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Abstract

Monitoring a learner’s performance during practice plays
an important role in scaffolding. It helps with scheduling
suitable practice exercises, and by doing so sustain learner
motivation and a steady learning progress while they move
through the curriculum. In this paper we present our approach
for monitoring the learning progress of students learning to
play piano with Hidden Markov Models. First, we present and
implement the so-called practice modes, practice units that
are derived from the original task by reducing its complex-
ity and focusing on one or several relevant task dimensions.
Second, for each practice mode a Hidden Markov Model is
trained to predict whether the player is in the Mastered or
NonMastered latent state regarding the current task and prac-
tice mode.

Introduction
For decades, a large research field has focused on developing
intelligent tutoring systems (ITS) that provide scaffolding to
learners in the absence of teachers or experts (Mousavinasab
et al. 2021; Almasri et al. 2019). Monitoring a learner’s per-
formance as they practice plays an important role in scaf-
folding (Zydney 2012)1. Like most skills that we learn in
sports or music, playing piano is a complex skill that con-
sists of numerous subskills that we need to master gradu-
ally. These include being able to play correct notes, correct
rhythm, being able to play with multiple fingers and, further-
more, coordinate both hands playing different parts of the
tune independently. To this end, first, we present multiple
practice modes to split up the complexity of a task for the
player with a focus on rhythm, pitch or fingering, respec-
tively. Second, we create Hidden Markov Models (HMM)
to learn when a practice mode is mastered. This approach is
a building block that in the long-run will enable an Intelli-
gent Tutoring System (ITS) to generate an informed practice
schedule based on the learner’s progress (e.g. as in Mu, Jet-
ten, and Brunskill 2020). Thus, our next goal is to integrate
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1This paper is part of an already existing project, in which
an artificial intelligent tutoring system teaches a novice to play
the piano. More information is available under the following
links: https://ni.www.techfak.uni-bielefeld.de/node/3637, (Ziegen-
bein et al. 2021)

research presented in this paper with a practice schedule op-
timization that employs Gaussian Processes to provide an
optimal practice mode to the learner based on their talents
and their skill level (Moringen et al. 2021).

To train the HMMs and evaluate them with respect to a set
of practice modes we have conducted a small-scale2 quan-
titative study. A video highlighting how the study was run
can be found online (vid 2020). For each practice mode, a
Hidden Markov Model is trained to predict, given current
performance measures and the current latent state, whether
the player is still in the Non-Mastered latent state or is ready
to be moved to the Mastered state. Prior to the practice
sessions, we allocated a suitable level at which the learn-
ers needed to start to practice with exercises, being neither
too easy nor too difficult. To this end, the study participants
went through a dynamic difficulty adjustment (see Section
Dynamic Difficulty Adjustment). This resulted in an assign-
ment of a task on a corresponding complexity level for each
study participant. An important feature of our approach is
that each HMM is trained for the respective practice mode,
but does not take a particular task or complexity level into
consideration. With this approach, we need as many HMMs
as practice modes which then can be applied to track the
learner’s state independent of the complexity level or task.
In this paper we show preliminary results that we achieved
for HMM-training. A more detailed report can be found in
the bachelor thesis (Ziegenbein 2021) on which this paper is
based.

Related Work
To teach successfully and with the best possible outcome,
models for students need to be individualized (Lee and
Brunskill 2012) and the student needs to be adequately chal-
lenged and promoted or encouraged to achieve maximal en-
gagement (Mu, Jetten, and Brunskill 2020). Learning Sys-
tems or Intelligent Tutoring Systems (ITS) are not novel -
there exists a variety of different systems (Koedinger et al.
2013). There is research on ITS using Case-Based Reason-
ing (Soh and Blank 2008) or POMDP (Rafferty et al. 2011),
where the learner’s knowledge (skill level) is represented in
the state. Since we are not only building a computer system,

2Due to Corona the number of study participants was strongly
restricted.



but a system that interacts with, learns from and depends on
the human user, there are a few constraints. Since it is diffi-
cult and costly to generate big data in this domain, we have
to learn from a learner’s past to predict their future behav-
ior. In addition, we have to be aware that humans are non-
stationary and sometimes act irrationally (Brunskill 2018).

