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A B S T R A C T

In recent years, robotics applications increasingly rely on physically compli-
ant interaction, which entails the deliberate compensation and exploitation of
contact forces. Explicitly considering the compliant interaction between the ro-
bot and the environment is essential for successful and safe task execution in
contact-rich applications: e.g., snap-fitting electrical clamps, relying on the en-
vironment for support (e.g., using a hand-rail), and accommodating for soft
materials (e.g., in soft tissue surgery). Developing robotic systems for such
applications, requires not only suitable control algorithms, but also a task de-
scription that formalizes the compliant interaction as well as other relevant
system concerns (e.g., timing). Skill-based approaches are commonly used to
create such systems. However, they usually neglect the compliant interaction
almost entirely and introduce hidden assumptions for other relevant concerns.
This causes a significant gap between the envisioned task and the resulting
robot’s behavior in terms of explainability and predictability.

To close the gap, this thesis introduces suitable abstractions to model the
compliant interaction in the context of a task description as constraints on the
robot’s behavior. The constraints are based on the physical exchange of forces
via (natural) contacts. Using the developed synthesis, the modeled task con-
straints for compliant interaction are directly transferred into a control system
model that uses the Projected Inverse Dynamics Control formalism.

A modularization and composition approach for domain-specific languages
is developed to combine the resulting control system model with relevant func-
tional and non-functional robotics concerns, such as the specification of the
execution time behavior, which are essential to produce a predictable behav-
ior. The implementation of the conceptual approach allows the modeling of
compliant interaction tasks, the synthesis of a suitable robot control system,
and the generation of a real-time software system that can be executed in
simulation as well as on the real robot. Together, this significantly reduces the
aforementioned gap and ensures a behavior that conforms to the modeled task
and timing constraints.

Using the developed approach three relevant compliant interaction scenar-
ios from the domains of human-robot interaction and industrial assembly are
modeled and executed. The scenarios show the eligibility of the introduced
concepts and their ability to scale to different compliant interactions.
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“ Every adventure requires a first step.
— Cheshire Cat

When I get home I shall write a book
about this place.

— Alice

”
— Lewis Carroll, Alice in Wonderland
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N O TAT I O N

margin notes

� Key point & Definition

languages and concepts

The name of a domain-specific language (DSL) is written in italic with the
word “DSL” appended, e.g., Component DSL. Whereas the name of a concept
is written in a monospaced font, e.g., ComponentInst.

Throughout this thesis the terms language and DSL as well as transformation
and generation are used synonymous. In contrast to that, a language mod-
ule explicitly refers to the different aspects of a DSL implementation (see Fig-
ure 2.4), excluding the transformations. The implementation of the transforma-
tions are contained in a generator module. A DSL module addresses both, the
implementation of the language and the transformations.

symbol conventions

x Scalar H(·) Range space of a matrix

x Vector N(·) Null space of a matrix

M Matrix Ṁ 1st derivative of M

MT Transpose of M M̈ 2nd derivative of M

M−1 Inverse of M M# General inverse of M

Mw+ Pseudoinverse inverse of M
(weighted)

M+ Pseudoinverse inverse of M
(Moore-Penrose)

Jx(q) = Jx For brevity the parameter q will be omitted

Frames are denotes as { · }. To avoid a confusion with the notation for an
unordered set, an underscore is added to the notation of frames in the text:
{ · }. The underscore is not used in figures.

xv
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attribution of authorship

I will speak of myself using I to explicitly indicate work originally done by
myself alone. To highlight that the results of a collaboration with others are
presented, I will use we. The respective collaborators are indicated by the co-
authors of the publications the results are based on.

how to read

A Meta-Model The meta-models in this thesis are presented using EMF’s
Ecore formalism. Concepts are depicted as boxes where the color of the bor-
der is used to indicate the DSL they originate from. Relations are indicated as
arrows. Child and Reference relations have a cardinality of [0..1], [1..1], [0..∗], or
[1..∗].
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“ Computers are good at following instructions,
but not at reading your mind.

”
— Donald Knuth

1
I N T R O D U C T I O N

In recent years an increasing number of robots are entering important sectors
of our daily life; from industry (i.e. automotive, food processing and construc-
tion work), over robotics service and rehabilitation applications, to agriculture
(i.e. farming), disaster (i.e. rescue and hazard), and even space (i.e. mining) ap-
plications. While the degree of robotic presence in the individual sectors varies,
a clear and increasing trend in robotic applications is noticeable. The robotic
applications for e.g., pick and place in machine tending or spray-painting cars
that dominated the last decades are designed to provide a comfortable envi-
ronment for the robots to work in. For a long time, the governing maxim was
to avoid collisions at all costs, which reduced the need to physically perceive
the environment to a minimum and treated any contact-based interaction with
it as an error. The current and envisioned applications in the different sectors,
however, differ distinctively from the previous ones. Instead of avoiding phys-
ical interactions, contacts are now either tolerated and coped with, or even
essential for successful task execution, such as polishing a surface or using a
hand-rail as support. Further applications are shown in Figure 1.1.

The paradigm shift in these applications can be summarized as the need for
the robot to enter a physical and compliant interaction1 with the environment,
where the environment is not specifically tailored to the robot and thus may
contain a high degree of uncertainty, especially when involving humans. To
achieve a compliant interaction, new requirements for the functional capabil-
ities, the software, as well as the hardware of robots arise, as they need to
“feel” the environment, make sense of it, and act compliantly, without hurting
a human coworker or damaging the environment [Van+13a].

Currently, there are two general ways to enable the necessary compliance:
passive and active compliance. While passive compliance can be achieved
through the material elasticity of the robot’s links [Lee+17], it can also be
achieved through means of actuation, such as in the case of the BHA [Fes] ro-
bot that resembles an elephant trunk that is actuated by air pressure [Que+14].

1 This kind of interaction is referred to as “compliant interaction” and is defined in Section 1.1.
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(a) Object hand-over
[PCW18]

(b) Object manipulation
[Cor18]

(c) Construction work
[AIS18]

(d) Furniture assembly
[ZP18]

(e) Window cleaning
[Lei19]

(f) Fine-manipulation
[AK16]

(g) Massaging
[Pro19]

(h) Industrial assembly
[Näg+19]

(i) Turning a valve
[Lab15]

(j) Collaborative sawing
[PA17]

(k) Bi-manual lifting
[Cog19]

(l) Environmental support
[Hen+17]

Figure 1.1: Robotic applications in compliant interaction with the environment.

Both types offer a very high degree of passive compliance, intrinsic impact re-
silience [PKM02], and inherent reliability at the cost of significantly increasing
the complexity of the required control software [Rad+17]. Series elastic actu-
ators (SEAs) utilize soft elements in series with an electrical motor to benefit
from the passive compliance in combination with active and precise torque
control [Ama+20]. While this reduces the complexity of control, the compli-
ance parameters of the soft elements are fixed and potentially not suited for
a given interaction [Rad+17]. Variable stiffness actuators (VSAs) [Wol+16] ac-
tively change the passive stiffness properties to broaden the compliance spec-
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trum. This allows robots to adapt to the requirements of the given interac-
tion by changing between being very soft and gentle to being powerful and
fast [MBT19]. In contrast to the compliance that results from soft elements,
active compliance is achieved through the control software. By leveraging ad-
vanced built-in force-torque sensors to realize highly precise and fast torque
control, a naturally compliant behavior can be emulated [Rad+17]. While for
active compliance a high control frequency is required, years of established
control knowledge exist to aid the development of the control software.

Currently, several robots use compliant actuators, e.g., [Pai+15; Hut+16],
which makes them and especially Collaborative Robots (COBOTs), e.g., [Emia;
Kuk; Fan; Neu; ABB; Rob] a perfect fit for the emerging applications involv-
ing compliant interaction: A COBOT [CWP96], is a robot designed to manip-
ulate objects in direct collaboration with a human [MB17], where the human-
machine interaction foremost happens through direct physical contact [KLV09].

However, even with this advanced robotic hardware, capable of compliant
interaction, the inevitable challenge remains: How to design a robotics software
system that intelligently initiates and handles the required interactions to successfully
realize the new type of emerging applications?

1 .1 on compliant interaction

Definition: Compliant Interaction

A compliant interaction (CI) describes every situation in which external
forces influence or even define the behavior of & robot behaviora robot. This includes
the handling, compensation, and exploitation of physical interactions
through contacts, which are natural interfaces for the exchange of forces.

Even though COBOTs are technically capable of compliant interaction, most
applications are still dominated by pick and place tasks that involve little to
no contact at all—as has been the research on robotic manipulation for a long
period of time [Lei19]. The majority of such tasks is purely position controlled,
which means complete positional freedom is assumed [Mas81] and the per-
formed actions mostly result in discrete instantaneous effects [Lei19]. Pure
position control however, cannot cope with situations that involve physical in-
teraction, where the assumed environmental state differs from the real world
(e.g., caused by the unavailability of, or the uncertainty in the sensor data).
This holds especially true for situations with degrees-of-freedom (DoFs) of no
positional freedom, i.e. in which the robot is constrained by the environment
and is only able to exert forces and no motions. According to Mason [Mas81],
pure position and pure force control can be seen as dual concepts, which are
omnipresent in physical interactions, and the historical predominance of po-
sition control can be tracked back to the natural cause of applications that
involve very little physical contact.

However, describing the CI is particularly important for robotic motion and
force control in contact situations, where the robotic system is required to
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handle predictive as well as unpredictive contacts in a way that successful task
execution is feasible. In addition to the passive and compliant handling of
contacts, which foremost arises due to the uncertainties related to the robot’s
internal representation of the physical environment, other situations exist in
which an active exploitation of contacts is required to fulfill tasks, such as to
perform a guided motion along a surface, to use a hand-rail for support and
stability [Koy+08], or to snap-fit an object [Näg+18].

