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Chapter 1

Motivation

From the beginning of human self-consciousness we have asked ourselves
where we come from. It is now accepted that on a large scale the universe
was created at the Big Bang. Nowadays mainly the long distance force from
gravity dominates the universe, while just a fraction of a second after the
Big Bang the strong force dominated. This situation can be simulated in
heavy-ion collisions. Through those experiments we hope to achieve a better
understanding of the properties of matter.

When one is talking about the properties of matter one also has to talk
about phases. Depending on external conditions matter is in a specific phase.
By slowly changing these conditions in a way that this matter converts itself
to a different phase, one goes either through a so-called phase transition or
a crossover. An everyday example is water. Under normal temperature and
pressure it is liquid, but if we heat it up enough, water will transition into a
gas.

In a similar fashion strong-interaction matter changes its phase. Through
calculations with the quantum field theory of the strong interaction, Quan-
tum Chromodynamics (QCD), it is known that the quarks are confined in
hadrons in the hadronic phase and are asymptotically free in the so-called
Quark-Gluon-Plasma (QGP) phase [1]. Through calculations using the lat-
tice regularization it is known that at zero and small baryon chemical po-
tential for physical quarks this kind of matter is an analytic crossover to the
QGP phase [2,3]. The QGP phase was also studied experimentally in heavy-
ion collisions. From 2005 researchers at the Relativistic Heavy Ion Collider
(RHIC) published growing evidence that the QGP phase exists [4–7]. There
is however still a lot to learn about the QCD phase diagram. What we
e.g. also know from lattice QCD calculations is the transition temperature.
For small values of baryon chemical potential we also know that the tran-
sition temperature becomes smaller with increasing baryon density hinting
to a transition arc towards zero temperature [8]. Through calculations with



CHAPTER 1. MOTIVATION

the functional renormalization group we know that the phase transition for
small temperatures and high baryon chemical potential is first order [9]. In
the current research we expect that the crossover line at low baryon chemical
potential transforms to that first order phase transition. The point where
crossover and first order transition would meet would be the Critical End
Point (CEP). That CEP would be a second order phase transition. A sketch
of the QCD phase diagram is shown in Fig. 1.1.
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Color
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Figure 1.1: Sketch of the QCD phase diagram. The dark green point is the
CEP. The dark green lines are first order phase transitions. The crossover
region is between the pseudocritical temperature Tc and the CEP. Three
different heavy-ion colliders are drawn: RHIC and the Large Hadron Collider
(LHC) are operational right now, while the Facility for Antiproton and Ion
Research (FAIR) is currently under construction. Sketch taken from Ref. [10].

The strong interaction, which is described by QCD, has some unique
characteristics. Quarks are usually confined and therefore need very high
baryon chemical potential and/or very high temperatures to become (quasi)
free particles inside the QGP phase. Both requirements are not met in our
everyday life. High chemical potential can e.g. exist in neutron stars. The
temperature needed at low chemical potential to create a QGP, which is in
the magnitude of 1012 K, is even higher than inside our sun, which is around
1.5 · 107 K, and was there during the first fractions of a second after the Big
Bang in the early universe. To investigate the QGP phase experimentally
we therefore need very high collision energies to create a QGP through high
temperatures and/or baryon chemical potential. Since a QGP only exists for
a fraction of a second we can not probe anything directly inside. To overcome
this challenge we rely on particles created during chemical freeze-out and we
indirectly recreate what happened before in the QGP. This approach there-
fore needs knowledge about what is happening inside the QGP to interpret
the outcome of the experiment correctly.

From the theoretical point of view the strong coupling of QCD needs non-
pertubative methods to be investigated outside of some special cases in which
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the quarks are asymptotically free particles. The transition region with its
CEP is one of those areas where non-pertubative methods are needed.

One of those methods is lattice QCD. It was introduced by Kenneth Ged-
des Wilson in 1974 [11]. Lattice QCD discretizes space-time by introducing
a four dimensional lattice. The inverse distance between neighboring points,
the inverse lattice spacing, gives a UV-cutoff, which serves as a regulator.
Through the Euclidean space-time formalism we can use Monte-Carlo inte-
gration techniques to get meaningful results for systems in equilibrium inside
a medium like high temperature QCD. This method unfortunately also has
its drawbacks. Because of the so-called sign problem accessing high baryon
chemical potential is still an ongoing challenge to overcome. Through the dis-
cretization some continuum symmetries get broken to discrete symmetries.
Due to the necessary discrete derivatives we also introduce so-called dou-
blers. These are unphysical but identical quarks, which change the results.
Removing them is possible but introduces other challenges.

A good way to investigate QCD via lattice QCD is the use of correlation
functions. We are especially interested in hadronic correlators. The simplest
hadronic correlators are mesonic correlators. With them we want to investi-
gate two things: Our main focus is the anomaly of UA(1), which will give us
the order of the chiral phase transition and therefore information about the
potential CEP. Another question we want to address is at which temperature
the purely hadronic screening meson states transition into a superposition of
free quarks and mesons.

The UA(1) is an interesting research topic [12–17]. Unlike other symme-
tries, which are explicitly broken on the level of action or are spontaneously
broken, the UA(1) is an explicitly broken symmetry also by the anomaly. The
question whether this explicit breaking vanishes at the transition temperature
or not is still ongoing research. The answer to this question has consequences
to the CEP and the overall structure of the QCD phase diagram. Former
studies [12,16–19] have shown that chiral symmetry and the UA(1) symmetry
get effectively restored at different temperatures for physical quark masses.
While the chiral symmetry restoration defines the transition temperature and
got restored at that temperature, the UA(1) symmetry got restored at higher
temperature clearly inside the QGP phase. Both symmetries however are
also explicitly broken by finite light quark masses. In this work we want to
go towards vanishing light quark masses and address if that discrepancy of
effective symmetry restoration for UA(1) to the phase transition temperature
is then still valid or if the anomaly of UA(1) vanishes at the phase transition
temperature in the chiral limit.

The CEP is the main focus of many researches. One such research group
is the collaboration of the Collaborative Research Center TransRegio 211
(CRC-TR211) of the Deutsche Forschungsgemeinschaft (DFG) in which this
research is part of.
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CHAPTER 1. MOTIVATION

The structure of this thesis is as follows: In chapter 2 we give a short
introduction to lattice QCD and the theory of this work. In chapter 3 we
explain the analysis methods of how we got the results. In chapter 4 we
present the results and discuss them. In chapter 5 we present the conclusion
of this thesis.
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Chapter 2

Introduction to Lattice
Quantum Chromodynamics

The interaction of quarks and gluons is described by Quantum Chromody-
namics (QCD). The entirety of QCD can mathematically be written through
the generating functional. First we need the Lagrangian density of QCD

L[ψ̄(x), ψ(x), A(x)] = ψ̄(x)(iγµDµ(x) −m)ψ(x) − 1
4F

a
µν(x)F a,µν(x), (2.1)

where Dµ = ∂µ − igTaA
a
µ is the covariant derivative, ψ and ψ̄ are the quark

fields, x is a point in the four dimensional space-time, A are the gluon fields,
g is the coupling constant of the strong force, a are color indices, Ta = λa/2
are generators of SU(3), where λa are the Gell-Mann matrices and Fµν =
−i[Dµ, Dν ] is the field strength tensor, where Fµν(x) =

∑8
a=1 F

a
µν(x)Ta. With

this Lagrangian density we can get the action of our theory

S[A,ψ, ψ̄] =
∫
dtd3xL[ψ̄(x), ψ(x), A(x)]. (2.2)

Finally we can write the generating functional of QCD

Z[J ] =
∫

D[ψ, ψ̄]D[A] exp(iS[A,ψ, ψ̄] + iS[J ]), (2.3)

where S[A,ψ, ψ̄] is the QCD action and S[J ] is a general source term with
current J . If we want to calculate an observable we need to calculate also our
generating functional Eq. 2.3. Since a direct analytic solution is not possible,
one can use a numerical approach. Due to the high-dimensional integral even
for a finite lattice, the configurations necessary for a 4D Ising spin system
on a moderate lattice size, which would be a simpler system than QCD, to
compute are already around 1019728 [20], which is not possible to solve by
our current computers. Fortunately, statistical methods can be used to get
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reasonable and meaningful results through the use of expectation values of
observables on a discrete space-time lattice. This specific method is called
lattice QCD and is used in this thesis.

Therefore in the next sections we will explain some important concepts of
lattice QCD. For further information see e.g. Ref. [20]. Throughout the
whole thesis natural units are used ℏ = c = 1.

2.1 Wick rotation

For a straightforward description analogous to statistical physics a so-called
Wick rotation needs to be performed. The Wick rotation changes the inte-
gration in our action in Eq. 2.2 from real to imaginary time. These actions
are also called Minkowski and Euclidean, respectively. This rotation can be
done through the identification of two Cauchy integrals: One for the positive
and one for the negative values of the temporal extent. Both use a quarter-
circle anticlockwise rotation towards the imaginary time axis (first and third
quadrant). For a sketch see Fig. 2.1.

Im t

Re t

I

III

Figure 2.1: Sketch of the two Cauchy integrals for the Wick rotation.
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Since these planes should not have any singularities and the fields at any
infinite complex time should vanish, it follows for the first quadrant (positive
time slice) ∫ ∞

0
dt

∫
d3xL +

∫ 0

i∞
dt

∫
d3xL = 0. (2.4)

This works analogously for the third quadrant (negative time slice). Using
the substitution t = iτ , it directly follows

S =
∫ ∞

−∞
dt

∫
d3xL = i

∫ ∞

−∞
dτ

∫
d3xLE = iSE. (2.5)

To distinguish between the two actions SE will be used for the Euclidian
action, i.e. the imaginary time τ is a variable here, not the real time t.
Through the substitution t = iτ we also have to change time-related operators
and matrices in the Lagrangian:

i∂t = −∂τ
γE0 = γM0 ≡ γ4

γEi = −γMi ,
(2.6)

where M stands for Minkowski and E for Euclidean.
The relative i from Eq. 2.5 has direct consequences for the partition func-

tion

Z =
∫

D[ψ, ψ̄]D[A] exp(iS[A,ψ, ψ̄]) =
∫

D[ψ, ψ̄]D[A] exp(−SE[A,ψ, ψ̄]),
(2.7)

where D[ψ, ψ̄] and D[A] are the measures of all involved fields. For more
information on partition functions, see e.g. Ref. [20]. Since the action is
by definition a real number, that makes it possible to interpret the term
exp(−SE[A,ψ, ψ̄]) as a probability if it gets normalized (more on that in
section 2.3). A feature of any theory with finite imaginary temporal direction,
e.g. lattice QCD, is the introduction of temperature T . It automatically arises
in lattice QCD because we have to restrict the space-time integrals of our
Euclidean action to finite imaginary times (and space). It follows∫ ∞

−∞
dτ →

∫ β

0
dτ, (2.8)

where β = 1
T is the inverse temperature. The symbol β is also used for the

inverse gauge coupling; thus, to avoid confusion, this use of β will only be
used in this section and in section 2.3 where the connection to temperature
will be shown in more detail. In a similar manner baryon chemical potential
µB can also be introduced in a statistical mechanical way. More on that in
section 2.3. In the next section 2.2 a closer look into the discretization of
QCD will be given, which leads to lattice QCD.

11
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2.2 Discretization of QCD

To calculate observables directly from a quantum field theory in a well-defined
way we need an ultraviolet regulator. A regulator makes expressions finite.
There are different ways to regulate a quantum field theory. In this thesis we
want to regulate QCD via lattice. To do so we replace the original continuous
space by a finite lattice

x ⇒ axnx, (2.9)

where nx = 0, 1, ..., Nx − 1 and ax is the lattice spacing in x-direction. Usu-
ally it is Nx = Ny = Nz ≡ Ns and ax = ay = az ≡ as(≡ a), which makes
this 3D lattice a box. We want to use that kind of lattice here as well. For a
finite box boundary conditions have to be set. We chose periodic boundary
conditions, i.e. we identify ni = Ns with ni = 0 for i = x, y, z or for simplicity
i = 1, 2, 3.

The Euclidean action for the continuum reads

SE =SG[A] + SF [A,ψ, ψ̄]

= 1
4g2

8∑
j=1

∫
d4xF (j)

µν (x)F (j)
µν (x)

+
∫
d4xψ̄(x)(γµ(∂µ + iAµ(x)) +m)ψ(x),

(2.10)

where SG is the gluonic part and SF is the fermionic part of the action, g is the
bare gauge coupling and F (j)

µν (x) = ∂µA
(j)
ν (x)−∂νA

(j)
µ (x)−fjikA

(i)
µ (x)A(k)

ν (x)
is the field strength tensor with color index j. First let us take care of the
spatial derivatives of Eq. 2.10. Using the Taylor series expansion of the fields
these derivatives can be written as

∂iψ(x⃗, τ) → ψ(n⃗+ î, nτ ) − ψ(n⃗− î, nτ )
2a + O(a2), (2.11)

where x⃗ is a 3D vector of continuum space, n⃗ is the same 3D vector of lattice
space (cf. Eq. 2.9) and î is the unit vector in the i-direction. To complete the
discretization we have to take care of the time direction as well. To simplify
the theory we use an analogous derivative and the same lattice spacing in
Euclidean time direction

∂τψ(x) → ψ(n⃗, nτ + τ̂) − ψ(n⃗, nτ − τ̂)
2a + O(a2), (2.12)

where x is a 4D vector of continuum space-time, nτ is a point of lattice time
and τ̂ is the unit vector in the imaginary time direction. We will combine
n⃗ and nτ to n as a 4D vector of lattice space-time. The maximum number

12
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of lattice points in the temporal direction is denoted as Nτ . The integral in
space-time will accordingly be replaced by∫

d4x → a4 ∑
n∈Λ4

, (2.13)

where Λ4 denotes the 4D finite lattice with its N3
s × Nτ lattice points. The

states related to the fields stay orthogonal and complete:

⟨ψ′|ψ⟩ =δ(ψ′ − ψ) =
∏
n∈Λ4

δ(ψ′(n) − ψ(n)),

1 =
∫ ∞

−∞
Dψ |ψ⟩ ⟨ψ| with Dψ =

∏
n∈Λ4

dψ(n).
(2.14)

For temperatures T > 0 it is common to have Ns > Nτ . This reduces finite
volume effects. It is not necessary to have the same lattice spacing in spa-
tial and temporal direction, but we use it in this thesis. For the temporal
direction we chose anti-periodic boundary conditions for fermions and peri-
odic boundary conditions for gauge fields, because the fermionic fields follow
the anticommutation relation, while the bosonic gauge fields follow the com-
mutation relation. For our lattice QCD calculations at high temperatures,
where the lowest Matsubara frequencies dominant, these boundary conditions
are especially important since their Matsubara frequencies differ depending
on their fermionic or bosonic nature. The gauge fields are described in the
next paragraph. For further reading on the discretization via lattice, see e.g.
Ref. [20].

An important change to the action happens if we switch from continuum
to discrete action. The gluon fields become elements of the gauge group U
and are not elements of the algebra A anymore. That is due to gauge invari-
ance of the derivative term in the fermionic part [20]. Since in the discrete
description not all fields are evaluated on same space-time points anymore,
the gauge fields U have to be introduced to conserve gauge invariance. Since
U connects fields with different space-time points they are also called link
variables. For the gauge and fermionic part of the action SG and SF differ-
ent discretizations are possible. For the gauge part of the action the starting
point is the Wilson gauge action, which reads

SG[U ] = 2
g2
∑
n∈Λ

∑
µ<ν

ℜ(tr[11 − Uµν(n)]), (2.15)

where
Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (2.16)

is the shortest, non-trivial closed loop on a lattice, the so-called plaquette.
For our calculations we use the Symanzik improved gluon action as e.g. in [8].

13
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The starting point for all fermionic actions is the so-called naive fermion
discretization for a single flavor

SF [U,ψ, ψ̄] = a4 ∑
n∈Λ

ψ̄(n)

 4∑
µ=1

γµ
Uµ(n)ψ(n+ µ̂) − U−µ(n)ψ(n− µ̂)

2a +m0ψ(n)

 ,
(2.17)

where Uµ(n) are link variables connecting the starting space-time point n
with its neighbor in positive µ-direction. For the fermionic part more details
will be given in section 2.5.

By discretizing and limiting the space-time integrals to finite integrals for
calculations we introduce finite volume effects and a cut-off through the lat-
tice spacing a. These corrections however should become small to draw con-
clusions for real-life physics. To do that the lattice spacing a should be as
small as possible in the beginning to neglect higher order corrections so that
only lowest order corrections have to be dealt with. To quantify and reduce
those corrections an analysis has to be done where different limits have to be
taken. This includes the infinite volume limit, also known as thermodynamic
limit, where Ns → ∞ is taken by suitable ansätze. Next, one takes the con-
tinuum limit where a → 0 by suitable ansätze to transition from the lattice
back to the continuum again while keeping some physics constant. Since we
remove the regulator in this step we need renormalizable observables for the
continuum limit extrapolation. For our analysis the thermodynamic and con-
tinuum limit however have to be taken at fixed temperature T of the system,
which makes the continuum limit a → 0 equal to Nτ → ∞.

In the next section 2.3 a closer look into the connection of the Euclidean
formulation to statistical mechanics will be given. Moreover the introduction
of temperature as well as the starting point of lattice calculations will be
presented.

2.3 Statistical mechanics
In this section we will make the connection of our lattice QCD description
and statistical mechanics. The Euclidean correlator is defined as [20]

⟨O2(t)O1(0)⟩β = 1
Zβ

tr
[

exp(−(β − t)Ĥ)Ô2 exp(−tĤ)Ô1

]
, (2.18)

where the normalization factor Zβ is the partition function given by

Zβ = tr
[

exp(−βĤ)
]
, (2.19)

14



2.3. STATISTICAL MECHANICS

where t is the Euclidean time distance, β is defined as the maximum distance
in time direction (same β as in section 2.1), Ô are operators for observables
and Ĥ is the Hamiltonian of the system. Inserting completeness relations
with energy eigenstates, pulling out the largest factor exp(−TE0), setting
the vacuum energy E0 = 0 and the maximum time distance β = ∞, leads to

lim
β→∞

⟨O2(t)O1(0)⟩β =
∑
n

⟨0|Ô2|n⟩⟨n|Ô1|0⟩ exp(−tEn), (2.20)

where En are the different energy eigenvalues of the Hamiltonian Ĥ and |n⟩
are the corresponding eigenstates, see e.g. Ref. [20] for the individual steps.

We can write the Euclidean correlator of Eq. 2.18 also in another repre-
sentation via path integrals. Beginning from the right-hand side of Eq. 2.18
the Hamiltonian will be written in terms of field operators, then the com-
pleteness relations of these field operators together with the Trotter formula
result in

⟨O2(t1 = t)O1(t0 = 0)⟩β = 1
Zβ

∫
D[ψ, ψ̄]D[U ] exp(−SE[U,ψ, ψ̄])

×O2[U,ψ, ψ̄](t1 = t)O1[U,ψ, ψ̄](t0 = 0),
(2.21)

where U denotes that this is already in lattice discretization. A comparison
of Eq. 2.21 with the expectation value from statistical mechanics, e.g. a spin
system with

⟨O⟩ = 1
Z

∑
s

exp(−βH[s])O[s], (2.22)

where s represents a spin configuration, leads to the replacement of the Boltz-
mann factor exp(−βH[s]) with the weight factor exp(−SE[U,ψ, ψ̄]). Because
of this close connection Zβ, which is the generating functional of our field
theory, is therefore also called the partition function. If you compare Eq.
2.19 with the interpretation of the same equation as in statistical mechanics,
it follows that β = 1/(kBT ), where kB is the Boltzmann constant and T the
temperature of the system. Thus the right hand side of Eq. 2.20 is in the
zero temperature vacuum. Since we use natural units (kB = 1) the maximum
distance in time direction β is just the inverse of temperature T .

Through our lattice discretization we limit our integration in the Eu-
clidean time direction to the maximum distance β = aNτ and therefore the
temperature T results from limiting the Euclidean time integral to some finite
extent

β = aNτ = 1
T
. (2.23)

By knowing the lattice spacing a of our system we can therefore directly set
the temperature T . Because a and Nτ do not change for one lattice setup
the temperature T is fixed for that system. Flipping that argument around
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we see how the continuum limit works. Having a fixed temperature T and
increasing Nτ towards infinity by having different lattice setups leads to a
vanishing lattice spacing a. Note that for finite extent β the Fourier transfor-
mation leads to discrete energy values since energy is the Fourier transform
of time. These values are called Matsubara frequencies.

Another connection to statistical mechanics can be found if we look at chem-
ical potential µB. The introduction of chemical potential for the lattice is
however not straightforward and will break γ5-hermiticity of the Dirac op-
erator for finite µB and therefore our Boltzmann weight becomes complex.
That is the so-called sign problem. In this thesis however we do not use any
chemical potential and therefore it is only noted here that these challenges
exist and are still part of ongoing research. For more details see e.g. Ref. [20].
In the next section we will have a closer look into ways to calculate the parti-
tion function and we also want to build the basis to calculate the correlators
later.

2.4 Calculating the Euclidean correlator

To calculate Euclidean correlators we have to perform the high-dimensional
integration of Eq. 2.21. Since the Euclidean action of the partition function
is real and therefore the Boltzmann weight exp(−SE) ≥ 0, an interpretation
of that weight as a probability can be made. That can be used to integrate
our Euclidean correlator via Monte Carlo integration with samples derived
from Markov chains. Next we give a short overview of how that method can
be used here.

Monte Carlo integration is a very powerful tool for integrating high-dimensional
integrals. The simplified idea is to take random numbers or vectors xn inside
the integration interval, calculate the observable at these points and average
over all that

⟨f⟩︸︷︷︸
expectation

value

= 1
b− a︸ ︷︷ ︸

normalization

∫ b

a
dx︸︷︷︸

differential
1︸︷︷︸

weight
f(x) = lim

N→∞
1
N

N∑
n=1

f(xn), (2.24)

where f is the observable. By limiting the number N of those random num-
bers or vectors xn we achieve an approximation of the correct integral. That
is called Monte Carlo Sampling. If we have a weight ρ like the Boltzmann
weight exp(−SE) in Eq. 2.21 we can sample random numbers or vectors ac-
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2.4. CALCULATING THE EUCLIDEAN CORRELATOR

cording to that weight

⟨f⟩ρ︸︷︷︸
expectation

value

= 1∫
dxρ(x)︸ ︷︷ ︸

normalization

∫
dx︸︷︷︸

differential
ρ(x)︸︷︷︸
weight

f(x) = lim
N→∞

1
N

N∑
n=1

f(xn), (2.25)

which is called Monte Carlo Importance Sampling if we again limit the num-
ber N of the random numbers or vectors xn.

The tricky part is to get these sets of random numbers or vectors xn for
our high-dimensional integral. In lattice QCD we integrate over complete sets
of gauge fields. We call a complete set of gauge fields a configuration; those
individual gauge fields would be equivalent to individual entries of a high-
dimensional vector, which we integrate over in the Monte Carlo importance
sampling. To find these configurations Un (not to be confused with the
indiviual gauge fields Uµ), which follow a probability distribution, we start
from an arbitrary configuration U0 and then construct a stochastic sequence
of configurations, which follows eventually the equilibrium distribution P (U).
That sequence is called a Markov chain. There are specific conditions for
Markov chains, which are related to the transition probability T (U ′|U) =
P (U ′|U), which describes the probability of transition to U ′ in the chain
starting from U . First it has to be a probability, which means

0 ≤ T (U ′|U) ≤ 1. (2.26)

That is the reason why our weight exp(−SE) should be real and positive,
which is the main obstacle for exploring finite baryon chemical potential
lattice QCD calculations where that is in general not the case. Normalization
and the Boltzmann weight together result here in a probability. The second
condition is that all configurations should be reachable from every other
configuration

0 < T (U ′|U). (2.27)

That is called ergodicity and it is also directly fulfilled by our weight exp(−SE).
The third condition is completeness, which is∑

U ′
T (U ′|U) = 1. (2.28)

The fourth and last condition is that each step of the Markov chain obeys
the balance equation∑

U

T (U ′|U)P (U) !=
∑
U

T (U |U ′)P (U ′), (2.29)

with
P (U ′) =

∑
U

T (U ′|U). (2.30)
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One specific and mostly used solution to the balance equation is

T (U ′|U)P (U) = T (U |U ′)P (U ′), (2.31)

which is the so-called detailed balance condition. With that, one major
technical issue remains: To advance the Markov chain from one configuration
to another we need an algorithm, which fulfills the balance equation. Here we
have many possibilities. Some algorithms are e.g. the heat bath and hybrid
Monte Carlo algorithm.

