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Table 0.1.: List of abbreviations

AFM Atomic Force Microscope
BPT 1,1’-Biphenyl-4-thiol
CNM Carbon Nanomembrane
CVD Chemical Vapor Deposition
DMF N,N-dimethylformamide
HIM Helium Ion Microscopy
ODT 1-Octadecanethiol
PDMS Polydimethysiloxane
PMMA Polymethyl methacrylate
PVBP Polyvinylbiphenyl
SAM Self Assembled Monolayer
SPM Scanning Probe Microscopy
STIM Scanning Transmission Ion Microscopy
TPT 1,1’,4’,1”-Terphenyl-4-thiol
UHV Ultra High Vacuum
XPS X-ray Photoelectron Spectroscopy
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Table 0.2.: List of symbols

Pressure p

Force F

Membrane radius r

Membrane thinckness t

Deflection height h

Stress (general) σij
Normal stress σi := σii
Shear stress τij

Strain εij
Young’s modulus E

Initial tension σ0
2D Young’s modulus E2D
2D initial tension σ0

2D
Poisson’s ratio ν

Bulge Test constants C1, C2
Hencky’s constant K(ν) = C2/(1− ν)

Reformulated pressure k = 1
4
(
Ep2(r/t)2)1/3

Dimensionless loading parameter q = pr/(Et)
Dimensionless force F̃ = E1/2F/

(
σ

3/2
0 tr

)
Dimensionless deflection δ̃ = h/r · (E/σ0)1/2

Indenter radius rindenter
Relative indenter size ρin = rindenter/r

Nanoindentation prefactor α(ν) = 0.867 + 0.2773ν + 0.805ν2

Tip correction factor αtip =
(
1− ρ2/3

in

)−3
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1. Introduction

The discovery of graphene [1] by K. S. Novoselov and A. K. Geim in 2004 caused
a great interest in the relatively new area of 2D materials, i.e. materials which
consist of only one molecular layer. By now, a variety of different 2D materials
can be routinely fabricated, for example hexagonal boron nitride (hBN) [2]
or carbon nanomembranes (CNMs) [3]. Each of these materials possesses an
individual structure and therefore exhibits unique properties. However, the
most remarkable property of all these materials is the high stability despite
the thickness of only one molecular layer. This enables their use in many
possible applications such as filtration processes [4, 5] or capacitors [6, 7].

The existence of these new 2D materials raises the question of their mechani-
cal properties and in particular their elastic properties [8]. These characteristics
are crucial for the understanding of the material but also for applications for
example in the construction of devices. The most prominent elastic property
of a material is its Young’s modulus. It describes the relationship of stress and
strain within the material and has a broad range of applications. For exam-
ple, the knowledge of the Young’s modulus is needed to calculate how much
an antenna or a membrane bends when exposed to an outer force. Therefore,
the determination of the Young’s modulus is a very important task. However,
it is not easy to conduct experiments which precisely determine the Young’s
modulus. This is even more challenging when it comes to 2D materials such
as CNMs or graphene since they cannot easily be stretched or compressed.
Nevertheless, by now there are well known techniques to investigate the elastic
properties of 2D materials.
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1. Introduction

This thesis is dedicated to the determination of the elastic properties of
various kinds of CNMs with two of these methods, Bulge Test [9] and nanoin-
dentation [10]. The focus of the work is twofold. On the one hand, the Young’s
modulus of the CNMs and its dependence on their different properties are of
interest. On the other hand, the two methods, Bulge Test and nanoindentation,
shall be objects of research as well. This applies to their theoretical description
as well as their experimental conduction.
The thesis divided into two main parts. After a brief introduction of CNMs,

the theoretical part of the thesis in chapter 3 covers the mathematical descrip-
tion of Bulge Test and nanoindentation. An analytic model of the Bulge Test
is derived which is based on works of H. Hencky [11] and R. J. Hohlfelder [12]
and the accuracy of the model is estimated. The nanoindentation experiment
is described following D. Vella and B. Davidovitch [13]. The accuracy of the
model under the conditions of the experiments in the present work is estimated.
The experimental part of the thesis covers the conduction and the results of

the experiments. In chapter 5, a procedure how Bulge Test and nanoindetation
can be executed consecutively in one experiment is described. This approach
allows to gather and to compare the results of both experiments in a time-
saving manner. Since the determination of the elastic properties of a material
has to deal with significant uncertainties, the comparison of the two different
methods provides valuable additional information. In chapter 6, the results
of the experiments are presented. Different kinds of CNMs were investigated,
for instance the new materials ODT and PVBP as well as nanocrystalline
graphene.
The conclusions of the thesis are given in chapter 7.
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2. Carbon Nanomembranes (CNMs)

2.1. Self Assembled Monolayers (SAMs)

Self-assembly is the spontaneous organization of individual molecules into a
highly ordered structure [14]. The molecules which form the SAM are called
precursor molecules, which consist of a ligand and a spacer. The chemical
properties of the SAM are defined by the terminal functional group. The SAM
is formed on the surface of a substrate, for instance a metal. The choice of the
substrate may influence the structure of the SAM. SAMs for the formation of
CNMs are usually grown on a gold substrate. The standard precursor molecules
are aromatic thiols, i.e. the spacer consists of phenyl rings and the ligand is
a sulfur atom since the Au-S binding energy is very high, approximately 50
kcal/mol [15]. SAMs are formed through adsorption on the substrate. This
adsorption may be either from solution or from gas phase. A schematic diagram
of an idealized SAM is shown in figure 2.1.

2.2. Electron Induced Cross Linking and CNMs

SAMs with aromatic precursor molecules can be cross-linked to form a con-
nected network by irradiation with low energy electrons (usually 100eV). This
effect was already utilized in 2000, when Gölzhäuser et al. reported that SAMs
from aromatic and aliphatic thiols can be used as a negative respectively pos-
itive electron beam resist [16]. The connected network is mechanically stable
and can be transferred onto a holey substrate in order to form a freestand-
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2. Carbon Nanomembranes (CNMs)

Figure 2.1.: Schematic diagram of an aliphatic SAM on Au(111) [15]. Reproduced with
permission.

ing membrane which is called Carbon Nanomembrane (CNM) [17, 18]. The
fabrication process of a CNM is schematically shown in figure 2.2.
CNMs can be formed from various precursor molecules [3]. Frequently used

precursor molecules are for instance 1,1’-Biphenyl-4-thiol (BPT) and 1,1’,4’,1”-
Terphenyl-4-thiol (TPT). The molecular structure of BPT and TPT is shown in

Figure 2.2.: Schematic diagram of the fabrication of a CNM [3]. Reproduced with permis-
sion.
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2.2. Electron Induced Cross Linking and CNMs

figure 2.3. The precursor molecule defines the properties of the CNM. Through
the choice of the functional end group, CNMs can be chemically functionalized
[19].

Figure 2.3.: Molecular structure of BPT and TPT. Carbon atoms are black, hydrogen atoms
are grey and sulfur is displayed in yellow [20]. Reproduced with permission.

CNMs have a high potential for possible applications. They can serve as a
molecular sieve for water and gas separation processes [4, 21, 22]. Moreover,
through annealing, CNMs can be transformed into nanocrystalline graphene
[23] which can be used for capacitors that exclusively consist of carbon [7].

More details about the properties of CNMs and their applications can be
found in the review papers by A. Turchanin and A. Gölzhäuser [3, 24].
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3. Theory of Bulge Test and
Nanoindentation

3.1. Elastic Testing of 2D Materials

There are various methods for the investigation of the elastic properties of
thin films. Some of these techniques require a supported membrane, for in-
stance the classical nanoindentation with a nanoindenter [25]. Others require
a freestanding membrane, for example the Bulge Test [26] or nanoindentation
on freestanding membranes which is sometimes referred to as point deflection
method [27]. When it comes to the examination of 2D materials, experiments
with a supported specimen face the difficulty that due to the molecular thin-
ness of the membrane, an interaction with the supporting substrate is hard to
avoid. Therefore, experiments on freestanding membranes are favorable.

A typical technique for the investigation of 2D materials is to subject the
membrane to a force that acts out-of-plane, i.e. perpendicular to the mem-
brane. This out-of-plane force leads to a vertical deflection of the freestanding
membrane which in turn causes an in-plane stretching of the membrane. This
technique is the working principle of Bulge Test as well as nanoindentation1.

In this chapter, the concepts of the mechanics of an elastic body which are
needed for the description of Bulge Test and nanoindentation are introduced.
Subsequently, the pressure-deflection relationship of the Bulge Test and the

1For the sake of brevity, nanoindentation on a freestanding membrane shall be referred to
as nanoindentation in the present work.
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3. Theory of Bulge Test and Nanoindentation

force deflection relationship of the nanoindentation experiment which are used
to evaluate the experiments in this work are derived.

3.2. Stress and Strain

The concepts of mechanical stress and strain play a very important role in
continuum mechanics. Stress is the measure of a force which applies to a cross
sectional area of an object. The notion of stress is used in two different con-
texts [28]. Firstly, it is used to describe an external load which deforms the
object. Such kind of force is usually referred to as a "Surface Force". Secondly,
it describes the internal forces which appear in an object as a reaction to an
external load, usually referred to as a "Body Force". The distribution of the
stress within the object does not need to be uniform [29]. For a general descrip-
tion of the stress, the object is imagined to be divided into infinitesimal volume
elements. Each of the volume elements has its own stress tensor, since each
surface of the volume element is subjected to its individual force. Therefore,
in its general form, stress is a tensor-valued function across the object. It is
usually denoted by the Greek letter σ and defined as

Figure 3.1.: Illustration of the stress in a three dimensional object [30]. Reproduced with
permission.
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3.2. Stress and Strain

σij = Fj
Ai
, (3.1)

where the indices i and j denote the spatial directions, as illustrated in figure
3.1. When i = j, the stress is called "normal stress". In the case of i 6= j, the
stress is called "shear stress". In order to distinguish the two kinds of stresses,
the shear stress is often denoted by the Greek letter γ instead of σ.

Since external stress causes the deformation of an object, it leads to strain.
Strain is the measure of the mechanical deformation. For an object which is
only deformed in one dimension, the strain ε is defined as

ε = ∆L
L
, (3.2)

where L is the length of the object and ∆L is the change in length due to the
deformation. For a general definition of the strain, the so-called displacement
field u(x) is needed.

u(x) = x′ − x, (3.3)

where x is the position of an arbitrary point of the object before the defor-
mation and x′ is the position of the same point in the deformed object. Like
stress, strain is a tensor-valued function, defined by

εij(x) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (3.4)

For i = j, the strain εii = ∂ui
∂xi

is called normal strain while for i 6= j, the
strain is called shear strain. The stress tensor as well as the strain tensor are
symmetric, i.e.

σij(x) = σji(x) and εij(x) = εji(x). (3.5)
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3. Theory of Bulge Test and Nanoindentation

In elastic deformations, the relationship between stress and strain is linear.
This relationship is called Hooke’s law. The slope of the stress versus strain
curve is a material property and is called Young’s modulus

E = σ

ε
. (3.6)

It shall be noted that the Young’s modulus is only defined for uniaxial
stresses. Furthermore, it is possible that a material which is not isotropic
has different Young’s moduli for different directions. Graphite for example has
a higher Young’s modulus parallel to its layers than perpendicular to the layers.
Since it relates stress and strain of an object, the Young’s modulus is a very
important material property.
When an object is stretched or compressed in x-direction, its size in y- and

z-direction is subjected to a change as well. This change is described by the
Poisson’s ratio ν which is defined as

ν = −εtransversal
εlateral

(3.7)

The Poisson’s ratio of isotropic materials can range from ν = −1 to ν = 0.5.
Rubbers exhibit a Poisson’s ratio of ν = 0.5 which implies that the material
is incompressible. Negative Poisson’s ratios seem counterintuitive, but have
been demonstrated in the case of foams [31]. The Poisson’s ratio of the most
common materials such as organics or metals is usually in the range of ν = 0.1
to ν = 0.5 [32, 33].

3.3. Bulge Test and Nanoindentation

In this work, the Young’s modulus of thin elastic films is determined indepen-
dently by Bulge Test and nanoindentation. In the Bulge Test, the membrane is
subjected to a pressure difference which causes a deflection of the membrane. In
the nanoindentation experiment, the membrane is deflected by a sharp tip, for

14



3.3. Bulge Test and Nanoindentation

example the tip of an atomic force microscope (AFM). AFM-nanoindentation
received a lot of attention when it was successfully employed for the experi-
mental determination of the Young’s modulus of graphene [34]. Since then,
it is the most frequently used method for the determination of the Young’s
modulus. A schematic diagram of Bulge Test and nanoindentation is shown in
figure 3.2.

Figure 3.2.: Schematic diagram of a Bulge Test experiment (left) and a nanoindentation
experiment (right).

Bulge Test as well as nanoindentation are too complex to be described en-
tirely analytically. Hence there are two ways of gaining theoretical knowledge
about these methods. Firstly, with simplifying assumptions which enable an
analytic solution and secondly, with the help of finite element simulations. The
advantage of the analytic solutions is that they give more insight into the be-
havior of the system and the influence of single parameters. Simulations on
the other hand are able to describe the system more accurately, provided that
the experiment is modeled exactly. For a good understanding of the Bulge
Test and the nanoindentation, it is therefore helpful to combine both methods
and to compare their results. In order to achieve the theoretical results, the
following assumptions are needed [35].

Firstly, the membrane is assumed to be homogeneous and isotropic in the
x-y-plane. Due to their amorphous state, this assumption is not exactly satis-
fied for CNMs. However, since the membranes examined in the present work
have a radius of several µm and the irregularities occur on a molecular scale,
the membrane can be treated as homogeneous. In the case of graphene, the
assumption is satisfied.

15



3. Theory of Bulge Test and Nanoindentation

Secondly, the strain in the pressurized membrane is assumed to be infinites-
imal. This assumption states that the physical properties of the membrane,
i.e. its Young’s modulus, Poisson’s ratio and density distribution remain un-
changed. However, this assumption is only needed for analytical theories. In
simulations, finite strains can be used which allows to quantify the impact of
this assumption, as it was done in [36] where the Bulge Test is simulated.

Furthermore, two different causes of stress occur when a membrane is de-
flected. One is the stress due to the bending of the membrane and the other is
the stress due to its stretching. The force or pressure which is needed to over-
come the bending stiffness is proportional to the third power of the thickness
t3 of the membrane while the force or pressure which is needed to stretch the
membrane is directly proportional to the thickness t. Therefore, depending on
the thickness of the membrane, usually one of the two contributions is dom-
inant. When the bending contribution can be neglected, samples are usually
referred to be in the so called membrane regime. When the stretching contri-
bution can be neglected, they are referred to be in the so called plate regime.
A detailed analysis of conditions under which membrane or plate regime are
applicable is provided in [37].

Since the materials which are examined in this work are all much thinner
than the deflection which was achieved during the Bulge Test or nanoinden-
tation experiment, the bending stress can be neglected. Therefore, the theory
developed for the membrane regime is applicable for all materials in this work.
Moreover, this work is focused on circular membranes. It shall be noted that
historically, most of Bulge Test experiments were performed on rectangular
membranes due to their easier fabrication. For the theoretical description of
Bulge Tests on rectangular membranes, it shall be referred to [38].

16



3.4. Bulge Test Theory

3.4. Bulge Test Theory

The Bulge Test technique was developed by J.W. Beams in 1959 [26]. For
the evaluation of the experiment, he gave a simple but very practical model.
Since the experimental uncertainties which occur in Bulge Test experiments are
much higher than the error that is induced due to the simple evaluation, this
model is sufficient for the evaluation of Bulge Test experiments. Therefore this
model is still used when it comes to the analysis of Bulge Tests performed on
circular membranes [9, 39, 40]. Nevertheless, it is of course desirable to describe
the behavior of a membrane subjected to a uniform pressure as accurately as
possible.

There are numerous descriptions of pressurized membranes under different
experimental conditions and by different methods, analytic2 as well as by finite
element simulations. The best available analytic model to describe Bulge Test
experiments was established by R. J. Hohlfelder in 1999 [12]. In this model, the
pressure-deflection relationship of a pressurized membrane is expressed as the
sum of two limiting cases, the limit of small and large deflections. Therefore,
this method shall be called the "sum of the limits approach"3. The advantage
of this method is that it allows a data analysis of Bulge Test experiments
which is as simple as the Beams’s equation but yet more precise. In order to
derive the sum of the limits equation, four assumptions are needed. The aim
of this section is to quantify the error which is caused by these assumptions.
To this end, the sum of the limits method is presented in detail. After that,
the impact of each assumption is quantified individually through comparison
to other works where this specific assumption is not needed. The total error of

2Strictly speaking, some of the analytically derived equations require a numerical determina-
tion of their roots. Hence, technically speaking, the theories are not analytic. However, in
this work, they shall be referred to as analytic methods in order to point out the contrast
to finite element simulations.

3This terminology is already common in the context of the nanoindentation experiment. In
the case of the Bulge Test, to the knowledge of the author, it has not been used so far.
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3. Theory of Bulge Test and Nanoindentation

the sum of the limits method is estimated by the sum of each individual error.
To conclude, the sum of the limits method is compared to other methods which
were used to evaluate Bulge Test experiments.

3.4.1. Overview of Common Descriptions of a Pressurized
Membrane

In a recent paper by J. B. Messaoud et al. [41], Bulge Test experiments were
evaluated through analysis with the five most common methods and taking the
average of these five results. All of these methods propose a pressure-deflection
relationship of the following form.

p(h) = C1
tσ0
r2 h+ C2

Et

(1− ν)r4h
3, (3.8)

where p is the pressure, h is the membrane deflection, r the membrane ra-
dius and σ0 the initial stress of the membrane. Moreover, the constant C1 is
determined to be C1 = 4 in all models. The difference of the five descriptions
lies in their methods and in the value of C2. A summary of these works is given
in table 3.1.