Definition: CI Task

A CI task is in contrast to an application always formulated from the
point of view of the robot that performs the task. Such a task involves
at least one contact situation and the set of contact transitions that arise
during its execution. Here, a contact situation is formed by one or more
compliant interactions.

To define what the relevant CIs in an application are depends on the scope of
the CI task to be solved. For instance, while the contact of a parallel two-finger
gripper with a grasped object practically involves CIs, they are not relevant
for the robot that performs a pick and place task with only free-space motions.
However, in the case of two multi-DoF manipulators that lift an object, these
CIs are crucial to solve the task. Hence, the developer needs to select the CIs
relevant to a task from the ones that exist in the application. Transitioning
between the contact situations of a CI task, demands a flexible (re)prioritization
of control strategies based on the changing set of CIs.

With the increasingly contact-rich tasks that emerge and the impact of CI
on the execution of a desired task in mind, it is more important than ever to
explicitly consider and describe the compliant interactions with the physical
environment to achieve a successful task execution.

1 .2 problem statement

The design of a robotics software system that is capable of performing a CI
task is a challenging undertaking, due to its complex and heterogeneous na-
ture. The designer needs to bridge the gap between an informal representation
of an envisioned CI task and the actual architecturecomponent-based

architecture
& of a system that leads to

the desired behavior (see Figure 1.2 (a)). Such a representation involves sev-
eral concerns [Wig+17a; Nor+16b; Sch+10] (e.g., hardware, algorithms, tim-concern &

ing) and often contains a mixture of formal, informal, and incomplete de-
scriptions [BLW05; Buc+20] with no clear semantics [Mer17; Bru15]. Concern-
overarching semantics (and e.g., constraints) are also rarely considered. Bridg-
ing this gap, would require the designer to create a consistent representation
that unifies all the different functional and non-functional requirements of a
robotic system and their possibly problematic interactions. Additionally, these
requirements need to be correctly realized on the source-code level. This po-
tentially involves the use of several existing libraries and frameworks that all
come with their own additional requirements and hidden assumptions [Lot18].
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Currently, there are two problems that significantly prevent the reduction of
this gap for CI applications.

(Informal) Representation of the System Executable System

(Formal/Technical) Model of the System

(a)

(b) (c)

Impleme  ntation

Modeling Generation

Gap ↯

Gap Gap

Domain Models

and Composition

Platform-Specific

and Semantics-

Preserving

Figure 1.2: The gap (a) between the mental representation (a real example [Cog] from
the CogIMon [Cog19] project) and the executable system is commonly
bridged by a manual implementation, which gives rise to several prob-
lems. To reduce the gap, it needs to be subdivided. Modeling is used to
capture and compose the individual informal requirements (a). Code gen-
eration replaces the manual implementation to ensure the creation of a
platform-specific and semantics-preserving robotics software system (c).

problem 1 : lack of a unifying abstraction for ci relates to the
requirements that are imposed by CI tasks. Individual capabilities of a system,
such as the algorithmic computation, the communication or the coordination,
are already well covered in the literature [Nor+16a]. Whereas, the physical
interaction part of a task description is still often completely neglected, insuf-
ficiently considered, or inaccessibly and untraceably hidden [WDW20]. Con-
sidering the importance of the physical environment for CIs tasks, the lack
of an explicit representation of this aspect is disturbing. In most approaches
that do consider CI, the environmental information is either directly entangled
with a control component in form of hidden assumptions (e.g., [NWS15]), im-
plicitly modeled as selection matrices [Mas81], or represented as constraints
on feature coordinates [de +07] (e.g., [Klo+11; Van+13b; Tho+13; Näg+18]). The
same holds true for higher-level programming approaches, relying on a form
of skill-based & skilltechnology, such as [Tho+13]. This also includes the program-
ming solutions offered by different COBOT manufacturers, such as [Emib].
It is quite paradox that even COBOT manufacturers that design their robots
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especially for the interaction in collaboration with humans, do not explicitly
specify the physical interaction with the environment and conceptually limit
their programming tools to a high-level skill-based approach, where each skill
is treated as a configurable black-box for the developers. The introduction of
a skill-based abstraction makes sense though, since it enables a larger user
base to program robotics applications. However, its lack of representing the re-
quirements imposed by the task-related CIs, either limits the set of designable
applications, or results in an increased gap between the envisioned informal
representation and the specified requirements. In the latter case, a common
workaround is to implicitly encode the constraints imposed by the environ-
ment as specific parameterizations of a skill. For instance, to let a robot exert a
force against a wall, a Cartesian impedance skill could be configured to target a
point inside the wall [Lei19]. Here, the force exerted by the robot, would be par-
tially encoded by the position of the target point and the concrete impedance
formulation, hidden by the skill. However, this would require an expert user
to have a deep understanding of the individual parameters of the skills and
how to exploit them to accurately represent the task at hand, if possible at
all. As it might be obvious, this is certainly not a favorable approach, which
is very error-prone and depends strongly on the specific realization of the re-
quirements. Additionally, it does not reflect the actual requirements of the CI
task, due to the mismatch between the requirements that should and that can
be expressed. Hence, the scientific problem at hand is the lack of formal, unify-
ing, and expressive abstractions to model CIs tasks based on common and scientifically
grounded concepts. Thereby overcoming the aforementioned mismatches.

problem 2 : lack of a unifying concern composability relates to
the gap between the different requirements of a CI task as well as between
the requirements and their realization in the system design. The ability to
specify the requirements of capabilities, such as a CI task description, coordi-
nation, control laws, and timing, independently and to realize them in isola-
tion, is not sufficient to achieve a consistent implementation on the source-code
level [Bis+10; SLS17]. While the source-code might compile, there is no guaran-
tee that the implementation reflects the semantics of the specified requirements
correctly. Unfortunately, the majority of current approaches focuses more on
expressing the requirements of a specific capabilitycapability & and too less on their com-
posability [Nor+16a]composability & . Since some capabilities cannot be considered in pure
isolation, the required other capabilities are thus partially considered but im-
plicitly hidden. For instance, describing a task using one of the prominent skill-
frameworks, does not allow for a composition2 with e.g., timing requirements
to restrict the execution time of a skill or the frequency with which pre- and
post-conditions are evaluated. The inability to express certain requirements
(e.g., the execution-time behavior) does not contribute to the reduction of the
aforementioned gap. However, experiencing the effects of implicit and hidden
assumptions is worse, since it might lead to unexpected and dangerous situa-
tions, especially in the context of CI. An example for this would be the specific

2 refers to the combination of parts into a whole for different purposes. See composability.
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motion controller or the planning accuracy thresholds that are used to realize
a skill and which are hidden from the user. Hidden assumptions are further
found in relation to the chosen software and hardware platforms used by a
system [Bor+16]. Even if the capabilities can be properly composed, their real-
ization strongly depends on these platforms, which impose additional require-
ments on the design of the system. Hidden assumptions about specific soft-
ware frameworks or e.g., the DoFs of a robot, greatly contribute to a decrease of
the explainability and verifiability. Thus, preventing the coherent composabil-
ity of concern-overarching requirements, which leads to a mismatch between
the requirements and the resulting behavior. Hence, the scientific problem at
hand is the lack of a modularization and composition approach that supports the het-
erogeneous functional and non-functional concerns of a robotic system in CI with the
environment. Further, establishing a link towards a consistent realization. Thereby
overcoming the aforementioned mismatches.

1 .3 research approach

To address the previously introduced problems, a research approach based
on model-driven engineering (MDE) is chosen in this dissertation. Since 1990,
MDE especially in form of domain-specific languages (DSLs) experienced a
steady growth in the field of robotics [Nor+16a]. While DSLs are commonly
used in domains & domain, such as automotive [Per+12], avionics [Mor15], and embed-
ded systems in general [Ouh+11; AMS07], they are nowadays also frequently
used in various robotics (sub-)domains, including robot control [NWS15], be-
havior or motion planning [Tho+13], and component-based systems [WW19].
In the domain of robot motion control and planning, DSLs are commonly em-
ployed on different levels. High-level skill abstractions are used to model a
desired behavior, while on a lower level, control architectures & control architectureare modeled us-
ing e.g., Simulink [Mat] or Scilab [Sci]. Considering the recent works on MDE
in robotics, MDE proved to increase comparability and understandability as
well as to establishing a link from the model to the implementation via model
transformation and code generation [Gho10; Nor16; Rin+16; FBC12; Wie+18].

Even though a lot of work exist in the individual domains, the previously
introduced problems (see Section 1.2) remain. Hence, in order to create ex-
plainable, predictable, and safe robotic systems that are suitable to realize CI
tasks, the gap between the informal requirements and the resulting behavior
needs to be reduced significantly.

research approach for problem 1 The first step to approach the Lack
of a Unifying Abstraction for CI is to decouple the interaction with the environ-
ment from the other aspects of a task description and their (e.g., skill-based)
implementation. This is similar to the early evolution of robot control, where
the awareness for the explicit modeling of the involved aspects and their in-
dividual requirements rose [Nor+16a; HST92; Näg+18]. Abstracting from the
mathematical equations, which hold a high amount of knowledge in a strongly
condensed manner, made such aspects comparable and more easily under-
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standable. Hence, making the environment explicit would not only foster ex-
changeability, but would allow the adaptation of a task to different environ-
mental situations.