Let us shortly look into Eq. 2.21 in a bit more detail. Comparing it with
the generating functional Eq. 2.3 after the Wick rotation using Grassmann-
valued fields we can create so-called n-point functions in lattice QCD. This
process leads to Wick’s theorem [20]

⟨ηi1 η̄j1 ...ηin η̄jn⟩F = (−1)n
∑

P (1,2,...,n)
sign(P )(M−1)i1jP1

(M−1)i2jP2
...(M−1)injPn ,

(2.32)
where F refers to the integration over the Grassmann-valued fields (in that
case the fermion fields), η are Grassmann-valued fields, P refers to the per-
mutation, where sign is the ’sign’ of that permutation, and M = −a4(γµDµ+
m0), where M is the Dirac operator and a is the lattice spacing. We summa-
rize −a4γµDµ = D and redefine m ≡ −a4m0. From that side we therefore
only need to create suitable gauge configurations according to the weight
exp(−SE) since after the integration over the Grassmann-valued fields only
the integration over gauge fields will survive. It can be shown that [20]

⟨⟨O⟩F ⟩G = 1
Z

∫
D[U ] exp(−SG[U ])det[M [U ]]O[U ], (2.33)

where O is an observable, SG is the gauge action and det[M ] = ZF [U ] =∫
D[ψ, ψ̄] exp(−SF [ψ, ψ̄, U ]) is the fermion determinant, where M is again

the Dirac operator. A configuration distribution according to the weight

w[U ] = 1
Z

exp(−SG[U ])det[M [U ]] (2.34)

will create a gluonic and fermionic background on sea level while the observ-
able O[U ] acts on valence level. We usually want the generating action to
be the same on sea and valence level. For our action, the fermion determi-
nants are positive for non-zero quark masses and it therefore can be used as
probability weight. Setting all fermion determinants to unity by hand here is
called the quenched approximation of QCD while taking them correctly into
account is called dynamical QCD. Since the fermion determinants are part
of the weight they have to be calculated in every step in the Markov chain.

Since we exclusively use dynamical QCD for our calculations in this thesis
let us have a closer look into how the fermion determinants come into play.
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2.4. CALCULATING THE EUCLIDEAN CORRELATOR

The central idea is to abuse a close analogy between bosonic and fermionic
Gaussian integrals. The close relation gives us the possibility to use pseud-
ofermions instead of normal Grassmann-valued fermion fields. Those Gaus-
sian integrals over pseudofermion fields can then be solved more easily. A
way to include the fermion determinant(s) for the weight is by introducing
them as an effective fermion action [20]

det[M [U ]] = exp(tr[ln(M [U ])]) ≡ exp(−Seff
F [U ]), (2.35)

where Seff
F is the effective fermion action, which is independent of the quark

fields ψ and ψ̄. This leads to a total Boltzmann weight of

exp(−SG[U ] − Seff
F [U ]), (2.36)

where SG[U ] is the gauge action. Because an update of gauge fields only
effects their nearest neighbors this part of the action is called local. The
effective fermion action on the other hand connects with all gauge variables
of the system and thus locality is unfortunately not fulfilled for the effective
fermion action. That means that the Metropolis algorithm with single link
variable is not optimal regarding computing time for dynamical QCD. That
is why we use the Rational Hybrid Monte Carlo (RHMC) algorithm instead.

The Dirac operator highly depends on the fermion type used. We will
have a closer look into different fermion types in section 2.5. Since a lot
of the computional effort for dynamical QCD is spent solving sparse linear
systems, we first want to cover the methods to solve them more efficiently.
Depending on the observable that we want to calculate with our correlator
we might have to calculate (inverse) Dirac operators there as well. We will
have a look into our special case of mesonic correlators in section 2.7.

To evaluate expectation values of hadronic correlators usually requires
constructing quark propagators, which means the inverse of M , obeying the
equation [21]

M−1M = MM−1 = 11. (2.37)
Because M is a square matrix of dimension a few times the lattice volume,

but only has non-zero entries of the order volume, that is a problem of sparse
matrix inversion. Therefore we construct g = M−1h for a selected source
vector h by solving

Mg = h. (2.38)
In subsection 2.4.2 we give a short introduction to the Conjugate Gradient

(CG) method, which we use to solve the sparse linear system of Eq. 2.38 to
solve for the quark propagators. For our RHMC algorithm we need the more
efficient multi-shift CG solver. For the details on that we refer to Ref. [21].
Before we jump into the CG method, let us first take advantage of the special
structure of our Dirac matrix.
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2.4.1 Even-odd preconditioning

Before we solve our sparse linear system, we want to reduce the size of the
sparse linear system. The LU preconditioning takes advantage of the special
structure of the staggered Dirac matrix (which we will use in this thesis),
which cuts the problem size roughly in half. Decomposing into even and odd
lattice sites, the Dirac matrix has the block structure

M =
(

Re Deo

Doe Ro

)
, (2.39)

where the upper row and left column refer to even sites and the lower row
and right column to odd. For staggered fermions we have Re = Ro = m and
Deo = D = −D†

oe [21]. We will enter these variables now. For the general
calculation, see Ref. [21]. We can now write the decomposition of M as

M =
(

1 D/m
0 1

)
︸ ︷︷ ︸

U

(
m+DD†/m 0

0 m

)
︸ ︷︷ ︸

A

(
1 0

−D†/m 1

)
︸ ︷︷ ︸

L

. (2.40)

Then we get L−1 =
(

1 0
D†/m 1

)
and U−1 =

(
1 −D/m
0 1

)
trivially.

Therefore we continue with

Mg = UALg = h (2.41)

and define Lg = x and U−1h = b. That brings us to(
Aee 0
0 m

)
︸ ︷︷ ︸

A

(
xe
xo

)
︸ ︷︷ ︸
Lg

=
(
be
bo

)
︸ ︷︷ ︸
U−1h

, (2.42)

where the matrix Aee = (m2 +DD†)/m is hermitian positive definite and we
have split the vector in even-site and odd-site components. Since the solution
on the odd sites is trivial, we only have to solve a sparse system on the even
sites. When we solved for x, we get our desired solution g = L−1x trivially.
Thus we have reduced the problem size roughly in half.

In the next subsection we will go over the conjugate gradient method to
solve a sparse linear system; in the case of Eq. 2.42 for x.

2.4.2 Conjugate gradient

Now let us have a short look into a Conjugate Gradient (CG) method [20],
which we could use to solve for the determinant over the Dirac operator in
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the RHMC algorithm but we can also use it to solve quark propagators in
mesonic correlators. Because M †M is hermitian positive definite, we can
invert the Dirac matrix M by inverting M †M and multiply it with M † [21].
This inversion is needed in both cases and the CG method is one of, if not,
the fastest method to do so for staggered fermions.

For a real, symmetric, positive definite N ×N matrix A

Q(x) = 1
2x

TAx− xT b (2.43)

is a positive definite quadratic form with its minimum at x∗, so that the
gradient vanishes,

∂Q(x)|x∗ = Ax∗ − b = 0. (2.44)
Thus x∗ is the solution for the system Ax = b. The CG method now iterates
x(i) in a way so that in each step Q(x(i) + αip

(i)) is minimized as a function
with p(i) being a search vector and αi being a real parameter. The search
vector is made orthogonal to Ap(i−1) and all previous Ap(j). All those search
vectors then span a Krylov subspace. Starting from a random vector x(0) it
will take N iterations to reach the minimum x∗, where N is the dimension
of the matrix A. By calculating the norm ||Ax(i) − b|| and comparing that to
an accuracy ϵ the algorithm can be sped up if the norm falls below ϵ.

In the next section 2.5 we present some types of fermions. We discuss their
advantages and disadvantages and explain why we chose staggered fermions.

2.5 Different fermion types
While the gluonic part of the action is usually the same (except for improve-
ments regarding cut-off effects), the fermionic part may differ depending on
the problem at hand. The problem of the naive fermion discretization is that
it introduces 15 so-called doublers. Doublers are unphysical particles with
the exact same mass as the physical particle. These doublers can appear
in discrete fermion actions like the naive action and will in the case of the
naive action not even disappear after the continuum limit has been taken,
but for other fermion actions they might disappear in the continuum limit.
Nonetheless transferring from discrete to continuum physics is no easy task,
especially if the probed part of physics is only correct in the latter. For
this reason and because of large cut-off effects the naive discretization is not
used. On the other hand different fermion types might get rid of the doubler
problem but will introduce another problem because of a no-go theorem [22].

For instance the Wilson fermions will get rid of doublers by introducing
an extra term to increase the mass of doublers. This extra term also vanishes
in the continuum limit and while doing so also increases the doubler masses
to infinity. A downside of Wilson fermions is that this extra term explicitly
breaks chiral symmetry.
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Another fermion type is overlap fermions. They also get rid of doublers
but keep chiral symmetry intact by solving the Ginsparg-Wilson equation,
while losing ultralocality, which gets restored again in the continuum limit.
Another downside is the high numerical cost compared to other fermion types.

Domain-wall fermions are also numerically demanding but less so than
overlap fermions. Here a 5th dimension and a modified Dirac operator is
introduced. They as well solve the Ginsparg-Wilson equation and therefore
have chiral symmetry already at finite lattice spacing in the limit of infinite
lattice points in the 5th dimension. They are also free of doublers. Since the
no-go theorem [22] assumed even-numbered dimensions, the introduction of a
5th dimension might circumvent the restrictions of this theorem. Nonetheless
a downside is that domain-wall fermions only recover full chiral symmetry in
the limit of infinite length in the 5th dimension.

Lastly we want to mention staggered fermions. They are an interesting
fermion type since they are numerically easy to compute and restore partly
chiral symmetry while reducing the doublers from 15 to 3. Through rooting
the doublers can then be completely eliminated [23]. As we will use staggered
fermions for these reasons in this thesis we will have a closer look into that
fermion type in the next section 2.6.

2.6 Staggered fermions

In this thesis staggered fermions have been exclusively used. For further
reading see e.g. Ref. [20,21]. As mentioned in section 2.5 staggered fermions
preserve a remnant chiral symmetry and reduce the 16-fold degeneracy of
the naive fermion action to a four quark theory while reducing computa-
tional cost. This four quark theory in turn will be reduced to a one quark
theory by taking the fourth root of the staggered fermion determinant [23].
This process is called rooting. During the derivation of staggered fermions
we need to project four identical copies to a single-component field. This
projection onto a single-component field in Dirac space unfortunately breaks
some symmetries and reduces the doubler symmetry to the new taste sym-
metry [24–26]. We will come back to that when it is necessary.

The main idea of staggered fermions is to transform the quark fields in a
way that their original Dirac space becomes diagonal, which in turn speeds
up the computation. The staggered transformation is defined as

ψ(n) = γn1
1 γn2

2 γn3
3 γn4

4 X(n) ψ̄(n) = X̄(n)γn4
4 γn3

3 γn2
2 γn1

1 , (2.45)

where γ are the Dirac matrices, ni are the coordinates of the lattice sites, ψ
and ψ̄ are the quark fields. If these transformed fields are put into the naive
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discretized fermion action (Eq. 2.17) all γµ cancel, e.g.

ψ̄(n)γ3ψ(n± 3̂) =X̄(n)γn4
4 γn3

3 γn2
2 γn1

1 γ3γ
n1
1 γn2

2 γn3±1
3 γn4

4 X(n)
=(−1)n1+n2X̄(n)γn4

4 γn3
3 γn2

2 γn1
1 γn1

1 γn2
2 γ3γ

n3±1
3 γn4

4 X(n)
=(−1)n1+n2X̄(n)γn4

4 γn3
3 γ3γ

n3±1
3 γn4

4 X(n)
=(−1)n1+n2X̄(n)1X(n)

(2.46)

for the 3-direction by using the anticommutation relation of Dirac matrices
{γµ, γν} = 2δµνI4. Therefore we get

SF [χ, χ̄] = a4 ∑
n∈Λ

χ̄(n)

 4∑
µ=1

ηµ(n)
Uµ(n)χ(n+ µ̂) − U †

µ(n− µ̂)χ(n− µ̂)
2a +m0χ(n)

 ,
(2.47)

where ηµ is the so-called staggered phase factor defined as

ηµ(n) = (−1)
∑

ν<µ
nν , (2.48)

with η1(n) = 1, χ and χ̄ are Grassmann-valued fields that are, except for
the Dirac structure which is already omitted, identical to X and X̄. That
projection was done here since it only consists of a diagonal with ones in
Dirac space. Because the fields in the staggered action (Eq. 2.47) omit three
of the four identical fields in Dirac space we expect therefore to have only
a quarter of quark flavors, i.e. 4 instead of 16. We will have a closer look
into the number of quark flavors later in this section. The projection onto a
scalar Dirac space has some hidden side-effects on the overall structure of this
theory. One hidden side-effect is in the usual lattice translation symmetry [23]

tµ :
{
ψ(n) 7→ ψ(n+ µ) ⇒ X(n) 7→ ζµ(n)γµX(n+ µ)
ψ̄(n) 7→ ψ̄(n+ µ) ⇒ X̄(n) 7→ ζµ(n)X̄(n+ µ)γµ

, (2.49)

where
ζµ(n) = (−1)

∑
ν>µ

nν , (2.50)

X̄ and X are the original fields with diagonal Dirac structure after the stag-
gered transformation. Translations would need to also handle a change in
Dirac structure for staggered fermions. Due to the gamma matrix in Eq.
2.49, the projection from X to χ therefore does not commute with lattice
translation symmetry. By using the doubling symmetry created by

Bµ(n) = γµγ5(−1)nµ , (2.51)

with γ5 = γ1γ2γ3γ4, and all its combinations we can form a combination of
translation and doubling called shift, which commutes with our projection
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from X to χ

Sµ :


ψ(n) 7→ −iBµB5ψ(n+ µ) ⇒ χ(n) 7→ ζµ(n)χ(n+ µ)
ψ̄(n) 7→ −iψ̄(n+ µ)BµB5 ⇒ χ̄(n) 7→ ζµ(n)χ̄(n+ µ)
Uν(n) 7→ Uν(n+ µ), ∀ν

, (2.52)

where B5(n) = iγ5η5(n).

What happened so far? The original Dirac structure is distributed over the
hypercube instead of being written explicitly in the action. A simple phase
factor ηµ(n) replaced γµ in the action. Computing staggered fermions is
therefore numerically inexpensive because of this simple Dirac structure but
requires some effort in understanding the non-trivial consequences. We need
e.g. the shift symmetry in order to project X and X̄ to χ and χ̄. The shift
symmetry replaces and merges the doubling symmetry and the translation
symmetry from the original theory. Shift transformations anti-commute with
shift transformations in different directions, i.e. SµSν = −SνSµ for ν ̸= µ.
Of 16 identical quarks from the naive action, i.e. the one physical quark and
his 15 doublers connected by the doubling symmetry, we expect that only 4
will survive after discarding the identical copies by projecting X and X̄ to
χ and χ̄. Since the original doubling symmetry is gone due to merging with
the translation symmetry, the amount of doublers in this theory is not clear
at this point. After the next paragraph we will look into that and we will
see that a new quantum number named taste takes over this role and has 4
possible values. Therefore we will have 4 quark tastes in this theory.

Besides the inexpensive numerical computation, another advantage of stag-
gered fermions is the remnant of chiral symmetry. The UA(1) rotation before
the projection is

ψ′ = exp(iαγ51)ψ ψ̄′ = ψ̄ exp(iαγ51), (2.53)

where α ∈ R is the rotation angle and γ5 is the fifth gamma matrix. If we
combine this transformation together with the staggered transformation (Eq.
2.45) we get for a bilinear

ψ̄′(n)γ5ψ
′(n) =X̄(n)γn4

4 γn3
3 γn2

2 γn1
1 (cos(α) + iγ5 sin(α))

× γ5(cos(α) + iγ5 sin(α))γn1
1 γn2

2 γn3
3 γn4

4 X(n)
=X̄(n)γn4

4 γn3
3 γn2

2 γn1
1 (2i sin(α) cos(α)

+ γ5(cos2(α) − sin2(α)))γn1
1 γn2

2 γn3
3 γn4

4 X(n)
=2i sin(α) cos(α)X̄(n)X(n)

+ (cos2(α) − sin2(α))η5(n)X̄(n)γ5X(n).

(2.54)
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For α = 0 we get the original pseudoscalar bilinear η5(n)X̄(n)γ5X(n), for an
angle α = π

4 we rotate to a scalar bilinear iX̄(n)X(n). If we would project
now X and X̄ to χ and χ̄ also in the bilinear by omitting the gamma matrix,
we expect that the staggered phase factor η5(n) takes over the role of γ5 and
therefore a remnant chiral symmetry remains in the action. We will go into
more details on that in section 2.8.

After distributing the Dirac structure over the hypercube we have to address
the question of how to construct hadron interpolators and their correspond-
ing correlators with definite spin and parity. Before we can address that we
first need to understand how many and what kind of quarks the staggered
action from Eq. 2.47 describes and which symmetries relate to them.

To make the study more transparent we look at the free case Uµ(n) = 1.
Next our 4D hypercube will be split into 16 4D sub-hypercubes. For that let
us assume that the number of lattice points in every direction Nµ is even and
labeled as nµ = 0, 1, ..., Nµ−1. Then hµ labels points in every sub-hypercube
and sµ labels different sub-hypercubes, i.e. if sµ ̸= 0 for any µ it is a point of
a neighboring sub-hypercube of sµ = 0. It is

nµ = 2hµ + sµ, (2.55)

with hµ = {0, 1, ..., Nµ2 −1} and sµ = {0, 1}. The staggered phase factor then
only depends on the vector s since

ηµ(n) = ηµ(2h+ s) = ηµ(s). (2.56)

We define 4 × 4 matrices

Γ(s) = γs1
1 γ

s2
2 γ

s3
3 γ

s4
4 . (2.57)

Two important relations for these Γ matrices are

1
4tr[Γ(s)†Γ(s′)] = δss′ ,

1
4
∑
s

Γ(s)∗
ba Γ(s)

b′a′ = δaa′δbb′ . (2.58)

With all this we can now define new hypercubic quark fields q(h) and q̄(h)
as

q(h)ab ≡ 1
8
∑
s

Γ(s)
ab χ(2h+ s), q̄(h)ab ≡ 1

8
∑
s

χ̄(2h+ s)Γ(s)∗
ba , (2.59)

where a and b are indices for new spaces, which we later identify as the new
Dirac and taste space. The inverse relation reads

χ(2h+ s) = 2tr
[
Γ(s)†q(h)

]
, χ̄(2h+ s) = 2tr

[
q̄(h)Γ(s)

]
. (2.60)
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The mass term of the staggered action Eq. 2.47 is straight forward

a4∑
n

χ̄(n)χ(n) =a4∑
h

∑
s

χ̄(2h+ s)χ(2h+ s)

=4a4∑
h

∑
s

q̄(h)baΓ
(s)
ab Γ(s)†

b′a′ q(h)a′b′

=(2a)4∑
h

tr[q̄(h)q(h)].

(2.61)

The kinetic term is a bit more involved. The result is

Sstagg,kin = (2a)4∑
h

∑
µ

tr[q̄(h)γµ∇µq(h)] − a tr[q̄(h)γ5∆µq(h)γµγ5], (2.62)

with ∇µf(h) = f(h+µ̂)−f(h−µ̂)
4a and ∆µf(h) = f(h+µ̂)−2f(h)+f(h−µ̂)

(2a)2 . This result
will now be verified by inserting everything back in. It follows

Sstagg,kin =(2a)4∑
h

∑
µ

tr
[
q̄(h)γµ

q(h+ µ̂) − q(h− µ̂)
4a

]

− tr
[
q̄(h)γ5

q(h+ µ̂) − 2q(h) + q(h− µ̂)
4a γµγ5

]
=4a3∑

h

∑
µ

tr[q̄(h)γµ(q(h+ µ̂) − q(h− µ̂))]

− tr[q̄(h)γ5(q(h+ µ̂) − 2q(h) + q(h− µ̂))γµγ5]

=4a3∑
h

∑
µ

∑
ss′

tr
[

1
8 χ̄(2h+ s)Γ(s)†γµ

(
1
8Γ(s′)χ(2(h+ µ̂) + s′)

− 1
8Γ(s′)χ(2(h− µ̂) + s′)

)]

− tr
[

1
8 χ̄(2h+ s)Γ(s)†γ5

(
1
8Γ(s′)χ(2(h+ µ̂) + s′) − 2

8Γ(s′)χ(2h+ s′)

+ 1
8Γ(s′)χ(2(h− µ̂) + s′)

)
γµγ5

]
.

(2.63)

Note that χ and χ̄ are only numbers in the trace. By using the relations

tr
[
Γ(s)†γ5Γ(s′)γµγ5

]
= (−1)sµtr[Γ(s)†γµΓ(s′)] (2.64)

and
tr[Γ(s)†γµΓ(s′)] = 4ηµ(s)δs,s′±µ (2.65)
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one gets

Sstagg,kin =4a3∑
h

∑
s

∑
µ

1
16 χ̄(2h+ s)[ηµ(s)(δsµ1(χ(2(h+ µ̂) + s− µ̂)

− χ(2(h− µ̂) + s− µ̂)) + δsµ0(χ(2(h+ µ̂) + s+ µ̂)
− χ(2(h− µ̂) + s+ µ̂))) − ηµ+1(s)(δsµ1(χ(2(h+ µ̂) + s− µ̂)
− 2χ(2h+ s− µ̂) + χ(2(h− µ̂) + s− µ̂)) + δsµ0(χ(2(h+ µ̂) + s+ µ̂)
− 2χ(2h+ s+ µ̂) + χ(2(h− µ̂) + s+ µ̂)))].

(2.66)

Let us see what happens to the staggered phase factor for different values
of sµ: For sµ = 0 it follows ηµ+1(s) = ηµ(s), while for sµ = 1 it follows
ηµ+1(s) = −ηµ(s). With that in mind it follows

Sstagg,kin =4a3∑
h

∑
s

∑
µ

1
16 χ̄(2h+ s)[ηµ(s)(δsµ1(χ(2(h+ µ̂) + s− µ̂)

− χ(2(h− µ̂) + s− µ̂)) + δsµ0(χ(2(h+ µ̂) + s+ µ̂)
− χ(2(h− µ̂) + s+ µ̂))) − ηµ(s)(δsµ1(−χ(2(h+ µ̂) + s− µ̂)
+ 2χ(2h+ s− µ̂) − χ(2(h− µ̂) + s− µ̂)) + δsµ0(χ(2(h+ µ̂) + s+ µ̂)
− 2χ(2h+ s+ µ̂) + χ(2(h− µ̂) + s+ µ̂)))]

=4a3∑
h

∑
s

∑
µ

1
16 χ̄(2h+ s)ηµ(s)[δsµ1(2χ(2(h+ µ̂) + s− µ̂)

− 2χ(2h+ s− µ̂)) + δsµ0(2χ(2h+ s+ µ̂) − 2χ(2(h− µ̂) + s+ µ̂))]

=8a3∑
h

∑
s

∑
µ

1
16 χ̄(2h+ s)ηµ(s)[χ(2h+ s+ µ) − χ(2h+ s− µ)].

(2.67)

Therefore the kinetic part of the staggered action reads

Sstagg,kin =a4∑
h

∑
s

∑
µ

χ̄(2h+ s)ηµ(s)χ(2h+ s+ µ̂) − χ(2h+ s− µ̂)
2a

=(2a)4∑
h

∑
µ

tr[q̄(h)γµ∇µq(h)] − a tr[q̄(h)γ5∆µq(h)γµγ5].

(2.68)

We now want to identify the quark fields q(h)ab with new fields ψ

ψ(t)(h)β ≡ q(h)βt, ψ̄(t)(h)β ≡ q̄(h)tβ, (2.69)

where β is an index of the new Dirac space and t is an index of the taste
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space. In total the free staggered action for these new fields is

SF [ψ, ψ̄] =(2a)4∑
h

( 4∑
t=1

(
mψ̄(t)(h)ψ(t)(h) +

4∑
µ=1

ψ̄(t)(h)γµ∇µψ
(t)(h)

)

− a
4∑

t,t′=1

4∑
µ=1

ψ̄(t)(h)γ5(τ5τµ)tt′∆µψ
(t′)(h)

)
,

(2.70)

where τν = γTν . In Eq. 2.70 three terms can be identified. First the usual mass
term, second the usual kinetic term and a third term with (τ5τµ)tt′ , which
mixes different tastes and therefore breaks taste-symmetry. But this third
term vanishes in the continuum limit a → 0 and therefore taste-symmetry
gets restored. Because nothing was omitted or added regarding the staggered
action, it is the same action and therefore the same general quark fields. It
is now visible that by creating these hypercubic quark fields q̄ and q the new
Dirac and taste space are distributed over the lattice. This action however
has large cut-off effects. To reduce the cut-off effects we use an improved
version of the staggered action of Eq. 2.70. This action reduces the cut-off
effects of the taste-breaking term by smearing of the gauge links to remove
tree-level taste-changing and reduction of one-loop taste-changing. There-
fore the overall cut-off effects are reduced to O(a2). This action is called the
Highly-Improved Staggered Quarks (HISQ) action [27]. Details on the HISQ
action and the smearing process are nicely explained in Ref. [28].

In the next section 2.7 we will explain the construction of hadronic corre-
lators for staggered fermions.

2.7 Hadronic correlators for staggered fermions

With the knowledge from section 2.6 we can create hadronic interpolators and
then hadronic correlators. As quark fields we use the hypercubic quark fields.
As defining symmetries for the hadronic interpolators a Dirac and a taste
matrix is necessary [29]. In this thesis mesonic correlators are investigated,
therefore a detailed look into these kinds of interpolators and the construction
of their correlators is now given.