Table 3.1.: Summary of different Bulge Test models

Method C2
Beams [26] Equilibrium of forces 8/3

(simplified model)
Hohlfelder [12] Equilibrium of forces (8/3) · (1.015− 0.247ν)

Lin [42] Energy minimization (7− ν)/3
Small [43] Finite element simulation (8/3) · (1− 0.241ν)
Pan [44] Finite element simulation (8/3)/(1.026 + 0.233ν)

It can be seen that three different approaches were used, two analytic meth-
ods and finite element simulations.
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3.4. Bulge Test Theory

Energy minimization is a useful technique which takes advantage of the fact
that in equilibrium, the total energy stored in the system is at a minimum. The
total energy is composed of the strain energy and the work performed by the
applied pressure. In order to minimize the energy, certain assumptions about
the membrane geometry, i.e. the shape of the deflection function are made. For
example, the membrane may have a spherical cap geometry or a polynomial
shape of order k. The description of the shape includes a set of unknowns and
the energy is minimized with respect to these unknowns. A comprehensive
introduction into the principle of energy minimization methods can be found
in [45]. However, the assumptions about the shape of the deformed membrane
are somewhat arbitrary. Depending on the assumed shape different results
are obtained. Therefore, unless the exact shape of the deformed membrane is
known, there is some uncertainty in the results obtained by energy minimiza-
tion. For this reason, the present work shall be focused on the sum of the limits
approach, which is based on the equilibrium of forces. The equilibrium condi-
tions of an elastic body are derived in [35]. To this end, the body is divided
in infinitesimal spatial elements. In order to be at equilibrium, the net force
applied to every spatial element has to add to zero. This leads to the following
condition.

∂σx
∂x

+ ∂τyx
∂y

+ ∂τzx
∂z

+ Fx = 0

∂σy
∂y

+ ∂τzy
∂z

+ ∂τxy
∂x

+ Fy = 0 (3.9)

∂σz
∂z

+ ∂τxz
∂x

+ ∂τyz
∂y

+ Fz = 0

at every spatial element of the membrane, where Fi denotes the external
force applied to the element in direction i normalized by the volume of the
spatial element.
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3. Theory of Bulge Test and Nanoindentation

Besides the equilibrium conditions, only two more properties are needed.
Firstly Hooke’s law and secondly the kinematic conditions of the system, i.e.
its geometric properties and the boundary conditions. The general version of
Hooke’s law is

εij = 1
E

[(1 + ν)σij − νδij(σxx + σyy + σzz)] , (3.10)

where δij is the Kronecker Delta. From these principles the force-deflection
relationships are derived.

3.4.2. Small and Large Deflection Limit of a Uniformly Pressurized
Membrane

In Bulge Test experiments, the membrane is subjected to a uniform pressure
p. The pressure p(h) required to achieve a certain deflection h is based on two
contributions. Firstly, the membrane is deflected against the resistance of its
initial tension σ0, and secondly, the membrane is stretched. Both contribu-
tions describe a limit of conditions. The first contribution is achieved in the
limits of small deflections h → 0 or high initial stresses σ0 → ∞. The second
contribution is achieved in the limit of large deflections h → ∞ or at σ0 = 0.
The pressure-deflection relationships of the two limits are well known. Since
the two contributions to the pressure are relatively independent of each other,
it is natural to assume that the general case can be approximated by the sum
of both contributions. This is the sum of the limits approach.

The small deflection limit can be easily derived. For example, it is obtained
as a by product of Beams’s model. The large deflections limit, i.e. σ0 = 0 is
main component needed to derive the sum of the limits equation. This problem
was solved by H. Hencky already in 1915 [11]. Both Beams’s and Hencky’s
solution shall be presented in the following. After that, in order to estimate
the accuracy of the sum of the limits equation, works by J. D. Campbell [46],
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W.B. Fichter [47] and R. Bouzidi et al. [36] are needed. Together, they give a
good picture of the error which is made by the assumptions on which the sum
of the limits approach is based.

3.4.3. Beams’s Model to Describe the Bulge Test

As stated above, Beams gave an easy model to derive the force-deflection rela-
tionship p(h). The simplicity of Beams’s method is a result of three assump-
tions. However, usually only two of these assumptions are justified. Beams
assumes the membrane to adopt a spherical cap geometry with an unknown
radius R. Moreover, he assumes that the deflection is much smaller than the
membrane radius, i.e. h << r Furthermore, it is assumed that the stress σ is
constant throughout the whole membrane. This assumption is critical, because
as it is shown in [11], the stress in the center of the membrane is significantly
higher than the stress at its edge. However, the assumption of a constant
stress together with the spherical cap approach simplify the application of the
equilibrium condition significantly since instead of the point wise evaluation
of (3.9), the equilibrium condition simplifies to the equilibrium of forces in a
spherical pressure vessel which is illustrated in figure 3.3.

p · πR2 = σ · 2πR · t. (3.11)

Application of Pythagoras law (R−h)2+r2 = R2 and the assumption h << r

and hence R ≈ r2/2h yields

σ = pR

2t ≈
pr2

4ht. (3.12)

Since the strain of the membrane induced by the pressure is given by

ε = ∆l
l

= 2h2

3r2 , (3.13)
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Figure 3.3.: Schematic diagram of a pressurized hemisphere [12].

the stress σ can be expressed as

σ = E

1− ν (ε+ ε0) = E

1− ν ·
2h2

3r2 + σ0 (3.14)

by using Hooke’s law twice. ε0 denotes the initial strain, i.e. the strain
which is caused by the initial tension σ0. As a result of the equations (3.12)
and (3.14), the pressure-deflection relationship becomes

pBeams(h) = 4tσ0
r2 h+ 8Et

3(1− ν)r4h
3. (3.15)

The first term can be understood as the pressure required to overcome the
initial tension of the membrane, while the second term accounts for the stretch-
ing of the membrane which is caused by the deflection. In this sense, equation
(3.15) is also a sum of two limiting cases. As it will be shown, it is indeed
very similar to the sum of the limits equation. For the first limit, the case of
a membrane with initial tension σ0 subjected to an infinitesimal deflection h,
the exact solution can even be derived in the same way. Since the deflection h
is infinitesimal, the stress σ in the membrane can be approximated by σ = σ0.
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Since the stress only consists of the initial tension, in this case the assumption
of a constant stress becomes accurate. Therefore it can be concluded as above
σ0 = σ = pr2

4ht and due to ε ≈ 0 the pressure-deflection relationship becomes

psmall(h) = 4tσ0
r2 h. (3.16)

Of course equation (3.16) is only exact in the case of an infinitesimal deflec-
tion. Its error for a finite deflection h is computed in [46]. To this end, the
dimensionless pressure P is defined as

P = pr

Et

(
σ

E

)−3/2
(3.17)

It is shown that for P < 1, the relative error of the central deflection h

obtained by equation (3.16) is less than 5%. The limit of large deflections is
reached within the same accuracy when P > 100. This criterion is often fulfilled
when it comes to the examination of graphene membranes, for example in [48]
and [49].

3.4.4. Hencky’s Solution for the Large Deflection Limit

Hencky’s solution for a pressurized membrane is based on the exact equilibrium
condition (3.9). The assumption σ0 = 0 significantly facilitates the numerical
evaluation of the resulting system of differential equations.

Moreover, it is assumed that the loading of the membrane is uniformly lat-
eral, i.e. the force which applies to every point of the membrane is always in
z-direction only. Under a uniform pressure, this is not exactly given since the
pressure applies perpendicular to the membrane. Hence, for every point of the
membrane which has a non zero slope, besides the z-component, the force also
consists of a radial component. This radial component is neglected in Hencky’s
analysis. A schematic diagram of the two kinds of load is shown in figure 3.4.
However, the effect of this assumption is only relevant for very large pressures
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as is it shown in [47], where the same problem is solved with the exact force
caused by the uniform pressure.

Figure 3.4.: Schematic diagram of a uniformly pressurized membrane (left) and a membrane
subjected to a uniform lateral load (right).

Hencky’s approach is to express the radial and tangential stresses σr and σt
as well as the deflection as a function of the radial position ρ = x/r on the
membrane, where 0 ≤ x ≤ r. This function is represented as a power series
where the stress in the center of the membrane is determined by the coefficient
B0. By using the governing equilibrium equations and Hooke’s law, B0 can be
calculated as the root of the equation

B0(1− ν) − (3− ν) 1
B2

0
− (5− ν) 2

3B5
0
− (7− ν) 13

18B8
0
− (9− ν) 17

18B11
0

− (11− ν) 37
27B14

0
− (13− ν) 1205

567B17
0
− · · · = 0. (3.18)

It can be seen that as a result of the exact treatment, there is no general
result such as equation (3.15). Instead, equation (3.18) has to be solved for
every ν. However, due to the fast convergence of the series it is sufficient
to consider the given summands for the numerical evaluation. For ν = 0.3
the value of B0 was already calculated by Hencky. In order to solve equation
(3.18) for arbitrary values of ν, a mathematica 10.0 notebook was written (see
Appendix A for the corresponding source code). The results for various values
of ν are shown in table 3.2. It has to be noted that there is an algebraic error in
Hencky’s paper [11], where the last coefficient 1205/567 is not given correctly,
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see for example reference [46]. However, the relative error of B0 in Hencky’s
results is less than 1% for all ν.

Table 3.2.: B0 as a function of ν

ν 0 0.05 0.1 0.15 0.165 0.2
B0 1.619 1.6327 1.6477 1.664 1.6692 1.682
ν 0.25 0.3 0.35 0.4 0.45 0.5
B0 1.7018 1.7239 1.7486 1.7765 1.8084 1.8451

The central deflection of the membrane in Hencky’s model is given by

h =
(
pr4

Et

)1/3 ( 1
B0

+ 1
2B4

0
+ 5

9B7
0

+ 55
72B10

0
+ 7

6B13
0

+ 205
108B16

0
+ · · ·

)
.

(3.19)
Since B0 only depends on the Poisson’s ratio ν, it is useful to define Ah0(ν)

as

Ah0(ν) =
( 1
B0

+ 1
2B4

0
+ 5

9B7
0

+ 55
72B10

0
+ 7

6B13
0

+ 205
108B16

0
+ · · ·

)
. (3.20)

and K(ν) as

K(ν) = (Ah0(ν))−3. (3.21)

With these definitions, equation (3.19) becomes

h =
(
pr4

Et

)1/3

Ah0(ν) (3.22)
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and hence the pressure-deflection relationship is

plarge(h) = K(ν)Et
r4 h

3. (3.23)

Hencky’s results shall now be used to establish the sum of the limits equation.
To this end, the most common values of K(ν) were calculated with the values
from table 3.2 and the definitions (3.20) and (3.21). The results are shown in
table 3.3.

Table 3.3.: K(ν) for selected values of ν

ν 0 0.05 0.1 0.15 0.165 0.2
K(ν) 2.709 2.818 2.94 3.075 3.118 3.227
ν 0.25 0.3 0.35 0.4 0.45 0.5

K(ν) 3.397 3.593 3.817 4.078 4.387 4.756

In order to facilitate the evaluation of experimental data for all other values
of ν, it is useful to give an explicit expression of the function K(ν). To this
end, K(ν) was fit with a function of the form K(ν) = (a− bν)/(1− ν):

K(ν) = 2.713− 0.666ν
1− ν . (3.24)

The fit is based on table 3.3 and approximates K(ν) with an accuracy of
0.1%. The coefficients are slightly different from the coefficients obtained in
[12], where the problem was treated in a similar way. The explicit formulation
of equation (3.23) becomes

plarge(h) = (2.713− 0.666ν)Et
(1− ν)r4 h3. (3.25)

This is the pressure-deflection relationship of a membrane with σ0 = 0. It
is also the formula which describes the limit of large deflections and hence the
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second of the two summands of the sum of the limits equation. Adding the two
summands yields the complete equation.

psum(h) = 4tσ0
r2 h+K(ν)Et

r4 h
3. (3.26)

At this point, it is useful to recapitulate the assumptions which were needed
for the derivation of the sum of the limits equation. Four assumptions were
used.

(1) The pressure in the intermediate regime between small deflection limit
and large deflection limit is correctly captured by the superposition of the two
limits.

(2) The load caused by the pressure is uniformly lateral.

(3) The strains in the pressurized membrane are infinitesimal.

(4) The bending stress can be neglected.

In the next sections, the effect of each of these assumptions shall be investi-
gated.

3.4.5. Behavior of a Membrane with Initial Tension in the
Intermediate Regime

In order to estimate the error of equation (3.26), it shall be compared to the
exact solution of a membrane with initial tension σ0 subjected to a uniform
lateral load [46]. In this work, Campbell shows that Hencky’s method can be
modified to include initial tension. Again using the assumptions (1), (2) and
(3), it is shown that a more general version of equation (3.18) is
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(1− ν)B0 − (3− ν) 1
B2

0
− (5− ν) 2

3B5
0
− (7− ν) 13

18B8
0
− (9− ν) 17

18B11
0

− (11− ν) 37
27B14

0
− (13− ν) 1205

567B17
0
− · · ·

= (1− ν)σ0
k
, (3.27)

where

k = 1
4

(
Ep2

(
r

t

)2
)1/3

. (3.28)

The central deflection of the membrane is given by equation (3.19), as be-
fore. Equation (3.27) may seem to be only a small change compared to equation
(3.18), but this change has significant implications. Firstly, in order to deter-
mine the deflection of the membrane, all its properties like the Young’s modulus
E and the initial stress σ0 have to be known a priori. More precisely, equation
(3.22) becomes

h =
(
pr4

Et

)1/3

·Ah0

(
ν,
σ0
k

)
. (3.29)

Since the purpose of Bulge Test experiments is to determine the Young’s
modulus E and the initial tension σ0, Campbell’s equation (3.29) is not suited
for their evaluation. Even if all the properties are known, equation (3.27) has to
be solved for every pressure p which makes the analysis a very time-consuming
task. Therefore, this approach is not suited for the evaluation of Bulge Test
experiments. However, it is useful to compare the exact solution to the sum of
the limits equation (3.26) in order to estimate the error of the latter equation.
This approach shall be pursued in the following. A general formula for the
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relation psum/p as a function of the deflection height h was found to be

psum
p

=
(
Ah0

(
ν,
σ0
k

))3
·
(
K(ν) + 4σ0r

2

Eh2

)
, (3.30)

where K(ν) denotes the factor derived through equations (3.18) and (3.24),
i.e. for σ0 = 0, while Ah0

(
ν, σ0

k

)
is obtained by equation (3.27). Since the right

hand side of equation (3.27) converges to 0 as p→∞,

(
Ah0

(
ν,
σ0
k

))3
→ (K(ν))−1 as p→∞. (3.31)

Moreover, h→∞ as p→∞ and therefore

4σ0r
2

Eh2 → 0 as p→∞. (3.32)

This proves that in the limit of large deflections, psum/p converges to 1 and
hence the error of the approximation psum converges to 0 as p→∞. In order to
further investigate the error of psum, it is useful to express psum/p as a function
of the pressure p instead of the height h. This yields

psum
p

= Ah0

(
ν,
σ0
k

)[
K(ν)

(
Ah0

(
ν,
σ0
k

))2
+ 4σ0

(Ep2)1/3

(
t

r

)2/3
]

= Ah0

(
ν,
σ0
k

)[
K(ν)

(
Ah0

(
ν,
σ0
k

))2
+ σ0

k

]
, (3.33)

where k is again defined by equation (3.28). Equation (3.33) shows that for
a fixed Poisson’s ratio ν, the error psum/p only depends on the ratio σ0/k.
In order to calculate the error and to illustrate the above findings, exact

pressure-deflection curves were calculated for exemplary samples with typical
parameters. These results were compared to the pressure-deflection curves ob-
tained by equation (3.26). This was done in the following way: For given
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parameters p, t, r, E, σ0 and ν, the deflection height h was obtained by
solving equation (3.27) (see Appendix A for the corresponding mathematica
source code) and using equation (3.22). The calculated height was then used
in equation (3.26) to obtain psum. With this procedure, both the exact pres-
sure p and the approximated pressure psum required to achieve a given height
were calculated. Applying this calculation to different pressures p gave two
force-deflection curves, the exact and the approximated curve. An exemplary
pressure-deflection curve for a typical freestanding TPT-CNM with the param-
eters t = 2 nm, r = 8 µm, E = 10 GPa, σ0 = 20 MPa and ν = 0.35 is shown in
figure 3.5. It can be seen that in contrast to Beams’s equation (3.15), equation
(3.26) agrees very well with the exact solution.

In order to further explore the error of equation (3.26), the relative error
psum
p − 1 was calculated. To this end, the above mentioned exemplary TPT-

CNM was taken as a starting point. For each of its parameters σ0, E, r and t, a
series of calculations was performed where all parameters except the examined
parameter were fixed to the value stated above. The relative error psum

p − 1
was plotted as a function of the deflection height h as it would be done in
a pressure-deflection curve. The results are shown in figure 3.6. The figure
showing the error as a function of the membrane thickness t is not shown
because any thickness t yields the same error curve. The reason for this will
be explained below.

It can be seen that the relative error approaches zero for small and large
deflections and is maximally 1.635%. Furthermore, as long as the Poisson’s
ratio ν is fixed, the maximal error is independent of the other parameters.
This finding may seem surprising, but it is explained by equation (3.33), where
the error only depends on ν and σ0/k. In the case of ν = 0.35, the error has
its maximum at σ0/k = 0.985. Hence, speaking of psum

p as a function of the

30



3.4. Bulge Test Theory

Figure 3.5.: Comparison of Beams’s formula and the sum of the limits formula with the
exact solution for an exemplary CNM.

pressure p, psum
p is equal for constant

σ0
k

= 4σ0

(
Ep2

(
r

t

)2
)−1/3

(3.34)

or put in a different way

pmax ∝ σ3/2
0 · E−1/2 · t

r
, (3.35)

where pmax denotes the pressure at which the error psum
p − 1 is maximal.