The second step to address the problem is to establish a link between the CI
model and the rest of a task description, down to their realizations as i.e. con-
trol tasks. The CI model can then provide a context for the other task-related
aspects (e.g., coordination, trajectories, etc.) that ultimately constrains the ex-
ecution of the task. Referring back to the early evolution of robot control, the
importance of such a link, was already recognized in 1981 by Mason [Mas81].
At that time, it was common practice that the abstractions—mostly in form
of control block diagrams—had no technical link to the equations or even to
the implementation. This was a problem, since without such a link inconsis-
tency and divergence between abstraction and implementation is almost im-
possible to prevent. To address this problem, Mason introduced the Task Frame
Formalism (TFF) as an interface to abstract from the low-level control. TFF con-
ceptually plays a major role for the approach presented in Chapter 6. Making
the aspects of a task description explicit and composable, would eventually
overcome the disadvantage of skill-based approaches that only support strict
compositions of skills. Currently, such a composition is usually limited to a
sequence of skills, where the successive skill has no knowledge about the pre-
vious one. This is due to skills being treated as black boxes. A common and
composable representation of the aspects of a task description allows for a
more dynamic composition, since the individual aspects can be explicitly com-
posed and verified. By loosely coupling the CI model with aspects, such as
trajectories and coordination, the ability to adapt a task to different (modeled)
environmental situations as well as to blend between tasks is greatly increased,
without creating possibly dangerous and undesired interferences.

In addition to explicitly modeling CI task descriptions, a control architec-
ture needs to be synthesized, which uses a suitable control framework, inprogram synthesis &

order to realize the specified task. In this work Projected Inverse Dynamics
Control (PIDC) is used. Apart from the task-related requirements, the control
architecture is synthesized from, the model needs to also fulfill the combined
requirements of the different robotics system concerns (i.e. functional and non-
functional). The composition of the different robotics concerns is addressed by
the following research approach.

research approach for problem 2 To overcome the Lack of a Unifying
Concern Composability, a common composition structure needs to be created
that is used by the different concerns of the capabilities, software platforms,
and hardware platforms of a robotic system. The aim is to support the com-
position between all concerns in terms of their requirements and to enable
concern-overarching specifications. For instance, combining timing and archi-
tectural concerns to specify requirements for the execution order and execution
time behavior of a set of control components. The composition of all require-
ments needs to be reflected in a consistent realization on the source-code level.
On the model and code level, the composition structures need to be capable
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of coping with the evolution of concerns, requirements, and realizations. Since
it is obvious that not all the concerns of robotic systems for current as well as
for future applications can be explicitly considered today, the composition is
required to support incremental extension. For instance, without the explicit
consideration of the timing concern, a robot might still be able to move by
relying on hidden assumptions in e.g., the used control frameworks. However,
by doing so the size of the gap is increased. Instead, by purposefully mak-
ing the assumptions of the involved concerns, explicit would reduce the gap.
Thereby increasing the explainability of this particular part of the resulting
system’s behavior. Since the requirements of a concern can be rarely consid-
ered in isolation, they need to be integrated into the composition structures to
achieve a consistent realization with the other requirements. Such a composi-
tion then allows to reduce the gap further, by making the interactions between
the concerns on the model as well as on the source-code level explicit and their
impact on the overall composition explainable. Note that this is in fact a very
challenging problem [Völ+13; Sta+16] that is actively researched and not only
important for robotics, but rather for every highly heterogeneous domain. As
of now, there is no universal solution to that challenge. This kind of compos-
ability eventually paves the way for the specification of concern-overarching
requirements and thus increases the set of describable robotics applications.

1 .4 goal and research questions

On the basis of these considerations the goal of this thesis is to

leverage MDE to enrich task descriptions with a suitable abstraction for
the compliant interactions and crucial qualitative aspects (e.g., timing), to
bridge the gap between the envisioned CI task and the robot’s behavior,
making it explainable, predictable, and synthesizable.

To pursue this goal, the following 5 research questions are investigated in
the course of this thesis.

rq 1 : how to use mde to compose the robotics concerns?
This question aims at finding a way to benefit from the methodology of MDE
to handle the complexity that arises from the different heterogeneous robot-
ics concerns that are required to solve CI tasks. These concerns include task
descriptions, state-of-the-art control formalisms, component-based system ar-
chitectures, and aspects related to the chosen software and hardware platforms.
Composing the individual robotics concerns while maintaining their modular-
ity, is a non-trivial undertaking, which to the best of my knowledge is not
solved at all. This question further investigates how the requirements of the
composed concerns on the system or on the resulting robotics behavior can be
expressed on the model and on the source-code level, to ensure their compli-
ance in the actual executable software system. Thereby, significantly increasing
the explainability and predictability of the robotics behavior.
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rq 2 : how to cover timing as a non-functional concern?
The execution time behavior of a robotic system is one of the most important
aspects, especially regarding compliant interactions. Defining the timing be-
havior of a system and enforcing it is crucial for the safety and predictability
of a system. This question therefore concerns itself with the extension of the
MDE approach of RQ 1, to support additional and future concerns of the ro-
botics domain. In this case, the focus is on the integration of non-functional
execution time constraints and the preservation of the resulting qualitative
properties during the execution of the robotic system.

rq 3 : what are suitable abstractions to model the ci in tasks?
The previous questions are needed to gain the knowledge to compose the func-
tional and non-functional concerns of robot control systems and to reduce the
gap towards the expressed behavior of the robot. Now, this question is con-
cerned with the choice of suitable abstractions with the necessary degree of
expressiveness to model compliant interactions with the environment to accu-
rately represent a CI task. Hence, increasing comprehensibility and explain-
ability. In addition to making the CI explicit, a compatibility with the other
aspects of a task description needs to be ensured by properly extending the
MDE approach of RQ 1.

rq 4 : how to link the task to the control system?
Closing the gap between the CI task description and the behavior of the robot,
depends on the control system that executes the behavior. Thus, this question
aims at finding suitable model transformations to synthesize a control system
model, which is infused with the task description, to specifically perform the
desired behavior. Further, this question investigates the design of a component-
based control architecture model, based on Projected Inverse Dynamics Con-
trol (PIDC), that is able to realize different CI tasks by being configurable via
modeled task descriptions. The system model also needs to provide a com-
mon ground that allows the composition with the robotics concerns that are
investigated in RQ 1 and RQ 2. By creating a conceptual and technical link
between the task description and the control system model, explainability and
predictability is increased.

rq 5 : what kinds of ci tasks can be realized?
This question targets the practical application of the developed approach to
realize representative CI scenarios to investigate the scalability from an experi-
mental point of view. A conceptual viewpoint is taken by separately discussing
the scalability of the modelling approach and the technical control framework,
used for realization.
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1 .5 contributions and outline

The overall outcome of this thesis is the development and MDE-based imple-
mentation of suitable concepts that allow the modeling of CI in terms of defin-
ing and constraining the robot’s behavior through the exchange of forces via
contacts as (natural) interfaces. When considered as part of the task descrip-
tion, those concepts significantly reduce the gap between the abstraction and
the actual desired task. Further, the concepts are chosen so that a synthesis
of a robot control architecture based on the PIDC framework becomes feasi-
ble. Additionally, a MDE-based modularization and composition framework
is developed, which allows the consistent modeling of heterogeneous robotics
concerns. Via model transformations, the system model that is composed with
task-related, functional, and non-functional requirements is generated into an
executable software system that realizes a behavior that meets the modeled
requirements. In addition to the modeling of CI task descriptions, special em-
phasis is on the modeling and preservation of execution time constraints. A
technical implementation “CoSiMA” of the developed aspects is used for the & Compliant Simu-

lation and Model-
ing Architecture
(CoSiMA)

experimental evaluation of the approach.
The thesis is outlined in 9 chapters, which cover the introduced RQs: Chap-

ter 1 introduces the research topic, presents the research problem, and defines
the relevant RQs of this thesis. Chapter 2 discusses the state-of-the-art in ro-
botics system design for CI tasks. This includes the task description, control
formalisms, and software principles. Content-wise, the thesis is presented in
three parts. Part I presents CoSiMA, which is a modeling environment that in-
corporates the conceptual ideas presented throughout this thesis to allow the
model-based specification and realization of executable real-time robotic sys-
tems for CI. Chapter 3 presents the L3Dim approach, which enables the model-
ing of the heterogeneous concerns of robot control systems, and its application
in CoSiMA. Chapter 4 is concerned with an extension of CoSiMA, to support
the definition of timing constraints on the model level as well as their im-
plementation in the real-time execution framework (i.e. OROCOS RTT). Part II
sets the focus on researching the domain of CI and its integration into CoSiMA.
Chapter 5 is dedicated to the analysis of the CI domain to find the right ab-
stractions to model CI tasks in terms of a task description. Chapter 6 translates
the concepts from the previous chapter into an extension of CoSiMA, which
allows to practically create valid CI task models. Chapter 7 establishes the link
between the task model and the system model via a synthesis mechanism. The
synthesis is presented for the PIDC approach. Part III puts this thesis into per-
spective by evaluating and discussing the applicability of CoSiMA. Chapter 8

presents three representative robotics case studies for CI and compares their
execution to the specified models. Chapter 9 gives an overall conclusion and
outlook for future work.

The individual contributions are outlined per chapter and part in Table 1.1:
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Chapter RQ Contribution

Part I CoSiMA

3 1 The MDE-based modularization and composition framework L3Dim
and its concrete instantiation as CoSiMA, which enables the modeling
and execution of robotic systems.

[Wig+17b; Wig+17a; Wig+18; Nor+16a; Wie+18]

4 2 The modeling and realization of non-functional execution time con-
straints on the robotic system, integrated as DSL-extension into
CoSiMA.

[Wig+18; WW19; Moh+18]

Part II Compliant Interaction

5+6 3 Conceptual and technical realization of the insights gained from the do-
main analysis on CI as a DSL for CoSiMA to model CI task descriptions.