As a reminder, a local continuum meson interpolator is given by

OM (x) = ψ̄(f)
α (x)Γαα′ψ

(f ′)
α′ (x), (2.71)

where Γ is the generating operator for the quantum numbers of the meson
state and α is the Dirac index. Now let us look at the changes for the bilinear
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in the staggered case [29]. For our interpolator with hypercubic fields q(h)βt
in the free case

OM (h) =q̄(f)(h)(ΓD ⊗ Γt)q(f ′)(h)

= 1
64
∑
ss′

χ̄(f)(2h+ s)Γ(s)†
tβ ΓDββ′Γ(s′)

β′t′χ
(f ′)(2h+ s′)Γttt′

= 1
64
∑
ss′

χ̄(f)(2h+ s)Γ(s)†
tβ ΓDββ′Γ(s′)

β′t′χ
(f ′)(2h+ s′)ΓtTt′t

= 1
64
∑
ss′

χ̄(f)(2h+ s)χ(f ′)(2h+ s′)tr
[
Γ(s)†ΓDΓ(s′)ΓtT

]
,

(2.72)

where ΓD and Γt are gamma matrices acting only on the new Dirac space
or on the taste space respectively and T refers to the transpose. For local
meson interpolators one has Γ ≡ ΓD ≡ Γt∗. Note that the two Dirac spaces
indexed by α in Eq. 2.71 and β in Eq. 2.72 are not the same. For local meson
interpolators in the staggered case one gets s = s′ and a phase factor to take
care of. Since for local meson interpolators only χ̄ and χ fields on the same
lattice sites are connected, this definition is also true for the interacting case.
Let us take for example Γ = γ5

tr
[
Γ(s)†γ5Γ(s′)γ†

5

]
=tr

[
γ

†(s4)
4 γ

†(s3)
3 γ

†(s2)
2 γ

†(s1)
1 γ5γ

(s′
1)

1 γ
(s′

2)
2 γ

(s′
3)

3 γ
(s′

4)
4 γ†

5

]
=tr

[
γ

†(s4)
4 γ

†(s3)
3 γ

†(s2)
2 γ

†(s1)
1 γ5γ

†
5︸ ︷︷ ︸

I4

(−1)s′
1+s′

2+s′
3+s′

4γ
(s′

1)
1 γ

(s′
2)

2 γ
(s′

3)
3 γ

(s′
4)

4

]

=(−1)s′
1+s′

2+s′
3+s′

4tr
[
γ

†(s4)
4 γ

†(s3)
3 γ

†(s2)
2 γ

†(s1)
1 γ

(s′
1)

1 γ
(s′

2)
2 γ

(s′
3)

3 γ
(s′

4)
4

]
=(−1)s′

1+s′
2+s′

3+s′
4tr
[
Γ(s)†Γ(s′)

]
= 4δss′(−1)s′

1+s′
2+s′

3+s′
4 .

(2.73)

Therefore the local meson γ5 interpolator reads

OM,γ5(h) = 1
64
∑
ss′

χ̄(f)(2h+ s)χ(f ′)(2h+ s′)4δss′(−1)s′
1+s′

2+s′
3+s′

4

= 1
16
∑
s

(−1)s1+s2+s3+s4χ̄(f)(2h+ s)χ(f ′)(2h+ s).
(2.74)

Since the main structure in the staggered action from Eq. 2.70 is the same
as for e.g. the naive action, the same choice for ΓD in staggered and Γ in Eq.
2.71 creates meson states with the same quantum numbers. In this thesis we
only use local meson interpolators and we will focus on these now by setting
Γ ≡ ΓD ≡ Γt∗. For the interpolator in Eq. 2.74 all momenta are still present.
To get just the masses a momentum projection to momentum zero has to
be done. This can be done by a partial discrete Fourier transformation to
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momentum space and setting the momentum directly, in this case to zero. It
follows

ÕM (0, h4) = C0
∑
h⃗

OM (⃗h, h4), (2.75)

where C0 is a normalization constant. We will come back to this later.

There is another issue in Eq. 2.74. Our meson interpolator has hypercu-
bic coordinate h, i.e. not a specific lattice site n like in the continuum case.
Because our χ fields sit on lattice sites n and contribute differently this would
lead to an indefinite distance between source and sink. A solution is to add
or subtract another term to cancel contributions of specific χ and χ̄ fields

OM (h) = q̄(f)(h)(Γ⊗Γ∗)q(f ′)(h)±q̄(f)(h)((γ4γ5Γ)⊗(γ∗
4γ

∗
5Γ∗))q(f ′)(h), (2.76)

while the phase between the first and second term will be ϕ(s) = (−1)s4 .
What does that do? If there is a plus between these two meson states then
the contributions with s4 = 1 cancel, if there is a minus the contributions
with s4 = 0 cancel. Therefore only contributions of one time slice in these
hypercubic fields survive. For our Γ = γ5 example using the plus-term of Eq.
2.76 we get

OM2,+(h) = 1
16
∑
s

χ̄(f)(2h+ s)(−1)s1+s2+s3+s4χ(f ′)(2h+ s)

+ 1
16
∑
s′
χ̄(f)(2h+ s′)(−1)s′

1+s′
2+s′

3χ(f ′)(2h+ s′)

= 1
16
∑
s

(−1)s1+s2+s3

(
(−1)s4χ̄(f)(2h+ s)χ(f ′)(2h+ s)

+ χ̄(f)(2h+ s)χ(f ′)(2h+ s)
)

=1
8
∑
s

s4=0

(−1)s1+s2+s3χ̄(f)(2h+ s)χ(f ′)(2h+ s).

(2.77)
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Similarly for Γ = γ5 with the minus-term leads to

OM2,−(h) = 1
16
∑
s

χ̄(f)(2h+ s)(−1)s1+s2+s3+s4χ(f ′)(2h+ s)

− 1
16
∑
s′
χ̄(f)(2h+ s′)(−1)s′

1+s′
2+s′

3χ(f ′)(2h+ s′)

= 1
16
∑
s

(−1)s1+s2+s3

(
(−1)s4χ̄(f)(2h+ s)χ(f ′)(2h+ s)

− χ̄(f)(2h+ s)χ(f ′)(2h+ s)
)

= − 1
8
∑
s

s4=1

(−1)s1+s2+s3χ̄(f)(2h+ s)χ(f ′)(2h+ s).

(2.78)

Combining both Eq. 2.77 and Eq. 2.78 we get

OM2(h, s4) = 1
8
∑

s1,s2,s3

(−1)s1+s2+s3+s4χ̄(f)(2h+ s)χ(f ′)(2h+ s), (2.79)

where s4 is an explicit variable of the interpolator. Therefore the interpolator
of Eq. 2.79 has a specific distance in the 4-direction, which is the separation
direction. After understanding and constructing the interpolators, next the
hadronic correlators have to be constructed. Again at this point only mesonic
staggered correlators will be discussed.

So far we constructed only the annihilation interpolator OM , i.e. a sink.
For a correlator we also need a corresponding creation interpolator ŌM , i.e.
a source. Since all Dirac structure comes from terms like Eq. 2.57 the stag-
gered fields χ and χ̄ are conjugate transpose to each other, i.e. χ̄ = χ†.
Note that the staggered fields are still Grassmann-valued fields. Therefore a
creation interpolator reads for the aforementioned example of a local meson
interpolator for the Γ = γ5

ŌM2(h, s4) =

1
8
∑

s1,s2,s3

(−1)s1+s2+s3+s4χ̄(f)(2h+ s)χ(f ′)(2h+ s)

†

= − 1
8
∑

s1,s2,s3

(−1)s1+s2+s3+s4χ̄(f ′)(2h+ s)χ(f)(2h+ s).
(2.80)

The minus sign results from the exchange of Grassmann-valued fields. With
that the fermionic part of the correlator can be constructed. The next step
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is the contraction of the fields. It follows for our example with f ̸= f ′

CM2(h, s4)F = ⟨OM,γ5(h, s4)ŌM,γ5(0, 0)⟩F
= − 1

64
1
ZF

∫
D[χ, χ̄]

∑
s′′,s′

s′′
4 =s4,s′

4=0

(−1)s′′
1 +s′′

2 +s′′
3 +s′′

4 +s′
1+s′

2+s′
3+s′

4

× χ̄(f)(2h+ s′′)χ(f ′)(2h+ s′′)χ̄(f ′)(s′)χ(f)(s′) exp(−SF [U, χ, χ̄])

= 1
64

∑
s′′,s′

s′′
4 =s4,s′

4=0

(−1)s′′
1 +s′′

2 +s′′
3 +s′′

4 +s′
1+s′

2+s′
3+s′

4

× tr[M−1
f ′ (2h+ s′′|s′)M−1

f (s′|2h+ s′′)],
(2.81)

where Mf (n|m) refers to Dirac operators with flavor f connecting space-time
point n to m and ZF = det(Mf )det(Mf ′). Again a minus sign was introduced
via exchange of Grassmann-valued fields. The contractions of χ̄ and χ are
so-called quark propagators leading to traces over inverse Dirac operators.
Those could be solved with the conjugate gradient method mentioned in
subsection 2.4.2. The double summation over all corners of the hypercube in
Eq. 2.81 gives rise to multiple calculations of inverse Dirac operators. This
would have high computational cost. It can be reduced by a similar strategy
as in Eq. 2.76. Here we add all the remaining 14 states only to the source
operator ŌM,γ5(0, 0) to set s′

1 = s′
2 = s′

3 = 0. The sink then automatically
selects the correct states due to quantum number conservation. Still using
the sink from Eq. 2.79 we get

CM2(h, s4)F =C1
∑
s′′

s′′
4 =s4

(−1)s′′
1 +s′′

2 +s′′
3 +s′′

4 tr[M−1
f ′ (2h+ s′′|0)M−1

f (0|2h+ s′′)],

(2.82)

where a projection to momentum zero by a modification according to Eq.
2.75 in only one of the interpolators leads to

C̃M2(h4, s4)F =C2
∑
n⃗

(−1)n1+n2+n3+n4tr[M−1
f ′ (n|0)M−1

f (0|n)]

=C2
∑
n⃗

tr[M−1
f ′ (n|0)M−1†

f (n|0)] ≡ C̃M2(n4)F ,
(2.83)

where n = 2h + s for all four dimensions and n⃗ is only for the three spatial
dimensions. Only one interpolator has to be modified since states with dif-
ferent momenta are othogonal to each other. In the second step of Eq. 2.83
M−1†
f (n|0) = (−1)n1+n2+n3+n4M−1

f (0|n) was used to simplify it even more.
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In our example the phase factor is ϕ(x) = 1. In general the final correlators
are

C̃M (h4, s4) = ⟨OM (h, s4)ŌM (0, 0)⟩

= 1
Z

∫
D[U ]det(Mf )det(Mf ′) exp(−SG[U ])C̃M (h4, s4)F ,

(2.84)

with
Z =

∫
D[U ]det(Mf )det(Mf ′), (2.85)

where U are gauge field configurations and SG is the gluonic action. To calcu-
late the observable itself we need to invert the Dirac matrix M . To calculate
the complete correlator we use the methods, which we presented in section
2.4.

Starting from the other end we know from Eq. 2.20 that a correlator built
from interpolators in the form of Eq. 2.72 will have an exponential decay ac-
cording to their energy levels. Since on a lattice we have boundary conditions
we also experience an exponential rise mirroring this decay. That leads to a
sum of an exponential decay and rise, which can be brought together to

⟨O2(τ)O1(0)⟩ =
∑
n

⟨0̃| Ô2 |n⟩ ⟨n| Ô1 |0̃⟩ (exp(−τEn) + exp((τ − aNτ )En))

=
∑
n

⟨0̃| Ô2 |n⟩ ⟨n| Ô1 |0̃⟩ exp
(

−aNτ

2 En

)
2 cosh

(τ − a
Nτ

2

)
En


=
∑
n

An cosh

(τ − a
Nτ

2

)
En

 ,
(2.86)

where |0̃⟩ is the vacuum state of the fixed temperature system, i.e. an in-
medium state. Since an interpolator of the form of Eq. 2.76 adds or subtracts
a second state depending on the separation distance nτ , in our case the
selecting sink, the correlator becomes

⟨O2(nτ )O1(0)⟩ =
∑
i

Ai cosh

(nτ − Nτ

2

)
aEi,1


− (−1)nτ

∑
j

Bj cosh

(nτ − Nτ

2

)
aEj,2

 ,
(2.87)

where we now switched to pure lattice notation. After projection to mo-
mentum zero the energies Ei in Eq. 2.87 will only contain masses. For an
explanation of the relative minus sign between the two states see section 2.8.
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The usual procedure now is to fit the function from Eq. 2.87 with parameters
Ai, Bj , Ei,1 and Ej,2 onto the calculated correlator at different separation
distances nτ . For our calculation however the maximum distance in time
direction Nτ is rather short due to the link to the inverse temperature 1/T .
That leads to obvious technical problems in the analysis of high tempera-
tures. To circumvent that we use spatial instead of temporal correlators.
These spatial correlators are also called screening correlators. From a techni-
cal standpoint getting screening correlators from temporal correlators is very
simple. We just have to interchange all variables related to the temporal
direction with the variables related to the spatial direction. In our case we
interchange γ4 ↔ γ3, nτ ↔ nz and Nτ ↔ Nz. For simplicity we are using n
or nσ for nz and Ns or Nσ for Nz to indicate that they are spatial correlators.
The limits, which have to be taken to reduce the cut-off effects, however stay
the same, i.e. Ns → ∞ for thermodynamic limit and Nτ → ∞ for continuum
limit.

From a physical standpoint however we change the content of our created
states. Instead of pole masses we get screening masses, hence the name for
the correlators. For zero temperature these two masses are identical because
of Lorentz invariance. For non-zero temperature small modifications happen,
which are temperature dependent resulting from the breaking of the Lorentz
invariance at finite temperature [30]. More on that in subsection 2.7.1. How-
ever these modifications are the same factors for degenerate correlators like
the correlators of scalar and pseudoscalar particles if the UA(1) symmetry
is restored, and the correlators of vector and axialvector particles if SUA(2)
symmetry is restored. In this work we extract the ground state masses of
those particles and we are only interested in the difference between parti-
cle masses, which are connected via their respective symmetry, which makes
this temperature dependent modification irrelevant. The main focus is the
anomaly of UA(1), which can be investigated by the degeneracy of scalar
and pseudoscalar particle. More on that in section 2.10. The screening mass
extraction process will be explained in more detail in section 3.1.

Through the addition or subtraction of another term, see Eq. 2.76, a second
particle with different quantum numbers was introduced to the staggered cor-
relator. Note that depending on the mesons in each of these correlators, also
known as channels, only the phase factor changes. For all our calculations
we used local screening meson staggered correlators. In Tab. 2.1 the phase
factors ϕ(x) for all these correlators are listed.

In section 2.8 we will show the connection between different particles of
our screening mass correlators, i.e. chiral symmetries, and why their suscep-
tibilities describe only one state instead of two. Since we are using screening
masses we give a short explanation of the more subtle differences to pole
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masses and why they are sufficient for our study in the next subsection 2.7.1.

ϕ(x) ΓD JPC states
NO O NO O NO O

M1 (−1)x+y+τ γ3γ5 1 0−+ 0++ π2 a0
M2 1 γ5 γ3 0−+ 0+− π –
M3 (−1)y+τ γ1γ3 γ1γ5 1−− 1++ ρT

2 aT
1

M4 (−1)x+τ γ2γ3 γ2γ5 1−− 1++ ρT
2 aT

1
M5 (−1)x+y γ4γ3 γ4γ5 1−− 1++ ρL

2 aL
1

M6 (−1)x γ1 γ2γ4 1−− 1+− ρT
1 bT

1
M7 (−1)y γ2 γ1γ4 1−− 1+− ρT

1 bT
1

M8 (−1)τ γ4 γ1γ2 1−− 1+− ρL
1 bL

1

Table 2.1: The list of all local screening meson staggered operators. States
associated with the non-oscillating and oscillating part of the screening cor-
relators are designated by the identifiers NO and O, respectively. Particle
assignments of the corresponding states are given only for the ūd flavor com-
bination. The superscripts T and L stand for transverse and longitudinal,
respectively. The operators listed here are taken from Ref. [12] and are iden-
tical to Ref. [31].

2.7.1 What are screening masses?

There is a significant difference between pole masses and screening masses.
Pole masses are the true masses of a particle in the usual sense of an ex-
ponential decay of a correlator along Euclidean time. Screening masses on
the other hand are measured along the spatial direction. The temporal and
the spatial directions are equal at T = 0. However at finite T the Lorentz
invariance gets broken and therefore both masses describe different things.
While the pole masses still describe the mass of a particle in the usual sense,
screening masses describe something a bit more subtle. The interactions in
a thermal medium most likely alter the dispersion relation to [32]

ω2(p⃗, T ) = M2
H + p⃗2 + Π(p⃗, T ), (2.88)

where Π(p⃗, T ) is the temperature dependent vacuum polarization. In the
simplest case [30] we can absorb this vacuum polarization into a temperature
dependent mass and a coefficient A(T ), which might also be temperature
dependent

ω2(p⃗, T ) ≃ M2
H(T ) +A2(T )p⃗2. (2.89)

In this case, at zero momentum the decay of the spatial correlator is
determined by the screening mass M sc

H (T ) = MH(T )
A(T ) while the decay of the
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temporal correlator is determined by the pole mass MH(T ). Therefore the
pole and screening mass differ if A(T ) ̸= 1.

Because at some non-zero temperature it is A(T ) ̸= 1 we can not necessar-
ily identify the screening and the pole masses at any temperature, e.g. Tc. The
difference of the pole masses of π and a0 however is a measure of UA(1) sym-
metry breaking, since UA(1) symmetry should be effectively restored if both
masses become degenerate. We can use the difference of screening masses
of π and a0 to the same extent, because the mass difference should only be
divided by A(T ), which comes from the vacuum polarization Π(p⃗, T ) in the
case of zero momentum. That means that if UA(1) symmetry gets effectively
restored, the screening masses of π and a0 should be degenerate as well.

Another way to look at the spatial correlation functions at finite temper-
ature [30] is that the finite temporal extents of the Euclidean lattice act on
spatial quark and anti-quark propagators like a finite volume effect, which
influences the long-distance behavior of the spatial correlation functions [12].
Screening masses in QCD thus act similar to the Debye screening in Quan-
tum Electrodynamics (QED) created by the plasmon in an electrodynamic
plasma [33]. This screening therefore changes the interaction between parti-
cles to a shorter ranged effective interaction.

In the next section 2.8 we go into more details about the chiral symmetries
and the susceptibilities for staggered fermions.

2.8 Chiral symmetries and susceptibilities for stag-
gered fermions

In this section we explain the chiral symmetries for staggered fermions and
then address the relative minus sign between the two states of Eq. 2.87 with
the help of this deeper understanding. Next we want to show that even
though the correlator has two states instead of only one, we can get suscep-
tibilities for only one state by summing over these correlators.

As already mentioned in section 2.6 the projection from fields X̄ and X to
χ̄ and χ removes the original Dirac structure and changes some non-trivial
aspects like chiral rotations. After this projection the chiral rotations form a
smaller group. As shown in section 2.7 the quark fields, which describe the
theory with staggered fermions, are the hypercubic quark fields q̄ and q. As
also seen in section 2.7 particle states are described by a tensor product of
the new Dirac and taste space. Therefore the chiral rotations also consist of
these tensor products. The staggered action from Eq. 2.70 with hypercubic
fields is invariant under Uϵ(1) rotations [34,35]

q′ = exp(iα(γ5 ⊗ γ∗
5))q, q̄′ = q̄ exp(iα(γ5 ⊗ γ∗

5)), (2.90)
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where the first part of the tensor product is the Dirac and the second part
is the taste space. Eq. 2.90 describes the remnant chiral symmetry. Let us
apply that to the pseudoscalar bilinear to see what happens:

OM (h) =q̄(h)tβ(γ5,ββ′γ∗
5,tt′)q(h)β′t′

=q̄(h)t′′β′′ exp(iαγ5,β′′βγ
∗
5,t′′t)γ5,ββ′γ∗

5,tt′

× exp(iαγ5,β′β(3)γ∗
5,t′t(3))q(h)β(3)t(3)

= 1
64
∑
s,s′

χ̄(2h+ s)χ(2h+ s′)(γs4
4 γ

s3
3 γ

s2
2 γ

s1
1 )t′′β′′

× exp(iαγ5,β′′βγ
∗
5,t′′t)γ5,ββ′γ∗

5,tt′ exp(iαγ5,β′β(3)γ∗
5,t′t(3))

× (γs
′
1

1 γ
s′

2
2 γ

s′
3

3 γ
s′

4
4 )β(3)t(3) .

(2.91)

Next we use a similar strategy as in Eq. 2.54 and sort everything for traces
again. It follows

OM (h) = 1
64
∑
s,s′

χ̄(2h+ s)χ(2h+ s′)

×
(
4η5(s)δss′(cos2(α) − sin2(α)) + 2iη2

5(s) sin(α) cos(α)tr[γ5Γ(s)†γ5γ5Γ(s′)γ5]
)

= 1
64
∑
s,s′

χ̄(2h+ s)χ(2h+ s′)
(
4η5(s)δss′(cos2(α) − sin2(α)) + 2i sin(α) cos(α)4δss′

)
= 1

16
∑
s

χ̄(2h+ s)χ(2h+ s)
(
η5(s)(cos2(α) − sin2(α)) + 2i sin(α) cos(α)

)
= 1

16
∑
s

χ̄(2h+ s)χ(2h+ s)
(
η5(s) cos(2α) + i sin(2α)

)
.

(2.92)

If we rotate with an angle α = π
4 we get

OM (h) = 1
16
∑
s

χ̄(2h+ s)χ(2h+ s)i. (2.93)

By rotating from the pseudoscalar to this state we therefore get a factor of
iη5(n) from the sink and iη5(0) = i from the source. A relative η5 between
the unrotated and rotated interpolator means that they are connected like
the continuum UA(1) rotation where a relative γ5 is between the two interpo-
lators, which means that this other interpolator consists therefore of a scalar
state. From source and sink we get a factor of −η5(n) for the correlator. The
total relative minus sign between these correlators leads to the relative minus
sign if we look at the physical content of the correlator. That explains the
relative minus sign in 2.87 for our staggered correlators. The calculation for
vector and axialvector is analogous. Note that the rotation of Eq. 2.90 is not
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the anomalous UA(1) rotation from continuum physics. The U(1) rotation,
which has the anomaly, is

q′ = exp(iα(γ5 ⊗ 1))q, q̄′ = q̄ exp(iα(γ5 ⊗ 1)), (2.94)

but this is not a symmetry of the staggered action because of the taste-
breaking term. The local scalar meson from Eq. 2.93 becomes degenerate
in the continuum limit to its taste partners, including the non-local scalar
meson with the anomaly, due to the restoration of taste symmetry [36]. Note
that both axial chiral rotations Eq. 2.90 and Eq. 2.94 could however only be
symmetries of the staggered action in the massless limit (chiral limit). Since
for our calculations the continuum limit has to be done before the chiral
limit, we can calculate any of those scalar mesons. We chose the local scalar
meson because it is easier to analyze.

After understanding why there is a relative minus sign between the two states
inside a staggered meson correlator, we want to look at the content of a sim-
ple summation over a correlator, i.e. our susceptibilities. To understand the
content we look at the summation of the correlator and the same procedure
for a single state correlator, which would not have a definitive separation
distance of nτa as we made our correlator by construction; see section 2.7.

We start with the temporal mesonic staggered correlator. In this case we
have to sum over all lattice distances nτ

χM =
Nτ−1∑
nτ=0

ϕ(nτ )C̃M , (2.95)

where C̃M describes one meson staggered correlator with projection to mo-
mentum zero and a function ϕ(nτ ), which is specific to the channel and will
be defined in just a bit.

Let us begin with the M2 channel. The interesting particle in this channel
is obviously the pion since it is the only particle available. The susceptibility
is then

χπ =
Nτ−1∑
nτ=0

ϕ(nτ )C̃M2(nτ ) =
Nτ−1∑
nτ=0

ϕ(nτ )C2
∑
n⃗

tr[M−1
f ′ (n|0)M−1†

f (n|0)]

=C2
∑
n

ϕ(nτ )tr[M−1
f ′ (n|0)M−1†

f (n|0)],

(2.96)

where the initial phase factor of the channel is ϕ(x) = 1. We want to compare
that to a summed over correlator with only the pion state in the sink. Such
a correlator reads

C̃γ5(h4) = C2
2
∑
n⃗

∑
s4

tr[M−1
f ′ (n|0)M−1†

f (n|0)]. (2.97)
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Note that due to neglecting of the second state, a factor of 1
2 enters as well as

a summation over s4. Combining that kind of correlator with an additional
summation over the separation distance nτ leads to a double summation over
s4, which introduces a factor of 2. It follows

χπ =
Nτ−1∑
nτ=0

C̃γ5(h4) = C2
∑
n

tr[M−1
f ′ (n|0)M−1†

f (n|0)]. (2.98)

If we compare Eq. 2.96 to Eq. 2.98, it follows that the specific function in
this case is ϕ(nτ ) = 1. Therefore a simple summation over C̃M2(n4) leads to
a susceptibility of only one state, here the pion. For spatial correlators we
have to again interchange nτ ↔ n as well as Nτ ↔ Ns.

How are the factors for the other channels? Since the interesting state
is either in the non-oscillating or in the oscillating part, the factor ϕ(nτ ) for
other non-oscillating parts is also ϕ(nτ ) = 1. In this case the interesting
channels are M6, M7 and for temporal correlators also M8. It follows for
the spatial correlators for the vector susceptibility

χρ =
Ns−1∑
n=0

C̃M67(n), (2.99)

where C̃M67(n) = C̃M6(n)+C̃M7(n)
2 . This combined correlator helps to increase

the statistics.
Now we will check the susceptibilities for the oscillating part. The tem-

poral correlator for the M1 channel reads

C̃M1(n4) = C2
∑
n⃗

(−1)n1+n2+n3tr[M−1
f ′ (n|0)M−1†

f (n|0)], (2.100)

while the temporal correlator with only the scalar state reads

C̃1(h4) = C2
2
∑
n⃗

∑
s4

(−1)n1+n2+n3+n4tr[M−1
f ′ (n|0)M−1†

f (n|0)]. (2.101)

The scalar susceptibility is

χa0 = −
Nτ−1∑
nτ=0

C̃1(h4) = −C2
∑
n

(−1)n1+n2+n3+n4tr[M−1
f ′ (n|0)M−1†

f (n|0)],

(2.102)
where again a factor of 2 arises due to the double summation over nτ and
the minus accounts for getting the true scalar state due to the rise of i2 from
Uϵ(1) rotations inside the interpolators; see Eq. 2.90. For the M1 channel
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the susceptibility reads

χa0 =
Nτ−1∑
nτ=0

ϕ(nτ )C̃M1(nτ ) = C2
∑
n

ϕ(nτ )(−1)n1+n2+n3tr[M−1
f ′ (n|0)M−1†

f (n|0)]

!= − C2
∑
n

(−1)n1+n2+n3+n4tr[M−1
f ′ (n|0)M−1†

f (n|0)].

