
659
December 2021

Network Games with Heterogeneous Players

Olena Orlova

Center for Mathematical Economics (IMW)
Bielefeld University
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Network games with heterogeneous players

Olena Orlova ∗

Abstract

We consider network games in which players simultaneously form partnerships and

choose actions. Players are heterogeneous with respect to their action preferences. We

characterize pairwise Nash equilibria for a large class of games, including coordination

and anti-coordination games, varying the strength of action preferences and the size

of the linking cost. We find that, despite the symmetry and simplicity of the setting,

quite irregular network structures can arise in equilibrium, implying that heterogeneity

in players’ action preferences may already explain a large part of observed irregularity

in endogenously formed networks.

JEL codes: C62, C72, D85.

Keywords: network games; strategic network formation; preference heterogeneity; effi-

ciency.

1 Introduction

In social contexts, an individual’s choice is often strongly influenced by choices of other

related to her individuals. This social influence is frequently modeled as a non-cooperative

game played on a fixed network, where each individual plays a common bilateral game with

each of her network partners and obtains the sum of these bilateral games’ payoffs. Games on

networks were first systematically introduced in Galeotti et al. (2010) and have been actively
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studied since then (see a recent overview of Bramoullé and Kranton (2016)). However, quite

often individuals also have considerable control over whom they interact with. The first

models of strategic network formation date back to Myerson (1977) and are more recently

surveyed, for instance, in Goyal (2016) and Mauleon and Vannetelbosch (2016). These two

strands of research – network formation and games on networks – have been subsequently

combined in models that consider games on endogenous networks. A good overview of the

literature that studies the interplay between individual behavior and the formation of an

interactional structure is Vega-Redondo (2016). Our paper contributes to this literature.

We investigate one particular aspect – the impact of ex ante heterogeneity between

players. In particular, we allow players differ in their action preferences. On a fixed network,

this would often create a conflict between a player’s idiosyncratic action preference and her

interactional incentives dictated by action choices of her network partners. If the network

is endogenous, however, a player might just choose not to interact with those whose actions

do not correspond to her own preferred action.1 Ellwardt et al. (2016) and Goyal et al.

(2021) show experimentally that this is a typical outcome in a two-stage coordination game

under complete information, when individuals form their partnerships prior to choosing their

actions. Goyal et al. (2021) also check the robustness of these results to non-zero values of

the linking cost. Our aim is to derive equilibrium characterizations analytically and for a

considerably larger class of games, varying also the strength of individuals’ action preferences

and the size of the linking cost. For this purpose, we extend the theoretical framework of

Orlova (2019) from games with heterogeneous players on a fixed network to games on an

endogenous network.

The setting is the following. We consider network games in which players with hetero-

geneous preferences over actions simultaneously form a network and choose their actions.

The action choice is binary and hence there are two types of players. If a player chooses her

preferred action, she gets a higher payoff in every bilateral game she plays. Link formation

is two-sided, that is, links are formed between those players who have made mutual link

proposals. Both link proposals and link maintenance are costly. The same bilateral game is

played between all pairs of players who decided to be linked; it can be either a coordination

game, an anti-coordination game, or a dominant action game (if individuals’ action prefer-

ences are very strong). We consider a complete information setting and use a static solution

concept – pairwise Nash equilibrium. The implications of alternative equilibium concepts

are also discussed.

1This concerns two-sided link formation models, in which every link requires an agreement of both

involved partners but can be severed unilaterally.
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We find that, despite relative simplicity and symmetry of the setting (ex ante there are

only two types of players that differ in their action preferences), quite irregular network

structures are possible in equilibrium (see Table 1). These are partially connected networks

with heterogeneous action profiles such that only a part of players choose their preferred

actions. Such irregular equilibrium structures might exist both for coordination and for anti-

coordination games, and it can be shown that their existence is robust to some equilibrium

refinements – for instance, a bilateral Nash equilibrium.

The rest of the paper is organized as follows. Section 2 describes the model and provides

all necessary definitions. Section 3 presents the results, proposes a classification of equilibria

with respect to the action profile and the network structure and illustrates them with ex-

amples. Section 4 highlights the impact of heterogeneity on equilibrium outcomes, discusses

alternative equilibrium concepts and describes planned follow-up research on efficiency of

the derived equilibria. Appendix contains the proofs of all the results.

2 The model

2.1 The game

Let N = {1, ..., n} be the set of players and θ = (θ1, ..., θn) be the preference profile of

players, where θi ∈ {0, 1} ∀i ∈ N . For π ∈ {0, 1} we call Nπ = {i ∈ N | θi = π} a preference

group with action preference π and denote its cardinality by nπ. We assume that nπ ≥ 2

∀π ∈ {0, 1}, that is, we consider games with heterogeneous preference profiles.

Each player simultaneously chooses a (pure) strategy si = (xi, pi) ∈ Si = {0, 1}n

consisting of an action xi ∈ {0, 1} and a vector of link proposals to other players pi =

(pi1, ..., pi i−1, pi i+1, ..., pin) ∈ {0, 1}n−1. Any strategy profile s ∈ S = S1 × ... × Sn in-

duces a directed graph of proposals P , which can be represented by an adjacency matrix:

Pij = pij ∀i 6= j and Pii = 0 ∀i ∈ N .2 The links are formed between those players who made

mutual proposals, inducing an undirected graph (network) G with Gij = Pij ·Pji ∀i, j ∈ N .3

We denote by S̄ the subset of strategy profiles that do not contain unreciprocated pro-

posals: S̄ = {s ∈ S | pij = pji ∀i, j ∈ N}. In what follows s−i designates the strategy vector

of all players except for i and s−i−j the strategy vector of all players except for i and j. For

a given s−i, we denote by S̄i(s−i) all i’s strategies that do not contain i’s unreciprocated

2By convention, players do not make link proposals to themselves. Note that link proposals pij are

defined only for such i, j ∈ N that i 6= j.
3The terms network and (undirected) graph are used interchangeably in this paper.
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proposals: S̄i(s−i) = {si ∈ Si | pij = 1 ⇒ pji = 1 ∀j ∈ N}. Obviously, for s ∈ S̄ it holds

that si ∈ S̄i(s−i) ∀i ∈ N .

The payoff for a player i with action preference θi is

ui(s) =
∑
j∈N

pijpji
(
δ · 1{xi=xj} + (1− δ) · 1{xi 6=xj} + λ · 1{xi=θi} − (c− ε)

)
− ε ·

∑
j∈N

pij,

where δ ∈ [0; 1], λ ∈ [0; +∞) and c > ε > 0.

Hence, a player enjoys network benefits from her connections in the induced network G,

while she has to pay a positive cost ε for each link proposal and a positive link maintenance

cost c − ε for each link. Note that i’s network benefits consist of two parts: interactional

benefits, that depend on the actions chosen by i’s network neighbors (parameter δ determines

relative advantage of matching versus mismatching actions), and idiosyncratic benefits, that

arise if i chooses her preferred action θi (parameter λ determines the strength of action

preferences). We analyze a class of games Γ = {Γδ,λ | 0 ≤ δ ≤ 1, λ ≥ 0}, where every

specific game is determined by two parameters (with a slight abuse of terminology, we will

sometimes refer to a pair (δ, λ) as ”a game”, implying the corresponding Γδ,λ). Depending

on the relative values of these parameters, any game Γδ,λ can be classified into one of the

following subclasses: coordination games, anti-coordination games or dominant action games

(see Figure 1).

λ

1

0 1
2

1

δ

anti-coordination

games

coordination

games

dominant action

games
δ
=
1−
λ2

δ
=

1+
λ

2

Figure 1: Parameter regions, representing three subclasses of games.

Note that if a player’s strategy does not contain unreciprocated proposals, i.e. si ∈ S̄i(s−i),
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then her payoff function can be simplified:

ui(s) =
∑
j∈N

pijpji
(
δ · 1{xi=xj} + (1− δ) · 1{xi 6=xj} + λ · 1{xi=θi} − c

)
=
∑
j∈N

pijpjiuij(xi, xj), (1)

where uij(xi, xj) denotes i’s payoff component due to her link with j.4 The total linking cost

c, that a player pays for each of her links, combines the cost of link proposal and the cost of

link maintenance.

We consider a complete information setting, that is, the players’ preference profile and

their payoff functions are common knowledge prior to the game. Players choose their strate-

gies simultaneously, aiming to maximize their respective payoffs.

2.2 Equilibrium concept and some graph theory notions

Consider a game Γδ,λ and fix some linking cost c > 0. A strategy profile s is a Nash

equilibrium (NE) of the game if and only if ∀i ∈ N ∀s′i ∈ Si ui(s
′
i, s−i) ≤ ui(s).

5 In the

spirit of the networks literature, we refine the set of Nash equilibria by introducing pairwise

Nash equilibria. We allow pairs of unlinked players to deviate cooperatively by creating a

mutual link with a possibility to simultaneously adjust their action choices. Formally, for

a strategy profile s ∈ S and a pair of players i, j ∈ N s.t. pijpji = 0, a pairwise deviation

((x′i, p
′
i), (x

′
j, p
′
j)) is such a deviation that p′ijp

′
ji = 1 and p′kl = pkl ∀k ∈ {i, j} ∀l /∈ {i, j}. A

pairwise Nash equilibrium is a Nash equilibrium proof against such pairwise deviations.6

Definition 1. A strategy profile s = (x, p) is a pairwise Nash equilibrium (PNE) of the

above game if it is a Nash equilibrium and for any pair i, j ∈ N s.t. pijpji = 0 and any

x′i, x
′
j ∈ {0, 1},

ui((x
′
i, p
′
i), (x

′
j, p
′
j), s−i−j) > ui(s)⇒ uj((x

′
i, p
′
i), (x

′
j, p
′
j), s−i−j) < uj(s),

where p′ijp
′
ji = 1 and p′kl = pkl ∀k ∈ {i, j} ∀l /∈ {i, j}.

For a given game we denote by SPNE ⊆ SNE the sets of pairwise Nash equilibria and

Nash equilibria respectively. In the following section, we analyze pairwise Nash equilibria

for different games Γδ,λ ∈ Γ and different sizes of the linking cost c.

4Note that for any pair of connected players uij(xi, xj) has only four possible values: δ−c, 1−δ−c, δ+λ−c
or 1− δ + λ− c.

5Since only pure strategies are admissible, all equilibria in this paper are pure strategy equilibria.
6The same definition appears in Hiller (2017).
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Before we move to equilibrium characterizations, let us remind several definitions from

the graph theory that will appear useful in our analysis.7

A graph G in which each pair of distinct nodes is linked, Gij = 1 ∀i 6= j, is called a

complete graph. An empty graph, on the other hand, is one with no links: Gij = 0 ∀i, j ∈ N .

A bipartite graph is one that admits a partition of its set of nodes N into two subsets N ′

and N ′′ in such a way that every link of G connects a node of N ′ and a node of N ′′:

Gij = 1⇒ (i ∈ N ′ ∧ j ∈ N ′′) ∨ (i ∈ N ′′ ∧ j ∈ N ′). In a complete bipartite graph every node

of N ′ is linked to every node of N ′′: Gij = 1⇔ (i ∈ N ′ ∧ j ∈ N ′′) ∨ (i ∈ N ′′ ∧ j ∈ N ′).
A graph G′ is called a subgraph of a graph G if every node and link of G′ is a node and

link, respectively, of G. A graph G is a subgraph of itself; all other subgraphs are proper

subgraphs of G. If a proper subgraph G′ ⊂ G is complete, it is called a clique.8 Let G′ and

G′′ be proper subgraphs of G with corresponding sets of nodes N ′ and N ′′. We say that G′

and G′′ are disjoint if they have no nodes in common: N ′ ∩ N ′′ = ∅. We say that disjoint

G′, G′′ ⊂ G are connected, if ∃i ∈ N ′ ∃j ∈ N ′′ s.t. Gij = 1, otherwise they are disconnected.