[WDW20; Deh+ss]

7 4 Synthesis of a PIDC-based control system model from a CI task descrip-
tion through model transformations, based on a developed reference
architecture.

[WDW20]

Part III Perspectives

8 5 Application of CoSiMA to realize 3 experiments to show the scalability
of the approach.

[WDW20; Wig+17a; Deh+18; Deh+ss]

Table 1.1: Overview of the contributions per chapter.
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“ If I have seen further, it is by standing on the
shoulders of giants.

”
— Sir Isaac Newton

2
E N G I N E E R I N G C O M P L I A N T C O N T R O L S Y S T E M S

This chapter gives an overview of the heterogeneous parts that are required to de-
sign robotic systems for compliant interaction. The first part covers state-of-the-art
task-level programming and suitable control frameworks. The second part introduces
component-based software engineering and model-driven engineering principles for
robotics. Together, this lays the theoretical foundation for the work presented in this
thesis.

Designing a robotic system to perform a task that involves compliant interac-
tions is still a complex endeavor. A system, such as those depicted in Figure 1.1,
involves several different concerns and capabilities, including using different
sensors and actuators in real time, compensating for uncertainty and noise,
and reacting to unexpected situations safely [KSB16]. All, while the system
tries to achieve a desired task.

In the course of this chapter, the theoretical background for the work pre-
sented throughout this thesis is introduced. It starts with the presentation of
state-of-the-art (SotA) approaches for task-level programming, followed by the
relevant and prominent control strategies for compliant interaction, and ends
with the introduction of suitable software engineering methods to manage the
software complexity of a robotic system in terms of reusability and maintain-
ability.

2 .1 task description and task-level programming

The first step in designing a robotic system for compliant interaction is to de-
scribe the task which should be accomplished. Without a task, there is no need
for a robot to move. The behavior produced by a robot is always but not exclu-
sively depending on the task. According to the literature, a robot’s behavior
is usually defined by one or more tasks to achieve a particular goal. In sev-
eral works, tasks describe actions such as Peg-In-Hole [MW01], while skills
represent smaller actions that are composed to realize a task, e.g., Move-To
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and Screw [Tho+13]. However, the other way around can also be found in the
literature [Näg+18], where a skill act as a container for multiple tasks. In gen-no consensus in

the definition of
tasks and skills

�

eral, there seems to be no common agreement about the definition of tasks and
skills, since in some cases these terms are even used interchangeably. However,
what all those approaches have in common is the fact that they provide a kind
of task description and aim to make the programming easier, by abstracting
from the low-level control.

Figure 2.1: Screenshot of Franka Emika Desk [Emib] from [Ion21].

In the recent years a trend in the research community as well as in the in-
dustry (i.e. COBOT manufacturers) has emerged, which heavily focuses on
task-level programming [Ion21]. Prominent examples from the industry are
Franka Emika Desk [Emib] (see Figure 2.1) and Drag&Bot [Dra], which fol-
low a sequential or tree-based skill-oriented programming approach. The in-
terested reader may refer to [Cor+20] for a review of visual robot programming
tools. These approaches as well as similar ones from the research community
(e.g., [SWW18; MW01]) focus on the simple but intuitive sequencing of skills.
In [Ped+16; Sch+18] three different layers are defined (i.e. primitives, skills and
tasks) to support the separation of roles and to distinguish the programmer of
skills from the operators in the factory that program the high-level tasks. Fol-
lowing a similar distinction, Björkelund et al. [Bjö+11] focus on the definition
of skills, using a constraint-based task description, introduced by De Schutter
et al. [de +05]. This approach can be traced back to Mason’s [Mas81] idea of
the Task Frame Formalism (TFF), which was further formalized by Bruyninckx
and De Schutter [Bd96].

The TFF is used to independently constrain the translational and rotational
DoF of geometric objects, by assigning separate velocity or force control for-
malisms to the axes of a single task frame (or compliance frame). Constraintscompliance frame &

are classified into natural constraints enforced by the environment and artifi-
cial ones enforced through a task. Figure 2.2 shows the alignment of the end-
effector (EEF) tool with a surface (a) as well as the associated TFF description
(c). The TFF approach was extended in [de +07; Smi+08] to be applicable to
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multiple frames, by introducing the concepts of object frames (e.g., o1), feature
frames (e.g., f1), and feature coordinates

χf =
(
χTfI χTfII χTfIII

)T
, (2.1)

for every feature, to impose constraints on the relative motion between ob-
jects [de +07].

This idea of using constraint-based descriptions of geometric relations be- � TFF as basis for
describing the CItween object frames for the task description builds the foundation to describe

the compliant interaction in this thesis. Although, TFF models the geometric re-
lationships, it does not specify the dynamic behavior of the relationships and
the enforcement of the constraints as part of the task description. Since it’s
introduction, TFF is used as basis for multiple works (e.g., [Smi+08; Klo+11;
Van+13b; Tho+13; Näg+18]).

move compliantly {

    with task frame directions

        xt: velocity v1 mm/sec

        yt: velocity v2 mm/sec

        zt: force f N

        axt: force 0 Nmm

        ayt: force 0 Nmm

        azt: velocity w1 rad/sec

} until time > t sec

(a) (b) (c)

Figure 2.2: Alignment of the block-shaped robot EEF with a surface. The example
(a) and the TFF specification (c) is inspired by Figure 6 in [Bd96]. The
corresponding feature frame and coordinate representation (b) is based on
Section 5.4 in [de +07].

An exemplary situation which can be described by this framework is shown
in Figure 2.2. Here, two relations are constrained. For each relation, a loop
between feature and object frames is created. The first feature (( )a) connects
the frame f2a, located at the edge of EEF which is rigidly attached to the robot
(o2), to f1a which is located on the surface (o1a). The second feature (( )b)
connects the rigidly attached frame f2b with f1b, which is compliantly coupled
to o2 via o1b. Here, the compliant coupling is caused due to the mechanical
coupling of a force-torque-sensor. To describe the relative motion for the two
features, the following feature coordinates can be chosen:

χafI = (−) χbfI = (−)

χafII =
(
xa ya za φa θa ψa

)T
χbfII =

(
xb yb zb φb θb ψb

)T
χafIII = (−) χbfIII = (−)

.

(2.2)
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The chosen DoFs can be further constrained to represent artificial and natural
constraints using the TFF:

y1 = ẋ
a = y1,d = v1

y2 = ẏ
a = y2,d = v2

y3 = ψ̇
a = y3,d = w1

y4 = Fz = kz z
b = y4,d = f

y5 = Tx = kax φ
b = y5,d = 0

y6 = Ty = kay θ
b = y6,d = 0

velocity constraints
(artificial)

} force constraints
(natural and artificial)}
force / compliance constraints
(natural)

, (2.3)

where yi denotes output variables and yi,d the corresponding desired values.
ẋa, ẏa, and ψ̇a denote the velocities parallel to the surface and the rotation
around the z axis, which are artificially controlled using the set point veloci-
ties v1, v2, and w1. When in contact with the surface, y4 models the natural
constraint through the force-torque-sensor coupling (i.e. stiffness kz, kax, and
kay) in combination with an artificial one, which is represented by the applica-
tion of the desired force f. To align the rotational DoFs of the EEF (φb and θb)
with the surface, a fully compliant behavior is achieved by artificially choosing
y5,d = y6,d = 0.

2 .2 compliant interaction control

To achieve any kind of behavior, including the realization of the previously
mentioned constraints, a control signal needs to be generated and send to the
robot. While there are numerous methods in the literature to generate a con-
trol signal for a robot in the kinematics as well as in the dynamics domain,
modeling the dynamics behavior of such a robot in combination with exter-
nal forces as the first step, seems to be widely agreed upon in the context of
compliant interactions [FO16; CFK16; Vd16]. The following equation models
the dynamics of a rigid multi-body robotic manipulator with D joints that is
subject to (contact) constraints and external forces [Deh+ss]:

Mq̈ + h = τ+ JTcλc + JTxFx , (2.4)

where τ ∈ RD is the vector of joint torques, M ∈ RD×D is the inertia ma-
trix, q, q̇, q̈ ∈ RD are joint positions, velocities, and accelerations, and h ∈ RD

is the vector of generalized gravitational torques and centrifugal, gyroscopic,
and coriolis effects. Additionally, Jc ∈ R6 B×D denotes the constraint Jacobian
that describes B linear independent constraints, which are associated with (vir-
tual) contacts. All contact wrenches applied by the robot to enforce contact
constraints, are vertically concatenated and denoted as λc ∈ R6 B. External
disturbances—caused by physical interaction—at a (contact) location x ∈ SE(3)
are modeled as an unknown wrench Fx ∈ R6 and are mapped onto the joint-
space using the respective Jacobian for that location Jx ∈ R6×D.
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2 .2 .1 Reacting to External Disturbances

Controlling a robot in a contact-free situation (i.e. Jc = 0), can typically be done
in joint space as well as in the operational task space, or a hybrid combination
thereof. The relation between a task space wrench F ∈ RH of an H-dimensional
operational point in the task space, a joint torque vector τ, and the desired
acceleration ẍ can be described by the operational-space formulation [Kha87]:

Mq̈ + h = τ⇔ JTF = JTΛ
(
ẍ − J̇q̇ + JM−1h

)
, (2.5)

where Λ =
(
JM−1JT

)−1
is the operational space inertia matrix. To perform a

single control objective q̈ and ẍ need to be replaced respectively by e.g., a classi-
cal PD control law. For control in compliant interaction with the environment,
the external forces need to be explicitly considered as done in Equation 2.4.
Following that idea, the external forces are prominently modeled using an
impedance control law [Hog85], yielding a (joint space) impedance controller
that is capable of compliantly coping with external disturbances:

τ = Mq̈ + Dd ˙̃q + Kdq̃ , (2.6)

with q̃ = qd − q, where qd denotes the desired joint angles as the virtual
equilibrium point in the joint space, Dd and Kd are the desired damping and
stiffness matrix respectively.

