in fact, gives rise to a Lévy process with long-distance interactions,

see [193, 152, 16, 92].

There is a large number of models from, e.g., physics, biology and finance for which

the fractional Laplace arguably provides a more fitting description of the setting than

the classical Laplacian, or offers at least an interesting variant of the particular model.

Hence, it is not surprising that the literature in this direction is extensive. Prominent

examples include, but go beyond fractional heat equations [40, 39, 65, 224] and Schrödinger

equations [156, 204, 155], quasi-geostrophic equations [58, 137, 84], and obstacle problems

[57, 207]. For a further in-depth survey of the field of fractional diffusion equations, we

refer to [29, 15, 228, 18, 56]. Concerning the FNSE, known results include the existence of

smooth solutions in the case α ≥ 5/4 [163, 218], and partial regularity results for the cases

α ∈ [3/4, 1) and (1, 5/4), cf. [71, 217].

In the light of the resolved and unresolved (non)uniqueness questions for the classical

NSE, it is interesting to ask whether the known results carry over to the case of the FNSE

and whether any of the open questions for the NSE can be answered for the FNSE. In this

direction, Colombo, De Lellis and De Rosa, and De Rosa in a second paper obtained the

following very interesting result [70, 194]: For 0 < α < 1/3, there is an initial condition

x0 ∈ L2 subject to which there exist infinitely many global in time α-Hölder continuous

weak solutions to (FNSE), which fulfill even a local Leray-inequality (i.e. (8.3), with ∇v
replaced by (−∆)α/2, in a local in time sense) up to some common time T > 0. Moreover,

for any 0 < α < 1/2, Hölder continuous weak solutions (not necessarily fulfilling an energy

inequality) are nonunique. We see that for the range 0 < α < 1/3, the ill-posedness result

is more severe than in the classical case α = 1, where uniqueness of Leray–Hopf solutions

remains open. Roughly, the above explanation of the contradicting effects of the Laplacian

and the nonlinear term for the classical NSE offers the following intuition to this result.

Replacing −∆ by the weaker diffusive term (−∆)α, 0 ≤ α < 1, the advective nonlinear

term is more dominant, hampers the regularizing effect for solutions to (FNSE), and hence
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gives rise to more severe nonuniqueness results. As already mentioned for the classical NSE,

also in this case, this shatters hopes to prove strong well-posedness via weak solutions,

here even in the class of Leray–Hopf solutions.

As for the classical NSE, the results of [70, 194] rely on the techniques of convex

integration, which we review in the next subsection.

8.2 A brief history of convex integration

8.2.1 Origins: Nash’s C1 isometric embedding problem

Nowadays famously used as a method to construct weak solutions to (fluid dynamical)

PDEs, the origins of convex integration date back to a famous differential geometry result

by John Nash [179], which answers the following questions that had intrigued geometers

for decades: Can any smooth d-dimensional Riemannian manifold M be isometrically

embedded in ambient space RN and, if so, which restriction on the ambient dimension

N and which kind of regularity for the isometry can be expected? It came with general

astonishment that Nash provided the following affirmative answer.

Theorem 8.2.1 (C1 isometric embedding theorem). Let (M, g) be a closed d-dimensional

Riemannian manifold, v : M → RN a strictly short embedding with N ≥ d+ 2 and ε > 0.

Then, there is a C1 isometric embedding u : M → RN such that ||v − u||C0 < ε.

For a short review of the necessary differential geometric concepts, see Appendix F.

Although it does not directly contribute to the geometric ideas of convex integration, we

point out that under additional technical conditions the closedness assumption can be

dropped, and that Kuiper [150] improved Nash’s result to the optimal threshold N ≥ d+ 1.

Moreover, a version of the result with ”immersion” instead of ”embedding” at all places

holds true. For an excellent presentation of Nash’s result (as well as other masterpieces of

him), we refer to the review [87].

For example, it is standard to embed the torus T2 in R3; however, the usual embedding

is not isometric, but can be made strictly short. Thanks to Nash’s ingenious theorem,

there must exist an isometric C1 embedding u : T2 → R3 as well.

Idea of proof. As in Appendix F, denote by e the standard Euclidean metric tensor

on RN , by gij , 1 ≤ i, j ≤ d, the components of the metric tensor g on M , and by u]e the

pullback metric on M for an embedding u : M → RN . The mapping u is an isometry,

provided

gij = ∂iu · ∂ju, 1 ≤ i, j ≤ d. (8.5)

By assumption, there is a strictly short embedding v, i.e. it holds

gij > ∂iv · ∂jv, 1 ≤ i, j ≤ d. (8.6)

In spirit, the relation (8.6) is easier to fulfill than (8.5) and the task is to convey the

solution v to the flexible relation (8.6) to a solution u to the rigid one (8.5), such that

||u− v||C0 < ε. In other words, one needs to stretch out curves on v(M) ⊆ RN in order to

increase their lengths while staying in a uniform small ε-neighborhood around v(M).
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The principal idea of Nash is to iteratively construct a sequence of still strictly short

embeddings (vq)q∈N0 (with v0 = v) such that the defect g − v]qe, i.e. the gap between

the inequality (8.6) and the equality (8.5), decreases in each iteration stage q → q + 1

and vanishes as q →∞. In addition, the iteration is performed such that the differences

||vq+1 − vq||C1 are suitably small in terms of ε, such that the limit limq→∞ vq := u exists

in C1. From here, it follows that

g − ∂iu · ∂ju = g − lim
q

(∂ivq · ∂jvq) = 0,

and consequently u is an isometry.

The iteration vq → vq+1 is set up by adding a suitable perturbation wq+1 to vq, i.e.

Nash defines

vq+1 := vq + wq+1.

The construction of these perturbations is the most delicate part of the proof, since

wq+1 = vq+1− vq needs to be sufficiently small in C1-norm while reducing the gap between

(8.5) and (8.6) at stage q substantially. Nash’s integral idea was to construct wq+1 via

(sums of locally supported) rapidly oscillating waves with high frequencies λq+1 � λq � 1

and small amplitudes of order λ−1
q+1 in such a way that w]q+1e comprises a large portion of

the remaining defect g − v]qe. A suggestive picture is that one pervades vq(M) ⊆ RN with

small scale waves with small amplitudes in order to ripple curves on vq(M).

The perturbation wq+1 is constructed as a sum of locally supported waves of type

w
(j)
q+1(x) =

c
(j)
q+1

λq+1

(
ν(x) cos

(
λq+1ψ

(j)
q+1(x)

)
+ b(x) sin

(
λq+1ψ

(j)
q+1(x)

))
, (8.7)

where ν(x), b(x) ∈ RN are of unit length such that ν(x) ⊥ b(x) and ν(x) and b(x) are

(roughly) normal to the tangent space Tvq(x)vq(M) ⊆ RN . On the one hand, suitable

bounds for ||wq+1||C0 and ||wq+1||C1 follow via a sufficiently large choice of λq+1 � 1. On

the other hand, c
(j)
q+1 > 0 and ψ

(j)
q+1 ∈ C∞(M) stem from a geometric result by Nash [87,

Prop.2.3.1], which allows to (locally) represent the defect metric tensor g − v]qe on M as a

locally finite sum of primitive metrics

g − v]qe =
∑
j

c
(j)
q+1dψ

(j)
q+1 ⊗ dψ

(j)
q+1. (8.8)

As we shall see later, a loosely related kind of geometric lemma plays a major role in convex

integration techniques in general, as well as for our main result of this part of the thesis,

cf. Lemma 11.3.4. From here, a detailed calculation, which is beyond the scope of this

introduction, shows that the definition of wq+1 =
∑

j w
(j)
q+1 entails the pivotal approximate

cancellation

w]q+1e ≈ Dwq+1Dw
T
q+1 ≈ g − v]qe, (8.9)

i.e. a major part of the remaining isometry gap g− v]qe is compensated by wq+1, rendering

the remaining gap g − v]q+1e = (g − v]qe) − w]q+1e at stage q + 1 much smaller than the

previous one.
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Finally, we point out that the rapidly oscillating waves in (8.7) actually allow for

convergence of (vq)q∈N in C1,α for suitably low α ∈ (0, 1) [43, 74, 160], but obstruct C2-

regularity of u = limq→∞ vq = v0 +
∑

q≥0wq+1. Indeed, it is readily seen that ||wq+1||C2 ∼
λq+1 −→∞ as q →∞.

Let us summarize the guiding principles of Nash’s geometric construction, which passes

over to the techniques of convex integration, as follows. In order to solve the rigid relation

(8.5), one first of all iteratively constructs a sequence (vq)q∈N of solutions to the flexible

relation (8.6). The iteration proceeds via perturbations wq+1, consisting of waves with

increasing frequency λq+1 � 1 and decreasing amplitudes aq+1 � 1. Striking the right

balance between the scales of λq+1 and aq+1 yields convergence of (vq)q∈N in C1 (even

in C1,α for small α < 1). At the same time, the perturbations may be constructed in a

geometric way in order to approximately cancel the remaining isometry gap g − v]qe, which

implies that u = limq→∞ vq is the desired isometry, i.e. a solution to the rigid relation

(8.5).

8.2.2 Convex integration and the Onsager conjecture

In 1973, Gromov realized that the techniques of Nash’s proof of Theorem 8.2.1 are

actually an instance of the so-called h-principle [112], a deep and general method to obtain

solutions to differential relations, on which we do not comment here. Thirty years later,

this direction was spurred further by Müller and Šverak by linking these methods to the

theory of Lipschitz solutions to differential inclusions [177]. Nash’s intriguing geometric

approach experienced enormous additional interest once De Lellis and Székelyhidi Jr. in

2009 understood the second fundamental set of equations of fluid dynamics as such a

differential inclusion, namely the incompressible Euler equations (EE) on the torus Td,
d ∈ {2, 3}, {

∂tv + div(v ⊗ v) +∇p = 0,

div v = 0.

This way, they obtained alternative proofs for the interesting results of Scheffer and

Shnirelman [202, 205, 206], in which the authors construct rough weak solutions v to the

EE with dissipative kinetic energy t 7→ ekin(v)(t). From now on, we restrict attention to

the case d = 3 on T3.

These results met considerable interest in the community since they were believed

to offer a starting point towards a proof of the famous Onsager conjecture. In 1949,

Norwegian-American physicist Lars Onsager conjectured the threshold of Hölder regularity

below which weak solutions to the EE can dissipate kinetic energy to be β = 1/3 [182]. In

this regard, note that smooth solutions v to the EE have constant kinetic energy profile

t 7→ ekin(v)(t), which follows by multiplication of the EE with v and integration by parts.

The possible dissipation of kinetic energy for solutions with low regularity, also known as

anomalous dissipation of energy, is intimately connected to the transfer of energy from

larger to smaller scales by the nonlinearity div(v⊗ v), as suggested in Subsection 8.1.1, and

the theory of turbulence, in particular when considering the EE as the inviscid limit of the

NSE for vanishing viscosity parameter ν −→ 0, cf. the fundamental works of Kolmogorov

[142, 143, 141] and [53, Sect.2] and the references therein.
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More precisely, the conjecture can be stated as follows.

Onsager’s conjecture.

For any 0 < β < 1/3, there exists a weak solution vβ ∈ C
(
[0, T ], Cβ(T3,R3)

)
to the EE

with decreasing kinetic energy t 7→ ekin(vβ)(t). In contrast, for each β > 1/3, any weak

solution v ∈ C
(
[0, T ]Cβ(T3R3)

)
conserves kinetic energy.

We remark that the positive part of the assertion concerning th range β > 1/3 was

proven in [99, 72] in 1994. Concerning the negative part, the solutions in [202, 205, 206],

while allowing for dissipative energy profiles, do not have any continuity property and

hence do not provide evidence for Onsager’s conjecture.

Continuous weak solutions to the EE. A further step towards the conjecture was

the remarkable work of De Lellis and Székelyhidi [89] from 2013, in which the authors use

techniques from the aforementioned geometric and analytic foundations [179, 112, 177],

coined as convex integration, to construct for the first time continuous weak solutions to

the EE with decreasing energy profiles t 7→ ekin(t). See also [161] for the close connection

to Gromov’s h-principle. More precisely, their solutions can even be constructed such that

they obey any prescribed smooth, strictly positive energy profile.

In a way, [89] may be considered the technical starting point of modern convex integration

methods. In fact, previous results as in [88] make explicit use of the results of [177] by

considering the EE as a differential inclusion and follow a Baire category approach. As

pointed out in [89], such techniques are not suited for the construction of (Hölder) continuous

weak solutions to the EE. Let us briefly point out the main new techniques of [89].

Common to all convex integration results, and much in the spirit of the geometric origin

by Nash, is the iterative construction of a sequence of solutions (vq)q∈N0 to a flexible version

of the particular equation, which allows for an error term. For the EE (and analogously for

the (F)NSE), these flexible equations are the Euler–Reynolds equations{
∂tvq + div(vq ⊗ vq) +∇pq = div R̊q,

div vq = 0,
(ER)

where R̊q is a symmetric trace-free 3×3-matri,x and the name is due to the form of the error

div R̊q, which is similar to the so-called Reynolds stress in fluid dynamical models, see [161].

We will usually simply refer to div R̊q and to R̊q, as the error (term). Similarly as in [179],

given a smooth solution (vq, pq, R̊q) to (ER) at stage q, the next solution (vq+1, pq, R̊q+1)

is constructed by means of a perturbation wq+1, i.e.

vq+1 = vq + wq+1.

The goal is to construct (vq)q∈N0 in such a way that the sequence converges in C0([0, T ]×
T3,R3) while ||R̊q||C0 vanishes as q −→∞. To this end, in analogy to Nash’s construction,

two of the main features of the perturbation wq+1 are its small amplitudes aq+1 such that



116 CHAPTER 8. INTRODUCTION

∑
q≥1 ||wq+1||C0 is finite, and its geometric construction, which allows for a cancellation of

type

div(wq+1 ⊗ wq+1) ≈ −div R̊q, (8.10)

in order to reduce the error term div R̊q (compare with (8.9)). In comparison to [179],

the iterative solutions vq to (ER) assume the role of the derivatives Dvq of Nash’s short

embeddings, and the error R̊q corresponds to the defect g − v]qe. Provided v := limq→∞ vq
exists in C0 and limq→∞ R̊q = 0, it is readily seen that v is a weak solution to the EE.

Note that by subtracting (ER) at stage q + 1 and q, one can calculate the unknowns R̊q+1

and pq+1 from vq, R̊q and wq+1 as

div R̊q+1−∇pq+1 = div(wq+1⊗wq+1 +R̊q)+[∂t+vq ·∇]wq+1 +(wq+1 ·∇)vq−∇pq. (8.11)

In order to handle both these central aspects at once, in [89] the authors use for the first

time three-dimensional building blocks, the so-called Beltrami waves, which are vector

fields of type Bξe
iλq+1ξ·x, with ξ,Bξ ∈ R3 such that |ξ| = 1 = |Bξ|. On the one hand, each

Beltrami wave may be multiplied by a suitably small amplitude in order to obtain any

desired C0-bound for wq+1. Hence, it is plausible to design the perturbation as

wq+1(t, x) =
∑
ξ

aq+1,ξ(t, x)Bξe
iλq+1ξ·x (8.12)

for suitable amplitudes aq+1,ξ ∼ δq+1, where the decay of δq+1 −→ 0 needs to scale similarly

(but weaker) than the growth of λq+1. On the other hand, the Beltrami waves allow for the

approximate cancellation (8.10), cf. [89, Lem.7.2]. This is sufficient to obtain a C0-limit

of (vq)q∈N0 and the convergence R̊q → 0 as desired. In fact, in [159], by more careful

estimates of essentially the same procedure, the same authors obtained β-Hölder dissipative

continuous solutions with 0 < β < 1/10. However, it turned out that these methods are

ill-suited to advance further in the direction of the conjectured threshold β = 1/3.

From 1/10 to 1/3: Proof of Onsager’s conjecture. The main impediment to higher

regularity of the limit v to solutions of (ER) in [159] is in fact the delicate transport error

[∂t+vq ·∇]wq+1, which obstructs a sharper estimate for ||R̊q+1||C0 . This issue was overcome

in a remarkable way by Isett [120], who pushed the threshold of the modulus of Hölder

continuity up to which solutions with a compactly supported energy profile exist to β = 1/5.

Simplifying and adapting these novel techniques allowed the authors of [50] to construct

also dissipative solutions with this regularity.

The main new ideas of [120] can be described as follows. The linear phase ξ · x in the

summands of (8.12) is replaced by the nonlinear one ξ · Φ(t, x), where Φ is the solution to

the transport equation {
∂tΦ + (vq+1 · ∇)Φ = 0,

Φ(0) = x.
(8.13)

This way, the material derivative ∂t + vq+1 · ∇ does not fall on the high frequency term

eiλq+1ξ·x. Moreover, since the amplitudes aq+1,ξ = aq+1,ξ(R̊q) are functions of R̊q (this

necessity arises from the desired cancellation (8.10)), a more precise estimate of the material

derivative [∂t+vq+1 ·∇]R̊q of the previous error is crucial to improve the bound on ||R̊q+1||C0 .
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Roughly speaking, sharpening this estimate allows for slightly smaller frequency parameters

λq+1 in [120, 50], which leads to improved Hölder regularity of solutions. Since in comparison

to the linear phase functions, in this situation one additionally has to control the deviation

Φ−x, it is important to introduce a localization in time: instead of Φ, one actually considers

Φj , j ∈ {1, . . . , µ}, which is the solution to (8.13) on Ij = (j/µ − 1/µ, jµ + 1/µ). Here,

µ ∈ N is a large parameter, which is determined by its relation to the scale of λq+1 and δq+1.

Augmenting (8.12) by suitable cutoff functions χj with suppχj ⊆ Ij , the perturbation

wq+1 in [50] essentially becomes

wq+1(t, x) =
∑
j

∑
ξ

χjaq+1,ξ(t, x)Bξe
iλq+1ξ·Φ(t,x). (8.14)

The remaining step towards the conjectured threshold β = 1/3 proceeds via several

gradual improvements. In [49], solutions with Hölder regularity up to β = 1/3 almost

everywhere in time are constructed by establishing more careful almost everywhere local

estimates on ||wq+1||C1 and ||R̊q+1||C0 . In [51], such estimates are employed in order to

prove the existence of solutions in L1
tC

1/3−, resolving Onsager’s conjecture up to sufficient

regularity in time.

The final proof of the conjecture was given by Isett [122] and Buckmaster, De Lellis,

Székelyhidi and Vicol [52] in 2018 and 2019, respectively. More precisely, Isett again

constructs solutions with compactly supported energy profiles, which are, strictly speaking,

not dissipative. However, his new techniques for the first time led to solutions up to

Onsager critical regularity and were adapted by the authors of [52] in order to construct

C1/3−-solutions, which obey any prescribed positive smooth energy profile. The main

novelty of [122] is that Mikado flows instead of simple Beltrami waves are used as the

oscillating building blocks of wq+1. Compared to Beltrami waves, Mikado flows have a

better self-interaction behavior, which leads to improved bounds for the oscillation error.

Essentially, the reason is that they are advected by a mean flow. We point out that Mikado

flows are introduced already in [86]. Furthermore, Isett employs a new gluing procedure

within the construction of the perturbations wq+1. However, since we will not rely on these

improvements, we do not comment on these techniques in detail here.

To conclude this survey part, we mention that the schemes of [122, 52] were further

optimized by Isett in [121] to obtain solutions in ∩ε>0C
1/3−ε. However, to date the endpoint

case β = 1/3 remains an interesting open question.

8.2.3 Further results and applications

It is no surprise that the convex integration techniques leading to the resolution of

Onsager’s conjecture have successfully been applied to further models in the area of fluid

dynamics and beyond. A prominent example is [54], where Buckmaster and Vicol prove the

existence of finite energy weak solutions to the NSE with low Sobolev regularity. To this

end, they use yet another type of oscillatory building blocks, namely so-called intermittent

Beltrami flows. Very roughly, these are approximately Beltrami waves, which, however,

have different scaling properties in different Lp-spaces, which renders them more suitable

in relation with the diffusive term of the NSE. However, the constructed solutions are

not Leray solutions. The ill-posedness of weak solutions in the Leray class remains an
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intriguing problem, and to date it is only conjectured that convex integration techniques

can be amended to address this question.

Further applications of convex integration techniques include the isentropic Euler

equations as a model of gas dynamics [64], the Hall-MHD equations [85] and ideal MHD

equations [25], compressible EE [171], linear transport equations [176] and porous medium

equations [76]. For a more extensive list of models and results, there are several excellent

survey articles on historical and recent progress in the field, see for example [53, 55] and

the references therein. A list of intriguing open questions is included in [53] as well.

Concerning this part of the thesis, of particular interest to us are the convex integration

results for the FNSE in [70], which we already mentioned at the end of Section 8.1.1.

The techniques therein are very close to those in [50], including the use of rather simple

Beltrami waves instead of Mikado or intermittent Beltrami flows. The weak diffusive term

(−∆)α can be incorporated into the iterative scheme by classical Schauder estimates. Most

interestingly, by a careful estimate of the Hölder norms, the authors were able to prove

the local Leray inequality of weak solutions obtained via convex integration up to some

time T > 0, thereby proving the ill-posedness of the FNSE in the physically relevant

class of Leray solutions. However, they obtained such estimates only for small fractional

Laplace exponents 0 < α < 1/5. Despite the remarkable extension of De Rosa to exponents

0 < α < 1/3 [194], to date it remains open whether these techniques will eventually lead

to nonuniqueness of Leray–Hopf solutions to the classical NSE, i.e. α = 1.

8.3 Stochastic PDEs

There is a variety of reasons to study (partial) differential equations under the additional

influence of random external forces. Typically, differential equations from physics, biology,

finance and other areas of applied sciences are used to model the evolution in time of

dynamical systems and processes. These systems are influenced by its ambient surroundings

on small scale levels via effects which are too complex to be accurately captured by

deterministic models. A simple, yet famous example is the apparently random movement

of a dust particle suspended in water, triggered by molecule collisions.

It turns out that the bulk of such microscopic effects to deterministic models and

additional model uncertainties can be captured via a stochastic perturbation of the corre-

sponding PDE, which gives rise to the stochastic partial differential equations (SPDEs).

The area of SPDEs is comparably young and mainly emerged in the past fifty years, see

[234] for a historical review of the developments in the field.

8.3.1 Regularization by noise

Remarkably, including an external noise term not only takes into account small scale

effects to the underlying model in a reasonable way, but is also extremely interesting from

a purely mathematical point of view. It turns out that random external forces can lead to a

regularization of deterministic PDE. More precisely, ill-posed deterministic equations may

turn into well-posed SPDEs. This phenomenon, known as regularization by noise, is the

central mathematical reason for the enormous recent interest in the theory of SPDEs. A

rough intuitive picture is that a typical source for ill-posedness of a differential equation is a
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singularity in the corresponding vector field, in which a solution can linger for an arbitrary

amount of time. In this situation, a sufficiently nondegenerate random external force may

move the solution out of the singularity immediately, hence preventing the emergence of

several solutions at this point. There is a large number of works in this direction, see

[101, 102, 225, 148, 201, 113, 62, 109, 107], as well as the survey article [108].

8.3.2 Convex integration for SPDEs

In this light, one is led to the intriguing question whether the nonuniqueness results

obtained by convex integration carry over to the stochastic case. In other words, one may

ask whether convex integration techniques can be applied to SPDEs in order to construct

solutions with wild energy behavior. First impressive results in this direction are given

in the remarkable works by Hofmanová, Zhu and Zhu [115, 116], in which the authors

prove ill-posedness of analytically weak martingale solutions to the stochastic NSE and

EE, respectively, perturbed by an additive or multiplicative Wiener noise. To do so, they

adapt convex integration methods in order to construct pathwise solutions with wild energy

behavior after splitting off the stochastic term to obtain a PDE with random coefficients

to which convex integration methods apply pathwise. The dependence of this equation on

random coefficients restricts the construction of convex integration solutions to a bounded

stopping time. From there, a nontrivial measure theoretic gluing technique allows to

construct probabilistically strong solutions (that is, the solution is defined on a prescribed

probability space and is adapted to the canonical Wiener filtration). We do not comment

in detail on the precise convex integration methods in the stochastic case here, but refer to

Section 11.1, where we outline the techniques for our main result, which are much in the

spirit of [115].

Further nonuniqueness results for SPDEs obtained via convex integration include the full

Euler system [67, 47], the three-dimensional FNSE in the hyperdissipative case 1 ≤ α < 5/4

[232], and the two-dimensional FNSE in the case 0 < α < 1 [231].

By the classical Engelbert-Cherny theory, pathwise (i.e. strong) uniqueness for SPDEs

is equivalent to the existence of a probabilistically strong solution and uniqueness in law (i.e.

weak uniqueness), see [96, 66] for the finite-dimensional case, and [188] for a generalization

to variational solutions to SPDEs. Therefore, there was a general hope that proving weak

uniqueness of, e.g., stochastic EE and NSE might eventually lead to strong uniqueness of

these equations. The aforementioned convex integration nonuniqueness results prove these

hopes wrong. However, we stress once more that in the case of the NSE, nonuniqueness is

not known in the physically important class of Leray–Hopf solutions.

8.4 Main result

In the light of these ill-posedness results for stochastic PDEs, the objective of this part

of the thesis is to study the stochastic hypodissipative Navier–Stokes equations on the 3D

torus T3, i.e. {
∂tv + div(v ⊗ v) +∇p+ (−∆)αv = dB,

div v = 0,
(HNSEsto)
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with fractional exponent 0 < α < 1/2. Here, B is a GG∗-Wiener process on a prescribed

probability space (Ω,F ,P), where G : U → L2
σ is a Hilbert–Schmidt operator on some

auxiliary Hilbert space U with values in L2
σ, the solenoidal L2-vector fields on T3. We

prove nonuniqueness of martingale solutions to this equation, compare [115, Thm.1.2]. To

do so, we employ convex integrations methods as described above to construct even a

probabilistically strong solution up to a strictly positive stopping time, which violates a

natural energy inequality. We impose the following regularity for G.

Assumption on G. The operator G : U → L2
σ is Hilbert–Schmidt, and there is σ > 0

such that

Tr((−∆)
5+2σ

2
−αGG∗) <∞. (8.15)

Under this standing assumption, we prove the following main result of this part of the

thesis.

Theorem 8.4.1. Let 0 < α < 1/2 and suppose G fulfills (8.15). Then, for any T > 0, there

exist two martingale solutions to (HNSEsto) on [0,∞) subject to a common deterministic

initial condition x0 ∈ L2
σ, which are distinct on [0, T ].

This result fills a gap in the existing literature on nonuniqueness results for stochastic

fluid dynamical equations via convex integration techniques. We would like to point out

that in contrast to the aforementioned remarkable results in this direction, in particular

[115, 116], the present work is the first in which simple Beltrami waves are used as oscillatory

building blocks in the convex integration scheme. For a detailed outline of the proof, we refer

to Section 10.1, and to Section 11.1 for an explanation of the particular convex integration

methods. We would like to mention that completely independent to our preprint [189], a

result very similar to the above theorem appeared in [233] at the exact same time.

At this point, we mention that the range 1/2 < α < 1 seems to be still open, at least

in the three-dimensional case, although a nonuniqueness result comparable to Theorem

8.4.1 is strongly expected to hold. However, we do not know whether simple Beltrami

waves as used in the present case are applicable to the situation of a higher dissipation

term 1/2 < α.

Organization of Part III. In Chapter 9, in the first two sections, we introduce basics

on fractional Sobolev spaces and the fractional Laplacian, and give additional notation

conventions. In Sections 9.3 and 9.4, we discuss martingale solutions to (HNSEsto) and the

extensions of local martingale solutions to global ones.

In Chapter 10, we present the proof of the main result, Theorem 8.4.1. First, we outline

the idea in Section 10.1. Afterwards, we decompose (HNSEsto) into equations (SLα) and

(NL-SHNSE), and discuss regularity for the solution to the former equation. Then, in

Section 10.3, we use the results of the previous section and the pathwise weak solution to

(NL-SHNSE) (which we will construct in Chapter 11) to construct an analytically weak

solution u to (HNSEsto) up to a stopping time TL, and we show that u gives rise to a local

martingale solution in Section 10.4. Finally, in Section 10.5, we use the extension method

discussed in Section 9.4 to extend this local martingale solution to a global one in order to

complete the proof.
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In Chapter 11, we focus on the construction of a pathwise analytically weak solution to

(NL-SHNSE) with anomalous energy behavior, which we used in Chapter 10 to complete

the proof of the main result. The construction is based on the method of convex integration,

which we outline in Section 11.1. The core result of this chapter, Corollary 11.2.3, follows

from the iterative proposition 11.2.2, as outlined in Section 11.2. Finally, this iteration is

proven in Section 11.3. This final section on the proof of Proposition 11.2.2 consists of the

implementation of convex integration techniques to our setting.