Finally, let G′ and G′′ be two graphs. A union of G′ and G′′ is a graph with the set of

nodes N = N ′ ∪N ′′ and links such that Gij = 1⇔ G′ij = 1 ∨G′′ij = 1 ∀i, j ∈ N .

3 Equilibrium analysis

3.1 Preliminaries

This subsection establishes important relations between certain sets of strategy profiles and

then formulates necessary and sufficient conditions for a strategy profile to be a pairwise

Nash equilibrium.

First, fix any game Γδ,λ ∈ Γ. Without loss of generality, let us make a technical assump-

tion about admissible values of the linking cost.

Assumption 1. Given a game Γδ,λ, a linking cost c can take any values in Cδ,λ :=

R++ \ {δ, 1− δ, δ + λ, 1− δ + λ}.

That is, a linking cost c can take any positive real values, except for four specific ones.9

7The following definitions are based on Bondy and Murty (1977), Diestel (2017) and Benjamin et al.

(2015). The terms vertex and edge are substituted by more common in the networks literature terms node

and link respectively.
8Note that this definition is different from another common one that appears, for instance, in Jackson

(2008) and defines a clique as a maximal completely connected subgraph of G.
9This assumption guarantees that players are never indifferent to any of their links, that is,

uij(xi, xj) 6= 0 ∀i, j ∈ N ∀xi, xj ∈ {0, 1} (see footnote 4). If this assumption does not hold, more equi-
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Taking into account this assumption, fix any linking cost c. The first lemma relates Nash

equilibria of a game to the set S̄ of strategy profiles without unreciprocated proposals.

Lemma 1. SNE ⊆ S̄.

In other words, a Nash equilibrium cannot contain unreciprocated proposals. This di-

rectly follows from the fact that every link proposal carries a strictly positive cost. Formal

proofs of this and the following lemmas are moved to the appendix.

Next, we notice that not only Nash equilibria do not contain unreciprocated proposals,

but also profitable unilateral strategy deviations cannot contain unreciprocated proposals of

the deviating player. This leads to an alternative characterization of the Nash equilibrium

set.

Lemma 2. s ∈ SNE if and only if ∀i ∈ N ∀s′i ∈ S̄i(s−i) ui(s′i, s−i) ≤ ui(s).

Compared to the original definition, this one narrows down the set of relevant deviations

and thus simplifies the search of equilibria.

Consider now the following set: S̄+ = {s ∈ S̄ | pij = 1⇔ (uij(xi, xj) > 0 ∧ uji(xj, xi) > 0)}.
It is the subset of strategy profiles without unreciprocated proposals in which two players

are linked if and only if they both benefit from the link. Lemma 3 states that all pairwise

Nash equilibria must be in this set.

Lemma 3. SPNE ⊆ S̄+.

This allows us to consider S̄+ as a pool of candidate equilibium profiles. Note, however,

that SNE ⊆ S̄+ does not have to hold. The next lemma establishes necessary and sufficient

conditions for s ∈ S̄+ to be a Nash equilibrium. In what follows we denote by s̃i = (x̃i, p̃i) a

particular unilateral deviation of player i from her strategy in the strategy profile s = (x, p):

x̃i 6= xi and p̃ij =

0 if uij(x̃i, xj) < 0

pij otherwise
. In this deviation, a player i changes her action

and withdraws all her proposals for those links that are no longer profitable for i.

Lemma 4. Let s ∈ S̄+. Then s ∈ SNE if and only if ∀i ∈ N ui(s̃i, s−i) ≤ ui(s).

Hence, for every player i, s̃i is the most successful of all possible unilateral deviations. If

s ∈ S̄+ is proof against such deviations, it is also proof against all other unilateral deviations.

Building upon this result, the next lemma provides necessary and sufficient conditions

for s ∈ S̄+ to be a pairwise Nash equilibrium. These conditions include proofness against

three additional, pairwise deviations.

libria are possible, but none of them is robust to small changes in parameter values.
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Lemma 5. s ∈ SPNE if and only if s ∈ S̄+ and the following conditions hold for all i ∈ N
and all j ∈ N s.t. pijpji = 0:

(1) ui(s̃i, s−i) ≤ ui(s),

(2) ui((x
′
i, p
′
i), (x

′
j, p
′
j), s−i−j) > ui(s)⇒ uj((x

′
i, p
′
i), (x

′
j, p
′
j), s−i−j) < uj(s),

where either x′i 6= xi or x′j 6= xj, p
′
ijp
′
ji = 1 and p′kl = pkl ∀k ∈ {i, j} ∀l /∈ {i, j}.

Hence, we derived necessary and sufficient conditions for a strategy profile to be a PNE:

a strategy profile must contain only reciprocated proposals, must induce a link if and only

if both linked players benefit from it, and must be proof against four specific (one unilateral

and three pairwise) strategy deviations. Note that since not only original strategies si but

also all relevant strategy deviations do not contain i’s unreciprocated proposals, we can use

the utility function (1).

Finally, let us further simplify necessary and sufficient conditions for PNE for a specific

(actually, very broad) range of parameter values. Denote by Ch
δ,λ the subset of Cδ,λ that

corresponds to high values of the linking cost (see Figure 2 in the following subsection):

Ch
δ,λ = {c ∈ Cδ,λ | max{δ, 1− δ+λ} < c < δ+λ ∨ max{1− δ, δ+λ} < c < 1− δ+λ}. The

final lemma characterizes pairwise Nash equilibria when the linking cost is not high.

Lemma 6. Let c /∈ Ch
δ,λ. Then s ∈ SPNE if and only if s ∈ S̄+ and the following conditions

hold for all i ∈ N and for all j ∈ N s.t. pijpji = 0:

(1) ui(s̃i, s−i) ≤ ui(s),

(2) ui((x̂i, p̂i), (xj, p̂j), s−i−j) < ui(s),

where x̂i 6= xi, p̂ij p̂ji = 1 and p̂kl = pkl ∀k ∈ {i, j} ∀l /∈ {i, j}.10

This characterization differs from the one in Lemma 5 by requiring to consider yet fewer

pairwise deviations (two for each unlinked pair of players). In these deviations only one of the

players changes her action, and this same player must bear utility loss from such a deviation.

Lemmas 5 and 6 will be used extensively to prove the results of the next subsection.

3.2 Classes of equilibria

The following figure depicts ten regions of parameter values – a game (δ, λ) and a linking cost

c – that correspond to qualitatively different equilibrium sets. In each region only specific

classes of equilibria are possible.

10It can be shown that if c ∈ Chδ,λ then these conditions are necessary but not sufficient for s ∈ SPNE .
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Figure 2: Regions of the linking cost values that correspond to different equilibrium sets. Each

horizontal section defines a game (δ, λ).

With respect to the equilibrium action profile, we differentiate between PNE with a homo-

geneous action profile (xi = xj ∀i, j ∈ N), PNE with a so-called fully satisfying action profile

(xi = θi ∀i ∈ N) and the remaining ones – PNE with a heterogeneous not fully satisfying

action profile.

With respect to the equilibrium network structure, all PNE appear to fall into one of the

following six classes: such that induce an empty network (Gij = 0 ∀i, j ∈ N), a complete

network (Gij = 1 ∀i, j ∈ N), a network consisting of two disconnected disjoint cliques (more

specifically, Gij = 1 ⇔ xi = xj), a network consisting of two connected disjoint cliques

(Gij = 1⇔ xi = xj ∨ θi = xi 6= xj = θj), a complete bipartite network (Gij = 1⇔ xi 6= xj)

or a union of a complete bipartite network and a clique (Gij = 1⇔ xi 6= xj ∨ θi = xi = xj =

θj).
11

We provide existence and uniqueness results for different classes of equilibria in different

parameter regions. Table 1 summarizes the results. Its first column corresponds to the

numbered regions in Figure 2, the next two columns provide qualitative descriptions of the

respective regions, the fourth column describes PNE and the last one illustrates them with

11Note that the equilibrium networks described in brackets are more specific and relate equilibrium net-

work structures to corresponding equilibrium action profiles.
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an example. To facilitate comparisons between the regions, the same simple example is

analyzed: six players, four of whom (referred to as ”the majority”) prefer action 1 and two

(”the minority”) prefer action 0. Equilibria in brackets exist under additional conditions.

The depicted sets of equilibria are not intended to be exhaustive for this particular example,

but rather illustrative of possible classes of equilibria in each region.

Turning to equilibrium analysis, the first thing to note is that if the linking cost is very

high (region 5), then SPNE consists of all strategy profiles in S̄ that induce an empty network.

Proposition 1 [Empty network]

Let c > max{δ + λ, 1− δ + λ}. A strategy profile s ∈ SPNE if and only if pij = 0 ∀i, j ∈ N .

Such a high linking cost makes any link unprofitable. At the same time, an isolated

player (not linked to anyone) gets zero utility regardless of the action she chooses, that is

why any action profile is possible in equilibrium.

For all other parameter regions, let us first formulate necessary conditions for pairwise

Nash equilibria. These conditions will differ for games of strategic complements (δ ≥ 1
2
) and

for games of strategic substitutes (δ ≤ 1
2
).

Proposition 2 [Necessary conditions for a PNE]

Let c < max{δ + λ, 1− δ + λ} and s ∈ SPNE.

(i) If δ ≥ 1
2
, then for any i, j ∈ N xi = xj implies pijpji = 1.

(ii) If δ ≤ 1
2
, then for any i, j ∈ N xi 6= xj implies pijpji = 1.

Hence, if interactional incentives are such that players get higher utility from the links

with matching actions than from the links with mismatching actions, then all players playing

the same action must be linked in equilibium. If interactional incentives are the contrary,

then all pairs of players playing different actions must be linked. This result, although

intuitive, is not trivial, as the linking cost might still outweigh the benefits for many pairs

of players (see Figure 2). On the other hand, it is a very important result, as together with

Proposition 1 and the symmetry of the setting (ex ante, players differ only with respect to

their action preferences) it already pins down six classes of equilibrium network structures

described above as an exhaustive list.

Contrary to the region 5 with its whole variety of equilibrium action profiles, the regions

4, 9 and 10 demonstrate another extreme: a unique equilibrium action profile here is the

fully satisfying one – such that coincides with the preference profile. Moreover, in each of

these regions an induced equilibrium network is also unique, which results into a unique

PNE.
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Linking
cost

Game PNE Example: θ = (1, 1, 1, 1, 0, 0)

1 very low

coordination
games

homogeneous action profile, complete network

if sufficient minority: fully satisfying action
profile, complete network

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

2 low

homogeneous action profile, complete network

if sufficient minority: fully satisfying action
profile, complete network

if many players: heterogeneous not fully sat-
isfying action profile, two disconnected action
cliques; if many players and small minority:
heterogeneous not fully satisfying action pro-
file, two partially connected action cliques

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

3 medium

homogeneous action profile, complete network

fully satisfying action profile, two discon-
nected action cliques

if many players: heterogeneous not fully sat-
isfying action profile, two disconnected action
cliques

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

4 high
games of
strategic
complements

fully satisfying action profile, two discon-
nected action cliques 1

1

1

1

0

0

5
very
high

all any action profile, empty network 1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

6 very low

anti-
coordination
games

if sufficient minority: fully satisfying action
profile, complete network

if small minority or few players: heteroge-
neous not fully satisfying action profile, com-
plete network

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

7 low

if sufficient minority: fully satisfying action
profile, complete network; heterogeneous not
fully satisfying action profile, complete bipar-
tite network (partition by action)

if many players and sufficient but not too large
minority: heterogeneous not fully satisfying
action profile, union of a complete bipartite
network and a clique

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

8 medium

fully satisfying action profile, complete bipar-
tite network (partition by action)

if many players: heterogeneous not fully sat-
isfying action profile, complete bipartite net-
work (partition by action)

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

0

9 high
games of
strategic
substitutes

fully satisfying action profile, complete bipar-
tite network (partition by action) 1

1

1

1

0

0

10
very low

dominant
action games

fully satisfying action profile, complete net-
work 1

1

1

1

0

0
low
medium

Table 1: Pairwise Nash equilibria. Coloured numbers next to network nodes denote players’ action
preferences, colours of the nodes denote their actions (green – action 1, yellow – action 0).