Bayesian Knowledge Tracing (BKT) has been shown to
be successful in tracing student knowledge in various educa-
tional applications (Corbett and Anderson 1994). The BKT
model is an HMM with two hidden states “mastered” and
“not mastered” and two observable states, “correct” and “in-
correct”. This model helps to explain that correct answers
are not always made because of a mastered state of knowl-
edge but rather might be a “lucky” guess. Conversely, incor-
rect answers might be caused by a slip in the mastered state
and are not evidence for a non mastered knowledge state. In
this paper we demonstrate application of this approach to a
new domain, learning to play the piano with practice modes.

Practice Modes
Due to its complexity, piano practice is broken down into
multiple practice modes as defined in Moringen et al. (2021).
Each practice mode is focused on specific aspects a piano
player might struggle with. The decomposition into practice
modes was chosen based on informal interviews with piano
teachers (see acknowledgement in Moringen et al. 2021, for
more information).

The idea is that only helpful and necessary practice modes
in a limited count will be given to the player, based on their
performance or rather their error values. The practice modes
used in the study divide the task by only playing with the left
hand (LeftHand) or only playing with the right hand (Right-
Hand), reducing the task to use only one pitch and there-
fore focusing on rhythm (PlayRhythm) and playing the piece
slower (Slower) with less beats per minute. These modes
have been chosen as they cover the timing aspect, as well as
fingering, pitch and two-hand coordination. The piece with-
out any adaption or focus is also considered a practice mode
and is referenced to as Identity.

Curriculum
As with any educational task, it is important to design a cur-
riculum that fits the subject as well as the student. To per-
form a piece well and play piano at a certain skill level one
needs to master prerequisite levels, which in turn might also
have prerequisites. Those dependencies are considered as
the prerequisite structure, which is built in a tree-like fashion
and can be seen in the bottom of Figure 1. The player needs
to first master the prerequisite levels before being able to
master the levels which depend on them. Since the particular
order of levels, as long as the prerequisite dependencies are
adhered to, does not matter, the levels are linearly ordered
to form a curriculum. In Figure 1, one can see a possible
curriculum ordering derived from the prerequisite structure
below. The player may move on to the next level when the
previous level has been mastered. This order is fixed for ev-
ery player.

Figure 1: Example of one possible linear curriculum that has
been ordered based on the prerequisite structure seen on the
bottom. - figure from Mu, Jetten, and Brunskill (2020)3

In the case of piano playing, a suitable example would be
that a player first plays a level with only the left hand and a
level with only the right hand, before moving on to a level
in which both hands play together. The single-handed levels
would be the prerequisite levels for the both-handed level.

The aforementioned levels are complexity levels in the
case of piano playing. The complexity levels are defined on
various parameters, for example, note range or values and
are learned on the classification of advanced piano pieces
by Parmar, Reddy, and Morris (2021). With each level, the
complexity increases.

In our approach, there is a variety of scores for each com-
plexity level, as each score is randomly generated based on
the task parameters (Moringen et al. 2021), such as rhythmic
resolution, number and range of notes, number of fingers,
number of notes per bar, number of bars, etc. Each score
can be practiced with a multitude of different practice modes
with one score-practice mode pair referred to as a task. Each
time the player plays a task, it is called a practice opportu-
nity. The player usually plays multiple practice opportunities
on the same task, which is referenced to as a sequence. An
overview of all these terms can be found in Figure 2.

Dynamic Difficulty Adjustment
Optimal learning by the piano player can be achieved when
the player is neither overwhelmed nor unchallenged, but in a
state of flow, as described by Csikszentmihalyi (1990). The
complexity level that achieves this needs to be individually
found for each student, as it should be equal to the current
skill level of the student.

To achieve this, Hidden Markov Models are used to pre-
dict mastery, which results in giving the next task to the
player. In order not to bore the player in the beginning, while
going through many tasks that are below the skill level of
the player, a dynamic difficultly adjustment is introduced.
Dynamic difficulty adjustment is widely used in level-based
games (Xue et al. 2017). To find the correct starting level on
which the player enters the learning process, they are pre-
sented with tasks in practice mode Identity and given exactly
one practice opportunity for each task. Since this project is
generally tailored towards novices, it makes sense to start

3The displayed colors bear no meaning in the context of this
paper.



Figure 2: This is an overview figure of how one practice opportunity is generated, played and used to predict the HMM with
the corresponding terminology.

with the easiest task. Then, the student subsequently per-
forms tasks of the next highest complexity level, until the
performance drops under a certain threshold. At this point
the current complexity level is set as the initial complex-
ity level at which the regular training starts with multiple
practice modes. The performance will be measured by error
values regarding the player’s performance, e.g. pitch error,
timing error, etc.