(2.103)

To fulfill Eq. 2.103 the phase factor needs to be ϕ(nτ ) = −(−1)nτ . The
formula for the a0 susceptibility is therefore

χa0 = −
Nτ−1∑
nτ=0

(−1)nτ C̃M1(nτ ). (2.104)

Again, similarly the one for the axialvector susceptibility with spatial corre-
lators reads

χa1 = −
Ns−1∑
n=0

(−1)nC̃M34(n), (2.105)

where C̃M34(n) = C̃M3(n)+C̃M4(n)
2 is again a combined correlator to increase

the statistics.
In the next section 2.9 the connection between pure lattice numbers and

physical units will be discussed.

2.9 Connection between lattice and physical units
To get any meaningful results from lattice calculations it is necessary to con-
nect them to physical units. This is done by so-called scale setting. Since in
this thesis natural units ℏ = c = 1 are used, everything can be related to the
lattice spacing a. The lattice spacing describes the distance between near-
est neighbor lattice points and is not directly known by the setup or during
calculation. Only through scale setting the lattice gets a physical meaning
in sense of distance in meters or, usually used in our case, femtometers fm.
Therefore every quantity is calculated first in lattice units, which are dimen-
sionless. That means that the physical quantity depends on factors of a, e.g.
the calculated mass on the lattice is am, where m is the physical mass with
its physical unit MeV.

For setting the scale it is in general preferred to have an experimentally
well known quantity, which is cheap and easy to compute on the lattice with
small statistical and systematic uncertainties (which includes cut-off effects)
and quark mass dependence. Different scale setting schemes usually result
in different lattice spacings for same lattice setups. That is due to the non-
uniqueness of scales at finite lattice spacing a. Nonetheless they should all
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agree in the continuum limit.

The general scale setting procedure amounts to establish a relation between
the bare coupling g0, which is related to the inverse coupling β, and the lat-
tice spacing a. E.g. if a dimensionless mass M is calculated on the lattice
and is related in physical units as M = am the scale would be

am−scale(g0) = M(g0)
m

, (2.106)

where m is the same mass as M but already known by experiment in physical
units and am−scale(g0) is the lattice spacing at bare coupling g0 in the example
m−scale. From Eq. 2.106 it is clear that good scale setting is important since
(when quark masses are neglected) any uncertainty propagates linearly into
a hadron mass. To fix quark masses the scale already enters decisively into
fixing the bare quark masses of the Lagrangian and therefore into planning
of the simulation. Thus good scale setting requires little to no quark mass
dependence. On the one hand setting the scale by using e.g. the proton
mass would be a bad idea since it has strong quark mass dependence, thus
it makes tuning of quark masses rather difficult. On the other hand weak
quark mass dependence also helps extrapolating the scale for non-physical
quark masses more easily because experimental input is needed to set the
scale initially, which in experiment is at physical quark masses. Keep in
mind that trajectories for reaching the physical point can lead to different
sensitivity to quark masses.

In this work mass-degenerate u and d quarks are used while the s quark
mass stays fixed at its physical value. Throughout this thesis the Kaon decay
constant fK has been used to set the scale. It is used to perform the primary
scale setting and to determine values of the theory scales like r0 and r1.
The largest drawback of decay constants is that they are related to weak
processes. Therefore the precision of them depends on our knowledge of the
CKM matrix elements. The big advantage on the other side is that they have
long plateaus for scale setting [37].

In the final section of this chapter 2.10 we go into the details of why the
UA(1) symmetry is so important and how that is related to the QCD phase
diagram.

2.10 UA(1) symmetry and universality class

One aspect for understanding the QCD phase diagram and especially the
critical point is the fate of UA(1) at the phase transition for vanishing chemical
potential µB = 0 in the chiral limit ml → 0 [16–18].
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The naive fermion action

SF [ψ, ψ̄, U ] = a4 ∑
n∈Λ

ψ̄(n)

 4∑
µ=1

γµ
Uµ(n)ψ(n+ µ̂) − U−µ(n)ψ(n− µ̂)

2a +m0ψ(n)


(2.107)

is for vanishing light quark masses mu = md = ml in the mass matrix m0 in-
variant under UA(1) rotations (Eq. 2.53). However observables X, calculated
e.g. with a correlator

C = ⟨X⟩ = 1
Z

∫
D[ψ, ψ̄]D[U ] exp(−SQCD[U,ψ, ψ̄])X[U,ψ, ψ̄], (2.108)

where D[ψ, ψ̄] is the measure, are not necessarily invariant under UA(1) ro-
tations. In fact, after calculating the necessary Jacobian determinant J of
that transformation, we get

D[ψ, ψ̄] = D[ψ′, ψ̄′]J −2

= D[ψ′, ψ̄′] exp

i ∫ d4x α(x)
(

g2

16π2 ϵµνλσF
c
µνF

c
λσ

) , (2.109)

where α is the rotation angle, F is the gluon field strength tensor and ϵ is
the four dimensional Levi-Civita symbol [38]. This invariance, which only
exists if the measure is separately invariant under the rotation, is called the
anomaly of UA(1). That is in contrast to the SUA(2) symmetry, which does
not have an anomaly, but is broken spontaneously in the chiral limit ml → 0
at lower temperature T , which leads due to Goldstone’s theorem to massless
Goldstone bosons. In the case of SUA(2) there would be a triplet of mass-
less bosons because three symmetries would be broken. Since SUA(2) is a
weakly explicitly broken symmetry, i.e. still a good approximate symmetry,
this triplet of bosons is expected to have low masses. Indeed we can identify
this triplet as the pion triplet of π± and π0, which is expected to have zero
mass in the chiral limit ml → 0 for low temperature T , where the symme-
try is spontaneously broken. The UA(1) however is explicitly broken by the
anomaly while the spontaneous symmetry breaking is restored at lower or at
the same T as the anomalous symmetry breaking, and therefore no Goldstone
boson is associated in this case. It is also the reason for the large mass gap
between the pseudoscalar η and η′ [17].

The anomaly of UA(1) has been the focus of many studies [13–15]. Why
is the anomaly of UA(1) so important? Near a critical point scaling of ob-
servables depends on the universality class of that critical point [8, 19]. The
universality class depends on the breaking (or restoration) pattern of the
symmetry group. For dynamical QCD with (2+1)-flavors at vanishing µB
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and physical quark masses the transition is a crossover. Towards vanishing
light quark masses ml a second order phase transition arises there. In Fig.
2.2 an illustration of the phase transition as a function of ml and ms for
µB = 0 is shown. The dark green lines are second order phase transitions,
which are critical points. Since the anomaly of UA(1) is an anomaly we do
not initially know if UA(1) is in the larger symmetry group or not. The QGP
phase, which is above the phase transition temperature, can be described by
the larger symmetry group. The hadronic phase, which is below the phase
transition temperature, can be therefore described by the smaller symmetry
group. We know that in the hadronic phase UA(1) as well as SUA(2) are
broken. We also know that in the QGP phase the spontaneous breaking of
SUA(2) disappears and the symmetry gets effectively restored shortly after
the phase transition. But we do not know if the anomalous UA(1) also gets
effectively restored at Tc in the chiral limit.

Fig. 2.2 are the so-called Columbia plots. In these plots the dotted lines
from the physical point to ml = 0 is the so-called chiral limit for (2+1)-flavor
QCD, which we are interested in. The left plot of Fig. 2.2 is the scenario that
current research leans toward [39, 40]. In this scenario the phase transition
is second order at ml = 0 for physical strange quark mass ms. Two different
universality classes are possible depending on if UA(1) is broken or has very
small breaking, i.e. an effective symmetry restoration, at the phase transition
temperature. In case of a broken UA(1) the universality class of this critical
point is O(4) → O(3) and in the case of an effectively restored UA(1) the
universality class of this critical point is U(2) × U(2) → U(2) [16]. Which
one of those will be realized depends then on the strength of the anomalous
breaking of UA(1) [15].

In the right plot of Fig. 2.2 the second scenario is plotted. In that case
the transition region from the lower left corner extends to the physical value
of ms. The phase transition is then first order in the chiral limit and the
universality class of the corresponding critical point at a specific ml < ml,phys.
and µ = 0 is Z(2).

Knowing the universality class of this critical point helps us to understand
the QCD phase diagram. If the scenario in the left plot of Fig. 2.2 is realized
we expect a tricritical point at some non-vanishing µB at ml = 0. This is
illustrated in Fig. 2.3. We therefore get a connection between the critical
point in our calculation and the Critical End Point (CEP) of the physical
QCD. In Fig. 2.3 the CEP is the light blue point, the tricritical point is
the violet point connecting the black, blue and red solid lines. Through our
calculations we are tiptoeing towards the red point in that scenario. The CEP
of QCD is of special interest theoretically as well as experimentally and was
the main interest of the first funding period of the CRC-TR211 collaboration
in which the research of this thesis was done.
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Figure 2.2: The Columbia plots show the order of the phase transition for
µB = 0 for different values of mud and ms in the case of Nf = 1, Nf =
2, Nf = 2 + 1 and Nf = 3 QCD. Dotted lines indicate the chiral limit
extrapolation in Nf = 2 + 1 QCD. The left plot is one possible scenario. The
right plot is the other possible scenario. For details see text. Plots taken
from Ref. [41].
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Figure 2.3: Possible QCD phase diagram with temperature T , baryon chem-
ical potential µB and light quark mass mu,d. Dashed lines are crossover
transitions while the solid red and blue lines are second order phase tran-
sitions. The grey area are first order phase transitions. Plot taken from
Ref. [42].

A possible effectively restored UA(1) symmetry should be observable by
calculating meson correlators, which can transform into each other via UA(1)
rotations [43]. Two of these correlators consist of the ground state isovector
pseudoscalar and scalar mesons with a light-light quark flavor combination;
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see section 2.8. In fact all masses in those correlators have to be identical
on each level if UA(1) is effectively restored. Since we are dealing with stag-
gered fermions, this degeneration of correlators is hard to see if at all since
a continuum limit extrapolation has to be done beforehand to restore taste
symmetry and thus to receive correct correlators. Therefore one focus is on
the ground state masses of these particle spectra. For a better mass extrac-
tion screening meson correlators will be used here instead of temporal ones.
That changes the interpretation of the observables but does not change the
fact that both correlators are connected via UA(1) rotations if the symmetry
is restored. Screening masses can be interpreted as the inverse length scale
over which a perturbation is screened by the plasma [15]; more information
on that in subsection 2.7.1. Besides screening masses the corresponding sus-
ceptibilities should also become degenerate and therefore the second focus
is on these observables. See section 2.8 for details on chiral symmetries and
these susceptibilities.

Since the UA(1) symmetry is an interesting topic, a lot of research has al-
ready been done. We now want to briefly give an overview here to put the
final results of this thesis later into context of the current research.

On one side we have studies, which support a broken UA(1) symmetry
in the chiral limit after the phase transition temperature: In the study [44]
domain wall fermions were used. This study also analyzed screening correla-
tors of π and a0 (named δ in this study). For the UA(1) symmetry they were
looking at the susceptibility difference of those two correlators like in our
study and concluded that the UA(1) symmetry remained broken. However
this study did only use a small lattice size with a pion mass of 200 MeV and
did not perform any thermodynamic, continuum or chiral limit extrapolation.
A similar result was brought by another study [45]. This study also used do-
main wall fermions and also came to the conclusion that the UA(1) symmetry
remains broken at the phase transition temperature in the chiral limit. This
was basically a follow-up study with larger lattice sizes, which tried to inves-
tigate the finite volume effects, done by a different group. Another study [46]
looked at the eigenvalues of the overlap operator using HISQ configurations
to calculate the susceptibility difference. Even though volume effects were
taken into account, the continuum and chiral limit extrapolations were still
missing. The study [47] also found similar to Ref. [46] that the UA(1) symme-
try is broken. The study used similar to Ref. [46] eigenvalues of the overlap
operator using HISQ configurations to calculate the susceptibility difference.
Volume effects and the chiral limit were taken into account, but not the con-
tinuum limit. Finally the study [48] looked at Dirac eigenvalues using HISQ
configurations calculating the susceptibility difference. It was found that the
UA(1) symmetry remains broken even at higher temperatures (T ≈ 1.6Tc).
This study performed all three extrapolations.
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On the other side are studies, which support an effectively restored UA(1)
symmetry in the chiral limit at the phase transition temperature: The study
[49] used overlap fermions and calculated meson correlators and Dirac op-
erator spectral density. This study took finite volume effects into account,
but not the continuum limit. Another study [15] used O(a)-improved Wilson
fermions and calculated screening correlators of mesons similar to our study.
Finite size effects were taken into account, but again not the continuum limit.
Both studies concluded that the UA(1) symmetry gets effectively restored at
the transition temperature in the chiral limit. The study [50] used domain
wall fermion configurations and calculated eigenmodes of the domain wall
as well as the overlap Dirac operator. This study has taken finite size and
cut-off effects into account and did a chiral limit extrapolation, but not by
thermodynamic or contiuum limit extrapolations. It concluded that an UA(1)
symmetry gets effectively restored in the chiral limit by using a reweighting
technique. The investigated temperature range was 190-220 MeV, which is a
range of around 1.11-1.3 Tc (Tc ≈ 170 MeV for two-flavor QCD [51]), where
Tc is the chiral phase transition temperature of the Nf = 2 QCD, which this
paper studied. Finally the study [52] is a follow-up study of Ref. [50] with a
similar set-up increasing the upper bound of their temperature range to 330
MeV and the same conclusion.

In the next chapter 3 we explain the technical details from the lattice calcu-
lation to the extrapolated values and in chapter 4 we show the corresponding
results of this thesis.
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Chapter 3

Methodology

In this chapter the technical methods for getting the final results from the
calculated numbers from lattice QCD are explained in details. For now
we calculated spatial meson mass correlators in dynamical QCD using the
Highly Improved Staggered Quark (HISQ) action with (2+1)-flavors, fixing
the strange quark mass ms at its physical value and varying the two degen-
erate light quark masses ml towards the chiral limit around their transition
temperature Tpc.

3.1 Extracting masses from correlators
Unlike the susceptibilities for e.g. pseudoscalar and scalar channels, which
can be calculated by

χπ =
Ns−1∑
n=0

C̃M2(n), χa0 = −
Ns−1∑
n=0

(−1)nC̃M1(n), (3.1)

where C̃M are the meson correlators with a projection to zero momentum (for
details see section 2.8), the masses for these channels have to be extracted
through fitting the correlator with

C̃M (n) =
Nno∑
i=0

Ai cosh(mi,no(n−Ns/2))− (−1)n
Nosc∑
i=0

Bi cosh(mi,osc(n−Ns/2))

(3.2)
and getting the mass through a fitting parameter. An exception to that fit-
ting function is the M2 channel, which does not have an oscillating part osc;
see Tab. 2.1.

However, there are a few challenges that have to be overcome here [12,53]:

1. The ground state mass dominates in the middle of our correlator, but
the middle of our correlator is also noisier. We therefore want to use
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multi-state fits and extract the ground state mass from them. Since
in a multi-state fit there are many parameters to be fitted, the fit may
become unstable without a good initial guess. The way we overcome
this is to construct higher state fits by first estimating initial guesses
for lower state fits and then fit on the difference between the correlator
and this lower state fit. With this procedure one gets an initial guess
for a fit with one more state than the starting fit. In a second step we
can fit this higher state fit using the initial guess and then we repeat
the procedure.

2. Higher state fits will always be more accurate than lower state fits due
to possible overfitting. Overfitting means that the fit is too closely to
the data points and will fail to predict future data points. We over-
come this challenge by using a selection criterion that also considers
the number of parameters to counter overfitting. In our case we use
the corrected Akaike Information Criterion (AICc) [54]. For every pa-
rameter in our fit the value gets increased linearly and for larger values
of the likelyhood function it decreases logarithmically. The corrected
version deals with the fact that we have a small sample size, where
the normal AIC would overfit naturally, by adding an additional term,
which also considers the sample size relative to the parameters.

3. Getting a reliable mass plateau. At this point there is only a fit chosen
for the whole range. This fit has only one value for the ground state
mass and might not be accurate. To overcome this, we use different
ranges for the fits to get different ground state masses and construct a
mass plateau.

In Fig. 3.1 we show an example of the fitting where a typical M2 channel
meson correlator with two light quark masses is plotted. This example is for
a lattice size of 563 × 8 at mass ratio ms/ml = 80 and coupling β = 6.390
with two non-oscillating states using the usual (2+1)-flavor HISQ action with
physical strange quark mass. The colors indicate from red to blue different
fitting ranges which increase from the middle of the lattice, i.e. the end of
the plotted correlator, to the beginning of the lattice nσ = 1. Note that due
to periodicity of the lattice only one half of the correlator should be unique.
For this reason the second half of the correlator is folded on top of the first
half to increase the statistics. For all used fitting ranges the parameters and
their respective AICc are saved. Note also that only in this channel the fits
lie under their data points. That is because the weighted least squares shifts
the fits away from the data points due to the off-diagonal matrix elements
in their covariance matrix. In this channel the distribution of data points
is not normal but log-normal as we will see in section 4.2. This results in
negative off-diagonal elements in the covariance matrix, which shifts the fits
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always below the data points. This is special to the M2 channel and does not
happen in the other channels as they are normal distributed as we will see
in section 4.2. As one counter measure we use the AICc, which considers the
likelihood function. Another counter measure is to have a large amount of
configurations in relation to the lattice size, such that the shift is still within
the error bars of the data points as in the M2 channel example in section 4.2.
One way to solve this "problem" in the M2 channel completely is to have a
vast amount of configurations, such that the distribution is (almost) normal
instead of log-normal.

0 5 10 15 20 25
nτ/σ,min.

10−1

100

G
(n
τ
/
σ
)

Figure 3.1: Example for a two-state fit along a spatial direction. This example
is for a 563 × 8 lattice in the M2 channel at coupling β = 6.390 with mass
ratio ms/ml = 80. On the x-axis is the separation distance and on the y-axis
is the correlator value in lattice units. The correlator has been symmetrized
by folding the second half onto the first half, which is shown here. Starting
from the center of the lattice (nσ,max = 28) we used various ranges from
nσ,min = nσ = 24 to 1 as left bound for the two-state fit indicated by the
different colors ranging from red to blue as the range increases.

In the second step the AICc values of all different fits are compared to
each other at all fitting ranges. Only the mass corresponding to the lowest
AICc value for each fitting range is used in the following analysis. E.g. if at
a fitting range starting from nσ = 10 the fit with one non-oscillating state
has the lowest AICc compared to the fit with two non-oscillating states and
the fit with three non-oscillating states, the ground state mass parameter of
the fit with one non-oscillating state is used in the following analysis as the
ground state mass for starting distance nσ = 10. See Fig. 3.2 for the AICc
values for this example.
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Figure 3.2: Example for an AICc selection. This example is for a 563 × 8
lattice in the M2 channel at coupling β = 6.390 with mass ratio ms/ml = 80
as shown in Fig. 3.1. On the x-axis is nσ and on the y-axis is the AICc
value. Only the lowest AICc values will be selected for the mass plateaus.
In this example at small nσ the two-state fit will be selected but for the rest
of the correlator the one-state fit will be selected. The shown three-state fit
however will not be chosen and hence is irrelevant for further analysis.

In Fig. 3.3 the corresponding ground state masses are plotted. Note that
only for the AICc selection relevant states are plotted; in that case the fit with
three non-oscillating states were never selected and therefore is not shown.

In Fig. 3.4 the resulting mass plateau is plotted. Note that lower nσ =
nmin means that more of the correlator is fitted. Flat mass plateaus in this
area are therefore preferred because they have less statistical uncertainty
due to more included lattice points. In this example the mass plateau is very
stable and long. Usually the length of mass plateaus in the M2 channel is
longer than the mass plateaus of the other channels due to the additional
oscillating part in the other channels and therefore possibly more selected fit
combinations. Unlike the effective mass, which usually plateaus around the
center of the correlator and has similar noise for all data points, our method
produces a larger plateau and can work better around noisy data points, as
we have in correlators with an oscillating part. We will show our mass results
in section 4.3.

In the next section 3.2 we look into the first extrapolation, which we need
to perform to answer the main question of this thesis: Is the UA(1) symmetry
effectively restored at the chiral phase transition?
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Figure 3.3: Example for AICc selected ground state screening masses. This
example is for a 563 ×8 lattice in the M2 channel at coupling β = 6.390 with
mass ratio ms/ml = 80 as shown in Fig. 3.1. Shown are the fit parameter
values for the ground state mass of the selected fits from Fig. 3.2. In black
are the selected values by the AICc criterion.

0 5 10 15 20 25
nmin

0.115

0.120

0.125

0.130

0.135

0.140

a
m

am

Figure 3.4: Example for the mass plateau selection. This example is for
a 563 × 8 lattice in the M2 channel at coupling β = 6.390 with mass ratio
ms/ml = 80 as shown in Fig. 3.1. From the AICc selected masses an adequate
range for the final mass value is selected where the mass plateau is created
as shown in Fig. 3.3. The values here seem to be stable enough in a sense of
a real plateau.
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3.2 Thermodynamic limit extrapolation
The first limit we need to take is the infinite volume limit, also known as the
thermodynamic limit. The goal is to remove finite volume effects, which arise
naturally on the lattice because of the finite extent that all lattices have.

First we need to consider the form of the fitting function. The finite
volume dependence of the screening mass is expected to follow a power law
rather than an exponential form at zero temperature [55] and a different
power law for the free case. For screening masses we expect therefore

mNs/Nτ = mNs→∞/Nτ

(
1 + bNτ

(
Nτ

Ns

)c)
, (3.3)

wheremNs/Nτ is the screening mass calculated on aN3
s×Nτ lattice, mNs→∞/Nτ

is the screening mass in the thermodynamic limit at a specific Nτ , which is
along with bNτ and c also a fitting parameter. It is c = 3 for T = 0 and c = 1
for the free case at T → ∞ [55]. We therefore assume that for finite temper-
ature it should be c ∈ [1, 3]. Thus we restrict c to be inside this interval. We
futhermore assume that c only depends on temperature T and the number
of temporal lattice points Nτ . For mNs→∞/Nτ and bNτ we assume that they
depend on Nτ , particle type (e.g. pseudoscalar, scalar) and temperature T .
Therefore a combined fit with a shared parameter c between pseudoscalar
and scalar particles at fixed Nτ and T is possible. With these assumptions
we have five parameters to set with two sets of data points, i.e. pseudoscalar
and scalar masses. Therefore we need at least three different volumes at fixed
Nτ and T to perform a fit with six data points.

For the thermodynamic limit of the susceptibilities we use a simpler ansatz.
In contrast to screening masses we need to build manually an observable out
of susceptibilities, which is multiplicatively and additively renormalized [8].
We therefore take the thermodynamic limit with(

m2
s

χπ/ρ − χa0/a1

f4
K

)
Ns

=
(
m2
s

χπ/ρ − χa0/a1

f4
K

)
Ns→∞

(
1 + dNτ

N3
s

)
, (3.4)

where the difference between these two susceptibilities makes this observ-
able additively renormalized, the mass multiplication of m2

s multiplicatively
renormalized and the Kaon decay constant f4

K makes it dimensionless. For
the susceptibilities we have two parameters and only one set of data points.
Therefore we need at least three different volumes to still have an undercon-
strained system to fit like for the screening masses. Note that χπ is related
to ⟨ψ̄ψ⟩l by

χπ = ⟨ψ̄ψ⟩l
ml

. (3.5)
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The behaviour in the thermodynamic limit for ⟨ψ̄ψ⟩l has been studied in [8].
In former studies [53, 56] the effects of thermodynamic limit extrapo-

lation for screening masses seemed negligible to the statistical uncertainty
for lattices at large enough volumes. Our volumes fulfill the requirement of
Ns/Nτ ≥ 4, therefore we expect that this correction is also small in our case.
Because we have smaller light quark masses than in those studies, we want
to verify that expectation here as well. Results on thermodynamic limit ex-
trapolations will be shown in section 4.4 where we will also discuss it in more
detail.

In the next section 3.3 we will look into the second extrapolation needed
to answer the main question of this thesis. In this step we transition from
the lattice back into continuum physics.

3.3 Continuum limit extrapolation
The second limit we have to take is the continuum limit. The goal is to
extrapolate to vanishing lattice spacing a → 0. The cut-off effects result
from the action S. In all lattice QCD calculations the action is

Slatt = Scont + O(an) (3.6)

by construction. For the HISQ action it is expected that the cut-off effects
are of O(a2). To check for significant higher orders of cut-off effects in a a
first estimate with just a2 cut-off effects are assumed and verified if it seems
linear. Therefore for screening masses we fit

mNτ = mNτ→∞

(
1 + bmass

1
N2
τ

)
(3.7)

using the infinite volume extrapolated masses. Similarly for our combined
susceptibilty observable we first assume(

m2
s

χπ − χa0

f4
K

)
Nτ

=
(
m2
s

χπ − χa0

f4
K

)
Nτ→∞

(
1 + bsusc

1
N2
τ

)
, (3.8)

where the infinite volume extrapolated susceptibilties are used. In both cases
the infinite volume extrapolated values are inserted on the left-hand side of
this equation.