2 .2 .2 Multi-Objective Control

Depending on the available DoFs, multiple control objectives can be composed
to achieve a desired robotic behavior. Approaches that compose control objec-
tives on the same priority level exploit the resulting interferences to achieve the
behavior [Mor+13a; DRS15]. This type of prioritization however, does not en-
sure that any of the control objectives are achieved and might cause unforeseen
motions. Instead, to ensure that the primary objective is always achieved, while
secondary ones are only achieved when possible, the interferences between the
objectives need to be limited. This is done by exploiting the redundancy of the
robots.

Robotic manipulators with a small degree of redundancy regarding the over-
all task DoF, usually perform a primary objective (e.g., drawing a circle in the
task space) and a secondary objective that exploits the redundancy to maintain-
ing a particular joint configuration [Emm+13], avoid joint limits [Lie77], or min-
imize the actuators’ generalized forces [HS85]. In contrast, hyper-redundant
robots, such as humanoids can employ multiple levels of redundancy to per-
form various control objectives with decreasing priorities, without interfering
with higher priority objectives. Some pioneers in this research area are Naka-
mura et al. [NH87], Siciliano [Sic90], and Mansard et al. [Man+09]. The latter
introduced the notion of a Stack of Tasks (SoT) as a generalized inverse kine- & Stack of Tasks (SoT)

matics framework to solve the motion of humanoid robots, which is based on
earlier work [SS91]. The SoT approach is capable of combining both previously
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mentioned types of prioritization and can be realized analytically [Deh18] or
numerically [Roc+15].

2 .2 .2 .1 Projection-Based Prioritization

Approaches that address the SoT analytically usually resort to a projection-
based solution. For a redundant manipulator with the task Jacobian J, orthog-
onal projection for the range-space H ∈ RD×D and the nullspace N ∈ RD×D

can be defined as

H = Jw+J = JT (JJT )−1J = JT (Jw+)T (2.7)

and

N = I − H = I − JT (JJT )−1J = I − JT (Jw+)T (2.8)

to project1 the primary objective F ∈ R6 onto the range-space, while a joint
torque vector τ0 ∈ RD (in the case of a torque controlled robot) as secondary
objective is projected onto the nullspace [Kha87]:

τ = HJTF + Nτ0 . (2.9)

While such a strict prioritization ensures that the control signal of a control
objective at priority level j does not interfere with higher priority levels i if
j > i, it also means that the lower priority objectives can only be performed
if enough DoFs are available in the nullspace. K levels of objectives can be
decoupled using a successive or an augmented approach [DOA15]:

τ =

K∑
i=1

Niτi with Ni =

Nsuci−1
(
I − Jw+

i−1Ji−1
)

| successive

I − (Jaugi )w+Jaugi | augmented
, N1 = I , (2.10)

where Jaugi =
(

J1 · · · Ji−1
)T

denotes the augmented Jacobian for the ob-
jective i. To achieve a soft prioritization without decoupling the objectives, a
weighting can be introduced in the nullspace projection [LTP15]:

Ni(αij) = I −αij Jw+
i Ji , (2.11)

where αij indicates the priority of objective iwith regard to objective j. Alterna-
tively, a set of control objectives can directly be super-imposed using positive
scalar priorities (λi > 0) on the signal-level [BK11; Mor+13b; Deh18]:

τ =

K∑
i=1

λiτi . (2.12)

1 (A)# denotes the general inverse of a matrix A, whereas (A)w+ denotes the pseudoinverse with
weighting w. The moore-penrose pseudoinverse uses w = I [DOA15].
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2 .2 .2 .2 QP-Based Prioritization

Similar to the previous approach based on a sequence of pseudoinverses, which
ensure that lower level objectives do not influence higher levels [SS91], a se-
quence of Quadratic Programming (QP) problems can be formulated, where & Quadratic Program-

ming (QP)the solution of each problem rests within the nullspace of the higher priority
problem. In the QP literature, control objectives are generally represented as
QP tasks. A generic QP task (S) and its constraints at priority level i+ 1 can be
defined as [Moh20]

Si+1 := argmin
x∈Si

1

2
‖Aix − bi − λe‖2 + 1

2
‖ω‖2 + ρ

2

2

∥∥x2
∥∥

such that Cix −ω 6 di, ω ∈ R+

, (2.13)

where A is the task matrix, b is the vector of task space values, and C and d
are the constraint matrix and the constraint vector respectively. The problem
variable is denoted as x, e is the task space error, λ denotes a feedback gain
term, ρ is a regularization factor to bound the solution when A becomes ill
conditioned, and ω is a positive slack variable [KLW11].

Using Equation 2.13, L control objectives can be realized on the same level
of priority within the same QP task. This would achieve a behavior similar
to Equation 2.12. By using the concept of augmented task matrices (i.e. Jaco-
bians in Equation 2.10), a soft priority relationship between QP tasks can be
imposed using relative weights (βl). The augmented task matrices and error
vectors can be written as [Roc+15]

Aaug =
(
β1AT1 . . . βnATl

)T
baug =

(
β1bT1 . . . βnbTl

)T . (2.14)

2 .2 .3 Control in Contact Situations

To control robots in contact situations, PIDC [Agh05; MR11] provides a frame-
work that employs a strict prioritization to allow contact-consistent motion
generation without the need for additional (force-torque) sensors. In contrast
to other approaches, PIDC prevents the motion control objective τM ∈ RD

from affecting the contact and friction constraints, by projecting τM onto the
orthogonal nullspace of the contact constraint using

P ∈ RD×D = I − JTc
(
J+c
)T . (2.15)

Thus, creating two orthogonal subspaces: the constrained space (I−P) used for
contact wrench control (τC) and the unconstrained space (P) used for motion
control. For a fully-actuated and stationary robot the total torque command is
given by

τ = PτM + (I − P)τC . (2.16)
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The underactuated case can be solved analytically [Deh+ss] or using numeric
optimization techniques [AS16]. Considering Equation 2.4, the desired contact
wrenches can be realized through

(I − P)τC = (I − P)
(
h − JTxFx − JTcλc + ε

)
, (2.17)

where ε ∈ RD = MM−1
c

(
PτM − Ph + Ṗq̇

)
with the (invertible) constraint iner-

tia matrix Mc = PM + I − P mitigates the potential generation of accelerations
from the motion control objective in the contact space [Lin+18; Deh+18]. For a
discussion on mitigation strategies to achieve dynamically consistent motion
control, please refer to [DOA15; Deh+ss]. The motion control realized through
τM can be performed in the joint space [Agh05] as well as in the operational
space [MR11] using Equation 2.5:

PτM =

{
P (Mq̈ + h) | joint space

P
(
JTΛc

(
ẍ − J̇q̇ + JM−1

c

(
Ph − Ṗq̇

)))
| operational space

(2.18a)

(2.18b)

where Λc =
(
JM−1

c PJT
)−1

denotes the constraint task-space inertia matrix.
Note that PIDC can be combined with the SoT approach to realize multiple
objectives in the subspaces.

The advantage of using a projection-based approach is the possibility to
dynamically shape the nullspace projections [DKS18] to adapt to new task
requirements. Whereas, transitions between multiple QP-based SoTs is still
an active research topic, even though promising approaches exist [Jar+13]. To
overcome the shortcomings of projections in handling inequalities [Man+09;
KLW11], which are imposed by the friction cone constraints of unilateral con-
tacts, the PIDC can be combined with QP techniques [Lin+18]. This combina-
tion benefits from the advantages of both approaches.

2 .3 component-based software engineering for robotics

Up to this point, the focus was set on the control capabilities that are neces-
sary for a robotic system in compliant interaction. Even though, the controlsystems involve

multiple hetero-
geneous concerns

�

capabilities are very important, they are also only a subset of the capabilities
that an entire robotic system needs to exhibit. Usually, capabilities originate
from different heterogeneous domains, ranging from functional aspects, i.e.capability concerns �

motion control, vision-based perception, and planning (including coordina-
tion) to non-functional aspects, such as safety, reliability, and timing. At a tech-
nical level, additional complexity arises from managing the communication
between the sensor and actuator drivers, the execution of the control and plan-software and hard-

ware concerns
�

ning algorithms, as well as the concurrent access to shared resources [Cal+12].
Mastering the combined complexity of the capabilities is imperative to real-
ize real world robotics applications. Eventually, a robotic system translates to
a software system with tremendous complexity, which needs to be maintain-
able, scalable, and reliable. Hence, mastering the robotic system complexity
is closely related to managing the software complexity [Sch+09], which faces
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the additional challenges of integrating different software frameworks. This
leads to the wide-spread consensus in the robotics community that software
engineering principles need to be applied to robotics. Especially, considering � robotics requires

software engineeringthe heterogeneous nature of robotics, the principle of separation of concerns
reduces the complexity by approaching the problem in a divide and conquer
manner. While this paves the way for a clear assignment of responsibilities and
roles, it also prevents an undesired entanglement of domain aspects and hid-
den assumptions regarding other concerns. An intended by-product is modu-
larity, which can lead to reusability as long as there are no hidden assumptions
present and all relevant properties are explicitly specified.