Chapter 9

Preliminaries

We begin this chapter by recalling basics about Fourier analysis on the torus T3 and

introduce (fractional) Sobolev spaces and the fractional Laplace operator. Moreover, we

fix the notation specific to this part of the thesis. Afterwards, we introduce the notion of

global and local martingale solutions, state a crucial existence and stability result for such

solutions in Proposition 9.3.4, and present the measure theoretic techniques by which local

solutions may be extended to global ones.

9.1 Fourier analysis on T3, Sobolev spaces, fractional Lapla-

cian

Functions on T3. A function f : R3 → C is called 2π-periodic, if f(x+k2πei) = f(x) for

each x ∈ R3, k ∈ N and i ∈ {1, 2, 3}. For S1 := {eiθ, θ ∈ R}, we denote by T3 := S1×S1×S1

the three-dimensional torus. It is clear that any 2π-periodic function f determines a unique

function f̃ : T3 → C and vice versa, and that any such f is uniquely determined by its

values on [−π, π]3. In comparison to the general notation introduced in Chapter 0, in the

present periodic setting, we write, for p ∈ [1,∞] and l ∈ N,

Lp(T3,C) := Lp([−π, π]3,C), Lp(T3,Cl) :=
{
f = (f1, . . . , fl) : fi ∈ Lp(T3,C), i ≤ l

}
and endow these spaces with the following usual norms, suppressing the dimension of the

state space,

||f ||pLp :=
1

(2π)3

ˆ
[−π,π]3

|f |pdx for p <∞, and ||f ||L∞ := ess supx∈[−π,π]3 |f(x)|.
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In the case p = 2, these are Hilbert spaces with inner product

〈f, g〉L2 :=
1

(2π)3

ˆ
[−π,π]3

f · ḡ dx. (9.1)

We introduce the subspaces of solenoidal elements as

L2
σ(T3,Cl) := L2(T3,Cl) ∩ {f : div f = 0},

where the equality div f = 0 is understood in distributional sense. The usual solenoidal

orthogonal projection is denoted by P : L2(T3,Cl)→ L2
σ(T3,Cl). Moreover, we write

C0(T3,Cl) := C(T3,Cl) :=
{
f = (f1, . . . , fl) ∈ C(R3,Cl) : fi 2π-periodic, i ≤ l

}
,

and similarly for the spaces Ck(T3,Cl), k ∈ N ∪ {∞}, and Cγ(T3,Cl), γ ∈ (0, 1). In the

case l = 3, for any p ∈ [1,∞], k ∈ N0∪{∞} and γ ∈ (0, 1), we use the abbreviations Lp, L2
σ,

Ck and Cγ .

Fourier analysis on T3. It is readily seen that {eiξ·x, ξ ∈ Z3} is an orthonormal system

in L2(T3,C). In fact, it is well-known that this system is also complete and hence an

orthonormal basis. Define the ξ-th Fourier coefficient of f ∈ L1(T3,C) ⊇ L2(T3,C) as

f̂(ξ) :=
1

(2π)3

ˆ
[−π,π]3

e−iξ·xfdx = 〈f, eiξ·x〉L2 .

In particular, we have

f =
∑
ξ∈Z3

f̂(ξ)eiξ·x, f ∈ L2(T3,C),

and Parseval’s identity holds:

||f ||2L2 =
∑
ξ∈Z3

|f̂(ξ)|2, f ∈ L2(T3,C). (9.2)

The latter even implies that

F : L2(T3,C)→ `2(Z3,C), F(f) :=
(
f̂(ξ)

)
ξ∈Z3 ,

is a unitary isomorphism. The above observations clearly remain valid component wise for

multidimensional-valued functions.

Sobolev spaces and fractional Laplace operator. For s ≥ 0, we set

Hs := Hs(T3,C3) := {f ∈ L2
σ : ||(1−∆)s/2f ||L2 <∞}

=

{
f = (f1, f2, f3) ∈ L2

σ :
∑
ξ∈Z3

(1 + |ξ|2)sf̂i(ξ)
2 <∞, i ≤ 3

}
.
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Hs is a C-Hilbert space with scalar product

〈f, g〉Hs := 〈(1−∆)s/2f, (1−∆)s/2g〉L2 =
∑

1≤i≤3

∑
ξ∈Z3

(1 + |ξ|2)sf̂i(ξ)ĝi(ξ),

where the equality stems from the symbol (1 + |ξ|2)s/2 of the operator (1 − ∆)s/2 as a

Fourier multiplier. The corresponding norm is denoted by || · ||Hs . In particular, we have

H0 = L2
σ.

For s > 0, let H−s denote the topological dual space of Hs with the standard dual

norm and consider the dual pairing

H−s ×Hs → C, (f, g) 7→ 〈f, g〉(−s,s) := f(g).

Furthermore, we recall that the embedding Hs ↪→ Hr is dense and compact for any

−∞ < r < s <∞, cf. [220, Eq.(3.12)]. We also recall that for γ ∈ [0, 1), the embeddings

Hs ↪→ Cγ , s ≥ 3

2
+ γ, (9.3)

are continuous.

For α ∈ (0, 1), the fractional Laplace operator (−∆)α is the operator with symbol |ξ|2α

as a Fourier multiplier, i.e. for f ∈ Hs, s ∈ R, it has the (formal) Fourier series

(−∆)αf(x) =
∑
ξ∈Z3

|ξ|2αf̂(ξ)eiξ·x, (9.4)

which is convergent if and only if f ∈ Hs, s ≥ 2α. The map (−∆)α : Hs → Hs−2α,

f 7→ (−∆)αf , is continuous for each s ∈ R and α ∈ (0, 1). We recall the following relation

between (−∆)s/2 and the norm || · ||Hs : There is a constant C = CS > 1 such that

C−1

(
||f ||2L2 + ||(−∆)s/2f ||2L2

)
≤ ||f ||2Hs ≤ C

(
||f ||2L2 + ||(−∆)s/2f ||2L2

)
, f ∈ Hs.

(9.5)

9.2 Notation

For this part of the thesis, in addition to the general notation, we use the following

conventions and abbreviations. For an interval I ⊆ R and r ∈ [0, 1) ∪ N, we write

CrI,x := Cr(I × T3,R3), and || · ||CrI,x and [·]CrI,x for the corresponding norm and seminorm,

respectively, as introduced in Chapter 0. In the special case I = [0, t], we simply write Crt,x,

|| · ||Crt,x and [·]Crt,x . Similarly, we write C0
IC

r
x := C

(
I, Cr(T3,R3)

)
with norm and seminorm

||f ||C0
IC

r
x

= supt∈I ||f(t, ·)||Cr and [f ]C0
IC

r
x

= supt∈I [f(t, ·)]Cr , respectively, and C0
t C

r
x,

||·||C0
t C

r
x

and [·]C0
IC

r
x

in the case I = [0, t]. For spaces of smooth functions, we use the notation

C∞t,xRl := C∞([0, t]× T3,Rl), and C∞t,x in the case l = 3. For a normed space (X, || · ||X)

and f : [0, t]→ X, we also use the standard notation ||f ||L∞t X = ess sups∈[0,t]||f(s)||X . For

ϕ = (ϕ1, ϕ2, ϕ3) ∈ C1(R3,R3), we write Dϕ := (∇ϕ1, . . . ,∇ϕ3) ∈ R3×3. In the case of an

inequality a ≤ Cb for real numbers a, b ∈ R and an absolute constant C > 0, we also write

a . b.
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Probabilistic elements. The main path space for this part of the thesis is Ω0 :=

C(R+, H
−3), equipped with the topology of locally uniform convergence, which renders this

a Polish space. We denote a generic element in Ω0 by x = (xt)t≥0 and write πt : Ω0 → H−3,

πt(x) := xt, for the canonical projection at t ≥ 0. We introduce the σ-algebras

B := σ(πs, s ≥ 0) = B(Ω0), B0
t := σ(πs, 0 ≤ s ≤ t), Bt := σ(πs, s ≥ t), t ≥ 0,

and we denote by (Bt)t≥0 the right-continuous filtration associated to (B0
t )t≥0. Since Ω0 is

Polish, P(Ω0) is a separable metric space.

If τ is a finite (Bt)t≥0-stopping time, we denote by Ω0,τ the space of paths stopped at

τ , i.e. Ω0,τ := {x(· ∧ τ) : x ∈ Ω0} = {x ∈ Ω0 : x = x(· ∧ τ)}. Note that Ω0,τ ∈ B(Ω0) and

hence P(Ω0,τ ) ⊆ P(Ω0).

9.3 Martingale solutions

In this section, we introduce the notion of global and local martingale solutions to

(HNSEsto), which we consider throughout this part of the thesis. Moreover, Proposition

9.3.4 contains an existence and stability result, which we will employ for the conclusion of

the proof of our main theorem as well, as in order to extend the local martingale solution,

which we will obtain in Proposition 10.4.3 to a global one, cf. Lemma 9.4.2 and Proposition

10.5.1.

For this entire part of the thesis, we fix 0 < α < 1/2 and use the notation

Fα : y 7→ div(y ⊗ y) + (−∆)αy, y ∈ D(Fα) ⊆ L2
σ.

The domain of Fα is discussed in Lemma 9.3.6.

9.3.1 Global and local martingale solutions

The subsequent definition of global martingale solutions is in order with the framework

of [110], which is important to note, since for the proof of Proposition 9.3.4 (i) below, we

want to evoke a general existence result of [110] in order to obtain martingale solutions to

(HNSEsto).

Definition 9.3.1. Let γ ∈ (0, 1) and (s, x0) ∈ R+×L2
σ. A probability measure P ∈ P(Ω0)

is a martingale solution to (HNSEsto) on [s,∞) with initial condition (s, x0), if

(M1) P
(
x ∈ Ω0 : x(t) = x0, t ∈ [0, s]

)
= 1.

(M2) For each e ∈ H3, the process

M e
s (t) := 〈πt − x0, e〉(−3,3) +

ˆ t

s
〈Fα
(
πr
)
, e〉(−3,3)dr, t ≥ s,

is a continuous real-valued, square-integrable (Bt)t≥s-martingale on Ω0 with respect

to P with quadratic variation

t 7→ 〈〈M e
s 〉〉t = (t− s)||G∗e||2U P -a.s.
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(M3) For each q ∈ N, there is a nonnegative continuous function t 7→ Ct,q = Ct,q(s, x0, P ),

such that for every t ≥ s

EP
[

sup
r∈[0,t]

||πr||2qL2 +

ˆ t

s
||πr||2(q−1)

L2 ||πr||2Hγdr

]
≤ Ct,q

(
||x0||2qL2 + 1

)
. (9.6)

Remark 9.3.2. (i) By (9.6), it follows that the complement of L∞loc(R+, L
2
σ) in C(R+, H

−3)

is P -negligible for any martingale solution P . Since the embedding H−3 ↪→ L2
σ is

continuous, it follows from [103, Lem.2.1] that P is concentrated on weakly continuous

paths in L2
σ and that L∞loc(R+, L

2
σ)∩Ω0 ∈ B. In particular, πt maps into ∈ L2

σ for all

t ≥ 0 P -a.s., which, concerning (M2), yields

〈πt, e〉(−3,3) = 〈πt, e〉L2 , t ≥ 0, P -a.s.

and, in view of (9.13), that the integral term in the definition of M e is well-defined.

(ii) Since G is Hilbert–Schmidt, GG∗ ∈ L(L2
σ) is symmetric, nonnegative and has finite

trace. By the regularity assumption Tr [(−∆)ρ0αGG∗] <∞, there exists an orthonor-

mal basis {ej}j≥1 of L2
σ in H3, consisting of eigenvectors of GG∗. Denote by {λj}j≥1

the corresponding sequence of eigenvalues with λj > 0. By (M2), in the context of

the above definition, λ
−1/2
j M

ej
s has quadratic variation

〈〈λ−1/2
j M ej 〉〉t = t− s, t ≥ s,

i.e. λ
−1/2
j M ej is a real-valued (Bt)t≥s-Brownian motion on Ω0 under P . Consequently,

Ms(t) :=
∑
j≥1

M
ej
s (t)ej , t ≥ s,

is an L2
σ-valued GG∗-Wiener process starting from s on (Ω0,B, (Bt)t≥s, P ).

As we shall see in Chapter 11, our convex integration method does not yield a global

martingale solution in the sense of the above definition. Instead, we construct an analytically

weak solution u to (HNSEsto) up to a suitable bounded stopping time τ on Ω0 and consider

its law as a probability measure on Ω0,τ . Therefore, we introduce the following definition

of local martingale solutions to (HNSEsto) up to a stopping time, which is similar to the

global case introduced above.

Definition 9.3.3. Let γ ∈ (0, 1), (s, x0) ∈ R+ ×L2
σ and τ ≥ s be a finite (Bt)t≥s-stopping

time. A probability measure P ∈ P(Ω0,τ ) is a martingale solution to (HNSEsto) on [s, τ ]

with initial condition (s, x0), if

(M1) P
(
x ∈ Ω0 : x(t) = x0, t ∈ [0, s]

)
= 1.

(M2) For each e ∈ H3, the process

M e
s (t ∧ τ) = 〈πt∧τ − x0, e〉(−3,3) −

ˆ t∧τ

s
〈Fα
(
πr
)
, e〉(−3,3)dr, t ≥ s,
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is a continuous real-valued, square-integrable (Bt)t≥s-martingale on Ω0 with respect

to P with quadratic variation

t 7→ 〈〈M e
s (· ∧ τ)〉〉t = (t ∧ τ − s)||G∗e||2U P -a.s.

(M3) For each q ∈ N, there is a nonnegative continuous function t 7→ Ct,q = Ct,q(s, x0, P )

such that for every t ≥ s

EP
[

sup
r∈[0,t∧τ ]

||πr||2qL2 +

ˆ t∧τ

s
||πr||2(q−1)

L2 ||πr||2Hγdr

]
≤ Ct,q

(
||x0||2qL2 + 1

)
. (9.7)

Similarly to Remark 9.3.2 (i) for the global case, for any local martingale solution P up

to a stopping time τ , we have P
(
L∞loc(R+, L

2
σ) ∩ Ω0

)
= 1 and πt∧τ ∈ L2

σ for all t ≥ 0 P -a.s.

9.3.2 General existence and stability for martingale solutions to (HNSEsto)

As mentioned before, we need an existence result for global martingale solutions for

two reasons. Firstly, as outlined in Section 10.1, concerning our main result Theorem 8.4.1,

we need a martingale solution which we can distinguish from the solution constructed

via convex integration methods in Chapter 11 and Sections 10.4 and 10.5. Secondly, in

order to extend local martingale solutions (which is all we are able to construct via our

convex integration methods) to global ones, we follow the procedure described in Section

9.4, which requires the existence of martingale solutions with an arbitrary initial condition

(s, x0) ∈ R+ × L2
σ.

Furthermore, since in Section 9.4 we will select measurable families of martingale

solutions R = (Rτ(x),x(τ(x)))x∈Ω0 , we also need a stability result for the class of martingale

solutions with respect to the initial data. The subsequent proposition contains everything

we need in this direction. Below, for γ > 0, we denote by Cγ
(
s, x0, Ct,q

)
the class of all

global martingale solutions which fulfill (M3) with γ and the family of functions t 7→ Ct,q,

q ∈ N, and we stress that in the second part of the proposition, C̃t,q is assumed to be

independent of n ∈ N.

Proposition 9.3.4. (i) There is a family of continuous nonnegative functions R+ 3
t 7→ Ct,q, q ∈ N, such that for each (s, x0) ∈ R+ ×L2

σ there exists a global martingale

solution P = Ps,x0 ∈ Cα
(
s, x0, Ct,q

)
to (HNSEsto).

(ii) If Pn ∈ Cγ
(
sn, xn, C̃t,q

)
for each n ∈ N and (sn, xn) −→

n→∞
(s, x0) in R+ × L2

σ, then

there is a subsequence (Pnk)k∈N which converges weakly in P(Ω0) to some P ∈
Cγ
(
s, x0, C̃t,q

)
.

For later use, we state the following important observation concerning the global

martingale solutions constructed in [110].

Remark 9.3.5. The construction of the measure Ps,x0 within the proof of [110, Thm.4.6]

via Galerkin approximations implies that Ps,x0 obeys the energy estimate

EPs,x0
[
||πt||2L2

]
≤ ||x0||2L2 + (t− s) Tr(GG∗), t ≥ s. (9.8)
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Indeed, it is readily seen that the Galerkin approximations Pn in the proof of [110, Thm.4.6]

satisfy (9.8) uniformly in n ∈ N. Hence, the claim follows from the weak convergence

Pn −→
n→∞

Ps,x0 in P(Ω0) and the lower semicontinuity of x 7→ ||x(t)||2L2 on Ω0 for t ≥ 0.

Concerning the proof of the above proposition, for (i) one shows that the general result

of [110, Thm.4.6] applies to our setting. The second part is a close adaption of an analogous

result for the case α = 1, i.e. the classical stochastic Navier–Stokes equations, see [115,

Thm.3.1]. Since both parts of the proposition are pivotal for the proof of our main result,

we provide a full proof.

First of all, we state the following identities, which readily follow from the definition of

(−∆)α as a Fourier multiplier, see (9.4), and the dense continuous embedding H3 ↪→ Hα,

0 < α < 1
2 .

||y||2Hα = sup
z∈H3, ||z||Hα≤1

〈y, z〉Hα = sup
z∈H3,||z||Hα≤1

〈y, (1−∆)αz〉L2 , y ∈ Hα, (9.9)

〈(−∆)αy, z〉(−3,3) = 〈y, (−∆)αz〉L2 , y ∈ L2
σ, z ∈ H3, (9.10)

and

〈−(−∆)αy, y〉(−3,3) = −||(−∆)α/2y||2L2 , y ∈ H3. (9.11)

Furthermore, we need the following lemma.

Lemma 9.3.6. For 0 < α < 1/2, the mapping Fα : y 7→ div(y ⊗ y) + (−∆)αy extends

continuously from H1 to an operator Fα : L2
σ → H−3 with

〈Fα(y), z〉(−3,3) = −〈y ⊗ y,Dz〉L2 + 〈y, (−∆)αz〉L2 , y ∈ L2
σ, z ∈ H3.

Proof. Considering (9.10), we only need to extend y 7→ div(y ⊗ y) from H1 to L2
σ. For

y ∈ H1, using integration by parts, we have for each z ∈ H3 with ||z||H3 ≤ 1

|〈div(y ⊗ y), z〉(−3,3)| = |〈(y · ∇)z, y〉L2 | = |〈y ⊗ y,Dz〉L2 | ≤ ||Dz||L∞ ||y||2L2 ≤ C||y||2L2 ,

where C > 0 is independent of y and z and comes from the Sobolev embeddings H3 ↪→
H2 ↪→ L∞. We conclude ||div(y⊗ y)||H−3 ≤ C||y||2L2 , which by density of H1 in L2

σ allows

us to extend y 7→ div(y ⊗ y), and hence Fα as claimed.

With these preparation at hand, we proceed to the proof of Proposition 9.3.4.

Proof of Proposition 9.3.4 (i). We aim to apply the existence result [110, Thm.4.6]. To this

end, we claim that the following choices fulfill all assumptions of [110], where the symbols

on the left-hand sides follow the notation of that paper.

Y = L2
σ, H = L2

σ, X = H−3, Nq(y) =

{
||y||2(q−1)

L2 · ||y||2Hα , if y ∈ Hα,

∞, if y ∈ L2
σ\Hα,

A = −Fα : L2
σ → H−3, B ≡ G ∈ L2(U,H).
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Indeed, the embeddings H3 ↪→ L2
σ ↪→ L2

σ ↪→ H−3 are continuous and dense between

separable Hilbert spaces, and the first embedding is in addition compact. In particular,

there is an orthonormal basis of L2
σ in H3. We choose the linear span of such basis as

the countable set of test vector fields E of [110]. Clearly, the required B(L2
σ)/B(H−3)-

and B(L2
σ)/B(L2(U,L2

σ))-measurability of our choices for A and B are fulfilled since Fα is

continuous by Lemma 9.3.6, and since G is constant as a map from L2
σ to L2(U,L2

σ).

Moreover, N1 belongs to the class U2 of [110], since N1 ≥ 0, N1(cy) ≤ c2N (y) for all

c ≥ 0, y ∈ L2
σ, it has the precompact level set

{y ∈ L2
σ : N1(y) ≤ 1} ⊆ L2

σ, (9.12)

and is lower semicontinuous on L2
σ. More precisely, (9.12) follows from the compact

embedding Hα ↪→ L2
σ and the lower semicontinuity can be realized as follows. Assume

yn −→ y in L2
σ as n → ∞ and, without loss of generality, supn≥1 ||yn||2Hα < ∞, which

implies the existence of a subsequence (ynk)k∈N and an element y′ ∈ Hα such that ynk
converges weakly to y′ in Hα as k →∞. This gives y = y′ and hence y ∈ Hα. Now the

lower semicontinuity follows from (9.9) and the density of H3 ⊆ Hα via

||y||2Hα = sup
z∈H3,
||z||Hα≤1

|〈y, (1−∆)αz〉L2 | = sup
z∈H3,
||z||Hα≤1

lim
n→∞

|〈yn, (1−∆)αz〉L2 |

≤ lim inf
n→∞

sup
z∈H3,
||z||Hα≤1

|〈yn, (1−∆)αz〉L2 | = lim inf
n→∞

||yn||2Hα .

From here, it is clear that each Nq is lower semicontinuous on L2
σ, as well as the product

of N1 with a nonnegative continuous function.

To conclude the proof of (i), it remains to verify conditions (C1)-(C3) of [110, Sect.4].

Note that all conditions for the constant L2(U,L2
σ)-valued map B ≡ G are fulfilled. Turning

to A = −Fα, concerning (C1), let yn −→ y in L2
σ as n →∞ and z ∈ H3. By Lemma 9.3.6,

we have

|〈Fα(yn)− Fα(y), z〉(−3,3)| ≤ |〈yn ⊗ yn − y ⊗ y,Dz〉L2 |+ |〈yn − y, (−∆)αz〉L2 |,

where the convergence to 0 as n → ∞ of the second summand is clear. Hence, the

demicontinuity (C1) follows from

|〈yn ⊗ yn − y ⊗ y,Dz〉L2 | ≤ ||Dz||L∞ ||yn ⊗ yn − y ⊗ y||L1

≤ ||Dz||L∞
(
||yn||L2 + ||y||L2

)
· ||yn − y||L2 −→

n→∞
0.

Next, for z ∈ H3, due to div(z) = 0, (9.11) and (9.5), we find

〈−Fα(z), z〉(−3,3) = −||(−∆)α/2z||2L2 ≤ −CN1(z) + ||z||2L2 ,

which gives the required coercivity (C2). Note that, to be even more precise, comparing

with [110] shows that one should include the constant C, which comes from (9.5), in the

definition of N1, which would cause its appearance in (9.6). However, since there is no

further restriction on the maps Ct,q, in this case C can be incorporated in Ct,q.
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Finally, concerning the boundedness (C3), for y ∈ L2
σ we bound Fα(y) in H−3 via

||Fα(y)||H−3 ≤ ||div(y ⊗ y)||H−3 + ||(−∆)α(y)||H−3

≤ sup
z∈H3,
||z||H3≤1

|〈y ⊗ y,Dz〉L2 |+ sup
z∈H3,
||z||H3≤1

|〈y, (−∆)αz〉L2 |

≤
(

sup
z∈H3,
||z||H3≤1

||Dz||L∞
)
||y||2L2 +

(
sup
z∈H3,
||z||H3≤1

||(−∆)αz||L2

)
||y||L2

≤ C
(
1 + ||y||2L2

)
, (9.13)

where we used Lemma 9.3.6, and the constant C, which is independent of y and z, comes

from the Sobolev embeddings H3 ↪→ H2 ↪→ L∞ and H3 ↪→ H2α. Consequently, still

denoting the possibly changing constant by C, we have

||Fα(y)||2H−3 ≤ C(1 + ||y||2L2)2 ≤ C(1 + ||y||4L2), (9.14)

which gives the desired growth condition and thereby concludes the verification of all

requirements of [110, Thm.4.6]. Therefore, noting that with our choices made at the

beginning of the proof, any solution in the sense of [110, Def.3.1] is a global martingale

solution in the sense of our Definition 9.3.1, the first part of Proposition 9.3.4 follows.

For part (ii), we start with the following lemma, which is identical to [116, Lem.A.1]. For

completeness, we give a slightly rewritten proof. Recall that the theorem of Arzela-Ascoli

implies that for −∞ < a < b <∞ and any index set I, any bounded family of elements

{fi}i∈I in L∞([a, b], L2
σ), which also obeys a bound

sup
i∈I

sup
r 6=t∈[a,b]

||fi(t)− fi(r)||H−3

|t− r|γ
<∞

for some γ ∈ (0, 1), is precompact in C([a, b], H−3).

Lemma 9.3.7. Let {(sn, yn)}n∈N ⊆ R+ × L2
σ converge to some (s, y0) ∈ R+ × L2

σ and let

Pn ∈ P(Ω0) satisfy

Pn(πt = yn, t ∈ [0, sn]) = 1 (9.15)

for each n ∈ N, and suppose that for some γ, κ > 0 and any T > 0

sup
n∈N

EPn
[

sup
t∈[0,T ]

||πt||L2 + sup
r 6=t∈[0,T ]

||πt − πr||H−3

|t− r|κ
+

ˆ T

sn

||πr||2Hγdr

]
<∞. (9.16)

Then, {Pn}n∈N is tight as a family of measures on Cloc

(
R+, H

−3
)
∩ L2

loc

(
R+, L

2
σ

)
.

Proof. Let ε > 0 and set k0 := supn∈N sn <∞. Due to (9.16), for each k ∈ N with k ≥ k0,

there is Rk > 0 such that

sup
n∈N

Pn

(
x ∈ Ω0 : sup

t∈[0,k]
||x(t)||L2+ sup

r 6=t∈[0,k]

||x(t)− x(r)||H−3

|t− r|κ
+

ˆ k

sn

||x(r)||2Hγdr > Rk

)
≤ ε

2k
.

(9.17)
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Set Ωn := {x ∈ Ω0 : x(t) = yn, t ∈ [0, sn]} and let K = K(ε) ⊆ Cloc(R+, H
−3) ∩

L2
loc(R+, L

2
σ) be defined as

K :=
⋃
n∈N

⋂
k≥k0

Kk
n,

where for abbreviation we set

Kk
n :=

{
x ∈ Ωn : sup

t∈[0,k]
||x(t)||L2 + sup

r 6=t∈[0,k]

||x(t)− x(r)||H−3

|t− r|κ
+

ˆ k

sn

||x(r)||2Hγdr ≤ Rk
}
.

In order to prove tightness of {Pn}n∈N, our goal is to prove that K ⊆ Cloc(R+, H
−3) ∩

L2
loc(R+, L

2
σ) is compact and that we have

sup
n∈N

Pn(Kc) ≤ ε. (9.18)

First, (9.18) follows from

Pn(Kc) ≤ Pn
( ⋃
k≥k0

(Kk
n)c
)
≤
∑
k≥k0

Pn
(
(Kk

n)c
)
≤ ε,

where the final estimate is due to (9.17). Secondly, concerning compactness of K, by

definition of the topology of the local spaces Cloc(R+, H
−3) and L2

loc(R+, L
2
σ), it suffices to

show that for each L > k0, the set K[0,L] of elements of K restricted to [0, L] is precompact

in C([0, L], H−3) ∩ L2([0, L], L2
σ). To this end, let {xm}m∈N be a sequence in K and let

L > k0. If there is n ∈ N such that there are infinitely many m with

xm ∈
⋂
k≥k0

Kk
n, (9.19)

then the definition of Kk
n implies that {xm}m∈N contains a subsequence {xml}l∈N which is

uniformly bounded in L∞([sn, L], L2
σ) ∩ L2([sn, L], Hγ) and, additionally,

sup
l∈N

sup
r 6=t∈[sn,L]

||xml(t)− xml(r)||H−3

|t− r|κ
<∞.

Consequently, since the embedding

L∞([sn, L], L2
σ) ∩ Cκ([sn, L], H−3) ∩ L2([sn, L], Hγ) ↪→ L2([sn, L], L2

σ) ∩ C([sn, L], H−3)

is compact (cf. [46, Sect.1.8.2]), we conclude the existence of a further subsequence which

converges in C([sn, L], H−3) ∩ L2([sn, L], L2
σ). Since xml ∈ Ωn for each l by assumption,

this convergence also holds in C([0, L], H−3) ∩ L2([0, L], L2
σ), which concludes this case.