Proposition 3 [Unique PNE: Fully satisfying action profile]

(i) Let max{δ, 1 − δ + λ} < c < δ + λ. A strategy profile s ∈ SPNE if and only if

xi = θi ∀i ∈ N and pij = 1⇔ θi = θj.

(ii) Let max{1 − δ, δ + λ} < c < 1 − δ + λ. A strategy profile s ∈ SPNE if and only if

xi = θi ∀i ∈ N and pij = 1⇔ θi 6= θj.

(iii) Let λ > |2δ− 1| and c < min{δ+λ, 1− δ+λ}. A strategy profile s ∈ SPNE if and only

if xi = θi ∀i ∈ N and pij = 1 ∀i, j ∈ N .

The intuition is the following. In the regions 4 and 9 (parts (i) and (ii) of the proposition

respectively) the linking cost is not too high to exclude any possibility of a profitable link,

but sufficiently high to prevent all except the most desirable types of links. Therefore, all

players follow their action preferences and form links according to the interactional incentives

(action matching in the region 4, or action mismatching in the region 9). In the region 10

(part (iii) of the proposition) the linking cost is lower, which permits links between players

playing the same action as well as between those playing different actions. However, this

region is characterized by strong action preferences (λ > |2δ − 1|), which leads to a unique,

fully satisfying equilibrium action profile.

In fact, these are the only regions in which a PNE is always unique. In particular, in the

regions 1, 2 and 3 (coordination games with at most medium linking cost) there always exist

at least two PNE – complete networks with a homogeneous action profile.

Proposition 4 [Homogeneous action profile]

Let δ > 1+λ
2

and c < δ. If xi = xj ∀i, j ∈ N and pij = 1 ∀i, j ∈ N , then s ∈ SPNE.

In these regions links between players who play the same action are profitable regardless

of whether these are their preferred actions or not. At the same time, coordination incentives

secure homogeneous action profiles against unilateral action deviations.

The next three propositions concern other types of equilibria that can exist in these

regions and provide sufficient conditions for their existence.

Proposition 5 [Fully satisfying action profile in coordination games]

Let δ > 1+λ
2

. If either of the conditions

(i) c < 1− δ and nπ ≤ 2δ−1+λ
2(2δ−1) (n− 1) ∀π ∈ {0, 1},

(ii) 1− δ < c < 1− δ + λ and nπ ≤ δ+λ−c
3δ−1−c(n− 1) ∀π ∈ {0, 1}, or
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(iii) 1− δ + λ < c < δ

holds, then there exists s ∈ SPNE with xi = θi ∀i ∈ N .

It can be shown (see the proof in the appendix) that for low and very low values of the

linking cost a fully satisfying PNE inducing a complete network might exist (under additional

conditions on the sizes of preferences groups), and for a medium linking cost there exists a

fully satisfying PNE inducing two disconnected cliques corresponding to different actions.

Table 1 illustrates these possibilities (see the third equilibrium for each respective region).

In the regions 1 and 2, a sufficient (and, in fact, also necessary) condition for existence

of a fully satisfying equilibium is relative balancedness of the players’ preference profile,

that is, the preference majority must not be too large.12 Note that as δ approaches 1+λ
2

,

the conditions on relative sizes of preference groups become less stringent (the respective

ratios tend to 1), due to the growing weight of idiosyncratic utility component relative to its

interactional component.

The following proposition concerns another equilibrium network structure – a network

consisting of two disjoint disconnected cliques.

Proposition 6 [Two disconnected action cliques]

Let δ > 1+λ
2

. If either of the conditions

(i) 1− δ < c < 1− δ + λ and n ≥ 2
⌈
3δ−1−c
2δ−1−λ + 1

⌉
, or

(ii) 1− δ + λ < c < δ

holds, then there exists s ∈ SPNE s.t. ∀i, j ∈ N pij = 1 ⇔ xi = xj and ∃i, j ∈ N with

pij = 0.

Due to coordination incentives of the game, these two disjoint cliques correspond to two

different actions (see Proposition 2). Note that the two cliques are necessarily distinct, that

is, not just a complete network with a homogeneous action profile as in Proposition 4. In

the region 2 (part (i) of the proposition), an additional condition for existence of such a

PNE is a sufficiently large number of players, as then the sizes of both action cliques can be

sufficiently large to guarantee that pairwise deviations would be unprofitable.

Note that although this proposition concerns the regions 2 and 3, the same class of

equilibiria exists in the region 4 (Proposition 3, part (i)), where it is a unique equilibrium.

12Note that 2δ−1+λ
2(2δ−1) ∈ [ 12 , 1) (attaining the boundary value of 1

2 when λ = 0) and δ+λ−c
3δ−1−c ∈ ( 1

2 , 1). In

particular, when λ = 0, there is no equilibrium with a fully satisfying action profile in the region 1 (and the

region 2 is empty).
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Finally, Proposition 7 provides sufficient conditions for existence of the last possible class

of equilibria for coordination games – a network consisting of two disjoint partially connected

cliques.

Proposition 7 [Two partially connected action cliques]

Let δ > 1+λ
2

and 1− δ < c < 1− δ + λ. If nπ < min{ δ+λ−c
3δ−1−c (n− 1)− 3, n− 4− δ+λ−c

2δ−1−λ} for

some π ∈ {0, 1}, then there exists s ∈ SPNE s.t. ∀i, j ∈ N xi = xj ⇒ pij = 1, ∃i, j ∈ N s.t.

xi 6= xj and pij = 1, and ∃k, l ∈ N s.t. xk 6= xl and pkl = 0.

Again, the two cliques correspond to two different actions, but now they are connected by

at least one link. However, they are not fully connected, that is, the network is not complete.

Such an equilibrium network exists in the region 2 if the number of players is sufficiently

large (so that min{ δ+λ−c
3δ−1−c (n − 1) − 3, n − 4 − δ+λ−c

2δ−1−λ} > 2, as nπ ≥ 2 ∀π ∈ {0, 1}) and

the preference minority is sufficiently small. This condition is sufficient but not necessary,

however: in the example in Table 1 for parameter values λ = 0.1, δ = 0.7 and c = 0.35

this condition is not satisfied, even though such an equilibrium exists (the last depicted

equilibrium for the region 2, where thick lines indicate the links between two action cliques).

Let us now turn to the remaining regions 6, 7 and 8 – anti-coordination games with at

most medium linking cost. The following three propositions describe classes of equilibria

possible there and provide sufficient conditions for their existence.

Proposition 8 [Fully satisfying action profile in anti-coordination games]

Let δ < 1−λ
2

. If either of the conditions

(i) c < δ and nπ ≥ 1−2δ−λ
2(1−2δ) (n− 1) ∀π ∈ {0, 1},

(ii) δ < c < δ + λ and nπ ≥ 1−2δ−λ
2−3δ−c (n− 1) ∀π ∈ {0, 1}, or

(iii) δ + λ < c < 1− δ,

holds, then there exists s ∈ SPNE with xi = θi ∀i ∈ N .

As the regions 6, 7 and 8 are symmetric to the regions 1, 2 and 3, respectively, fully

satisfying equilibria there exist under similar conditions. For low or very low linking cost –

the regions 6 and 7 – this condition is relative balancedness of the players’ preference profile

(the preference minority must not be too small).13 If a fully satisfying PNE exists there,

13Note that 1−2δ−λ
2(1−2δ) ∈ (0, 12 ] (attaining the boundary value of 1

2 when λ = 0) and 1−2δ−λ
2−3δ−c ∈ (0, 12 ). Here,

even when λ = 0, the existence of a fully satisfying equilibrium for a very low linking cost is not completely

excluded (unlike coordination games – see footnote 12), since anti-coordination incentives favour action

heterogeneity.
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it induces a complete network (and hence, is unique). In the region 8, corresponding to

the medium linking cost, there always exists a unique fully satisfying PNE, which induces a

complete bipartite network with the bipartition {N0, N1} (see Table 1).

The next proposition concerns more general complete bipartite networks as possible equi-

librium network structures in anti-coordination games.

Proposition 9 [Complete bipartite network]

Let δ < 1−λ
2

. If either of the conditions

(i) δ < c < δ + λ and nπ > 1−δ+λ−c
1−2δ−λ ∀π ∈ {0, 1}, or

(ii) δ + λ < c < 1− δ

holds, then there exists s ∈ SPNE s.t. ∀i, j ∈ N pij = 1⇔ xi 6= xj.

Note that in these bipartite networks players are partitioned according to their actions.

As we already know from Proposition 2, the links between players choosing different actions

constitute the minimal set of links for all games with strategic substitutes. This proposition

shows that for some of these games – namely, for the regions 7 and 8 (for the region 9 see

part (ii) of Proposition 3) – this set of links can also be maximal.

Finally, the last proposition demonstrates the last possible class of equilibium network

structures, that under some additional conditions on the sizes of preference groups is possible

for games from the region 7.

Proposition 10 [Union of a complete bipartite network and a clique]

Let δ < 1−λ
2

and δ < c < δ + λ. If 1−δ+λ−c
1−2δ−λ < 1−2δ−λ

1−δ+λ−c n
π ≤ min{1−δ+λ−c

2−3δ−c n− 2, n− nπ − 2}
for some π ∈ {0, 1}, then there exists s ∈ SPNE s.t. ∀i, j ∈ N xi 6= xj ⇒ pij = 1, ∃i, j ∈ N
s.t. xi = xj and pij = 1, and ∃k, l ∈ N s.t. xk = xl and pkl = 0.

Compared to a complete bipartite network from Proposition 9, this equilibrium network

has additional links between some players from the same bipartition class (i.e. those playing

the same action), but it is still less connected than a complete network. In particular, only

players choosing their preferred actions can afford to have additional links (in Table 1, thick

lines in the last two equilibium networks for the region 7 indicate these additional links).

The symmetry of the setting implies that all such players will be linked to each other, which

derives the union of the complete bipartite network with the clique of all players choosing

their preferred actions.

A sufficient number of players and a sufficient but not too large preference minority

guarantees existence of this type of an equilibrium. This condition is not a necessary one,
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however: in the example in Table 1 for parameter values λ = 0.1, δ = 0.3 and c = 0.35, the

last two equilibria for the region 7 exist, even though the condition of Proposition 10 is not

satisfied.

4 Discussion and conclusions

4.1. The role of players’ heterogeneity in action preferences

There are classes of pairwise Nash equilibria that exist only for λ > 0. These are, in

particular, the two classes with heterogeneous but not fully satisfying action profiles and

incomplete asymmetric network structures (either two partially connected cliques or a union

of a complete bipartite network and a clique). If λ = 0 then the regions 2 and 7, which might

give rise to such equilibria, are empty. Hence, the most irregular equilibrium structures that

can be achieved are due to players’ heterogeneous action preferences.