In Eq. 3.7 and Eq. 3.8 the fitting parameters aremNτ→∞ or
(
m2
s
χπ−χa0
f4
K

)
Nτ→∞

,

which are the continuum limit values of the respective observable, and bmass
or bsusc, respectively. Assuming that scalar and pseudoscalar meson masses
experience different cut-off effects we have therefore two parameters to set
by our fits for every observable. Thus we need values from three different
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lattice spacings a, i.e. values from three different Nτ , at fixed temperature T
to have an underconstrained system to fit them.

To check if the effect of thermodynamic limit extrapolations is also small on
this stage of the extrapolation we also used just largest volume values as input
parameters for the continuum limit and compared them to the proper extrap-
olations. Results on those continuum limit extrapolations will be shown and
discussed in section 4.5.

In the last section of this chapter 3.4 we cover the last necessary extrapo-
lation. In this step we remove the explicit breaking of the chiral symmetries
through the light quark mass ml.

3.4 Chiral limit extrapolation

At this point all values should be continuum extrapolated. For this work
the values at ml = 0 are of special interest. Unfortunately these values can
not be directly computed at ml = 0 since the Dirac operator at these values
can not be accessed numerically. To overcome this problem an extrapolation
for different light quark masses ml to ml = 0 can be taken. Therefore the
third and last limit we want to take is the chiral limit ml → 0. In the chiral
symmetry broken region at low temperature and also in the region close to
but below the transition temperature we know that it is

mπ(ml) = mπ(ml = 0) + b
√
ml/ms, (3.9)

where mπ(ml = 0) = 0 because of the Goldstone phenomenon, for the pion
screening mass mπ. This results from an analysis of pion pole masses around
the phase transition at very low ml [57]. At higher temperatures mesons with
light masses like the mπ in the chiral limit should behave similar. Therefore
we will assume for ma0 , which would become degenerate to mπ if UA(1)
symmetry gets effectively restored, a behavior in the vicinity of this square
root behavior in ml. In particular we will fit for the difference of mπ and
ma0 a square root function as in Eq. 3.9, a linear fitting function and a
combination of those two ideas.

Our observable made out of susceptibilities m2
s
χπ−χa0
f4
K

on the other hand
diverges in the chiral limit below the transition temperature because of χπ’s
behaviour in the limit of vanishing ml, not being degenerate to χa0 and
⟨ψ̄ψ⟩l being non-zero below the transition temperature, cf. Eq. 3.5. From
Ref. [58, 59] it can be derived that

⟨ψ̄ψ⟩l ≈ c+ c′√ml, (3.10)

for T < Tc assuming the 3d O(4) spin model as universality class of the
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critical point. That means that

χπ ≈ c

ml
+ c′

√
ml
. (3.11)

We want to assume that χπ and χa0 will behave similar to Eq. 3.11 since
they should become degenerate at some high enough temperature T since
they are connected by UA(1), which should be effectively restored at large
enough T . We want to assume that behaviour even around Tc in contrast
to their universal behaviour at Tc (cf. [8]) and since the light quark masses
are in the denominator we want to invert the function for a chiral limit
extrapolation. Using Taylor expansion we get

(χπ − χa0)−1 = c̃ml + c′′√ml
3, (3.12)

where c̃ and c′′ are free parameters. This function however would go trivially
to zero in the chiral limit, which would imply that (χπ − χa0) is always
diverging and that means that the UA(1) symmetry would be broken by
definition. To account for a potential restoration, which would be for a
diverging (χπ − χa0)−1, we introduce a parameter d

(χπ − χa0)−1 = d+ c̃ml + c′′√ml
3. (3.13)

We want to compare that approach to a fitting function of

χπ − χa0 = d+ c̃ml + c′′√ml
3, (3.14)

where the parameter d is a measure for the anomalous UA(1) symmetry
breaking. Since we have no predictions here, we try these fitting functions
and also compare them to the cases were we set c̃ or c′′ to zero.

In the next chapter 4 we will show the results of this thesis.
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Chapter 4

Results

In this chapter results for screening masses and their respective susceptibil-
ities will be presented. Our main focus is the fate of the anomalous part
of UA(1). For that we calculated mesonic screening correlators in dynamical
QCD using the Highly Improved Staggered Quark (HISQ) action with (2+1)-
flavors, fixing the strange quark mass ms at its physical value and varying
the two degenerate light quark masses ml towards the chiral limit ml → 0
around their pseudo-critical temperature Tpc. We analyzed especially the
correlators for the pseudoscalar and scalar particle π and a0 for lower-than-
physical light quark masses ml < ml,phys.. For the analysis at physical quark
masses see Ref. [12,53]. Since these two particles are connected via the UA(1)
symmetry, which is explicitly broken for any non-zero light quark mass (and
at finite lattice spacing for staggered fermions, see sections 2.8 and 2.10 for
details), we need to remove the explicit breaking of the UA(1) symmetry with
an extrapolation to vanishing light quark masses ml → 0. For more details
on UA(1) see section 2.10. Before this two other extrapolations need to be
done: The thermodynamic limit and the continuum limit. For more details
about the procedure see chapter 3.

For dynamical QCD as we use here, the generation of Markov chains are
far more expensive than for quenched QCD. Therefore to achieve enough
configurations and consequently better statistics, lattice sizes for dynamical
QCD are kept smaller than for quenched QCD. One problem that arises
here is that the temporal lattice extent Nτ is undersized for our analytical
methods. For this and other reasons we calculate mesonic correlators along
the spatial lattice extent Ns to extract their so-called screening masses. For
more details on the staggered correlators see section 2.7.

We expect two limits for our calculations: For zero temperature, temporal
mesonic correlators and spatial mesonic correlators should have the same
mass values. For temperatures T → ∞, the screening masses of mesonic
correlators should go towards 2πT , which is the result in the free case [60,61].



CHAPTER 4. RESULTS

In section 4.1 we will describe more of our lattice setup. In section 4.2
we take a look at the lattice results to assess the quality of our correlators.
In section 4.3 the results from our calculations after setting the scale will
be shown; for information about the scale setting see sections 2.9 and 4.1.
In section 4.4 we will show our fitting results for the thermodynamic limit
following the procedure of section 3.2: The goal is to estimate the systematic
effect of the thermodynamic limit to our largest lattice volumesN3

s . In section
4.5 continuum limit fitting results using the results from section 4.4 by using
the methods of section 3.3 will be shown: Here we want to estimate, similar to
section 4.4, the systematic effect of different continuum limit extrapolations
to our finest lattice, i.e. largest Nτ . Finally in section 4.6 some chiral limit
extrapolations will be shown and the final results will be discussed.

4.1 Lattice setup

All following calculations of meson screening mass correlators were performed
with the Nf = 2 + 1 HISQ action while the strange quark mass is kept at the
physical value ms = ms,phys. and the degenerate light quark masses consisting
of up and down quark mass, mu and md, are varied to lower-than-physical
quark masses ml < ml,phys.. The tuning of the strange quark mass was done
by matching to the mass of the fictious pseudoscalar meson mηs [62,63]. The
mass ratio for physical light quark masses corresponds to ml/ms = 1/27,
i.e. lower-than-physical light quark mass values have a smaller mass ratio.
Here we used ml/ms = 1/40, 1/80 and 1/160, which correspond to pion
masses of mπ = 110 MeV, mπ = 80 MeV and mπ = 55 MeV, respectively.
The temperature range that we covered for these mass ratios lies between
T = 135 MeV and T = 170 MeV. All configurations are seperated by at
least 5 full trajectories starting from 200, all in molecular dynamics time
units. The lattice sizes vary from 243 ×8 to 603 ×12 for ml/ms = 1/40, from
243 ×6 to 723 ×12 for ml/ms = 1/80 and for ml/ms = 1/160 we only had one
lattice of size 563 × 8. Therefore a proper continuum extrapolation including
a thermodynamic limit extrapolation with at least three volumes and lattice
spacings is currently only possible for mass ratio ml/ms = 1/80, since for
ml/ms = 1/40 we did not have the Nτ = 6 analysis and for ml/ms = 1/160
neither the thermodynamic limit nor the continuum limit is possible right
now. The statistics are in Tables 4.2 to 4.7. All temperatures T mentioned
in the tables are in fK-scale from Ref. [12].

We have set the scale for our configurations using the fK-scale following
Ref. [64]. To set the scale the Kaon decay constant fK,exp = 156.1√

2 MeV
has been compared to the lattice observable afK computed from two point
correlation functions. This thesis however uses an updated version of this
scale setting [12], which results in slight deviations to the original scale during
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the creation of configurations [64]. We calculated all eight channels but
analyzed mainly the M1 scalar and M2 pseudoscalar channels since they are
related via the UA(1) symmetry in which we are mostly interested in this
thesis. The temperature is calculated via [12]

T (β,Nτ ) = fK,exp
afK(β)Nτ

, (4.1)

where it is

afK(β) = c0,fKf(β) + 10f(β)3c2,fK/β

1 + 10f(β)2d2,fK/β
, (4.2)

where it is

f(β) = (10b0/β)−b1/2b2
0 exp(−β/20b0), (4.3)

where β is the inverse coupling and the remaining coefficients are in Tab. 4.1.
The number of flavors Nf is in our case three.

b0 b1 c0,fK c2,fK d2,fK
11−2Nf/3

(4π)2
102−38Nf/3

(4π)4 7.49415 46049 3671

Table 4.1: Used coefficients for setting the temperature with the fK scale.
Nf is the number of flavors.

For all calculations of correlators we used the Bielefeld GPU code on the
cluster of Piz Daint, at the Swiss National Supercomputing Centre (CSCS),
Switzerland and the GPU based supercomputing cluster of Bielefeld Univer-
sity, Germany. We used only point sources, which we put randomly on the
lattice, for all calculated correlators. For the fitting of the pseudoscalar cor-
relators we used up to three states in the non-oscillating part while the states
in the oscillating part are kept at zero since they are not present in this chan-
nel. For the fitting of the remaining correlators we used up to three states in
both the non-oscillating and the oscillating part of the correlators. For the
exact method for extracting the masses from the correlators see section 3.1.

In the next section 4.2 we have a look into the quality of our correlators.
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β T [MeV] statistics
243 × 8

statistics
323 × 8

statistics
403 × 8

6.260 136.716 15240 4197 8420
6.285 140.32 15263 4281 8706
6.300 142.53 15385 4287 9220
6.315 144.77 15271 4283 9220
6.330 147.04 17091 4477 10820
6.354 150.76 17164 4497 10820
6.365 152.49 17134 4533 11220
6.390 156.50 18797 4563 11220
6.423 161.93 18888 3261 11220
6.445 165.66 20661 3481 11220

Table 4.2: Statistics for lattices of size N3
s = 243, 323, 403 with Nτ = 8 at

mass ratio ms/ml = 40. Temperature T is in fK-scale from Ref. [12].

β T [MeV] statistics
423 × 12

statistics
603 × 12

6.600 129.45 6108 4304
6.640 134.80 3819 5338
6.680 140.36 4380 6140
6.712 144.94 4380 6700
6.754 151.15 4900 6696
6.794 157.27 5400 7570
6.825 162.17 5412 7566
6.850 166.21 5570 7561

Table 4.3: Statistics for lattices of size N3
s = 423, 603 with Nτ = 12 at mass

ratio ms/ml = 40. Temperature T is in fK-scale from Ref. [12].
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β T [MeV] statistics
243 × 6

statistics
323 × 6

statistics
483 × 6

6.025 142.73 4813 - 3206
6.038 144.67 4157 - 3392
6.050 146.48 3688 - 3414
6.062 148.32 3888 4775 4157
6.075 150.33 3941 - 405
6.090 152.70 3985 7648 4106
6.105 155.10 4194 - 4182
6.120 157.54 - - 3679
6.125 158.36 4496 - -
6.135 160.02 4541 3525 -
6.150 162.54 6640 4702 -

Table 4.4: Statistics for lattices of size N3
s = 243, 323, 483 with Nτ = 6 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from Ref. [12].

β T [MeV] statistics
323 × 8

statistics
403 × 8

statistics
563 × 8

6.285 140.32 15209 5620 5118
6.300 142.53 14124 5620 5117
6.315 144.77 17468 5620 5115
6.330 147.05 18694 5740 5064
6.354 150.76 20403 6480 5115
6.372 153.60 15060 6425 3118
6.390 156.50 23021 8196 5235
6.423 161.93 9620 8385 2815
6.445 165.66 9620 8581 2831

Table 4.5: Statistics for lattices of size N3
s = 323, 403, 563 with Nτ = 8 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from Ref. [12].
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β T [MeV] statistics
483 × 12

statistics
603 × 12

statistics
723 × 12

6.600 129.45 3734 2763 -
6.640 134.80 6940 4094 3106
6.680 140.36 7190 4365 4100
6.712 144.94 7908 4357 3884
6.733 148.02 1273 902 3433
6.754 151.15 8246 4716 3356
6.794 157.27 - 3718 -
6.825 162.17 - 3847 -
6.850 166.21 - 4347 -

Table 4.6: Statistics for lattices of size N3
s = 483, 603, 723 with Nτ = 12 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from Ref. [12].

β T [MeV] statistics
6.285 140.32 3391
6.300 142.53 3402
6.315 144.77 3378
6.330 147.05 3400
6.354 150.76 3378
6.372 153.60 1721
6.390 156.50 4131
6.423 161.93 4845
6.445 165.66 5182

Table 4.7: Statistics for lattice of size 563 × 8 at mass ratio ms/ml = 160.
Temperature T is in fK-scale from Ref. [12].

4.2 Correlators

In this section we will have a look at the correlators before analyzing further.
First we want to look at the complete correlator and their respective uncer-
tainties. Next we want to have a look at the distribution of the correlator
values for a given distance.

In Fig. 4.1 and in Fig. 4.2 we show example plots for all calculated meson
channels. The uncertainties are calculated via standard error. The correla-
tors of Fig. 4.1 seem to be smooth and the uncertainties are small. Therefore
a good mass extraction is expected from the M1 and M2 channels.
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Figure 4.1: Example plots and best fits for the M1 scalar (left) and the M2
pseudoscalar channel (right). Both correlators G are calculated at lattice size
403 × 8, at β = 6.354, with quark content ūd and for mass ratio ms/ml = 80.
The corresponding temperature is T = 150.76 MeV [12]. The correlator for
the M1 channel was multiplied by (−1)nσ for better visibility.

The correlators of Fig. 4.2 on the other hand become very noisy towards
the middle of the lattice with data points switching signs and having large
uncertainties. Therefore we expected to get into some trouble if we extract
masses from M34 and M67 channels, even though M34 and M67 have ef-
fectively increased statistics due to averaging of the M3, M4 and M6, M7
correlators, respectively.
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Figure 4.2: Example plots and best fits for the M34 axial vector (left) and the
M67 vector channel (right). Both correlators G are calculated at lattice size
723 ×12, at β = 6.712, with quark content ūd and for mass ratio ms/ml = 80.
The corresponding temperature is T = 144.94 MeV [12]. The correlator for
the M34 channel was multiplied by (−1)nσ for better visibility.

In Fig. 4.3 and Fig. 4.4 we show some histograms of all channels at a
distance equal to half the lattice extent. In Fig. 4.3 we see the M3 and M6
channel histograms. The distributions of the correlator values look like a
normal distribution and seem to be centered around 0 in both cases.
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Figure 4.3: Histograms of M3 (left) and M6 (right) channel. Both correlators
are calculated at lattice size 403 ×8, at β = 6.354, with quark content ūd and
for mass ratio ms/ml = 80. The corresponding temperature is T = 150.76
MeV [12].
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Figure 4.4: Histograms of M1 (left) and M2 (right, bottom) channel. Both
correlators are calculated at lattice size 403 × 8, at β = 6.354, with quark
content ūd and for mass ratio ms/ml = 80. The corresponding temperature
is T = 150.76 MeV [12]. The x-axis of the bottom M2 channel histogram is
logarithmic.

In Fig. 4.4 we see the M1 and M2 channel histograms. The distribution
of the correlator values for M1 seems to be shifted towards positive numbers
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and looks like a skew normal distribution. It would be a right skewed normal
distribution in that case. The M2 channel on the other side has a long
tail distribution. In the bottom plot of Fig. 4.4 the M2 channel is plotted
with a logarithmic x-axis. In this depiction the M2 channel looks like a
normal distribution. Therefore the distribution of the M2 channel would be
lognormal. Similar observations were already made and discussed in Ref. [65].

In the next section 4.3 we will show our results for the screening masses
and susceptibilities before any extrapolation.

4.3 Calculations of screening masses and suscepti-
bilities

4.3.1 Screening masses

In Fig. 4.5 we show the screening mass results from our calculations after
setting the scale. The screening masses for mass ratio ms/ml = 27 were
taken from a previous study of screening masses and their susceptibilities at
physical quark masses [12]. It seems that the pseudoscalar mass mπ has lower
volume dependence compared to the scalar mass ma0 . In general, towards
higher temperatures mπ rises on a convex curve while ma0 first drops down
as it gets closer to the phase transition temperature until it rises again. The
gap between the scalar mass ma0 and mπ decreases for increasing tempera-
tures and ma0 stays above mπ at all temperatures. Note that the calculated
scalar mass for temperatures below the phase transition temperature Tpc
is not the mass of a0 but of an artificial and unphysical decay channel to
particles of a combined mass of 2mπ. This is a well-known staggered arti-
fact [24–26]. This artifact results from the broken taste symmetry at finite
lattice spacing [24], which gets restored in the continuum limit. This decay
is forbidden in nature due to parity, isospin and G-parity conservation. For
staggered fermions at finite lattice spacing different tastes contribute to the
intermediate states of loop diagrams, which leads to this decay. If we could
take the continuum limit on the correlator level, we could extract the cor-
rect ma0 [24–26]. Since we first extract the screening mass and then take
the continuum limit, we obtain this unphysical decay of the scalar to a com-
bined mass of 2mπ. Above Tpc this artifact is expected to not be present
and it approaches the true screening mass ma0 as the extracted ground state
mass since ma0 becomes more and more degenerate with mπ at higher tem-
peratures, which implies that UA(1) symmetry may get effectively restored.
Thus the reduced phase space forbids a decay from ma0 into 2mπ due to
energy conservation. This also leads to some large uncertainties for ma0 be-
low and around the phase transition temperature, which then leads to larger
volume and cut-off effects. The continuum pseudo-critical temperatures we
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used are Tpc = 156.5(15) MeV for ms/ml = 27 [66], Tpc = 151.5(6) MeV
for ms/ml = 40 and Tpc = 146.5(10) MeV for ms/ml = 80 [40]. For
ms/ml = 160 we did not have a continuum phase transition temperature
yet. On the other hand we only had one lattice at ms/ml = 160 and there-
fore could not proceed there anyway. The Tpc in the chiral limit however
is the continuum critical temperature Tc = 132+3

−6 MeV corresponding to
ms/ml = ∞ [8]. Note that for individual lattices with Nτ and Ns the Tpc
varies since the mentioned transition temperatures are for values after the
thermodynamic and continuum limit.
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Figure 4.5: Extracted meson screening mass results for a0 and π as function
of temperature. Top left: Nτ = 8, a0. Top right: Nτ = 8, π. Bottom left:
Nτ = 6 for mass ratio ms/ml = 80. Bottom right: Nτ = 12 for mass ratio
ms/ml = 80 and ms/ml = 40.

Before we can draw any meaningful conclusions regarding a possible ef-
fective UA(1) restoration we need to remove finite volume and cut-off effects.
We will cover that in sections 4.4 and 4.5. But first we want to have a look
at the susceptibilities in the next subsection 4.3.2.
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4.3.2 Susceptibilities
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Figure 4.6: Individual susceptibility plots for χπ (left) and χa0 (right) as
function of temperature for Nτ = 8 for different mass ratios ms/ml.

Circumventing and estimating the gravity of the issue in the scalar channel
mass that we encountered in subsection 4.3.1 we want to have a look at the
susceptibilities of π and a0. This is a continuation of an earlier work from
Ref. [67]. The susceptibilities χπ and χa0 are calculated according to Eq.
3.1. The uncertainties are calculated via jackknife resampling. The values
for mass ratio ms/ml = 27 were taken from a previous study of screening
masses and their susceptibilities at physical quark masses [12]. In Fig. 4.6 we
show the individual susceptibilities of π and a0; the screening masses based
on the same correlators were discussed in the last subsection 4.3.1. By multi-
plying the susceptibilities by m2

s and taking the difference of them, we get a
additively and multiplicatively renormalized observable out of these suscep-
tibilities, which is needed for the continuum extrapolation. We additionally
divided the susceptibilities by f4

K to make it dimensionless. In the left plot
of Fig. 4.6 we see that χπ rises for increasing mass ratios ms/ml below and
around their Tpc, that is due to Eq. 3.11, where χπ diverges below Tpc in the
chiral limit ml → 0. In the right plot of Fig. 4.6 we see that χa0 has low
values below Tpc compared to χπ and rise around Tpc while rising stronger for
increasing mass ratios ms/ml. Above Tpc the values for the different mass
ratios ms/ml apparently approach each other towards increasing tempera-
tures, that seems to be true for each individual susceptibility as well as for
the difference; see Fig. 4.7 for the difference. That approach means that χπ
and χa0 would both be independent of the mass ratio ms/ml at high temper-
atures. While the volume dependence for χπ and χa0 seems to be comparable
to the volume dependence of their respective screening masses mπ and ma0 ,
the systematic uncertainties for χa0 seems to be rather small compared to
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the ones for the scalar screening mass at temperatures below and around
Tpc. This could be explained by the aforementioned unphysical decay chan-
nel of the scalar screening mass below and around Tpc at finite lattice spacing
(see subsection 4.3.1), which leads to stronger systematic uncertainties due
to the mass extraction process. For the corresponding susceptibility χa0 all
information from the correlator is directly taken into account in contrast to
extracting only the ground state mass. That would lead to less systematic
uncertainties for χa0 in comparison to the extracted scalar screening masses.

130 135 140 145 150 155 160 165 170 175
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

T [MeV]

m2
s(χπ − χa0 )/f4

K N3
s × 6

Ns ms/ml

56 80
40 80
32 80

130 135 140 145 150 155 160 165 170 175
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

T [MeV]

m2
s(χπ − χa0 )/f4

K N3
s × 8

Ns ms/ml

56 160
56 80
40 80
32 80
40 40
32 40
24 40
32 27

130 135 140 145 150 155 160 165 170 175
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

T [MeV]

m2
s(χπ − χa0 )/f4

K N3
s × 12

Ns ms/ml

56 80
40 80
32 80
40 40
32 40

Figure 4.7: Susceptiblity difference of pseudoscalar χπ and scalar χa0 as
function of temperature for different mass ratios ms/ml. Top left: Nτ = 6.
Top right: Nτ = 8. Bottom: Nτ = 12.

We will now take a look into the difference of those susceptibilities, be-
cause their difference is a measure for the UA(1) symmetry breaking. We
see in Fig. 4.7 that for increasing temperature χπ − χa0 approaches 0, which
implies that the UA(1) symmetry may be effectively restored for higher tem-
peratures. In the top right plot of Fig. 4.7 we see that for increasing mass
ratios ms/ml the curve steepens, values increase below and around Tpc and
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decrease above Tpc for increasing ms/ml. That is because χπ is dominating
(diverging in the chiral limit) below Tpc.

Since susceptibilities of screening correlators seem to have smaller uncertain-
ties due to the lack of additional analysis, we will now have a quick look into
the susceptibility difference for the vector and axial vector channels, which is
shown in Fig. 4.8. The degeneracy of those correlators is related to the chiral
symmetry restoration; to be precise the restoration of SUA(2). Compared to
χπ and χa0 this quantity has, as we already expected on the correlator level,
sometimes large uncertainties and are not on a stable path as for χπ and χa0 ,
thus we did not analyze them until further improvements. As mentioned in
Ref. [12, 53], corner wall sources could help in the case of axial vector and
vector correlators. Unfortunately corner wall sources are also more expen-
sive compared to point sources. As also seen in these studies [12, 53] the
uncertainties would still be larger compared to the scalar and pseudoscalar
channels. For further verification an investigation of axial vector and vector
channels with corner wall sources could be done beyond the scope of this
thesis.
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Figure 4.8: Susceptiblity difference of vector χρ and axial vector χa1 as func-
tion of temperature for Nτ = 8 for different mass ratios ms/ml.

Before we can draw any meaningful conclusions regarding a possible ef-
fective UA(1) restoration we need to remove finite volume and cut-off effects.
We will cover that in sections 4.4 and 4.5. In the next subsection 4.3.3 we
want to have a look at another project, which takes a look into the content
of the screening correlators; whether they still consist of a meson state or if
the individual quark states are visible.
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4.3.3 Periodic temporal boundary condition

In nature, quarks are fermions and the meson screening masses should go
towards 2πT in the free case at T → ∞ [60, 61]. Bosonic quarks however
would go towards the total mass of their constituentsmtot in the T → ∞ limit,
which results in a constant. But at low temperatures both mesons should
give the same mass because the bound state is bosonic in both cases. The
switch from fermionic to bosonic valence quarks is achieved by switching the
boundary conditions in the temporal direction from anti-periodic to periodic.
This allows us to observe at which temperature the bosonic meson state
transitions into a superposition of its individual quark states and the meson
state if we use the same configurations; in this case they contain fermionic
sea quarks. As the last project of this thesis, next to the anomalous part of
UA(1), we want to figure out the temperature where this transition happens.