If for each n ∈ N, there exist only finitely many m such that (9.19) holds, we may, up

to a possible relabeling of the sequence, in particular assume xm ∈ Ωm for each m. In order

to show the desired precompactness in this case, we first find a convergent subsequence in
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C([0, L], H−3) and then show that this subsequence is Cauchy also in L2([0, L], L2
σ). This

works as follows. The definition of K gives the boundedness of {xm}m∈N

sup
m∈N

(
sup
t∈[0,L]

||xm(t)||L2 + sup
r 6=t∈[0,L]

||xm(t)− xm(r)||H−3

|t− r|κ

)
<∞,

from which the Arzela-Ascoli theorem, as recalled above the assertion of the present lemma,

yields the existence of a convergent subsequence {xml}l∈N in C([0, L], H−3). Concerning

the Cauchy property of this subsequence in L2([0, L], L2
σ), we obtain

ˆ L

0
||xml(t)− xmj (t)||

2
L2dt = I1 + I2 + I3,

with

I1 :=

ˆ sml∧smj

0
||xml(t)− xmj (t)||

2
L2dt, I2 :=

ˆ sml∨smj

sml∧smj
||xml(t)− xmj (t)||

2
L2dt,

I3 :=

ˆ L

sml∨smj
||xml(t)− xmj (t)||

2
L2dt.

Since xml ∈ Ωml and xmj ∈ Ωmj , and because {yn}n∈N is in particular Cauchy in L2
σ, we

have

I1 ≤ k0||yml − ymj ||
2
L2 −→

l,j→∞
0. (9.20)

Furthermore, we find, using the convergence sn −→
n→∞

s,

I2 ≤ 2

( ˆ sml∨smj

sml∧smj
||xml ||

2
L2 + ||xmj ||2L2dt

)
≤ 4R2

L

(
sml ∨ smj − sml ∧ smj

)
−→
l,j→∞

0.

Finally, we interpolate L2
σ between H−3 and Hγ and use Young’s inequality to obtain for

arbitrary δ > 0 and a constant Cδ > 0 only dependent on δ and γ

I3 ≤ δ
ˆ L

sml∨smj
||xml(t)− xmk(t)||2Hγdt+ Cδ

ˆ L

sml∨smj
||xml(t)− xmk(t)||2H−3dt

≤ 2δRL + CδL sup
t∈[0,L]

||xml(t)− xmj (t)||
2
H−3 .

Choosing δ > 0 arbitrarily small and noting that the second summand converges to 0 as

l, j −→∞ since (xml)l∈N converges in C([0, L], H−3), the convergence of I3 to 0 follows.

Summarizing, any sequence {xm}m∈N ⊆ K contains a convergent subsequence in

Cloc(R+, H
−3) ∩ L2

loc(R+, L
2
σ), which yields the necessary precompactness of K and the

proof is complete.

We are now prepared to prove part (ii) of Proposition 9.3.4.

Proof of 9.3.4 (ii). For {Pn}n∈N as in the assertion, we first of all prove that this is a

tight family of Borel probability measures on S := Cloc(R+, H
−3)∩L2

loc(R+, L
2
σ), for which
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we aim to use the previous lemma. Note that (M3) of Definition 9.3.1 for q = 1 and

supn∈N ||xn||L2 <∞ implies the bound

sup
n∈N

EPn
[

sup
t∈[0,T ]

||πt||L2 +

ˆ T

sn

||πt||2Hγdr

]
<∞, T > 0, (9.21)

so that tightness of {Pn}n∈N follows from Lemma 9.3.7, if we can show for some κ ∈ (0, 1)

sup
n∈N

EPn
[

sup
r 6=t∈[0,T ]

||πt − πr||H−3

|t− r|κ

]
<∞, T > 0. (9.22)

It follows from (M2) that for each n ∈ N and e ∈ H3, we have

〈x(t), e〉(−3,3) = 〈xn, e〉(−3,3)−
ˆ t

sn

〈Fα(x(r)), e〉(−3,3)dr+M
e
sn(t), t ≥ sn, Pn-a.e. x ∈ Ω0,

and, consequently, the Pn-a.s. equality in H−3

x(t) = xn −
ˆ t

sn

Fα(x(r))dr +Msn(t), t ≥ sn, (9.23)

holds, where Msn is the GG∗-Brownian motion in L2
σ with respect to Pn defined in Remark

9.3.2 (ii). Concerning (9.22), we treat the summands of (9.23) individually as follows. On

the one hand, applying a Burkholder-Davies-Gundy inequality (cf. [166, Thm.6.1.2]) for

p > 2 gives

EPn
[
||Msn(t)−Msn(r)||2p

L2

]
≤ CpEPn

[(ˆ t

r
||G||2L2(U,L2

σ)ds

)p]
≤ Cp|t− r|p−1EPn

[ˆ t

r
||G||2p

L2(U,L2
σ)
ds

]
≤ C(p, T,G)|t− r|p−1, sn ≤ r ≤ t ≤ T,

where we used Hölder inequality for the second estimate and we note that the constant

C(p, T,G) is independent of n. From here, Kolmogorov’s continuity criterion Theorem

D.0.2 allows to conclude the existence of a locally κ-Hölder continuous version of Msn for

κ ∈ (0, p−2
2p ), again denoted by Msn , such that

EPn
[
||Msn ||Cκ([0,T ],L2

σ)

]
≤ C, T > 0, (9.24)

for a finite constant C, which depends on p,G and T , but not on n. On the other hand,

for any p > 1, using Hölder inequality for p1 = p
p−1 and p2 = p, we find

EPn
[

sup
r 6=t∈[sn,T ]

||
´ t
r Fα(πu)du||p

H−3

|t− r|p−1

]
≤ EPn

[ˆ T

sn

||Fα(πu)||p
H−3

]
≤ CpEPn

[ˆ T

sn

1 + ||πu||2pL2du

]
≤ C(||xn||2pL2 + 1).
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Here, the second inequality follows from the growth bound (9.14) and the finite constant

C > 0 in the last line depends on p, T and the value of C̃T,p from the statement of the

present proposition. In particular, since each Pn is assumed to obey (M3) of Definition 9.3.1

with the same family (C̃t,q)q, this constant is independent of n. Since supn∈N ||xn||L2 <∞,

we obtain

sup
n∈N

EPn
[

sup
r 6=t∈[sn,T ]

||
´ t
r Fα(πu)du||H−3

|t− r|
p−1
p

]
<∞. (9.25)

Combining with (9.23), (9.24) and the fact that x(t) = xn, t ∈ [0, sn], Pn-a.s., we conclude

that (9.22) is fulfilled for any 0 < κ < 1/2 (note that we may choose different values for

p in (9.24) and (9.25)). Consequently, we evoke Lemma 9.3.7 to conclude tightness of

{Pn}n∈N as Borel probability measures on S = Cloc(R+, H
−3)∩L2

loc(R+, L
2
σ) and extract a

subsequence, again denoted by (Pn)n∈N, which converges weakly to some P ∈ P(S). Since

for each k ∈ N the map

x 7→ ||x||L∞((0,k),L2
σ) ∈ R+ ∪ {∞}

is lower semicontinuous on S and each Pn is concentrated on Ω0 ∩ L∞loc(R+, L
2
σ), we may

consider P as a probability measure on Ω0 ∩ L∞loc(R+, L
2
σ).

To conclude the proof it remains to show P ∈ Cγ(s, x0, C̃t,q). To this end, we employ

the Skorohod representation, cf. Theorem D.0.1, to obtain a probability space (Ω̃, F̃ , P̃ )

and S-valued random variables ỹn and ỹ such that

(i) P̃ ◦ ỹ−1
n = Pn for each n ∈ N,

(ii) ỹn −→
n→∞

ỹ P̃ -a.s. and P̃ ◦ ỹ−1 = P .

From here, (M1) of Definition 9.3.1 follows via

P
(
x ∈ Ω0 : x(t) = x0, t ∈ [0, s]

)
= P̃

(
ỹ(t) = x0, t ∈ [0, s]

)
= P̃

(
lim
n→∞

ỹn(t) = x0, t ∈ [0, s]
)

≥ P̃
( ⋂
n∈N

{
ỹn(t) = xn, t ∈ [0, sn]

})
= 1,

where the final equality holds since {ỹn(t) = xn, t ∈ [0, sn]}c is P̃ -negligible for each n ∈ N
due to (M1) for Pn and (i) above.

Concerning (M2), the almost sure convergence ỹn −→
n→∞

ỹ in S under P̃ gives for each

e ∈ H3 and t ≥ s

〈ỹn(t), e〉(−3,3) −→
n→∞

〈ỹ(t), e〉(−3,3),

ˆ t

sn

〈Fα(ỹn(r)), e〉(−3,3)dr −→
n→∞

ˆ t

s
〈Fα(ỹ(r)), e〉(−3,3)dr

P̃ -a.s., and therefore, with the notation of Definition 9.3.1, M e
sn(ỹn, t) −→

n→∞
M e
s (ỹ, t) for

all t ≥ s, P̃ -a.s. Writing M e,ỹn
sn = M e

sn(ỹn) and similarly for ỹ instead of ỹn, evoking the

Burkholder-Davies-Gundy inequality [166, Thm.6.1.2] implies

sup
n∈N

EP̃

[∣∣M e,ỹn
sn (t)

∣∣2p] ≤ C sup
n∈N

EPn
[(ˆ t

sn

||G||2L2(U,L2
σ)ds

)p]
<∞, p > 1, (9.26)
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which shows that under P̃ , the random variables M e,ỹn
sn (t), n ∈ N, are uniformly integrable,

which allows to apply Lebesgue dominated convergence theorem to obtain

lim
n→∞

EP̃
[∣∣M e,ỹn

sn (t)−M e,ỹ
s (t)

∣∣] = 0. (9.27)

From here, we deduce the martingale property of M e
s stated in (M2) as follows. For

t ≥ r ≥ s and g : Ω0 → R continuous Br-measurable, using (9.27) we know by the

martingale property of M e under each Pn that

EP
[(
M e
s (t)−M e

s (r)
)
g

]
= lim

n→∞
EP̃

[(
M e,ỹn
sn (t)−M e,ỹn

sn (r)
)
g(ỹ)

]
= lim

n→∞
EPn

[(
M e
sn(t)−M e

sn(r)
)
g

]
= 0,

which implies that t 7→M e
s (t) is a continuous (Bt)t≥s-martingale on Ω0 with respect to P

for each e ∈ H3. Using (9.26) for higher p, we similarly obtain

lim
n→∞

EP̃
[∣∣M e,ỹn

sn (t)−M e,ỹ
s (t)

∣∣2] = 0,

and from there the martingale property of

t 7→M e
s (t)− (t− s)||G∗e||2U ,

i.e. M e
s has quadratic variation t 7→ 〈〈M e

s 〉〉t = (t − s)||G∗e||2U . Consequently, M e
s is in

particular P -square integrable, so that everything concerning (M2) for P is proven. Finally,

we verify (M3). For q ∈ N, set

x 7→ Sq(t, s, x) := sup
r∈[0,t]

||x(r)||2q
L2 +

ˆ t

s
||x(u)||2(q−1)

L2 ||x(u)||2Hγdu,

which is lower semicontinuous on S. Therefore, the weak convergence Pn −→ P in P(S) as

n→∞ gives for each s < s∗ < t

EP
[
Sq(t, s

∗, x)
]
≤ lim inf

n→∞
EPn

[
Sq(t, sn, x)

]
≤ C̃t,q lim inf

n→∞

(
||xn||2qL2 + 1

)
= C̃t,q

(
||x0||2qL2 + 1

)
,

(9.28)

where we used the assumption that Pn ∈ Cγ(sn, xn, C̃t,q) for some γ with (C̃t,q)q independent

of n, and the fact that due to the convergence sn −→ s as n→∞, we have sn ≤ s∗ for all

but finitely many n and Sq(t, s
∗, x) ≤ Sq(t, sn, x) for all such n. Since the right-hand side

in (9.28) is independent of s∗, we finally obtain

EP
[
Sq(t, s, x)

]
≤ C̃t,q

(
||x0||2qL2 + 1

)
,

which shows P ∈ Cγ(s, x0, C̃t,q), and thereby completes the proof of Proposition 9.3.4.
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9.4 Extension of local martingale solutions

As mentioned at the beginning of the previous subsection, in view of our main result,

we need to extend local martingale solutions obtained via the convex integration methods

of Chapter 11 to global ones. To do so, we would like to make use of a classical measure

theoretic extension technique, see [215, Thm.6.1.2]: If we are given a local solution P up

to a finite stopping time τ , we would like to concatenate P in a pathwise sense at each

end point
(
τ(x), x(τ(x))

)
∈ R+ × L2

σ with a global martingale solution Rτ(x),x(τ(x)), whose

initial condition is the indexed end point. The existence of such a family of martingale

solutions follows from Proposition 9.3.4 (i). However, it turns out that the stopping times

τL up to which we can construct local martingale solutions by convex integration methods

are stopping times only with respect to the right-continuous filtration (Bt)t≥0 on Ω0 instead

of the natural filtration (B0
t )t≥0. This rules out a direct application of the classical result

of [215]. Instead, we use an extension of these techniques, which was already used in [116].

Hereafter, we state and discuss the necessary results in this direction.

Lemma 9.4.1. Let τ be a bounded (Bt)t≥0-stopping time. Then, for every x ∈ Ω0 ∩
L∞loc(R+, L

2
σ), there exists Qx ∈ P(Ω0) such that

Qx
(
x′ ∈ Ω0 : x(t) = x′(t), t ∈ [0, τ(x)]

)
= 1, (9.29)

and we have

Qx(A) = Rτ(x),x(τ(x))(A), A ∈ Bτ(x), (9.30)

where Rτ(x),x(τ(x)) ∈ P(Ω0) is a global martingale solution to (HNSEsto) with initial con-

dition x(τ(x)) ∈ L2
σ at time τ(x). Furthermore, x 7→ Qx(B) is Bτ -measurable for each

B ∈ B.

Proof. In order to select a measurable family of martingale solutions, we apply the general

framework of [215, Ch.12]. Note that, as a consequence of the stability part (ii) of

Proposition 9.3.4, the sets Cγ
(
s, x0, C̃t,q

)
⊆ P(Ω0) are compact with respect to the topology

of weak convergence of measures, i.e. if such a set is nonempty, it is an element of

Comp(P(Ω0)), the space of all nonempty compact subsets of P(Ω0).

Since Proposition 9.3.4 yields a family (Ct,q)q such that Cα(s, x0, Ct,q) is nonempty for

each (s, x0) ∈ R+ × L2
σ, and since P(Ω0) is a separable metric space, Lemma E.0.2 and

E.0.3 imply the existence of a Borel map

R+ × L2
σ 3 (s, x0) 7→ Rs,x0 ∈ Cα(s, x0, Ct,q). (9.31)

Since the canonical process x : R+ × Ω0 ∩ L∞loc(R+, L
2
σ) → H−3 is (B0

t )t≥0-progressively

measurable and the embedding H−3 ↪→ L2
σ is dense and continuous, it follows via Ku-

ratowski’s theorem that L2
σ ∈ B(H−3), B(L2

σ) = B(H−3) ∩ L2
σ and that this process is

also (B0
t )t≥0-progressively measurable with respect to B(L2

σ). In particular, it is (Bt)t≥0-

progressively measurable. Since τ is in particular finite, it follows from [215, Lem.1.2.4]

that the map on R+ × Ω0 ∩ L∞loc(R+, L
2
σ)

(t, x) 7→
(
τ(x), x(τ(x))

)
∈ R+ × L2

σ
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is Bτ -measurable. Combining with the measurable selection (9.31), we obtain a Bτ -
measurable map

Ω0 ∩ L∞loc(R+, L
2
σ)→ P(Ω0), x 7→ Rτ(x),x(τ(x)), (9.32)

with Rτ(x),x(τ(x)) being a global martingale solution to (HNSEsto) with initial condition

(τ(x), x(τ(x))). Consequently, noting that [215, Lem.6.1.1] still holds if one replaces the

state space Rd by H−3, we may apply [215, Lem.6.1.1] to construct a unique element

Qx ∈ P(Ω0) via

Qx := δx ⊗τ(x) Rτ(x),x(τ(x)),

which is uniquely characterized by (9.29) and (9.30). To conclude the proof, we turn to

the measurability part of the assertion. To this end, it is sufficient to consider cylinder

sets of type A = {πt1 ∈ B1, . . . , πtn ∈ Bn} for n ∈ N, 0 ≤ t1 · · · ≤ tn, and Bi ∈ B(H−3),

1 ≤ i ≤ n. Using the definition of Qx, we have

Qx(A) = 1[0,t1)(τ(x))Rτ(x),x(τ(x))(A)

+
n−1∑
k=1

(
1[tk,tk+1)(τ(x))1B1(x(t1)) · · ·1Bk(x(tk))

·Rτ(x),x(τ(x))

(
x(tk+1) ∈ Bk+1, . . . , x(tn) ∈ Bn

))
+ 1[tn,∞)(τ(x))1B1(x(t1)) · · ·1Bn(x(tn)),

and each summand of the above right-hand side is Bτ -measurable due to the corresponding

measurability of τ and (9.32), which completes the proof.

We want to extend local martingale solutions P defined up to a stopping time τ to

global solution in such a way that the extended solution coincides with P up to τ . To

this end, the principal idea is to consider the family R = (Rτ(x),x(τ(x)))x obtained through

Proposition 9.4.1 to define the extension of P past τ as

P ⊗τ R(A) :=

ˆ
Ω0

Qx(A)dP (x), A ∈ B. (9.33)

Note that by the local version of Remark 9.3.2 (i), any local martingale solution up to a

bounded (Bt)t≥0-stopping time τ is concentrated on paths in Ω0 ∩ L∞(R+, L
2
σ), which are

weakly continuous in L2
σ. Consequently, Lemma 9.4.1 provides a unique measure Qx for

P -a.e. x ∈ Ω0, and the measurability of x 7→ Qx yields that P ⊗τ R is well-defined as an

element of P(Ω0). We remark that this is the only instant where we use measurability of

x 7→ Qx, and therefore mere B-measurability would be suffice as well.

Lemma 9.4.1 implies Qx = δx on B0
τ(x) P -a.s. If τ was a (B0

t )t≥0-stopping time, we

could infer

Qx
(
x′ ∈ Ω0 : τ(x′) = τ(x)

)
= 1, P -a.e. x ∈ Ω0, (9.34)

which would imply P = P ⊗τ R on B0
τ as follows:

P ⊗τ R(A) =

ˆ
Ω0

Qx(A ∩ {τ = τ(x)})dP (x) =

ˆ
Ω0

δx(A)dP (x) = P (A), A ∈ B0
τ ,
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where we used A ∩ {τ = τ(x)} ∈ B0
τ(x), which clearly holds under the assumption that τ is

an (B0
t )t≥0-stopping time. However, as mentioned before and as we will see in Section 10.4,

the stopping times we will use, namely τ = τL with τL as in (10.19), are only stopping

times with respect to (Bt)t≥0, i.e. with respect to the larger right-continuous filtration.

In this case, (9.29) is not sufficient to obtain (9.34). Roughly speaking, this is due to

the observation that since τL is only a stopping time with respect to a right-continuous

filtration, in order to decide whether τL(x′) = τL(x), in general one needs information

about the path x′ not only up to time τL(x), but also infinitesimally beyond, which is not

granted by (9.29).

Consequently, it seems indispensable to assume the family {Qx}x to fulfill (9.34), which

we will do in Lemma 9.4.2. However, note that even under this additional assumption, it

seems out of reach to obtain P = P ⊗τ R on Bτ , since this would require Qx = δx on the

right-continuous σ-algebras Bτ(x), which we cannot infer. However, by means of (9.34), we

are able to conclude the equality P = P ⊗τ R on [0, τ ] in the sense that

P (A) = P ⊗τ R(A), A ∈ σ(πt∧τ , t ≥ 0), (9.35)

see Lemma 9.4.2. We shall see that it is sufficient for P and P ⊗τL R to coincide on this

σ-algebra. The preceding discussion leads to the following

Lemma 9.4.2. For τ as in Lemma 9.4.1 and x0 ∈ L2
σ, let P ∈ P(Ω0,τ ) ⊆ P(Ω0) be a local

martingale solution on [0, τ ] with initial condition (0, x0). In addition to the situation in

Lemma 9.4.1, assume there is a P -negligible set N ∈ Ω0,τ such that for every x ∈ N c (9.34)

holds. Then, the probability measure P ⊗τ R ∈ P(Ω0), defined as in (9.33), is a global

martingale solution to (HNSEsto) with initial condition (0, x0), and it satisfies (9.35).

Proof. The final claim follows, if we show (9.35) for any A ∈ σ(πt∧τ , t ≥ 0) of type

A = {πt1∧τ ∈ B1, . . . , πtn∧τ ∈ Bn}, Bi ∈ B(H−3), 0 ≤ t1 ≤ · · · ≤ tn, n ∈ N, since the set of

such A is a ∩-stable generator of σ(πt∧τ , t ≥ 0). We find

P ⊗τ R(A) =

ˆ
Ω0

Qx(A)dP (x) =

ˆ
Ω0

Qx({πt1∧τ(x) ∈ B1, . . . , πtn∧τ(x) ∈ Bn})dP (x)

=

ˆ
Ω0

δx(A)dP (x) = P (A),

where we used (9.34) for the second, and Qx = δx on B0
τ(x) (which we observed on the

previous page) for the third equality. Hence, it remains to prove that P ⊗τ R fulfills

Definition 9.3.1. Concerning (M1), since {π0 = x0} ∈ σ(πt∧τ , t ≥ 0), we have

P ⊗τ R(x ∈ Ω0 : x(0) = x0) = P (x ∈ Ω0 : x(0) = x0) = 1.

Here, the second equality holds, since P is a local martingale solution with initial value x0

at time s = 0. Turning to (M3), first recall that due to Proposition 9.3.4, the martingale

solutions Rτ(x),x(τ(x)), used for the construction of the measures Qx in Lemma 9.4.1, may

be chosen such that they fulfill Definition 9.3.1 with the common value γ = α and common

functions t 7→ C ′′t,q. Assume without loss of generality that γ′ ≤ α, where γ′ denotes the
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value for γ for the local solution P in Definition 9.3.3. Choose γ in Definition 9.3.1 for

P ⊗τ R as γ = γ′. Then, we have for each t ≥ 0 and q ∈ N,

EP⊗τR
[

sup
r∈[0,t]

||πr||2qL2 +

ˆ t

s
||πr||2(q−1)

L2 ||πr||2Hγdr

]
≤ EP⊗τR

[
sup

r∈[0,t∧τ ]
||πr||2qL2 +

ˆ t∧τ

0
||πr||2(q−1)

L2 ||πr||2Hγdr

]
+ EP⊗τR

[
sup

r∈[t∧τ,t]
||πr||2qL2 +

ˆ t

t∧τ
||πr||2(q−1)

L2 ||πr||2Hγdr

]
= EP

[
sup

r∈[0,t∧τ ]
||πr||2qL2 +

ˆ t∧τ

0
||πr||2(q−1)

L2 ||πr||2Hγdr

]
+

ˆ
Ω0

EQx
[

sup
r∈[t∧τ(x),t]

||πr||2qL2 +

ˆ t

t∧τ(x)
||πr||2(q−1)

L2 ||πr||2Hγdr

]
dP (x)

≤ C ′t,q(||x0||2qL2 + 1) + CC ′′t,q

ˆ
Ω0

||πτ(x)||
2q
L2 + 1 dP (x)

≤ Ct,q(||x0||2qL2 + 1).

Here, we used (9.34) for the first equality. Moreover, by C ′t,q we denote the function for P in

(M3) of Definition 9.3.3, and the additional constant C > 0 is due to the Sobolev embedding

Hα ↪→ Hγ . For the final inequality, we used (M3) for P together with the boundedness of

τ , and set Ct,q = C ′t,q + CC ′′t,q. Finally, let us show (M2) for P ⊗τ R. For each M e
0 as in

the notation of (M2) of Definition 9.3.1, we show that t 7→M e
0 (t) is a P ⊗τ R-martingale

as follows. First, let x ∈ Ω0 ∩ L∞loc(R+, L
2
σ), 0 ≤ s ≤ t, A = {πt1 ∈ B1, . . . , πtn ∈ Bn} for

0 ≤ t1 ≤ · · · ≤ tn ≤ s, Bi ∈ B(H−3), and let us show

EQx
[
M e

0 (t)1A
]

= EQx
[
M e

0 ((t ∧ τ(x)) ∨ s)1A
]
. (9.36)

By definition of Qx, and the martingale property of each Rτ(x),x(τ(x)) from time τ(x) on,

we find

EQx
[
(M e

0 (t)−M e
0 ((t ∧ τ(x)) ∨ s)1A

]
= 1[0,t1](τ(x))ERτ(x),x(τ(x))

[
(M e

0 (t)−M e
0 (s))1A

]
+

n−1∑
k=1

1[tk,tk+1](τ(x))1B1(πt1(x)) · · ·1Bk(πtk(x))

· ERτ(x),x(τ(x))

[
(M e

0 (t)−M e
0 (s))1πtk+1

∈Bk+1,...,πtn∈Bn

]
+ 1[tn,∞)(τ(x))1B1(πt1(x)) · · ·1Bn(πtn(x)) · ERτ(x),x(τ(x))

[
M e

0 (t)−M e
0 ((t ∧ τ(x)) ∨ s)

]
= 0.

Since sets of type A as above generate B0
s , and since M e

0 is continuous, it follows that (9.36)

holds for every A ∈ Bs.



9.4. EXTENSION OF LOCAL MARTINGALE SOLUTIONS 139

Now, it follows by definition of Qx and P ⊗τ R, and by (9.36) and (9.34) that

EP⊗τR
[
M e

0 (t)1A

]
=

ˆ
Ω0

EQx
[
M e

0 (t)1A
]
dP (x) =

ˆ
Ω0

EQx
[
M e

0 ((t ∧ τ(x)) ∨ s)1A
]
dP (x)

= EP⊗τR
[
M e

0 ((t ∧ τ) ∨ s)1A
]

= EP⊗τR
[
M e

0 (t ∧ τ)1A∩{τ>s}

]
+ EP⊗τR

[
M e

0 (s)1A∩{τ≤s}

]
.

The integrand of the first summand in the last line can be handled as follows.

EP⊗τR
[
M e

0 (t ∧ τ)1A∩{τ>s}

]
=

ˆ
Ω0

EQx
[
M e

0 (t ∧ τ(x))1A∩{τ(x)>s}

]
dP (x)

= EP
[
M e

0 (t ∧ τ)1A∩{τ>s}

]
= EP

[
M e

0 (s)1A∩{τ>s}

]
= EP⊗τR

[
M e

0 (s)1A∩{τ>s}

]
,

where we used the martingale property of M e
0 (· ∧ τ) with respect to P for the second last

equality. Combining with the previous chain of equalities, altogether we obtain

EP⊗τR
[
M e

0 (t)1A

]
= EP⊗τR

[
M e

0 (s)1A∩{τ>s}

]
+ EP⊗τR

[
M e

0 (s)1A∩{τ≤s}

]
= EP⊗τR

[
M e

0 (s)1A

]
.

This implies the martingale property of M e
0 with respect to P and the filtration (Bt)t≥0.

Concerning the quadratic variation of M e
0 , we similarly obtain for any cylindrical set A ∈ Bs

as above

EP⊗τR
[(
M e

0 (t)2 − t||G∗e||2U
)
1A

]
=

ˆ
Ω0

EQx
[((

M e
0 (t)−M e

0 (t ∧ τ(x))
)2 − (t− (t ∧ τ(x))

)
||G∗e||2U

)
1A

]
dP (x)

+

ˆ
Ω0

EQx
[(
M e

0 (t ∧ τ(x))2 − (t ∧ τ(x))||G∗e||2U
)
1A

]
dP (x)

+ 2

ˆ
Ω0

EQx
[(
M e

0 (t ∧ τ(x))
(
M e

0 (t)−M e
0 (t ∧ τ(x))

))
1A

]
dP (x)

=: J1 + J2 + J3.

Using the martingale property of the process M e
0 (t) −M e

0 (t ∧ τ(x)) = M e
t∧τ(x)(t) with

respect to Rτ(x),x(τ(x)) from the deterministic time τ(x) on, (9.34), and the martingale

property of M e
0 (· ∧ τ) with respect to P , we have

J1 =

ˆ
Ω0

EQx
[((

M e
0 ((t ∧ τ(x)) ∨ s)−M e

0 (t ∧ τ(x))
)2

−
(
(t ∧ τ(x)) ∨ s− t ∧ τ(x)

)
||G∗e||2U

)
1A

]
dP (x),

J2 =

ˆ
Ω0

EQx
[(
M e

0 (s ∧ τ(x))2 − (s ∧ τ(x))||G∗e||2U
)
1A

]
dP (x),
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J3 = 2

ˆ
Ω0

EQx
[
M e

0 (t ∧ τ(x))

(
M e

0 ((t ∧ τ(x)) ∨ s)−M e
0 (t ∧ τ(x))

)
1A

]
dP (x).

Using (9.34) and the definition of P ⊗τ R once more, we finally obtain

EP⊗τR
[(
M e

0 (t)
)2 − t||G∗e||2U1A]

= EP⊗τR
[(
M e

0 (s ∧ τ)2 − (s ∧ τ)||G∗e||2U
)
1A

]
+ EP⊗τR

[((
M e

0 (s)−M e
0 (τ)

)2 − (s− τ)||G∗e||2U
)
1A∩{τ≤s}

]
+ 2EP⊗τR

[(
M e

0 (τ)
(
M e

0 (s)−M e
0 (τ)

))
1A∩{τ≤s}

]
= EP⊗τR

[(
M e

0 (s)
)2 − s||G∗e||2U1A].

