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Abstract— In-hand object localization has always been a
critical but difficult aspect of dexterous robotic manipulation.
We attempt to address this issue in this paper through the use
of point cloud registration techniques. Specifically, the grasping
pose is estimated by registering the high-resolution 3D contact
point cloud sensed by a novel GelStereo tactile sensor with the
object template point cloud. Extensive qualitative and quantita-
tive analyses of in-hand localization and insertion experiments
of small parts are performed on our robot platform. The
experimental results verify the accuracy and robustness of the
proposed in-hand object localization pipeline.

I. INTRODUCTION

In-hand object localization is one of the prerequisites for
performing delicate and intricate robotic manipulation. [1].
Without sufficiently precise position estimation, the robot
will be incapable of performing delicate manipulation on a
human-level, such as assembling small parts. The majority
of currently available localization methods rely on visual
perception to locate the grasped object, and considerable
effort has been expended on grasping configuration and
environment using computer vision technologies [2]. How-
ever, due to the non-contact propriety of these vision-based
approaches, they become unreliable during actual manipu-
lations. Many issues can affect the accuracy and robustness
of the vision-based localization systems, such as grasping
occlusion, the field of view limits, and light deterioration [3].

Recently, tactile perception has been proven to be a
reliable solution [4]. Pfanne et al. present an EKF-based
method to estimate the grasping state using position and
torque measurements from the joints of the hand [5]. Ding et
al. describe a particle filter-based pose estimation algorithm
based on tactile sensory information in combination with
haptic rendering models [6]. These filtering-based methods
can only provide contact level information and are modeled
for specific objects, resulting in insufficient generalization
and mediocre real-time performance. Bimbo et al. present
a strategy to represent data from a tactile array sensor and
match it to an object’s geometric features for in-hand object
pose estimation [7]. The geometry-based matching method
is more versatile, but the proposed covariance-based method
has poor real-time performance.
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Fig. 1. The proposed in-hand object localization pipeline. (a) The GelStereo
sensor contacts an M10 screw. (b) The obtained tactile point cloud. (c) The
saliency point cloud detection result (yellow point cloud). (d) The initial
pose of the in-hand screw. (e) The estimated pose of the contacting screw.

For contact geometry measurement, visuotactile sensors
can provide ideal sensing capability [8]. GelSight sensors [9],
benefit from its creative use of the photometric stereo al-
gorithm to reconstruct depth information, which can obtain
dense tactile point cloud directly. The GelSight sensor has
already been applied in in-hand small parts localization and
insertion task [10]. Unfortunately, this tactile images-based
method needs to collect a large number of tactile images
for a specific object for modeling, which is too expensive.
In this paper, we propose a in-hand object pose estimation
method based on 3D point cloud registration. The contact
point cloud is perceived by our GelStereo tactile sensor [11],
which can provide tactile contact point cloud with high
spatial resolution (< 1 mm).

II. METHOD

The proposed in-hand object localization pipeline consists
of two steps: saliency tactile point cloud detection and grasp-
ing pose estimation using point-set registration, as shown in
Fig. 1. The saliency tactile point cloud detection process is
used to extract the tactile point cloud in the contact area,
and the extracted point cloud can be used to estimate the
grasping pose by point-set registration.

A. Saliency Point Cloud Detection

Inspired by [12], the saliency point cloud can be extracted
by setting a threshold in the contact direction, i.e. if the depth
value of a tactile point on the contact surface exceeds the
default threshold, this point will be considered as a saliency
tactile point, the yellow dots as shown in Fig. 1(b)). Given
the obtained tactile point cloud Q ∈ RN×3, the saliency
point cloud P ∈ RM×3 can be obtained by:

P ⇐ Qi, if Qi,z > z (1)
i = 1, 2, ..., N
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Fig. 2. Four pegs and a USB interface for grasping and insertion
experiments.

where Qi is the i th tactile point of the tactile point cloud Q,
and Qi,z indicates its depth value in the GelStereo coordinate
system.⇐ denotes putting current point Qi into the saliency
point cloud P space. In practice, d is set as 0.35mm, which
is determined experimentally.

B. Pose Estimation Using Point-Set Registration

After perceiving the saliency point cloud, the in-hand
object’s pose can be calculated by points-set registration be-
tween the saliency point-set (source) and the template point-
set (target). The target object point cloud can be obtained
by simple 3D modeling or using a handheld scanner device
(such as iPhone 12 Pro). In this paper, a probabilistic point-
set registration method named FilterReg [13] is employed.