Another class of equilibria that, generically, exists only for λ > 0 is a fully satisfying

action profile on a complete network. It might exist for up to medium values of the linking

cost (in the regions 1, 2, 6, 7 or 10) and requires either a sufficiently balanced preference

profile or relatively strong action preferences. If λ = 0, the equilibrium network there will

still be complete, but the action profile will be either homogeneous (for coordination games)

or heterogeneous but, generically, not fully satisfying (for anti-coordination games).14

4.2. Alternative equilibrium concepts

Obviously, pairwise deviations defined in this paper do not cover the whole range of devi-

ations that a pair of players can implement. One natural refinement of the pairwise Nash

equilibrium concept would be to consider equilibria proof against all possible bilateral devi-

ations.15

Definition 2. A strategy profile s is a bilateral equilibrium (BE) of the above game if it is a

Nash equilibrium and for any pair of players i, j ∈ N and any strategy pair s′i ∈ Si, s′j ∈ Sj,

ui(s
′
i, s
′
j, s−i−j) > ui(s)⇒ uj(s

′
i, s
′
j, s−i−j) < uj(s).

Since SBE ⊆ SPNE, no new equilibria can be derived if we consider this alternative

equilibrium concept. What would be interesting is to verify if all the classes of PNE that

14Equilibria in the case of anti-coordination games with homogeneous players are characterized in

Bramoullé (2007): when the network is complete, the proportion of agents playing a strategy approximately

equals the mixed equilibrium probability of this strategy.
15The following definition is adopted from Goyal and Vega-Redondo (2007), with the only difference that

in this paper an action is also a part of a strategy.
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we described can survive these more stringent equilibrium requirements. Although a com-

plete characterization of bilateral equilibria lies outside the scope of this paper, let us make

one important observation: irregular equilibrium structures are still possible under the BE

equilibrium concept (the following figure provides an illustration).

1

1

1 1

1

0

00

Figure 3: A bilateral equilibrium of the coordination game with δ = 0.7, λ = 0.1 and c = 0.35.

Coloured numbers denote players’ action preferences, colours of the nodes – players’ actions in this

equilibrium (green corresponds to action 1, yellow – to action 0).

One could further refine the bilateral equilibrium set by considering deviations by coali-

tions consisting of more than two players. Dutta and Mutuswami (1997) and Jackson and

van den Nouweland (2005) introduced the notion of strong stability of a network that refers

to a situation where no coalition of players can rearrange their links to achieve a strong (or

even weak – in the latter paper) improvement. These notions can be adapted to our frame-

work with a simultaneous action choice. It would be interesting to verify if the conclusion

of Jackson and van den Nouweland (2005) that strongly stable networks coincide with the

set of efficient networks holds also in our framework.

4.3. Efficiency

A natural next step in our research is the efficiency analysis of possible outcomes. Figure 4

depicts the regions of parameter values corresponding to different sets of efficient strategy

profiles. These regions partition the regions of different equilibrium sets in Figure 2.
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Figure 4: Regions of the linking cost values that correspond to different efficient networks. Each

horizontal section defines a game (δ, λ).

One way to derive efficient strategy profiles is to maximize aggregate welfare over all cre-

ated links (which is equivalent to maximizing aggregate welfare over all players). Altogether,

six types of links are possible: three types that connect players from the same preference

group and three types that connect players with different action preferences (see Table 2).

Aggregate welfare is then the sum of corresponding link payoffs over all links.

Link type Link payoff Number of such links

1 1 1

0 0
2(δ + λ− c) m0(m0−1)

2
+ m1(m1−1)

2

2 1 1

0 0
2(1− δ − c) + λ m0(n0 −m0) +m1(n1 −m1)

3 1 1

0 0
2(δ − c) (n0−m0)(n0−m0−1)

2
+ (n1−m1)(n1−m1−1)

2

4 0 1 2(1− δ + λ− c) m0m1

5 0 1

0 1
2(δ − c) + λ m0(n1 −m1) +m1(n0 −m0)

6 0 1 2(1− δ − c) (n0 −m0)(n1 −m1)

Table 2: Six possible types of links, their contributions to aggregate welfare and respective quantities.

Here mπ = |{i ∈ Nπ | xi = θi}| for π ∈ {0, 1}.
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Each region in Figure 4 defines which types of links contribute to aggregate welfare

(generate positive payoffs) and hence can be present in efficient profiles in this region. For

instance, in the region 1 all links are profitable, which implies that efficient networks here are

necessarily complete. Summing up link payoffs over all links and subtracting the constant

part of aggregate welfare derives the following welfare maximization problem for this region:

max
m0∈{0,...,n0}
m1∈{0,...,n1}

2(2δ − 1)(m0 −m1)2 + 2(2δ − 1)(n1 − n0)(m0 −m1) + λ(n− 1)(m0 +m1),

which is equivalent to

max
x,y∈Z+

x+y≤2n0

x−y≤2n1

2(2δ − 1)y2 + 2(2δ − 1)(n1 − n0)y + λ(n− 1)x.

For other regions, the maximization problems are derived in a similar way. After efficient

strategy profiles are characterized, we can compare them with equilibrium profiles and find

when achieving efficiency is guaranteed, when it is possible and when not. We leave these

questions for future research.

A Appendix

Proof of Lemma 1

Proof. Take s ∈ SNE and suppose that s /∈ S̄. The latter implies that ∃i, j ∈ N s.t. pij = 1

and pji = 0. Consider s′i = (x′i, p
′
i) with x′i = xi, p

′
ij = 0 and p′ik = pik ∀k 6= j. Then

ui(s
′
i, s−i) = ui(s) + ε > ui(s), i.e. i’s payoff is strictly higher with such a strategy deviation,

and hence s /∈ SNE. By contradiction we proved that s ∈ SNE implies s ∈ S̄.

Proof of Lemma 2

Proof. Necessity follows trivially, so let us prove sufficiency. Let s = (x, p) ∈ S be such that

ui(s
′
i, s−i) ≤ ui(s) ∀i ∈ N ∀s′i ∈ S̄i(s−i). If pij = 1 ∀i, j ∈ N , then S̄i(s−i) = Si ∀i ∈ N ,

and hence the proof is completed. Suppose ∃i, j ∈ N s.t. pji = 0, that is, Si \ S̄i(s−i) 6= ∅.
Take s′′i = (x′′i , p

′′
i ) ∈ Si \ S̄i(s−i) and let us prove that ui(s

′′
i , s−i) ≤ ui(s). Denote J = {j ∈

N \{i} : p′′ij = 1 and pji = 0} and consider now s′i = (x′i, p
′
i) such that x′i = x′′i , p

′
ij = 0 ∀j ∈ J

and p′ij = p′′ij ∀j /∈ J ∪ {i}. Then ui(s
′′
i , s−i) < ui(s

′
i, s−i), which together with s′i ∈ S̄(s−i)

implies ui(s
′′
i , s−i) < ui(s). Hence, s is a Nash equilibrium.
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Proof of Lemma 3

Proof. Let us first note that Assumption 1 implies that uij(xi, xj) 6= 0 ∀i, j ∈ N .

Necessity. Let s ∈ SPNE and pick i, j ∈ N s.t. pij = 1. According to Lemma 1, pji =

pij = 1. Without loss of generality, suppose uij(xi, xj) < 0. Consider now s′i = (x′i, p
′
i) ∈ Si

s.t. x′i = xi, p
′
ij = 0 and p′ik = pik ∀k 6= j. Then ui(s

′
i, s−i) > ui(s), and hence s /∈ SPNE.

Sufficiency. Let s ∈ SPNE and i, j ∈ N be s.t. both uij(xi, xj) > 0 and uji(xj, xi) > 0.

Suppose, pij = 0. According to Lemma 1, pji = pij = 0. Consider a pairwise deviation

s′i, s
′
j s.t. x′i = xi, x

′
j = xj, p

′
ij = p′ji = 1 and p′lk = plk ∀l ∈ {i, j} ∀k /∈ {i, j}. Then

ui(s
′
i, s
′
j, s−i−j) > ui(s) and uj(s

′
i, s
′
j, s−i−j) > uj(s), and hence s /∈ SPNE.

Proof of Lemma 4

Proof. Necessity follows trivially, so let us prove sufficiency. Consider s ∈ S̄+ and let

ui(s̃i, s−i) ≤ ui(s) ∀i ∈ N . We need to prove that ui(s
′
i, s−i) ≤ ui(s) ∀s′i ∈ S̄i(s−i) ∀i ∈ N (see

Lemma 2). Fix any i ∈ N . If s′i = (x′i, p
′
i) is such that x′i = xi and p′i 6= pi, then s ∈ S̄+ implies

ui(s
′
i, s−i) < ui(s). If s′i is such that x′i 6= xi, then x′i = x̃i, and hence ui(s

′
i, s−i) ≤ ui(s̃i, s−i) =∑

j: uij(x̃i,xj)>0

pijpjiuij(x̃i, xj) ≤ ui(s). Therefore, ui(s
′
i, s−i) ≤ ui(s) ∀s′i ∈ S̄i(s−i) ∀i ∈ N .

Proof of Lemma 5

Proof. Necessity follows from Lemma 3 and the definition of a PNE. Let us prove sufficiency.

Take s ∈ S̄+ and let conditions of the lemma hold for all i ∈ N and for all j ∈ N s.t.

pijpji = 0. According to Lemma 4, condition (1) implies that s ∈ SNE. We are left to prove

that for all i, j ∈ N s.t. pijpji = 0, s is proof against the pairwise deviation
(
(xi, p

′
i), (xj, p

′
j)
)
.

Note that since s ∈ S̄+, pijpji = 0 together with Assumption 1 implies that either

uij(xi, xj) < 0 or uji(xj, xi) < 0. Consequently, either ui((xi, p
′
i), (xj, p

′
j), s−i−j) < ui(s) or

uj((xi, p
′
i), (xj, p

′
j), s−i−j) < uj(s) respectively. Hence, s is also proof against all possible

pairwise deviations, i.e. s ∈ SPNE.

Proof of Lemma 6

Proof. Necessity. Let s ∈ SPNE. Lemma 3 implies that s ∈ S̄+. It follows from the

definition of a PNE that condition (1) holds for all i ∈ N . To prove the necessity

of condition (2), consider arbitrary i, j ∈ N with pijpji = 0. If uji(x̂i, xj) > 0, then

uj((x̂i, p̂i), (xj, p̂j), s−i−j) = uj(s)+uji(x̂i, xj) > uj(s), and condition (2) follows then from the

definition of a PNE. Let now uji(x̂i, xj) < 0 and assume that condition (2) does not hold, i.e.

ui(s) ≤ ui((x̂i, p̂i), (xj, p̂j), s−i−j) = ui((x̂i, pi), s−i) + uij(x̂i, xj) ≤ ui(s) + uij(x̂i, xj), which
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together with Assumption 1 implies uij(x̂i, xj) > 0. The rest of the proof shows that in this

case s /∈ SPNE.

Note that uji(x̂i, xj) < 0 together with uij(x̂i, xj) > 0 is only possible if xj 6= θj and

x̂i = θi. Hence, xi 6= θi, and consequently, uij(xi, xj) = uji(xi, xj) =

δ if θi = θj

1− δ if θi 6= θj
.