In particular, M e
0 (t) is square-integrable, which completes the proof.

We summarize the benefit of the above measure theoretic considerations as follows:

Once we have constructed a local martingale solution P up to a stopping time τL in Section

10.4, by virtue of Lemmas 9.4.1 and 9.4.2, we can extend it to a global martingale solution

P ⊗τL R such that (9.35) holds, provided we can verify (9.34).

Chapter 10

Proof of the main result

In the present chapter we prove the main result of this part of the thesis, which is

Theorem 8.4.1. As we will outline in Section 10.1, one major technical task within the proof

is resolved by the method of convex integration, which we will elaborate on in Chapter

11. In this chapter, for the time being, we use Corollary 11.2.3 of Chapter 11 in order to

complete the proof of our main result.

10.1 Outline of the proof

In this section, we outline the structure of the proof of the main result, which shares

many features of the proof of [116, Thm.1.2]. Let 0 < α < 1/2 and T > 0. The principal idea

to obtain two global martingale solutions P1, P2 to (HNSEsto) with a common deterministic
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initial condition x0 ∈ L2
σ which are distinct on [0, T ] is to observe their distinctness via the

energy inequality

EP

[
||πT ||2L2

]
≤ ||x0||2L2 + T Tr(GG∗). (10.1)

Here, P is a place holder for a probability measure on Ω0. More precisely, on the one hand

we construct a solution P1 with some deterministic initial value x0 ∈ L2
σ, which violates

(10.1) in the sense that

EP1

[
||πT ||2L2

]
> 2
(
||x0||2L2 + T Tr(GG∗)

)
. (10.2)

On the other hand, Proposition 9.3.4 (i) and Remark 9.3.5 guarantee the existence of a

second global solution P2 with the same initial value x0 such that (10.1) holds with P2 in

place of P. From here, the assertion of the main result follows.

We remark that the initial condition x0 of P1 cannot be prescribed, but is an outcome

of the construction via the method of convex integration in Chapter 11, as we will see

later. In other words, the approach via convex integration does not lead to martingale

solutions to (HNSEsto) with a general Cauchy-type initial condition. Hence, at this point,

we benefit from the general existence result Proposition 9.3.4 (i), which holds for any initial

value in L2
σ. Furthermore, we point out that the solution P2 emerging from Proposition

9.3.4 (i) fulfills (M3) of Definition 9.3.1 with γ = α, whereas for P1, with the present

techniques of Chapter 11, we cannot attain a prescribed value for γ. Instead, similarly

to the initial condition, the values of γ permitted for P1 are restricted by our convex

integration approach, cf. Corollary 11.2.3.

Consequently, the proof reduces to the construction of a solution P1 with the energy

violation (10.2). To this end, we first construct a local solution P up to a suitable stopping

time τL on Ω0, which violates an energy inequality in the sense that

EP
[
1{τL≥T}||πT ||

2
L2

]
> 2
(
||x0||2L2 + T Tr(GG∗)

)
. (10.3)

As we shall see later, the parameter L > 1 needs to obey several lower bounds, one of them

in order to guarantee P (τL ≥ T ) > 1/2. Having proceeded up to this point, we extend P

to a global martingale solution P ⊗τL R by Lemma 9.4.2 and derive

EP⊗τLR
[
||πT ||2L2

]
≥ EP⊗τLR

[
1{τL≥T}||πT ||

2
L2

]
= EP

[
1{τL≥T}||πT ||

2
L2

]
,

which combined with (10.3) shows that P1 := P ⊗τL R fulfills (10.2).

Therefore, our goal is to construct suitable stopping times τL and a corresponding local

martingale solution P up to τL such that (10.3) holds and Lemma 9.4.2 applies. It turns out

that our techniques actually yield a pathwise analytically weak, but probabilistically strong

solution, i.e. for a given filtered probability space (Ω,F , (Ft)t≥0,P, B) with a GG∗-Wiener

process B on L2
σ and the augmented Brownian filtration (Ft)t≥0, we can construct an

(Ft)t≥0-adapted process u on Ω, which analytically weakly solves (HNSEsto), see Theorem

10.3.2. This solution has paths with low positive Sobolev regularity and is constructed

up to an (Ft)t≥0-stopping time TL, which should not be confused with τL (the former is

defined on Ω, the latter on Ω0). However, the definitions of both stopping times are related.

Roughly speaking, one introduces TL first and then aims to define τL (on Ω0) in the same

spirit as TL (on Ω), compare (10.5) and (10.19). As mentioned before, the large parameter
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L > 1 is particularly chosen in order to guarantee a certain largeness condition for TL
and, in turn, for τL. Moreover, u is constructed such that it violates an energy inequality,

which one may roughly consider as a pathwise version of (10.3), see (10.11) for the precise

formulation.

Once such a solution u is constructed together with a suitable pair of stopping times

TL and τL, we continue as follows. We define

P := P ◦ u−1 ∈ P(Ω0,τL),

verify that P is a local martingale solution up to τL and that P fulfills the energy violation

(10.3). We also need to prove that the definiton of τL allows to apply the extension result

Lemma 9.4.2 in order to extend P to a global solution P1 with (10.2) as desired. These

steps will be tackled in Propositions 10.4.3 and 10.5.1.

To conclude this overview section, we turn our attention to the construction of the

analytically weak and probabilistically strong local solution u. For this purpose, we split

(HNSEsto) into two equations in order to separate the two challenging terms, namely the

nonlinearity div(u ⊗ u) and the stochastic perturbation B. This splitting results in the

linear stochastic PDE 
∂tz + (−∆)αz +∇p1 = dB,

z(0) = 0,

div z = 0,

and the PDE with random coefficients{
∂tv + div([v + z]⊗ [v + z]) + (−∆)αv +∇p2 = 0,

div v = 0.

By classical SPDE techniques, the former equation has a unique analytically weak (Ft)t≥0-

adapted solution z. In Section 10.2, we obtain this solution as a stochastic convolution in

terms of the semigroup generated by P(−∆)α and derive additional crucial regularity of z,

see Proposition 10.2.4.

Fixing this unique solution z in the second equation above, this turns into a PDE with

a random nonlinear coefficient. It remains to construct a pathwise analytically weak local

solution v to this equation up to a bounded stopping time TL, which is the exclusive aim

of Chapter 11. The reason for the restriction in terms of the stopping time is the necessity

to bound the random term z in the otherwise deterministic equation for v.

Chapter 11 culminates in the delicate construction of such v in Corollary 11.2.3, from

where we obtain an analytically weak local solution u to (HNSEsto) by setting

u(t) := z(t) + v(t), t ∈ [0, TL].

In order to achieve a pathwise energy violation for u on {TL ≥ T}, we also need to prescribe,

roughly speaking, a sufficiently increasing energy profile for v in the sense that the energy

violation must not only hold for v, but also after addition of z. Note that we do not have

any kind of monotonicity for the energy profile of z, but only the growth bounds (10.8) up

to TL. Precise calculations in this direction are given in the proof of Theorem 10.3.2.
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10.2 Decomposition of the equation

We consider a filtered probability space (Ω,F , (Ft)t≥0,P, B), where B is a GG∗-Wiener

process on Ω, with G as in the assertion of Theorem 8.4.1. In this context we recall that G :

U → L2
σ is a Hilbert–Schmidt operator G ∈ L2(U,L2

σ), where U is some auxiliary separable

Hilbert space, and that we impose the regularity assumption (8.15). Moreover, (Ft)t≥0

denotes the augmented Brownian filtration, i.e. the canonical filtration generated by B

augmented by all P-negligible subsets of Ω. We recall that this filtration is right-continuous.

For the remainder of the chapter, and also for Chapter 11, we fix this (Ω,F , (Ft)t≥0,P, B).

As mentioned in the outline of the proof in the preceding section, we split (HNSEsto) in

order to treat the difficulties arising from the nonlinearity and the stochastic perturbation

separately. Following the decomposition used in [116], we obtain the linear SPDE on

R+ × Ω as 
∂tz + (−∆)αz +∇p1 = dB,

z(0) = 0,

div z = 0,

(SLα)

and the nonlinear PDE with random coefficients{
∂tv + div([v + z]⊗ [v + z]) + (−∆)αv +∇p2 = 0,

div v = 0.
(NL-SHNSE)

In order to make sense of (NL-SHNSE), we first show that (SLα) admits a unique solution

z, which we then fix in the formulation of (NL-SHNSE). The remaining aim of this section

is to obtain a unique probabilistically strong solution z to (SLα) with additional Sobolev

regularity, which is crucial in order to control the size of z in (NL-SHNSE) up to a suitable

(Ft)t≥0-stopping time TL on Ω.

10.2.1 The linear equation (SLα)

Definition 10.2.1. An analytically weak solution with initial condition x0 ∈ L2
σ to (SLα)

on (Ω,F , (Ft)t≥0,P, B) is an (Ft)t≥0-predictable process z : R+ × Ω→ L2
σ such that for

each e ∈ H2α and t ≥ 0 we have

〈z(t), e〉L2 − 〈x0, e〉L2 +

ˆ t

0
〈z(s), (−∆)αe〉L2ds = 〈B(t), e〉L2 P-a.s., (10.4)

where the exceptional set may depend on e and t. In particular, the appearing integral

has to be well-defined, which is equivalent to the P-a.s. local Bochner integrability of

t 7→ z(t) ∈ L2
σ.

Remark 10.2.2. The pressure term p1 of (SLα) is not present in the weak formulation

(10.4) since each test vector field e ∈ H2α ⊆ L2
σ is solenoidal, i.e. it fulfills div e = 0, which

gives

〈∇p1, e〉(−2α,2α) = 〈p1,div e〉L2 = 0.

We also remark that the operators
(
(−∆)α,D((−∆)α)

)
and

(
P(−∆)α,D(P(−∆)α)

)
coincide

on L2
σ since P and (−∆)α commute on D

(
(−∆)α

)
.
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Since an analytically weak solution is (Ft)t≥0-predictable by definition, which in partic-

ular implies its adaptedness with respect to the normal Brownian filtration (Ft)t≥0, and

since the underlying probability space is given in advance (hence its construction is not

part of the notion of solution), such solutions are probabilistically strong.

The existence of such a unique probabilistically strong, analytically weak solution to

(SLα) follows from the following proposition from [83, Thm.5.4].

Proposition 10.2.3. There exists a unique analytically weak solution z : R+ × Ω→ L2
σ

to the linear SPDE (SLα).

Concerning the proof, we refer to [83, Thm.5.4] and stress that in this respect all

assumptions are fulfilled. Indeed, using the notation of this source, we have H = L2
σ,

f = 0, the initial condition ξ = 0, and B = G ∈ L2(U,L2
σ). That A = P(−∆)α generates

a C0-semigroup
(
Sα(t)

)
t≥0

on L2
σ, which is even a contraction semigroup, follows from

Lemma C.0.1. From here, we obtain

ˆ T

0
||Sα(r)G||L2(U,L2

σ)dr ≤ ||G||L2(U,L2
σ)

ˆ T

0
||Sα(r)||L(L2

σ)dr ≤ T ||G||L2(U,L2
σ) <∞, ∀T > 0,

which yields that [83, Thm.5.4] applies to our setting.

As we mentioned above, it is crucial to derive additional regularity for the solution z to

(SLα). This is achieved in the following proposition.

Proposition 10.2.4. Assume G fulfills the regularity assumption (8.15). Then, for

sufficiently small δ > 0, we have for the unique solution z to (SLα)

z ∈ ClocH
5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2 P-a.s.,

and z satisfies

EP

[
||z||

CTH
5+σ
2

+ ||z||
C

1/2−2δ
T H

3+σ
2

]
<∞, ∀T > 0.

The proof uses the explicit formula of z as a stochastic convolution with respect

to the semigroup (Sα(t))t≥0 and is given in Proposition C.0.2. In particular, by the

continuous embedding (9.3), for almost every ω and each t ≥ 0, z(t, ω) has a continuous

representative in C0. Consequently, we may consider z(ω) ∈ CTCx for such ω, i.e. in

particular z ∈ C(R+ × T3,R3) P-a.s.

We conclude this section with the introduction of the stopping times TL. The purpose

of TL is to control the size of the random coefficient z in (NL-SHNSE) within the convex

integration method applied in Chapter 11. The parameter L > 1 needs to satisfy several

lower bounds, which we introduce in due time. For δ > 0 as in the previous proposition, set

TL := inf{t ≥ 0 : ||z(t)||
H

5+σ
2
≥ L1/4C−1

S } ∧ inf{t ≥ 0 : ||z||
C

1/2−2δ
t H

3+σ
2
≥ L1/2C−1

S } ∧ L,
(10.5)

where

CS = max{C1C2, C2}, (10.6)
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and C1 and C2 come from the Sobolev inequalities

||f ||
H

3+σ
2
≤ C1||f ||

H
5+σ
2

and ||f ||L∞ ≤ C2||f ||
H

3+σ
2
, (10.7)

respectively. Due to Proposition 10.2.4, TL is a bounded (Ft)t≥0-stopping time with TL > 0

P-a.s. and TL ↗ ∞ P-a.s. as L → ∞. Moreover, the choice of CS and the Sobolev

inequalities (10.7) imply the pathwise estimates

||z(t)||L∞ ≤ L1/4, ||Dz(t)||L∞ ≤ L1/4, ||z||
C

1/2−2δ
t L∞

≤ L1/2, t ∈ [0, TL]. (10.8)

10.3 Analytically weak local solutions

As the next step towards the proof of Theorem 8.4.1, in this section we combine the

result on the existence and regularity of the weak solution z to (SLα) up to the stopping

time TL with the weak solution of (NL-SHNSE), which we will construct in the forthcoming

Chapter 11. More precisely, we use Propositions 10.2.3, 10.2.4 and Corollary 11.2 to obtain

Theorem 10.3.2. Besides being essential for the proof of our main theorem, the existence

of probabilistically strong local solutions to (HNSEsto) which fulfill the energy violation

(10.11), might also be of independent interest. In this regard, we mention again that the

stopping times TL up to which these solutions are defined increase pointwise to ∞ as

L→∞. To start with, we recall the definition of an analytically weak local solution to

(HNSEsto).

Definition 10.3.1. Let t be a bounded (Ft)t≥0-stopping time on Ω. An (Ft)t≥0-predictable

process u : [0, t]× Ω→ L2
σ is an analytically weak local solution to (HNSEsto) on [0, t] with

initial value x0 ∈ L2
σ, if for any e ∈ H3 and t ≥ 0, it holds

〈u(t∧t)−x0, e〉L2 +

ˆ t∧t

0
〈u(r), (−∆)αe〉L2−〈u(r)⊗u(r),∇e〉L2dr = 〈B(t∧t), e〉L2 , P-a.s.

Concerning the next theorem, we note that the analogous result for the classical

stochastic Navier–Stokes equations (i.e. α = 1) is [116, Thm.1.1]. Here, adaptedness is

understood with respect to the state space σ-algebra B(L2).

Theorem 10.3.2. Assume G satisfies (8.15) and let T > 0, K > 1 and κ ∈ (0, 1). Then,

there is γ ∈ (0, 1), an (Ft)t≥0-stopping time t = t(T,K, κ) satisfying t > 0 P-a.s. and

P(t ≥ T ) > κ, (10.9)

and an (Ft)t≥0-adapted analytically weak solution u to (HNSEsto) on [0, t] with some

deterministic initial condition x0 ∈ L2
σ. Moreover, u ∈ C([0, t], Hγ) P-a.s. for some

γ ∈ (0, 1), and u can be constructed such that

ess sup
ω∈Ω

sup
t≥0
||u(t ∧ t)||Hγ <∞ (10.10)

and

||u(T )||L2 > K
[
||u(0)||L2 +

(
T Tr(GG∗)

)1/2]
on {t ≥ T}. (10.11)
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Remark 10.3.3. It turns out that we will choose the stopping time t = TL as defined in

(10.5). Its definition and the regularity result Proposition 10.2.4 for z show that (10.9)

for TL in place of t can be fulfilled for any choice of T > 0 and κ ∈ (0, 1) if one chooses

L ≥ L0 = L0(T, κ). Similarly, we show that L can be chosen sufficiently large in order to

obtain (10.11) for any choice of K > 1 and T > 0 and that such lower bounds determine

the suitable values for L.

For the proof, we need the following result of Chapter 11, which we state here for the

convenience of the reader. Again, adaptedness is understood with respect to B(L2).

Corollary 11.2.3 of Section 11.2: For any T > 0, there is L0 = L0(T ) > 1 such

that for any L ≥ L0 there exists an analytically weak solution v = v(T, L) to (NL-SHNSE)

on [0, TL] with the following properties. v is (Ft)t≥0-adapted, has some deterministic initial

value v(0) = x0 ∈ L2
σ and its paths belongs to C([0, TL], Hγ) for some γ ∈ (0, 1). Moreover,

v fulfills

||v(T )||L2 >
(
||v(0)||L2 + L

)
eLT (10.12)

on {TL ≥ T} and

ess sup
ω∈Ω

sup
t∈[0,TL]

||v(t)||Hγ <∞ (10.13)

for some γ ∈ (0, 1).

As the subsequent proof shows, combining the above corollary with the solution z to

the linear part (SLα), we obtain the solution u of Theorem 10.3.2 via

u(t) := z(t) + v(t), t ∈ [0, TL]. (10.14)

Using the pathwise bound (10.8) for z and the energy violation (11.12) for sufficiently large

L > 1, we obtain the desired energy inequality for (10.11).

Proof of Theorem 10.3.2. Let T > 0, K > 1, and κ ∈ (0, 1). First of all, by the splitting

of (HNSEsto) in (SLα) and (NL-SHNSE), and since any adapted process with continuous

paths is predictable, it is clear that u as in (10.14) is an (Ft)t≥0-predictable analytically

weak solution to (HNSEsto) on [0, TL]. The initial condition u(0) = z(0) +v(0) = v(0) ∈ L2
σ

is deterministic by Corollary 11.2.3. We already know that TL is an (Ft)t≥0-stopping time

such that TL > 0 P-a.s., see the passage between (10.7) and (10.8). The P-a.s. pointwise

divergence of TL to ∞ as L → ∞ implies that (10.9) holds for any given K and κ for

all sufficiently large L ≥ L1 = L1(K,κ). Secondly, (10.10) with TL in place of t follows

by definition of TL and by (10.13) for L ≥ L0(T ) and γ as in Corollary 11.2.3. Thirdly,

u ∈ C([0, TL], Hγ) holds due to the regularity result for z and due to v ∈ C([0, TL], Hγ).

Finally, it remains to verify (10.11). To this end, we observe that on {TL ≥ T} we have

||u(T )||L2 ≥ ||v(T )||L2 − ||z(T )||L2 >
(
||v(0)||L2 + L

)
eLT − (2π)3/2L1/4

=
(
||u(0)||L2 + L

)
eLT − (2π)3/2L1/4

> K
[
||u(0)||L2 + (T Tr(GG∗)

)1/2]
.
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Here, we employed (10.12) and (10.8) for the first strict inequality and have chosen L

larger than a suitable lower bound L2 = L2(K,T, ||u0||L2 , G) > 0 for the final estimate.

Consequently, all assertions of the proposition are satisfied for each L ≥ max(L0, L1, L2)

and t = TL.

10.4 From analytically weak to local martingale solutions

Having established Theorem 10.3.2, we advance to the construction of a local martingale

solution P to (HNSEsto), which obeys the energy violation (10.3). In particular, we make

use of TL in order to define a suitable stopping time τL on Ω0 up to which we construct P

in Proposition 10.4.3.

For the analytically weak solution u of Theorem 10.3.2 up to TL, we set

uL : R+ × Ω→ Hγ , uL(t) := u(t ∧ TL). (10.15)

In particular it holds that uL ∈ Ω0 pathwise. Our next aim is to show that the probability

measure P ∈ P(Ω0), defined as

P := P ◦ u−1
L , (10.16)

is a local martingale solution to (HNSEsto) up to a suitable stopping time τL on Ω0. To

this end, we begin with the construction of τL. Of course, by definition, P is concentrated

on the space of paths ΩTL,0 stopped at TL, but it will be advantageous to consider P on

the bigger space Ω0.

10.4.1 The stopping times τL

In principle, we would like to define τL on Ω0 similarly to TL on Ω as in (10.5).

However, to this end we need a probability measure P on (Ω0,B, (Bt)t≥0) together

with a (Bt)t≥0-Brownian motion B and a solution Z to (SLα) on the probability space

(Ω0,B, (Bt)t≥0,P,B). We choose P = P as defined in (10.16), and for x ∈ Ω0∩L∞loc(R+, L
2
σ),

we consider the following processes with paths in C(R+, H
−3).

Mx
t,s := x(t)− x(s) +

ˆ t

s
Fα
(
x(r)

)
dr, 0 ≤ s ≤ t, (10.17)

and

Zx(t) := Mx
t,0 +

ˆ t

0
P(−∆)αSα(r)Mx

r,0 dr, t ≥ 0. (10.18)

The idea behind these definition is that we will show that under P , Mt,0 is a GG∗-Brownian

motion on Ω0 and Z is the unique solution to (SLα) on Ω0. In other words, this holds for

the processes Mu
t,0 and Zu under P on [0, TL]× Ω. Consequently, Zu coincides with z up

to TL, see the proof of Lemma 10.4.2. We use the process Z on Ω0 for the definition of the

stopping time τL as follows. For n ∈ N, L > 1 and δ > 0 as in (10.5), set

τnL(x) := inf
{
t ≥ 0 : ||Zx(t)||

H
5+σ
2
>
(
L− 1/n

)1/4
C−1
S

}
∧ inf

{
t ≥ 0 : ||Zx||

C
1/2−2δ
t H

3+σ
2
>
(
L− 1/n

)1/2
C−1
S

}
∧ L,
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and

τL := lim
n→∞

τnL , (10.19)

with CS as in (10.6). By Lemma 10.4.1, each τnL is a (Bt)t≥0-stopping time on Ω0 ∩
L∞loc(R+, L

2
σ) and, in turn, also τL is a (Bt)t≥0-stopping time as the pointwise increasing

limit of stopping times, and we have τL ≤ L.

For a generic path x ∈ Ω0 ∩ L∞loc(R,L2
σ), we have τL(x) = 0, since in general x is not in

C(R+, H
5+σ
2 ). In Lemma 10.4.2 we will use the regularity of z and the equality Zu = z

P-a.s. in order to obtain that τL is actually strictly positive P -a.s. and can be constructed

such that τL ≥ T holds with P -probability arbitrarily close to 1. Since the assertion of the

subsequent auxiliary lemma is identical to [116, Lem.4.1], we omit its proof at this point.

Lemma 10.4.1. Let (Ω,F , (Ft)t≥0) be a filtered measurable space and let H1, H2 be sepa-

rable Hilbert spaces such that the embedding H1 ↪→ H2 is continuous. Suppose that there

exist dual elements {hk}k∈N ⊆ H ′2 ⊆ H ′1 such that for each f ∈ H1

||f ||H1 = sup
k∈N

hk(f).

Suppose further that X is an (Ft)t≥0-adapted process on Ω with trajectories in C(R+, H2).

Then, for L > 1 and γ ∈ (0, 1), both

τ1 := inf{t ≥ 0 : ||X(t)||H1 > L} and τ2 := {t ≥ 0 : ||X(t)||Cγt H1
> L}

are (F+
t )t≥0-stopping times, where (F+

t )t≥0 denotes the right-continuous filtration of

(Ft)t≥0.

Clearly, considering the definition of τnL , we may apply this result for the choice

H1 = H
5+σ
2 and H

3+σ
2 , respectively, and H2 = H−3 on

(
Ω0 ∩ L∞loc(R+, L

2
σ),B, (B0

t )t≥0

)
.

Lemma 10.4.2. For P-a.e. ω ∈ Ω, we have

τL(uL(ω)) = TL(ω). (10.20)

In particular, we have τL > 0 P -a.s., and for any T > 0 and κ ∈ (0, 1), there is L0 =

L0(T, κ) > 1 such that for any L ≥ L0

P (τL ≥ T ) ≥ κ. (10.21)

Proof. First of all, we show

Zu = z on [0, TL] P-a.s. (10.22)

To this end, we observe that by definition of the process Mx
t,s from (11.3) and since u is an

analytically weak solution to (HNSEsto) on [0, TL], we have for each e ∈ H3

〈Mu
t,0, e〉(−3,3) = 〈u(t)− u(0), e〉+

ˆ t

0
〈Fα(u(s)), e〉(−3,3)ds = 〈B(t), e〉(−3,3), t ∈ [0, TL],

P-a.s. on Ω. Due to the continuity of the paths of u : [0, TL]→ Hγ , the exceptional set is

independent of t (but it might depend on e). Consequently, t 7→Mu
t,0 coincides pathwise
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P-a.s. with the given GG∗-Wiener process B on Ω. From here, it follows readily from an

integration by parts formula that Zu solves (SLα) on [0, TL]. Now (10.22) follows from (a

local version of) Proposition 10.2.3.

Since the maps

t 7→ ||z(t)||
H

5+σ
2

and t 7→ ||z||
C

1/2−2σ
t H

3+σ
2

are P-a.s. continuous on [0, TL] due to Proposition 10.2.4, we have P-a.s. one of the three

cases

TL = L or ||z(TL)||
H

5+σ
2
≥ L1/4C−1

S or ||z||
C

1/2−2δ
TL

H
3+σ
2
≥ L1/2C−1

S . (10.23)

From here, (10.22) immediately gives τL(u) ≤ TL P-a.s. in each of these cases. Now assume

τL(u) < TL on a set of strictly positive P-measure, i.e., in particular, we have τL(u) < L

on this set. By (10.22), it follows that on this set we have P-a.s.

||z(τL(u))||
H

5+σ
2

= ||Zu(τL(u))||
H

5+σ
2
≥ L1/4C−1

S (10.24)

or

||z||
C

1/2−2δ
τL(u)

H
3+σ
2

= ||Zu||
C

1/2−2δ
τL(u)

H
3+σ
2
≥ L1/2C−1

S , (10.25)

which, however, contradicts the definition of TL. Consequently, we conclude (10.20). The

rest of the assertion now follows from the definition of P as the law P ◦ u−1 and since we

know already the P-a.s. pointwise divergence TL ↗∞ as L→∞.

10.4.2 A local martingale solution

Having introduced the bounded (Bt)t≥0-stopping time τL, we use Lemma 10.4.2 to

proceed to the construction of a local martingale solution as follows.

Proposition 10.4.3. The probability measure P as in (10.16) is a local martingale solution

to (HNSEsto) on [0, τL] with the deterministic initial condition x0 ∈ L2
σ of Corollary 11.2.3.

Proof. Clearly, P (π0 = x0) = P(u(0) = x0) = 1 holds by definition of P and the construc-

tion of u as u = v + z with z(0) = 0 and v as in Corollary 11.2.3. Concerning (M3), since

u fulfills (10.10) with t = TL and (10.20), we obtain

EP
[

sup
r≤τL
||πr||Hγ

]
= EP

[
sup
r≤TL

||u(r)||Hγ

]
<∞ (10.26)

for some γ ∈ (0, 1) and, consequently, for each fixed q ∈ N, the left-hand side of (M3) in

Definition 9.3.3 is uniformly bounded in t ≥ 0. In particular, it is possible to find a family

of continuous positive functions t 7→ Ct,q, for which P satisfies (M3).

Finally, considering (M2), let 0 ≤ r ≤ t, e ∈ H3 and g : Ω0 → R be continuous, bounded

and Br-measurable. Below we write M e
0 (t, uL) := M e

0 (t) ◦ uL for M e
0 as in Definition 9.3.3.

Note the equality

EP

[
M e

0

(
t ∧ τL(uL), uL

)
g(uL)

]
= EP

[
M e

0

(
r ∧ τL(uL), uL

)
g(uL)

]
, (10.27)
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which can be obtained as follows. Using Lemma 10.4.2, we have

EP

[
M e

0

(
t ∧ τL(uL), uL

)
g(uL)

]
= EP

[
M e

0

(
t ∧ TL, uL

)
g(uL)

]
. (10.28)

Since

M e
0 (t ∧ TL, uL) = 〈MuL

t,0 , e〉(−3,3), (10.29)

recalling that we showed MuL
t,0 = Bt∧TL , t ≥ 0 P-a.s. at the beginning of the proof of

Lemma 10.4.1, we obtain that M e
0 (· ∧ TL, uL) is a (Bt)t≥0-martingale with respect to P

with quadratic variation

t 7→ (t ∧ TL)||G∗e||2U .

This yields (10.27), since g(uL) is Fr-measurable as a concatenation of the Br-measurable

function g with the (Ft)t≥0-adapted process uL. From here, the martingale property of

M e
0 (· ∧ τL) with respect to P follows from

EP
[
M e

0 (t ∧ τL)g

]
= EP

[
M e

0 (t ∧ τL(uL), uL)g(uL)

]
= EP

[
M e

0 (r ∧ τL(uL), uL)g(uL)

]
= EP

[
M e

0 (r ∧ τL)g

]
.