Given a predicted (initial) in-hand pose gsTinit, The target
point-set P ′ is first transformed to this initial pose,

gsP ′init =
gsTinitP

′ (2)

where gsP ′init indicate target point-set with initial pose in the
GelStereo frame. Then the transformation matrix Tr ∈ R4×4

of the registration between the source point-set P ∈ RM×3

and the target point-set gsP ′init ∈ RM ′×3 is computed by

Tr = Fprobreg(P,
gsP ′init) ∈ R6 (3)

where Fprobreg(·) indicates the FilterReg registration method,
and M ′ is the number of points in the target point-set P ′. The
target point-set is then transformed to the GelStereo surface.

gsP ′r = T−1r
gsP ′init (4)

where T−1r is the inverse transformation matrix of the
obtained transformation matrix Tr.

Finally, the pose of the in-hand object in the robot base
frame can be transformed by:

bP ′r = bTg
gTgs

gsP ′r (5)

where gTgs is the transformation matrix between the Gel-
Stereo frame to the gripper frame, which can be calculated
by the opening width of gripper and fixed configuration of
the GelStereo sensor installation.bTg describes the desired
transformation matrix between the gripper frame and the
robot base frame.

TABLE I
INSERTION SUCCESS RATE OF DIFFERENT PEGS

Pegs Clearance RANSAC+ICP FilterReg
Peg-(a) 0.30 mm 33/36 (91.67%) 34/36 (94.44%)
Peg-(b) 0.25 mm 29/36 (80.56%) 32/36 (88.89%)
Peg-(c) 0.25 mm 27/36 (75%) 31/36 (86.11%)
Peg-(d) 0.20 mm 26/36 (72.22%) 29/36 (80.56%)
Peg-(e) 0.00 mm 2/10 (20%) 6/10 (60%)

All ≤0.30 mm 117/154 (75.97%) 132/154 (85.71%)

III. EXPERIMENTS

A. Design and Setup

We equip the GelStereo sensor to our robot setup and
perform actual robot experiments of random grasping and
inserting different pegs. Instead of fixing the peg at the
end-effector, we randomly place the target in the middle of
the gripper, and the alignment process is completed by the
proposed in-hand object localization method. We select four
pegs and a USB interface for this peg-in-hole assembly task,
as shown in Fig. 2. Peg-(a), (b), and (d) are selected inspired
by the IROS robotic grasping and manipulation competi-
tion [14]. Peg-(c) is used to verify whether the proposed
in-hand localization pipeline can handle non-regular object.

We chose this insertion task because the true value of the
in-hand pose is difficult to obtain, and the insertion success
rate can be considered an indirectly quantitative analysis
of the localization accuracy. Note that this task’s assembly
tolerance is less than 0.3 mm and without the aid of other
model-based or learning-based assembly skills.

Furthermore, we also compare the FilterReg method with
the traditional RANSAC+ICP method for point-set registra-
tion in the proposed in-hand object localization pipeline. The
two methods are tested on each peg 36 times and the USB
interface for ten times.

B. Results

Table I presents the assembly success rate of different pegs
with the two registration method. The insertion results show
that the proposed FilterReg-base pose estimation method
outperforms the traditional RANSAC+ICP method for all
pegs and achieves an average 85.71% insertion success rate.
Especially for the USB interface insertion (Peg-(e)), the
RANSAC+ICP method only succeeded twice in 10 insertion
experiments, while the FilterReg-based method succeeded 6
times. These results powerfully demonstrate that the prob-
abilistic model can achieve more accurate and generalized
registration than the traditional ICP-based method for the
proposed in-hand object localization.

Fig. 3 shows the robot pose Rx (GelStereo pitch angle),
Ry (GelStereo roll angle), GelStereo average markers mo-
tion, and perceived tactile point cloud during a successful
case of aligning and inserting the USB interface. At the
moment-(a), the USB interface pose is computed by the
proposed in-hand localization method, and the obtained pitch
angle and roll angle are 0.33 rad and -0.04 rad, respectively.



The robot then adjusts the end-effector pose Rx and Ry ac-
cordingly and complete the pose adjustment at the moment-
(b). Moment-(c) and (d) indicate the robot and GelStereo
point cloud states during insertion. Finally, the USB interface
is successfully inserted into the base and turn on the light,
as shown in Fig. 3 -Moment-(e).

IV. CONCLUSIONS

This paper propose a registration-based in-hand object
localization method using GelStereo tactile sensing. We have
performed extensive in-hand object grasping and insertion
experiments on our robot platform. The experimental results
show that the proposed in-hand object localization method
achieves an 85.71% insertion success rate on five objects
with different size, geometry, and clearance, which strongly
indicate the accuracy and robustness of the proposed in-hand
object localization method.

In the future, we will try to address the uncertainty of
the point cloud registration-based methods for in-hand object
localization.
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