Piano Practice HMM
A Hidden Markov Model (HMM) (e.g. Stamp 2004; Lee
et al. 2021), is a statistical model that consists of latent states
and observable variables. The latent states are not observ-
able, but generate certain observations, which in turn can be
used to train the HMM, i.e. generate information on the hid-
den states and the transitions between them. The transition
between hidden states are modeled as a Markov chain.

Let A be the transition probability matrix of the hid-
den states, and π be the start probability vector for those
states. The probability of a certain observation occurring,
also called the emission probability, can be any probabil-
ity distribution with parameters θ. Those can be represented
as the observation probability matrix B. A Hidden Markov
Model is completely specified by π,A and θ or B.

In order to be able to tutor a player adequately, one needs
to know whether a player has mastered a specific task. This
is not obvious but needs to be derived from observable and
measurable values. Thus, we define a Piano Practice Hidden
Markov Model (PPHMM) as shown in Figure 3.

The hidden states should model if a player has mastered a
certain task. Thus, two states are needed: NonMastered and
Mastered. Since a mastered task means that the skills of the
player now include this task, no transition from state Mas-
tered back to state NonMastered is possible. Thus, the transi-
tion probability between Mastered and NonMastered should
be 0.

The observations of piano playing are performance based
measures, in this case the error values. The error values are
recorded for both left and right hands and are normalized by

Figure 3: Structure of the PPHMM. The two states encode
the current knowledge of the player, while the observations
are error values that the player makes while playing.

the number of notes or number of bars. The values describe
errors in pitch, rhythm, timing and if the player played more
or less notes than required, and can be seen in Figure 3.

Study
To collect suitable data to train the HMM and in turn predict
and trace the current knowledge or skill state of the player,
a study was conducted with 12 study participants, 1.5 hours
each. Due to the corona pandemic the study had to be con-
ducted at a relatively small scale.

The corresponding code can be found at the Github repos-
itory on branch PractiseModes (Ziegenbein et al. 2021). The
technical details on how to run the code to reproduce the
study can be found in the README file. A video high-
lighting the software and the conduction of the study can
be found online (vid 2020).

Each participant had time to familiarize themselves with
the study equipment and setup, especially the keyboard. Ev-
ery participant started by going through the dynamic diffi-
culty adjustment, as described above. The piece that was
generated at the last complexity level of the dynamic dif-
ficulty adjustment stays the same, but is thereafter trained



with various practice modes.
Due to the limited number of study participants, the or-

der in which the practice modes are to be trained is fixed.
This order should be selected in order to maximize learning
success, which is why - based on piano books for beginners
(Thompson 1959; Willard A. Palmer 1994; Frances Clark
2002) and interviews with piano teachers - the following or-
der was selected: Right Hand - Left Hand - Play Rhythm -
Slower - Identity. Complexity levels which do not include
both hands will start with practice mode Play Rhythm.

Each practice opportunity is rated by the participant and
the experimenter on a scale: very bad - bad - okay - good-
very good. The task is repeated until both the study partici-
pant and the study conductor agree that the task is mastered.
This is important to make sure that each sequence contains
a transition to the Mastered state. The study participant con-
tinues through all practice modes on that complexity level
and then moves on to the next complexity level. This is re-
peated for roughly 90 minutes for each study participant.

Participants who previously played an instrument per-
formed significantly better. They did not start at a higher
complexity level in the dynamic difficulty adjustment com-
pared to the non-musicians, as most of them have not played
piano but rather a different instrument. They did, however,
master tasks faster, which in turn meant they ran through
multiple complexity levels, showing a higher learning ve-
locity. Only one participant played piano in their childhood,
which lead to a higher starting complexity level by the diffi-
culty adjustment.

Another interesting thing to observe was the handling
of errors. Most knew when they had played a wrong note
or made a timing error. Often that led to louder following
notes, as the key was pressed faster and harder (i.e. post-
error speeding, Paas et al. 2021). It would be interesting to
see if the key velocity as a measure can identify errors as
well, especially for novices.

Training of Models
All sequences of the recorded study data with the same prac-
tice mode were used to train one HMM for that practice
mode. This was done with the hmmlearn library (Lee et al.
2021).

To train a Hidden Markov Model based on observations,
the Baum-Welch algorithm is used. It is an Expectation-
Maximization algorithm, which means that it might end up
in a local optimum, instead of the global optimum. Because
of this it is important to perform the algorithm multiple times
and try different initial values to find the best possible model.