Since t 7→M e
0 (· ∧ TL, uL) has quadratic variation t 7→ (t ∧ τL)||G∗e||2U under P, it follows

via (10.20) that t 7→M e
0 (· ∧ τL) has the same quadratic variation on Ω0 under P , which

completes the proof.

10.5 Conclusion of the proof

Up to this point, we have constructed a stopping time τL on Ω0 and a local martingale

solution P up to τL as the law under P of the analytically weak local solution uL = u(·∧TL).

We could now use the pathwise energy violation (10.11) to obtain the local energy violation

(10.3) for P and, from there, obtain nonuniqueness of local martingale solutions up to τL.

However, we aim for the stronger global result of Theorem 8.4.1. In the next subsection, we

first extend P to a global solution. Afterwards, we complete the proof of Theorem 8.4.1.

10.5.1 Extension of the local solution

The extension of P to a global martingale solution proceeds along the steps presented

in Section 9.4 and is given by the following result.

Proposition 10.5.1. For the stopping time τL and the martingale solution P up to τL of

Proposition 10.4.3, all assumptions of Lemma 9.4.2 are fulfilled. Consequently, P extends

to a global martingale solution P ⊗τL R with initial condition x0 ∈ L2 at time 0 such that

(9.35) holds.
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Proof. In view of Lemma 9.4.2, we only need to verify the existence of a P -negligible set

N ⊆ Ω0 such that for each x ∈ N c the equality of (9.34) holds. The idea is the following.

For each x ∈ N c, we find a Qx-negligible set Nx ⊆ Ω0 such that

{x′ ∈ Ω0 : τL(x′) = τL(x)} ∈ N c
x ∩ B0

τL(x). (10.30)

Clearly, this follows, if we can show

{x′ ∈ N c
x : τL(x′) ≤ t} ∈ N c

x ∩ B0
t (10.31)

for each t < L. From here, we obtain (9.34) via

Qx
(
x′ ∈ Ω0 : τL(x′) = τL(x)

)
= Qx

(
x′ ∈ N c

x : x′(t) = x(t), t ∈ [0, τL(x)], τL(x′) = τL(x)
)

= Qx
(
x′ ∈ N c

x : x′(t) = x(t), t ∈ [0, τL(x)]
)

= 1,

where Qx is as in Lemma 9.4.1, and we used (9.29) and (10.30) together with the observation

that we have

{x′ ∈ N c
x ∩A : x′(t) = x(t), t ∈ [0, τL(x)]} = {x′ ∈ N c

x : x′(t) = x(t), t ∈ [0, τL(x)]}

for any A such that N c
x ∩A ∈ N c

x ∩ B0
τL(x) with x ∈ A.

It is easy to see that (10.31) holds whenever x is such that there is a Qx-negligible set

Nx ⊆ Ω0 such that for each x′ ∈ N c
x , the trajectory t 7→ Zx

′
(t) belongs to C(R+, H

5+σ
2 ) ∩

C
1/2−2δ
loc (R+, H

3+σ
2 ). Indeed, in this case, for all x′ ∈ N c

x we have τ̃L(x′) = τL(x′), where

we set

τ̃L(x′) := inf{t ≥ 0 : ||Zx′(t)||
H

5+σ
2
≥ L1/4C−1

S } (10.32)

∧ inf{t ≥ 0 : ||Zx′ ||
C

1/2−2δ
t H

3+σ
2
≥ L1/2C−1

S } ∧ L,

which gives for 0 < L

{x′ ∈ N c
x : τL(x′) ≤ t} =

{
x′ ∈ N c

x : sup
s∈Q,s≤t

||Zx′(s)||
H

5+σ
2
≥ L1/4C−1

S

}
⋃{

x′ ∈ N c
x : sup

s1 6=s2∈Q∩[0,t]

||Zx′(s1)− Zx′(s2)||
H

3+σ
2

|s1 − s2|1/2−2δ
≥ L1/2C−1

S

}
,

and the right-hand side is in N c
x ∩ B0

t , since the process (t, x) 7→ Zxt is (B0
t )t≥0-adapted on

Ω0 ∩ L∞loc(R+, L
2
σ). Therefore, it remains to prove that for P -a.e. x ∈ Ω0, we have

Qx

(
x′ ∈ Ω0 : Zx

′ ∈ C
(
R+, H

5+σ
2
)
∩ C1/2−2δ

loc

(
R+, H

3+σ
2
))

= 1. (10.33)

To this end, we first of all note that (10.20), (10.22) and Proposition 10.2.4 entail

P

(
x ∈Ω0 : Zx(· ∧ τL(x)) ∈ CH

5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2

)
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= P

(
z(· ∧ TL) ∈ CH

5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2

)
= 1,

i.e. there is a measurable P -negligible set N such that for x ∈ N c we have

Zx·∧τL(x) ∈ CH
5+σ
2 ∩ C1/2−2δ

loc CH
3+σ
2 . (10.34)

Hence, it remains to prove regularity of Z beyond τL. To this end, a direct calculation

shows

Zx
′
(t)− Zx′(t ∧ τL(x)) = Zx

′

τL(x)(t) +
(
Sα
(
t− t ∧ τL(x)

)
− 1
)
Zx
′
(t ∧ τL(x)

)
,

where we set

Zx
′

τL(x)(t) := Mx′
t,0 −Mx′

t∧τL(x),0 +

ˆ t

t∧τL(x)
P(−∆)αSα(t− s)

(
Mx′
s,0 −Mx′

s∧τL(x),0

)
ds.

Note that x′ 7→ Mx′
r,0 − Mx′

r∧τL(x),0 is BτL(x)-measurable for each r ≥ 0, which implies

BτL(x)-measurability of x′ 7→ Zx′τL(x)(t) for each t ≥ 0. Considering the construction of Qx
from Lemma 9.4.1, it holds that for all x ∈ Ω0 ∩ L∞locL

2
σ

Qx

(
x′ ∈ Ω0 : Zx

′ ∈ CH
5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2

)
= Qx

(
x′ ∈ Ω0 : Zx

′

·∧τL(x) ∈ CH
5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2 , Zx

′

τL(x) ∈ CH
5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2

)
= δx

(
x′ ∈ Ω0 : Zx

′

·∧τL(x) ∈ CH
5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2

)
×RτL(x),x(τL(x))

(
x′ ∈ Ω0 : Zx

′

τL(x) ∈ CH
5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2

)
.

For each x ∈ N c, the first factor on the above right-hand side equals to 1 due to (10.34).

Concerning the second factor, since RτL(x),x(τL(x)) is a martingale solution to (HNSEsto)

starting from time τL(x) with the deterministic initial condition x(τL(x)) ∈ L2
σ, it follows by

the local version of Remark 9.3.2 that M·,0−M·∧τL(x),0 is a GG∗-Wiener process with respect

to RτL(x),x(τL(x)) and (Bt)t≥0. Therefore, (t, x′) 7→ Zx′τL(x)(t) is the unique analytically weak

solution to (SLα) on
(
Ω0,B, (Bt)t≥0,M·,0 −M·∧τL(x),0

)
. Similarly as for z, Proposition

10.2.4 gives the regularity

RτL(x),x(τL(x))

(
x′ ∈ Ω0 : Zx

′

τL(x) ∈ CH
5+σ
2 ∩ C1/2−2δ

loc H
3+σ
2

)
= 1,

which in view of the above chain of equalities entails (10.33). As argued at the beginning

of the proof, this allows to apply Lemma 9.4.2, from which the assertion follows.

10.5.2 Conclusion of the proof

Finally, we can complete the proof of the main result of this part of the thesis, i.e.

Theorem 8.4.1. We have constructed a global martingale solution P ⊗τL R, which coincides

with the law of an analytically weak solution u up to the stopping time τL. u fulfills the
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pathwise energy violation (10.11). From here, we only need to observe that P ⊗τL R is

certainly distinct form a martingale solution constructed via classical Galerkin methods as

in Proposition 9.3.4 and Remark 9.3.5.

Conclusion of proof of Theorem 8.4.1. Let T > 0, K = 2 and κ = 1/2. By Theorem

10.3.2 and Propositions 10.4.3 and 10.5.1, there is L > 1 such that there exists a global

martingale solution P1 = P ⊗τL R to (HNSEsto) with the following properties. P1 coincides

with P on σ
(
πt∧τL , t ≥ 0

)
, where P is the law of uL = u(· ∧ TL) on Ω0 under P, with uL

and P as in Theorem 10.3.2 and (10.15), respectively. (10.9) holds with t = TL and κ and

T as above. 1{τL≥T}||πT ||
2
L2 = 1{τL≥T}||πT∧τL ||

2
L2 is σ(πt∧τL , t ≥ 0)-measurable, so that

EP1

[
1{τL≥T}||πT ||

2
L2

]
= EP

[
1{τL≥T}||πT ||

2
L2

]
.

Combining with (10.20) and (10.11) with K = 2, this entails

EP1

[
||πT ||2L2

]
= EP

[
1{τL≥T}||πT ||

2
L2

]
+ EP1

[
1{τL<T}||πT ||

2
L2

]
≥ EP

[
1{TL≥T}||u(T )||2L2

]
> EP

[
1{TL≥T}4

(
||u(0)||2L2 + T Tr(GG∗)

)]
> 2
(
||x0||2L2 + T Tr(GG∗)

)
,

where x0 ∈ L2
σ is the deterministic initial condition of u from Theorem 10.3.2. On the

other hand, we have already deduced the existence of a gobal martingale solution P2, which

fulfills

EP2

[
||πT ||2L2

]
≤ ||x0||2L2 + T Tr(GG∗),

see Proposition 9.3.4 and Remark 9.3.5. Comparing with the above chain of inequalities, it

is clear that P1 and P2 are distinct at time T , which concludes the proof.

Chapter 11

Convex integration for stochastic

hypodissipative NSE

This chapter contains the technical core of the present part of the thesis, namely the

method of convex integration to construct pathwise analytically weak local solutions to the
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PDE with random coefficients (NL-SHNSE). We fix the probability space (Ω,F , (Ft)t≥0,P)

and the same GG∗-Wiener process with respect to P and (Ft)t≥0 as at the beginning of

Section 10.2. In particular, (Ft)t≥0 is the Brownian filtration augmented by the P-negligible

sets. As already mentioned in the previous chapter, we fix the unique probabilistically

strong solution z of (SLα) on this probability space in (NL-SHNSE), and we repeat that

for each L > 1 we have introduced the bounded (Ft)t≥0-stopping time TL such that on

[0, TL], z obeys the pathwise bounds (10.8). We obtained these bounds from the regularity

properties of z stated in Proposition 10.2.4, which also implies TL > 0 and TL ↗∞ P-a.s.

as L→∞.

11.1 Outline

Fractional Navier–Stokes–Reynolds equations. In order to construct a pathwise

analytically weak local solution v ∈ CγTL,x to (NL-SHNSE), we use the general idea of

convex integration as explained in Section 8.2. That is, for each q ∈ N0, we construct a

pathwise solution triple (vq, pq, R̊q) to the following fractional Navier–Stokes–Reynolds

system on [0, TL]:{
∂tvq + div

(
(vq + z)⊗ (vq + z)

)
+∇pq + (−∆)αvq = div(R̊q),

div(vq) = 0.
(11.1)

Here, vq ∈ C∞TL,x is a x-periodic velocity vector field, pq ∈ C∞([0, TL] × T3,R) denotes

the scalar pressure, and R̊q and takes values in the space of symmetric, trace-free 3× 3

real matrices. Our specific construction of R̊q entails that R̊q has the same regularity

properties as z. By a solution to (11.1), we mean a solution in the strong pointwise sense.

As discussed in the survey in Section 8.2, the matrix R̊q and the vector field div R̊q may

be considered an error term, which renders the equation more flexible in the sense that for

given vq one can calculate R̊q such that (11.1) is fulfilled.

We set up an iteration, which from a given stage (vq, R̊q) produces the next stage

(vq+1, R̊q+1) in such a way that (vq)q∈N0 converges pathwise in CγTL,x for some (small)

γ ∈ (0, 1) and such that the error terms R̊q converge to 0 as q →∞. This will imply that

the limit v is a solution as desired. Since in Chapter 10 we use v for the construction of

the (Ft)t≥0-adapted solution u (see (10.14)), it is crucial that each vq has a deterministic

initial condition vq(0) and is (Ft)t≥0-adapted with respect to B(L2) as the σ-algebra on

the state space.

The main iteration. The iterative construction of (vq, R̊q) shares many features with

the already existing deterministic and stochastic convex integration techniques, as surveyed

in Chapter 8: If (vq, R̊q) has already been constructed, we define the velocity at stage q+ 1

via

vq+1 := v` + wq+1,

where v` is a mollified version of vq with respect to a suitable mollification length scale

` = `(q), cf. (11.20), and wq+1 is a perturbation, consisting of rapidly oscillating vector
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fields. To be more precise, wq+1 approximately equals to a sum of finitely many Beltrami

waves Wq+1,ξ with small amplitude aq+1,ξ , i.e.

wq+1 ∼
∑
ξ

aq+1,ξWξ,q+1. (11.2)

Precise definitions of these objects will be presented later on. With regard to the introduction

in Chapter 8, we would like to mention that our construction is based on simple Beltrami

waves instead of the more complex Mikado or Beltrami jets or flows. In this spirit, our

techniques are closer to the deterministic results in [53, Sect.5] and [70] than to [116].

However, several changes are necessary due to the random coefficient z in (NL-SHNSE).

To take into account the size of z up to TL and in order to capture the desired energy

violation (11.12) of the solution v, we introduce

M(t) := ML(t) := L4e4Lt, t ≥ 0, (11.3)

and we will choose L > 1 sufficiently large later on. Roughly, one may consider M(t) as a

rapidly increasing energy profile for v.

As outlined in the survey of Section 8.2, it is crucial to establish a suitable balance

between the scales of the small amplitudes aq+1,ξ and the high frequency of Wξ,q+1. To

this end, we set

λq := 2a−b/2acb
q+1
, δq :=

ab

4(2π)3
a−b

q
, q ∈ N0, (11.4)

for parameters a� 1, b > 1 and c > 5
2 to be specified later on. Clearly, we have λq ↗∞,

δq ↘ 0, and also λqδ
1/2
q ↗∞ as q →∞. Since by definition, it holds

|Wq+1,ξ| = 1 and Wq+1,ξ ∼ eiλq+1ξ·x,

for certain geometric vectors ξ ∈ R3, constructing the amplitudes aq+1,ξ at stage q+ 1 such

that

||aq+1,ξ||C0
t,x
∼M1/2(t)δ

1/2
q+1

will lead to the crucial pathwise estimates for 0 ≤ t ≤ TL

||vq+1 − vq||C0
t,x
≤M1/2(t)δ

1/2
q+1, (A.1)

||vq+1 − vq||C1
t,x
≤ CLM1/2(t)δ

1/2
q+1λq+1, (A.2)

where for CT3 := ||id||C0 =
√

3π, we set

CL := (1 + CT3)(1 + 2M(L)1/2 + L1/4). (11.5)

We remark that such a constant CL does not appear in the corresponding iterative estimates

in any of the stochastic convex integration papers to date. An inspection of the proof in

Section 11.3 shows that CL appears due to the derivative of the nonlinear phase Φj , which is

transported along v` + z`, cf. (11.34) and Lemma 11.3.2. In contrast to deterministic cases,

where such a transport of the phase is standard (cf. [50, 70] and the references therein)

and where no random perturbation z is present, this has not been used for stochastic cases
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so far. Hence, the appearance of CL may be considered a result of our novel approach to

use simple Beltrami waves in a stochastic convex integration setting.

We point out that, in general, such additional constants may be troublesome for the

iteration scheme, since it is possible that such constants grow (super-)exponentially in q,

i.e. in principle, one could have a dependence in the above estimates of CL in the form of

C2q

L . However, our calculations in Section 11.3 show that this is not the case. Instead, we

merely reproduce CL in each iterative step, but are able to absorb it in various estimates,

thereby avoiding exponents strictly larger than 1.

Nevertheless, since CL is not absolute, but depends on L > 1, additional care in several

estimates throughout Section 11.3 is necessary, see for example (11.28).

Iteration scheme for the error term R̊q+1. Having constructed vq+1, it remains to

infer the new error term R̊q+1, which together with vq+1 and a suitable pressure pq+1

(which will not be of further interest to us) solves (11.1), and obeys for 0 ≤ t ≤ TL

||R̊q||C0
t,x
≤M(t)δq+2cR. (A.3)

Here, cR is a small geometric constant specified in (11.30). We already mentioned that

the flexibility of the fractional Navier–Stokes–Reynolds equations (11.1) allows to simply

calculate R̊q+1 based on vq+1 and the previous stage (vq, R̊q) by subtracting (11.1) at stage

q from stage q + 1. In doing so, we approximately obtain, using mollified versions R̊` and

p` of R̊q and pq, respectively,

div R̊q+1 −∇pq+1 = [∂t + (v` + z`) · ∇]wq+1

+ div(wq+1 ⊗ wq+1 + R̊`)

+ Rq+1 −∇p`.

Here, the pivotal terms are the transport error [∂t(v` + z`) · ∇]wq+1 and the oscillation

error div(wq+1 ⊗wq+1 + R̊`), while Rq+1 collects all remaining error terms, see (11.59) for

more details. In order to bound R̊q+1 as in (A.3), we now benefit from the structure of

wq+1 as in (11.2). Indeed, the main feature of the Beltrami building blocks Wξ,q+1 is the

pivotal approximate cancellation of the oscillation error, namely

wq+1 ⊗ wq+1 ≈ −R̊`,

cf. Lemma 11.3.5 for the precise result.

Moreover, concerning the transport error, we now use that the precise definition of

Wq+1,ξ contains the nonlinear phase Φj , which is transported along v` + z`. Consequently,

the material derivative ∂t + (v` + z`) · ∇ does not fall on the large frequency term eiλq+1ξ·Φj ,

which otherwise would prevent us from achieving a small bound as in (A.3).

On the other hand, in order to control the deviation of the solution to the transport

equation (11.34) from its initial condition, we use a localization in time in the sense that we

solve (11.34) on suitably small time intervals of length approximately µ−1 before starting

afresh with the original initial condition. To this end, we include the time cutoffs χj as in

(11.33) in the definition of the amplitudes aq+1,ξ in (11.46) and the corresponding local
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solutions Φj to (11.34) in the Beltrami building blocks Bξe
iλq+1ξ·Φj . See also the first part

of Subsection 11.3.3 for further explanations.

With these considerations, it is possible to obtain the error estimate (A.3). We point

out that the estimates (A.1)-(A.3) can only be obtained up to time TL, since beyond this

stopping time, we cannot control the size of z, which is crucial for the estimates of the

amplitude as well as the error term.

Conclusion. Having constructed a sequence of solutions (vq, R̊q)q∈N0 which fulfills the

iterative estimates (A.1)-(A.3), it is easy to use interpolation to obtain pathwise convergence

of (vq)q∈N0 in CγTL,x for sufficiently small values of γ ∈ (0, 1). Since (A.3) yields convergence

of R̊q to 0 as q → ∞, it readily follows that the limit v ∈ CγTL,x is an analytically weak

solution to (NL-SHNSE) up to TL. The precise Hölder regularity of v is determined by the

interpolation between the contrary terms δ
1/2
q+1 � 1 and δ

1/2
q+1λq+1 � 1 on the right-hand

side of (A.1) and (A.2), respectively, and cannot be prescribed in advance.

Finally, it is important to note that the rapidly increasing energy profile M(t) = L4e4tL

is part of the definition of the amplitudes aq+1,ξ. Choosing L sufficiently large in terms of

T , this allows to ensure the energy violation (11.12) for v. This is in spirit of deterministic

results as in [53, 70, 54, 50], in which the authors construct solutions with any prescribed

smooth and strictly positive energy profile. To do so, the construction of such solutions

naturally includes energy-dependent amplitudes of the iterative perturbations in these

cases as well. In our stochastic situation, we cannot hope to attain an exact energy profile

due to the perturbation caused by the random coefficient z in (NL-SHNSE). On the other

hand, all we need is to ensure that we start the iteration with a sufficiently large energy

profile, which is then essentially preserved throughout the iteration and finally leads to

(11.12). This explains the definition of the initial velocity field v0 in (11.6). In this regard,

our approach is in the same spirit as [116].

11.2 Main iteration

11.2.1 Starting triple

Here, we explicitly give the initial solution triple (v0, p0, R̊0) from which we start the

iterative construction of solutions to (11.1). The definition of v0 is tailored such that it

obeys an increasing energy profile, and R̊0 and p0 are defined such that the initial triple

fulfills (11.1). The parameter L > 1 dictates the growth scale of the energy profile of v0

and, moreover, is chosen such that the estimates (11.8)-(11.10) hold.

For L > 1 and M(t) as in (11.3), define

v0(t, x) :=
M(t)1/2

(2π)3/2
(cos(x3), sin(x3), 0) , (11.6)

R0(t, x) :=
(2L+ 1)M(t)1/2

(2π)3/2

 0 0 sin(x3)

0 0 − cos(x3)

sin(x3) cos(x3) 0

+ v0 ⊗ z + z ⊗ v0 + z ⊗ z,
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and R̊0 as the trace-free part of R0. Furthermore, consider the scalar function p0 such that

div(R0) = div(R̊0)−∇p0,

i.e.

p0(t, x) :=
1

3

(
2v0(t, x) · z(t, x) + |z(t, x)|2

)
.

Clearly, v0(t, ·) is 2π-periodic for each t ≥ 0, v0 is smooth in (t, x) ∈ R+ × T3, and R̊q
is 2π-periodic in its spatial argument and continuous in (t, x), since by the results of

Subsection 10.2.1, we already know that we have z ∈ C(R+ × T3,R3). Moreover, the

Sobolev regularity of z also gives R̊q(t, ·) ∈ H
5+σ
2 for each t ≥ 0. The small constant cR > 0

is introduced in (11.30), where it is explained that it can be chosen independently of any

other parameters which are only chosen later, and is hence to be considered an absolute

geometric constant, which we fix from now on.

Lemma 11.2.1. Let a > 1, b > 1, c > 5/2. For L > 1, the triple (v0, p0, R̊0) solves the

Euler–Reynolds equations (11.1) on [0, TL]× T3. Moreover, if we additionally assume

20(2π)3c−1
R ≤ L ≤

a2 − 2

2
, (11.7)

then the following estimates hold for all t ∈ [0, TL].

||v0||C0
t,x
≤M(t)1/2, (11.8)

||v0||C1
t,x
≤M(t)1/2δ

1/2
0 λ0, (11.9)

||R̊0||C0
t,x
≤M(t)cRδ1. (11.10)

Furthermore, v0 and R̊q are (Ft)t≥0-adapted, and both v0(0) and R̊q(0) are deterministic.

Proof. By a straightforward calculation, it follows that (v0, p0, R̊0) solves (11.1) pointwise.

(11.8) follows by definition of v0. Concerning (11.9), we have for t ∈ [0, TL]

||v0||C1
t,x
≤ (2 + 2L)M(t)1/2

(2π)3/2
, (11.11)

and the right-hand side can be estimated by

M(t)1/2δ
1/2
0 λ0 =

M(t)1/2

(2π)3/2
acb−1/2,

provided 2 + 2L ≤ acb−1/2. Since cb > 5/2, this follows from (11.7). Concerning (11.10),

we obtain

||R̊0||C0
t,x
≤ (2L+ 1)M(t)1/2 +M(t)1/2L1/4 + L1/2 ≤ 5

M(t)

L
,

which is bounded from above by M(t)δ1cR due to (11.7), since δ−1
1 = 4(2π)3.

Finally, the adaptedness of v0 and the observation that v0(0) is deterministic are obvious

since v0 is deterministic. Concerning R̊q, its adaptedness follows from the adaptedness of
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z, which is the only ω-dependent term in the definition of R̊q. Since z(0) = 0, also R̊q(0) is

deterministic, which concludes the proof.

11.2.2 Main iteration and conclusion

The following proposition contains the main technical part of the method of convex

integration in our setting. From now on, we always consider L to be a natural number.

Proposition 11.2.2 (Main iteration). Let L > 1 satisfy the first estimate of (11.7).

Then, there is a choice of parameters a0 � 1, b > 1 and c > 5/2 such that for arbitrary

large a ≥ a0, there exists a sequence of triples (vq, pq, R̊q)q≥0 with the following properties.

(v0, p0, R̊0) is as in Lemma 11.2.1, for each q ≥ 1 the triple (vq, pq, R̊q) solves (11.1)

pointwise on [0, TL]×T3, vq and R̊q are (Ft)t≥0-adapted, and (A.1)-(A.3) hold with respect

to a, b and c. Furthermore, for each q ≥ 0, vq(0) and R̊q(0) are deterministic.

The proof of the preceding result is contained in the following section. Before we

proceed in this direction, we state and prove the following important corollary, which

we already used in Chapter 10 in order to construct the analytically weak solution u to

(HNSEsto).

Corollary 11.2.3. For any T > 0, there is L0 = L0(T ) > 1 such that for any L ≥ L0 there

exists an analytically weak solution v = v(L) to (NL-SHNSE) on [0, TL] with the following

properties. v is (Ft)t≥0-adapted, has some deterministic initial value v(0) = x0 ∈ L2
σ, and

its paths belongs to C([0, TL], Hγ) for some γ ∈ (0, 1). Moreover, v fulfills

||v(T )||L2 >
(
||v(0)||L2 + L

)
eLT (11.12)

on {TL ≥ T}, and we have

ess sup
ω∈Ω

sup
t∈[0,TL]

||v(t)||Hγ <∞ (11.13)

for some γ ∈ (0, 1).

Proof. Fix T > 0, let L0 be the smallest natural number such that the first part of (11.7)

and

L0 >
ln(11)

T
(11.14)

are fulfilled, and let L ≥ L0 be natural. Then, for a suitable choice of b > 1, c > 5/2 and

a0 � 1, for arbitrary large a ≥ a0, by Proposition 11.2.2 there exists a sequence of solution

triples (vq, pq, R̊q)q∈N0 to the fractional Navier–Stokes–Reynolds equations (11.1) defined

on [0, TL]× T3, which satisfies (A.1)-(A.3) subject to b, c, and a. Precise conditions on b

and c are presented in Subsection 11.3.1. Interpolating the Hölder space Cγt,x between C0
t,x

and C1
t,x, we obtain for t ∈ [0, TL]∑

q≥0

||vq+1 − vq||Cγt,x ≤
∑
q≥0

||vq+1 − vq||γC1
t,x
||vq+1 − vq||1−γC0

t,x
≤ CγLM(t)1/2

∑
q≥0

δ
1/2
q+1λ

γ
q+1

.M(t)1/2
∑
q≥0

ab
q+1(cbγ−1/2). (11.15)
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Hence, (vq)q∈N0 converges pathwise to a limit v in CγTL,x if and only if γ ∈ (0, 1
2bc). Moreover,

(A.3) gives the pathwise convergence R̊q −→ 0 in C0
TL,x

as q →∞. Considering the weak

formulation of (11.1) for (vq, R̊q), i.e. the dualization with any smooth, x-periodic vector

field ϕ : [0, TL]× T3 → R3 such that divϕ = 0 and ϕ(t, ·) = 0 for t ∈ Kc for some compact

set K ⊆ (0, TL), given as

ˆ TL

0

ˆ
T3

vq ·
[
∂tϕ− (−∆)αϕ

]
+
(
[(vq + z) · ∇]ϕ

)
· (vq + z) dxdt =

ˆ TL

0

ˆ
T3

R̊q : Dϕdxdt,

it is clear that in the limit for q →∞ we have

ˆ TL

0

ˆ
T3

v ·
[
∂tϕ− (−∆)αϕ

]
+
(
[(v + z) · ∇]ϕ

)
· (v + z) dxdt = 0.

Consequently, v is an analytically weak solution to (NL-SHNSE). Furthermore, as CL and

M(t) are independent of ω, (11.15) particularly yields

ess sup
ω∈Ω

||v||C0
TL
Cγx

<∞, 0 < γ <
1

2bc
.

In particular, we obtain (11.13) for sufficiently small γ ∈ (0, 1). Since each vq is (Ft)t≥0-

adapted, the convergence in C([0, TL], Cγ) yields that v is (Ft)t≥0-adapted as well. As each

vq(0) is deterministic, also v(0) is deterministic, i.e. we have v(0) = x0 for some x0 ∈ L2
σ.

To conclude the proof, it remains to verify (11.12). To this end, we note that for

sufficiently large a > 1 and any t ≥ 0, the corresponding solution v fulfills

||v(t)− v0(t)||L2 ≤
∑
q≥0

||(vq+1 − vq)(t)||L2 ≤ (2π)3/2M(t)1/2
∑
q≥0

δ
1/2
q+1

≤ ab/2

2
M(t)1/2

∑
q≥0

a−b
q+1/2 ≤ 3

4
M(t)1/2 on {TL ≥ t}, (11.16)

where we used (A.1) for the second inequality, and b ≥ 2, which implies bq ≥ qb for q ≥ 1,

for the last inequality. From here, on the one hand, taking into account the definition of

v0, we obtain on {TL ≥ t}

||v(t)||L2 ≥ ||v0(t)||L2 − ||v(t)− v0(t)||L2 = M(t)1/2 − ||v(t)− v0(t)||L2 ≥
M(t)1/2

4
.