Since s ∈ S̄+ and pijpji = 0, it must be that uij(xi, xj) = uji(xi, xj) < 0. Noting additionally

that uji(x̂i, xj) = 1 − uji(xi, xj) < 0 derives max{δ, 1 − δ} < c. It must also be that

c < max{δ + λ, 1 − δ + λ}, since otherwise uij(x̂i, xj) > 0 is violated. Finally, taking into

account that c /∈ Ch
δ,λ, we derive max{δ, 1 − δ} < c < min{δ + λ, 1 − δ + λ}. But then

ukl(xk, xl) > 0 if and only if xk = θk, and hence S̄+ = {s ∈ S̄ | pkl = 1⇔ xk = θk ∧ xl = θl}.
Above we derived that both xi 6= θi and xj 6= θj, which implies pi = pj = 0, and thus

ui(s) = uj(s) = 0. However, a pairwise deviation (s′i, s
′
j) with x′i = θi and x′j = θj would be

Pareto improving for i and j: ui(s
′
i, s
′
j, s−i−j) = uij(x

′
i, x
′
j) > 0 = ui(s) and uj(s

′
i, s
′
j, s−i−j) =

uji(x
′
i, x
′
j) > 0 = uj(s). This contradicts that s ∈ SPNE. Thus, condition (2) is also necessary

for s ∈ SPNE.

Sufficiency. Take s ∈ S̄+ and let conditions of the lemma hold for all i ∈ N and for all

j ∈ N s.t. pijpji = 0. According to Lemma 4, condition (1) implies that s ∈ SNE. We are

left to prove that for all i, j ∈ N s.t. pijpji = 0, s is proof against two pairwise deviations:

((xi, p̂i), (xj, p̂j)) and ((x̂i, p̂i), (x̂j, p̂j)) with x̂i 6= xi and x̂j 6= xj. For the first one, see the

analogous proof of Lemma 5. Consider now the deviation ((x̂i, p̂i), (x̂j, p̂j)).

Case 1: c > max{δ + λ, 1 − δ + λ}. Then ukl(xk, xl) < 0 ∀k, l ∈ N , and hence

S̄+ = {s ∈ S̄ | pkl = 0 ∀k, l ∈ N}, which implies ui(s) = uj(s) = 0. Since then

ui((x̂i, p̂i), (x̂j, p̂j), s−i−j) < 0 = ui(s), s is proof against the deviation ((x̂i, p̂i), (x̂j, p̂j)).

Case 2: c < max{δ + λ, 1 − δ + λ} = δ + λ. Then δ ≥ 1
2
. Taking into account

that c /∈ Ch
δ,λ, it must be that c < max{δ, 1 − δ + λ}. First, let xi 6= xj. Then

1 − δ ≤ δ implies uij(x̂i, x̂j) ≤ uij(x̂i, xj), and hence, due to condition (2) of the lemma,

ui((x̂i, p̂i), (x̂j, p̂j), s−i−j) = ui((x̂i, p̂i), (xj, p̂j), s−i−j)−uij(x̂i, xj)+uij(x̂i, x̂j) < ui(s), i.e. s is

proof against this deviation. Second, let xi = xj. We show that this leads to a contradiction.

Note that it must be that c > δ, as otherwise both uij(xi, xj) > 0 and uji(xi, xj) > 0, which

together with pijpji = 0 contradicts s ∈ S̄+. Then c < max{δ, 1−δ+λ} implies c < 1−δ+λ.

Note also that either xi 6= θi or xj 6= θj (or both), as otherwise uij(xi, xj) = uji(xi, xj) =

δ+λ−c > 0. Without loss of generality, let xi 6= θi. Since s ∈ S̄+ and c > δ ≥ 1−δ, it follows

that pi = 0. But then ui((x̂i, p̂i), (xj, p̂j), s−i−j) = uij(x̂i, xj) = 1 − δ + λ − c > 0 = ui(s),

which contradicts condition (2) of the lemma.

Case 3: c < max{δ + λ, 1 − δ + λ} = 1 − δ + λ. Then δ ≤ 1
2
. Taking into account that
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c /∈ Ch
δ,λ, it must be that c < max{δ + λ, 1 − δ}. The rest of the proof is symmetric to the

previous case. First, let xi = xj. Then δ ≤ 1− δ implies uij(x̂i, x̂j) ≤ uij(x̂i, xj), and hence,

due to condition (2) of the lemma, ui((x̂i, p̂i), (x̂j, p̂j), s−i−j) = ui((x̂i, p̂i), (xj, p̂j), s−i−j) −
uij(x̂i, xj) + uij(x̂i, x̂j) < ui(s), i.e. s is proof against this deviation. Second, we show that

xi 6= xj is impossible, as it leads to a contradiction. Let xi 6= xj. Note that it must be that

c > 1− δ, as otherwise both uij(xi, xj) > 0 and uji(xi, xj) > 0. Hence, c < δ + λ. Note also

that, like in the previous case, either xi 6= θi or xj 6= θj (or both). Without loss of generality,

let xi 6= θi, and consequently, pi = 0. But then ui((x̂i, p̂i), (xj, p̂j), s−i−j) = uij(x̂i, xj) =

δ + λ− c > 0 = ui(s), which contradicts condition (2) of the lemma.

In all cases s is proof against the deviation ((x̂i, p̂i), (x̂j, p̂j)), and thus s ∈ SPNE.

Proof of Proposition 1

Proof. Let c > max{δ + λ, 1 − δ + λ}. Since λ ≥ 0, it means that uij(xi, xj) < 0 ∀xi, xj ∈
{0, 1}. Hence, S̄+ = {s ∈ S | pij = 0 ∀i, j ∈ N}. According to Lemma 3, SPNE ⊆ S̄+, which

proves necessity of pij = 0 ∀i, j ∈ N for every s ∈ SPNE. To prove its sufficiency, we can

use Lemma 5. First, observe that ∀i ∈ N ∀s ∈ S̄+ ui(s) = 0, and hence ui(s̃i, s−i) = ui(s).

Second, ∀i, j ∈ N ∀s ∈ S̄+ ui((x
′
i, p
′
i), (x

′
j, p
′
j), s−i−j) < 0 = ui(s) for all admissible x′i and x′j.

Hence, every s ∈ S̄+ is proof against all admissible deviations, which implies s ∈ SPNE.

Proof of Proposition 2

Proof. Let s ∈ SPNE and c < max{δ + λ, 1− δ + λ}. Lemma 1 implies pij = pji ∀i, j ∈ N .

(i) Let δ ≥ 1
2
, which implies c < δ + λ. Suppose ∃i, j ∈ N s.t. xi = xj but pij = pji = 0.

We show that in each of the following cases (that cover all possibilities) there exists a

profitable pairwise deviation, which contradicts s ∈ SPNE.

Case 1: c < δ. Consider a pairwise deviation (s′i, s
′
j) with x′i = xi and x′j = xj.

ui(s
′
i, s
′
j, s−i−j) = ui(s) + uij(xi, xj) > ui(s), as uij(xi, xj) ≥ δ − c > 0, and similarly,

uj(s
′
i, s
′
j, s−i−j) > uj(s).

Case 2: xi = θi and xj = θj. Again, a pairwise deviation (s′i, s
′
j) with x′i = xi and

x′j = xj is profitable for i and j: ui(s
′
i, s
′
j, s−i−j) > ui(s) and uj(s

′
i, s
′
j, s−i−j) > uj(s),

as uij(xi, xj) = uji(xi, xj) = δ + λ− c > 0.

Case 3: δ < c < 1 − δ + λ and either xi 6= θi or xj 6= θj (or both). Without loss of

generality, let xi 6= θi. Since c > max{δ, 1 − δ}, Lemma 3 implies pi = 0. Consider a

pairwise deviation (s′i, s
′
j) with x′i = θi and x′j = θj: ui(s

′
i, s
′
j, s−i−j) = uij(x

′
i, x
′
j) > 0 =

ui(s), as c < min{δ+λ, 1−δ+λ}, and similarly, uj(s
′
i, s
′
j, s−i−j) = uj(s)+uji(x

′
i, x
′
j) >
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uj(s) (note that the last equality holds both for xj = θj and for xj 6= θj, as in the

latter case pj = 0).

Case 4: c > max{δ, 1 − δ + λ} and either xi 6= θi or xj 6= θj (or both). Without

loss of generality, let xi 6= θi. As in the previous case, Lemma 3 implies pi = 0.

There are two possibilities: either θi = θj or θi 6= θj. Consider the first possibility.

Then a pairwise deviation (s′i, s
′
j) with x′i = θi and x′j = θj is profitable for i and j:

ui(s
′
i, s
′
j, s−i−j) = uij(x

′
i, x
′
j) = δ + λ − c > 0 = ui(s) and similarly, uj(s

′
i, s
′
j, s−i−j) =

uj(s) + uji(x
′
i, x
′
j) > uj(s) (note that the last equality holds both for xj = θj and for

xj 6= θj, as in the latter case pj = 0). Consider the second possibility, θi 6= θj. Take a

third player k with θk = θi. As pi = 0, a pairwise deviation (s′i, s
′
k) with x′i = θi and

x′k = θk is feasible and, moreover, profitable for i and k (see the above reasoning for i

and j).

As in each case there exists a profitable pairwise deviation, our assumption contradicts

s ∈ SPNE. Hence, it must be that ∀i, j ∈ N xi = xj implies pij = pji = 1.

(ii) Let δ ≤ 1
2
, which implies c < 1−δ+λ. Suppose ∃i, j ∈ N s.t. xi 6= xj but pij = pji = 0.

We show that in each of the following cases (that cover all possibilities) there exists a

profitable pairwise deviation, which contradicts s ∈ SPNE. The cases are symmetric

to those in part (i), and hence the rest of the proof is analogous to the proof of (i).

Case 1: c < 1− δ. A pairwise deviation (s′i, s
′
j) with x′i = xi and x′j = xj is profitable

for i and j, as uij(xi, xj) ≥ 1− δ − c > 0 and uji(xi, xj) ≥ 1− δ − c > 0.

Case 2: xi = θi and xj = θj. Again, a pairwise deviation (s′i, s
′
j) with x′i = xi and

x′j = xj is profitable for i and j, as uij(xi, xj) = uji(xi, xj) = 1− δ + λ− c > 0.

Case 3: 1 − δ < c < δ + λ and either xi 6= θi or xj 6= θj (or both). Without loss of

generality, let xi 6= θi, which implies pi = 0. A pairwise deviation (s′i, s
′
j) with x′i = θi

and x′j = θj is profitable for i and j: ui(s
′
i, s
′
j, s−i−j) = uij(x

′
i, x
′
j) > 0 = ui(s) and

uj(s
′
i, s
′
j, s−i−j) = uj(s) + uji(x

′
i, x
′
j) > uj(s) (the last equality holds both for xj = θj

and for xj 6= θj).

Case 4: c > max{δ + λ, 1 − δ} and either xi 6= θi or xj 6= θj (or both). Without loss

of generality, let xi 6= θi, which implies pi = 0. If θi 6= θj, then a pairwise deviation

(s′i, s
′
j) with x′i = θi and x′j = θj is profitable for i and j, as uij(x

′
i, x
′
j) = uji(x

′
i, x
′
j) =

1 − δ + λ − c > 0. If θi = θj, then there must be a player k with θk 6= θi, and

a pairwise deviation (s′i, s
′
k) with x′i = θi and x′k = θk is profitable for i and k, as

uik(x
′
i, x
′
k) = uki(x

′
i, x
′
k) = 1− δ + λ− c > 0.

23



In each case our assumption contradicts s ∈ SPNE. Thus, it must be that ∀i, j ∈ N
xi 6= xj implies pij = pji = 1.