In order to understand the error psum
p as a function of the deflection height
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Figure 3.6.: (a) Error of the sum approximation compared to Campbell’s solution as a
function of the initial tension σ0. (b) Error of the sum approximation compared
to Campbell’s solution as a function of the Young’s modulus E. (c) Error of
the sum approximation compared to Campbell’s solution as a function of the
membrane radius r. The parameters which are not examined in each figure are
fixed to t = 2 nm, r = 8 µm, E = 10 GPa, σ0 = 20 MPa and ν = 0.35. (d)
Maximum error of the sum approximation compared to Campbell’s solution as
a function of the Poisson’s ratio ν.

h, equation (3.29) is needed. Since the deflection height h scales with p1/3,
psum
p (h) depends only on σ0, E and r. The deflection height hmax at which the

error psum
p − 1 is maximal is proportional to

hmax ∝ σ1/2
0 · E−1/2 · r. (3.36)
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These relationships are nicely illustrated by figure 3.6 (a), (b) and (c). More-
over, equation (3.36) explains why psum

p (h) is independent of the membrane
thickness t.

The last parameter to be investigated is the Poisson’s ratio ν. In order to
determine its influence, the maximal error of psum

p −1 was calculated for different
values of ν with the same method as above. The results are shown in figure 3.6
(d). It can be seen that the maximal error decreases with the Poisson’s ratio
ν and does not exceed 2.1% even for unusually small values of ν. This shows
that equation (3.26) indeed is a good approximation to the exact solution for
all possible parameters.
With these results, it can be concluded as an interim summary that Camp-

bell’s description of a uniformly loaded membrane can be approximated by
equation (3.26) with a relative error of less than 2.1%. As stated in equation
(3.8), the only difference of Beams’s equation (3.15) compared to the sum of
the limits equation is the factor C2 which depends on the Poisson’s ratio. Com-
parison of table 3.24 with C2/(1 − ν) yields that Beams’s equation exhibits a
relative error of up to 12% in the case of ν = 0.5 which has to be added to the
deflection dependent error. The accuracy of Beams’s model increases with a
decreasing value of ν. However, it has to be kept in mind that Campbell’s ap-
proach requires the assumption of a uniformly lateral load which is not needed
in Beams’s description of the Bulge Test. The impact of the uniformly lateral
load assumption shall be explored in the next section. Moreover, the impact
of the assumption of infinitesimal strains shall be studied which is needed in
both Campbell’s and Beams’s works.

3.4.6. Impact of the Assumption of a Uniformly Lateral Load

When the membrane is subjected to a high pressure, the membrane is not only
deflected in z-direction but there is also a radial deflection component. This
effect was investigated by W.B. Fichter [47]. As Hencky’s problem, this work is
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restricted to the case of no initial tension. However, since the case of no initial
tension is equivalent to the limit of large deflections, it can be assumed that
the radial deflections for initially tensioned membranes will be approximately
identical to those of membranes without initial tension due to the high pressure.
In order to solve the uniform pressure problem, Fichter also uses Hencky’s

approach. The lateral equilibrium condition remains unchanged, but the radial
equilibrium condition is adapted according to the load caused by the uniform
pressure. As in the case of membranes with an initial tension, Hencky’s ap-
proach of expressing stresses and deflection as a power series still works, but it
does not yield a general formula for the pressure-deflection relationship. There-
fore, Fichter’s results are not very practical for the data analysis of Bulge Test
experiments. However, they give a good estimation of the error one makes by
assuming a uniform lateral load for case of the large deflection limit.
Since the radial component of the load is increasing with the deflection of

the membrane, the relative difference between Hencky’s and Fichter’s models
increases with the deflection as well. Dimensionless pressure-deflection curves
for ν = 0.2, ν = 0.3 and ν = 0.4 are shown in figure 3.7(a).

Figure 3.7.: (a) Comparison of the load-deflection curves of the uniform lateral load and
uniform pressure model. (b) Comparison of the membrane shape of the uniform
lateral load and uniform pressure model for ν = 0.3 [47].

The dimensionless loading parameter q is defined as q = pr/Et. With this
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definition, Hencky’s law (3.23) becomes

q = K(ν)
(
h

r

)3
. (3.37)

Figure 3.7 (a) yields two important observations. Firstly, it can be observed
that the error caused by the assumption of a uniform lateral load increases
with the Poisson’s ratio ν. Secondly, it is shown that as expected, the two
models agree quite well for small deflections while the difference increases for
larger deflections. The maximal dimensionless deflection in the Bulge Test
experiments of the present work is usually around h/r = 0.1 which corresponds
to dimensionless pressure of q = 0.003 to q = 0.004, depending on the Poisson’s
ratio ν. It can be seen that for these small values of q, both solutions are in good
agreement. The procedure for computing the exact error caused by the uniform
lateral load assumption is described in [47]. However, it is a complicated task
which would go beyond the scope of this work. A more detailed comparison
between the different scenarios is given in the next section, where the finite
strains are taken into account as well.

3.4.7. The Influence of Finite Strains

In [36], the behavior of a circular membrane under uniform pressure was also
examined by a finite elements simulation. In this simulation, no simplifying
assumptions are needed. An exemplary membrane with parameters E2D =
311488 Pa m, ν = 0.34 and r = 0.1425 m is simulated at pressures of 100
kPa, 250 kPa and 400 kPa. The corresponding dimensionless pressures are
q = 0.0458, q = 0.114 respectively q = 0.183. Figure 3.8 (a) shows the central
deflection of the membrane at 250 kPa according to Hencky’s theory, Fichter’s
theory and the simulation. It can be seen that compared to the simulation,
Hencky’s model overestimates the central deflection by about 0.9%. For a
fixed height this means that the pressure is underestimated by 2.7%. This
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underestimation is the result of both assumptions of a uniformly lateral load
(2) and infinitesimal strains (3) together.
The error induced by neglecting the finite strains does not necessarily com-

pensate parts of the error induced by the assumption of a uniformly lateral
load, as it is shown in figure 3.8 (b). In the example of p = 100 kPa which
corresponds to q = 0.046, the assumptions (2) and (3) together lead to an
overestimation of the central deflection and hence to an underestimation of the
required pressure for a given height. It was estimated from figures 3.7 and
3.8 that the pressure at q = 0.046 is underestimated by up to 6% in Hencky’s
model.

Figure 3.8.: (a) Comparison of the central deflections achieved by Hencky, Fichter and the
FES simulation for a dimensionless pressure of q = 0.114. (b) Relative difference
of the finite elements simulation compared to Fichter’s solution as a function
of the radial position in the membrane. For the purpose of this analysis, only
the center of the membrane, r = 0 is relevant. Since the central deflection in
Fichter’s model is lower than in Hencky’s model, the errors due to assumptions
(3) and (4) add up in the case of p = 100 kPa (q = 0.046) and partially
compensate in the cases of p = 250 kPa (q = 0.114) and p = 400 kPa (q = 0.183)
[36]. Reproduced with permission.

There is no data for values of q other than 0.046, 0.114 and 0.183. Estimating
the error due to assumptions (2) and (3) in the ranges which are not covered is
a difficult task. Since the maximal dimensionless pressure used in the present
work is around q = 0.004, the small values of q are of particular importance. As
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both effects, the radial deflection and the finite strains are only of significance
at high pressures, it is reasonable to assume that the error for small values
of q is much smaller than the above calculated value for higher dimensionless
pressures. This intuitive argument is supported by a Bulge Test experiment
by Koenig et al. [48]. in their experiment, it was found that the shape of a
pressurized graphene membrane is in good agreement with the shape predicted
by Hencky’s solution. The experiment was performed at a dimensionless pres-
sure of q = 0.0027. Since the shape is a good indicator of the accuracy of the
central deflection, as it is shown in figure 3.7(b), this finding indicates that for
q = 0.0027 the underestimation of the pressure p required to achieve a certain
deflection h due to assumptions (2) and (3) is much smaller than at higher
values of q. Therefore, in the pressure range of q ≤ 0.005, a maximal error of
4% seems reasonable.
However, it should be kept in mind that assumptions (2) and (3) may induce

a significant underestimation of the required pressure at higher dimensionless
pressures q.

3.4.8. The Influence of Bending Stiffness

So far, all calculations were based on the assumption that the bending stress
can be neglected. Whether or not this is true depends mainly on the ratio of
the thickness of the membrane compared to the central deflection. In order to
estimate the influence of the bending stiffness, it is useful to know the behavior
of a uniformly loaded film in the plate regime, i.e. a film where the bending
stiffness is dominating and the stretching can be neglected.
The pressure-deflection relationship in this scenario was derived by Timo-

shenko [50]

pplate = 16
3(1− ν2) ·

Et3

r4 h. (3.38)
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With the help of equation (3.38), it can be easily calculated whether or
not the bending stiffness needs to be considered. When the bending stiffness
is significant, Hohlfelder [12] suggests to add the term pplate to the pressure-
deflection relationship. This approach leads to

psum(h) = 4tσ0
r2 h+ Et

r4 h
3
(
K(ν) + 16

3(1− ν2)

(
t

h

)2
)
. (3.39)

The idea behind equation (3.39) is the same as for the sum of the limits
approach. More precisely, the pressure required for both deformations bending
and stretching together to stay at an equilibrium is assumed to be the sum of
both individual contributions. Since this assumption was fairly accurate in the
case of the sum of the limits equation, it is reasonable to assume that the error
of this assumption is small in the case of the bending stiffness, too. Moreover,
usually the term attributed to the bending stiffness is much smaller then the
term attributed to the stretching. In this case, the term attributed to the
bending stiffness can be thought of as a first order perturbation correction.
Another advantage of equation (3.39) is that by comparison of the terms

K(ν) and 16
3(1−ν2)

(
t
h

)2 it can be easily seen whether the bending stiffness is
significant or not. For a typical CNM with a thickness of t = 2 nm, the
contribution of the bending stiffness to the required pressure is far less than
0.1%. Therefore, it can be neglected.

3.4.9. Conclusions

In this section, the sum of the limits formula was derived. In order to establish
its pressure-deflection relationship, four assumptions (1) to (4) were needed.
The error induced by each assumption was estimated with the help of the
works shown in table 3.4.
Firstly, it was assumed that the exact solution including the initial tension

can be expressed as the sum of the small deflection limit and the large deflection
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Table 3.4.: Summary of the theoretic descriptions of a pressurized membrane needed for
quantification of the error in the sum of the limits approach

Author Method Initial stress Type of load
included

Hencky analytic no uniformly
lateral

Campbell analytic yes uniformly
lateral

Fichter analytic no uniform
pressure

Bouzidi Finite element no uniform
et al. simulation pressure

Timoshenko analytic description of no uniformly
a uniformly loaded plate lateral

limit. It was shown that the error of this approximation is an overestimation
of the required pressure and that the error converges to zero in the limits of
h → 0 and h → ∞. Moreover, it was shown that the maximum of the error
does not exceed 2.1% under any circumstances. For CNMs, the Poisson’s ratio
is assumed to be ν = 0.35 [51]. This means that the maximum error is 1.635%.
For usual Bulge Test experiments, this maximal error is in the range of the
maximum applied pressure.

Secondly, for the calculation of the large deflection limit, a uniform lat-
eral load and infinitesimal strains were assumed. Both assumptions are quite
accurate for small dimensionless pressures q = pr/Et. However, for large di-
mensionless pressures, the error of these assumptions becomes the dominant
error. It was shown exemplarily that for q = 0.046 both effects together lead to
an underestimation of the required pressure of ca. 6% and for q = 0.114 both
effects together lead to an underestimation of the required pressure of 2.7%.
In the typical range of Bulge Test experiments, q ≤ 0.005, the maximum error
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due to both effects was assumed to be 4%.
Lastly, it was assumed that the bending stiffness can be neglected. It was

shown that this is true for the membranes investigated in this work. In case that
the bending stiffness needs to be considered, it was suggested to use equation
(3.39).
In the evaluation of Bulge Test experiments, an overestimation of the re-

quired pressure p by a constant factor c leads to an underestimation of Young’s
modulus and initial tension by the factor c and vice versa. It can therefore
be concluded that the error of Young’s modulus and initial tension due to the
evaluation with the sum of the limits method is in the range of +2.1%/−3.8%,
as long as the dimensionless pressure q does not exceed 0.005.

To sum up, the sum of the limits equation (3.26) shall be compared to
the four other theories mentioned in table 3.1. Of particular interest is the
comparison to Beams’s equation since it has been used widely in the literature.
As already stated, the small deflections term of all five equations is identical.
This implies that the data analysis with all methods yields an identical initial
tension. However, depending on the factor C2 in equation (3.8), different results
for the Young’s modulus are obtained. The function C2(ν) for all five theories
is shown in figure 3.9. The finite elements simulation by Small shows the best
agreement with the sum of the limits equation while the two analytic models by
Beams and Lin show a decent discrepancy. Pan’s model is in a good agreement
for large values of the Poisson’s ratio. The sum of the limits approach and
Beams’s model almost agree for small values of ν while for large values of ν
the constant C2 in Beams’s model is up to 12% higher than in the sum of
the limits model. This means that in Beams’s model the Young’s modulus is
underestimated by 12% compared to the sum of the limits model. For CNMs,
the relative deviation between both models is 7%.

The main advantage of the sum of the limits approach compared to the other
methods is the quantification of the impact of its underlying assumptions. This
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3.5. Nanoindentation Theory

Figure 3.9.: Comparison of the pre factor C2 in the most common theoretic descriptions of
a pressurized membrane.

quantification is not possible for the other approaches. Moreover, the data
analysis with the sum of the limits model is as simple as with Beams’s formula.
Therefore, the use of the sum of the limits model is advisable.

3.5. Nanoindentation Theory

Nanoindentation was originally a means to determine the Young’s modulus
and the hardness of films supported on a solid substrate. To this end, so
called nanoindenters with sharp tips were used to record a load vs. indentation
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depth curve [25]. With the increasing ability to fabricate films with a thickness
of only several nm, the same principle was extended to nanoindentation on
freestanding membranes by Espinosa et al. [10]. This allows to extract the
mechanical properties of the membrane without being influenced by the sup-
porting substrate which is particularly important for 2D materials. A popular
tool to conduct nanoindentation on freestanding membranes is the atomic force
microscope (AFM) because it allows a precise measurement of load and mem-
brane displacement. Moreover, the AFM also allows a very precise positioning
of the indenting tip, which is crucial when small membranes are investigated.
As well as for the Bulge Test, the main task for a theoretical description

of a nanoindentation experiment is to find the load-deflection relationship.
However, in the case of nanoindentation, the load is not achieved by a pressure
but by the force F exerted by the indenter.
Also as for the Bulge Test, the best way to approach a theoretical description

of nanoindentation on freestanding membranes is to start with the two limiting
cases: The small indentation limit and the large indentation limit. The large
deflection limit is again equivalent to the case of no initial tension, σ0 = 0.
However, the description of nanoindentation is more complex than the Bulge
Test since there is an additional parameter. This is the size of the indenter,
which is the AFM-tip in the case of AFM-nanoindentation. In the general case,
this additional parameter makes it impossible to give a general solution as for
the Bulge Test. There exists only one purely analytical solution for the special
case of point indentation, i.e. rindenter = 0, no initial tension, i.e. σ0 = 0 and
ν = 1/3.4 The solution to this problem was found by E. Schwerin in 1929 [52].

F = π

3
Et

r2 h
3. (3.40)

Of course, this result is not sufficient for the evaluation of nanoindentation

4In the case of ν 6= 1/3, the resulting equations can be derived analytically but need to be
solved numerically [13].
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experiments. An extensive analysis of the behavior of thin freestanding mem-
branes in an indentation experiment is given by D. Vella and B. Davidovitch
[13]. In this section, the findings of Vella and Davidovitch which are relevant
to the present work shall be presented. Additionally, the tip correction factor
αtip will be defined and analyzed.

In order to derive the force-deflection relationship, it is useful to employ the
dimensionless deflection

δ̃ = h

r

(
E

σ0

)1/2
(3.41)

and the dimensionless force

F̃ = E1/2F

σ
3/2
0 tr

. (3.42)

With these definitions, equation (3.40) reduces to

F̃ = π

3 δ̃
3. (3.43)

3.5.1. Large Deflection Limit

For point indentation, i.e. rindenter = 0, Vella and Davidovitch find that equa-
tion (3.40) can be generalized to arbitrary values of ν by solving the Föppl-von
Kármán equations for each value of ν. Unfortunately, for all ν 6= 1/3, a part
of the solving process has to be performed numerically. However, the force-
deflection relationship can be expressed as

F̃ = α(ν)δ̃3, (3.44)

where α(ν) can be approximated as

α(ν) = 0.867 + 0.2773ν + 0.805ν2. (3.45)
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The error of this approximation is less than 0.7% for all 0 ≤ ν ≤ 1/2.
Another extension of equation (3.40) is to keep ν = 1/3 fixed but to allow
rindenter > 0. For the sake of simplicity, the indenter is assumed to have the
shape of a disk, for example achieved by a cylindrical indenter. It is useful to
define the dimensionless indenter size as

ρin = rindenter/r. (3.46)

With this definition, the force-deflection relationship becomes

F̃ = π

3
(
1− ρ2/3

in

)−3
δ̃3, (3.47)

which is valid for ν = 1/3 and all ρin < 1. It can be seen that in the limit of
ρ → 0, equation (3.47) coincides with equation (3.40) which makes it a more
general version of Schwerin’s classical solution. In the limit of ρ → 1, the
force F̃ diverges, F̃ → ∞, since the clamped edges are stretched infinitely. In
practice of course, an indenter with the size of the membrane would rupture
the membrane.