(11.17)

On the other hand, (11.16) also yields

(
||v(0)||L2 + L

)
eLT ≤

(
||v0(0)||L2 + ||v(0)− v0(0)||L2 + L

)
eLT

≤
(

7

4
M(0)1/2 + L

)
eLT =

(
7

4
L2 + L

)
eLT <

M(t)1/2

4
,

where the last inequality holds, if we choose L ≥ L0 and L0 is chosen to satisfy (11.14).

Combining with (11.17) for t = T , (11.12) follows and the proof of the corollary is

complete.
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11.3 Proof of the main iteration

We now turn to the proof of Proposition 11.2.2. To this end, fix L ∈ N as in the assertion,

q ∈ N0, and let a1(L) = a1 > 1 such that for any a ≥ a1 (11.7) is fulfilled. Then, for any

b > 1 and c > 5/2, the initial triple of Subsection 11.2.1 fulfills all assertions of Lemma

11.2.1. Assume for some a2 ≥ a1 that for any a ≥ a2 triples up to (vq, pq, R̊q), fulfilling

the iterative bounds (A.1)-(A.3) with a, and with b and c as in (11.24) and (11.26) have

already been constructed such that each vq and R̊q is (Ft)t≥0-adapted and vq(0) and R̊q(0)

are deterministic. Our proof amounts to showing that there is a q-independent number

a∗ ≥ a2 such that for arbitrary large a ≥ a∗, the next solution triple (vq+1, pq+1, R̊q+1) can

be constructed with all the above properties, in particular obeying (A.1)-(A.3) with a and

with the same choice of b and c as above. Then, the assertion follows with a0 = a∗, and b

and c as in (11.24) and (11.26).

In all that follows, for functions f depending on (t, x, ω) ∈ R+×Rd×Ω, we suppress the

explicit dependence on ω and simply write f(t, x). In order to construct (vq+1, pq+1, R̊q+1)

with all desired properties, we proceed as follows.

Let a ≥ a2. In view of Proposition 11.3.3 and Lemma 11.3.4, it is important that λq is

a multiple of the geometric number n0 introduced right after Lemma 11.3.4. To this end,

since we will particularly choose b/2, c ∈ N, it suffices to have a = kn0, k ∈ N, which we

consistently assume from now on and which is clearly consistent with what we claimed

about a in the assertion of Proposition 11.2.2.

From the definition of λq and δq in (11.4) and the iterative construction

vq = v0 +
∑

1≤p≤q
(vp − vp−1),

it follows that once we increase a sufficiently in terms of b and c, we obtain∑
p≥1

δ1/2
p ≤ 1,

∑
0≤p≤q

δ1/2
p λp ≤ 2δ1/2

q λq, (11.18)

and hence, via (A.1), (A.2), (11.8) and (11.9), the bounds

||vq||C0
t,x
≤ 2M(t)1/2, ||vq||C1

t,x
≤ 2CLM(t)1/2δ1/2

q λq, t ∈ [0, TL] (11.19)

follow.

11.3.1 Choice of parameters

One has to choose carefully the scales of the parameters ` = `q and µ = µq in comparison

to the high frequency and low amplitude terms λq and δq. For q ∈ N0, set

` = `q := δ
−1/8
q+1 δ1/8

q λ−1/4
q λ

−3/4
q+1 (11.20)

and

µ = µq := (2π)3/2δ
1/4
q+1δ

1/4
q λ1/2

q λ
1/2
q+1. (11.21)
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These choices lead to the relation

µ� `−1, (11.22)

which can be seen as follows: by definition and since q ≥ 0, we have that

1

µ`
= 2a−b/2ab

q( 1
8
b+ 3

8
− 1

4
bc+ 1

4
b2c) ≥ 2a−b/2a

1
8
b+ 3

8
− 1

4
bc+ 1

4
b2c � 1, (11.23)

which holds since b > 1, c > 5
2 . Choosing a such that a3/4 ∈ N, and b with b

4 ∈ N, it follows

that µ is natural, which we will need in the sequel. Moreover, for a fixed sufficiently small

choice of δ > 0 as in (10.5), we fix b ∈ N such that

b >
8

3
(
1

2
− 2δ)−1 > 5 and

b

4
∈ N, (11.24)

set

β :=
b− 1

5b+ 5
<

1

5
,

and fix ε < min{1
4 −

α
2 ,

β
2 }. We also introduce

N0 :=

⌈
1 + ε

β

⌉
+ 1, (11.25)

and choose c such that

c > max

(
2

β
,
8

3

(
1

2
− 2δ

)−1

,

(
1

2
− α

)−1
)
, c ∈ N. (11.26)

At this point, all parameters and length scales are fixed for the remainder of the proof, with

the exception of a ≥ a2, for which several additional lower bounds will appear throughout

the iteration. In this regard, we point out that we may increase the value of a as needed

with respect to all parameters fixed above and also with respect to L, as long as the number

of imposed lower bounds remains finite. In view of Proposition 11.2.2 it is important to

note that neither the lower bounds for a nor the choices for δ, b, ε,N0 or c depend on the

stage index q. We will not explicitly collect all lower bounds for a, but merely mention any

instance where we potentially further increase a. Carefully keeping track of these additional

requirements on a, the maximum a∗ of all lower bounds imposed along the subsequent

proof leads to the lower bound a0 = a∗ of the assertion.

These parameter choices yield the crucial estimates

δ
1/2
q λq`

δ
1/2
q+1

� 1,
δ

1/2
q λq
µ

+
1

`λq+1
≤ λ−βq+1 �

δq+2

δq+1
, λ−1

q+1 ≤
δ

1/2
q+1

µ
, (11.27)

which can be verified by a calculation similar to (11.23). From here, we may further increase

a in terms of L to obtain

CLM(L)1/2 δ
1/2
q λq`

δ
1/2
q+1

� 1,
CL
`λq+1

+
CLM(L)1/2δ

1/2
q λq + L1/4

µ
≤ λ−βq+1 �

δq+2

δq+1
. (11.28)
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Furthermore, choosing a sufficiently large, the lower bounds for b and c stated above yield

CL`
1/2−2δδ1/2

q λq � δq+2. (11.29)

Moreover, the necessary relations for the small absolute parameter cR are summarized by

the condition

0 < cR ≤ min
(
r2

0, (4Dc0)−4
)
, (11.30)

where D is introduced in (11.48), and we denote by c0 > 0 the maximum of all implicit

constants appearing in Lemmas 11.3.1, 11.3.2 and 11.3.6. We remark that all these strictly

positive implicit constants depend only on N ∈ N. It is important to note that while

the above mentioned lemmas are valid for arbitrary N ∈ N, we shall employ them for

N ≤ N0 ≤ 18, with N0 as in (11.25) only. Here, the absolute upper bound for N0 stems

from the relations ε < 1 and 1
β < 8. Therefore, the set of cR as in (11.30) is nonempty and

cR can even be chosen only in terms of the absolute geometric number r0 and the implicit

constants mentioned above for N ≤ 18.

11.3.2 Mollification

In order to avoid a loss of derivative for vq and to improve the regularity of R̊q and z,

we mollify in space and time. The time mollification needs to be non-anticipating in order

to preserve (Ft)t≥0-adaptedness, i.e. instead of symmetric time mollifiers on R centered

at 0, we consider mollifiers with support on R+. Precisely, let {φε}ε>0 be a family of

standard mollifiers on R3 and {ϕε}ε>0 a family of standard mollifiers with support on R+.

For technical reasons we replace vq and z by vq(· ∧ TL) and z(· ∧ TL), i.e. we consider

their constant extensions beyond TL on [0, L]. In addition, for the mollification on R3, we

consider the 2π-periodic extensions of vq, R̊q and z to R3. We still denote these extended

maps by vq, R̊q and z and remark that everything stated above in this section remains true

on [0, TL] for these extensions. For the mollification length scale ` = `q defined in (11.20),

set

v` := (vq ∗x φ`) ∗t ϕ`, R̊` := (R̊q ∗x φ`) ∗t ϕ`, z` := (z ∗x φ`) ∗t ϕ`.

Note that v`, R̊` and z` are (Ft)t≥0-adapted, z` = 0, v`(0), ∂tv`(0), R̊`(0) and ∂tR̊`(0) are

deterministic, and v`, z` and R̊` are divergence-free. Moreover, it is clear that v`, R̊` and

z` are 2π-periodic in x, since so are vq, R̊q and z. Therefore, we may consider v` and z` as

elements in C∞L,x and R̊` in C∞TL,xR
3×3. It is straightforward to check that on [0, TL] the

pair (v`, R̊`) solves{
∂tv` + div

(
(v` + z`)⊗ (v` + z`)

)
+∇p` + (−∆)αv` = div(R̊` +Rcom)

div(v`) = 0,
(11.31)

with the trace-free matrix-valued map

Rcom := (v` + z`)⊗̊(v` + z`)−
(
(vq + zq)⊗̊(vq + zq)

)
∗x φ` ∗t ϕ`

and

p` := (pq ∗x φ`) ∗t ϕ` −
1

3

(
|v` + z`|2 − (|vq + zq|2 ∗x φ`) ∗t ϕ`

)
.
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From what we mentioned above, it follows that Rcom is (Ft)t≥0-adapted and that Rcom(0)

is deterministic.

In the following lemma we collect important estimates for the mollifications introduced

above.

Lemma 11.3.1. The following estimates hold for N ∈ N0 and t ∈ [0, TL]. For v`, we have

||vq − v`||C0
t,x
≤ `||vq||C1

t,x
≤ 2CLM(t)1/2δ1/2

q λq`,

||v`||CN+1
t,x

. `−N ||vq||C1
t,x
≤ CLM(t)1/2δ1/2

q λq`
−N ,

||v`||C0
t,x
≤ ||vq||C0

t,x
≤ 2M(t)1/2.

Similarly, for R̊` we have

||R̊`||CNt,x . `−N ||R̊q||C0
t,x
≤ `−NM(t)δq+1cR,

and, likewise, for z`

||z`||C0
t,x
≤ ||z||C0

t,x
≤ L1/4, ||z`||C0

t C
N+1
x

. `−NL1/4, ||z − z`||C0
t,x

. `1/2−2δL1/2,

where in each line but the last all implicit constants stem from the mollifiers φ` and ϕ`
and hence only depend on N . The implicit constant in the last estimate is due to Sobolev

embeddings and is hence absolute.

Proof. The second inequality of each estimate is due to either (11.19) or (10.8). The first

estimate of the third and fifth line follow immediately, since the standard mollifiers ϕ` and

φ` have mass 1, which also implies the estimate for ||R̊`||C0
t,x

. The estimate for ||R̊q||CNt,x
for N ≥ 1, as well as the first estimate of the second line, are obtained in the usual way:

Putting all derivatives (all but one in the case of the second line) to the mollifiers φ` and

ϕ`, the estimates follow from the fact that φ` and ϕ` can be chosen to fulfill

||∂βφ`||L1(R3) . `−|β| and ||∂nt ϕ`||L1(R) . `−n,

for n ∈ N0 and any multiindex β ∈ N3
0, respectively. The sixth estimate follows in the

same manner. Indeed, one derivative may be put on z, and the claim follows, since

||Dz||L∞TL,x ≤ L
1/4 by (10.8). Concerning the first line, the mean value theorem yields

vq(t, x)− v`(t, x) =

ˆ `

0

ˆ
B`(0)

(
vq(t, x)− vq(t− s, x− y)

)
φ`(y)ϕ`(s)dyds

=

ˆ `

0

ˆ
B`(0)

(
vq(t, x)− vq(t− s, x)

)
φ`(y)ϕ`(s)dyds

+

ˆ `

0

ˆ
B`(0)

(
vq(t− s, x)− vq(t− s, x− y)

)
φ`(y)ϕ`(s)dyds

=

ˆ `

0
s∂tvq(ζs, x)ϕ`(s)ds

ˆ
B`(0)

φ`(y)dy

+

ˆ `

0

ˆ
B`(0)

Dvq(t− s, ξy) · y φ`(y)ϕ`(s)dyds,
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where ζs ∈ (t− s, t) and ξy = x− uy for some u = uy ∈ (0, 1) arise from the application of

the mean value theorem. Consequently, we deduce

||vq − v`||C0
t,x
≤ `
(
||∂tvq||C0

t,x
+ ||Dvq||C0

t,x

)
≤ `||vq||C1

t,x
,

where we used
´
R3 φ` dx = 1 =

´
R ϕ` dt again. Finally, similarly approach the last estimate:

|z`(t, x)− z(t, x)| ≤
ˆ
B`(0)

|z(t, x− y)− z(t, x)|
|y|β

φ`(y)|y|βdy+

+

ˆ `

0

ˆ
B`(0)

|z(t− s, x− y)− z(t, x− y)|
|s|κ

|s|κφ`(y)ϕ`(s)dyds

≤ `β||z||
C0
t C

β
x

+ `κ||z||Cκt L∞x .

Choosing κ = 1/2− 2δ with δ as in (10.5), it follows from (10.8) that

`κ||z||Cκt L∞x = `1/2−2δ||z||
C

1/2−2δ
t L∞x

≤ `1/2−2δL1/2

for t ≤ TL. Since by the general Sobolev embedding (9.3) we have the continuous embedding

H
5+σ
2 ↪→ C1/2, the definition of TL yields for β = 1/2 the estimate

`β||z||
C0
t C

β
x
. `1/2||z||

C0
tH

5+σ
2

. `1/2L1/4.

Combining with the previous estimate, we conclude by obtaining

||z` − z||C0
t,x

. `1/2−2δL1/2, 0 ≤ t ≤ TL.

In order to estimate the solutions Φj to the transport equation (11.34), we also need

estimates on v` and z` beyond TL. More precisely, for t ∈ [0, L] and N ≥ 0, we need

||v`||C0
t,x
≤ ||vq||C0

TL∧t,x
≤ 2M(TL ∧ t)1/2, ||z`||C0

t,x
≤ ||z||C0

TL∧t,x
≤ L1/4,

||v`||CN+1
t,x

. `−N ||vq||C1
TL∧t,x

≤ CLM(TL ∧ t)1/2δ1/2
q λq`

−N , (11.32)

||z`||C0
t C

N+1
x

. `−NL1/4.

These estimates are obtained similarly as in the preceding lemma. Indeed, vq(· ∧ TL) is

weakly differentiable on [0, L]× R3 and smooth in (t, x) for t 6= TL, and z(· ∧ TL) has the

same spatial regularity on [0, L] as on [0, TL]. Hence, one spatial (and temporal, in the

case of vq) derivative may still be put on vq(· ∧ TL), and the claimed estimates follow, since

vq(t) = vq(TL) for t ≥ TL and similarly for z.

11.3.3 Time localization and phase transport

Purpose. We have seen in the survey of this proof in Section 11.1 that the calculation

of the new error R̊q+1 naturally leads to the material derivative term

[∂t + (v` + z`) · ∇]wq+1.



166
CHAPTER 11. CONVEX INTEGRATION FOR STOCHASTIC HYPODISSIPATIVE

NSE

Since our primary intention is to define wq+1 as a sum of terms of type

aj,ξWξ = aj,ξBξe
iλq+1ξ·x,

where aj,ξ are amplitudes of scale M(t)1/2δ
1/2
q+1, by the product rule the material derivative

would particularly fall on the high frequency term eiλq+1ξ·x, resulting in a large factor

λq+1 � δ
−1/2
q+1 � 1 , which hinders the verification of the small bound (A.3) at stage q + 1.

In order to prevent this, the idea is to replace the linear phase ξ · x by a nonlinear

phase ξ ·Φ, where Φ is tailored in such a way that its material derivative vanishes. In other

words, Φ should be transported pathwise along v` + z` with initial condition being the

identity. On the other hand, the linear phase in the Beltrami building blocks Bξe
iλq+1ξ·x

is indispensable in order to retain its main geometric feature. That is, the approximate

cancellation of Lemma 11.3.5, which stems from the geometric properties of Beltrami vector

fields, cf. Proposition 11.3.3 and Lemma 11.3.4, does not prevail if we replace the linear

phase function by a nonlinear one.

Hence, in order to retain a linear phase term for Lemma 11.3.5, we will write

eiλq+1ξ·Φ = eiλq+1ξ·xeiλq+1(Φ−x),

which requires careful estimates on Φ−x, i.e. on the deviation of the solution of a transport

equation from its initial value. It is known that a suitable control of such a difference can

be obtained on a suitable local time scale only. This leads us to introduce the time cutoffs

χj as given below. We solve the transport equation (11.34) on suitably small time intervals

of diameter approximately µ−1 before starting afresh with the original initial condition x.

As mentioned before, this approach of transporting the phase function along the vector field

appearing in the transport error is standard for deterministic convex integration techniques.

In the context of stochastic equations, the respective preprint to this part of the thesis

[189] seems to be the first one in which such a transport is considered. We point out again

that this is the reason why we obtain the additional constant CL in (A.2), cf. (11.38).

Cutoffs, transport and estimates. Let χ ∈ C∞c
(
(−3

4 ,
3
4)
)

be a cutoff function such

that 0 ≤ χ ≤ 1 and ∑
l∈Z

χ2(t− l) = 1, t ∈ R.

The following considerations are the reason we choose L and µ to be natural numbers.

Let L ∈ N be as in Proposition 11.2.2, µ = µq ∈ N as in (11.21) and set, for j ∈ {0, . . . , Lµ},
χj(t) := χ(µt− j), which yields∑

j

χ2
j (t) = 1, t ∈ [0, L]. (11.33)

Here and throughout, the summation in j ranges over {0, . . . , Lµ}. Since suppχj ⊆
B 3

4
µ−1(jµ−1), at each time t at most two cutoffs χj are nontrivial. We recall that by v` and

z` we always mean the mollification of the extended vector fields vq(· ∧ TL) and z(· ∧ TL),

respectively.
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Consider v` + z` as a smooth vector field on [0, L] × R3, which is 2π-periodic in its

spatial argument. For j ∈ {0, . . . , Lµ}, let Φj : [0, L]×R3×Ω→ R3 be the pathwise unique

solution to the transport equation{
[∂t + (v` + z`) · ∇]Φj = 0,

Φj(jµ
−1, x) = x.

(11.34)

Note that Φj is the inverse flow of the ordinary differential equation with vector field v`+z`
with start at time t = jµ−1 as the identity. Thus, since v` + z` is 2π-periodic in its spatial

argument, for each t ∈ [0, L] and x ∈ R3, we have Φj(t, x)− Φj(t, x+ y) ∈ (2πZ)3 for any

y ∈ (2πZ)3. Consequently, x 7→ eiλq+1ξ·Φj(t,x) is (2πZ)3-periodic for each t and may hence

be considered an element in C∞(T3,C). Clearly, Φ0(0) and

∂tΦ0(0) = −[(v`(0) + z`(0)) · ∇]Φ0(0) = −[v`(0) · ∇]Φ0(0)

are deterministic, and (t, ω) 7→ Φj(t, ω) ∈ L2 is (Ft)t≥0-adapted.

To verify the inductive estimates (A.1)-(A.3) later on, we need the estimates on Φj

contained in the following lemma, for which we recall the constant CL introduced in (11.5)

and CT3 =
√

3π. We point out that we only need local in time estimates for Φj on the

support of the respective cutoff χj , which is contained in B 3
4
µ−1(jµ−1).

Lemma 11.3.2. For j ∈ {0, . . . , Lµ}, the unique solution Φj to (11.34) satisfies the

following estimates.

‖DΦj‖C0
suppχj,x

≤ 1 + CT3 , (11.35)

||DΦj − Id ||C0
suppχj,x

≤ CLM(L)1/2δ
1/2
q λq + L1/4

µ
� 1, (11.36)

‖DΦj‖C0
suppχj

CNx
.
CLM(L)1/2δ

1/2
q λq + L1/4

µ
`−N � `−N , N ≥ 1, (11.37)

[Φj ]C1
suppχj,x

≤ CL, (11.38)

with the implicit constants only depending on N .

Prior to the proof, we mention that by methods very similar to [50, (135),(136) Prop.D.1],

one obtains the following estimates for Φj on suppχj ⊆ B 3
4
µ−1(jµ−1).

||DΦj − Id ||C0
suppχj,x

≤
||D(v` + z`)||C0

suppχj,x

µ
exp

(
1

µ
‖D(v` + z`)‖C0

suppχj,x

)
(11.39)

and, for each N ≥ 2 and a constant CN > 0 only depending on N , we have

[Φj ]C0
suppχj

CNx
≤ CN

[v` + z`]C0
suppχj

CNx

µ
exp

(
CN
µ
‖D(v` + z`)‖C0

suppχj,x

)
. (11.40)
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Proof. (11.35) follows immediately from (11.36). The estimate (11.36), in turn, is a simple

consequence of (11.39):

‖DΦj − Id ‖C0
suppχj,x

≤ 1

µ
‖D(v` + z`)‖C0

suppχj,x
exp

(
1

µ
‖D(v` + z`)‖C0

suppχj,x

)
≤ 1

µ

(
‖vq‖C1

L,x
+ L1/4

)
exp

(
1

µ

(
‖vq‖C1

L,x
+ L1/4

))
≤ 1

µ

(
2CLM(L)1/2δ1/2

q λq + L1/4
)

exp

(
1

µ

(
2CLM(L)1/2δ1/2

q λq + L1/4
))

≤ 2CLM(L)1/2δ
1/2
q λq + L1/4

µ
� 1,

where we used the extended mollification estimates (11.32), and (11.28) twice. Likewise,

for (11.37), we employ (11.40) and Lemma 11.3.1 to obtain

‖DΦj‖C0
suppχj

CNx
≤ CN`−N

1

µ
(‖vq‖C1

L,x
+ L1/4) exp

(
CN
µ

(
2M(L)1/2δ1/2

q λq + L1/4
))

.
CLM(L)1/2δ

1/2
q λq + L1/4

µ
`−N � `−N .

We remark that the implicit constant only depends on CN from (11.40), which in turn

only depends on N . Finally, (11.38) follows via

[Φj ]C1
suppχj,x

= ||DΦj ||C0
suppχj,x

+ ||∂tΦj ||C0
suppχj,x

≤ (1 + CT3)(1 + ||v` + z`||C0
L,x

)

≤ (1 + CT3)
(
1 + 2M(L)1/2 + L1/4

)
= CL,

where we used (11.35), (11.32) and the definition of CL.

11.3.4 Beltrami waves

Here, we introduce the geometric backbone of our iteration scheme. As explained before,

the central feature of the Beltrami waves introduced below is the geometric lemma 11.3.4.

Let Λ ⊆ S2 ∩Q3 be finite such that Λ = −Λ. For each ξ ∈ Λ, choose Aξ ∈ S2 ∩Q3 such

that

Aξ · ξ = 0, Aξ = A−ξ,

and define the complex vector

Bξ :=
1√
2

(
Aξ + iξ ×Aξ

)
.

By construction, Bξ ∈ C3 has the properties

|Bξ| = 1, Bξ · ξ = 0, iξ ×Bξ = Bξ, B−ξ = Bξ.

Hence, if λ ∈ Z is such that λξ ∈ Z3, a direct calculation shows that for each ξ ∈ Λ the

vector field

Wξ(x) := Wξ,λ(x) := Bξe
iλξ·x
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is 2π-periodic, divergence-free and an eigenfunction of the curl-operator with eigenvalue λ.

Such vector fields are called complex Beltrami waves and are particularly useful due to the

following two results, cf. [53, Prop.5.5, Prop.5.6].

Proposition 11.3.3. Let Λ and λ be as above and let aξ ∈ C, ξ ∈ Λ, be a family of

coefficients such that a−ξ = aξ. Then, the vector field

W (x) :=
∑
ξ∈Λ

aξBξe
iλξ·x

is R3-valued and divergence-free with curlW = λW . Hence, it is a stationary solution to

the Euler equation

div
(
W ⊗W

)
= ∇|W |

2

2
. (11.41)

Furthermore, we have for all ξ, ξ′ ∈ Λ

Bξ ⊗B−ξ +B−ξ ⊗Bξ = Id−ξ ⊗ ξ, (11.42)

and

div
(
Wξ ⊗Wξ′ +Wξ′ ⊗Wξ

)
= ∇

(
Wξ ·Wξ′

)
. (11.43)

The following geometric lemma is the reason we can use Beltrami waves as the building

blocks for the perturbation wq+1 in the forthcoming construction (see (11.47)) in order to

obtain a cancellation for the oscillation error, see (11.59) and Lemma 11.3.5. Below, for a

symmetric 3× 3-matrix A, we denote the ball of radius r > 0 centered at A in the space of

symmetric real 3× 3 matrices by Br(A) and its closure by Br(A).

Lemma 11.3.4. There is a small number r0 > 0 such that there exist pairwise disjoint

finite sets Λα ⊆ S2∩Q3, α ∈ {0, 1}, with the same cardinality and smooth positive functions

γ
(α)
ξ ∈ C∞

(
Br0(Id)

)
with the following properties. For α ∈ {0, 1}, it is Λα = −Λα and

γ
(α)
ξ = γ

(α)
−ξ for each ξ ∈ Λα. Moreover, for each R ∈ Br0(Id), we have the identity

R =
1

2

∑
ξ∈Λα

(
γ

(α)
ξ (R)

)2

(Id−ξ ⊗ ξ). (11.44)

It is useful to denote by n0 the smallest natural number such that n0Λα ⊆ Z for

α ∈ {0, 1}.

11.3.5 Construction of wq+1 and vq+1

After having provided the geometric structure of Beltrami waves as the main building

blocks for the perturbation wq+1, we now proceed with the construction of wq+1 and vq+1.

The velocity at stage q + 1 is defined as

vq+1 := v` + w
(p)
q+1 + w

(c)
q+1, (11.45)

i.e. the perturbation consists of a principal term w
(p)
q+1 and a corrector term w

(c)
q+1. The

former is constructed as a sum of Beltrami waves with suitably low amplitude, while the

latter is necessary in order to ensure divwq+1 = 0.
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Let Λ0, Λ1 and γ
(0)
ξ , γ

(1)
ξ for ξ ∈ Λ0,Λ1 be as in the geometric lemma 11.3.4. We set

Λj := Λ0 for j ∈ 2N0 and Λj := Λ1 for j ∈ 2N0 + 1

and, likewise,

γ
(j)
ξ := γ

(0)
ξ and γ

(j)
ξ := γ

(1)
ξ for j ∈ 2N0 and j ∈ 2N0 + 1,

respectively. On [0, TL]× T3, for (j, ξ) with ξ ∈ Λj , we define the amplitude

aj,ξ(t, x) := aq+1,j,ξ(t, x) := χj(t)M(t)1/2δ
1/2
q+1c

1/4
R γ

(j)
ξ

(
Id− R̊`(t, x)

M(t)δq+1c
1/2
R

)
(11.46)

and introduce the principal perturbation as

w
(p)
q+1(t, x) :=

∑
j

∑
ξ∈Λj

w
(p)
q+1,j,ξ(t, x) :=

∑
j

∑
ξ∈Λj

aj,ξ(t, x)Bξe
iλq+1ξ·Φj(t,x). (11.47)

In order for aj,ξ to be well-defined, in view of Lemma 11.3.4, we need

sup
t∈[0,TL]

||R̊`(t)||C0

M(t)δq+1c
1/2
R

< r0,

which, considering (A.3), holds due to (11.30). Since R̊`(0) and ∂tR̊`(0) as well as Φ0(0)

and ∂tΦ0(0) are deterministic, and since χj(0, ·) = 0 for j 6= 0, it follows that w
(p)
q+1(0) and

∂tw
(p)
q+1(0) are deterministic as well. Moreover, the (Ft)t≥0-adaptedness of R̊` and each Φj

yields (Ft)t≥0-adaptedness of w
(p)
q+1.

For future reference, it is useful to introduce the notation

φj,ξ(t, x) := φq+1,j,ξ(t, x) := eiλq+1ξ·(Φj(t,x)−x)

and

Wξ(x) := Wq+1,ξ(x) := Bξe
iλq+1ξ·x,

which we use to rewrite

w
(p)
q+1(t, x) =

∑
j

∑
ξ∈Λj

aj,ξ(t, x)φj,ξ(t, x)Wξ(x) =
∑
j

∑
ξ∈Λj

aj,ξ(t, x)Wξ(Φj(t, x)).

Moreover, we set |Λ| := |Λj |, which is independent of j ∈ N0 and, for N0 ∈ N as in (11.25),

introduce the absolute constant

D := 2|Λ|sup
j,ξ
||γ(j)

ξ ||CN0 (Br0 (Id))
. (11.48)

As mentioned before, the definition of w
(p)
q+1 is tailored in order to obtain a cancellation

of w
(p)
q+1 ⊗ w

(p)
q+1 with R̊`. This cancellation turns out to be pivotal within the verification

of (A.3) for the error term at stage q + 1, cf. (11.65). The precise result is contained in

the following statement.
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Lemma 11.3.5. On [0, TL]× T3, we have

w
(p)
q+1 ⊗ w

(p)
q+1 + R̊` = M(t)δq+1c

1/2
R Id +

∑
j,j′,ξ+ξ′ 6=0

aj,ξaj′,ξ′φj,ξφj′,ξ′Wξ ⊗Wξ′ ,

where the summation ranges over pairs (j, ξ) and (j′, ξ′) with ξ ∈ Λj and ξ′ ∈ Λj′ such that

ξ 6= −ξ′.