Proof of Proposition 3

Proof. (i) Let max{δ, 1 − δ + λ} < c < δ + λ. Since λ ≥ 0, it means that uij(xi, xj) > 0

if and only if θi = xi = xj, otherwise uij(xi, xj) < 0. Hence, S̄+ = {s ∈ S̄ | pij = 1⇔
θi = xi = xj = θj}.

Necessity. Consider a strategy profile s ∈ SPNE, and suppose that xi 6= θi for some

i ∈ N . Note that SPNE ⊆ S̄+ (see Lemma 3). Then it must be that pij = 0 ∀j ∈ N .

Take another player j with θj = θi (such a player must exist, as nπ ≥ 2 ∀π ∈ {0, 1}).
A pairwise deviation (s′i, s

′
j) with x′i = θi and x′j = θj is Pareto improving for i and

j: ui(s
′
i, s
′
j, s−i−j) = uij(x

′
i, x
′
j) > 0 = ui(s) and uj(s

′
i, s
′
j, s−i−j) = uj(s) + uji(x

′
i, x
′
j) >

uj(s) (note that the last equality holds both for xj = θj and for xj 6= θj, as in the

latter case pj = 0). Hence, s /∈ SPNE.

Now let s ∈ SPNE and xi = θi ∀i ∈ N . Since SPNE ⊆ S̄+, it must be that pij = 1 ⇔
θi = θj, which completes this part of the proof.

Sufficiency. Consider a strategy profile with xi = θi ∀i ∈ N and pij = 1 ⇔ θi = θj.

Then s ∈ S̄+. It suffices to verify that conditions of Lemma 5 hold. First, fix a

player i. Since uij(x̃i, xj) < 0 ∀xj ∈ {0, 1}, it must be that p̃ij = 0 ∀j ∈ N , and

hence ui(s̃i, s−i) = 0 ≤ ui(s). Second, fix a pair of players i and j s.t. pijpji = 0.

Consider a pairwise deviation (s′i, s
′
j) with either x′i 6= xi or x′j 6= xj. Without loss of

generality, let x′i 6= xi. Since x′i 6= θi implies uik(x
′
i, xk) < 0 ∀xk ∈ {0, 1}, it follows that

ui(s
′
i, s
′
j, s−i−j) = ui((x

′
i, pi), s−i) + uij(x

′
i, x
′
j) ≤ ui(s) + uij(x

′
i, x
′
j) < ui(s). Hence, s is

proof against all admissible deviations, which implies s ∈ SPNE.

(ii) Let max{1−δ, δ+λ} < c < 1−δ+λ. Then uij(xi, xj) > 0 if and only if θi = xi 6= xj, and

hence, S̄+ = {s ∈ S̄ | pij = 1 ⇔ θi = xi 6= xj = θj}. The rest of the proof is identical

to that of part (i) with the only difference: the proof of necessity of xi = θi ∀i ∈ N for

s ∈ SPNE uses a pairwise deviation of i and j s.t. θj 6= θi.

(iii) Let λ > |2δ − 1| and c < min{δ + λ, 1 − δ + λ}. The first inequality is equivalent to
1−λ
2

< δ < 1+λ
2

, which implies max{δ, 1 − δ} < min{δ + λ, 1 − δ + λ}. Several cases

have to be considered separately:
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Case 1: c < min{δ, 1− δ}. Then uij(xi, xj) > 0 ∀xi, xj ∈ {0, 1}, and hence S̄+ = {s ∈
S̄ | pij = 1 ∀i, j ∈ N}.

Case 2: 1 − δ < c < δ. Then uij(xi, xj) > 0 if and only if either xi = θi or xi = xj,

and hence S̄+ = {s ∈ S̄ | pij = 1⇔ ((xi = θi ∧ xj = θj) ∨ xi = xj)}.

Case 3: δ < c < 1 − δ. Then uij(xi, xj) > 0 if and only if either xi = θi or xi 6= xj,

and hence S̄+ = {s ∈ S̄ | pij = 1⇔ ((xi = θi ∧ xj = θj) ∨ xi 6= xj)}.

Case 4: c > max{δ, 1 − δ}. Then uij(xi, xj) > 0 if and only if xi = θi, and hence

S̄+ = {s ∈ S̄ | pij = 1⇔ (xi = θi ∧ xj = θj)}.

Necessity. Consider a strategy profile s ∈ SPNE, and suppose that xi 6= θi for some

i ∈ N . Lemma 3 implies that s ∈ S̄+. First, consider cases 1, 2 and 3. Let us prove that

in each of these cases ∃j ∈ N s.t. pijpji = 1. Suppose not, that is pijpji = 0 ∀j ∈ N .

Getting a contradiction in case 1 is trivial. In cases 2 and 3 any pairwise deviation

(s′i, s
′
j) s.t. x′i = θi and x′j = θj is Pareto improving for i and j: ui(s

′
i, s
′
j, s−i−j) =

uij(x
′
i, x
′
j) > 0 = ui(s) and uj(s

′
i, s
′
j, s−i−j) ≥ uj(s) + uji(x

′
i, x
′
j) > uj(s). Note that the

penultimate inequality holds as equality for xj = θj, and if xj 6= θj then for all k ∈ N
s.t. pjkpkj = 1 (if they exist) it holds that either ujk(xj, xk) = δ − c < 1− δ + λ− c =

ujk(x
′
j, xk) (case 2) or ujk(xj, xk) = 1 − δ − c < δ + λ − c = ujk(x

′
j, xk) (case 3), and

hence uj(s) =
∑
{k∈N : pjkpkj=1} ujk(xj, xk) ≤ uj((x

′
j, pj), s−j) (with equality if @k ∈ N

s.t. pjkpkj = 1). Thus, we have proved that ∃j ∈ N s.t. pijpji = 1.

Now consider the unilateral deviation s̃i. Since x̃i = θi, uij(x̃i, xj) > 0 ∀j ∈ N , and

hence p̃ij = pij. Note also that for all j ∈ N s.t. pijpji = 1 (above we have shown that

at least one such j exists) uij(x̃i, xj) ≥ min{δ + λ− c, 1− δ + λ− c} > max{δ − c, 1−
δ − c} ≥ uij(xi, xj). Then ui(s̃i, s−i) = ui((x̃i, pi), s−i) =

∑
{j∈N : pijpji=1} uij(x̃i, xj) >∑

{j∈N : pijpji=1} uij(xi, xj) = ui(s), i.e. s̃i is a payoff-improving deviation. Hence, s /∈
SPNE. By contradiction, we have proved that s ∈ SPNE implies xi = θi ∀i ∈ N in

cases 1, 2 and 3.

Consider case 4. Since s ∈ S̄+ and xi 6= θi, it must be that pij = 0 ∀j ∈ N . But then

a pairwise deviation (s′i, s
′
j) s.t. x′i = θi and x′j = θj is Pareto improving for i and j:

ui(s
′
i, s
′
j, s−i−j) = uij(x

′
i, x
′
j) > 0 = ui(s) and uj(s

′
i, s
′
j, s−i−j) = uj(s) + uji(x

′
i, x
′
j) >

uj(s). Note that the last equality holds both for xj = θj and for xj 6= θj, as in the

latter case uj(s) = 0. Hence, we have proved that s ∈ SPNE must have xi = θi ∀i ∈ N
also in case 4.

Now let s ∈ SPNE and xi = θi ∀i ∈ N . Since s ∈ S̄+, it must be that pij = 1 ∀i, j ∈ N
(in each of the four cases), which completes this part of the proof.
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Sufficiency. Consider a strategy profile with xi = θi ∀i ∈ N and pij = 1 ∀i, j ∈ N .

Then s ∈ S̄+ (in each of the four cases). As there are no feasible pairwise deviations, it

suffices to verify that the first condition of Lemma 5 holds. Fix a player i. Note that for

all j ∈ N it holds that uij(xi, xj) ≥ min{δ+λ−c, 1−δ+λ−c} > max{δ−c, 1−δ−c} ≥
uij(x̃i, xj). Then ui(s̃i, s−i) =

∑
{j∈N : p̃ijpji=1} uij(x̃i, xj) =

∑
j∈N max{uij(x̃i, xj), 0} <∑

j∈N uij(xi, xj) = ui(s), and hence, according to Lemma 5, s ∈ SPNE.

Proof of Proposition 4

Proof. Let δ > 1+λ
2

and c < δ and consider a strategy profile with xi = xj ∀i, j ∈ N and

pij = 1 ∀i, j ∈ N . For all i, j ∈ N either uij(xi, xj) = δ− c > 0 or uij(xi, xj) = δ+λ− c > 0,

hence s ∈ S̄+. We can now apply Lemma 5.

First, take a player with xi = θi. Then ui(s) = (δ+λ−c)(n−1), while with the unilateral

deviation s̃i she gets ui((x̃i, p̃i), s−i) =
∑
{j∈N : j 6=i}max{1− δ − c, 0} ≤ (1− δ − c)(n− 1) <

(δ + λ − c)(n − 1) = ui(s) (the last inequality follows from δ > 1+λ
2

, which is equivalent to

1− δ + λ < δ).

Now, take a player with xi 6= θi. Then ui(s) = (δ − c)(n − 1), while with the unilateral

deviation s̃i she gets ui((x̃i, p̃i), s−i) =
∑
{j∈N : j 6=i}max{1−δ+λ−c, 0} ≤ (1−δ+λ−c)(n−1) <

(δ − c)(n− 1) = ui(s).

In either case, such a unilateral deviation is unprofitable for i. And since there are no

feasible pairwise deviations, Lemma 5 implies that s ∈ SPNE.

Proof of Proposition 5

Proof. Note that if any of the conditions (i), (ii) or (iii) holds, then c /∈ Ch
δ,λ, and hence

Lemma 6 is applicable here.

(i) Let δ > 1+λ
2

, c < 1 − δ and nπ ≤ 2δ−1+λ
2(2δ−1) (n − 1) ∀π ∈ {0, 1}. We will prove that the

strategy profile with xi = θi ∀i ∈ N and pij = 1 ∀i, j ∈ N is a PNE.

Note that uij(xi, xj) > 0 ∀xi, xj ∈ {0, 1}, and hence S̄+ = {s ∈ S̄ | pij = 1 ∀i, j ∈ N}.
Obviously, s ∈ S̄+. There are no possible pairwise deviations from s, hence it suffices

to show that ui(s̃i, s−i) ≤ ui(s) ∀i ∈ N (see Lemma 6). Without loss of generality,

take a player with θi = 0. Then ui(s) = (δ + λ − c)(n0 − 1) + (1 − δ + λ − c)n1,

and ui((x̃i, p̃i), s−i) = ui((x̃i, pi), s−i) = (1− δ − c)(n0 − 1) + (δ − c)n1. Consequently,

ui(s̃i, s−i) ≤ ui(s) if and only if (1− δ)(n0− 1) + δn1 ≤ (δ+λ)(n0− 1) + (1− δ+λ)n1.

Rearranging terms and substituting n0 for n−n1, we can get an equivalent inequality:

n1 ≤ 2δ−1+λ
2(2δ−1) (n − 1). Similarly, for a player with θi = 1, ui(s̃i, s−i) ≤ ui(s) if and only
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if n0 ≤ 2δ−1+λ
2(2δ−1) (n − 1). In either case, such a unilateral deviation is unprofitable for i,

and hence s ∈ SPNE.

(ii) Let δ > 1+λ
2

, 1− δ < c < 1− δ + λ and nπ ≤ δ+λ−c
3δ−1−c(n− 1) ∀π ∈ {0, 1}. We will prove

that the strategy profile with xi = θi ∀i ∈ N and pij = 1 ∀i, j ∈ N is a PNE.