For each practice mode, a separate HMM with Gaussian
emissions, a diagonal covariance matrix and two states was
created. The models were initialized with a start probability
vector π, as well as an initial transition matrix A. A PPHMM
with two states has a start probability vector π of (1.0, 0.0),
since the player always starts in the NonMastered state. The
initialization for the 2x2 transition matrix A were varied.

We generated models based on the study data with two
states, but only the model for practice mode Left Hand was
suitable. The models for the rest of the practice modes un-
fortunately did not bear any merit.

In an attempt to generate more sensible models, we tried
to produce simplified data with a better defined division in
error values between Mastered and NonMastered states. The
simplified data was recorded by intentionally playing very
good or very bad. This lead to a very clear divide in error
measures. These practice opportunities were then ordered in
sequences similar to those recorded in the study. That means
that first bad practice opportunities were given and then the
last two or three practice opportunities were good. The num-
ber of bad practice opportunities in the sequences ranged
from 3 to 13.

This method was very successful as the best performing
model predicted all sequences of the simplified data cor-
rectly, when trained on all error measures.

Analysis of the Model
The model describe above using simplified data will now be
applied to the recorded study data.

The performance of a model is judged by multiple crite-
ria. The transition matrix (TransMatrix) should be reason-
able, which means there should be no transition possible
from state Mastered to state NonMastered. The probability
to stay in state NonMastered should be significantly higher
than the probability to transition out of it into the Mastered
state. Another measure to analyze models are the means of a
state (Mean) or the mean observations in a state. In this case,
these are the mean error values of those practice opportuni-
ties that have been assigned to that state. The means should
be consistent, meaning that all error values in state NonMas-
tered should be significantly higher than in state Mastered.
In the study, both the experimenter and the study partici-
pants ranked each practice opportunity, which were trans-
ferred to a numerical scale with 1 being ‘very good’ and 5
being ‘very bad’. The distribution of these labels were de-
picted in a beanplot and judged by how distinct the differ-
ence in mean between the two states and the general distri-
butions of the states are. This criterion is referenced as La-
belDistr below. The HMM is used to predict in which state
a person is at each practice opportunity of a sequence, so it
only makes sense to look at the predicted states in a sequence
as well. Since there is no easily available ground truth there
is no way to say if a sequence is correctly classified or not,
but it is possible to see how plausible the predicted states are
given the way the study was conducted. If the experimenter
and the study participant felt that they had mastered a given
task, a new task would be issued. That means that the Mas-
tered states should be at the end of the sequence and should
be the last one to four practice opportunities. The percent-
age of plausible sequences are listed in the table below and
referred to as PredStates.

The model on the simplified data converged to a sensible
transition matrix, and means of the states as seen in Equation
1 and Table 1 respectively. Compared to other models gen-
erated on the same data it also has the highest score, which
is the summed log likelihood over all observations o ∈ O.

ASimplifiedData =

[
0.8293 0.1707
0.0 1.0

]
(1)



state pitch hold time timing missing notes extra notes
0 0.2682 3.3372 0.2315 0.1674 0.0455
1 0.0 1.3777 0.0242 0.0 0.0024

Table 1: Means of states of model trained on simplified data

The natural question to ask next is if the model trained on
the simplified data would perform well also on the recorded
study data. The trained model was applied to predict the
states of the recorded study data separated by practice mode.
The performance of this model applied to each practice
modes in the study data can be seen in Table 2.

While these results are not bad, they are not optimal as
became clear when looking at the predicted states. For prac-
tice modes PlayRhythm and Slower not even half of all se-
quences are plausible. Further training of the existing model
on the study data might improve results. This is exactly what
has been done: The model trained on the simplified data was
taken with all its current parameters and a second training
was carried out on the respective study data of each practice
mode. When further training on the study data, all models
for all practice modes performed worse than the non-further
trained models. The performance split up by the different
criteria can be seen in Table 2. It becomes apparent that the
models, that have been further trained on the study data per-
form worse than the original model.

Figure 4: The Timing Error over 10 randomly selected se-
quences of practice opportunities in practice mode Rhyth-
mOnly.

Another attempt to improve model performance was
made by only using a limited amount of error values. For ex-
ample it seems plausible that for practice mode PlayRhythm
only the Timing Error is needed to make meaningful predic-
tions. This is not the case, as all practice modes performed
worse when trained on only a small subset of errors. This
might become clearer when looking at Figure 4 which shows
a subset of sequences of the Timing Error. While the general
trend shows a reduction in error, there is a lot of variability
between the single practice opportunities. But even a low
value does not correspond to a well played performance.