When both parameters ν 6= 1/3 and rindenter > 0 are allowed, the effect of ρin
can only be treated by perturbation theory. Vella and Davidovitch find that
for 0 < ρin << 1

F̃ ≈
(
α(ν) + 6

(2π(1 + ν))1/3 · α(ν)4/3ρ
2/3
in

)
δ̃3, (3.48)

where α(ν) is approximated by equation (3.45). As in the case of point
indentation, it is also possible to determine α(ν) exactly. However, this has
again to be done numerically for every value of the Poisson’s ratio ν. Therefore,
equation (3.45) shall be used here.
These results of Vella and Davidovitch shall now be used for an estimation

of the accuracy of equation (3.48) when the tip cannot be approximated by
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a point indenter. To this end, it is useful to define the tip correction factor
αtip as the force that is needed to achieve a certain deflection with a tip of the
radius rindenter divided by the force which would be needed to achieve the same
deflection via point indentation:

αtip = αtip(ν, ρin) = F̃ρin/F̃ρin=0. (3.49)

In the case of ν = 1/3, the exact tip correction factor is given by

αtip =
(
1− ρ2/3

in

)−3
, (3.50)

while the perturbation theory yields

αtip = 1 + 6
(2π(1 + ν))1/3 · α(ν)1/3ρ

2/3
in . (3.51)

As stated above, the exact tip correction factor αtip is only known for
ν = 1/3. However, the evaluation of equation (3.51) for different values of
the Poisson’s ratio ν shows that the tip correction factor αtip is almost inde-
pendent of ν. This result is illustrated by figure 3.10, where the approximative
results for ν = 0.165, ν = 1/3 and ν = 0.5 are shown together with the exact
result for ν = 1/3. It can be seen that for an indenter size as small as ρin = 0.05
the tip correction factor αtip calculated by perturbation theory is already un-
derestimated by 10% compared to the exact calculation. On the other hand,
the relative difference between the tip correction factors calculated by pertur-
bation theory for ν = 1/3 and ν = 0.5 at ρin = 0.35 is only 0.45% and the
relative difference between ν = 0.165 and ν = 0.5 at ρin = 0.35 is only 0.06%.
At smaller values of ρin, the relative errors are even smaller. These results
suggest that for any value of ν, the tip correction factor can be approximated
as

αtip(ρin, ν) ≈ αtip(ρin, ν = 1/3) (3.52)
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3. Theory of Bulge Test and Nanoindentation

Figure 3.10.: Comparison of the exact solution for αtip as a function of the indenter radius
ρin with the results achieved by perturbation theory. The three latter results
almost coincide and cannot be distinguished by their graphs.

which shall be abbreviated as αtip(ρin) in the following. Of course, it is not
certain if the results in the exact calculation are as robust against changes of
the Poisson’s ratio ν as the results achieved by perturbation theory. However,
it is safe to assume that the indenter size ρin is by far the dominant parameter
for the determination of αtip. Therefore, it is much better to employ the exact
solution for the tip correction factor αtip and to neglect the Poisson’s ratio ν
than to employ the tip correction factor achieved by perturbation theory.

As a conclusion of the above results, it can be stated that the best approxi-
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mation for the general case of the large deflection limit is given by the product
of equations (3.44) and the tip correction factor αtip(ρin):

F̃ = α(ν)
(
1− ρ2/3

in

)−3
δ̃3 (3.53)

or put in non-dimensionless terms

F = α(ν)
(

1−
(
rindenter

r

)2/3
)−3

Et

r2 h
3. (3.54)

3.5.2. Small Deflection Limit

In the limit of small indentations, δ̃ << 1, the two cases of point indentation
and finite indenter size behave fundamentally different. Vella and Davidovitch
find that the case of point indentation leads to a nonlinear behavior, where the
dimensionless deflection is described as

δ̃ = F̃

2π ln
(
8π/F̃

)
. (3.55)

With a finite indenter size, the force-deflection relationship can be derived un-
der the assumption that the stress in the deflected membrane is approximately
unchanged by the indentation, i.e. σ ≈ σ0. In this case, the force-deflection
relationship is given by [53]

F̃ = 2π
ln(1/ρin) δ̃. (3.56)

However, depending on ρin, equation (3.56) is only valid for very small de-
flections δ̃. More precisely, there is a function δ̃?(ρin) such that equation (3.56)
only holds if δ̃ ≤ δ̃?(ρin). Moreover, with decreasing indenter size, equation
(3.56) holds for ever smaller deflections, i.e. δ̃?(ρin) → 0 as ρin → 0. Under
experimental conditions however, where the indenter size ρin is significantly
greater than zero, equation (3.56) is the best way to describe the linear regime
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of the membranes response to the deflecting force. In [53], its non-dimensionless
form

F = 2πσ0t

ln(1/ρin)h (3.57)

was used to determine the initial tension of many different materials via
force-deflection measurements.

3.5.3. Intermediate Range

Equations (3.53) and (3.56) give a force-deflection relationship of the large
respectively small deflection limit which is valid for any indenter size ρin. In
order to gain a general force-deflection relationship for all deflections, it is
common to add the small and the large deflection limit, as it was done to
describe the Bulge Test,

F̃sum = 2π
ln(1/ρin) δ̃ + α(ν) · αtip(ρin)δ̃3. (3.58)

Since it is not feasible to give a general description of the behavior of a
membrane subjected to an indentation, this sum of the limits approach will
be pursued here as well. However, one should be aware that in the case of
nanoindentation, the error induced by this approach is significantly larger than
in the case of the Bulge Test.
Vella and Davidovich analyze the relative error due to the sum approach

for ν = 1/3 and ρin = 10−2, ρin = 10−3 and ρin = 10−4 by comparing the
sum formula to the numerically determined exact solution. The results are
shown in figure 3.11(a). It can be seen that for ρin = 10−4, the relative error
in the intermediate regime can reach up to 50%. Moreover, the error is very
large for a broad range of δ̃. However, the error can be reduced by using a
relatively large indenter, ρin ≥ 0.01. This finding may seem surprising but it
can be explained the fact equation (3.56) becomes accurate for a greater range
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Figure 3.11.: Results of the numerically determined force indentation curves in [13] achieved
for ν = 1/3. (a) The relative error of the sum of the limits approximation as a
function of δ̃ for ρin = 10−4 (red), ρin = 10−3 (green) and ρin = 10−2 (blue).
(b) Comparison of the stiffness k = F̃ /δ̃ according to numerical calculation
(solid curves) with the sum approximation F̃sum (dashed curves). Black indi-
cates a point indenter, red indicates ρin = 10−4 and blue indicates ρin = 10−2.
Reproduced with permission.

of deflections when the indenter size increases. The approach to utilize a large
indenter was chosen here and will be discussed in detail in section 6.1. Figure
3.11(b) shows an interesting property of the sum of the limits approximation.
In the case of indentation, the sum approximation leads to an underestimation
of the required force in the intermediate range. This is contrary to the Bulge
Test scenario, where the force was slightly overestimated by the sum of the
limits formula.

3.5.4. Conclusions

In the case of nanoindentation, the force-deflection relationship cannot be de-
termined as precisely as in the case of the Bulge Test. Nevertheless, when a
large indenter with ρin ≥ 0.01 is used, the sum of the limits formula

Fsum = 2πσ0t

ln(1/ρin)h+ α(ν)
(
1− ρ2/3

in

)−3 Et

r2 h
3 (3.59)
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gives a satisfying result. It shall be noted that some experimental works, e.g.
[34] and [54] use an expression of the form

Fsimplified = πσ0th+ f(ν)Et
r2 h

3, (3.60)

where the relative size of the indenter ρin is neglected. However, such a sim-
plified expression leads to inaccuracies in the data analysis. More precisely,
the omission of the tip correction factor

(
1− ρ2/3

in

)−3
of the cubic term leads

to the error shown in figure 3.10. This error becomes very large at large in-
denter sizes. On the other hand, the omission of the logarithmic correction
factor 2/ ln(1/ρin) of the linear term leads to an error which becomes very
large at small indenter sizes. Therefore, the use of equation (3.59) shall be
recommended no matter which indenter size is used.
As it was done for the Bulge Test in the previous section, all assumptions

which were needed for equation (3.59) shall now be recapitulated. Five as-
sumptions were used.

(1) The pressure in the intermediate regime between small deflection limit
and large deflection limit is correctly captured by the superposition of the two
limits.
(2) The tip correction factor αtip in the large deflection limit derived for

ν = 1/3 can be used for ν 6= 1/3 as well.
(3) The indenter has a cylindrical shape.
(4) The strains in the pressurized membrane are infinitesimal.
(5) The bending stress can be neglected.

In the case of a relatively large indenter, ρin = 0.01, assumption (1) leads
to an underestimation of the required force of up to 20%. This is the main
theoretical error of equation (3.59). However, it can be assumed that the error
decreases when an even larger indenter is used.
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The error induced by assumption (2) cannot be safely quantified. However,
figure 3.10 shows that the relative difference between the tip correction factors
αtip calculated by perturbation theory for ν = 0.165, ν = 1/3 and ν = 0.5 is
negligible. It is therefore a reasonable assumption that the exact tip correction
factor for ν 6= 1/3 can be approximated by the tip correction factor for ν = 1/3.

The influence of the shape of the indenter was extensively discussed in [55] in
the context of hardness measurements by AFM nanoindentation. In the case
of force-deflection measurements, a non cylindrical indenter leads to a relative
indenter size which is a function of the indentation depth. When an AFM
tip is used as the indenter, the best approximation to its shape is usually a
pyramid. In order to adapt equation (3.59) to an AFM tip, the pyramid can
be approximated by a cone. Then, equation (3.59) can be modified by using
a relative indenter size according to the deflection height dependent contact
area of the tip with the membrane. However, when an AFM tip is used to
measure multiple membranes, the radius of its contact area will increase by
time. Hence, the tip size can only be approximated. In practice, the uncertainty
of the tip size is much larger than the change in the contact radius induced by
different deflection heights. Therefore, it is reasonable to neglect the shape of
the indenter. The determination of the tip size will be discussed in more detail
in chapter 6.

Since the theoretical description of the nanoindentation experiment is more
complex than the Bulge Test, there is no study on the influence of finite strains.
However, it seems reasonable that error due to assumption (4) is similar to the
same error in the case of the Bulge Test which was shown in figure 3.8(b)
for three different pressures. Hence it can be assumed that the error of the
deflection h as a function of the force Fsum is in the range of ±1%. Put as the
error of the force as a function of the deflection height this implies an error of
±3%.
The bending stiffness can be treated in the same way as in the case of the

Bulge Test. Assuming ρin << 1, the force-deflection relationship in the plate
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regime, i.e. when the bending stiffness is the dominant term, is [35, 54]

Fbending = 4πt3E
3 (1− ν2) r2h. (3.61)

If necessary, this term can be added to equation (3.59) to obtain the force-
deflection relationship for thick membranes.

Fsum =
(

2πσ0t

ln(1/ρin) + 4πt3E
3 (1− ν2) r2

)
h+ α(ν)

(
1− ρ2/3

in

)−3 Et

r2 h
3. (3.62)

However, in the same way as for the Bulge Test, the relationship of the force
attributed to the bending stiffness scales with the factor t2/h2 compared to
the force attributed to the large deflection limit. In the case of CNMs, the
error induced through omission of the bending stiffness is again less than 0.1%.
Therefore, it can be neglected in the evaluation of nanoindentation experiments
as well.

As a conclusion of the above results, it can be said that for a relative indenter
size of ρin = 0.01, the maximal error of the force F needed to achieve a certain
deflection h in equation (3.59) can be estimated to be +5%/− 25%. However,
extrapolating the trend in figure 3.11(a), it seems reasonable to assume that a
large indenter size in the range of 0.01 ≤ ρin ≤ 0.1 leads to a further reduction
of the error. Therefore, equation (3.59) is a good compromise between the
precision of the theoretical description and the practical feasibility of the data
evaluation.

3.6. 2D modulus

When the Young’s modulus or the initial tension of thin membranes are in-
vestigated via Bulge Test or nanoindention, the data analysis requires the
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knowledge of the exact membrane thickness. However, the determination of
the thickness of 2D materials is a very difficult task. In [20], the thickness
of CNMs was investigated by Scanning Transmission Ion Microscopy (STIM),
X-ray Photoelectron Spectroscopy (XPS) and Energy Filtered Transmission
Electron Microscope (EFTEM). The thickness of TPT-CNMs was determined
to be 1.2 nm before the transfer process and 2.1 nm to 2.2 nm afterwards. The
reason for this effect is that the transfer process may leave organic residues on
the membrane which lead to an increased thickness. This also implies that the
membrane thickness may vary form membrane to membrane.

The thickness of graphene is often assumed to be the graphite interlayer
distance of d = 0.335 nm [56]. The experimentally determined thickness of
mechanically exfoliated graphene ranges from 0.4 nm to 1.2 nm [57]. For CVD
graphene, which is used in the present work, a thickness of 1 nm was reported
[58]. However, it has to be kept in mind that the graphene membranes used
here need to be transferred before investigation which leads to a further increase
of the membrane thickness.

The determination of the Young’s modulus and initial tension using the
equations (3.26) and (3.59) requires the knowledge of the membrane thickness.
Therefore, the uncertainty about the membrane thickness causes an uncertainty
in the determination of the Young’s modulus and the initial tension.

For this reason, it is useful to define the two dimensional Young’s modulus
E2D and the two dimensional initial tension σ0

2D as

E2D = Et (3.63)

and

σ0
2D = σ0t (3.64)

Both, 2D modulus and 2D initial tension can be determined by Bulge Test
and nanoindentation experiments without the knowledge of the membrane
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thickness. Moreover, since the resistance of the membrane against pressure
or force is proportional to its thickness, these quantities reflect the membranes
response to the applied pressure or force. Therefore, it is natural to put the
main focus on the 2D modulus and the 2D initial tension when Bulge Test and
nanoindentation experiments are conducted.
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4. Methods

4.1. Atomic Force Microscopy (AFM)

The atomic force microscope (AFM) is a scanning probe microscope (SPM)
which is based on the interaction of a sharp tip with the investigated sample.
It was invented in 1985/86 by Gerd Binnig, Calvin Quate and Christoph Gerber
at IBM. Under perfect conditions, the AFM can reach atomic resolution [59,
60]. In general, the AFM consists of a sharp tip which is mounted on an elastic
cantilever. A focused laser beam is aligned onto the cantilever and reflected
into a photo detector. During the scanning process, the cantilever bends due
to the interactions of the tip with the sample. The long ranged attractive
forces consist of the Van der Waals forces and capillary forces which scale with
the sixth power of the distance r6 between tip and a solid sample. The short
ranged repulsive forces are due to the Pauli exclusion principle and Coulomb
interactions. The simplest way to describe the overlap of both attractive and
repulsive forces between the tip and a solid sample is by the Lennard-Jones
potential

V (r) = C1
r12 −

C2
r6 , (4.1)

where the constants C1 and C2 depend on the properties of tip and sample.

The deflection of the cantilever is measured by the position of the laser beam
on the photo detector and is used as a measure of the attractive or repulsive
force between sample and tip. There are three main operating modes of the
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AFM [61]:
1. In contact mode, the tip is kept in a repulsive interaction with the sample.

The most common operation mode is the constant force mode. In this mode,
the cantilever is bent to a preset set point and the height of the cantilever is
constantly adjusted such that the set point is maintained. This causes the tip to
follow the topography of the sample. In the more seldom used constant height
mode, the cantilever is kept at a constant height independent of the sample and
the amount of the repulsive force is used as a measure of the sample topography.
In order to avoid damaging the sample due to the constant scratching, contact
mode requires cantilevers with a soft spring constant of around 0.1 N/m [62].

2. In intermittent contact mode (usually referred to as tapping mode), the
cantilever is excited to oscillate at or near its fundamental resonance frequency.
The feedback parameter is the amplitude of the oscillation. When the tip
approaches the sample, it periodically touches the surface which leads to a
decrease in the amplitude. The height of the cantilever is permanently adjusted
such that the oscillation amplitude is kept at the set point. This reveals again
the topography of the sample. Tapping mode cantilevers usually have a spring
constant of around 10 N/m.

3. In non-contact mode, the cantilever oscillates at a small distance, usually
in the Å or nm range, from the sample. There are again two modes of operation.
In the amplitude modulation, the force between sample and tip is measured
by a change in the amplitude of the oscillation. In the frequency modulation,
the force between sample and tip is measured by a change in frequency. Non-
contact mode cantilevers usually have a spring constant of around 40 N/m.
In the present work, contact mode and tapping mode were used. All exper-

iments were conducted on a NT-MDT NTEGRA PNL system equipped with
the software Nova 1324. The deflection of the cantilever was measured through
an electric signal in the photo detector in the unit of nA. The height of the
sample was adjusted by a piezo tube in the sample stage. The images were
processed with Gwyddion 2.55.
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4.1.1. Force Curve

The AFM cannot only be used to image a sample by scanning but it also
provides the possibility to analyze the properties of single positions of the
sample via spectroscopy. This is achieved by a force curve. To this end, the tip
is retracted from the sample and then pressed against it until a preset force is
reached (load). Subsequently, it is retracted again until the starting height is
reached. For both curves, load and unload, a cantilever deflection vs. cantilever
height diagram is recorded. From the cantilever deflection, the force between
sample and tip can be calculated. An exemplary force curve on a three layer
CVD graphene membrane is shown in figure 4.1.

Force curves are usually performed in contact mode, but also possible in tap-
ping mode. They are a common tool to conduct nanoindentation experiments
[63].

4.1.2. AFM Bulge Test and Nanoindentation

The AFM can be used to conduct both Bulge Test and nanoindentation experi-
ments. With the right setup, both experiments can be performed subsequently.
This is a great advantage of the AFM compared to other Bulge Testing and
nanoindentation methods. More details about the experimental aspects of
Bulge Test and nanoindentation are given in chapter 5.