Note that uij(xi, xj) > 0 if and only if either xi = θi or xi = xj, and hence S̄+ = {s ∈
S̄ | pij = 1 ⇔ ((xi = θi ∧ xj = θj) ∨ xi = xj)}. Then s ∈ S̄+. The rest of the proof

is similar to the proof of part (i): it suffices to show that ui(s̃i, s−i) ≤ ui(s) ∀i ∈ N .

Take a player with θi = 0. Then ui(s) = (δ + λ− c)(n0 − 1) + (1− δ + λ− c)n1, and

ui((x̃i, p̃i), s−i) =
∑
{j∈N : xj=x̃i} uij(x̃i, xj) = (δ − c)n1. Hence, ui(s̃i, s−i) ≤ ui(s) if and

only if δn1 ≤ (δ + λ− c)(n0 − 1) + (1− δ + λ)n1, or equivalently, n1 ≤ δ+λ−c
3δ−1−c(n− 1).

Similarly, for a player with θi = 1, ui(s̃i, s−i) ≤ ui(s) if and only if n0 ≤ δ+λ−c
3δ−1−c(n− 1).

In either case, such a unilateral deviation is unprofitable for i, and hence s ∈ SPNE.

(iii) Let δ > 1+λ
2

and 1 − δ + λ < c < δ. We will prove that the strategy profile with

xi = θi ∀i ∈ N and pij = 1⇔ θi = θj is a PNE.

Here uij(xi, xj) > 0 if and only if xi = xj, and hence S̄+ = {s ∈ S̄ | pij = 1⇔ xi = xj}.
Note that s ∈ S̄+. As in the previous two parts of the proof, we can apply Lemma 6.

First, take a player with action preference θi and consider the unilateral deviation s̃i.

Then ui(s) = (δ+λ−c)(nθi−1) ≥ 0 = ui(s̃i, s−i), which implies that s̃i is unprofitable.

Second, take two unlinked players i and j (with respective action preferences θi 6= θj)

and consider their pairwise deviation ((x̂i, p̂i), (xj, p̂j)). Since nπ ≥ 2 ∀π ∈ {0, 1},
we can derive: ui((x̂i, p̂i), (xj, p̂j), s−i−j) = (1 − δ − c)(nθi − 1) + (δ − c) < δ − c <

(δ + λ− c)(nθi − 1) = ui(s). Hence, according to Lemma 6, s ∈ SPNE.

Proof of Proposition 6

Proof. (i) Let 1−δ < c < 1−δ+λ < δ (the last inequality is equivalent to δ > 1+λ
2

). Then

uij(xi, xj) > 0 if and only if either xi = θi or xi = xj. Hence, S̄+ = {s ∈ S̄ | pij = 1⇔
((xi = θi ∧ xj = θj) ∨ xi = xj)}.

Let n ≥ 2
⌈
3δ−1−c
2δ−1−λ + 1

⌉
. Then it must be that nπ ≥

⌈
3δ−1−c
2δ−1−λ + 1

⌉
for some π ∈ {0, 1}.

Without loss of generality, let n0 ≥
⌈
3δ−1−c
2δ−1−λ + 1

⌉
and consider such a strategy profile s

that |{i ∈ N | xi = 1}| = |{i ∈ N0 | xi = 1}| =
⌈
3δ−1−c
2δ−1−λ + 1

⌉
and ∀i, j ∈ N pij = 1⇔

xi = xj. Then aπ := |{i ∈ N | xi = π}| ≥
⌈
3δ−1−c
2δ−1−λ + 1

⌉
∀π ∈ {0, 1}. Note that s ∈ S̄+

(as xi = θi and xj = θj implies xi = xj = 0), and let us apply Lemma 6.
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First, fix a player i. If x̃i = θi, then uij(x̃i, xj) = 1− δ+λ− c > 0 ∀j s.t. pij = 1, hence

p̃i = pi and ui(s̃i, s−i) =
∑
{j∈N : pij=1}(1 − δ + λ − c) <

∑
{j∈N : pij=1}(δ − c) = ui(s).

If x̃i 6= θi, then uij(x̃i, xj) = 1 − δ − c < 0 ∀j s.t. pij = 1, hence p̃i = 0 and

ui(s̃i, s−i) = 0 ≤ ui(s).

Second, fix a pair of players i and j s.t. pij = 0 (i.e. xi 6= xj) and consider a pairwise

deviation ((x̂i, p̂i), (xj, p̂j)). If x̂i = θi, then ui(s) =
∑
{j∈N : pij=1}(δ − c) = (a1−θi −

1)(δ−c), while ui((x̂i, p̂i), (xj, p̂j), s−i−j) = (a1−θi−1)(1−δ+λ−c)+(δ+λ−c). Thus,

ui((x̂i, p̂i), (xj, p̂j), s−i−j) < ui(s) if and only if (a1−θi − 1)(1− δ+λ− c) + (δ+λ− c) <
(a1−θi−1)(δ− c), which is equivalent to a1−θi > 3δ−1−c

2δ−1−λ . This last inequality holds true

due to aπ ≥
⌈
3δ−1−c
2δ−1−λ + 1

⌉
∀π ∈ {0, 1}, and hence condition (2) of Lemma 6 is satisfied.

Similarly, if x̂i 6= θi, then ui(s) = (a1−θi−1)(δ+λ−c), while ui((x̂i, p̂i), (xj, p̂j), s−i−j) =

(a1−θi − 1)(1 − δ − c) + (δ − c). In this case, ui((x̂i, p̂i), (xj, p̂j), s−i−j) < ui(s) if and

only if (a1−θi − 1)(1− δ − c) + (δ − c) < (a1−θi − 1)(δ + λ− c), which is equivalent to

a1−θi > 3δ−1+λ−c
2δ−1+λ . However, this last inequality is weaker than the respective one in the

previous case (using c < δ, one can show that 3δ−1+λ−c
2δ−1+λ < 3δ−1−c

2δ−1−λ). Hence, condition

(2) of Lemma 6 is satisfied also in this case, and we can conclude that s ∈ SPNE.

(ii) Let 1 − δ + λ < c < δ. Then the strategy profile with xi = θi ∀i ∈ N and pij = 1 ⇔
xi = xj is a PNE (see the proof of part (iii) of Proposition 5).

Proof of Proposition 7

Proof. Let 1 − δ < c < 1 − δ + λ < δ (the last inequality is equivalent to δ > 1+λ
2

). Then

uij(xi, xj) > 0 if and only if either xi = θi or xi = xj, and S̄+ = {s ∈ S̄ | pij = 1 ⇔
((xi = θi ∧ xj = θj) ∨ xi = xj)}. Without loss of generality, let n0 < min{ δ+λ−c

3δ−1−c (n − 1) −
3, n− 4− δ+λ−c

2δ−1−λ}.
Let us introduce some additional notation, aπ := |{i ∈ N | xi = π}| for π ∈ {0, 1}, and

consider such a strategy profile s that xi = 0 ∀i ∈ N0, |{i ∈ N1 | xi = 1}| =
⌈
2δ−1−λ
δ+λ−c n

0
⌉

+ 2

and pij = 1⇔ ((xi = θi ∧ xj = θj)∨ xi = xj). Note that here a1 = |{i ∈ N1 | xi = 1}|. First

of all, we show that 0 < a1 < n1, and hence that s indeed induces two partially connected

action cliques: ∃i, j ∈ N s.t. θi = 0 = xi 6= xj = 1 = θj and pij = 1, and ∃k, l ∈ N s.t.

θk 6= 0 = xk 6= xl = 1 = θl and pkl = 0.

Thus, we need to prove that 0 <
⌈
2δ−1−λ
δ+λ−c n

0
⌉

+ 2 < n1. As 2δ−1−λ
δ+λ−c ∈ (0, 1), the first

inequality is obvious, while the second one can be derived from n0 < δ+λ−c
3δ−1−c (n − 1) − 3

in several steps: using that δ+λ−c
3δ−1−c ∈ (1

2
, 1), we derive n0 < δ+λ−c

3δ−1−c (n − 3), or equivalently,
3δ−1−c
δ+λ−c n

0 +1 < n−2, which implies
⌈
3δ−1−c
δ+λ−c n

0
⌉
< n−2, or equivalently,

⌈
(1 + 2δ−1−λ

δ+λ−c ) n0
⌉
<
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n − 2, and hence
⌈
2δ−1−λ
δ+λ−c n

0
⌉
< n − n0 − 2 = n1 − 2. Hence, the strategy profile s indeed

induces two connected action cliques. The rest of the proof shows that s ∈ SPNE.

We can apply Lemma 6. Note that s ∈ S̄+ and fix a player i. First, let θi = 0. Then

ui(s) = (δ + λ − c)(a0 − 1) + (1 − δ + λ − c) a1 and ui(s̃i, s−i) = (δ − c) a1. It follows that

ui(s̃i, s−i) ≤ ui(s) if and only if a1 ≤ δ+λ−c
3δ−1−c (n − 1). Substituting a1 =

⌈
2δ−1−λ
δ+λ−c n

0
⌉

+ 2, we

get an equivalent expression:
⌈
2δ−1−λ
δ+λ−c n

0
⌉
≤ δ+λ−c

3δ−1−c (n − 1) − 2. This, however, is always

true, as n0 < δ+λ−c
3δ−1−c (n − 1) − 3 and 2δ−1−λ

δ+λ−c ∈ (0, 1). Second, let θi = xi = 1. Then

ui(s) = (δ + λ − c)(a1 − 1) + (1 − δ + λ − c) n0 and ui(s̃i, s−i) = (δ − c) n0. Consequently,

ui(s̃i, s−i) ≤ ui(s) if and only if a1 ≥ 2δ−1−λ
δ+λ−c n

0 + 1, i.e.
⌈
2δ−1−λ
δ+λ−c n

0
⌉

+ 2 ≥ 2δ−1−λ
δ+λ−c n

0 + 1,

which obviously holds. Finally, let θi = 1 6= xi. Then ui(s̃i, s−i) ≤ ui(s) if and only if

(1− δ + λ− c)(a0 − 1) ≤ (δ − c)(a0 − 1), which holds true due to δ > 1+λ
2

.

Now, fix a pair of players i and j s.t. pij = 0. It must be that xi 6= xj and, without loss of

generality, xi 6= θi and xj = θj (if also xj 6= θj, it would contradict xi 6= xj). It is left to check

that condition (2) of Lemma 6 holds for both i and j. For i, ui((x̂i, p̂i), (xj, p̂j), s−i−j) < ui(s)

if and only if (1−δ+λ− c)(a0−1)+(δ+λ− c) < (δ− c)(a0−1), which is equivalent to a1 <

n−1− δ+λ−c
2δ−1−λ , or

⌈
2δ−1−λ
δ+λ−c n

0
⌉
+2 < n−1− δ+λ−c

2δ−1−λ . However, our assumption n0 < n−4− δ+λ−c
2δ−1−λ

together with 2δ−1−λ
δ+λ−c ∈ (0, 1) makes it hold true. For j, uj((xi, p̂i), (x̂j, p̂j), s−i−j) < uj(s) if

and only if (1− δ− c)(a1− 1) + (δ− c)n0 + (δ− c) < (δ+ λ− c)(a1− 1) + (1− δ+ λ− c)n0,

or equivalently, a1 > 2δ−1−λ
2δ−1+λ n

0 + δ−c
2δ−1+λ + 1, or

⌈
2δ−1−λ
δ+λ−c n

0
⌉

+ 2 > 2δ−1−λ
2δ−1+λ n

0 + δ−c
2δ−1+λ + 1.