In Fig. 4.9 we present comparison plots for Nτ = 6 and Nτ = 8 for a
mass ratio of ms/ml = 80 between ground state meson screening masses
with fermionic valence quarks and ground state meson screening masses with
bosonic valence quarks. Filled points are the bosonic quark results and open
points are the fermionic quark results. For both calculations the same con-
figurations, i.e. fermionic sea quarks, are used.

In the case of a0 (red) we can not make a clear distinction between both
cases because of the lack of precision. One reason for the lack of precision
could be the aforementioned problem in the scalar channel for temperatures
around and below Tpc; see subsection 4.3.1 for details. For the π (blue) a
clear separation can be seen. From these two plots the splitting temperature
Tsplit, where the bosonic meson transitions into a superposition of meson and
quark states, can not be determined since the splitting seems to happen be-
low the calculated temperature range. Therefore we would expect a splitting
temperature below 140 MeV for mass ratio ms/ml = 80. Together with for-
mer studies [68] we predict that this splitting temperature will decrease even
more in the chiral limit because for lower quark masses they seemed to split
earlier. However we can not make a clear statement before the thermody-
namic limit and continuum limit extrapolations are done. Considering that
it is very probable that the temperature range is too high to analyze the
splitting behavior, we stopped this project here until we have masses at even
lower temperatures.

In the next section 4.4 we will continue with the thermodynamic limit
extrapolation for the screening masses and susceptibilities of the π and a0
channel.
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Figure 4.9: Comparison plot of physical screening masses with fermionic
valence quarks using Anti-Periodic Boundary condition (APB, open points)
and unphysical screening masses with bosonic valence quarks using Periodic
Boundary condition (PB, filled points) in temporal direction as function of
temperature at mass ratio ms/ml = 80 for π (blue) and a0 (red). Left:
Nτ = 6. Right: Nτ = 8.

4.4 Thermodynamic limit
Through the thermodynamic limit extrapolations we want to remove finite
volume effects. To perform a proper thermodynamic limit for screening
masses and their susceptibilities we need at least three values from differ-
ent Ns for fixed Nτ at fixed mass ratio ms/ml and fixed temperature T .
Getting bootstrap samples for screening masses is expensive because for ev-
ery sample we would need to perform the whole analysis. For the procedure
see section 3.2. Instead we randomly pick values x within the interval of the
mean values µ and their standard error σ, i.e. x ∈ [µ − σ, µ + σ]. We use
these random values x as new mean values µnew = x with the same standard
error σ to perform fits. After performing several fits, we calculated the mean
values and standard error of all those fit functions. This procedure results
in uncertainty bands, which we extrapolate to Ns → ∞. The mean values
and the standard errors of these uncertainty bands at Ns → ∞ are then
the infinite-volume-extrapolated values, which we could use for continuum
and chiral limit extrapolations. In our case we used 10000 random values
for the thermodynamic limit extrapolations to account for any randomness
regarding the screening masses as well as the susceptibilities.

4.4.1 Screening masses

To remove the finite volume effects of the screening masses we used Eq. 3.3 for
the thermodynamic limit extrapolation with c being the shared parameter
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for π and a0 at the same mass ratio ms/ml, temperature T and Nτ . See
section 3.2 for details.
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Figure 4.10: Thermodynamic limit extrapolations of scalar (S, red) and pseu-
doscalar (PS, blue) screening masses at T ≈ 148 MeV (top left), T ≈ 151
MeV (top right) and T ≈ 166 MeV (bottom) for mass ratio ms/ml = 80.

Fig. 4.10 shows thermodynamic limit extrapolations at different temper-
atures for mass ratio ms/ml = 80. The uncertainties of mπ are very small
in comparison to the uncertainties of ma0 around the transition temperature
Tpc, see Fig. 4.10 top plots. These larger volume effects of ma0 also result
from the large uncertainty from the extraction process; see section 4.3.1 for
an explanation. Because of this, the fitting parameter c effectively gets deter-
mined by the mπ data around these temperatures. For higher temperatures
even the uncertainty of ma0 becomes small, see Fig. 4.10 bottom plot.

Note that the volume dependence seems to decrease with increasing tem-
perature. Note also that most data points of the largest volumes agree within
the 68% confidence interval, and all data points fall within the 95% confi-
dence interval using the extrapolated value. The parameter c from our fits
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are summarized in Tab. 4.8.
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Figure 4.11: Infinite-volume-extrapolated masses of π (blue) and a0 (red) as
function of temperature. Top left: Nτ = 8 for mass ratio ms/ml = 40. Top
right: Nτ = 6 for mass ratio ms/ml = 80. Bottom left: Nτ = 8 for mass
ratio ms/ml = 80. Bottom right: Nτ = 12 for mass ratio ms/ml = 80.

Because different Nτ seem to experience slightly different volume effects,
we want to investigate that even further. In the next step continuum ex-
trapolations will take place, see section 4.5 for that. In this step we will
check how much of an effect the thermodynamic limit has on the continuum
limit. We will, among other things, compare continuum-extrapolated masses
using infinite-volume-extrapolated masses to continuum-extrapolated masses
using just our largest volumes. We want to quantify in that step any system-
atic uncertainties coming from the thermodynamic limit, which might lead
to even larger uncertainties and due to their slightly different volume effects
for different Nτ to a different extrapolation value for the continuum limit
extrapolations. After we quantified also the systematic uncertainties from
the continuum limit itself, we tackle the chiral limit extrapolation and try to
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answer the main question of this thesis regarding a possible effective UA(1)
restoration at the critical temperature Tc. We will cover the continuum limit
in section 4.5.

In Fig. 4.11 we show the infinite-volume-extrapolated screening masses
as a function of T . Note that for some Nτ and mass ratios ms/ml we did
not have at least three different volumes for every temperature. Therefore
we could not perform thermodynamic limit extrapolations for them. In fact
we can only perform the pointwise continuum limit with infinite-volume-
extrapolated masses for two different temperatures. Pointwise continuum
extrapolation means that we take individual data points at different Nτ at
similar temperature (≈ 0-2 MeV) and treat them as if they had the exact
same temperature and perform a continuum limit extrapolation. More on
that in section 4.5.

In Tab. 4.9 and Tab. 4.10 we show the masses after the extrapolation and
the masses from the largest Ns and their respective uncertainties. Assum-
ing that the masses after the thermodynamic limit are the correct one, we
calculated additionally the systematic uncertainty for the mean value that
would result from skipping this step. From the change in the mean value it is
apparent that for the lower temperature T ≈ 148 MeV the change is stronger
for a0 as can already be seen in Fig. 4.10. Overall the change in mean value
is stronger for a0 compared to π. A summary of these results is that the
finite volume effects become smaller for higher temperatures above Tpc and
the corrections are rather small since they all agree with the largest volumes
within the 95% confidence interval while both sets, extrapolated and largest
volume masses, have uncertainties of less than 10%. We will proceed with
the continuum limit in section 4.5.

In the next subsection 4.4.2 we will cover the thermodynamic limit ex-
trapolations for the susceptibilities.

T [MeV] cNτ=6 ∆cNτ=6 cNτ=8 ∆cNτ=8 cNτ=12 ∆cNτ=12
148 1.34 0.67 1.91 0.97 1.83 0.92
151 2.99 0.15 2.90 0.40 2.30 0.90
166 - - 2.59 0.76 - -

Table 4.8: Fit parameter c from thermodynamic limit extrapolation of screen-
ing masses. The parameter c is identical to the c in Eq. 3.3.
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T [MeV] Nτ ma0,th.[MeV] ma0,no th.[MeV] systematic
uncertainty
mean %

148 6 286.39(1963) 260.27 (684) 9.12
148 8 231.85(2342) 220.41(1269) 4.94
148 12 216.49(1419) 194.50 (287) 10.16
151 6 245.78 (516) 237.11 (483) 3.53
151 8 223.36(1358) 216.83(1049) 2.92
151 12 209.36(1169) 194.59 (207) 7.05

Table 4.9: Comparison of ma0 after thermodynamic limit extrapolations
ma0,th. and the masses from the largest volume ma0,no th.. The systematic
uncertainty of the mean value is calculated via |ma0,th.−ma0,no th.|

ma0,th.
using only

the mean values.

T [MeV] Nτ mπ,th.[MeV] mπ,no th.[MeV] systematic
uncertainty
mean %

148 6 102.97(126) 105.42 (30) 2.38
148 8 110.73(261) 112.80(121) 1.87
148 12 114.73(673) 123.98 (81) 8.06
151 6 118.86 (43) 119.30 (34) 0.37
151 8 123.26(174) 127.57(230) 3.50
151 12 137.06(330) 138.53(140) 1.07

Table 4.10: Same as Tab. 4.9 but for mπ.

4.4.2 Susceptibilities

Coming back to the susceptibilities before we proceed to the continuum limit,
we also want to remove the finite volume effects of our susceptibilities and
compare them to the screening masses. For the fitting procedure we used
the same strategy as for the screening masses in section 4.4.1. Toward the
thermodynamic limit we made an ansatz for the susceptibilities according to
Eq. 3.4. In Fig. 4.12 we show the thermodynamic limit for the susceptibility
difference of χπ and χa0 at mass ratio ms/ml = 80.

The ansatz seems to describe the data quite well. In contrast to the
screening masses all the largest volume values agree with the extrapolated
values already within the 68% confidence interval. In Fig. 4.13 we show a
comparison of (χπ−χa0) available for different volumes to the infinite-volume-
extrapolated results for various mass ratios ms/ml and Nτ .
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Figure 4.12: Thermodynamic limit extrapolations of susceptibility observable
at T ≈ 148 MeV (top left), T ≈ 151 MeV (top right) and T ≈ 166 MeV
(bottom) for mass ratio ms/ml = 80.

T [MeV] Nτ Xthermo. Xno thermo. systematic
uncertainty
mean %

148 6 1073.16(1594) 1055.42(1475) 1.65
148 8 890.05(1400) 901.07(1760) 1.24
148 12 599.02(1945) 578.37(1770) 3.45
151 6 766.90(1107) 747.72 (998) 2.50
151 8 670.35(1030) 655.67 (967) 2.19
151 12 434.48(1384) 411.39(1418) 5.31

Table 4.11: Comparison of our observable X = m2
s(χπ − χa0)/f4

K after ther-
modynamic limit extrapolations Xthermo. and values of the largest volumes
Xno thermo.. The systematic uncertainty of the mean value is calculated via
|Xthermo.−Xno thermo.|

Xthermo.
using only the mean values.
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From Fig. 4.13 it seems that the volume dependence is stronger for tem-
peratures below Tpc compared to higher temperatures and also for increasing
Nτ . In Tab. 4.11 we show the values after the extrapolation and the values
from the largest lattice extent Ns with their respective uncertainties. Assum-
ing that the susceptibilities in the thermodynamic limit are the correct one,
we calculated additionally the systematic uncertainty for the mean value,
which would result from skipping this step. The change in the mean value
seems to be the largest for Nτ = 12 and overall rather small.

We will now proceed with the continuum limit in the next section 4.5.
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Figure 4.13: Comparison plot of original data (light to dark blue) to their
infinite volume values (red) for the susceptibility difference of χπ and χa0 as
function of temperature. The ansatz used here is Eq. 3.4. Top left: Nτ = 8,
ms/ml = 40. Top right: Nτ = 8, ms/ml = 80. Bottom left: Nτ = 12,
ms/ml = 80. Bottom right: Nτ = 6, ms/ml = 80.
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4.5 Continuum limit

In a second step after the thermodynamic limit extrapolations, which re-
moved finite volume effects, we proceed with continuum limit extrapolations,
which remove cut-off effects by extrapolating the lattice spacing to a → 0,
i.e. going back to continuum physics. In this section we also want to esti-
mate the importance of thermodynamic limit extrapolations propagating to
continuum-extrapolated values. For this we will compare extrapolated values
after the thermodynamic and continuum limit with extrapolated values after
the continuum limit using only largest volumes. We also want to quantify
the corrections of the continuum extrapolations and compare them to the
original data points without any extrapolations. We are especially interested
in the area around Tpc where we can perform pointwise continuum extrapola-
tions. We want to know the relative effect on masses and susceptiblities from
continuum limit extrapolations around the transition temperature to make
more accurate statements for values after chiral limit extrapolations. Point-
wise continuum extrapolation means that we take individual data points at
different Nτ at similar temperature (≈ 0-2 MeV) and treat them as if they
had the exact same temperature and perform a continuum extrapolation.

Because the temperatures for the pointwise continuum extrapolations do
not align perfectly we want to address that. Therefore we want to use tem-
perature ranges afterwards, which we get by interpolating between the tem-
peratures using cubic splines with node positions determined by the density
of data points. These temperature interpolations for Nτ = 6, 8 and 12 are
used in a joint continuum extrapolation with spline coefficients as a function
of 1/N2

τ . More details about that procedure can be found in Ref. [12, 53].
We use the same strategy as for the thermodynamic limit (section 4.4) to
perform the pointwise Nτ → ∞ extrapolations. We took 1000 random values
for the pointwise continuum limit extrapolations and a sample size of 1000
for the continuum limit extrapolations with temperature interpolation. Since
we first assume that our fitting function is linear in 1/N2

τ as in Eq. 3.7 and
Eq. 3.8, we need values for at least two different Nτ but better three. For
details see section 3.3.

In the next subsection 4.5.1 we apply all these strategies to our screening
masses.

4.5.1 Screening masses

In this subsection we want to extrapolate the screening masses back to con-
tinuum physics via continuum limit extrapolations to remove cut-off effects
from our specific choice of discretization. To perform a proper continuum ex-
trapolation for screening masses we need masses of different Nτ at fixed mass
ratio ms/ml and fixed temperature T . We start with the masses after the
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thermodynamic limit from subsection 4.4.1. In Fig. 4.14 we show the ther-
modynamic limit results plotted against 1/N2

τ for the screening masses for
the two possible temperatures for pointwise continuum extrapolations. For
details of what pointwise continuum extrapolation means, see the beginning
of section 4.5.
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Figure 4.14: Infinite-volume-extrapolated masses for mass ratio ms/ml = 80
plotted against 1/N2

τ . A linear dependence is expected.

From Fig. 4.14 it seems that the infinite-volume-extrapolated masses be-
have as expected. We therefore will proceed with a fitting function linear in
1/N2

τ .
As a benchmark we compare masses after the thermodynamic limit with

masses from the largest volumes and perform continuum limit extrapolations
from there, because the correction seemed small (see subsection 4.4.1). In
Fig. 4.15 we show both extrapolations.

From Fig. 4.15 we see that the cut-off effect compared to the volume effect
is of the same magnitude. It seems that a thermodynamic limit extrapola-
tion beforehand widens the mass gap between a0 and π in the continuum
limit and leads to larger uncertainties. Skipping the thermodynamic limit
extrapolation might therefore conclude an earlier effective UA(1) restoration
temperature, however the current accuracy is not statistically significant to
be certain about that conclusion. The results of our calculations are given in
Tab. 4.12. Since the two continuum extrapolation types give results, which
agree within the 95% confidence interval, we use the screening masses from
the largest available volumes for further analysis.
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Figure 4.15: Comparison of pointwise continuum limit extrapolations for
screening masses mπ (blue, light grey) and ma0 (red, yellow) at ms/ml = 80.
Left: Extrapolations using masses after the thermodynamic limit (Ns = ∞,
red and blue) and from largest volumes (Ns = 48, 56, 72, yellow and light
grey) at T ≈ 148 MeV. Right: Same as left but at T ≈ 151 MeV.

T [MeV] ma0,cont.[MeV] ma0,cont.,no th.[MeV] systematic
uncertainty
mean %

148 190.37(2015) 172.43 (464) 9.42
151 196.77(1355) 180.29 (322) 8.38

T [MeV] mπ,cont.[MeV] mπ,cont.,no th.[MeV] systematic
uncertainty
mean %

148 120.06 (512) 129.17 (100) 7.58
151 135.39 (298) 144.21 (178) 6.51

Table 4.12: Comparison of screening meson mass continuum limit extrapo-
lations with (mcont.) and without (mcont.,no th.) thermodynamic limit before-
hand for mass ratio ms/ml = 80. The systematic uncertainty of the mean
value is calculated via |mcont.−mcont.,no th.|

mcont.
using only the mean values.

We want to also compare the systematic uncertainties we would get by
skipping the continuum limit extrapolations to the systematic uncertainties
we got from skipping the thermodynamic limit extrapolations. For that we
compare now the masses in Tab. 4.12 to the masses from Nτ = 12 lattices
in Tab. 4.9 and Tab. 4.10. We see, if we compare the continuum masses
without thermodynamic limit extrapolation to the Nτ = 12 masses without
thermodynamic limit extrapolation, that they do not even agree within 95%
confidence interval. If we compare the continuum masses with thermody-
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namic limit extrapolation to the Nτ = 12 masses with thermodynamic limit
extrapolations, we see that they agree within at least 95% confidence inter-
val. Comparing however the continuum masses without thermodynamic limit
extrapolation to the Nτ = 12 masses with thermodynamic limit extrapola-
tion they do not all agree within 95% confidence interval. Both continuum
extrapolations, with or without thermodynamic limit extrapolation, however
agree within at least the 95% confidence interval.

From this detailed study of the thermodynamic and continuum limit at
the two temperatures we conclude that for large enough lattices the thermo-
dynamic limit might not be necessary for our screening masses because the
uncertainties agree with each other in the 95% confidence interval. Therefore
we will use here also our largest volumes for further analysis. The continuum
limit on the other hand is necessary because the systematic uncertainties
would be otherwise too large and therefore we need to perform continuum
limit extrapolations before a chiral limit extrapolation.

As for the other temperatures simple pointwise extrapolations are not
possible due to the lack of available data, in the following we will interpolate
between the data points for more continuum extrapolations. For this we first
need to do an interpolation of temperature. To interpolate our masses in tem-
perature we will use our largest lattices as well as masses from smaller volumes
at high temperatures beyond the temperature range of our largest volumes.
We include masses from smaller volumes at high temperatures because their
volume effects at those temperatures are small as we saw in subsection 4.4.1.
We use temperature interpolation with cubic splines, those splines also have
a function built-in for the continuum extrapolation, which we constrain. At
low temperatures, T = 25 MeV and T = 50 MeV, we constrain the first
derivative after temperature of the fit to be equal to zero. For high tempera-
ture, well above the available temperature region of our study, we constrain
the first derivative after temperature to be equal to 2π at T = 1.5 GeV. To
make sure that the continuum extrapolations for our temperature interpo-
lation agrees with the pointwise continuum extrapolation and to check for
possible discrepancies resulting from higher order cut-off effects, we compare
in Fig. 4.16 different possibilities to extrapolate to continuum masses. Here
we use the masses from largest available lattice volume as a starting point.
We see that all these variations agree within uncertainties with each other.
From Fig. 4.16 it is vivid that the temperature interpolation works very well
and that the masses of all the different cut-offs Nτ have mainly cut-off effects
linear in 1/N2

τ . In Tab. 4.13 we summarized the continuum-extrapolated
masses from Fig. 4.16.

In Fig. 4.17 we show the continuum limit extrapolations using tempera-
ture interpolation for mass ratio ms/ml = 80 using a linear fitting function
in 1/N2

τ and all Nτ = 6, 8, 12 (yellow and light grey from Fig. 4.16). We
use them because all fits agreed within uncertainties and they have the most
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degrees of freedom. This counters possible overfitting and stabilizes the fit.
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Figure 4.16: Comparison of the pointwise continuum extrapolation from Fig.
4.15 (dark grey, purple) to different continuum extrapolations using tempera-
ture interpolated data points for screening masses at mass ratio ms/ml = 80.
Linear and quadratic means that the fitting function for the continuum ex-
trapolation is linear (yellow, violet, light grey, light orange) or linear and
quadratic (red, blue) in 1/N2

τ . In square brackets are the Nτ of the used
lattices. Largest volume lattices where used without thermodynamic limit.
Left: At temperature T = 148 MeV. Right: At temperature T = 151 MeV.

T ma0,quadratic[6, 8, 12] ma0,linear[6, 8, 12] ma0,linear[8, 12] ma0,pointwise[6, 8, 12]
148 177.25(1375) 171.57 (312) 174.30 (622) 172.43 (464)
151 180.52(1156) 178.03 (330) 179.30 (491) 180.29 (322)
T mπ,quadratic[6, 8, 12] mπ,linear[6, 8, 12] mπ,linear[8, 12] mπ,pointwise[6, 8, 12]

148 130.51 (221) 128.77 (179) 130.03 (132) 129.17 (100)
151 141.79 (606) 143.80 (438) 141.73 (453) 144.21 (178)

Table 4.13: The different continuum-extrapolated masses from Fig. 4.16 in
comparison. For details on the different continuum extrapolations see caption
of Fig. 4.16. Temperatures T and masses m are in MeV. In square brackets
are the Nτ of the used lattices.

As can be seen in Fig. 4.17, the continuum for ma0 is approached from
above while for the mπ it is appoached from below. This behaviour is sim-
ilar to a previous study at physical mass ratio ms/ml = 27 [12]. In that
study a slightly different behavior of ma0 was seen. At temperatures below
and around Tpc the extrapolation resulted in lower continuum masses, while
at temperatures above Tpc the extrapolation resulted in higher continuum
masses. For ma0 we only see the behavior of below and around Tpc of the
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study [12], which might be due to the smaller temperature range compared
to the previous study. Nonetheless it would be plausible that it would also
happen here. In the bottom plot of Fig. 4.17 we see a possible degenera-
tion towards the upper bound of our temperature range, which would mean
that UA(1) is effectively restored there. The temperature interpolations and
continuum extrapolations however might need additional Nτ = 6 points at
higher temperatures since we lack these data points and improvement on the
two highest temperature Nτ = 8 points to give a definitive answer regarding
the temperature at which results for mπ and ma0 start to agree.

Using the results from Ref. [12] we can compare our results for mass ratios
ms/ml = 80 and ms/ml = 40 to mass ratio ms/ml = 27. For ms/ml = 40
we have also used a continuum extrapolation linear in 1/N2

τ while we only
had Nτ = 8, 12 lattices. In Fig. 4.18 we show such a comparison.
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Figure 4.17: Continuum extrapolation linear in 1/N2
τ with uncertainty bands

for mass ratio ms/ml = 80 using cubic spline interpolations in temperature.
Left: ma0 . Right: mπ. Bottom: Continuum bands of ma0 and mπ combined.
The vertical grey band corresponds to the continuum pseudo-critical temper-
ature Tpc,cont. for mass ratio ms/ml = 80.
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Figure 4.18: Comparison of the continuum-extrapolated screening masses
mπ and ma0 for ms/ml = 27, ms/ml = 40 and ms/ml = 80 as a function
of temperature scaled by their respective pseudo-critical temperature in the
continuum limit Tpc,cont.. The grey vertical band illustrates the transition
temperature; the width is just to guide the eye.

We see in Fig. 4.18 that for smaller light quark masses ml, i.e. larger
ms/ml, the temperature at which results for mπ and ma0 start to agree (de-
generation temperature) seems to approach their pseudo-critical transition
temperature Tpc. That would mean that the breaking of UA(1) becomes
smaller for smaller light quark masses, i.e. towards the chiral limit and that
could mean that the explicit breaking of UA(1) through the light quark masses
ml is the dominant breaking cause at those mass ratios. Keep in mind that
the degeneration temperature for mass ratio ms/ml = 80 might be beyond
our temperature range, because mπ and ma0 agree within uncertainty bands
only at the upper boundary of our temperature range and that might change
if we improve our temperature interpolation, e.g. if we extend the tempera-
ture range by calculating correlators for even higher temperatures. Finding
the degeneration temperature was however not a subject of this thesis. Note
that the maximum temperature for mass ratio ms/ml = 40 is too low (max-
imum T/Tpc,cont.(ms/ml) is even smaller than for ms/ml = 80) to see the
degeneration of mπ and ma0 . From this we would expect that the degenera-
tion temperature for mass ratio ms/ml = 40 falls between the degeneration
temperatures for ms/ml = 80 and ms/ml = 27.

Whether or not it becomes degenerate in the transition region can only be
stated if a chiral limit extrapolation is done. We will discuss that in section
4.6. Before that we will have a look into the continuum extrapolation for
susceptibilities in subsection 4.5.2.
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4.5.2 Susceptibilities

Coming back to the susceptibilities before we proceed to the chiral limit, we
also want to remove the cut-off effects of our susceptibilities and compare
them to the screening masses. In this subsection we want to extrapolate the
susceptibilities back to continuum physics via continuum limit extrapolations
to remove the cut-off effects from our specific choice of discretization. Similar
to subsection 4.5.1 we need susceptibilities at different Nτ at fixed mass ratio
ms/ml and fixed temperature T . In Fig. 4.19 we show the results after
the thermodynamic limit that we obtained in subsection 4.4.2 for the two
temperatures T ≈ 148 MeV and T ≈ 151 MeV plotted against 1/N2

τ . We
expected a linear dependence for the continuum limit due to our ansatz from
Eq. 3.8.
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Figure 4.19: Infinite-volume-extrapolated susceptibilities for mass ratio
ms/ml = 80 plotted against 1/N2

τ . A linear dependence was expected.

Unlike the corresponding screening masses these points are not on a linear
line. We therefore assume that our Nτ = 6 values still have higher order con-
tributions beyond the leading order correction of O(a2). Similar differences
for Nτ = 6 were already observed in [40].