4.2. Helium Ion Microscopy (HIM)

The helium ion microscope (HIM) is a focused ion beam (FIB) system which
uses the noble gas helium for imaging. To this end, a focused beam of helium
ions scans over the sample. When hitting the sample, the helium ions generate
secondary electrons. These secondary electrons are detected and used to gen-
erate an image of the sample with a resolution of up to 0.25 nm [64, 65]. When
the sample is insulating, it will charge due to the deposition of the ions. This
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Figure 4.1.: Image of a force curve performed on a three layer CVD graphene membrane.
When the target deflection signal of 6 nA was reached at the height of -130
nm, there was no further lowering of the cantilever. Due to the attractive
forces between the sample and the tip, the tip jumps into contact with the
membrane from a distance of 5 to 10 nm. For the same reason, the membrane
is significantly pulled up during the unload process before it loses contact to
the tip.

positive charging can be compensated with an electron flood gun [66]. For the
imaging of very thin samples such as for example CNMs, it is often advanta-
geous to operate the HIM in transmission mode. In this mode, the secondary
electrons are generated by a polished metal surface below the sample instead of
the sample itself [67]. A detailed description of helium ion microscopy is given
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in [68].
HIM images were recorded on a Orion Plus helium ion microscope from Zeiss

by Michael Westphal and Daniel Emmrich.

4.3. X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy is a tool to identify the chemical composition
of a thin film by analyzing the binding energy of its electrons. XPS is based
on the photoelectric effect. The sample is irradiated with monochromatic X-
rays which leads to the emission of photo electrons. The kinetic energy of
the emitted photo electrons Ek is measured by a hemispherical analyzer. The
electron binding energy Eb is calculated as [69]

Eb = hν − Ek − Φ, (4.2)

where hν is the energy of the irradiating photons and Φ is the work function
of the spectrometer. The intensity of electrons is measured as a function of the
binding energy. Each peak in the spectrum can be associated with an element
and its chemical configuration [70]. The occurrence of the element associated
with the peak can be quantified by the intensity of the peak.
XPS can also be used to determine the thickness of a thin film. To that end,

the intensity of a peak associated with the substrate of the film is compared
to the intensity of the same peak from a reference sample. Electrons can only
contribute to the characteristic peak in the spectrum if they did not undergo
an inelastic collision before leaving the sample and reaching the vacuum. The
intensity of contributing electrons as a function of the depth d of their emission
is given by the Beer-Lambert relationship [69]

I = I0 exp[−d/(λIMFP cos θ)], (4.3)

where the inelastic mean free path λIMFP describes the average distance after
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which the number of electrons without inelastic collision reduced to 1/e of the
original value. The inelastic path depends on the investigated sample. For
BPT- and TPT-CNMs, it was estimated to be λIMFP = 32 Å [71]. The tilt
angle of the sample is denoted by θ. Since CNMs usually have a gold substrate,
comparison of the Au4f7/2 peak of the CNM with the same peak of a sputtered
gold sample yields the of the CNM.

4.4. Sader Method for the Determination of the Spring
Constant of the Cantilever

The Sader method [72] is a technique to determine the spring constant of
rectangular cantilevers. It is valid for cantilevers with L >> b >> t, where
L, b and t are the cantilevers length, width and thickness, respectively. For
standard cantilevers, this condition is usually satisfied. The Sader method is
based on two observations. Firstly, the spring constant of a cantilever can be
calculated by

k = 0.2427ρcLbt · ω2
vac, (4.4)

where ρc is the mass density of the cantilever. However, since the thickness of
a cantilever is hard to determine, equation (4.4) by itself is not very helpful for
the cantilever calibration. The second observation is that there is a frequency
shift between the fundamental resonance frequency in vacuum ωvac and the
fundamental resonance frequency in a fluid ωf . Both frequencies are related
by

ωvac = ωf

(
1 + πρfb

4ρct
Γr(ωf )

)1/2
, (4.5)

where ρf is the mass density of the fluid. The product ρct is the areal mass
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density of the cantilever and is given by

ρct = πρfb

4 (QfΓi(ωf )− Γr(ωf )) (4.6)

Γr and Γi denote the real and the imaginary part of the hydrodynamic func-
tion Γ which describes the total hydrodynamic force per unit length normalized
by the force per unit length required to excite a cylindrical beam with an iden-
tical cross section as the cantilever beam to the same amplitude and frequency
[73]. A detailed derivation of the hydrodynamic function can be found in [74].
Qf denotes the quality factor of the cantilever in the fluid. Equation (4.6)
is valid for Qf >> 1 which is usually satisfied when the measurements are
performed in air.

Substitution of equation (4.5) and (4.6) into equation (4.4) yields

k = 0.1906ρfb2LQfΓi(ωf )ω2
f (4.7)

which can be used for the cantilever calibration. A remarkable feature of
equation (4.7) is that the cantilever thickness is not needed for its calibra-
tion. Moreover, the determination of ωf and Qf are performed in the fluid,
for example in air. Therefore, no properties of the cantilever in vacuum are
required.
Cantilevers were calibrated with the mathematica notebook provided in [75].

Length and width of the cantilever were determined in an optical microscope
(Olympus BX51 equipped with an Olympus C-5060 camera). The fundamental
resonance frequency of the cantilever was determined in the AFM. The quality
factor was calculated by q = f/∆f , where ∆f is the full width of the peak at
the maximum amplitude divided by

√
2 [76].
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5.1. Sample Preparation

5.1.1. SAM Preparation

SAMs were prepared from solution. To this end, a substrate of 300nm Au(111)
on mica (from Georg Albert Physical vapor Deposition) was cleaned in an
ozone cleaner (UVOH 150 LAB by FHR Anlagenbau) for 3 minutes in order to
remove organic contamination from the substrate. Subsequently, the substrate
was rinsed with ethanol and blown dry with nitrogen.

The flask was cleaned with piranha solution (7 parts of H2SO4 with 3 parts
of H2O2). The substrate was immersed into 10 ml of dry and degassed N,N-
dimethylformamide (DMF) and a small amount of TPT molecules was added.
The flask was put under a nitrogen atmosphere and sealed. After that it was
heated to 70 °C and left for 24 h under constant stirring. After the formation of
the SAM, samples were taken out of the flask, rinsed with DMF and ethanol and
blown dry with nitrogen. The samples were stored under argon atmosphere.
TPT-CNMs from SAMs grown on silver were prepared by Linh Le Hoang

and ODT-CNMs were prepared by Raphael Dalpke.

5.1.2. Electron Irradiation

The formation of CNMs was achieved by electron induced cross linking in a
home built floodgun. To this end, the SAMs were mounted onto a sample
stage, contacted with clamps and put into high vacuum p < 3 ·10−7 mbar. The
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irradiation took place at an electron energy of 100 eV. In [77], the effect of the
electron dose was investigated by measuring the Young’s modulus of samples
which were irradiated with different electron doses. The Young’s modulus in-
creases with the electron dose and shows a saturation at 50 mC/cm2. From this
result it was concluded that the cross linking shows a saturation at 50 mC/cm2,
too. Therefore, the SAMs in the present work were irradiated with a dose of
50 mC/cm2.

5.1.3. Sample Transfer

Bulge Test and nanoindentation experiments require freestanding samples. To
this end, samples were transferred onto a Si3N4/Si substrate with a circular
hole in the center (Silson Ltd.). A schematic illustration of the sample on the
substrate is shown in figure 5.1.

Figure 5.1.: Schematic diagram of the sample on the Si3N4/Si substrate after the trans-
fer. The substrate consists of 500 nm of silicon nitride on top of 200 µm of
silicon. Over the small circular hole of the silicon nitride layer, the sample is
freestanding.

The transfer of the CNMs onto the Si3N4/Si substrate was achieved in the
following way. First, a protective double layer of Polymethyl methacrylate
(PMMA) was spin coated onto the CNM on the gold on mica substrate. Two
different photoresists were used: PMMA 50K (AR-P 639.04) and PMMA 950K
(AR-P 679.04, Allresist GmbH; 50K respectively 950K refer to the molar mass)
solved in n-butyl acetate ethyl lactate. Each resist was spin coated for thirty
seconds at 4000 revolutions per minute. After each spin coating step, the
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sample was annealed to 90 °C for five minutes in order to evaporate the solvent.
Secondly, the CNM on gold, stabilized by PMMA, was detached from the mica
substrate. To this end, the edges of sample were narrowly cut. Subsequently,
the sample was placed on top of an iodine solution with the relation of 1:4:40
I2 : KI : H2O by weight for 10 minutes in order to etch the gold at the edge
of the sample. Then the gold was separated from the mica by repeatedly
carefully dipping the sample into millipore water. When the mica substrate
was completely detached, the gold/CNM/PMMA sample was left floating on
the water surface. The sample was transferred back onto the iodine solution
with the help of a silicon wafer piece. When the gold was completely dissolved,
the sample was transferred onto millipore water for one minute and then onto
potassium iodide dissolved in water (1:10 by weight) for 10 minutes in order
to dissolve iodine residues. The CNM/PMMA sample was again washed on a
fresh millipore water surface. From this surface, it was carefully caught with
the target Si3N4/Si substrate. The sample was dried by annealing to 50 °C for
15 minutes.

5.1.4. Critical Point Drying

After the sample transfer, the protective PMMA layer was removed in a critical
point dryer (autosamdri-815, Tousimis Research Corporation). To this end, the
sample was placed in a chamber which was then carefully filled with acetone.
After waiting for one hour, the acetone was slowly replaced by CO2 (UN 1013,
Linde AG) at the critical point of liquid and gas. Subsequently, the CO2 was
released in the gas phase. The advantage of this procedure is that the capillary
forces are avoided which would occur if the liquid acetone was removed.

5.1.5. CVD Graphene

For this experiment, CVD graphene prepared on copper was used which was
supplied by Duisburg University. In order to perform Bulge Test and nanoin-
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dentation experiments, the graphene was transferred from the copper foil to a
Si3N4/Si substrate with a hole of a well defined size over which the graphene
is free standing after the transfer.
The transfer process was performed according to the protocol of Annika

Willunat [78] with only some slight modifications. First, a protective double
layer of PMMA was spin coated onto the graphene on the top side of the cop-
per. To that end, the copper foil was taped onto a heat resistant copy foil in
order to avoid PMMA on the sides and on the back of the sample. This is
necessary since a PMMA on the back side would disturb the etching process
in the next steps. The PMMA was spin coated in the same way as described
above for CNMs. Due to the vapor deposition there is also a graphene layer
on the back side of the copper foil. Before the copper can be etched, this back-
side graphene has to be removed. To that end, the sample was treated for 45
seconds with an O2-plasma etch which operates at 0.1 mbar, 25 to 40 keV, 1
mA and 500 Hz. The plasma dose was kept as low as possible as the plasma
also slowly removes the protective PMMA layer. Thus, an unnecessary long
exposure to the plasma increases the likelihood of creating defects during the
transfer process. The copper was etched in an ammonium persulfate solution
(3.5 g (NH4)2S2O8 per 100 ml H2O) for about one day. To remove the cop-
per residuals, the graphene/PMMA sample was first transferred into distilled
water for 5 minutes and then into a fresh ammonium persulfate solution for
2 hours. In order to avoid mechanical damage of the sample through contact
with the SiO2/Si transfer substrate, a thin water layer was kept between sample
and substrate during the transfer steps. To that end, the substrate is treated
in the UV/ozone-cleaner for 3 minutes which makes it hydrophilic. Then the
swimming sample was caught by positioning the transfer substrate under the
sample and carefully lifted up. After the copper was fully etched, the sample
was transferred into distilled water again for washing away the ammonium per-
sulfate. Then it was transferred into another beaker of distilled water, where
it was caught with the target substrate. In the case of single layer graphene,
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the Si3N4/Si substrate was used to catch the graphene/PMMA sample in the
same horizontal way as with the transfer substrate. To avoid water enclosures,
the sample was baked at 50 °C for one day. For the preparation of multi
layer graphene, the graphene/PMMA was carefully caught with another cop-
per/graphene foil. This yields a sample consisting of two layers of graphene
on copper. As above, the sample was baked at 50 °C for one day. The whole
transfer process was then repeated. When the desired number of layers was
reached, there was a final transfer onto the Si3N4/Si substrate as described
above. In the end, the PMMA was dissolved in acetone in the critical point
drier in the same way as for CNMs.
After preparation, all membranes were investigated in an optical microscope

(Olympus BX51 equipped with a Olympus C-5060 camera) in order to verify
their quality.

5.2. Execution of Bulge Test and Nanoindentation

5.2.1. Cantilever Choice

In order to precisely determine the membrane’s deflection, Bulge Test experi-
ments need to be performed in contact mode. The same is true for nanoinden-
tation experiments. However, before the start of the experiment, the central
point of the membrane needs to be determined. In order to minimize the risk
of rupturing the membrane, this is best done in tapping mode. Since it is not
possible to change the cantilever between the scan and the experiments, the
cantilever needs to be suited for all these applications. As described in chap-
ter 4, this requires a compromise in the choice of the spring constant. However,
since Bulge Test and nanoindentation are spectroscopic methods, they have dif-
ferent requirements for the spring constant than an image in contact mode. The
cantilever’s spring constant for nanoindentation should be roughly in the same
range or one order of magnitude smaller than the 2D modulus of the material
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under investigation. The Bulge Test can be executed with any spring constant.
Therefore, cantilevers with a spring constant of 6.3 to 9.3 N/m (All-In-One-Al,
Budget Sensors) were chosen for the experiments. The cantilevers were cali-
brated with the Sader method. The fundamental resonance frequency of the
cantilevers was in the range of 128 N/m to 150 N/m and the quality factor was
between 250 and 395.

5.2.2. Substrate and Optimal Membrane Diameter

Si3N4/Si substrates are available with different hole sizes, for example ca. 4.5
µm or ca. 16 µm. Depending on the type of membrane and experiment, sub-
strates with the small hole diameter or substrates with the larger hole diameter
are suited best for the experiments. In general, small membranes have a better
yield of intact membranes after the transfer process and particularly the criti-
cal point drying. For example, single layer CVD graphene was only possible to
prepare when the membrane diameter was 5 µm or smaller. But also TPT and
ODT membranes have a better yield when the membrane diameter is small.
On the other hand, when the membranes are small, the relative uncertainties
in the experiment are larger as it will be shown in section 6.4. This effect is
particularly large in the case of the nanoindentation experiment, but it also
exists for the Bulge Test.
There is however one exception to this rule. A larger relative indenter size

allows a better theoretical description of the nanoindentation experiment as
discussed in chapter 3. Therefore, when the theoretical uncertainty is the lim-
iting factor in the precision of the results, a small membrane radius is favorable.
But since in the present experiments, the experimental uncertainties were much
larger than the theoretical uncertainties, a membrane diameter of 16 µm is best.
Therefore, hole sizes were chosen preferably large under the condition that the
membrane was stable enough to be transferred onto the substrate with a good
yield.
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5.2.3. Experimental Setup

In order to perform Bulge Test experiments, a controllable pressure difference
is required. To this end, the sample was mounted on a home built pressure
cell, where the pressure difference was achieved by a uniform nitrogen flow.
The pressurized nitrogen was provided by a gas cylinder (Linde Gas) and the
pressure difference was controlled via the valve of the gas cylinder. The pressure
was detected with a pressure transducer (HCX001D6V, Sensortechnics) which
gives a voltage as the output signal. The voltage was measured with a digital
multimeter (VC840, Voltcraft). Each increment of 1 mV corresponds to a
pressure difference of 25 Pa. A schematic diagram of the experimental setup is
shown in figure 5.2(a). Each sample was glued onto a plexiglass holder using
epoxy glue. The edges of the sample were tightly sealed in order to avoid a
nitrogen leakage. The plexiglass holder with the sample was screwed onto the
pressure cell. An image of a sample mounted onto the sample holder is shown
in figure 5.2(b). The holder was connected to the nitrogen tubes and mounted
into the AFM. The carbon tape on the left side of figure 5.2(b) was used to
ground the sample to the potential of the AFM when nonconductive samples
were investigated.

For both, imaging of the samples as well as Bulge Test and nanoindentation
experiments, the sense height signal of the AFM was used. The signal was
calibrated with a grating set (Calibration grating set TGS1, NT-MDT) by
Christopher David Kaiser.

5.2.4. Determination of the Central Point of the Membrane

For Bulge Test and nanoindentation experiments it is crucial to know the cen-
tral point of the membrane. The most precise way for its determination is by
taking an image of the membrane. However, except for multi layer samples of
graphene, this involves a high risk of rupturing the membrane and was therefore
avoided. Instead, the membrane was imaged in tapping mode from bottom to
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Figure 5.2.: (a) Schematic drawing of the experimental setup used for the Bulge Test and
nanoindentation experiments. (b) Image of a sample mounted on the sample
holder. One of the tubes on the right side was connected to a nitrogen gas
cylinder while the second connection leads to a pressure transducer.

top until the edge of the membrane was reached. Then, the scan was stopped
manually. A typical image is shown in figure 5.3. Since the diameter of the
membrane was already known from the optical microscope, the knowledge of
the bottom edge of the membrane was sufficient to determine its central point
with an accuracy of 200 nm and the risk of rupturing the membrane was min-
imized. Depending on the sample, the images were recorded at a feedback gain
value of 0.1 to 0.35.

Nanoindetation experiments have a significant risk of damaging the mem-
brane. Therefore, Bulge Test experiments were carried out first.

70



5.2. Execution of Bulge Test and Nanoindentation

Figure 5.3.: Image of a three layer graphene sample (sample number 6) recorded in tapping
mode. The image was stopped when the bottom edge of the membrane was
reached.