Note, however, that δ−c
2δ−1+λ ∈ (0, 1) and 2δ−1−λ

δ+λ−c >
2δ−1−λ
2δ−1+λ , hence condition (2) holds also for

j and, according to Lemma 6, s ∈ SPNE.

Proof of Proposition 8

Proof. The proof is analogous to the proof of Proposition 5. Note that if any of the conditions

(i), (ii) or (iii) holds, then c /∈ Ch
δ,λ, and hence Lemma 6 is applicable here.

(i) Let δ < 1−λ
2

, c < δ and nπ ≥ 1−2δ−λ
2(1−2δ) (n−1) ∀π ∈ {0, 1}. We will prove that the strategy

profile with xi = θi ∀i ∈ N and pij = 1 ∀i, j ∈ N is a PNE.

Note that uij(xi, xj) > 0 ∀xi, xj ∈ {0, 1}, and hence S̄+ = {s ∈ S̄ | pij = 1 ∀i, j ∈ N}.
Obviously, s ∈ S̄+. There are no possible pairwise deviations from s, hence it suffices

to show that ui(s̃i, s−i) ≤ ui(s) ∀i ∈ N (Lemma 6). Without loss of generality, take

a player with θi = 0. Then, as in Proposition 5, ui(s̃i, s−i) ≤ ui(s) if and only if

(1−δ)(n0−1)+δn1 ≤ (δ+λ)(n0−1)+(1−δ+λ)n1. Rearranging terms and substituting

n0 for n − n1, we get an equivalent inequality: n1 ≥ 1−2δ−λ
2(1−2δ) (n − 1). Similarly, for a

player with θi = 1, ui(s̃i, s−i) ≤ ui(s) if and only if n0 ≥ 1−2δ−λ
2(1−2δ) (n− 1). In either case,

such a unilateral deviation is unprofitable for i, and hence s ∈ SPNE.
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(ii) Let δ < 1−λ
2

, δ < c < δ + λ and nπ ≥ 1−2δ−λ
2−3δ−c (n − 1) ∀π ∈ {0, 1}. We will prove that

the strategy profile with xi = θi ∀i ∈ N and pij = 1 ∀i, j ∈ N is a PNE.

Note that uij(xi, xj) > 0 if and only if either xi = θi or xi 6= xj, and hence S̄+ =

{s ∈ S̄ | pij = 1 ⇔ ((xi = θi ∧ xj = θj) ∨ xi 6= xj)}. Then s ∈ S̄+. According

to Lemma 6, it suffices to show that ui(s̃i, s−i) ≤ ui(s) ∀i ∈ N . Take a player with

θi = 0. Then ui(s) = (δ + λ − c)(n0 − 1) + (1 − δ + λ − c)n1, and ui((x̃i, p̃i), s−i) =∑
{j∈N : xj 6=x̃i} uij(x̃i, xj) = (1 − δ − c)(n0 − 1). Hence, ui(s̃i, s−i) ≤ ui(s) if and only if

(1−δ)(n0−1) ≤ (δ+λ)(n0−1)+(1−δ+λ−c)n1, or equivalently, n1 ≥ 1−2δ−λ
2−3δ−c (n−1).

Similarly, for a player with θi = 1, ui(s̃i, s−i) ≤ ui(s) if and only if n0 ≥ 1−2δ−λ
2−3δ−c (n− 1).

In either case, such a unilateral deviation is unprofitable for i, and hence s ∈ SPNE.

(iii) Let δ < 1−λ
2

and δ + λ < c < 1 − δ. We will prove that the strategy profile with

xi = θi ∀i ∈ N and pij = 1⇔ θi 6= θj is a PNE.

Here uij(xi, xj) > 0 if and only if xi 6= xj, and hence S̄+ = {s ∈ S̄ | pij = 1⇔ xi 6= xj}.
Note that s ∈ S̄+ and let us check the other conditions of Lemma 6. First, take a

player with action preference θi and consider the unilateral deviation s̃i. Then ui(s) =

(1 − δ + λ − c)n1−θi ≥ 0 = ui(s̃i, s−i), which implies that s̃i is unprofitable. Second,

take two unlinked players i and j (with θi = θj) and consider their pairwise deviation

((x̂i, p̂i), (xj, p̂j)). Since nπ ≥ 2 ∀π ∈ {0, 1}, we can derive: ui((x̂i, p̂i), (xj, p̂j), s−i−j) =

(δ − c)n1−θi + (1− δ − c) < 1− δ − c < (1− δ + λ− c)n1−θi = ui(s). Hence, according

to Lemma 6, s ∈ SPNE.

Proof of Proposition 9

Proof. (i) Let δ < c < δ + λ < 1− δ (the last inequality is equivalent to δ < 1−λ
2

). Then

uij(xi, xj) > 0 if and only if either xi = θi or xi 6= xj. Hence, S̄+ = {s ∈ S̄ | pij = 1⇔
((xi = θi ∧ xj = θj) ∨ xi 6= xj)}.

Let nπ > 1−δ+λ−c
1−2δ−λ ∀π ∈ {0, 1}, and consider such a strategy profile s that xi 6= θi ∀i ∈ N

and pij = 1 ⇔ xi 6= xj ∀i, j ∈ N . Note that s ∈ S̄+ and let us apply Lemma 6.

First, fix a player i with action preference θi. Then ui(s̃i, s−i) = (δ + λ − c) n1−θi <

(1 − δ − c) n1−θi = ui(s). Second, fix a pair of players i and j s.t. pij = 0 (i.e.

xi = xj). Then ui((x̂i, p̂i), (xj, p̂j), s−i−j) < ui(s) if and only if (δ + λ − c) n1−θi +

(1 − δ + λ − c) < (1 − δ − c) n1−θi , or equivalently, n1−θi > 1−δ+λ−c
1−2δ−λ . Similarly,

uj((xi, p̂i), (x̂j, p̂j), s−i−j) < uj(s) if and only if nθi > 1−δ+λ−c
1−2δ−λ . As all conditions of

Lemma 6 are satisfied, we conclude that s ∈ SPNE.
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(ii) Let δ + λ < c < 1 − δ. Then the strategy profile with xi = θi ∀i ∈ N and pij = 1 ⇔
xi 6= xj is a PNE (see the proof of part (iii) of Proposition 8).

Proof of Proposition 10

Proof. Let δ < c < δ + λ < 1 − δ (the last inequality is equivalent to δ < 1−λ
2

). Then

uij(xi, xj) > 0 if and only if either xi = θi or xi 6= xj, and S̄+ = {s ∈ S̄ | pij = 1 ⇔
((xi = θi ∧ xj = θj) ∨ xi 6= xj)}. Without loss of generality, let 1−δ+λ−c

1−2δ−λ < 1−2δ−λ
1−δ+λ−c n

0 ≤
min{1−δ+λ−c

2−3δ−c n− 2, n− n0 − 2}.
Let us introduce some additional notation, aπ := |{i ∈ N | xi = π}| for π ∈ {0, 1}, and

consider such a strategy profile s that xi = 0 ∀i ∈ N0, |{i ∈ N1 | xi = 1}| =
⌈

1−2δ−λ
1−δ+λ−c (n0 − 1)

⌉
+

1 and pij = 1 ⇔ ((xi = θi ∧ xj = θj) ∨ xi 6= xj). Note that here a1 = |{i ∈ N1 | xi = 1}|.
As a0 ≥ n0 ≥ 2, there exist i, j ∈ N s.t. θi = xi = xj = θj = 0 and pij = 1. Let

us show that a1 < n1, and hence a0 > n0, implying that there exist also k, l ∈ N s.t.

0 = θk = xk = xl 6= θl = 1 and pkl = 0. Noting that 1−2δ−λ
1−δ+λ−c ∈ (0, 1), we can derive⌈

1−2δ−λ
1−δ+λ−c (n0 − 1)

⌉
− 1 < 1−2δ−λ

1−δ+λ−c (n0 − 1) < 1−2δ−λ
1−δ+λ−c n

0 ≤ n − n0 − 2 = n1 − 2, which is

equivalent to
⌈

1−2δ−λ
1−δ+λ−c (n0 − 1)

⌉
+ 1 < n1 and is exactly what we wanted to show. The rest

of the proof shows that s ∈ SPNE.

We can apply Lemma 6. Note that s ∈ S̄+ and fix a player i. First, let θi = 0. Then

ui(s) = (1 − δ + λ − c) a1 + (δ + λ − c)(n0 − 1) and ui(s̃i, s−i) = (1 − δ − c) (n0 − 1). It

follows that ui(s̃i, s−i) ≤ ui(s) if and only if a1 ≥ 1−2δ−λ
1−δ+λ−c (n0 − 1), which is always true, as

a1 =
⌈

1−2δ−λ
1−δ+λ−c (n0 − 1)

⌉
+ 1. Second, let θi = xi = 1. Then ui(s) = (1 − δ + λ − c) a0 +

(δ + λ − c)(a1 − 1) and ui(s̃i, s−i) = (1 − δ − c)(a1 − 1). Consequently, ui(s̃i, s−i) ≤ ui(s)

if and only if a1 ≤ 1−δ+λ−c
2−3δ−c n + 1−2δ−λ

2−3δ−c , which also holds, as a1 =
⌈

1−2δ−λ
1−δ+λ−c (n0 − 1)

⌉
+ 1 <

1−2δ−λ
1−δ+λ−c (n0 − 1) + 2 ≤ (1−δ+λ−c

2−3δ−c n − 2) − 1−2δ−λ
1−δ+λ−c + 2 < 1−δ+λ−c

2−3δ−c n + 1−2δ−λ
2−3δ−c . Finally, let

θi = 1 6= xi. Then ui(s̃i, s−i) ≤ ui(s) if and only if (δ+λ− c) a1 ≤ (1− δ− c) a1, which holds

true due to δ < 1−λ
2

.

Now, fix a pair of players i and j s.t. pij = 0. It must be that xi = xj and, without loss of

generality, xi 6= θi (if both xi = θi and xj = θj, it would contradict pij = 0). It is left to check

that condition (2) of Lemma 6 holds for both i and j. For i, ui((x̂i, p̂i), (xj, p̂j), s−i−j) < ui(s)

if and only if (δ+λ−c)a1+(1−δ+λ−c) < (1−δ−c)a1, which is equivalent to a1 > 1−δ+λ−c
1−2δ−λ .

It holds true, as a1 =
⌈

1−2δ−λ
1−δ+λ−c (n0 − 1)

⌉
+ 1 ≥ 1−2δ−λ

1−δ+λ−c (n0− 1) + 1 > 1−2δ−λ
1−δ+λ−c n

0 > 1−δ+λ−c
1−2δ−λ .

If xj 6= θj, then condition (2) for j coincides with the above one for i. If xj = θj, then

uj((xi, p̂i), (x̂j, p̂j), s−i−j) < uj(s) if and only if (δ− c) a1 + (1− δ− c)(n0− 1) + (1− δ− c) <
(1− δ+ λ− c) a1 + (δ+ λ− c)(n0− 1), or equivalently, a1 > 1−2δ−λ

1−2δ+λ (n0− 1) + 1−δ−c
1−2δ+λ . Note,

however, that 1−δ−c
1−2δ+λ ∈ (0, 1) and 1−2δ−λ

1−δ+λ−c >
1−2δ−λ
1−2δ+λ implies a1 =

⌈
1−2δ−λ
1−δ+λ−c (n0 − 1)

⌉
+ 1 >
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1−2δ−λ
1−2δ+λ (n0 − 1) + 1−δ−c

1−2δ+λ , and hence condition (2) holds also for j. According to Lemma 6,

s ∈ SPNE.
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