We begin again with the comparison of pointwise continuum limit ex-
trapolations starting once from infinite-volume-extrapolated values and once
from values at the largest volumes. For details of what pointwise extrap-
olation means, see the beginning of section 4.5. In Fig. 4.20 we show the
comparison of these different pointwise continuum extrapolations using our

85



CHAPTER 4. RESULTS

two largest Nτ , Nτ = 8, 12, at T ≈ 148 MeV and T ≈ 151 MeV.
From Fig. 4.20 we can conclude that for the pointwise extrapolation, the

continuum extrapolation using infinite-volume-extrapolated susceptibilities
agrees within uncertainty bands with the continuum extrapolation using sus-
ceptibilities from largest volumes only. The Nτ = 6 data would be clearly
missed on these lines, which implies that the Nτ = 6 data has higher order
cut-off effects. Skipping the thermodynamic limit extrapolation lowers the
value after the continuum limit extrapolation compared to its proper lim-
its, but both ways still agree within uncertainties. Therefore this skip could
(falsely) conclude an earlier effective UA(1) restoration similar to the screen-
ing masses, because at a value of zero UA(1) would effectively be restored.
The results of our calculations are given in Tab. 4.14.
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Figure 4.20: Comparison of pointwise linear continuum limit extrapolations
for our susceptibility observable at mass ratio ms/ml = 80. Left: Extrapo-
lations using values after the thermodynamic limit (Ns = ∞, red) and from
largest volumes (Ns = 48, 56, 72, blue) at T ≈ 148 MeV. Right: Same as left
but at T ≈ 151 MeV.

T [MeV] Xcont. Xcont.,no th. systematic
uncertainty
mean %

148 364.88(3531) 319.52(3557) 12.43
151 246.51(2641) 216.64(2687) 12.12

Table 4.14: Comparison of continuum limit extrapolations of our susceptibil-
ity observable X = m2

s(χπ−χa0)/f4
K with (Xcont.) and without (Xcont.,no th.)

thermodynamic limit beforehand for mass ratio ms/ml = 80. The systematic
uncertainty is calculated via |Xcont.,no th.−Xcont.|

Xcont.
using only the mean values.
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We want to also compare the systematic uncertainties we would get by
skipping the continuum limit extrapolations to the systematic uncertainties
we got from skipping the thermodynamic limit extrapolations. For that we
compare now the susceptibility in Tab. 4.14 to the susceptibility fromNτ = 12
lattices in Tab. 4.11. We see, if we compare the continuum susceptibilities
without thermodynamic limit extrapolation to the Nτ = 12 susceptibility
without thermodynamic limit extrapolation, that they do not even agree
within 95% confidence interval. If we compare the continuum susceptibilities
with thermodynamic limit extrapolation to the Nτ = 12 susceptibilities with
thermodynamic limit extrapolations, we see that they also do not even agree
within 95% confidence interval. Comparing the continuum susceptibilities
without thermodynamic limit extrapolation to the Nτ = 12 susceptibilities
with thermodynamic limit extrapolation they also do not even agree within
95% confidence interval.

From this detailed study of the thermodynamic and continuum limit at
the two temperatures we conclude that for large enough lattices the ther-
modynamic limit might not be necessary for our susceptibility observable
because the uncertainties agree with each other in the 68% confidence inter-
val. Therefore we will use here also our largest volumes for further analysis.
The continuum limit on the other hand is necessary because the systematic
uncertainties would be otherwise too large and therefore we need to perform
continuum limit extrapolations before a chiral limit extrapolation.

As for the other temperatures simple pointwise extrapolations are not
possible due to the lack of available data, in the following we will interpolate
between the data points for more continuum extrapolations. For this we first
need to do an interpolation of temperature. To interpolate our susceptibilities
in temperature we will again use our largest lattices as well as susceptibilities
from smaller volumes at high temperatures beyond the temperature range
of our largest volumes. We include the susceptibilities from smaller volumes
at high temperatures because their volume effects at those temperatures are
small as we saw in subsection 4.4.2. We use temperature interpolation with
cubic splines, those splines also have a function built-in for the continuum
extrapolation, which we constrain. We only constrain our interpolation at
high temperature, well above the available temperature region of our study.
We constrain the first derivative to be equal to 0 at T = 0.5 GeV. For more
details on how the temperature interpolation works, see the beginning of
section 4.5. To make sure that the continuum extrapolations for our temper-
ature interpolation agree with the pointwise continuum extrapolations and
to check for possible discrepancies resulting from higher order cut-off effects
we compare different possibilities of continuum extrapolations for suscepti-
bilities. Studies with other chiral observables [40] have shown that including
or excluding Nτ = 6 lattices to the analysis give slightly different results with
an ansatz linear in 1/N2

τ , which means that the Nτ = 6 lattices have signif-
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icant cut-off effects beyond the linear cut-off effect in 1/N2
τ for these chiral

observables. Since the next higher order is quadratic in 1/N2
τ , we compared

linear fits including the additional quadratic term with linear fits dropping
the Nτ = 6 points completely. All methods use values from largest lattice
volumes as a starting point. In Fig. 4.21 we show the results.

We see in Fig. 4.21 that the linear extrapolation in 1/N2
τ with all three

Nτ (yellow) including Nτ = 6 differ at T = 148 MeV from all the other
extrapolations including the extrapolation with an additional quadratic term
(red). Therefore we conclude that susceptiblity values at Nτ = 6 are not just
linear in 1/N2

τ but have also a quadratic term. Again we want to interpolate
between all the available temperatures and perform continuum extrapolations
on those interpolated bands. We therefore use a linear and quadratic fitting
function in 1/N2

τ for the extrapolation (red in Fig. 4.21) for ms/ml = 80
as it uses all Nτ and is as accurate as the linear fitting function for the
extrapolation withNτ = 8, 12 (grey in Fig. 4.21). In Tab. 4.15 we summarized
the results of the continuum-extrapolated susceptibility difference from Fig.
4.21.
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Figure 4.21: Comparison of the pointwise continuum extrapolation from
Fig. 4.20 (dark grey) to different continuum extrapolation variations us-
ing temperature interpolated data points for susceptibilities at mass ratio
ms/ml = 80. Linear and quadratic means that the fitting function for the
continuum extrapolation is linear (yellow, violet) or linear and quadratic in
1/N2

τ (red). In square brackets are the used Nτ for the fit. Largest volume
lattices where used without thermodynamic limit. Left: At temperature
T ≈ 148 MeV. Right: At temperature T ≈ 151 MeV.

In Fig. 4.22 we show the result of our continuum extrapolation as bands
for our temperature range. As a reminder we used values from smaller vol-
umes at high temperatures where we do not have the largest volumes avail-
able. As an ansatz for the continuum limit extrapolation we used the one
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with linear and quadratic terms using all three Nτ , Nτ = 6, 8, 12 (red, blue,
yellow, respectively), for mass ratio ms/ml = 80.

T Xquadratic[6, 8, 12] Xlinear[6, 8, 12] Xlinear[8, 12] Xpointwise[6, 8, 12]
148 329.45(3141) 453.48(1690) 376.61(2259) 319.52(3557)
151 231.97(3285) 287.12(1300) 260.72(2207) 216.64(2687)

Table 4.15: The different continuum-extrapolated values of our observable
X = m2

s(χπ − χa0)/f4
K from Fig. 4.21 in comparison. For details on the

different continuum extrapolations see caption of Fig. 4.21. Temperatures T
are in MeV. In square brackets are the Nτ of the used lattices.
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Figure 4.22: Continuum extrapolation linear and quadratic in 1/N2
τ with

uncertainty bands of the susceptibility difference of χπ and χa0 for mass ratio
ms/ml = 80 using cubic spline interpolations in temperature. The vertical
grey band corresponds to the continuum pseudo-critical temperature Tpc,cont.
for mass ratio ms/ml = 80.

Now we can compare our results for the continuum-extrapolated suscep-
tibility difference of χπ and χa0 for mass ratios ms/ml = 80 and ms/ml = 40
to the results at mass ratio ms/ml = 27 from Ref. [12]. In Fig. 4.23 we show
such a comparison.
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Figure 4.23: Comparison of the continuum-extrapolated susceptibility differ-
ence of χπ and χa0 for ms/ml = 27, ms/ml = 40 and ms/ml = 80 normalized
by the physical strange quark mass ms and the Kaon decay constant fK as
function of temperature scaled by their respective pseudo-critical tempera-
ture in the continuum limit Tpc,cont.(ms/ml). The interpolation and extrap-
olation for ms/ml = 80 are from Fig. 4.22, for ms/ml = 27 are from Ref. [12]
and for ms/ml = 40 are the same as for ms/ml = 80 but with only a linear
fitting function in 1/N2

τ using both Nτ = 8, 12. The grey vertical band illus-
trates the transition temperature; the width is just to guide the eye.

Analogously to the screening masses (section 4.5.1) we see that for smaller
light quark masses ml, i.e. larger ms/ml, the temperature at which results
for the susceptibility difference start to agree with 0 (degeneration temper-
ature) seems to approach their pseudo-critical transition temperature Tpc.
It makes sense that we see a similar behavior because the screening masses
and their susceptibilities contain the same information regarding the UA(1)
symmetry. That would mean that the breaking of UA(1) becomes smaller for
smaller light quark masses, i.e. towards the chiral limit and that could mean
that the explicit breaking of UA(1) through the light quark masses ml could
be the dominant breaking cause at those mass ratios. Keep in mind that
the degeneration temperature for mass ratio ms/ml = 80 might be beyond
our temperature range, because the susceptibilities are degenerate only at
the upper boundary of our temperature range and that might change if we
e.g. extend the temperature range by calculating correlators for even higher
temperatures. Finding the degeneration temperature was again not a sub-
ject of this thesis. Note again that the maximum temperature for mass ratio
ms/ml = 40 is too low (maximum T/Tpc,cont.(ms/ml) is even smaller than
for ms/ml = 80) to see its degeneration. Note also that we had to change
the fitting function for mass ratio ms/ml = 40 to a linear extrapolation
since we only have Nτ = 8, 12. From the observation that for smaller light
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quark masses ml the degeneration temperature approaches their phase tran-
sition temperature Tpc we would expect that the degeneration temperature
for mass ratio ms/ml = 40 falls between the degeneration temperatures for
ms/ml = 80 and ms/ml = 27. Together with the results from subsection
4.5.1 we would therefore expect that the UA(1) symmetry is either broken or
has very small breaking, i.e. is effectively restored, at the chiral phase transi-
tion. That would support the scenario in the left plot of Fig. 2.2, which would
mean that the chiral phase transition is second order. For details about the
potential scenarios see section 2.10.

Assuming that the degeneration temperature for ms/ml = 80 is correct
and that for decreasing ml the degeneration temperature relative to their
pseudo-critical temperature Tpc,cont.(ms/ml) always decreases, we can con-
struct an upper bound for the degeneration temperature in the chiral limit.
The degeneration point for mass ratio ms/ml = 80 is then T/Tpc,cont. ≈ 1.15.
The critical temperature is Tc = 132+3

−6 MeV [8] and that would mean that the
degeneration temperature in the chiral limit would be Tdegen.,c < 1.15Tc ≈
151.8 MeV.

From the discussion of our results in this section we can conclude from our
observations that the UA(1) symmetry gets effectively restored at lower tem-
peratures relative to their pseudo-critical temperature Tpc,cont.(ms/ml) for
lower light quark masses ml. Whether or not it becomes degenerate in the
transition area can again only be stated if a chiral limit extrapolation is done.
We will discuss that in the following section 4.6.

4.6 Chiral limit

To finally answer the main question of this thesis, whether the UA(1) symme-
try is effectively restored at the chiral phase transition or not, we need to per-
form the chiral limit extrapolation. For the chiral limit we need continuum-
extrapolated values of at least three different mass ratios. At this point
we have continuum-extrapolated values for screening masses and our suscep-
tibility observable for mass ratios ms/ml = 27, ms/ml = 40 and ms/ml = 80.

If we want to answer the main question of this thesis, the possible restora-
tion of UA(1) in the chiral limit at the transition temperature, we first need
to extract suitable values for such a chiral limit extrapolation. Since the
pseudo-critical temperature Tpc,cont. depends also on the mass ratio ms/ml

and becomes smaller for higher values of ms/ml, i.e. towards the chiral limit,
we now want to extract these values at the corresponding transition temper-
ature for each ms/ml. Due to the fact that around physical quark masses
the transition is a cross-over rather than a true phase transition of first or
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second order, we consider values of the whole range of this transition tem-
perature I = [Tpc,cont. − ∆Tpc,cont., Tpc,cont. + ∆Tpc,cont.]. Therefore we ex-
tracted the largest max{X(T ) ± ∆X(T )} ∀T ∈ I and the smallest values
min{X(T ) ± ∆X(T )} ∀T ∈ I of all observables X within this temperature
range and consider these values as the upper Xmax and lower bound Xmin
in the sense of a value range similar to uncertainties. We consider their
arithmetic mean Xtransition = Xmax+Xmin

2 as the mean value and the differ-
ence of this mean value to the largest or smallest value as the uncertainty
∆Xtransition = Xmax − Xtransition at the transition temperature. As Tpc we
used the values mentioned in subsection 4.3.1.

For the extrapolation we used the same strategy as for the thermodynamic
limit (see section 4.4 for details on the procedure) to perform ml/ms → 0
extrapolations. We took 1000 random values for the chiral limit extrapola-
tions. If we assume at least a linear fitting function we need values for at
least two different ml/ms, but better three, to verify a linear behaviour. For
details on our ansatz see section 3.4.

We start with the chiral limit extrapolation of the screening masses in
the next subsection 4.6.1.

4.6.1 Screening masses
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Figure 4.24: Screening masses of a0 and π at their pseudo-critial temperature
Tpc,cont. as a function of the explicit symmetry breaking parameter ml/ms.
Left: The individual screening masses. Right: The difference between those
two screening masses as a measure of UA(1) symmetry breaking.

In this subsection we want to remove the explicit breaking of the UA(1)
symmetry through the light quark mass ml for the screening masses by per-
forming chiral limit extrapolations. In Fig. 4.24 we show the screening masses
as a function of the explicit breaking of UA(1) symmetry, ml/ms, at their
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corresponding Tpc,cont.(ml/ms). We show the individual screening masses
(left) and also the difference of the two masses (right), which gives a mea-
sure of UA(1) symmetry breaking analogous to our susceptibility observable.
The difference is taken before the continuum limit extrapolation using mostly
largest volume lattices; for details see sections 4.4 and 4.5.

Since from this stage it was not clear for us how to proceed, we tried
different ansätze on the mass difference. The straightforward approach is just
a linear function in ml/ms. Another idea is a square root fitting function
since the pion is a Goldstone boson below Tc and therefore its mass should
behave like a square root of ml/ms going towards 0. Another simple idea is
combining those two functions to a linear and square root fitting funtion, cf.
section 3.4. In Fig. 4.25 we show those three fits.
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Figure 4.25: Different fits for the chiral limit extrapolation of the mass dif-
ference of ma0 and mπ. Top left: Linear function. Top right: Square root
function. Bottom: Fitting function containing both terms.

We see from Fig. 4.25 that depending on the fitting function the chiral
limit extrapolation would lead to either no degeneracy of UA(1) in the linear
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case or to a potential degeneracy in the case of square root functions with
and without an additional linear term. That is an inconclusive result. With
the current data points however we can neither be sure of what is the right
function nor if it becomes degenerate or not. To answer those questions more
data points at smaller mass ratios ml/ms are needed. Also the extracted
ma0 is inconclusive due to the unphysical decay channel as mentioned in
subsection 4.3.1. In Tab. 4.16 we have summarized the chiral limit fitting
results and χ2 fitting results for comparison. As can be seen the linear fitting
function as well as the square root fitting function have very low χ2 values
and the chiral limit mass difference values agree within uncertainties.

Fitting function mdiff[MeV] mdiff[MeV] from χ2 χ2/d.o.f.

linear 30.322 (9183) 30.183 (5576) 0.3857163

square root 9.573(11727) 5.597 (7025) 0.1812405

linear + square root 9.041(13906) - -

Table 4.16: Chiral-limit-extrapolated results of the screening mass difference
mdiff = ma0 −mπ. Results differ depending on the fitting function. Compar-
ison of chiral-limit-extrapolated mass difference from our fit method (mdiff)
and a χ2 fit (mdiff from χ2) with its corresponding χ2/d.o.f.. For our fit
method see section 4.6.

Since the chiral limit extrapolations for the screening masses are incon-
clusive at that point we have to take a closer look at the chiral limit extrapo-
lations of the susceptibilities. We finish the result chapter therefore with the
chiral limit extrapolations of the susceptibilities in the last subsection of this
chapter 4.6.2.

94



4.6. CHIRAL LIMIT

4.6.2 Susceptibilities
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Figure 4.26: Susceptibility difference at their pseudo-critical temperature
Tpc,cont. as a function of the explicit symmetry breaking parameter ml/ms.
The difference is a measure for UA(1) symmetry breaking.

In this subsection we want to remove the explicit breaking of the UA(1) sym-
metry through the light quark mass ml for the susceptibilities by performing
chiral limit extrapolations. Similar to subsection 4.6.1 we show in Fig. 4.26
our susceptibility observable as a function of the explicit breaking of UA(1)
symmetry ml/ms.

Looking at Fig. 4.26 we see a rather unlikely degeneration of χπ and χa0

towards the chiral limit, unless the function is very different from the ones we
proposed in section 3.4. This could mean that the largest quark mass ratio
ml/ms = 1/27 is potentially outside of that simple scaling regime similar to
the Nτ = 6 values for the linear continuum limit extrapolation in 1/N2

τ ; for
details on that see subsection 4.5.2. Nonetheless we show in Fig. 4.27 the
fits using the fitting ideas from section 3.4, i.e. a linear, a square root to the
power of 3 and a linear combined with a square root to the power of 3 fitting
function.
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Figure 4.27: Different fitting function ideas for the chiral limit extrapolation
of the susceptibility difference of χπ and χa0 . Top left: Linear function. Top
right: Square root to the power of 3 function. Bottom: Fitting function
containing both terms.

We see in Fig. 4.27 that the chiral limit extrapolations differ a lot between
the different fitting functions. Nonetheless the susceptibilites all rise towards
ml/ms = 0 and agree of being clearly above 0, which would mean that there
is no UA(1) symmetry restoration at Tc in the chiral limit. For Fig. 4.28 we
used the same fitting functions as in Fig. 4.27 but with the inverse of that
observable as we motivated in section 3.4. We see that towardsml/ms = 0 the
values decrease and become very small but still non-zero as well, which would
mean that the breaking is large but not divergently large and therefore hints
again to a non-degeneracy of χπ and χa0 at the phase transition temperature
in the chiral limit. These findings are not in accordance to the screening mass
chiral limit extrapolations, which had a possible UA(1) symmetry restoration
at Tc for some fitting functions. One possible reason for that is that the
screening mass extrapolation might be imprecise due to the problem in the
scalar mass. Another possible reason might be that the ms/ml = 27 value for
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the susceptibilities is not in the scaling regime for a chiral limit extrapolation
similar to the Nτ = 6 value for its linear continuum limit extrapolation in
1/N2

τ . A very probable other reason is that the used fitting functions are
just incorrect. However in Tab. 4.17 we have summarized the chiral limit
fitting results. Like in the case of screening masses (subsection 4.6.1) the χ2

values are very small and the chiral-limit-extrapolated values agree within
uncertainties with our method. Interestingly inverting the values of χdiff
from Tab. 4.17 is in the order of 10−3, which is the same order as the values
of χ−1

diff.

Besides that we saw a similar predicition already in one of our ealier
studies [67]. That study did a spline interpolation between the susceptibility
differences of different ml/ms with physical strange quark mass ms at fixed
temperatures and predicted their behavior in the chiral limit. The suscep-
tibility difference was not in the thermodynamic or continuum limit, which
means that we should be a bit careful with the interpretation of that study.
The study predicted that for higher temperatures, i.e. T ≈ 166 MeV and
T ≈ 162 MeV, the suceptibility difference would be vanishing in the chiral
limit ml → 0. That would be in good accordance with our prediction that for
decreasing mass ratios ml/ms the susceptibility difference vanishes at lower
temperatures relative to their pseudo-critical temperature Tpc,cont.(ml/ms),
where the critical temperature, the phase transition temperature in the chi-
ral limit, is Tc = 132+3

−6 MeV [8]. We predicted in subsection 4.5.2 under the
assumption that the temperature at which the results of mπ and ma0 as well
as the susceptibility difference and 0 start to agree (degeneration tempera-
ture) for ms/ml = 80 is correct and that for decreasing ml the degeneration
temperature relative to their pseudo-critical temperature Tpc,cont.(ml/ms)
always decreases that the degeneration temperature in the chiral limit is
Tdegen.,c < 1.15Tc ≈ 151.8 MeV. For decreasing temperatures the prediction
of the study [67] seems to be not so clear anymore. Especially at temperatures
T ≈ 151 MeV and T ≈ 145 MeV it seems that the susceptibility difference is
diverging in the chiral limit. Since the continuum critical temperature corre-
sponding to ml/ms = 0 is Tc = 132+3

−6 MeV [8], we would assume from that
study [67] that the susceptibility difference will not vanish and therefore the
UA(1) symmetry will not be effectively restored at the chiral phase transition.
Of course it is important to note that the calculated χπ is diverging below the
pseudo-critical temperature Tpc corresponding to their mass ratios ml/ms;
cf. Eq. 3.11. Those Tpc are higher for higher ml/ms. That is another reason
why we extracted the susceptibility difference for our chiral limit extrapola-
tion at the corresponding transition temperature Tpc(ml/ms). Nonetheless
we saw with Fig. 4.26 a starting position similar to that study and came here
to the conclusion that UA(1) symmetry would not be effectively restored in
the chiral limit at the transition temperature.
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Figure 4.28: Same fitting functions as Fig. 4.27 but using the inverse values
of our susceptibility observable.

Finally we want to compare our findings with the findings of other cur-
rent research (see end of section 2.10 for a summary of the current status).
All studies [15, 49, 50, 52] from section 2.10, which have found an effectively
restored UA(1) symmetry, have used two-flavor QCD, which is not directly
comparable with our (2+1)-flavor QCD. Nonetheless we want to try to unify
those findings with our seemingly contrary findings. We can take a look at
the temperature, where UA(1) symmetry gets effectively restored, relative to
the transition temperature in both theories. This relative restoration should
be comparable with two-flavor QCD. Some studies [50,52], which came to the
conclusion that the UA(1) symmetry is effectively restored, were investigating
a temperature range of 190-330 MeV, which is a range of around 1.11-1.95
Tc (Tc ≈ 170 MeV for two-flavor QCD [51]), where Tc is the chiral phase
transition temperature of the Nf = 2 QCD, which these papers studied. At
those temperature ratios UA(1) could already be effectively restored because
for mass ratio ms/ml = 80 we have seen in Fig. 4.23 that UA(1) might be
already restored at a ratio of T/Tpc,cont.(ms/ml) = 1.15 and it is likely as we
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have shown in subsection 4.4.2 that this temperature ratio might be smaller
than 1.11 towards the chiral limit, which is below the temperature range of
these studies.

Fitting function χdiff χdiff from χ2 χ2/d.o.f.

linear 468.09 (9225) 467.47 (1168) 0.015446

square root3 331.43 (3839) 426.09 (65) 9.6 · 10−5

linear + square root3 258.72(21765) - -

Fitting function χ−1
diff/10−3 χ−1

diff/10−3 from χ2 χ2/d.o.f.

linear 1.882(702) 1.912(248) 0.100362

square root3 2.175(506) 2.203 (96) 0.029625

linear + square root3 2.030(639) - -

Table 4.17: Chiral-limit-extrapolated results of the susceptibility difference
χdiff = m2

s(χπ − χa0)/f4
K . Results differ depending on the fitting func-

tion. Comparison of chiral-limit-extrapolated susceptibility difference from
our method (χdiff and χ−1

diff) and a least χ2 fit (’χdiff from χ2’ and ’χ−1
diff from

χ2’) with its corresponding χ2/d.o.f.. For our fit method see section 4.6.

On the other side we compare our findings to the studies that have
found a still broken UA(1) symmetry around or after the chiral phase tran-
sition [44–48]. Even though our findings agree on a broken UA(1) symmetry
at the chiral phase transition, there are still some differences. The latest
study [48] in that respect with (2 + 1)-flavor QCD using HISQ predicted
a broken UA(1) symmetry even at T ≈ 205 MeV ≈ 1.6Tc. That seems to
contradict our prediction that the restoration temperature in the chiral limit
could be Tdegen.,c < 1.15Tc. The findings of that study [48] would also mean
that the effective restoration of UA(1) at physical quark masses [12] would
happen at lower temperatures (T ≈ 200 MeV) than it would in the chiral
limit. In both studies (this thesis and [12]) the focus was however not the
potential effective UA(1) symmetry restoration at some high temperature.
The focus of this thesis was the potential UA(1) symmetry restoration at the
chiral phase transition. Therefore we leave the question of a potential UA(1)
symmetry restoration at some temperature far higher than the chiral phase
transition temperature open at this point. We close with our finding that
UA(1) symmetry seem to stay broken at the chiral phase transition. Nonethe-
less more research should be done in that regard since this was just a first
study on that specific question.

In the next chapter 5 we conclude our thesis.
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Chapter 5

Conclusion

In this chapter we want to conclude and summarize the insights and the
results of this thesis.

We calculated mesonic screening mass correlators for lower than physical
light quark masses and analyzed them in order to answer the question if the
anomaly of UA(1) exists at the phase transition temperature for vanishing
light quark masses, the so-called chiral limit. We also looked into the con-
tent of those mesonic screening mass correlators by switching the boundary
conditions of the valence quarks to periodic temporal boundary conditions
instead of the usual anti-periodic temporal boundary conditions.