This might be because if the player missed a lot of notes,
then there than is no timing error on those notes. This would
lead to a low Timing Error, but would result in a high Miss-
ing Notes Error. This is why a multidimensional error value
is important and necessary for a well-performing model.

While small subsets of error values do not bear any merit,
it is important to not use error measures which encode as-
pects of piano playing which are strategically left out by
the used practice mode. For example, the PlayRhythm prac-
tice mode should not be evaluated with Pitch Error, as play-
ing the correct pitch is strategically left out of this practice
mode.

Further Improvements
The results from this study lead to the question of how
(more) plausible, good-performing models can be generated
based on real data, recorded from novices learning to play
piano.

The first approach would be to gather more data points, in
order to generate more robust models.

There were a few models with a high score, compared
to other models on the same data, which suggests that the
HMM has found a well-fitting model on some underly-
ing pattern that was not the ones it should have learned.
This leads us to conclude that a supervised approach with
(hidden)-state labels is necessary and will hopefully yield
better results. There is an semi-supervised learning approach
to learn Hidden Markov models (Tamposis et al. 2019)
which might prove very helpful, as labeled and non-labeled
data can be used together to train the HMM. This will reduce
the amount of expert hours needed to label the performances.
There could be an initial model with labeled sequences, la-
beled by a piano teacher and then the model can be further
personalized while the user is training using unlabeled se-
quences.

Another idea would be to record more data of the same
person to have more data points for an individualized model.
If this would work in an unsupervised fashion, it would even
work as an application for a lot of people. Although having
to put some time in until the individualized learning starts to
have merit, if it would train itself it would definitely yield a
benefit in the long term.

A different approach would be to take a step back and re-
define the error values, which are used as observations. It
might make sense to calculate errors for each bar separately.
We observed a correlation between key stroke velocity and
errors, so taking the velocity into account might make sense.
Another idea is to introduce an error measure that counts the
number of error clusters or even takes out errors of conse-
quential failure. For example when missing a note and then
playing it fast after and therefore also shortening the note
after and playing it too late.

Finally, a different model, a Gaussian mixture Hidden
Markov model could be used. This has not been done in the
scope of this work, as the hmmlearn library does not support
learning multiple sequences for Gaussian mixture HMMs.

Further work should include experiments to compare this
model with existing Bayesian Knowledge Tracing and Intel-
ligent Tutoring models. It would also be interesting to find



Model PM TransMatrix Mean LabelDistr PredStates Overall
Simplified RightHand + + + 100% ✓

LeftHand + + + 100% ✓
SingleHand + + + 100% ✓
PlayRhythm + + + 44% okay

Slower + + + 48% okay
Identity + + + 63% okay

Further RightHand o o o 100% ✗
Trained LeftHand + + + 100% ✓

BothHands - + o 100% ✗
PlayRhythm + o - 32% ✗

Slower + + - 48% ✗
Identity + + - 58% ✗

Table 2: Summary-table of analysis for the model trained on simplified data and applied to the study data, as well as the
model that has been further trained on the study data. A + shows a sensible model based on that criterion, while a - shows an
unreasonable model and o encodes a model that works okay, but not well. It becomes apparent that the models, that have been
further trained on study data perform worse than the original model.

a way to automatically determine those error values which
should not be used to train the HMMs for a particular prac-
tice mode.

Summary
The contributions of this work are three-fold: 1) We intro-
duced and implemented various practice modes to focus on
different aspects of piano playing. 2) We discussed and im-
plemented a dynamic difficulty adjustment based on a cur-
riculum structure of complexity levels. 3) We conducted
a study to record performance data on which we gener-
ated Hidden Markov Models to predict the current state
of a player. We generated a model for the different prac-
tice modes on simplified data and tested them on the data
recorded in the study. We analysed the model and showed
that it is suitable and performs well. Models trained directly
on the study data performed significantly worse. We dis-
cussed possible solutions to create better working models.

Further work is necessary to have an accurate model that
can predict the current state of the learner, for example,
a semi-supervised learning approach or a Gaussian mix-
ture model. Additionally, it would be interesting to see how
based on performance one could predict if a certain type
of practice mode is even needed and to order the practice
modes optimally, by trying out different optimization strate-
gies to give the practice mode next, that yields the biggest
learning progress.
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