5.2.5. Execution of the Bulge Test Experiment

When the sample is subjected to a pressure p, not only the membrane deflects
but also the part of the Si3N4 layer which is not supported by silicon slightly
gains in height. Since this effect does not reflect the membrane’s properties,
the height increase of the Si3N4 has to be corrected. Therefore, the membrane
deflection in the Bulge Test experiment was determined in the following way.
With no applied pressure, the height of the central point Op=0 and a reference
point Ap=0 were measured. The difference D = Op=0−Ap=0 was defined to be
the difference corresponding to a deflection of zero. For any applied pressure
p, the deflection was determined by the difference

h = Op −Ap −D. (5.1)

In this way, the deflection was measured by the height difference between
the central point of the membrane and the Si3N4 layer. In order to verify the
validity of this method, a double layer graphene membrane was scanned in
tapping mode at 0 and 10 kPa pressure difference. The images are shown in
figure 5.4. The deflection obtained by the right image was in good agreement
with the deflection determined by the method explained above. It shall be
noted that a tapping mode image of a bulged membrane is only possible with
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very stable membranes such as multi layer graphene. A drawback of these kind
of samples is that there are residues from the transfer process caught between
the layers which cannot be removed. This will be discussed in more detail in
chapter 6.

Figure 5.4.: AFM image (tapping mode) of a double layer graphene sample (sample number
3) recorded with no applied pressure (left) and at 10 kPa pressure difference
(right).

The principle of the Bulge Test experiment is to adjust the pressure p and
then measure both heights Op and Ap. The so-called load curve is started at
p = 0 and repeated until the maximum pressure is reached. The unload curve
reverses this process. In order to precisely determine the height Op, it has to
be avoided that the membrane is deflected downwards by the tip during the
measurement. To this end, the setpoint of the deflection was chosen to be only
0.04 nA above the deflection of the cantilever retracted from the sample. The
feedback gain value was reduced to 0.1. Hence, when the tip approached the
sample, it exerted almost no force on the membrane and thus the step height
of the tip can be neglected. It has to be noted that there is an offset of 0.1
nA in the Nova 1324 software between the deflection setpoint and the true
deflection of the cantilever in contact with the sample. For instance, when the
setpoint is a deflection value of 0.3 nA, the cantilever deflection in contact is
0.4 nA according to the Nova software. This offset has to be considered when
the setpoint is chosen. Moreover, the deflection of the retracted cantilever
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slightly changes over time. Therefore, the setpoint was adapted to the current
deflection before each height measurement.

The membrane was loaded with increasing pressure until the maximum pres-
sure, which is given by the highest pressure that the membrane can safely with-
stand, was reached. For TPT, the maximum pressure was calculated assuming
that TPT has a similar ultimate tensile strength to BPT obtained in [77]. For
all other membranes, the maximum pressure was estimated based on its struc-
ture and thickness. When the maximum pressure is reached, it is possible to
inverse the whole process and to decrease the load which is applied on the
membrane. This is called the unload curve. An example of a load and unload
curve is shown in figure 5.5. It can be seen that there is a hysteresis between
both curves. After being exposed to a high pressure, the membrane deflects
slightly more at a given pressure p, i.e. the membrane is more elastic. If the
membrane is loaded again immediately after the first cycle, the increased elas-
ticity persists. However, after a relaxation time of 30 minutes to an hour, the
loading curve follows again its original path. Since the unloading curve does
not reflect the membrane’s original elastic properties, the data of the unloading
curve were not considered for the determination of the Young’s modulus in the
present work. The hysteresis was studied in detail in [77] and [51].

5.2.6. Execution of the Nanoindentation Experiment

The nanoindentation experiment can be conducted after the Bulge Test exper-
iment is finished. In order to investigate the membrane in its relaxed state, a
short break between both experiments was taken. The nanoindentation exper-
iment is carried out by recording a force curve at the center of the membrane.
In order to acquire more data, it is useful to record multiple subsequent force
curves. However, each force curve should be taken at a slightly different posi-
tion in order to reduce the risk of rupturing the membrane. Therefore, usually
five force curves were recorded; one at the central point and four with a distance
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Figure 5.5.: Exemplary load and unload curve of a double layer graphene membrane in a
Bulge Test experiment.

of ca. 400 nm from the central point to the left, right, top and bottom.
The data analysis requires a reference force curve in order to calibrate the

photo detector output as a function of the bending of the cantilever. This is
achieved by a force curve on the Si3N4/Si substrate since the substrate does
not change its height during the force curve. Therefore, the height change
exclusively results in a bending of the cantilever. This reference force curve
was recorded at the end of the experiment.
As in the case of the Bulge Test, only the approach curve is considered for

the determination of the Young’s modulus.
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5.2.7. Data Analysis

The Bulge Test experiment yields a pressure vs. deflection curve. The recorded
curves were fit with a cubic function of the form p = k1h+ k2h

3, where k1 and
k2 are the free parameters of the fit. According to formula (3.26),

k1 = 4tσ0
r2 (5.2)

and
k2 = K(ν)Et

r4 . (5.3)

These fit parameters were used to determine the initial tension and the
Young’s modulus of the membrane.

The force curve in the nanoindentation experiment yields a photo detector
current vs. cantilever height curve. This curve is converted into a force vs.
deflection curve with the help of a reference force curve on the rigid substrate.
An exemplary reference force curve is shown in figure 5.6. Since the substrate
is rigid, the whole height decrease of the cantilever converts into its bending as
soon as tip and sample are in contact. Hence, by multiplication with the slope
of the fit curve, the photo detector current yields the cantilever bending in nm.
Multiplication with the spring constant of the cantilever k gives the force F
between tip and sample.

The membrane deflection was obtained from the cantilever height signal in
the following way [34]. The equilibrium point F/k = h = 0 is the point where
the cantilever cantilever deflection after contact to the membrane reaches the
same value as in retracted state as shown exemplary in figure 5.7. From this
point on, the membrane deflection h is calculated from the change in cantilever
height ∆z = z − zequilibrium by

h = ∆z − F/k. (5.4)

This correction is needed due to the fact that a change in cantilever height in
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Figure 5.6.: Reference force curve recorded on the substrate. The slope of the blue curve
was used to determine the cantilever bending per change in the photo detector
signal.

direction of the membrane leads to the deflection of the membrane but also to
an increase in the cantilever bending in the opposite direction of the membrane.
Therefore, in order to calculate the membrane deflection, the cantilever bending
has to be subtracted from the change in height ∆z.

After extracting the force vs. deflection curve, the data was fit with a cubic
function of the form F = k1h+k2h

3 as in the case of the Bulge Test. According

76



5.2. Execution of Bulge Test and Nanoindentation

Figure 5.7.: Approach curve from figure 4.1. The right hand side shows a magnification
of the area around the snap in point. At the marked point, the cantilever is
not bent. Hence the force between tip and sample F as well as the membrane
deflection h are equal to zero.

to formula (3.59), k1 and k2 are described by

k1 = 2πσ0t

ln(1/ρin) (5.5)

and

k2 = α(ν)Et(
1− ρ2/3

in

)3
r2
. (5.6)

These fit parameters were again used to determine the initial tension and
the Young’s modulus of the membrane. The Poisson’s ratio was assumed to
be ν = 0.165 for graphene [34] and ν = 0.35 for all CNMs [51]. For the
data analysis, OriginPro 2019b was used. For unknown reasons, some of the
pressure vs. deflection as well as force vs. deflection curves did not satisfy a
cubic formula. These data were not considered for the analysis.
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6.1. Determination of the AFM Tip Radius

As discussed in chapter 3, the analysis of nanoindentation experiments requires
the knowledge of the contact area between the AFM tip and the membrane.
However, even with the simplifying assumptions discussed above, the determi-
nation of the AFM tip size during the experiment is a nontrivial task because
the size of the tip changes while it is used. For the experiments of the present
work, the AFM tips were typically used for four to eight Bulge Test or nanoin-
dentation experiments. Before each experiment, at least part of the membrane
was imaged in tapping mode in order to find the central point of the mem-
brane. Therefore, the AFM tips were in a different condition depending on the
amount of time they were already used. As a first approach to estimate the
size of the tip, a new cantilever and a used cantilever after its last experiment
were imaged by helium ion microscopy. The results are shown in figure 6.1.

It can be seen that the used tip has a larger tip radius by the factor of 30
compared to the new tip. It is not possible to reconstruct the true size of the
tip during the experiment. Moreover, it is not clear whether the dirt particles
which are attached to the tip contribute to the contact area or not. However,
for two reasons it seems likely that the diameter of the tip is in the order of
magnitude of dmax = 1.48 µm. Firstly, as stated above, the membrane was
imaged before the first Bulge Test or nanoindentation experiment. Moreover,
as explained in the experimental section, Bulge Tests were always carried out
before the nanoindentation experiment was conducted. Therefore, even a new
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Figure 6.1.: HIM image of a new AFM tip (left) and a used AFM tip after its last experiment
(right). Each tip was fit with a sphere in order to estimate its size.

tip was already used significantly when the nanoindentation took place. Sec-
ondly, when the tip diameter is small, small changes at its surface lead to a
large increase of the tip diameter. In contrast, when the tip diameter is al-
ready large, large changes at its surface are needed for a further increase of
the tip diameter. Therefore, it can be assumed that the diameter of the sphere
increased rapidly when the tip was new, while the increase slowed down with
time.
In order to verify the hypothesis d ≈ dmax, a series of calibration experi-

ments was conducted. The idea of the experiments was to compare the re-
sults achieved by nanoindentation to the results achieved by the Bulge Test
for different membrane radii. When the membrane radius is small, the ra-
tio ρin = rindenter/rmembrane increases and hence the tip correction factor αtip
depends strongly on the indenter radius. On the other hand, for large mem-
brane radii, the dependence of the tip correction factor on the indenter radius
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is smaller. Therefore, if both methods agree for large membrane radii, it is
shown that they generally yield consistent results. If the results of Bulge Test
and nanoindentation additionally agree for small membrane radii as well, the
assumed tip size is likely to be true.

6.1.1. Calibration Measurements on CVD Graphene

Due to its highly ordered structure, pristine graphene is perfectly suited for
Bulge Test experiments as well as nanoindentation experiments. Moreover,
since graphene is electrically conductive, it is ensured that no static electric
fields influence the measurement. Therefore, CVD graphene was chosen for
the calibration experiments. To this end, seven CVD graphene samples were
prepared with different membrane diameters. An overview of the samples is
shown in table 6.1.

Table 6.1.: List of CVD graphene samples

Sample number Number of layers Membrane diameter [µm]
1 1 4.5
2 1 4.5
3 2 14.1
4 2 16.2
5 3 14.1
6 3 16.3
7 3 16.0

Despite their small membrane diameter, the single layer membranes were
very fragile and ruptured quickly. The double and triple layer membranes on
the other hand were very stable and endured many experiments.

The results of samples number 1 and 2 are shown in figure 6.2. It can be
seen that the results for Bulge Test and nanoindentation show a fairly good
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Figure 6.2.: Bulge Test and nanoindentation results for samples number 1 and 2. Each
cross represents one experiment. The left scale shows the 2D modulus of the
measurement while the right scale shows the corresponding Young’s modulus
of the measurement assuming a thickness of t = 0.335 nm [56]. An assumed
indenter radius of rmin = 24.25 nm leads to a tip correction factor of αtip = 1.16
while an assumed indenter radius of rmax = 740 nm leads to a tip correction
factor of αtip = 6.96.

agreement under the assumption that rtip = rmax = 740 nm while the results
yielded by rtip = rmin = 24.25 nm are not consistent. The best agreement
would be reached for a radius of rtip ≈ 600 nm. The total thickness t of the
membrane is of course greater than 0.335 nm. However, it is safe to assume
that the carbon residues on the membrane do not contribute as much to the
total 2D modulus of the graphene-residues composite as the graphene layer
does. For the estimation of the Young’s modulus of the graphene it is therefore
natural to assume the thickness t to be the thickness of the graphene layer, i.e.
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t = 0.335 nm.

Figure 6.3.: Bulge Test and nanoindentation results for samples number 4 to 7. Each cross
represents the averaged results of the sample number it is indicated with. An
assumed indenter radius of rmax = 740 nm leads to a tip correction factor
of αtip = 1.97/2.13/1.97/1.99 for samples number 4 to 7 while an assumed
indenter radius of rmin = 24.25 nm leads to a tip correction factor of αtip = 1.07
for all samples. Since the thickness of the double and triple layer samples is
unknown due to carbon residues between the layers, no corresponding Young’s
modulus can be calculated for these samples.

The results for the graphene samples with a large membrane diameter, sam-
ples number 4 to 7, are shown in figure 6.3. The Bulge Test results for sample
number 3 were unrealistically high. This is most likely due to the particles
which can be seen in figure 5.4 which hindered the deflection. Therefore, sam-
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ple number 3 was not considered for the analysis. For samples number 4 to 7,
the results for Bulge Test and nanoindentation show a fairly good agreement
under the assumption that rtip = rmax = 740 nm while the results yielded by
rtip = rmin = 24.25 nm are not consistent. These results show that the approx-
imation rtip ≈ rmax = 740 nm is a reasonable assumption for both membrane
sizes. Therefore, this value was chosen to be used for the evaluation of the
nanoindentation experiments in this work.

Figure 6.4.: Summary of the averaged results for all CVD graphene samples. The num-
ber next to each measured 2D modulus indicates the sample number. The
indentation experiments were evaluated using the tip size of rmax = 740 nm.

In order to show that there is no systematic error due to this assumption,
all results for CVD graphene are summarized in figure 6.4 again by taking the
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average of the individual measurements. The results are sorted by the number
of layers. It can be seen that under the assumption of r = rmax the results for
Bulge Test and nanoindentation agree within the range of ±25%.

Nevertheless, one has to be aware of the fact that there remains some uncer-
tainty regarding the true contact area between the AFM tip and the membrane
during the experiments. A quantification of the uncertainty will be calculated
in section 6.4. On the other hand, the fact that a large indenter size was used,
reduces the impact of the error due to the sum of the limits approach as it was
shown in figure 3.11.

6.1.2. Quantitative Analysis and Discussion

The main purpose of the above experiments was to determine the contact
radius of the AFM tip. Nevertheless, a quantitative analysis of the results
gives valuable insights into the dependency of the modulus on the preparation
method of the sample. The first observation is that the 2D modulus of the
single layer graphene is in the range of E2D = 5 N/m to E2D = 8 N/m. The
relative uncertainty of 2D modulus is ∆E2D/E2D ≈ ±40% in the case of the
Bulge Test and ∆E2D/E2D = +110%/ − 70% in the case of nanoindentation
(see section 6.4). From this result, the 2D modulus for the double layer and
triple layer graphene would be expected to be twice respectively three times
as high. However, as it is shown in figure 6.4, the 2D modulus of the double
layer and triple layer graphene is much higher than 16 N/m respectively 24
N/m. These results are explained by the fact that there are carbon residues1

from the transfer process trapped between the graphene layers as it was already
seen in figure 5.4. These contaminations contribute to the 2D modulus of the
membrane. In order to visualize the residues, sample number 5 was imaged by
HIM. The image is shown in figure 6.5. It can be seen that the membrane is

1Besides the carbon residues, a small amount of copper from the copper foil also remains
in the sample. However, investigation by Energy-dispersive X-ray spectroscopy (EDX)
showed that the amount of copper in the sample is below 1%.
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very inhomogeneous and hardly distinguishable from the supported graphene.
For this reason, the exact value of the measured modulus is only meaningful
for the single layer graphene samples.

Figure 6.5.: HIM image of CVD graphene sample number 5.

An AFM image of sample number 1 (single layer graphene) is shown in figure
6.6. It can be seen that there are no residues as there were present in the case of
multiple layers, for instance shown in figure 5.4 for the case of sample number 3.
This is reasonable since both sides of the graphene are in contact with acetone
when the PMMA is removed after the transfer. Therefore, organic residues are
removed.
The 2D modulus of E2D = 5 N/m to E2D = 8 N/m is significantly lower

than the 2D modulus measured in comparable experiments in the literature
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Figure 6.6.: AFM image (tapping mode) of sample number 1.

[79, 80]. In theory, CVD graphene can be as strong as exfoliated graphene [81,
82]. In practice, as shown in the literature, 2D modulus and tensile strength of
CVD graphene strongly depend on its preparation and particularly its transfer
method. For instance, a transfer with PMMA as a protective layer lead to a 2D
modulus of E2D = 55 N/m [79]. In that experiment, the PMMA was removed
by annealing the sample to 300 °C to 350 °C for 3 to 4 hours. On the other hand,
a transfer with poly dimethysiloxane (PDMS) as a protective layer lead to a
2D modulus of E2D = 328 N/m [80]. The PDMS was removed carefully after
annealing the sample to 100 °C for 10 minutes. The 2D modulus achieved by
this transfer method is almost as much as the 2D modulus of pristine graphene,
E2D = 340 N/m [34]. It is believed that the high temperatures of up to 350 °C
induce small defects which weaken the CVD graphene.

There are two possible explanations for the low 2D modulus measured here.
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Firstly, after the transfer, the supporting PMMA is removed by acetone in the
critical point dryer. It is not unusual that membranes rupture during this fi-
nal preparation step, especially thin membranes such as single layer graphene.
Therefore, it seems plausible that the critical point drying creates small de-
fects in the membrane which reduce the 2D modulus. A second explanation
is that during the preparation process, there are many transfers of the sample
between different beakers, for instance from the ammonium persulfate solution
to water. The transfers are performed with the help of a SiO2/Si wafer and
carried out very carefully as described in chapter 5. Nevertheless, the transfers
may mechanically induce small defects in the graphene sample.
The above results confirm that the preparation method has a large influence

on the 2D modulus of a material.

6.2. 2D Modulus and Young’s Modulus of Different
CNMs

The material of interest in this work are CNMs. Six kinds of CNMs were inves-
tigated: 1,1’,4’,1”-Terphenyl-4-thiol (TPT) from SAMs grown on Au substrates
and Ag substrates, 1-Octadecanthiol (ODT), PVBP (Polyvinylbiphenyl)-CNMs,
annealed TPT and annealed PVBP-CNMs. In the most cases, nanoindenta-
tion leads to the rupture of TPT and ODT membranes. Therefore, only few
nanoindentation experiments were conducted on these kinds of CNMs. All
other materials were examined by both methods.