From the latter analysis we could not see a pure mesonic state for our
mesonic screening mass correlators for our temperature range down to a
temperature of 140 MeV. Keep in mind that we did not perform any extrap-
olations for these screening masses. Therefore we put further analysis on
hold in this direction until we calculate correlators for lower temperatures.

Regarding the anomaly of UA(1) we investigated the thermodynamic and
continuum limit for our mass ratios of ms/ml = 80 and ms/ml = 40 before we
turned to the chiral limit extrapolation using results from a former study [12]
at the physical mass ratio of ms/ml = 27. In all calculations we set the
strange quark mass ms to the physical quark mass values. We analyzed the
screening masses as well as the corresponding susceptibilities related to the
UA(1) anomaly.

From the analysis of the infinite volume extrapolations we can conclude
that our largest lattices with Ns ≥ 4Nτ were already large enough because of
two reasons. First the largest volumes agreed mostly with the infinite-volume-
extrapolated values and second the systematic uncertainties resulting from
cut-off effects due to our finite lattice spacing are overall larger than the finite
volume effects. The infinite volume extrapolations seem to, if at all, push
the degeneracy temperature of the pion mass mπ and the iso-vector scalar
mass ma0 as well as their susceptibilities χπ and χa0 to a higher temperature,
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which could be investigated further.
From the analysis of the continuum limit extrapolations we conclude that

this limit is necessary to draw proper conclusions for continuum physics. We
also saw that we can use values interpolated between our calculated values
along different temperatures for the continuum limit extrapolations. This is
especially important since we needed values at the transition temperature
intervals. We also saw that for lighter light quark masses ml the degeneracy
temperature relative to their transition temperature seemed to get smaller.
That would show that the effect of the explicit breaking of UA(1) by the
mass term gets weaker. With the assumptions that the temperatures at
which the results of masses mπ and ma0 as well as the susceptibilities χπ
and χa0 become degenerate (degeneration temperature) are correct and that
for decreasing light quark masses ml the degeneracy temperature relative
to their transition temperature gets smaller, we also made an upper bound
of the restoration temperature in the chiral limit. This temperature would
therefore be Tdegen.,c < 1.15Tc ≈ 151.8 MeV.

In the last result section we tried to approach the chiral limit extrapola-
tions for the screening masses of π and a0 as well as for the susceptibilities.
To reduce the uncertainties we took the difference, which is a measure for
the anomalous UA(1) symmetry breaking before we extrapolated to the con-
tinuum and chiral limit ml → 0. Since we had no true expectation for the
fitting function of the chiral limit extrapolations, we tried a few possible fit-
ting functions, which we motivated in section 3.4. For the screening masses
we used a linear as well as a square root and a combined fitting function
consisting of both terms. Only the linear fitting function in light quark mass
showed a clearly broken UA(1) symmetry at the phase transition temperature
in the chiral limit. The other two fitting functions agree within uncertainty
bands with an effective UA(1) symmetry restoration. The chiral limit ex-
trapolations for their susceptibilities on the other hand showed only a broken
UA(1) symmetry. We used as fitting functions a linear as well as a square
root to the power of 3 and a combined fitting function for the difference of
χπ and χa0 as well as the inverse of this difference.

These findings for the susceptibilities differ to the screening mass chiral
limit extrapolations which had a possible UA(1) symmetry restoration at Tc
for some fitting functions even though they should show the same result.
One possible reason for that is that the screening mass extrapolation for the
scalar might be imprecise.

Nonetheless we only had three data points (ms/ml = 80, ms/ml = 40 and
ms/ml = 27) to play with and had no expectation for the fitting function
towards chiral limit. Therefore other possible reasons might be that the
ms/ml = 27 value for the susceptibilities is not in the scaling regime for a
simple chiral limit extrapolation or that the used fitting functions are just
incorrect. To improve on that values at an even lighter light quark mass ml
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are needed because at this point we can neither exclude possible higher order
corrections for the physical quark mass ratio nor can we exclude or conclude
to a fitting function. Since for some of our fitting functions an effective
UA(1) symmetry restoration might be possible, proper thermodynamic limit
extrapolations might adjust the chiral limit extrapolated values to a broken
UA(1) symmetry as mentioned before.

More research should be done on the topic of UA(1). Especially increasing
the number of points for the chiral limit extrapolation as well as trying to
verify our finding that for decreasing ml the degeneracy temperature relative
to their transition temperature gets smaller, which would create an upper
bound to the degeneration temperature in the chiral limit.
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Appendix

β T [MeV] π mass
243 × 8

π mass
323 × 8

π mass
403 × 8

6.260 136.716 0.118796 (488) 0.115750 (271) 0.115661(318)
6.285 140.323 0.120863 (494) 0.117292 (372) 0.116115(223)
6.300 142.531 0.122013 (668) 0.118066 (534) 0.116931(250)
6.315 144.773 0.123834 (675) 0.118038 (760) 0.118609(211)
6.330 147.048 0.124981 (689) 0.121113 (610) 0.120782(346)
6.354 150.761 0.131425(1144) 0.127628 (681) 0.125888(309)
6.365 152.492 0.136485 (871) 0.129408(1068) 0.129366(320)
6.390 156.497 0.147304 (698) 0.141245(1033) 0.138864(291)
6.423 161.934 0.161339(1642) 0.160554(1673) 0.158942(578)
6.445 165.656 0.179250 (751) 0.174296(1910) 0.174051(953)

Table 1: Statistics for lattices of size N3
s = 243, 323, 403 with Nτ = 8 at mass

ratio ms/ml = 40. Temperature T is in fK-scale from [12]. Masses are in
lattice units.



Appendix

β T [MeV] a0 mass
243 × 8

a0 mass
323 × 8

a0 mass
403 × 8

6.260 136.716 0.241089(9051) 0.287040(20607) 0.298214(7771)
6.285 140.323 0.224911(4250) 0.247153(20029) 0.268297(7153)
6.300 142.531 0.218528(4929) 0.244262 (6527) 0.271320(4691)
6.315 144.773 0.209859(4907) 0.237856 (6460) 0.260511(3978)
6.330 147.048 0.204117(5089) 0.238723 (4501) 0.250178(3784)
6.354 150.761 0.197638(3432) 0.218733 (3504) 0.230150(3630)
6.365 152.492 0.195781(1875) 0.212960 (3688) 0.224438(1576)
6.390 156.497 0.193474(3314) 0.208860 (2624) 0.209257 (849)
6.423 161.934 0.197641(1726) 0.202590 (2004) 0.208635 (984)
6.445 165.656 0.208194 (736) 0.211196 (1847) 0.211553(1351)

Table 2: Statistics for lattices of size N3
s = 243, 323, 403 with Nτ = 8 at mass

ratio ms/ml = 40. Temperature T is in fK-scale from [12]. Masses are in
lattice units.

β T [MeV] π mass
423 × 12

π mass
603 × 12

6.600 129.447 0.080095 (330) 0.079236 (164)
6.640 134.804 0.080290 (521) 0.079103 (181)
6.680 140.355 0.082140 (561) 0.079466 (232)
6.712 144.938 0.085047 (732) 0.081332 (299)
6.754 151.149 0.090573 (548) 0.088322 (495)
6.794 157.275 0.102211(1382) 0.098867 (555)
6.825 162.167 0.115576(1473) 0.111477 (997)
6.850 166.206 0.124944(2030) 0.125594(1471)

Table 3: Statistics for lattices of size N3
s = 423, 603 with Nτ = 12 at mass

ratio ms/ml = 40. Temperature T is in fK-scale from [12]. Masses are in
lattice units.
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β T [MeV] a0 mass
423 × 12

a0 mass
603 × 12

6.600 129.447 0.155120(3904) 0.171214(7338)
6.640 134.804 0.133220(3024) 0.145981(9280)
6.680 140.355 0.125351(3890) 0.145434(7338)
6.712 144.938 0.127313(2467) 0.144591(3179)
6.754 151.149 0.127282(1754) 0.132688(3491)
6.794 157.275 0.132420(1593) 0.137678 (983)
6.825 162.167 0.134857(1558) 0.139400(1327)
6.850 166.206 0.140745(1905) 0.147470(1517)

Table 4: Statistics for lattices of size N3
s = 423, 603 with Nτ = 12 at mass

ratio ms/ml = 40. Temperature T is in fK-scale from [12]. Masses are in
lattice units.

β T [MeV] π mass
243 × 6

π mass
323 × 6

π mass
483 × 6

6.025 142.727 0.114345 (995) - 0.111989 (255)
6.038 144.665 0.113997(1079) - 0.113597 (266)
6.050 146.479 0.118425(1281) - 0.116167 (166)
6.062 148.316 0.121767 (989) 0.120158 (666) 0.118460 (340)
6.075 150.334 0.128881(1148) - 0.124225(1058)
6.090 152.697 0.132943(1202) 0.129963 (483) 0.130210 (369)
6.105 155.100 0.141922(1387) - 0.139545 (462)
6.120 157.541 - - 0.150344 (606)
6.125 158.363 0.157340(1338) - -
6.135 160.021 0.168713(2139) 0.162028(1645) -
6.150 162.542 0.186057(1706) 0.179298(1539) -

Table 5: Statistics for lattices of size N3
s = 243, 323, 483 with Nτ = 6 at mass

ratio ms/ml = 80. Temperature T is in fK-scale from [12]. Masses are in
lattice units.
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β T [MeV] a0 mass
243 × 6

a0 mass
323 × 6

a0 mass
483 × 6

6.025 142.727 0.330629(16969) - 0.358502(20910)
6.038 144.665 0.262934(11220) - 0.334980(19311)
6.050 146.479 0.271755(15971) - 0.310816(16587)
6.062 148.316 0.257380(11293) 0.256512(14360) 0.292475 (7685)
6.075 150.334 0.253146 (9348) - 0.280016(14164)
6.090 152.697 0.231926 (6957) 0.262930 (5173) 0.258801 (5271)
6.105 155.100 0.226325 (6748) - 0.243879 (4495)
6.120 157.541 - - 0.235395 (3541)
6.125 158.363 0.223597 (3942) - -
6.135 160.021 0.227051 (2635) 0.231895 (3849) -
6.150 162.542 0.228467 (982) 0.230878 (3245) -

Table 6: Statistics for lattices of size N3
s = 243, 323, 483 with Nτ = 6 at mass

ratio ms/ml = 80. Temperature T is in fK-scale from [12]. Masses are in
lattice units.

β T [MeV] π mass
323 × 8

π mass
403 × 8

π mass
563 × 8

6.285 140.323 0.089402 (212) 0.088207 (339) 0.087212 (201)
6.300 142.531 0.091082 (283) 0.088786 (503) 0.086335(2646)
6.315 144.773 0.094100 (257) 0.092333 (436) 0.091228 (730)
6.330 147.048 0.097964 (403) 0.096650 (382) 0.095889(1029)
6.354 150.761 0.106768 (364) 0.104236 (557) 0.105774(1912)
6.372 153.604 0.115157 (757) 0.112577 (683) 0.111068(2415)
6.390 156.497 0.126478(1048) 0.124245 (753) 0.130429(2226)
6.423 161.934 0.149494(1264) 0.149704(1000) 0.161789(5224)
6.445 165.656 0.167146(1568) 0.169778(1454) 0.177485(3516)

Table 7: Statistics for lattices of size N3
s = 323, 403, 563 with Nτ = 8 at mass

ratio ms/ml = 80. Temperature T is in fK-scale from [12]. Masses are in
lattice units.
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β T [MeV] a0 mass
323 × 8

a0 mass
403 × 8

a0 mass
563 × 8

6.285 140.323 0.195141(7463) 0.216672(5892) 0.212718(57416)
6.300 142.531 0.180078(6677) 0.199696(4113) 0.217846(17191)
6.315 144.773 0.174780(2696) 0.187863(6518) 0.206061(13681)
6.330 147.048 0.173269(2447) 0.188774(4761) 0.187358(10786)
6.354 150.761 0.163877(1363) 0.173702(2201) 0.179778 (8698)
6.372 153.604 0.161836 (771) 0.165668(1141) 0.171626 (3680)
6.390 156.497 0.162301 (817) 0.167449(1268) 0.178032 (3126)
6.423 161.934 0.173557(1377) 0.177919 (791) 0.183375 (5009)
6.445 165.656 0.185555(1627) 0.185701(1267) 0.193647 (2644)

Table 8: Statistics for lattices of size N3
s = 323, 403, 563 with Nτ = 8 at mass

ratio ms/ml = 80. Temperature T is in fK-scale from [12]. Masses are in
lattice units.

β T [MeV] π mass
483 × 12

π mass
603 × 12

π mass
723 × 12

6.600 129.447 0.059599 (495) 0.059282 (269) -
6.640 134.804 0.060959 (373) 0.059999 (313) 0.059070(263)
6.680 140.355 0.064104 (365) 0.061719 (382) 0.061140(264)
6.712 144.938 0.067386 (507) 0.066618 (394) 0.066267(329)
6.733 148.015 0.073419(1197) 0.072120 (811) 0.069801(457)
6.754 151.149 0.077704 (535) 0.077335 (582) 0.076375(769)
6.794 157.275 - 0.092257 (921) -
6.825 162.167 - 0.110037(1493) -
6.850 166.206 - 0.119664(1834) -

Table 9: Statistics for lattices of size N3
s = 483, 603, 723 with Nτ = 12 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from [12]. Masses are
in lattice units.
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β T [MeV] a0 mass
483 × 12

a0 mass
603 × 12

a0 mass
723 × 12

6.600 129.447 0.112909(3474) 0.138199(5884) -
6.640 134.804 0.108412(1914) 0.124861(3452) 0.131327(5733)
6.680 140.355 0.099911(3443) 0.112288(3186) 0.103033(7260)
6.712 144.938 0.095823(1727) 0.106410(3120) 0.113125(1251)
6.733 148.015 0.100253(1940) 0.107989(1871) 0.109506(1614)
6.754 151.149 0.098932(1080) 0.105365(1530) 0.107286(1140)
6.794 157.275 - 0.110500 (908) -
6.825 162.167 - 0.121274(1406) -
6.850 166.206 - 0.128370(1625) -

Table 10: Statistics for lattices of size N3
s = 483, 603, 723 with Nτ = 12 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from [12].

β T [MeV] π mass a0 mass
6.285 140.323 0.065109 (292) 0.190385(8548)
6.300 142.531 0.067891 (289) 0.183462(7413)
6.315 144.773 0.070927 (335) 0.166108(3871)
6.330 147.048 0.075995 (341) 0.155590(3515)
6.354 150.761 0.086872 (509) 0.140507(1878)
6.372 153.604 0.102967(2433) 0.139551(2245)
6.390 156.497 0.112529(1502) 0.140440(1215)
6.423 161.934 0.143661(1162) 0.156180(1022)
6.445 165.656 0.164207(1504) 0.172853(1274)

Table 11: Statistics for lattice of size 563 × 8 at mass ratio ms/ml = 160.
Temperature T is in fK-scale from [12]. Masses are in lattice units.
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β T [MeV] π mass
243 × 6

π mass
323 × 6

π mass
483 × 6

6.025 142.727 0.091287(663) - 0.091165(121)
6.038 144.665 0.090756(673) - 0.089932(131)
6.050 146.479 0.090082(434) - 0.088526 (94)
6.062 148.316 0.086925(796) 0.087612(217) 0.087497(136)
6.075 150.334 0.086965(775) - 0.086109(299)
6.090 152.697 0.085292(473) 0.084569(311) 0.084180 (97)
6.105 155.100 0.084056(523) - 0.082732(121)
6.120 157.541 - - 0.081242(164)
6.125 158.363 0.082735(607) - -
6.135 160.021 0.081281(715) 0.079911(366) 0.079296(321)
6.150 162.542 0.079019(800) 0.078223(344) -

Table 12: Statistics for lattices of size N3
s = 243, 323, 483 with Nτ = 6 at

mass ratio ms/ml = 80 using periodic boundary conditions. Temperature T
is in fK-scale from [12]. Masses are in lattice units.

β T [MeV] a0 mass
243 × 6

a0 mass
323 × 6

a0 mass
483 × 6

6.025 142.727 0.289839(101869) - 0.227505 (86259)
6.038 144.665 0.273578 (92960) - 0.297771 (58015)
6.050 146.479 0.274221 (68226) - 0.267349 (41479)
6.062 148.316 - 0.368507(116849) 0.354760 (89159)
6.075 150.334 0.324173 (87517) - 0.321200(152206)
6.090 152.697 0.356392(135807) 0.276944 (59882) 0.299071 (58905)
6.105 155.100 0.270028 (60107) - 0.335412 (74395)
6.120 157.541 - - 0.228277 (48982)
6.125 158.363 0.277873(105586) - -
6.135 160.021 0.129514 (50935) 0.207690 (44694) 0.405724 (77356)
6.150 162.542 0.169164 (63333) 0.442681 (59208) -

Table 13: Statistics for lattices of size N3
s = 243, 323, 483 with Nτ = 6 at

mass ratio ms/ml = 80 using periodic boundary conditions. Temperature T
is in fK-scale from [12]. Masses are in lattice units.
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β T [MeV] π mass
323 × 8

π mass
403 × 8

π mass
563 × 8

6.260 136.716 0.072949(484) - -
6.285 140.323 0.072351(402) 0.070574(633) 0.070605(100)
6.300 142.531 0.070534(326) 0.069899(322) 0.069174(102)
6.315 144.773 0.068914(353) 0.068090(367) 0.068083(124)
6.330 147.048 0.068537(501) 0.067477(360) 0.066757(116)
6.354 150.761 0.065925(362) 0.066085(359) 0.064688(159)
6.372 153.604 0.064390(452) 0.063993(384) 0.063185(101)
6.390 156.497 0.062633(466) 0.061632(274) 0.061269(152)
6.423 161.934 0.060716(698) 0.059186(472) 0.058560(165)
6.445 165.656 0.058903(748) 0.057680(394) 0.056888(155)

Table 14: Statistics for lattices of size N3
s = 323, 403, 563 with Nτ = 8 at

mass ratio ms/ml = 80 using periodic boundary conditions. Temperature T
is in fK-scale from [12]. Masses are in lattice units.

β T [MeV] a0 mass
323 × 8

a0 mass
403 × 8

a0 mass
563 × 8

6.260 136.716 0.273765(182115) - -
6.285 140.323 0.192117 (52510) 0.192784(46606) 0.188896(29251)
6.300 142.531 0.133930 (38712) 0.219150(58992) 0.165975(29976)
6.315 144.773 0.154434 (26166) 0.159596(41509) 0.191072(30953)
6.330 147.048 0.170879 (35777) 0.168413(46470) 0.142240(32820)
6.354 150.761 0.171651 (37991) 0.143961(44338) 0.163282(22415)
6.372 153.604 0.178226 (59342) 0.222105(61148) 0.165434(20029)
6.390 156.497 0.156928 (36594) 0.148948(37507) 0.155172(23857)
6.423 161.934 0.131674 (29113) 0.206426(31988) 0.170064(24656)
6.445 165.656 0.124345 (37601) 0.143126(27804) 0.151012(29643)

Table 15: Statistics for lattices of size N3
s = 323, 403, 563 with Nτ = 8 at

mass ratio ms/ml = 80 using periodic boundary conditions. Temperature T
is in fK-scale from [12]. Masses are in lattice units.
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β T [MeV] X
243 × 8

X
323 × 8

X
403 × 8

6.260 136.716 575.519(4722) 615.771(9958) 634.155(6215)
6.285 140.323 479.607(4558) 517.902(6599) 539.182(6319)
6.300 142.531 408.247(5354) 469.492(7476) 476.244(6295)
6.315 144.773 354.468(3884) 418.441(8243) 415.639(4436)
6.330 147.048 298.316(3385) 340.768(6074) 352.579(3537)
6.354 150.761 216.113(3054) 265.044(5959) 269.647(3574)
6.365 152.492 182.565(2519) 217.211(4882) 226.021(2458)
6.390 156.497 109.438(1840) 141.653(3819) 143.218(2155)
6.423 161.934 58.610(2132) 71.109(3077) 66.990(1251)
6.445 165.656 33.576(1118) 40.361(3379) 39.792(1589)

Table 16: Statistics for lattices of size N3
s = 243, 323, 403 with Nτ = 8 at

mass ratio ms/ml = 40. Temperature T is in fK-scale from [12]. X =
m2
s(χπ − χa0)/T 4.

β T [MeV] X
423 × 12

X
603 × 12

6.600 129.447 767.527(12606) 863.143(15946)
6.640 134.804 588.976(11088) 666.214(10971)
6.680 140.355 446.653 (9753) 489.944 (7039)
6.712 144.938 318.665 (7425) 374.354 (4714)
6.754 151.149 191.538 (9369) 224.358 (4506)
6.794 157.275 105.659 (4810) 113.859 (3015)
6.825 162.167 53.912 (3426) 62.177 (3283)
6.850 166.206 35.261 (2291) 34.170 (1841)

Table 17: Statistics for lattices of size N3
s = 423, 603 with Nτ = 12 at mass

ratio ms/ml = 40. Temperature T is in fK-scale from [12]. X = m2
s(χπ −

χa0)/T 4.
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β T [MeV] X
243 × 6

X
323 × 6

X
483 × 6

6.025 142.727 877.159(12332) - 939.978(21370)
6.038 144.665 797.494(11281) - 842.578(13114)
6.050 146.479 704.504(12672) - 743.773(10691)
6.062 148.316 606.069(11214) 652.943(13085) 647.522 (9052)
6.075 150.334 498.238(11793) - 552.109(27184)
6.090 152.697 374.299 (9966) 419.836 (7037) 408.313 (5450)
6.105 155.100 284.511(10036) - 309.956 (7897)
6.120 157.541 - - 217.360 (8691)
6.125 158.363 170.825 (6432) - -
6.135 160.021 134.630 (5022) 145.456 (6080) -
6.150 162.542 78.123 (4178) 89.518 (4835) -

Table 18: Statistics for lattices of size N3
s = 243, 323, 483 with Nτ = 6 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from [12]. X =
m2
s(χπ − χa0)/T 4.

β T [MeV] X
323 × 8

X
403 × 8

X
563 × 8

6.285 140.323 900.062(12385) 972.545(15949) 973.530(16337)
6.300 142.531 759.384 (8370) 824.576(11469) 837.767(14017)
6.315 144.773 627.090 (7921) 677.744 (9074) 698.729(10985)
6.330 147.048 508.291 (5534) 532.682 (6670) 572.132(11175)
6.354 150.761 327.300 (6148) 364.418 (7496) 376.802 (5558)
6.372 153.604 213.198 (4826) 249.366 (8483) 246.891 (8649)
6.390 156.497 136.639 (3711) 149.076 (4938) 148.648 (5661)
6.423 161.934 48.959 (2725) 49.825 (2305) 58.400 (4403)
6.445 165.656 23.155 (1342) 21.777 (970) 26.161 (4457)

Table 19: Statistics for lattices of size N3
s = 323, 403, 563 with Nτ = 8 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from [12]. X =
m2
s(χπ − χa0)/T 4.
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β T [MeV] X
483 × 12

X
603 × 12

X
723 × 12

6.600 129.447 1347.827(25996) 1463.346(29597) -
6.640 134.804 986.969(11230) 1080.807(22309) 1133.099(29263)
6.680 140.355 651.064(17743) 765.120(18166) 797.453(20446)
6.712 144.938 427.904(11172) 499.274(14247) 515.409(15017)
6.733 148.015 275.967(11008) 336.714(20338) 357.736(10946)
6.754 151.149 188.761 (7675) 231.198 (7152) 234.003 (8067)
6.794 157.275 - 95.206 (7651) -
6.825 162.167 - 35.964 (3728) -
6.850 166.206 - 18.109 (1037) -

Table 20: Statistics for lattices of size N3
s = 483, 603, 723 with Nτ = 12 at

mass ratio ms/ml = 80. Temperature T is in fK-scale from [12]. X =
m2
s(χπ − χa0)/T 4.

β T [MeV] X
563 × 8

6.285 140.323 1691.066(26353)
6.300 142.531 1422.378(23775)
6.315 144.773 1142.259(32181)
6.330 147.048 887.361(24602)
6.354 150.761 500.827(17020)
6.372 153.604 281.892(19594)
6.390 156.497 135.617 (7470)
6.423 161.934 28.632 (2514)
6.445 165.656 12.735 (1939)

Table 21: Statistics for lattice of size 563 × 8 at mass ratio ms/ml = 160.
Temperature T is in fK-scale from [12]. X = m2

s(χπ − χa0)/T 4.
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β T [MeV] Y
403 × 8
ms/ml = 40

Y
563 × 8
ms/ml = 80

6.260 136.716 1.163770(65128) -
6.285 140.323 0.930950(53349) 0.880425(143292)
6.300 142.531 0.824579(40818) 0.502308 (74920)
6.315 144.773 0.629069(38505) 0.598199 (89900)
6.330 147.048 0.528017(39753) 0.343010 (52331)
6.354 150.761 0.362567(27728) 0.331776 (53144)
6.365 152.492 0.270926(38834) -
6.372 153.604 - 0.158112 (91472)
6.390 156.497 0.214889(21828) 0.141127 (41325)
6.423 161.934 0.084740(14175) -0.003069 (42144)
6.445 165.656 0.071745(15737) -0.047473 (58972)

Table 22: Statistics for lattices of size N3
s = 403 and N3

s = 563 with Nτ = 8
at mass ratio ms/ml = 40 and ms/ml = 80 respectively. Temperature T is
in fK-scale from [12]. Y = m2

s(χρ − χa1)/T 4.
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