Proof. For abbreviation, we denote the second summand of the right-hand side of the

assertion by (II). By definition of w
(p)
q+1, since χjχj′ ≡ 0 if |j − j′| ≥ 2 and since ξ + ξ′ = 0

for ξ ∈ Λj and ξ′ ∈ Λj′ implies |j − j′| ∈ 2N0, we have

w
(p)
q+1 ⊗ w

(p)
q+1(t, x) = M(t)δq+1c

1/2
R

∑
j

χ2
j (t)

∑
ξ∈Λj

γ
(j)
ξ

(
Id− R̊`(t, x)

M(t)δq+1c
1/2
R

)2

Bξ ⊗B−ξ + (II)

= M(t)δq+1c
1/2
R

∑
j

χ2
j (t)

1

2

∑
ξ∈Λj

γ
(j)
ξ

(
Id− R̊`(t, x)

M(t)δq+1c
1/2
R

)2

(Id− ξ ⊗ ξ) + (II)

= M(t)δq+1c
1/2
R

∑
j

χ2
j (t)

(
Id− R̊`(t, x)

M(t)δq+1c
1/2
R

)
+ (II)

= M(t)δq+1c
1/2
R Id− R̊` + (II).

Here, we used (11.42), (11.44) and
∑

j χ
2
j = 1 for the second, third and final equation,

respectively.

Next, we introduce the corrector part w
(c)
q+1, which accounts for the fact that the principal

part w
(p)
q+1 itself is not divergence-free. For (t, x) ∈ [0, TL]× T3, setting

w
(c)
q+1(t, x) :=

∑
j

∑
ξ∈Λj

[
i

λq+1
∇aj,ξ(t, x)− aj,ξ(t, x)

(
DΦj(t, x)− Id

)
ξ

]
×Wξ(Φj(t, x)),

a direct calculation shows that

w
(p)
q+1 + w

(c)
q+1 =

1

λq+1

∑
j

∑
ξ∈Λj

curl
(
aj,ξWξ(Φj)

)
is a perfect curl, and hence the total perturbation

wq+1 := w
(p)
q+1 + w

(c)
q+1

is divergence-free. Since w
(c)
q+1(0) and ∂tw

(c)
q+1(0) are deterministic and that w

(c)
q+1 is (Ft)t≥0-

adapted, together with the analogous observations for w
(p)
q+1 from above, it follows that

wq+1(0) and ∂twq+1(0) are deterministic and wq+1 is (Ft)t≥0-adapted.

Finally, define vq+1 as in (11.45) and note that vq+1(0) and ∂tvq+1(0) are deterministic

and that vq+1 is (Ft)t≥0-adapted. Moreover, since by construction wq+1 is smooth in (t, x)

and 2π-periodic in x, so is vq+1.
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11.3.6 Estimates for vq+1 − vq

Having defined the perturbation wq+1 in the previous subsection, we now aim to verify

the iterative estimates (A.1) and (A.2) at stage q + 1. Before we do so, we collect several

useful estimates in Lemma 11.3.6, which we will also employ for the iterative estimate

(A.3) on the error term at stage q + 1 later on. It is useful to introduce the notation for

the coefficients of the full perturbation as

wq+1 = w
(p)
q+1 + w

(c)
q+1 =:

∑
j,ξ

Lj,ξe
iλq+1ξ·Φj(t,x) =

∑
j,ξ

Lj,ξφj,ξe
iλq+1ξ·x,

i.e. we set

Lj,ξ := aj,ξBξ +

(
i

λq+1
∇aj,ξ − aj,ξ(DΦj − Id)ξ

)
×Bξ.

Lemma 11.3.6. For each N ∈ N0, (j, ξ) with ξ ∈ Λj, and t ∈ [0, TL], we have the following

estimates for the coefficients of the perturbation wq+1, where all implicit constants only

depend on N and the fixed functions χ and γ
(j)
ξ .

‖aj,ξ‖C0
t C

N
x

+ ‖Lj,ξ‖C0
t C

N
x

.M(t)1/2δ
1/2
q+1`

−N , (11.49)

‖φj,ξ‖C0
suppχj

CNx
. λ

(1−β)N
q+1 , (11.50)

‖∂taj,ξ‖C0
t C

N
x

+ ‖∂tLj,ξ‖C0
t C

N
x

.M(t)1/2δ
1/2
q+1`

−(N+1), (11.51)

‖(∂t + (v` + z`) · ∇)aj,ξ‖C0
t C

N
x

.M(t)δ
1/2
q+1`

−(N+1), (11.52)

‖(∂t + (v` + z`) · ∇)Lj,ξ‖C0
t C

N
x

.M(t)δ
1/2
q+1`

−(N+1). (11.53)

Proof. For (11.49), by Lemma 11.3.1, the chain rule (D.1) and since |χj | ≤ 1, we find

‖aj,ξ‖C0
t C

N
x
≤ c1/4

R M(t)1/2δ
1/2
q+1

∥∥∥∥∥γ(j)
ξ

(
Id− R̊`

c
1/2
R M(t)δq+1

)∥∥∥∥∥
C0
t C

N
x

. c
1/4
R M(t)1/2δ

1/2
q+1

(
‖γ(j)

ξ ‖C1

∥∥∥R̊`∥∥∥
C0
t C

N
x

c
1/2
R M(t)δq+1

+ ‖γ(j)
ξ ‖CN

( ∥∥∥R̊`∥∥∥
C0
t C

1
x

c
1/2
R M(t)δq+1

)N)
. c

1/4
R M(t)1/2δ

1/2
q+1`

−N . (11.54)

Similarly, using the previous estimate together with the product rule (D.2), (11.27) and

Lemma 11.3.2 gives

‖Lj,ξ‖C0
t C

N
x

. ‖aj,ξ‖C0
t C

N
x

+
1

λq+1
‖∇aj,ξ‖C0

t C
N
x

+ ‖aj,ξ‖C0
t C

N
x
‖DΦj − Id ‖C0

suppχj,x

+ ‖aj,ξ‖C0
t,x
‖DΦj − Id ‖C0

suppχj
CNx

. c
1/4
R M(t)1/2δ

1/2
q+1`

−N

(
2 +

1

λq+1`
+
M(L)1/2CLδ

1/2
q λq + L1/4

µ

)
. c

1/4
R M(t)1/2δ

1/2
q+1`

−N , (11.55)
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which, combining with (11.54), gives (11.49). The aforementioned product and chain rule

is used frequently for the forthcoming estimates, but we omit to point this out at every

instance from now on.

The estimate for the phase functions φj,ξ is trivial for N = 0, since |φj,ξ| = 1. For

N ≥ 1, it follows by Lemma 11.3.2, (11.28) and (11.27) as follows.

‖φj,ξ‖C0
suppχj

CNx
.

(
λq+1‖DΦj − Id ‖C0

suppχj
CN−1
x

+ λNq+1‖DΦj − Id‖NC0
suppχj,x

)
. `1−Nλ1−β

q+1 + λ
(1−β)N
q+1 ≤ λN(1−β)

q+1 .

Now we turn to the estimates containing temporal derivatives. For brevity we suppress

in our notation the argument of γ
(j)
ξ and χj . First, applying (11.22), Lemma 11.3.1,

choosing a sufficiently large to have L ≤ `−1, and using χ′j(t) = µχ′(µt− j), we have

‖∂taj,ξ‖C0
t,x

= c
1/4
R M(t)1/2δ

1/2
q+1

∥∥∥∥∥2Lχjγ
(j)
ξ + χj(Dγ

(j)
ξ )

(
∂tR̊` − 4LR̊`

c
1/2
R M(t)δq+1

)
+ χ′jγ

(j)
ξ

∥∥∥∥∥
C0
t,x

.M(t)1/2δ
1/2
q+1

(
`−1 + µ

)
.M(t)1/2δ

1/2
q+1`

−1.

In a similar way, we find for higher spatial derivatives

[∂taj,ξ]C0
t C

N
x

= c
1/4
R M(t)1/2δ

1/2
q+1

∥∥∥∥∥χjDN

(
2Lγ

(j)
ξ + (Dγ

(j)
ξ )

(
∂tR̊` − 4LR̊`

c
1/2
R M(t)δq+1

))
+ χ′jD

Nγ
(j)
ξ

∥∥∥∥∥
C0
t,x

.

Estimating as for the case N = 0, the claimed inequality for aj,ξ follows. Concerning Lj,ξ,

for N ≥ 0, we obtain, using ∂tΦj = −[(v` + z`) · ∇]Φj (which holds since Φj solves (11.34)),

‖∂tLj,ξ‖C0
t C

N
x

. ‖∂taj,ξ‖C0
t C

N
x

+
1

λq+1
‖∇∂taj,ξ‖C0

t C
N
x

+ ‖∂taj,ξ‖C0
t C

N
x
‖DΦj − Id ‖C0

suppχj,x

+ ‖∂taj,ξ‖C0
t,x
‖DΦj‖C0

suppχj
CNx

+ ‖aj,ξ‖C0
t C

N
x
‖D
[(

(v` + z`) · ∇
)
Φj

]
‖C0

suppχj,x

+ ‖aj,ξ‖C0
t,x
‖D
[(

(v` + z`) · ∇
)
Φj

]
‖C0

suppχj
CNx

. ‖∂taj,ξ‖C0
t C

N
x

+
1

λq+1
‖∂taj,ξ‖C0

t C
N+1
x

+ ‖∂taj,ξ‖C0
t C

N
x
‖DΦj − Id ‖C0

suppχj,x

+ ‖∂taj,ξ‖C0
t,x
‖DΦj‖C0

suppχj
CNx

+ ‖aj,ξ‖C0
t C

N
x

(
‖v` + z`‖C0

t C
1
x
‖DΦj‖C0

suppχj,x
+ ‖v` + z`‖C0

t,x
‖DΦj‖C0

suppχj
C1
x

)
+ ‖aj,ξ‖C0

t,x

(
‖v` + z`‖C0

t C
N+1
x
‖DΦj‖C0

suppχj,x
+ ‖v` + z`‖C0

t,x
‖DΦj‖C0

suppχj
CN+1
x

)
.

We will show how to further estimate the terms in brackets of the penultimate line. The

ones from the last line can be estimated in the same way with an additional factor `−N .

An application of Lemma 11.3.2, Lemma 11.3.1, (11.28) and (11.22) yields

‖v` + z`‖C0
t C

1
x
‖DΦj‖C0

suppχj,x
+ ‖v` + z`‖C0

t,x
‖DΦj‖C0

suppχj
C1
x
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.
CLM(L)1/2δ

1/2
q λq + L1/4

µ
µ+ (2M(L)1/2 + L1/4)

CLM(L)1/2δ
1/2
q λq + L1/4

µ
`−1

≤ µ+ (2M(L)1/2 + L1/4)λ−βq+1`
−1 ≤ µ+ `−1 . `−1,

for a ≥ a0(L, β) sufficiently large to absorb the L-dependent constant in the penultimate

estimate. Combining with (11.49), (11.51), (11.27) and Lemma 11.3.2, we find

‖∂tLj,ξ‖C0
t C

N
x

.M(t)1/2δ
1/2
q+1`

−(N+1)

(
1 +

1

λq+1`

)
.M(t)1/2δ

1/2
q+1`

−(N+1).

Finally, (11.52) can be obtained by combining the previous findings with the following

estimate, which follows by Lemma 11.3.1 and (11.19):

‖(∂t + (v` + z`) · ∇)aj,ξ‖C0
t C

N
x

. ‖∂taj,ξ‖C0
t C

N
x

+ ‖v` + z`‖C0
t C

N
x
‖∇aj,ξ‖C0

t,x
+ ‖v` + z`‖C0

t,x
‖∇aj,ξ‖C0

t C
N
x

.M(t)1/2δ
1/2
q+1`

−(N+1)
(

1 + ‖vq‖C0
t,x

+ ‖z‖C0
t,x

)
≤M(t)1/2δ

1/2
q+1`

−(N+1)
(

1 + 2M(t)1/2 + L1/4
)
.M(t)δ

1/2
q+1`

−(N+1),

since L1/4 ≤M(t)1/2. Using the previous estimate together with (11.49) and Lemma 11.3.1,

we conclude

‖(∂t + (v` + z`) · ∇)Lj,ξ‖C0
t C

N
x

. ‖∂tLj,ξ‖C0
t C

N
x

+ ‖v` + z`‖C0
t C

N
x
‖∇Lj,ξ‖C0

t,x
+ ‖v` + z`‖C0

t,x
‖∇Lj,ξ‖C0

t C
N
x

.M(t)δ
1/2
q+1`

−(N+1),

where we once more used L1/4 ≤M(t)1/2. The proof is complete.

From here, we can proceed to the main objective of this subsection, namely to the

verification of the first two main iterative estimates, (A.1) and (A.2), at stage q + 1. Using

vq+1 − vq = wq+1 − (vq − v`), (11.56)

(A.1) follows by (11.55) via

||wq+1||C0
t,x
≤ D||Lj,ξ||C0

t,x
. Dc

1/4
R M(t)1/2δ

1/2
q+1 ≤

1

2
M(t)1/2δ

1/2
q+1, (11.57)

(with D as in (11.48)) and, employing Lemma 11.3.1 and (11.28), via

||vq − v`||C0
t,x

. CLM(t)1/2δ1/2
q λq`�M(t)1/2δ

1/2
q+1.

For (11.57), we used (11.30) to absorb the geometric absolute constant D introduced in

(11.48) and the appearing implicit absolute constants. For future reference, we also state

the additional estimate

||w(c)
q+1||C0

t,x
.M(t)1/2δ

1/2
q+1

(
1

`λq+1
+ ||DΦj − Id ||C0

suppχj,x

)
, (11.58)
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for which we employed (11.54). In a similar manner, (A.2) at stage q + 1 follows from

||wq+1||C1
t,x
≤ D

(
||Lj,ξ||C1

t,x
+ λq+1[Φj ]C1

suppχj,x
||Lj,ξ||C0

t ,x

)
. DM(t)1/2δ

1/2
q+1λq+1

(
`−1

λq+1
+ c

1/4
R CL

)
≤ 1

2
CLM(t)1/2δ

1/2
q+1λq+1

and from

||vq − v`||C1
t,x

. ||vq||C1
t,x
≤ CLM(t)1/2δ1/2

q λq �M(t)1/2δ
1/2
q+1λq+1.

For the former chain of estimates, we used (11.49), (11.38), (11.55) as well as (11.30) and

(11.27), and we have chosen a sufficiently large in terms of D in order to absorb D and

the appearing implicit constants into (λq+1`)
−1. For the latter inequalities, we employed

Lemma 11.3.1, (11.19) and chose a sufficiently large in terms of L to absorb CL and the

appearing implicit constant into the inequality δ
1/2
q λq � δ

1/2
q+1λq+1, which obviously holds

by definition of δq and λq. This concludes the verification of (A.1) and (A.2) at stage q+ 1.

11.3.7 Definition of R̊q+1

We now turn our attention to the definition of the new error term R̊q+1. As explained

in Section 11.1, we can calculate R̊q+1 based on the definition of vq+1 and by using that

the triple (vq, pq, R̊q) at stage q solves (11.1). More precisely, subtracting (11.1) at stage q

from (11.1) at stage q + 1 and solving for the unknown terms div(R̊q+1) and ∇pq+1 yields

div(R̊q+1)−∇pq+1 = [∂t + (v` + z`) · ∇]wq+1

+ div
(
w

(p)
q+1 ⊗ w

(p)
q+1 + R̊`

)
+ div

(
w

(p)
q+1 ⊗ w

(c)
q+1 + w

(c)
q+1 ⊗ wq+1

)
+ [wq+1 · ∇](v` + z`) (11.59)

+ (−∆)αwq+1

+ div
(
vq+1 ⊗ (z − z`) + (z − z`)⊗ vq+1 + z ⊗ z − z` ⊗ z`

)
+ div

(
Rcom

)
−∇p`.

We call the error terms on the right-hand side transport-, oscillation-, corrector-, Nash-,

dissipation-, z- and commutator-error in their order of appearance.

At this point, in order to define the new error R̊q+1, we introduce the operator R as

follows, cf. [50, Sect.1.2]. Recall the notation P for the orthogonal projection P : L2 → L2
σ.

R maps any v ∈ C∞ to a 3× 3-matrix-valued periodic function via

Rv =
1

4

(
DPu+ (DPu)T

)
+

3

4

(
Du+ (Du)T

)
− 1

2
(div u) Id,

where u denotes the solution to

∆u = v −
 
T3

v dx,

 
T3

u dx = 0 on T3.



176
CHAPTER 11. CONVEX INTEGRATION FOR STOCHASTIC HYPODISSIPATIVE

NSE

We observe the following properties of R, which in particular imply that R is a right-inverse

of the div-operator on smooth vector fields with zero average.

Lemma 11.3.7. For any v ∈ C∞, we have

(i) Rv(x) is a symmetric trace-free matrix for each x ∈ T3,

(ii) divRv = v −
ffl
T3 v dx.

In particular, R is a right-inverse to the div-operator on the set of all v ∈ C∞ withffl
T3 v dx = 0.

Proof. Let v ∈ C∞. It is clear by definition that Rv(x) is symmetric for each x ∈ T3. Since

Tr(A) = Tr(AT ) and TrDPu = divPu = 0 by definition of P, we have

Tr(Rv) =
3

2
Tr(Du)− 3

2
div u = 0

pointwise in x ∈ T3. Moreover, since div(Dh)T = ∇ div h for any h ∈ C∞ and divPu = 0,

we have

divRv =
1

4

(
∆Pu+∇ divPu

)
+

3

4

(
∆u+∇ div u

)
− 1

2
∇ div u

=
1

4

(
∆u−∆∇g +∇ div u

)
+

3

4
∆u

= ∆u = v −
 
T3

v dx,

where we used that by definition Pu = u − ∇g for g ∈ C∞(T3,R) with ∆g = div u.

Consequently, we deduce

divRv = v

in case
ffl
T3 v dx = 0, which completes the proof.

With R at hand, we consider the oscillation-error first. By Lemmas 11.3.5 and (11.43),

we have

div
(
w

(p)
q+1 ⊗ w

(p)
q+1 + R̊`

)
= div

( ∑
j,j′,ξ+ξ′ 6=0

aj,ξaj′,ξ′φj,ξφj′,ξ′Wξ ⊗Wξ′
)

=
1

2

∑
j,j′,ξ+ξ′ 6=0

aj,ξaj′,ξ′φj,ξφj′,ξ′ div
(
Wξ ⊗Wξ′ +Wξ′ ⊗Wξ

)
+

∑
j,j′,ξ+ξ′ 6=0

(
Wξ ⊗Wξ′

)
∇
(
aj,ξaj′,ξ′φj,ξφj′,ξ′

)
=

1

2

∑
j,j′,ξ+ξ′ 6=0

aj,ξaj′,ξ′φj,ξφj′,ξ′∇
(
Wξ ·Wξ′

)
+

∑
j,j′,ξ+ξ′ 6=0

(
Wξ ⊗Wξ′

)
∇
(
aj,ξaj′,ξ′φj,ξφj′,ξ′

)
= div(Rosc) +∇posc,
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where we set

Rosc := R
((

Wξ ⊗Wξ′ −
Wξ ·Wξ′

2
Id

)
∇
(
aj,ξaj′,ξ′φj,ξφj′,ξ′

))
and

posc :=
1

2

∑
j,j′,ξ+ξ′ 6=0

aj,ξaj′,ξ′φj,ξφj′,ξ′
(
Wξ ·Wξ′

)
.

The final equality in the above chain of equalities in particularly uses the observation that

∑
j,j′,ξ+ξ′ 6=0

(
Wξ⊗Wξ′ −

Wξ ·Wξ′

2
Id

)
∇
(
aj,ξaj′,ξ′φj,ξφj′,ξ′

)
= div

(
w

(p)
q+1 ⊗ w

(p)
q+1 + R̊` −

1

2

∑
j,j′,ξ+ξ′ 6=0

(
w

(p)
q+1,j,ξ · w

(p)
q+1,j′,ξ′

)
Id

)
,

which yields divR(Rosc) = Rosc by Lemma 11.3.7. Note that Rosc(0) is deterministic and

Rosc is (Ft)t≥0-adapted and smooth.

Concerning the further terms of (11.59), we set

Rtra := R
(
[∂t + (v` + z`) · ∇]wq+1

)
,

Rcorr := w
(p)
q+1⊗̊w

(c)
q+1 + w

(c)
q+1⊗̊wq+1,

RNash := R
(
[wq+1 · ∇](v` + z`)

)
,

Rdiss := R
(
(−∆)αwq+1

)
,

Rz := vq+1⊗̊(z − z`) + (z − z`)⊗̊vq+1 + z⊗̊z − z`⊗̊z`,

and pcorr := 1
3

(
2w

(c)
q+1 · w

(p)
q+1 + |w(c)

q+1|2
)

and pz := 1
3

(
2vq+1 · (z − z`) + |z|2 − |z`|2

)
. In view

of (11.59), now define

R̊q+1 := Rtra +Rosc +Rcorr +RNash +Rdiss +Rz +Rcom (11.60)

and

pq+1 := p` − posc − pcorr − pz.

Clearly, R̊q+1 is trace-free. Moreover, inspecting each stress term defined above, it

follows that R̊q+1(0) is deterministic and that R̊q+1 is (Ft)t≥0-adapted. Since all terms in

the definition of R̊q+1 but z are smooth and since z has a version in C0
TL,x

, we conclude

that R̊q+1 maps to C0
(
[0, TL] × T3,R3×3

)
. Moreover, by definition of TL, we note that

R̊q+1 has bounded weak first order spatial derivatives.

11.3.8 Estimates for R̊q+1

We proceed to the proof of (A.3) for R̊q+1 by considering the summands in the definition

(11.60) of R̊q+1 separately. We make repeated use of the following stationary phase lemma,

which allows to estimate R(F ) in C0 (even in the Hölder spaces Cε) for F (x) = a(x)eiλξ·x

in terms of the amplitude a and the high frequency term λ, yielding negative powers of λ

on the right-hand side of the estimate, which are comparably smaller than the derivative
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terms of the amplitude, hence implying sufficiently precise estimates for the verification of

(A.3). For the proof of this result, we refer to [50, Prop.G.1].

Lemma 11.3.8 (Stationary phase estimates). Let ξ ∈ S2 and λ ∈ N be fixed. For a smooth

vector field a ∈ C∞, let F (x) := a(x)eiλξ·x. Then, we have for any ε ∈ (0, 1) and N ∈ N

‖R(F )‖Cε .
‖a‖C0

λ1−ε +
[a]CN

λN−ε
+

[a]CN+ε

λN
,

where the implicit constant depends only on ε and N .

However, the first estimates needed for (A.3) do not require an application of the

preceding lemma, but follow by the previously obtained estimates on wq+1, z, the length

scale hierarchies (11.27) and Lemma 11.3.1 as follows. Let t ∈ [0, TL].

Estimate on Rz. By the respective mollification estimate of Lemma 11.3.1, the defini-

tion of TL, (11.19) and (11.29), we obtain, choosing a sufficiently large in terms of cR and

L,

||Rz||C0
t,x
≤
(
2||vq+1||C0

t,x
+ ||z||C0

t,x
+ ||z`||C0

t,x

)
||z − z`||C0

t,x
.M(t)`1/2−2δ �M(t)δq+2cR.

(11.61)

Estimate on Rcorr. By (11.57)-(11.58) and (11.36), we obtain

||Rcorr||C0
t,x
≤ ||w(p)

q+1||C0
t,x
||w(c)

q+1||C0
t,x

+ ||wq+1||C0
t,x
||w(c)

q+1||C0
t,x

.M(t)δq+1 ·
(

1

`λq+1
+ ||DΦj − Id ||C0

suppχj,x

)
�M(t)δq+2cR, (11.62)

where we have used (11.27) and (11.28), and possibly increased a in terms of cR.

Estimate on Rcom. By definition of TL, the mollification lemma 11.3.1 and (11.19), we have

||Rcom||C0
t,x

. `||vq + z||C0
t,x

(
||vq||C1

t,x
+ ||z||

L∞t W
1,∞
x

)
+ `1/2−2δ||vq + z||C0

t,x

(
||vq||C1

t,x
+ ||z||

C
1/2−2δ
t L∞x

)
. `1/2−2δ

(
2M(t)1/2 + L1/4

)(
2CLM(t)1/2δ1/2

q λq + L1/2
)

. `1/2−2δCLM(t)δ1/2
q λq �M(t)δq+2cR, (11.63)

where we used (11.29) for the final inequality for a sufficiently large in terms of cR.

For the remaining estimates, we use the stationary phase lemma 11.3.8.

Estimate on Rtra +RNash. Setting Dt := ∂t + (v` + z`) · ∇, and using that the phase Φj is

transported along v` + z`, we write

[∂t + (v` + z`) · ∇]wq+1 + [wq+1 · ∇](v` + z`) =
∑
j,ξ

(
DtLj,ξ + [Lj,ξ · ∇](v` + z`)

)
φj,ξe

iλq+1ξ·x

=:
∑
j,ξ

Ωj,ξe
iλq+1ξ·x.
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We then employ (11.49), (11.53), (11.22), (11.28) and Lemma 11.3.1 to estimate

‖Ωj,ξ‖C0
t,x
≤ ‖DtLj,ξ‖C0

t,x
+ ‖Lj,ξ‖C0

t,x
‖v` + z`‖C0

t C
1
x

.M(t)1/2δ
1/2
q+1

(
M(t)1/2`−1 + ‖v` + z`‖C0

t C
1
x

)
.M(t)δ

1/2
q+1`

−1 ≤M(t)δ
1/2
q+1λ

1−β
q+1 .

Similarly, we get, taking into account also derivatives of the phase function φj,ξ, via the

product rule (D.2) and (11.50)

‖Ωj,ξ‖C0
t C

N
x

. ‖DtLj,ξ‖C0
t C

N
x

+ ‖Lj,ξ‖C0
t C

N
x
‖v` + z`‖C0

t C
1
x

+ ‖Lj,ξ‖C0
t,x
‖v` + z`‖C0

t C
N+1
x

+
(
‖DtLj,ξ‖C0

t,x
+ ‖Lj,ξ‖C0

t,x
‖v` + z`‖C0

t C
1
x

)
‖φj,ξ‖C0

suppχj
CNx

.M(t)1/2δ
1/2
q+1`

−N
(
M(t)1/2`−1 + ‖v` + z`‖C0

t C
1
x

)
+M(t)δ

1/2
q+1`

−1λ
N(1−β)
q+1

.M(t)δ
1/2
q+1

(
`−(N+1) + `−1λ

N(1−β)
q+1

)
.M(t)δ

1/2
q+1λ

(N+1)(1−β)
q+1 .

It is readily seen by interpolation that the preceding estimate also holds when N is replaced

by N + ε for ε ∈ (0, 1) at all places. With these preparations, and recalling that for

each t ∈ [0, TL] at most 2|Λ| many terms in the sum
∑

j,ξ Ωj,ξe
iλq+1ξ·x are nontrivial, an

application of the stationary phase lemma 11.3.8 yields, using the above estimates on Ωj,ξ,

‖Rtra +RNash‖C0
t C

0
x

=
∥∥∥∑
j,ξ

R
(

Ωj,ξe
iξ·x
)∥∥∥

C0
t,x

≤
∑
j,ξ

∥∥∥R(Ωj,ξe
iξ·x
)∥∥∥

C0
t C

ε
x

.
∑
j,ξ

(‖Ωj,ξ‖C0
t,x

λ1−ε
q+1

+
‖Ωj,ξ‖C0

t C
N0
x

λN0−ε
q+1

+
‖Ωj,ξ‖C0

t C
N0+ε
x

λN0
q+1

)
.M(t)δ

1/2
q+1

(
λε−βq+1 + λ

(N0+1)(1−β)−N0+ε
q+1 + λ

(N0+1+ε)(1−β)−N0

q+1

)
≤M(t)δ

1/2
q+1

(
λε−βq+1 + 2λ1−βN0−β+ε

q+1

)
�M(t)δq+2cR, (11.64)

where the final inequality is equivalent to the following two conditions up to a sufficiently

large choice of a.

(ε− β)b2c− 1

2
b+ b2 = b

[
((ε− β)c+ 1)b− 1

2

]
< 0,

(1− βN0 + ε)b2c− βb2c− 1

2
b+ b2 = b

(
b [(1− βN0 + ε)c− βc+ 1]− 1

2

)
< 0.

These conditions are fulfilled, since by the choice of ε, c and N0 in Subsection 11.3.1, it

follows that (ε− β)c < −1 and (1− βN0 + ε)c+ 1 ≤ 1− βc < −1. Hence, (11.64) holds.