6.2.1. TPT

TPT is a CNM which has a high potential for applications. It has been used
for rapid water permeation [4] as well as all carbon capacitors [7]. Its structure
is amorphous with an average pore size of 0.7 nm [4]. Chemical composition
and thickness of TPT were investigated by XPS in [18], see figure 6.7. The
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sulfur doublet located at 162.0 eV validates the presence of sulfur gold bonds.
The thickness of the TPT-CNM was determined to be 12 Å. The mechanical
properties of TPT were already examined in [51]. Here, these results shall be
expanded to the question whether TPT-CNMs from SAMs grown on an Ag
substrate have a significantly different modulus than TPT-CNMs from SAMs
grown on Au.

Figure 6.7.: XPS spectra of TPT. The images on the left show the C1s and the S2p peak
of the TPT SAM while the images on the right show the carbon C1s and the
sulfur S2p peak of the CNM [18].

TPT samples were prepared with a membrane diameter of 15 µm to 16.2
µm. Five membranes were successfully measured by the Bulge Test. The
results are shown in figure 6.8. It can be seen that there is no significant
difference between the two substrates. The 2D modulus for TPT is in the
range of 4.3 N/m to 6.5 N/m which corresponds to a Young’s modulus of 3.5
GPa to 5.4 GPa. The uncertainty of each individual measurement is up to
∆E/E = ±50%, see section 6.4. The results found earlier in [51] (supporting
information) are a Young’s modulus of 7.4 GPa to 8.7 GPa and thus slightly
outside the confidence interval. There are many possible explanations for this
discrepancy. As it was seen in the case of CVD graphene, small defects may
lead to a large decrease of the modulus. Such small defects may for instance
be induced by terraces in the Au substrate or mechanically through contact
with the silicon wafer during the transfer process. Moreover, small differences
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in the electron irradiation may also lead to slight differences in the structure
of the CNM. In the case of CVD graphene, different methods to proceed the
sample transfer in [79] and [80] led to a factor of 7 between the resulting moduli.
Therefore, the factor of approximately 1.8 which was found here does not need
to be contradictory. However, it should be kept in mind that the 2D modulus
of TPT strongly depends on the preparation conditions as well.

Compared to CNMs from other precursor molecules, TPT exhibits a similar
but comparably low Young’s modulus. A detailed study of CNMs from different
precursor molecules was conducted in [51].

It was also tried to characterize TPT by nanoindentation. However, only one
membrane was successfully measured while four membranes ruptured during
the first force curve. The 2D modulus of the measured membrane was found to
be 6.5 N/m which is in a reasonable agreement with the Bulge Test results. Un-
fortunately, the data of the Bulge Test experiment of the successfully measured
membrane did not follow a cubic curve and the membrane ruptured before a
second Bulge Test experiment was performed. The rupture of the membranes
usually did not occur in one distinct moment. Instead, the membrane partially
gave in which resulted in a flawed force curve. Only one rupturing event oc-
curred in a distinct moment. The force curve of the distinct rupture and an
exemplary force curve of a partial rupture are shown in figure 6.9. The distinct
rupturing event occurred at a force of 102 nN. The maximum stress that the
membrane can withstand could in theory be increased with a larger indenter
radius. However, since the tip radii used for the present experiments already
were very large, there is not much space for a further increase. Moreover,
since TPT is insulating, static charges between tip and membrane may dam-
age the sample as well. Therefore, a high risk of a membrane rupture during
indentation can hardly be avoided for TPT-CNMs. Nevertheless, if nanoinden-
tation experiments on TPT are desired, the yield of successful experiments can
probably be increased by using smaller membrane radii.
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Figure 6.8.: Bulge Test and nanoindentation results for TPT-CNMs from SAMs grown on
silver and gold. Each cross represents one membrane indicated with its sample
number. Sample number 1 was measured by nanoindentation while samples
number 2 to 6 were measured by the Bulge Test. The left scale shows the
2D modulus of the membrane while the right scale shows the corresponding
Young’s modulus assuming a thickness of t = 1.2 nm.

6.2.2. ODT

As stated in chapter 2, the standard precursor molecules for CNMs are aro-
matic molecules. However, it is also possible to form CNMs from alkanethiols,
provided the alkyl chain possesses a sufficient number of carbon atoms [83].
Aliphatic systems do not cross-link as effectively as aromatic systems. There-
fore, the destructive processes of the electron irradiation such as decomposition
and desorption are more relevant compared to the formation of CNMs from aro-
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Figure 6.9.: Force vs. deflection curve of two rupturing TPT membranes.

matic precursor molecules. This effect is illustrated by the XPS spectra shown
in figure 6.10(i). It can be seen that there is a significant loss of intensity in the
carbon signal between SAM and CNM. This loss of intensity is much higher for
ODT than in the case of TPT. The higher loss of carbon atoms implies that
CNMs from alkanethiols form a less dense network than CNMs from aromatic
precursor molecules. This finding is also confirmed by the pore distribution
shown in figure 6.10(ii). The average pore size of an ODT-CNMs was found to
be 22 Å and thus more than three times as large as the average pore size of a
TPT-CNM. The standard deviation of the pore size was found to be 7 Å. The
thickness of ODT-CNMs was also investigated by XPS [83]. It was found to
be t = 11 Å.
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Figure 6.10.: (i) XPS spectra of an ODT-SAM (a) and an ODT-CNM (b) in the regions
of oxygen, carbon and sulfur. (ii) Pore distribution of ODT determined by
transmission electron microscopy (TEM) [83]. Reproduced with permission.

The loosely connected structure of ODT compared to TPT suggests that
CNMs from alkanethiols have a decreased 2D modulus compared to CNMs from
aromatic precursor molecules such as TPT. Moreover, the reduced stability
leads to a lower yield of intact membranes after the transfer. Therefore, ODT
membranes were prepared with a membrane diameter of 6.3 µm to 7.4 µm with
one exception of d = 15.6 µm (sample number 3).

8 ODT-CNMs were successfully investigated by the Bulge Test. The results
are shown in table 6.2. It can be seen that the distribution of the 2D modulus
of the different membranes covers two orders of magnitude. This is a partic-
ularly wide distribution. When the pressure applied during the experiment,
some membranes exhibited a nitrogen flow through the membrane which led to
an upwards deflection of the AFM cantilever when it was in a retracted state
from the membrane. In the case of CNMs from aromatic precursor molecules,
this would be an unambiguous sign of a defect CNM. However, an investiga-
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tion in the HIM after the experiment revealed that the ODT-CNMs with a
nitrogen stream were still intact and had no defects which were visible in the
HIM. This is an indication of large pores. Therefore, it seems likely that the
membranes which exhibit a nitrogen stream detectable by the AFM cantilever
are slightly more porous than membranes which do not exhibit a detectable
nitrogen stream. Given that the pore size distribution shown in figure 6.10(ii)
is very wide, the existence of a sufficient or not sufficient nitrogen stream to
affect the AFM cantilever may be a purely statistical effect. However, it may
also be induced by tiny differences in the intensity or duration of the electron
irradiation which lead to a more or less porous membrane.

Table 6.2.: Bulge Test results on ODT

Sample 2D modulus [N/m] 2D modulus [N/m] Cantilever deflected
number Cycle 1 Cycle 2 by a nitrogen stream

1 1.3 0.7 No (first cycle)
Yes (second cycle)

2 0.14 Yes
3 0.71 Yes
4 1.2 2 No
5 3.7 6.4 No
6 0.1 Yes
7 0.07 1.8 Yes
8 2.7 1.2 No

A further indication that the nitrogen stream is caused by large pores is the
fact that the membranes with a detectable nitrogen stream exhibit a signifi-
cantly smaller 2D modulus than the membranes without a detectable nitrogen
stream. The distribution of the 2D modulus separated by measurements with
or without nitrogen stream are shown in figure 6.11. Since large pores lead to
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a reduction in the 2D modulus, it a reasonable to assume that the pores are
the cause of both effects.

Figure 6.11.: Bulge Test results for ODT. Each cross represents one Bulge Test experiment.
The left scale shows the 2D modulus of the membrane while the right scale
shows the corresponding Young’s modulus assuming a thickness of t = 1.1
nm.

A second remarkable feature of the ODT-CNMs is the fact that the 2D mod-
ulus results of a membrane showed significant deviations for the two different
cycles. This effect is particularly striking in the case of sample number 7.
Both cycles were recorded consecutively. The raw data are shown in figure
6.12. The pressure vs. deflection curve of the second cycle shows some noise at

95



6. Results

higher pressures. This is very common for membranes which exhibit a nitrogen
stream. Besides that, both cycles show reasonable data and there is no rea-
son to doubt the correctness of one of the two cycles. A possible explanation
for the different behavior of the two cycles is that the ODT membranes have
different regions which posses more or less cross links between the individual
ODT molecules. Regions with less cross links deflect more than regions with
more cross links. However, since all measurements are recorded at the center
of the membrane, more or less strongly cross linked regions are required to be
located within a maximal distance of 200 nm. Therefore, this effect seems
plausible to explain the deviations for samples number 1, 4, 5 and 8. But they
are not an explanation for the huge difference shown in figure 6.12.

Figure 6.12.: Pressure vs. deflection curves of sample number 7, cycles 1 and 2.
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The most likely explanation is that the deflection in the second cycle was
hindered by an outer factor. This may for instance be a particle deposited on
the membrane. Since ODT is an insulating material, static charges between the
tip and the membrane occur. These static charges may support the deposition
of a particle which was adhered to the tip. In theory, the deflection during
the first cycle could also be facilitated. But the only effect which facilitates
the deflection are defects in the membrane. If the first cycle was influenced by
defects, the same would be true for the second cycle. Therefore, a hindered
deflection in the second cycle is the most likely explanation for the observed
deviation.

It was also tried to characterize ODT by nanoindentation. Again, only one
membrane, sample number 1, was successfully measured. The resulting force
curve is shown in figure 6.13. The resulting 2D modulus is 2.4 N/m which is in
a reasonable agreement with the Bulge Test result of the first cycle. As stated
in table 6.2, sample number 1 only exhibited a nitrogen flow during the second
Bulge Test cycle. Since the indentation experiment was carried out between
the two cycles, it seems likely that it induced small defects in the membrane.

Three ODT-CNMs were ruptured by nanoindentation. Therefore, it can be
concluded that as for TPT, nanoindentation experiments on ODT-CNMs imply
a high risk of rupturing the membrane.

6.2.3. Pyrolized TPT

From the point of view of energy minimization, the amorphous structure of
CNMs is only a local minimum. Therefore, when provided with energy through
annealing, CNMs change their structure and transform into nanocrystalline
graphene [23, 84]. Nanocrystalline graphene is a conductive membrane with a
graphitic structure and a thickness similar to the original CNM. In an earlier
study on BPT-CNMs, it was found that this process, which is called pyrolysis,
increases the Young’s modulus of BPT from 12 GPa to up to 48 GPa [85] which
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Figure 6.13.: Force curve recorded on ODT sample number 1.

is similar to the Young’s modulus of graphite. The annealing temperature
required for the conversion was in the range of 800 K to 1000 K.
In order to compare the effect of pyrolysis on TPT to that on BPT, TPT-

CNMs were annealed to 700 °C to form nanocrystalline graphene. Unfortu-
nately, only one membrane was successfully measured. The results are shown
in figure 6.14. The results are in the range of 21 N/m to 34 N/m. Since there
is a slight loss of material during the pyrolysis, the thickness of the resulting
membrane was assumed to be t = 1 nm. The corresponding Young’s modulus
is in a reasonable agreement with the results for BPT from [23]. This suggests
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that the graphitic structure of the pyrolized membrane is independent of the
length of the precursor molecule.

Figure 6.14.: Bulge Test and nanoindentation results for pyrolized TPT. Each cross repre-
sents one measurement. The left scale shows the 2D modulus of the membrane
while the right scale shows the corresponding Young’s modulus assuming a
thickness of t = 1 nm.

6.2.4. PVBP and Pyrolized PVBP

PVBP is a new kind of CNM with a thickness of about 10 nm. The increased
thickness implies that PVBP-CNMs can be transferred without the stabilizing
PMMA layer. This is a great advantage for many applications, for instance
the investigation of electric properties [7, 86]. Therefore, it is of interest to
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investigate the 2D modulus of PVBP as well as pyrolized PVBP. To this end,
samples were provided by the company CNM Technologies. Two samples were
successfully measured. The results are shown in figure 6.15.

Figure 6.15.: Bulge Test and nanoindentation results for PVBP. Each cross represents one
experiment. The left scale shows the 2D modulus of the membrane while the
right scale shows the corresponding Young’s modulus assuming a thickness of
t = 10 nm.

It can be seen that both membranes exhibit a significantly different 2D mod-
ulus. A possible explanation for the large spread lies in the thickness of PVBP
of 10 nm. This makes PVBP thick enough to form cross-links in z-direction
as well but still very thin such that the number of cross-links in z-direction
may have a relatively large influence on the 2D modulus. Hence, the fact that
PVBP is a very thin material but nevertheless consists of multiple atomic lay-
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ers gives more options for statistical differences between individual membranes.
Moreover, the thickness of each individual membrane may slightly vary which
also opens the possibility of statistical differences.

Apart the large range of individual moduli, it can be seen the PVBP has a
similar Young’s modulus to TPT. This meets the expectation since the atomic
structure of PVBP-CNMs and TPT-CNMs are very similar with the main
difference that the thickness of the PVBP membrane is much higher. For
a more detailed study on PVBP, the measurement of more samples will be
required.

In the same way as TPT, PBVP-CNMs can be transformed into a membrane
with a graphitic structure through annealing. In order to investigate the effect
of pyrolysis on PVBP, PVBP-CNMs were annealed to 1100 °C. Two membranes
were successfully measured. The results are shown in figure 6.16.

It can be seen that, as expected, pyrolysis significantly increases the 2D
modulus and the Young’s modulus of the membrane. The 2D modulus of
pyrolized PBVP is the highest of the CNMs known to the author. This is due
to its graphitic structure combined with the thickness of approximately t = 8
nm after the pyrolisis. The Young’s modulus of pyrolized PBVP is slightly
lower than the Young’s modulus of pyrolized TPT.

Figures 6.15 and 6.16 show that both materials, PVBP and pyrolized PVBP
are suited for nanoindentation experiments. This is a further advantage of
PVBP.

6.3. Initial Tension

The data acquired during Bulge Test and nanoindentation also enable the cal-
culation of the initial tension and 2D initial tension of the membranes. How-
ever, while the Young’s modulus of a membrane is a property which depends
only on the material, the initial tension also depends on the transfer process.
In particular, the position of the membrane when it comes in contact with its
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Figure 6.16.: Bulge Test and nanoindentation results for pyrolized PVBP. Each cross repre-
sents one experiment. The left scale shows the 2D modulus of the membrane
while the right scale shows the corresponding Young’s modulus assuming a
thickness of t = 8 nm.

final substrate as well as heating and cooling steps during the transfer have a
large influence on the initial tension. Therefore, two membranes of the same
material may have a completely different initial tension. This observation was
used in [39] to compare the initial tension determined by the Bulge Test with
the initial tension determined by the wrinkles of the membranes in their optical
images. However, the optical analysis requires membranes with a lateral size
of at least 100 µm. When the membranes are smaller, the value of the initial
tension after the transfer process does not have a high significance. Neverthe-
less, for the sake of completeness, the results obtained for the initial tension
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shall be given in the following.

Figure 6.17.: Initial tension of CVD graphene membranes number 1 to 7. Each cross rep-
resents the averaged results of the indicated membrane.

The 2D initial tension of graphene membranes number 1 to 7 is shown in
figure 6.17. It can be seen that the results obtained by Bulge Test and nanoin-
dentation are only in a very rough agreement. In order to investigate this
discrepancy, it is useful to consider the standard deviation of the measure-
ments conducted on each membrane. The results are shown in table 6.3. Since
there was only one successful Bulge Test experiment for most membranes, the
values obtained for the Bulge Test are not very meaningful. Nevertheless, it
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can be seen that the standard deviation is very high, i.e. the value obtained
as the initial tension is not reproducible. In the case of indentation however,
except for membranes number 4 and 7, the standard deviation is reasonable.
This is an indication that the initial tension determined by nanoindentation
is more reliable than the initial tension determined by the Bulge Test. This
might be due to the fact that the determination of the membrane deflection
during the indentation is more precise than during the Bulge Test. The force
curve used for nanoindentation is taken within few seconds and the deflection
height is given by the cantilever height which is automatically determined by
the piezo crystal in the AFM. Each deflection value during the Bulge Test has
to be determined manually and between each data point there is a time differ-
ence of around one minute. Therefore, small changes in the room temperature
for example may slightly influence the membrane deflection.

The linear contribution to the force or pressure is the minor term and there-
fore prone to small deviations in the determined deflection. Hence, the deter-
mination of the initial tension is a challenging task, particularly with the Bulge
Test.

Table 6.3.: Standard deviation of the initial tension of the CVD graphene membranes and
the number of experiments for each sample

Sample number Standard deviation n Standard deviation n
by Bulge Test [N/m] by indentation [N/m]

1 / 1 0.002 4
2 / 1 / 1
3 / 0 0.012 10
4 / 1 0.035 6
5 0.056 3 0.008 14
6 0.036 2 0.012 9
7 / 1 0.031 10
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A very high standard deviation was also found for the initial tension deter-
mined by the Bulge Test for ODT membranes. The 2D initial tension ranges
from 0.013 N/m (sample number 2) to 0.068 N/m (sample number 1). Every
membrane was measured once or twice and the standard deviation is up to
0.041 N/m (samples number 1 and 5). The 2D initial tension of TPT mem-
branes ranges from 0 (sample number 4) to 0.083 N/m (sample number 5).
The initial tension found for pyrolized TPT, PVBP and pyrolized PVBP is in
the same range (between 0 and 0.066 N/m).