Unfortunately, a lot of robotics software do not yet follow a software de-
velopment process and often heavily tie software- and hardware-agnostic algo-
rithms to particular software implementations, robots, and application-specific
knowledge. This directly hinders scalability and may ultimately prevent the in-
crease of the Technology Readiness Level (TRL),2 necessary to transition from & Technology Readi-

ness Level (TRL)a laboratory to a relevant validation environment. Furthermore, it also pre-
vents the reuse and adaptation of the system to be applied to even a slightly
different application [KSB16]. This is an unacceptable disadvantage, consider-
ing the experimental nature of many robotic systems, where individual func-
tional and non-functional parts are quite commonly subject to change. Nowa-
days, different approaches exist that especially address the challenges of reuse
and adaptation in terms of reconfiguration. The most prevalent approaches
apply component-based software engineering (CBSE) principles [HC01; CL02; & component-based

software engineering
(CBSE)

SGM02] to robotics, giving rise to component-based robotic systems (CBRS)
[Soe06; Kou16; OSR; Nor+16a; BS09; BS10; Wie18]. & component-based

robotic systems
(CBRS)

In general, CBSE arose from the software engineering community with the
goal to shift the focus from traditional programming to building software sys-
tems by composing self-contained components & component[Bro+05; Sch+09]. The main
idea behind a component-based system is to divide and conquer. By splitting
up the overall problem into sub-problems, which individually solved, yield
the solution to the overall problem upon composition. By separating the com- � achieving reusabil-

ity, maintainability,
and reconfigurability
through modulariza-
tion and composition

ponent development process from the system development process, major
benefits, such as reusability and isolated development of components, are
achieved [Sch+09]. This means that components can be reduced to their spec-
ification in terms of e.g., interfaces and system-relevant non-functional prop-
erties, thus allowing a seamless replacement of component (implementations)
as well as an isolated development of the system and the components’ in-
ternals [Bro+05]. Indeed, the adaptability of the system and the reusability
of functionality is significantly dependent on the particular composition and
interaction of components [BS10]. For CBSE to live up to its promises of in-
creased reuse, reduced complexity, and hence reduced production costs, it is
of upmost importance that the components are actually reusable [Sch+09] (i.e.
free of hidden assumptions that would prevent reuse) and that non-functional
properties are correctly reflected in the documentation.

2 www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html

www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html
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2 .3 .1 Separation of Concerns

The principle of separation of concerns for CBRSs separates the different as-separation of
concerns (SoC)

&

pects of such systems’ into five concerns (“5C’s”) [Pra+09; Bru+13] to decrease
their coupling while increasing the cohesion. In contrast to the “4C’s” definedSoC reduces the

coupling and in-
creases the cohesion

�

in [RE96], the additional concern of Composition is emerged from the original
Configuration concern. The rationale for this is that the composition of individ-
ual parts is as important as the modularity itself [VKB14].

2 .3 .1 .1 Separation of Concerns: C1 Computation

Computation represents the functional core of the system in form of e.g., compo-
nents. The concept of a component is widely adopted with varying definitions,
depending on the aspect that is emphasized. While Crnkovic et al. [Crn+02]
present a minimal definition of the term component, based on a review of sev-
eral definitions, Szyperski et al. give a similar but extended definition:

Definition: Software Component

“A software component is a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by
third parties.”a [SGM02].

a The definition originated from the Workshop on Component-Oriented Programming at
the 1996 European Conference on Object-Oriented Programming (ECOOP).

Even though there exist several definitions for components, there is a com-
mon agreement that a component

1. implements domain knowledge [Bru+13] in form of data processing al-
gorithms using data structures and operations [BS10],

2. requires concurrent read and write access to external data sources,

3. needs to provide a specification of non-functional properties as well as a
documentation of design aspects [Crn+02] that conform to the paradigms
of the framework they are supposed to be composed in.

A component designed for the underlying component model of a specifica component im-
plementation de-

pends on the com-
ponent model of

the underlying soft-
ware framework

�

framework (e.g., OROCOS RTT [Soe06]), will be different from a component
designed for another framework (e.g., ROS [Qui+09]), since the actual realiza-
tion of the separation of concerns plays an important role. This also means,
that components designed for one framework may not be reusable in another
framework, due to the possibly mismatching criteria for reuse (i.e. interfaces),
defined by the specific instantiation of the separation of concerns.

2 .3 .1 .2 Separation of Concerns: C2 Communication

Communication is concerned with the data exchange of computational compo-
nents. This includes non-functional aspects, such as time, bandwidth, latency,
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accuracy, and priority [Bru+13]. Different communication patterns can be em-
ployed between components to achieve a desired behavior [KSB16]. The most
common communication mechanisms3 are anchored in object-oriented pro-
gramming, namely publish–subscribe and client–server.

2 .3 .1 .3 Separation of Concerns: C3 Coordination

Coordination defines the behavioral aspects of a system, by determining the
cooperation or competition between components to achieve a desired behav-
ior. This includes managing the concurrent access to shared resources, the
application-related behavior coordination, and the timed execution of com-
ponents to ensure that required data is available when needed. The latter is
especially important for real-time constrained robotic systems that require cer-
tain response times to produce a stable behavior. The execution semantics of
components are also covered by this concern, targeting the individual execu-
tion time of a component as well as the overall response time of a defined
sense-react chain (see Chapter 4). & sense-react chain

A system can be coordinated on different levels. A system-level coordina-
tion is able to address component-overarching aspects, while a component-
level coordination defines the behavior of a component. There exist numerous
coordination approaches [MAC97]. The majority of these approaches, such
as state machines [KB12a], behavior trees [Flo+09; Ogr12; Bag+12], and Petri
nets [ZM94], define a behavior in a discrete way, by assuming an implicit or
explicit state-space.

2 .3 .1 .4 Separation of Concerns: C4 Configuration

Configuration is a concern that is twofold. Firstly, it relates to the structural as-
pect of a CBRS, by defining the involved components and their connections
to each other [BS10], while being constrained by the expected communication
pattern and the components’ interfaces. Secondly, the concern allows the pa-
rameterization of components, based on domain knowledge to adapt the sys-
tem to achieve a desired behavior, necessary for a specific application. Com-
mon purposes for configuration are e.g., tuning control gains and safety limits,
changing the controlled DoF, defining component interaction policies, and al-
locating software and hardware resources [Bru+13].

2 .3 .1 .5 Separation of Concerns: C5 Composition

Composition is a cross-cutting aspect that is concerned with coupling the previ-
ously introduced “C’s”, which are instead driven by the desire to decouple the
design concerns as much as possible. According to Bruyninckx et al. [Bru+13],
every composition introduces a trade-off between composability and composition-
ality. While the former describes the degree of reusability of a component, the
latter takes the system’s view point, describing to what degree the behavior
resulting from a composition can be inferred through the knowledge over the

3 For more information on the communication mechanisms, please refer to [BS10].
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constituent components. According to Brugali and Shakhimardanov [BS10],
practical experience in software engineering has demonstrated that effective
reuse of components can be achieved

1. if their inter-connections are flexible and their interfaces harmonized
enough to accommodate changes in user requirements and the substi-
tution of components;

2. if the components conform to domain-specific composition rules;

3. if no hidden assumptions are present that prevent assessments about the
predictability of the system’s behavior.

2 .3 .2 Separation of Roles

By separating the concerns, different roles can be introduced to distribute theseparation of
roles (SoR)

&

development responsibility per (domain) expertise. These roles extend on the
roles defined in RobMoSys’ Body of Knowledge.4 Note, that only the roles
relevant for this work are described below:

behavior developer is responsible for developing a task description for
the robot’s behavior by introducing task-specific constraints (i.e. motion con-
straints and coordination constraints). To realize a task description, usually a
constraint-conforming orchestration of e.g., skills needs to be developed by
this role. While a skill represents a specific functionality, it abstracts from its
specific implementation, which is based on an orchestration of components.
Hence, ensuring the separation of concerns towards the role of the Component
Supplier.

component supplier is responsible for developing components that im-
plement the functionalities provided by the Function Developer, or that inter-
face with hardware devices managed by the Robotic Platform Engineer. Since
the components are software components, they are implemented towards a
specific software platform, which is in turn managed by the Software Platform
Engineer. In a non-model-based software development process, these roles are
tightly coupled.

performance designer is responsible for the properties related to the
timing of a system. This is a non-trivial task that is often neglected in robotics,
but is essential for a stable, predictable, and safe execution of the tasks, par-
ticularly in a real-time and safety critical application. The Performance Designer
defines the execution semantics of a system. This includes a schedule for the
execution of the components, involved in the sense-react chains envisioned by
the System Architect and realized by the System Builder. The resulting schedule
needs to conform to possible timing-related constraints on the execution that

4 https://robmosys.eu/wiki/general_principles:ecosystem:roles

https://robmosys.eu/wiki/general_principles:ecosystem:roles
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influence the mapping to a (CPU) core, the execution order, and the activa-
tion semantic of components. While several aspects of this role are platform-
agnostic, there are other aspects that can only be addressed in close relation to
the software and hardware platforms that the system will be executed on.

robotic platform engineer is responsible for the hardware used by � additional role to
explicitly cover the
hardware platform
concerns

the system and its integration. This entails the robots, individual sensors and
actuators, as well as the processing hardware for the software platform. This
role needs to interact with different roles, such as the Component Supplier (e.g.,
hardware drivers) and the Performance Designer (e.g., allocation of hardware
resources). The rationale for this role, which is not present in the current Rob-
MoSys’ approach, is to separate the hardware from the software aspects and
to provide a dedicated responsibility to manage the hardware platform inde-
pendent of the task-specific functionalities.

software platform engineer is responsible for the software frame- � additional role to
explicitly cover the
software platform
concerns

works. This includes e.g., the component execution framework, the middle-
wares, and other required software artifacts. Apart from managing the soft-
ware platform, this role is obliged to assist in mapping the system, constructed
by the System Builder to the associated software platform by providing re-
quired, but missing information. This role is also not present in the current
RobMoSys’ roles. The rationale for this role is to separate the software from
the hardware aspects and to provide a dedicated responsibility to manage the
software platform independent of the task-specific functionalities.

system builder is responsible for composing the (software) components,
which are provided by the Component Supplier, into a system according to the
blueprint of the reference architecture, constructed by the System Architect. The
main activity of this role is to select function-wise suitable and interface-wise
compatible components that suffice the non-functional constraints regarding
e.g., the timing (i.e. sense-react chains), the safety, the performance, and the
robustness. Another activity of this role is to provide the resulting system
ready for deployment.