Estimate on Rosc. We set fj,ξ,j′,ξ′ := ∇
(
aj,ξaj′,ξ′φj,ξφj′,ξ′

)
. Then, we have by (11.49),

(11.50) and (11.27) for N ≥ 0

‖fj,ξ,j′,ξ′‖C0
t C

N
x

. ‖aj,ξ‖C0
t C

N
x
‖aj,ξ‖C0

t,x
+ ‖aj,ξ‖2C0

t,x
‖φj,ξ‖C0

suppχj
CNx

.M(t)δq+1λ
(1−β)N
q+1 .
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The stationary phase lemma 11.3.8 then yields

‖Rosc‖C0
t,x

.
‖fj,ξ,j′,ξ′‖C0

t,x

λ1−ε
q+1

+
‖fj,ξ,j′,ξ′‖C0

t C
N0
x

λN0−ε
q+1

+
‖fj,ξ,j′,ξ′‖C0

t C
N0+ε
x

λN0
q+1

.M(t)δq+1

(
λε−βq+1 + λ1−βN0−β+ε

q+1

)
� cRM(t)δq+2, (11.65)

by the same argument and assumptions as for the previous stress terms.

Estimate on Rdiss. Following the argument of [70], we use the commutativity of (−∆)α and

R, apply Schauder estimates, cf. [70, Thm.B.1], and interpolation to estimate

‖Rdiss‖C0
t,x

= ‖(−∆)αRwq+1‖C0
t,x
≤ C(ε)[Rwq+1]C0

t C
2α+ε
x

. ‖Rwq+1‖1−2α−ε
C0
t,x

‖Rwq+1‖2α+ε
C0
t C

1
x
.

By definition, we have wq+1 =
∑

j,ξ Lj,ξφj,ξe
iλq+1ξ·x =:

∑
j,ξ Oj,ξe

iλq+1ξ·x. By (D.2), (11.49),

(11.50) and (11.27), we have for N ∈ N0

‖Oj,ξ‖C0
t C

N
x

. ‖Lj,ξ‖C0
t C

N
x

+ ‖Lj,ξ‖C0
t,x
‖φj,ξ‖C0

suppχj
CNx

.M(t)1/2δ
1/2
q+1λ

(1−β)N
q+1 .

As already mentioned in the calculation for the term Rtra +RNash, this estimate generalizes

to values N + ε, ε ∈ (0, 1), in place of N . By the stationary phase lemma, we find

‖Rwq+1‖C0
t,x

.
∑
j,ξ

(‖Oj,ξ‖C0
t,x

λ1−ε
q+1

+
‖Oj,ξ‖C0

t C
N0
x

λN0−ε
q+1

+
‖Oj,ξ‖C0

t C
N0+ε
x

λN0
q+1

)
.M(t)1/2δ

1/2
q+1

(
λε−1
q+1 + λ−βN0+ε

q+1

)
.M(t)1/2δ

1/2
q+1λ

ε−1
q+1,

since βN0 > 1. Similarly, we can estimate

[Rwq+1]C0
t C

1
x

= ‖RDwq+1‖C0
t,x

.
∑
j,ξ

(‖DOj,ξ‖C0
t,x

λ1−ε
q+1

+
‖DOj,ξ‖C0

t C
N0
x

λN0−ε
q+1

+
‖DOj,ξ‖C0

t C
N0+ε
x

λN0
q+1

)
.M(t)1/2δ

1/2
q+1λ

ε
q+1

(
λ−βq+1 + λ1−βN0−β

q+1

)
.M(t)1/2δ

1/2
q+1λ

ε
q+1.

Both estimates put together imply

‖Rdiss‖C0
t,x

. ‖Rwq+1‖1−2α−ε
C0
t,x

‖Rwq+1‖2α+ε
C0
t C

1
x
.M(t)1/2δ

1/2
q+1λ

2α+2ε−1
q+1 �M(t)δq+2cR,

(11.66)

if we choose a sufficiently large and if we have the relation

(2α+ 2ε− 1)c+ 1 < 0,

which holds by our choice of ε < 1
4 −

α
2 and c > 1

1/2−α .

Finally, combining (11.61)-(11.66), we obtain (A.3) at stage q + 1, which completes the

verification of the inductive estimates (A.1)-(A.3) at stage q + 1.
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11.3.9 Conclusion of the proof

Summarizing, for fixed L ∈ N as in the assertion of Proposition 11.2.2, we have proven

the following. If q ∈ N0 and for some number a2 ≥ a1(L) > 1 as mentioned in the beginning

of the present section, for arbitrary large a ≥ a2, and b and c as in (11.24) and (11.26),

there exist triples (v0, p0, R̊0) to (vq, pq, R̊q) as in the assertion subject to this a, b and c,

then for arbitrary large a ≥ a∗ ≥ a2 and the same b and c as before, there exists a further

triple (vq+1, pq+1, R̊q+1) as in the assertion such that (A.1)− (A.3) are fulfilled subject to

this a, b and c at stage q + 1. Here, a∗ is the maximum of all lower bounds we imposed on

the value of a along the above proof and a needs to be chosen as a multiple of the geometric

number n0 of Subsection 11.3.4. Since each of these lower bounds only depends on the

fixed, q-independent parameters b, c, β, δ, ε,N0, α and on finitely many implicit absolute

constants, a∗ may be chosen independent of q. Therefore, starting the above iteration with

q = 0, a∗ = a2 and b, c as in (11.24) and (11.26), the assertion of Proposition 11.2.2 follows

with a0 = a∗.

This concludes the proof of the main iteration proposition 11.2.2 and hence the entire

objective of this section.

Appendix C

Regularity for the stochastic linear

equation

Here, we provide the necessary a priori estimates for the solution to the linear part

(SLα) of HNSEsto on the fixed probability space (Ω,F , (Ft)t≥0,P, B) as in Chapter 10, i.e.

our objective is to prove Proposition 10.2.4.

For the remainder of this appendix, for 0 < α < 1/2, we abbreviate the L2
σ-based

fractional Stokes-Laplacian
(
P(−∆)α,D(P(−∆)α)

)
by A = Aα with domain D(Aα) = H2α.

The following lemma collects important properties for the semigroup Sα(t) generated by

Aα. For the convenience of the reader, we include a simple proof.

Lemma C.0.1. Let (Sα(t))t≥0 be the semigroup of linear operators in L(L2) generated by

Aα = P(−∆)α. Then, (Sα(t))t≥0 is an analytic, strongly continuous contraction semigroup.

In particular, we have the estimates

‖Sα(t)‖L(L2
σ) ≤ 1, t ≥ 0,

‖AγαSα(t)‖L(L2
σ) = ‖(−∆)αγSα(t)‖L(L2

σ) ≤ CT,γ(t−γ + 1), ∀γ > 0, t ∈ (0, T ], T > 0,

(C.1)
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for CT,γ > 0.

Proof. Since the operator Aα has the explicit Fourier series representation

Aαu(x) =
∑
k∈Z3

|k|2αûkeik·x,

we infer the corresponding Fourier series representation of the semigroup as

Sα(t)u(x) := etAu(x) :=
∑
k∈Z3

e−|k|
2αtûke

ik·x, u ∈ L2
σ.

That this is a strongly continuous semigroup can easily be checked. Furthermore, we have

the following simple contraction bound, using Parseval’s identity (9.2) and estimating the

exponential by 1

‖Sα(t)u‖2L2 =
∑
k∈Z3

e−2|k|2αt|ûk|2 ≤
∑
k∈Z3

|ûk|2 = ‖u‖2L2 =⇒ ‖Sα(t)‖L(L2) ≤ 1.

We are left to prove the analyticity. To this end, let t > 0 and consider the t-derivative of

t 7→ Sα(t). We find

S′α(t)u(x) =
∑
k∈Z3

−|k|2αe−|k|2αtûkeik·x = −1

t

∑
k∈Z3

t|k|2αe−|k|2αtûkeik·x.

This implies, using again (9.2), and since the function z 7→ z2e−2z has global maximum

e−2 on R+, that

‖S′α(t)u‖2L2 =
1

t2

∑
k∈Z3

t2|k|4αe−2|k|2αt|ûk|2 ≤
1

t2
e−2‖u‖2L2 =⇒ ‖S′α(t)‖L(L2) ≤

1

t
e−2.

From here, the assertion follows from [167, Prop.2.1.9] with M0 = 1, M1 = e−2 and

ω = 0.

We can now turn to the main objective of this appendix, which is the following regularity

result for the unique analytically weak solution z to the linear stochastic equation (SLα).

Proposition C.0.2. Assume that the regularity assumption (8.15) for G holds, i.e. for

some σ > 0, we have

Tr [Aρ0α GG
∗] = Tr

[
(−∆)−ρ0αGG∗

]
<∞

for ρ0 = 5+2σ−2α
2α . Then, for sufficiently small δ > 0, we have for any T > 0

E
[
‖z‖

CTH
5+σ
2

+ ‖z‖
C

1
2−2δ

T H
3+σ
2

]
<∞. (C.2)

Proof. The proof proceeds in a similar fashion to that of [90, Prop.34, p. 83]. We use the

factorization method (cf. [83, Section 5.3.1]) to write, for suitable θ ∈ (0, 1),

z(t) =

ˆ t

0
(t− s)θ−1Sα(t− s)Yθ(s)ds, P− a.s.



183

for each t ≥ 0, where (s, ω) 7→ Yθ(s) is a measurable version of

(s, ω) 7→ sin(πθ)

π

(ˆ s

0
(s− r)−θSα(s− r)GdW (r)

)
(ω).

Define

j(ρ) =


ρ0
2 , ρ = 5+σ

4α

ρ, ρ = 3+σ
4α

0, ρ = 0

and fix T > 0. We first prove that for suitable θ and any k ∈ N, ψ = AραYθ is in

L2k
(
Ω× [0, T ], L2

)
for any of the three choices for ρ above. Since Yθ is Gaussian, we can

estimate its higher moments by the second moment. Combining this with Itô’s isometry

and the estimate (C.1), we find, denoting by C = C(k, γ, T, θ) > 0 a constant possibly

changing form line to line,

E
[
|AραYθ(s)|2kL2

]
≤ ck

(
E
[
|AραYθ(s)|2L2

])k
= ck

(ˆ s

0
(s− r)−2θ|AραSα(s− r)G|2L2

dr

)k
≤ ck‖Aj(ρ)

α G‖2kL2

(ˆ s

0
(s− r)−2θ‖Aρ−j(ρ)

α Sα(s− r)‖2L(L2)dr

)k
≤ ck,γ‖Aj(ρ)

α G‖2kL2

(ˆ s

0
(s− r)−2(θ+ρ−j(ρ)) + (s− r)−2θdr

)k
.

The first factor is finite in all three cases, since ‖A
ρ0
2
α G‖2L2

= Tr [Aρ0α GG∗] < ∞ by the

regularity assumption (8.15). For the integral terms to be finite, in any of the three cases

it is necessary and sufficient to choose

θ < min

(
1

2
,
1

2
− ρ+ j(ρ)

)
.

Note that the range of suitable 0 < θ < min
(

1
2 ,

1
2−ρ+j(ρ)

)
is nonempty in each case, since

by definition ρ− j(ρ) < 1/2. By Fubini’s theorem, this readily implies AραYθ ∈ L2k
(
Ω×

[0, T ], L2
)

for any k ∈ N, for θ independent of k, and thereby also Yθ ∈ L2k(Ω×[0, T ],D(Aρα)).

In particular, we infer Yθ ∈ L2k([0, T ],D(Aρα)) P-a.s. for each of the three cases for ρ

mentioned above. Following [82], for θ > 0 as above, we define the deterministic convolution

operator

Rθ,0(ψ) :=

ˆ t

0
(t− s)θ−1Sα(t− s)ψ(s)ds, ψ ∈ L2k(0, T, L2).

We note that z(t) = Rθ,0(Yθ)(t) and Aραz(t) = Rθ,0(AραYθ)(t) P-a.s. for each t ≥ 0. By [82,

Prop.A.1.1], for any δ ∈ (0, θ − 1
2k ), Rθ,0 is a bounded linear operator

Rθ,0 : L2k([0, T ], L2)→ Cδ([0, T ], L2).
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From here, it already follows that z as well as Aραz have a Hölder-continuous version in L2
σ

for each choice for ρ as above. Moreover, since 5+σ
4α −

ρ0
2 = 1

2 −
σ
4α , in view of the above

restriction for δ, we can estimate for 0 < δ < min{1
2 ,

σ
4α} −

1
2k and k sufficiently large:

E
[
‖z‖

CTH
5+σ
2

]
≤ CσE

[
‖z‖CTL2 + ‖A

5+σ
4α
α z‖CTL2

]
≤ CσE

[
‖z‖CδTL2 + ‖A

5+σ
4α
α z‖CδTL2

]
≤ Cσ,kE

[
‖Yθ‖L2k(0,T,L2)

]
+ Cσ,kE

[
‖A

5+σ
4α
α Yθ‖L2k(0,T,L2)

]
<∞.

In a similar way we find for any δ > 0 with 0 < 1
2 − 2δ < 1

2 −
1
k for sufficiently large k > 2:

E
[
‖z‖

C
1
2−2δ

T H
3+σ
2

]
≤ CσE

[
‖z‖

C
1
2−2δ

T L2
+ ‖A

3+σ
4α
α z‖

C
1
2−2δ

T L2

]
≤ Cσ,kE

[
‖Y ‖L2k(0,T,L2)

]
+ Cσ,kE

[
‖A

3+σ
4α
α Y ‖L2k(0,T,L2)

]
<∞.
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Appendix D

Collected results

We list several well-known results, which we use throughout the thesis.

Product and chain rule. Let n,m ∈ N, E ⊆ Rm, and u : Rn → E and g : E → R be

smooth. Then, for every N ∈ N, there is a constant C only depending on n,m,N such that

[g ◦ u]CN ≤ C
(
[g]C1 [u]Cm + ||∇g||CN−1 [u]NC1

)
. (D.1)

Moreover, for smooth functions f, g : Rn → R and N ∈ N, there is a constant C, only

depending on n,N such that

[fg]CN ≤ C
(
[f ]CN ||g||C0 + ||f ||C0 [g]CN

)
. (D.2)

Theorem D.0.1 (Skorohod representation, Thm.6.7 [28]). Let Pn, n ≥ 1, and P be

probability measures on the Borel σ-algebra of a metric space S. If Pn −→
n→∞

P weakly and P

has separable support, then there exists a probability space (Ω,F ,P) and S-valued random

variables Xn, n ≥ 1, and X such that

(i) Pn = P ◦X−1
n and P = P ◦X−1.

(ii) Xn(ω) −→
n→∞

X(ω) for every ω ∈ Ω.

Theorem D.0.2 (Kolmogorov continuity criterion, Thm.3.23 [127]). Let X : R+×Ω→ S

be a stochastic process with values in a complete metric space (S, d) and assume there are

a, b > 0, and for any T > 0 some C = C(T ) > 0 such that

E[d(Xs, Xt)
a] ≤ C|t− s|1+b, 0 ≤ s, t ≤ T.

Then, X has a continuous version, which is a.s. locally Hölder continuous with any Hölder

exponent c ∈ (0, ba).

Theorem D.0.3 (Riesz-Markov-Kakutani representation theorem, Thm.2.14 [195]). Let

(X, τ) be a locally compact Hausdorff space. Then, for any positive, linear functional

I : Cc(X)→ R, there exists a unique Borel measure µ such that

I(f) =

ˆ
X
f(x)dµ(x), f ∈ Cc(X),
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and

||I||L(X,R) = µ(X).

Theorem D.0.4 (Stone-Weierstraß approximation, Thm.8.1 [75]). Let X be a compact

metric space and A a subalgebra of the space of continuous real functions C(X,R). If A
separates points in X (i.e. for each pair (x, y) ∈ X ×X such that x 6= y, there is f ∈ A
such that f(x) 6= f(y)) and contains the constant function 1, then A is dense in C(X,R)

with respect to uniform convergence on X.

Theorem D.0.5 (Kolmogorov extension theorem, Thm.2.4.3 [219]). Let A be some index

set and suppose for each a ∈ A, Xa is a metric space with Borel sigma algebra B(Xa).

Suppose µB is a Borel probability measure on the product Πb∈BXb for each finite B ⊆ A,

such that whenever C ⊆ B ⊆ A for for finite subsets C,B, we have

µC = µB ◦ (PBC )−1,

where PBC denotes the canonical projection from Πb∈BXb to Πc∈CXc. Then, there exists

a unique Borel probability measure µ on Πa∈A such that µ ◦ (PAB )−1 = µB for all finite

B ⊆ A.

Appendix E

Measurable selections

Here, we present basics on measurable selections in a concise manner. The contents of

this appendix are taken from [215, Sect.12.1].

Let (X, d) be a separable metric space and denote by comp(X) the space of all nonempty

compact subsets of X. For K ∈ comp(X) and ε > 0 let Kε := {x ∈ X : dist(K,x) < ε}. It

is readily seen that the Hausdorff distance dH ,

dH(K,J) := inf{ε > 0 : K ⊆ Jε and J ⊆ Kε}, K, J ∈ comp(X),

is a metric on comp(X). If x, y ∈ X, then

dH({x}, {y}) = d(x, y),

i.e. X is isometrically embedded in comp(X).

Lemma E.0.1. Let f : X → R be upper semicontinuous, set fK := supx∈K f(x) for

K ∈ comp(X) and define F : comp(X)→ comp(X) by

F : K 7→ {x ∈ K : f(x) = fK}.
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Then, the maps K 7→ fK and K 7→ F (K) are Borel maps from comp(X) to R and comp(X),

respectively.

Lemma E.0.2. Let Y be a further metric space and y 7→ Ky a map from Y to comp(X).

Suppose for any (yn)n∈N, y ∈ Y with yn −→ y as n → ∞ and for any xn ∈ Kyn, there

exists a limit point x of (xn)n∈N such that x ∈ Ky. Then, the map y 7→ Ky is Borel

measurable with respect to the metric topologies on Y and comp(X).

Lemma E.0.3. Let (E,F) be a measurable space and q 7→ Kq a measurable map from E

to comp(X). Then, there is a F/B(X)-measurable map h : E → X such that h(q) ∈ Kq

for every q ∈ E.

Appendix F

Basics of differential geometry

We review the basic concepts of differential geometry, which are used for the description

of the formal manifold-approach to equations (NLFPK) and (SNLFPK) in Part II, as

well as for Nash’s C1 isometric embedding theorem as the geometric origin of the convex

integration methods used in Part III. The presented material is absolutely standard. For

a thorough introduction to the field of differential geometry and topology, we refer for

example to the classical texts [158, 157, 210, 226, 42, 125].

Manifolds and (co)tangent spaces. Let M be a smooth d-dimensional manifold, i.e.

a second-countable topological space (M, τ) such that there exists a countable collection of

charts (Ui, ϕi), i ≥ 1, consisting of open sets Ui ∈ τ and homeomorphisms ϕi : Ui → Rd,
such that {Ui, i ≥ 1} covers M and the coordinate changes ϕi◦ϕ−1

j are smooth on ϕj(Ui∩Uj)
whenever Ui ∩Uj is nonempty. Such a collection is called a smooth atlas. For k ∈ N∪{∞},
the space Ck(M) consists of all function f : M → R∞ such that f ◦ ϕ−1

i : ϕi(Ui)→ R is k

times continuously differentiable.

At each point x ∈M , the tangent space TxM is the linear space of R-differentiations at x,

that is TxM consists of linear maps ξ : C∞(M)→ R such that ξ(fg) = ξ(f)g(x) + f(x)ξ(g)

for each f, g ∈ C∞(M). Examples are the directional derivatives at x, ∂
∂xi |x

, which in

local coordinates (Ui, ϕi) with x ∈ Ui take the form ∂
∂xi |x

(f) = ∂i(f ◦ ϕ−1
i )(ϕi(x)). In fact,

{ ∂
∂xi |x

, i ≤ d} is a basis of TxM . Thus, TxM is d-dimensional and for each ξ ∈ TxM , in

local coordinates, we have ξ =
∑

1≤i≤d
∂
∂xi |x

ξi for unique ξi ∈ R. Intuitively, one thinks of

ξ ∈ TxM as the direction (ξi)1≤i≤d ∈ Rd at the point x, and of ξ(f) =
∑

1≤i≤d ξi
∂
∂xi |x

f as

the derivative of f in direction ξ at x. Equivalently, TxM can be defined as the space of
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tangential directions at x of curves passing through x. More precisely, for a chart (Ui, ϕi)

with x ∈ Ui, let γ : (−1, 1) → M be such that ϕi ◦ γ is smooth and γ(0) = x. Then,

TxM may be considered as the space of equivalence classes of such curves subject to the

equivalence relation γ1 ∼ γ2 : ⇐⇒ ( ddt [ϕi ◦ γ1])(0) = ( ddt [ϕi ◦ γ2])(0). The equivalence

class TxM of a curve γ is denoted by γ′(0). This definition is independent of the choice of

(Ui, ϕi). In the case M = Rd, one has TxM = Rd for each x ∈ Rd.
As any linear space, TxM possesses a dual space T ∗xM of same dimension d, i.e. the

space of all linear, continuous real functions on TxM . Elements in T ∗xM are called cotangent

vectors. For f ∈ C∞(M), the differential of f (at x) dfx : TxM → R, dfx(ξ) := ξ(f) is a

cotangent vector. In local coordinates, the dual basis of T ∗xM with respect to { ∂
∂xi |x

, i ≤ d}
consists of the differentials dxi, i ≤ d, of the coordinate maps xi ∈ C∞(M), xi(x) := ϕ(x)i.

Riemannian metric, curve lengths, gradient, connections and Hessian. If g =

{g(x)}x∈M is a metric tensor on M , i.e. for each x ∈M , g(x) is a scalar product on TxM

such that
(
TxM, g(x)

)
is a Hilbert space, (M, g) is called Riemannian manifold. In local

coordinates, g can be written as g(x) = gij(x)dxi ⊗ dxj with gij(x) ∈ R, using Einstein

summation convention for i, j ≤ d. An example is the usual Euclidean metric tensor e on

Rd, in local coordinates e = δijdxi ⊗ dxj .
If γ : [0, 1]→M is a smooth curve, the metric tensor g and the derivative t 7→ γ′(t) ∈

Tγ(t)M allow to measure the length of γ as `g(γ) :=
´ 1

0 |γ
′(t)|g(γ(t))dt. It is clear how this

notion generalizes to piecewise C1 curves on any time interval I.

Let f ∈ C∞(M). For df , as a section in the cotangent bundle T ∗M :=
⊔
x∈M T ∗xM :=⋃

x∈M{x} × T ∗xM , by Riesz isomorphism, there exists a unique section ∇f in the tangent

bundle TM :=
⊔
x∈M TxM :=

⋃
x∈M{x}×TxM such that dfx(ξ) = g(x)

(
∇f(x), ξ

)
for each

x ∈M and ξ ∈ TxM . ∇f is called gradient of f . In the case M = Rd, the gradient ∇ is

the usual first-order differential operator ∇f := (∂1f, . . . , ∂df).

For M = Rd, given smooth vector fields X,Y : Rd →
⊔
x∈Rd TxRd ∼= Rd with X =

(X1, . . . , Xd), one can calculate the infinitesimal change of X in direction Y at x as

(∇YX)(x) := (∂Y (x)X
1, . . . , ∂Y (x)X

d)(x), because the directions X(x), x ∈ Rd, can be

considered in the common linear space Rd. Here, ∂νf denotes the classical directional

derivative of a function f : Rd → R in direction ν ∈ Rd. In the general case of a Riemannian

manifold (M, g), elements of different tangent spaces cannot be compared directly to each

other, since
⋃
x∈M TxM is generally not a linear space. In order to generalize the notion of

the change of direction ∇YX of X in direction Y , one considers connections on M . An

affine connection on M is a map ∇ :
⊔
x∈M TxM ×

⊔
x∈M TxM →

⊔
x∈M TxM such that ∇

is bilinear and for any two vector fields X,Y on M (i.e.: smooth sections in
⊔
x∈M TxM),

and any f ∈ C∞(M), the following identities hold pointwise on M .

(i) f∇YX = ∇fYX,

(ii) ∇Y fX = f∇YX + df(Y )X.

For a Riemannian manifold (M, g), it turns out that there exists an affine connection ∇L,

which is naturally related to the metric tensor g in the following sense. For vector fields

X,Y, Z on M , considering x 7→ gx(X(x), Y (x)) as a smooth function on M , it holds

∂Zg(X,Y ) = g(∇ZX,Y ) + g(∇ZY,X),
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i.e. the geometry induced by g is compatible with the connection ∇L. If one also demands

such ∇L to be torsion-free (see, for example, [42]), then such a connection is unique and

called Levi-Civita connection. For the case (M, g) = (Rd, e), the Levi-Civita connection is

given via the usual gradient, i.e. ∇LYX = ∇YX : x 7→ (∇Y (x)X)(x) ∈ Rd.
From the Levi-Civita connection on (M, g), for f ∈ C∞(M), one defines the Hessian 0−2

tensor Hess f for smooth vector fields X,Y as Hess f(X,Y )(x) := 〈(∇LX∇f)(x), Y (x)〉g(x),

where ∇ denotes the gradient on (M, g). Intuitively, Hess f(X,Y )(x) measures the change

of the directional derivative of f along X in direction Y at x. In the case (M, g) = (Rd, e),
we have

Hess f(X,Y ) = 〈∇X∇f, Y 〉e =
∑

1≤i,j≤d
XiY j∂ijf = H(f)X · Y,

where H(f) = (∂ijf)1≤i,j≤d denotes the usual Hessian matrix of f : Rd → R.

Embeddings and pullback metric. Let (M, g) be a d-dimensional Riemannian mani-

fold and N ∈ N. For a map F = (F 1, . . . , FN ) with F i ∈ C∞(M), the differential at x ∈M
is the linear map dFx : TxM → TF (x)RN = RN , ξ 7→ dFx(ξ), with dFx(ξ) : C∞(RN )→ R
defined as dFx(ξ)(η) := ξ(η ◦F ). One says that dFx pushes the tangent space TxM through

to TF (x)RN . If dFx is one-to-one for each x ∈ M , F is an immersion. If, additionally,

F is a topological embedding, F is called embedding. While embeddings are one-to-one,

immersions are generally not. Clearly, the existence of an immersion F : M → RN implies

N ≥ d.

If M is a d-dimensional manifold (not necessarily Riemannian) and F : M → RN is

an embedding, F and the Euclidean metric e on RN induce a metric tensor on M , the

pullback metric F ]e. In local coordinates, the components of F ]e are given by ∂iF · ∂jF ,

i, j ≤ d. It is straightforward to show that for a smooth curve γ : [0, 1]→M , the identity

`F ]e(γ) = `e(F ◦ γ) for the curve length with respect to F ]e holds. In the case that M

carries a metric tensor g, one may compare curve lengths with respect to g and F ]e on M .

An embedding F : M → RN is (strictly) short, if

`F ]e(γ) ≤
(<)

`g(γ)

holds for all smooth curves γ on M . Similarly, F is an isometric embedding, provided

`F ]e(γ) = `g(γ) for all γ. In local coordinates, these relations transform to the pointwise

relations

∂iF · ∂jF ≤
(<)
(=)

gij , i, j ≤ d.

In these cases, one says that F (strictly) shrinks or preserves the length of curves on

M . Everything of the above passage remains valid when ”immersion” is replaced by

”embedding”.
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[2] S. Albeverio, Y. Kondratiev, and M. Röckner. Analysis and geometry on configuration

spaces. Journal of Functional Analysis, 154:444–500, 1998.
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[19] V. Barbu and M. Röckner. Uniqueness for nonlinear Fokker–Planck equations and

weak uniqueness for McKean–Vlasov SDEs. Stochastics and Partial Differential

Equations: Analysis and Computations, 2020.
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[46] D. Breit, E. Feireisl, and M. Hofmanová. Stochastically Forced Compressible Fluid

Flows. De Gruyter Series in Applied and Numerical Mathematics. De Gruyter,

February 2018.

[47] D. Breit, E. Feireisl, and M. Hofmanová. Markov selection for the stochastic
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[110] B. Goldys, M. Röckner, and X. Zhang. Martingale solutions and Markov selections for

stochastic partial differential equations. Stochastic Processes and their Applications,

119(5):1725–1764, 2009.

[111] F. Golse and L. Saint-Raymond. The Navier–Stokes limit of the Boltzmann equation

for bounded collision kernels. Inventiones mathematicae, 155(1):81–161, 2004.

[112] M. Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik

und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-

Verlag, Berlin, 1986.

[113] M. Gubinelli and M. Jara. Regularization by noise and stochastic Burgers equations.

Stochastic Partial Differential Equations: Analysis and Computations, 1(2):325–350,

2013.
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A, 268(4):298–305, 2000.

[156] N. Laskin. Fractional schrödinger equation. Phys. Rev. E, 66:056108, Nov 2002.

[157] J. M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

[158] J. M. Lee. Manifolds and Differential Geometry. American Mathematical Society,

2009.
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[166] W. Liu and M. Röckner. Stochastic partial differential equations: an introduction.

Universitext. Springer, Cham, 2015.

[167] A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems.
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