In the case that further investigations on the initial tension are desired,
it shall be recommended to utilize the nanoindentation method if possible.
However, it shall be stressed again that the initial tension is not primarily
a material property. Thus, the value of the initial tension after the transfer
process does not have a high significance and it is not possible to compare these
results to the results obtained in other experiments.

6.4. Uncertainty Estimation

6.4.1. Bulge Test

The determination of the 2D modulus and the Young’s modulus of a membrane
through the Bulge Test is subjected to systematic errors as well as statistic
errors. The systematic error in the determination of the 2D modulus and the
Young’s modulus by the Bulge Test is composed of two contributions: The
uncertainty in the theoretical description as well as the uncertainty in the
Poisson’s ratio ν. As stated in equation (5.3), the 2D modulus was calculated
by

E2D = k2r
4

K(ν) . (6.1)

For a given value of the Poisson’s ratio ν, the error of K(ν) is the error in the
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theoretical description. It was already determined to be ∆K(ν)theory/K(ν) =
+4%/ − 2.1% in chapter 3. However, for both CNMs and graphene, there
is also an uncertainty in the exact value of ν. For both materials, a relative
uncertainty in the Poisson’s ratio of ∆ν/ν = 20% is assumed. This leads to an
error of ∆K(ν)/K(ν) ≈ 10% in the case of CNMs and ∆K(ν)/K(ν) ≈ 1.5%
in the case of graphene.
The error of the membrane radius is assumed to be ∆r ≈ 0.1 µm. The

relative error depends on the membrane size. For the smallest membrane radii
of r = 2.25 µm, the relative error amounts ∆r/r ≈ 4.4%.

The error of the fitting constant k2 is composed of the uncertainties of the
height determination by the AFM, the error of the pressure determination by
the pressure transducer and the uncertainty of the fitting. These errors sum
up to an uncertainty of ∆k2/k2 ≈ 15% [76].
Besides these systematic errors, there is also a random error in the response

of the membrane to the pressure. This error is due to the fact that a membrane
may exhibit a significantly different pressure vs. deflection curve in different
measurement cycles. These differences may be due to slight changes in the
membrane structure during the previous measurement, small particles on the
membrane or different ambient conditions. The error due to the uncertain
response of the membrane also contributes to the error of the fitting constant
k2. The results of the 2D modulus of the same membrane measured on two
different days can vary up to 30%, in rare cases even more. Therefore, it is
assumed that ∆k2,ambient/k2 ≈ 30%. All errors are summarized in table 6.4.
All of the errors listed in table 6.4 are independent. The resulting relative

error ∆E2D is individual for each membrane due to the different membrane
radii and the differences between CNMs and graphene. It was calculated as

∆E2D =
√

(∆K(v))2 + (∆K(ν)theory)2 + (4∆r/r)2 + (∆k2)2 + (∆k2,ambient)2.

(6.2)
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Table 6.4.: Uncertainties in the determination of the 2D modulus by the Bulge Test

Error component Error description Error estimation

K(ν)theory Uncertainty in the +4%/− 2.1%
theoretical description

Poisson’s ratio Uncertainty in the value 20%
ν of the Poisson’s ratio

Radius r Uncertainty in the 0.1 µm
membrane radius

k2 Uncertainty in the determination 15%
of height and pressure

Deviations in the membrane
k2,ambient response due to 30%

ambient conditions

Depending on the membrane, the uncertainty ranges from ∆E2D/E2D ≈ 34%
to ∆E2D/E2D ≈ 38%. A detailed overview of ∆E2D for each type of membrane
is given in table 6.6 at the end of this section.

The uncertainty of the Young’s modulus is composed of the uncertainty of the
2D modulus and the uncertainty of the membrane thickness ∆t. It is estimated
to be ∆t = 10%. Additionally to the membrane itself, the carbon residues on
top of the membrane also contribute to the pressure required to deflect the
membrane. Since, in the case of single layer membranes, their contribution
is assumed to be much smaller than the contribution of the membrane, it
was neglected in the calculation of the Young’s modulus. This leads to an
overestimation of the Young’s modulus. Therefore, the error done by neglecting
the residues is assumed to be ∆Eresidues/E = 0/−20%. Due to the asymmetry
of ∆Eresidues, the total error of ∆E has to be estimated. An uncertainty of up
to ∆E/E = +40%/ − 50% seems reasonable. A detailed overview of ∆E is
also given in table 6.6 at the end of this section.

107



6. Results

6.4.2. Nanoindentation

In the same way as for the Bulge Test, the nanoindentation experiment is
subjected to systematic as well as statistic errors. According to equation (5.6),
the 2D modulus was calculated as

E2D = k2r
2

αtipα(ν) =
k2r

2
(
1− (rindenter/r)2/3

)3

α(ν) . (6.3)

The error in the theoretic description of the nanoindentation experiment was
already calculated to be ∆F (h)/F (h) = +5%/− 25% in chapter 3. An under-
estimation of the required force leads to an overestimation in the calculated
2D modulus and vice versa. Therefore, the relative error of E2D due to the
theoretic description is +33%/− 5%.

The uncertainty in the value of the Poisson’s ratio is again ∆ν/ν = 20%. This
leads to an error of ∆α(ν)/α(ν) ≈ 6% in the case of CNMs and ∆α(ν)/α(ν) ≈
2% in the case of graphene.
The error of the membrane radius is again assumed to be ∆r ≈ 0.1 µm. The

error of the fitting constant k2 is composed of the uncertainties in the deter-
mination of height and cantilever deflection by the AFM and the uncertainty
of the fitting. These errors are again assumed to sum up to an uncertainty of
∆k2/k − 2 ≈ 15%.
There is a large uncertainty concerning the radius of the indenter. From the

calibration experiments it was assumed that rindenter = 740 nm. However, when
a new cantilever is used, the radius of the indenter might be significantly lower.
Comparison of the results from Bulge Test and nanoindentation showed that
the assumption rindenter = rmax yields a good agreement for new cantilevers
as well as for used cantilevers. Only for the pyrolized TPT sample, where
a new cantilever was used, there was a significant deviation between the two
methods. This deviation might be explained by an overestimation of the tip
radius. Therefore, the author estimates the indenter radius to lie in the range
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300 nm ≤ rindenter ≤ 1 µm.
For the large membranes with a diameter of d ≈ 16 µm, which were mostly

used for the indentation experiments, the uncertainty in the indenter radius
leads to an error of the tip correction factor ∆αtip/αtip ≈ +19%/−28%. Hence,
the error of E2D due to the uncertainty in the indenter radius is +39%/−16%.
For smaller membranes, the error becomes very large, for instance +97%/−65%
in the case of d = 4.5 µm.

In the same way as for the Bulge Test, there is also a random error in the
nanoindentation caused by the response of the membrane to the applied force.
This uncertainty contributes again to the error in the fitting constant k2 and is
assumed to be ∆k2,ambient/k2 ≈ 30%. All errors are summarized in table 6.5.

Table 6.5.: Uncertainties in the determination of the 2D modulus by nanoindentation

Error component Error description Error estimation

∆E2D, theory Uncertainty in the +33%/− 5%
theoretical description

Poisson’s ratio Uncertainty in the value 20%
ν of the Poisson’s ratio

Radius r Uncertainty in the 0.1 µm
membrane radius

k2 Uncertainty in the determination 15%
of height and pressure

rindenter Uncertainty of the 300 nm ≤ rindenter
indenter radius ≤ 1 µm

Deviations in the membrane
k2,ambient response due to 30%

ambient conditions

In the case of nanoindentation, the errors are not independent since the error
in the theoretic description and the uncertainty due to the indenter radius both
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depend on the membrane size. Thus, the resulting relative error ∆E2D has to
be estimated. Since most of the occurring uncertainties in the nanoindentation
experiment are independent, a quadratic addition of the errors is still useful
in order to get a rough idea of the total error. To this end, the upper limit
of the total confidence interval was approximated by using the upper limits of
the confidence intervals in the formula

∆E2D = ((∆E2D, theory)2 + (∆α(ν))2 + (2∆r/r)2

+ (∆(1/αtip))2 + (∆k2)2 + (∆k2,ambient)2)1/2. (6.4)

In order to estimate the accuracy of this approximation, it has to be remem-
bered that the error in the theoretic description is relatively large for small
values of ρtextin and relatively small for large values of ρtextin while the error
in the estimation of the tip correction factor αtip is large for a large values
of ρtextin and relatively small for small values of ρtextin. Therefore, equation
(6.4) leads to a slight overestimation of the error ∆E2D. Thus, for the purpose
of being on the safe side, the uncertainty of ∆E2D was estimated by round-
ing up the result of equation (6.4). The lower limit of the confidence interval
was calculated in the same way. The uncertainty of the Young’s modulus was
approximated in the same way as for the Bulge Test.
The resulting relative error ∆E2D and ∆E for each type of membrane is

given in table 6.6. It can be seen that the Bulge Test is significantly more
precise than the nanoindentation experiment. The uncertainty in the Bulge
Test is similar to previous works [76].

6.5. Summary of all Materials

In this chapter, CVD graphene and five kinds of CNMs were investigated. The
graphene samples were mainly used for an indirect determination of the radius
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Table 6.6.: Overview of all uncertainties

Samples ∆E2D ∆E2D ∆E ∆E
Bulge Test Indentation Bulge Test Indentation

Graphene 1,2 ±38% +110%/ +40%/ +110%
−70% −50% −75%/

Graphene 3-7 ±34% +50%/ +35%/ ±50%
−45% −45%

TPT ±36% +50%/ +35%/ ±50%
−45% −45%

ODT 3 ±36% - +35%/ -
−45%

ODT 1,2,4-7 ±37% +70%/ +40%/ ±70%
−60% −50%

Pyrolized TPT ±34% +50%/ +35%/ ±50%
−45% −45%

PVBP ±36% +50%/ +35%/ ±50%
−45% −45%

Pyrolized PVBP ±34% +50%/ +35%/ ±50%
−45% −45%

of the AFM tip. Due to small defects induced during the transfer process,
the graphene samples exhibited a significantly smaller 2D modulus than CVD
graphene studied in comparable experiments in the literature [79, 80].

The examination of TPT showed that the modulus of TPT from SAMs grown
on a silver substrate exhibits no noticeable difference compared to the well
known TPT-CNMs from SAMs grown on a gold substrate. The Young’s mod-
ulus was found to be approximately 50% smaller than in previous experiments
[51] which is a significant deviation but not uncommon in the determination of
the 2D modulus and Young’s modulus.

Four new kinds of CNMs (ODT, pyrolized TPT, PVBP and pyrolized PVBP)
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were examined. A summary of the average 2D modulus and Young’s modulus
of all materials is given in table 6.7. The relative uncertainty is an estimation
based on table 6.6 and the following observation: When different samples are in
a good agreement, the measurement of multiple samples reduces the statistical
errors and hence increases the accuracy. Therefore, the uncertainty is slightly
smaller than average uncertainty of an individual membrane and method. On
the other hand, if there there is a significant deviation between different sam-
ples, the uncertainty of the average modulus of the material is larger than the
uncertainty of the individual membranes due to an additional statistical in-
fluence. This applies to PVBP, where the thickness of the membrane is less
reproducible than in the case of CNMs based on monolayers. ODT represents
the extreme case of very large membrane to membrane deviations. In this case,
no confidence interval can be given. Instead, a range of moduli is stated. A
graphical summary of the Young’s modulus is given in figure 6.18.

Table 6.7.: Summary of the 2D modulus and Young’s modulus of the examined materials

Material 2D modulus Young’s modulus Relative
[N/m] [GPa] uncertainty

CVD graphene 6.6 19.8 +60%/− 50%
(after transfer)

TPT 5.3 4.4 ±40%
ODT 0.07-6.4 0.06-5.8 /

Pyrolized TPT 28 28 ±40%
PVBP 43 4.3 +100%/− 60%

Pyrolized PVBP 106 13.3 ±40%

All measured CNMs exhibit a Young’s modulus which lies in the typical
range for polymers [87]. After pyrolysis however, the Young’s modulus becomes
similar to the Young’s modulus of graphite.
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Figure 6.18.: Summary of the Young’s modulus of the examined materials.
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7. Conclusions of the Thesis

In the theoretical part of this work, a mathematical description of Bulge Test
and nanoindentation was given. A pressure-deflection relationship and a force-
deflection relationship were derived which describe the experiments as precisely
as possible while at same time allowing a practicable data analysis. The accu-
racy of both formulas was estimated. In the case of the Bulge Test, the sum of
the limits formula was shown to be significantly more precise than Beams’s for-
mula which is the most frequently used formula in the literature. Furthermore,
it was shown that the error done by superposing the small deflection limit and
the large deflection limit is very small while the error induced by the other
required assumptions is more relevant. In the case of nanoindentation, it was
shown that the tip correction factor αtip needs to be considered for an exact
description of the experiment. Moreover, an estimation of αtip was given which
is well suited for the evaluation of nanoindentation experiments. These findings
are essential for the correct data analysis of Bulge Test and nanoindentation
experiments.

In the experimental part of this work, it was demonstrated how Bulge Test
and nanoindentation can be executed consecutively. The Bulge Test was found
to be a reliable method which is suited for any kind of membrane. Nanoin-
dentation was found to be suited for graphene and pyrolized samples as well
as for PVBP while nanoindentation on TPT and ODT membranes entailed a
high risk of rupturing the membrane. The analysis of nanoindentation exper-
iments requires the knowledge of the radius of the AFM tip. The radius was
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estimated by a combination of two methods. Firstly, a new cantilever and a
used cantilever were imaged in the HIM. Secondly, the results of Bulge Test and
nanoindentation were compared for different tip correction factors and different
membrane sizes. With this method, a very high tip radius of rindenter = 740 nm
was determined. Due to the uncertainty of the indenter radius, the uncertainty
of the 2D modulus determined by nanoindentation was found to be higher than
the uncertainty of the 2D modulus determined by the Bulge Test. Neverthe-
less, the results of the nanoindentation experiment are a valuable contribution
to the determination of the 2D modulus and Young’s modulus. If more work
with the nanoindentation method is desired, a detailed study on the tip radius
during the experiment seems useful.

With these two methods, five different kinds of CNMs were examined. The
2D modulus of TPT was determined to lie in the range of E2D = 4.3 N/m to
E2D = 6.5 N/m which corresponds to a Young’s modulus of 3.5 GPa to 5.4
GPa. TPT-CNMs from SAMs grown on a gold substrate and TPT-CNMs from
SAMs grown on a silver substrate showed no difference.
The 2D modulus of ODT-CNMs was shown to have a very broad distribution;

it lies in the range of E2D = 0.07 N/m to E2D = 6.4 N/m which corresponds
to a Young’s modulus of 0.06 GPa to 5.8 GPa. The reason for this wide range
is believed to be the wide distributions of pores with a pore size of up to 60
Å. The ODT-CNMs with a high 2D modulus seem to be less porous than
the ODT-CNMs with a low 2D modulus since the latter allowed a significant
nitrogen stream through the membrane when subjected to a pressure difference.
A new material called PVBP was investigated which is a CNM with a thick-

ness of approximately 10 nm. It was shown that the 2D modulus of PVBP lies
in the range of E2D = 12 N/m to E2D = 70 N/m. This increase in the 2D
modulus of PVBP compared to TPT reflects the higher thickness of PVBP.
The Young’s modulus of PVBP is 1.2 GPa to 7 GPa and thus very similar to
TPT. For a more detailed study on PVBP, the measurement of more samples
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is necessary.
Pyrolysis was shown to increase the 2D modulus of the membrane by a factor

of approximately 5 to 10. This increase applied to TPT as well as PVBP.

2D materials are still rather new and the understanding of their properties as
well as their molecular structure is still in the process. The elastic properties
of the membranes studied in the present thesis are one element in the big
picture of the properties of these materials. The knowledge of the 2D modulus
and the Young’s modulus of these membranes will hopefully contribute to a
fundamental understanding of the materials and also help in applying them in
new technologies.
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A. Mathematica Source Code for the
Bulge Test Theory

(1) Calculation of B0 in the case of no initial tension.

clear[b]
v=0.35
f:=b(1− v)− 1/b2 ∗ (3− v)− (5− v) ∗ 2/(3 ∗ b5)− (7− v) ∗ 13/(18 ∗ b8)− (9−

v) ∗ 17/(18 ∗ b11)− (11− v) ∗ 37/(27 ∗ b14)− (13− v) ∗ 1205/(567 ∗ b17)
Plot[f,b,0,10]
x = FindRoot[f,b,1]

(2) Calculation of an array of values of B0 as a function of the initial tension
σ0. Every parameter is used for one value of the pressure p.

clear[b]
clear[y]
v=0.35
sigma=0, 0.005,0.006, 0.007, 0.008,0.009, 0.01,0.011, 0.012,0.013, 0.015,0.017,

0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.14, 0.16, 0.18,
0.2, 0.22, 0.24, 0.26, 0.28, 0.3,0.32,0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46,0.48,0.5,
0.53, 0.56,0.6,0.64,0.68,0.72,0.76,0.8, 0.85, 0.9,0.95,1,1.1, 1.15,1.2, 1.25, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.3, 4.6, 5, 5.5,
6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26,
28, 30, 32, 36, 40, 50, 60, 80
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A. Mathematica Source Code for the Bulge Test Theory

y={}
f:=b(1− v)− 1/b2 ∗ (3− v)− (5− v) ∗ 2/(3 ∗ b5)− (7− v) ∗ 13/(18 ∗ b8)− (9−

v) ∗ 17/(18 ∗ b11)− (11− v) ∗ 37/(27 ∗ b14)− (13− v) ∗ 1205/(567 ∗ b17)− sigma
Plot[f,b,0,10]
For[i=1,i<111,i++,x= FindRoot[Extract[f,i],b,1]; y=Append[y,x]]
Print[y]

II
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