2 .4 model-driven engineering for robotics

Component-based software engineering paradigms only enable the separation
of concerns and roles for aspects related to the system’s component architec-
ture. A robotic system however, involves highly heterogeneous concerns from
various domains, such as motion planning and control, multi-modal percep-
tion, machine learning, or interaction design. Such a composition of concerns
requires the conceptual and technical combination of the expertise from the
different domains, to jointly realize the requirements of a desired robotics ap-
plication. Even using traditional software engineering (e.g., component-based
paradigms), it is too complex and expensive to achieve such a composition
while ensuring reuse, flexibility, and adaptability [Sch+10] on the conceptual
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and technical level. The main reason is that the different artifacts lack interop-
erability, hence preventing to achieve the aforementioned properties [JZ17].

Model-driven engineering (MDE) [Sch06; SVC06; ZC06; WHR14; Rod15] hasMDE &

proven to be suitable to address the challenges of similarly complex systems
as advanced robotics [Nor+16a], which require high reliability and robust-
ness [Sch+10]. Successful applications have been shown in domains, such as
avionics or automotive [vKV00; Sch+10; Ara+21]. In general, MDE describes a
software development methodology, which introduces a model level that ab-model &

stracts from the software artifacts. A model is always an abstraction of some-introducing models
to abstract from the
technical realization

�

thing5 with the focus on purpose-relevant properties; or as Jeff Rothenberg et
al. put it:

Definition: Model

“Modeling in its broadest sense is the cost-effective use of something in
place of something else for some purpose. It allows us to use something
that is simpler, safer, or cheaper than reality instead of reality for some
purpose. A model represents reality for the given purpose; the model is
an abstraction of reality in the sense that it cannot represent all aspects
of reality. This allows us to deal with the world in a simplified manner,
avoiding the complexity, danger and irreversibility of reality.” [Rot+89]

With the introduction of models, the responsibility of achieving reuse, inter-
operability, and the assessment of quality aspects, such as safety, correctness,
and performance [Sch+10] is lifted from the source-code level. This way, the
modeled aspects can be represented independent of their actual realization,
which enables a higher understandability and platform-independence, and re-
duces the risk of making costly errors even without an actual source-code
level realization [Ara+21; Bru15]. Using the concept of code generation, the
models can systematically be transformed into different target implementa-
tions, achieving a traceable and efficient link to the technical realization of a
system. With the introduction of a model level, MDE has the potential to break
the cycle of robotics software starting from scratch again and again. Further,
paving the way for a cross-fertilization between software engineering and ro-
botics [Sch+09].

In the field of robotics, MDE approaches primarily focus on describing ro-MDE already
used in robotics

�

botics concerns via conceptual models (i.e. domain models). These models
are based on concepts that raise the level of abstraction to focus on proper-
ties relevant to the domain while ignoring technical ones [Sch+09]. This leads
to an easier understanding and validation, as well as to a lower technical skill
requirement for developers to handle the complexity of the robotics system de-
velopment [Nor+16a]. Further, an increased level of automation, i.e. through
model transformation and model interpretation can be achieved that bridges
the gap between models and implementation. MDE facilitates the SoC and
SoR [Sch+15; Sch+09], hence improving the efficiency and quality of the robot-
ics systems engineering process [Nor+16a].

5 Sometimes called system, which does not necessarily refer to a robotic system, though it could.
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2 .4 .1 Domain-Specific Languages

A recently trending and quite promising method in the field of MDE is to cap-
ture the conceptualized domain knowledge with DSL [Nor+16a]. In addition & domain-specific lan-

guage (DSL)to the increased level of conceptual abstraction offered by MDE approaches,
DSLs provide accompanying notations to the models that are closer to the
problem domain than general-purpose languages (GPLs) [Nor16]. Again, in-
creasing understandability and efficiency.

Meta-Meta-
Model

conforms to

Meta-Model

System

conforms to

Model

M0

represented by

conforms to

M1

M2

M3

Figure 2.3: Meta-
modeling layers
[Béz05].

Definition: Domain-Specific Language

A DSL is a languagea of limited expressiveness, focused on a particu-
lar domain [Fow10]. It enables the creation of a “program” or “source
code”—which is commonly referred to as language model—using the
notations of the targeted problem domain. The semantically relevant
information expressed by a language model is represented using an ab-
stract syntax as data structure [Völ+13]. The abstract syntax is in turn
defined by a meta-model [Com+16]. Hence, a model always conforms
to at least one meta-model. It is also possible that a (reflexive) model con-
forms to itself, occupying the roles of the model and meta-model at the
same time (see Figure 2.3).

a While in general a DSL can be also referred to as programming language, I will only
use this term for general-purpose languages in the course of this thesis.

The DSLs used throughout this thesis consist of different aspects to enable
the creation of a model (see Figure 2.4): The structure aspect of a DSL describes
the abstract syntax, i.e. meta-model in form of concepts that act as data struc-
tures. These concepts allow a model to represent semantically relevant infor-
mation in form of a tree or a graph, i.e. abstract syntax tree (AST). In addition
to the structural restrictions, further constraints can be introduced via the con-
straints and type system aspect, defining the static semantics of a language. In
contrast to the abstract syntax, multiple concrete syntaxes & concrete syntaxcan be defined in
the editor aspect. The concrete syntax is the interface to the language user. It
can either be textual, tabular, graphical, or a mixture depending on the pur-
pose and notations of the targeted domain. One optional aspect of a DSL are
the transformations, defining the execution semantics of a model. By applying
a transformation, a source model can be transformed into one or more target
models, which conform to the same (homogeneous transformation & homogeneous trans.) or to a dif-
ferent (heterogeneous transformation & heterogeneous trans.) meta-model as the source model. The
described aspects of a DSL are realized in one or more language modules. A & language module

very common approach is to extract the transformations aspect into a separate
generator module to increase the SoC. The reader may refer to [Völ+13; Fow10;
Com+16] for further information on DSLs and their benefits.
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Figure 2.4: Extension of the language design aspects presented in [Voe15].

2 .4 .2 Language Modularization and Composition

DSLs not only provide an efficient methodology to model the individual con-
cerns of the different involved robotics domains, but also offer the potential
to combine them on the model level and to establish a link towards a con-
forming implementation on the source-code level via model-transformations.
This is necessary to enable the design, integration, and verification of entire
robotics applications at the model level. However, to achieve this a unifying
language modularization and composition (LM&C) approach is required thatlanguage modular-

ization and com-
position (LM&C)

&

allows meta-model, model, and transformation composition. Note that this is a
very challenging task (see Section 3.1.3). According to the literature, DSLs are
commonly modularized and composed along two orthogonal axes (vertical
and horizontal) [RMT14], which are not necessarily used together.

2 .4 .2 .1 Vertical Modularization and Composition

Vertical LM&C as proposed by Object Management Group (OMG) uses the fol-
lowing four model types, each on their unique level of abstraction, to separate
platform- and implementation-specific model aspects from the domain-specificvertical LM&C is

used to separate
abstraction levels

�

requirements of the to be modeled concern [Sie14] (see Figure 2.5). With this,
e.g., a component-based control architecture can be exchanged and reused in-
dependent of the software platform that is chosen for execution (e.g., ROS).

Computation-independent models (CIMs) belong to the category of domain
models. They are abstractions of “real” entities from a target domain, which
could be anything from e.g., timing, kinematics, to hardware, or human-robot
interaction requirements.

Platform-independent models (PIMs) in contrast, are closer to an information
system’s point of view, by describing logical aspects that are independent of a
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particular technology. PIMs in robotics are commonly used to describe the com-
ponents involved in a component-based system, how they are inter-connected,
and what kind of communication pattern are used, etc.

Platform-specific models (PSMs) belong to the category of implementation
models describing aspects or requirements introduced by using specific tar-
get technologies or platforms. For instance, a PSM can be used to describe a
component-based architecture that explicitly uses ROS communication mech-
anisms allowing to model valid ROS topics only. Thus, a PSM directly inherits
the semantics of the target platform.

Platform-specific implementations (PSIs) are not per se models. The acronym
is added by Ramaswamy et al. [RMT14]. I use this type to label the aspects that
exist at the border of what is considered outside the modeled system. A PSI
can be plain source code, but it can also be a model which is part of another
modeling environment.

Computation-Independent Model CIM e.g., robot behavior, timing, etc. requirements

model transformations

model transformations

model transformations

Platform-Independent Model PIM e.g., component-based control architecture

Platform-Specific Model PSM e.g., component-based architecture for ROS

Platform-Specific Implementation PSI e.g., executable ROS C++ source-code

level of abstraction

Figure 2.5: Vertical LM&C of models, according to [Sie14].

In this vertical LM&C, a certain development process is implicitly dictated. � this kind of verti-
cal LM&C is ap-
plied by several
works [Alo+10;
Sch+09; Nag+15;
Bru+13] to robotics

First, the domain-specific requirements of a concern need to be modeled as
CIM. Model transformations incrementally decrease the level of abstraction
by producing a model based on the previous more abstract model. On each
level, the model can be enriched with additional platform- or implementation-
specific knowledge. After the final transformation, a software artifact is pro-
duced, e.g., an executable ROS-based control system implemented in C++.

2 .4 .2 .2 Horizontal Modularization and Composition

Horizontal LM&C is used to separate the different concerns of a model at the � horizontal LM&C is
used to subdivide a
level of abstraction

same level of abstraction. This enables the introduction of viewpoints [Völ+13]
per concern or role (see Section 2.3.2) to manage the complexity by hiding
non-relevant parts of the model.

Horizontal LM&C is used in cases where a vertical LM&C would artificially � modularization does
not make sense with-
out an equally impor-
tant composition

loosen the coupling between naturally connected aspects in favor of modular-
ization, which leads to the detriment of composition. For instance, the computa-
tion and communication concerns of a CBRS are mutually influencing each other.
A change of the input parameters of an algorithm needs to be reflected by
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the component’s communication interface that is used to retrieve the required
data, and vice-versa. Instead, using a vertical separation the influence of the
different concerns needs to be achieved beyond model transformation borders,
which in the case of the commonly used uni-directional model transforma-
tions, is not feasible. The same holds true for the realization of viewpoints of
a set of relevant aspects, which are separated by model transformations.

In case of modeling component-based robotic systems, horizontal LM&C is
usually inspired by the 5C’s (see Section 2.3.1), cf. [Bru+13; Nor16; Alo+10;
Dho+12; Sch+09].

2 .4 .2 .3 Language Composition Mechanisms

In order to achieve the composition of DSL modules, different conceptual
mechanisms can be found in the literature, which are heavily inspired by well-
known composition patterns of object-oriented programming [EGR12]. Voelter
et al. [Voe11] propose four different types of composition, which I use through-
out this thesis:

referencing occurs in the case where a model based on a language refer-
ences fragments of a model based on another language. The important
part here is that the referenced model fragmentsmodel fragment &

cannot reside in the
same model where the reference originates. In this case, the referencing
language directly depends on the referenced one.

reuse is similar to referencing. However, no direct dependencies between the
languages are introduced. This means that only the models are connected
through a dependency.

extension introduces a direct dependency between the extending and the
extended (base) language. In contrast to the previous types, the extended
and extending model fragments reside in the same model. Thereby re-
quiring composition on the syntactic level as well. Extension can also be
used to restrict the scope of the extended language, by e.g., constraining
the use of certain concepts and their interaction with other aspects of the
language [EGR12].

embedding combines the advantages of extension and reuse. Hence, syn-
tactic integration of previously unrelated languages can be achieved,
while not having to introduce dependencies between the languages or
having to modifying either of them. Thereby, rendering embedding a
non-invasive kind of composition, which allows the languages to main-
tain their modularity and enabling heterogeneous model fragments to
be composed into the same model. An annotation is a mechanism that
is a specialization of embedding, which performs syntactic composition,
without introducing any kind of dependency between the elements of un-
related models. Annotations can be attached to arbitrary elements of the
AST without interfering with the annotated elements, while presenting a
seamless combination of the models’ concrete syntaxes [Voe11; Rat+12].
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2 .5 conclusion

This chapter discussed the heterogeneous knowledge that combined is re-
quired to create a robotic system, capable of interacting compliantly with the
environment. Defining the task or application that needs to be performed is es-
sential to the design of a robotic system. A skill-based approach, or on a lower
level constraint-based programming, is commonly used for that purpose. The
execution of such tasks is done using control approaches that generate a con-
trol signal, which is sent to the robot. Numerous works exist, proposing suit-
able control approaches that reactively cope with external disturbances and
that realize multi-objective control in contact situations. Note that even though
the SotA in contact control has advanced beyond the presented approaches, I
chose to only rely on already consolidated and mature approaches as foun-
dation in this work. Apart from the domain of control, literature on nearly
every individual concern of a robotic system exist. However, their essential
composition is alarmingly underrepresented.

Different software principles, i.e. component-based software engineering,
SoC, SoR, and MDE, are used by the robotics community to manage the com-
plexity of the system design by separating the concerns, and abstracting from
the eventually used software and robotics hardware platforms. DSLs provide
an efficient methodology that enables the design, integration, and verification
of robotics applications at the model level as well as to establish a link to the
source code level via transformations. However, a survey [Nor+16a] conducted
by us, showed that also in the increasing field of robotics DSLs, the focus is
primarily on the individual self-contained concerns and seldom on their com-
position. 779 journal, conference, and workshop publications in the field of
robotics were surveyed. Following up on the survey, we host the Robotics DSL & Robotics DSL Zoo

Zoo,6 which is a curated online database of surveyed publications. Due to its
community-driven nature, it is continuously but irregularly updated.

To achieve the interpretability of a system and the traceability between the
system and the resulting robot’s behavior, the heterogeneous concerns of a
robotic system need to be explicitly and interpretably combined on the model
level in a way that a consistent and conforming realization on the source code
level can be realized. This also includes the actually used software frameworks
and robotics hardware, which are integral parts of any real robotic system.

MDE publications that do consider the need and challenges for modular-
ization and composition, however, rarely tailor their LM&C approach towards
the robotics domain. In most cases, there is only a vertical SoC between the
functional PIMs and the software framework, targeted for execution as PSMs.
Aspects such as timing and hardware are often either completely neglected or
implicitly hidden in the PIM or PSM. Approaches that do employ horizontal in
addition to vertical SoC, seem to limit its application to the PIM layer [RMT14],
with the primary focus on the 5C’s for component-based systems. Hence, ne-
glecting the component-agnostic concerns on the CIM level, such as a task
description, behavior definition, as well as timing and safety requirements.

6 Feel free to contribute: https://corlab.github.io/dslzoo/contribute.html.

https://corlab.github.io/dslzoo/contribute.html




Part I

C O S I M A

This part introduces CoSiMA, which is a composable solution to re-
alize executable real-time robotic systems. CoSiMA uses language
modularization and composition mechanisms to achieve a consis-
tent composition of the heterogeneous concerns of robotic systems.
It consists of a modeling and an execution part. The modeling part
is concerned with the composition of the requirements on differ-
ent abstraction levels. Whereas, the execution part is based on a
real-time capable execution environment and includes a proposed
PIDC-based reference architecture for realizing CI tasks.





“ I consider nature a vast chemical laboratory in which all
kinds of composition and decompositions are formed.

”
— Antoine Lavoisier

3
M O D E L I N G R O B O T C O N T R O L S Y S T E M S

This chapter introduces a language modularization and composition approach that ad-
dresses the challenges of domain-specific languages for highly heterogeneous domains,
such as robotics. CoSiMA, a concrete instantiation of this approach for the model-
driven engineering of component-based robot control systems, is presented. CoSiMA
is extended and used throughout this thesis to model the robotics case studies. This
chapter closes with an evaluation of the modularization and composition structure of
CoSiMA. The chapter is based on [Wig+17b; Wig+17a; Wig+18; Nor+16a; Wie+18].

Advanced robotic systems such as in service, entertainment, or versatile in-
dustrial robotics with cognitive and compliant interaction skills require the
expertise from highly heterogeneous domains, such as motion planning and
control, multi-modal perception, or human-robot interaction, conceptually and
technically combined in a coherent design to jointly realize the application-
specific requirements that define the different aspects of a robot’s behavior and
the underlying system. The use of MDE in form of DSLs significantly reduces
the complexity by supporting SoC and SoR through the explicit separation of
the conceptual requirements (i.e. model level) from the implementation (i.e.
source code level) of individual robotics concerns. Model transformations are
used to establish a link between the levels (see Section 2.4).

However, to bridge the gap between an envisioned and the actual robot’s
behavior and to answer RQ 1, a LM&C & language modulariza-

tion and composition
approach is required that achieves the

consistent composition of system-unrelated (e.g., task and behavior) concerns,
system-related but platform-independent (e.g., architecture and coordination)
concerns, and platform-specific (e.g., OROCOS RTT-related) concerns. Associ-
ated model transformations enable the synthesis of a consistent composition
on the source code level that realizes the requirements of the modeled con-
cerns, which define the robot’s behavior and the system’s quality properties,
as an executable software artifact. Hence, languages, models, and transforma-
tions need to be composable.
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related work on lm&c in robotics Ringert et al. [Rin+16] present
an approach for language and code generator composition of CBRSs systems.
As the majority of related approaches, the authors apply a horizontal separa-
tion of structural, coordination, and configuration concerns on the PIM level.structural concern &

A similar separation is used by the Mauve DSL [LDC12], which provides
modeling and analysis support for the real-time execution of CBRSs. Both
approaches neglect the modeling of software and robot hardware platforms,
which are essential parts of a robotic system. As a result, the required robotics-
specific knowledge is hidden in the model transformations, which directly
transform the PIM into a chosen PSI (i.e. OROCOS RTT), while completely
skipping the PSM. V3CMM provides a platform-independent modeling ap-
proach for component-based application design. In addition to the horizontal
separation on the PIM level, it uses a PSM conform to OMG’s vertical sep-
aration (see Section 2.4.2.1). The PSM however does not cover any software-
or robot hardware-specific aspects. Hochgeschwender et al. [Hoc+13] propose
a model-based approach for software deployment in robotics, which allows
the explicit modeling of software and hardware platform concerns. While plat-
forms are models in terms of memory, processors, threads, and busses, the
robotic hardware (e.g., joints, links, control interfaces) is again not considered.
Similarly, the RobotML [Dho+12] DSL is designed to model and deploy CBRSs.
It uses a robotics-specific deployment model that covers the target software
platform (i.e. OROCOS RTT) and a robot simulator (i.e. Morse). In contrast to
Hochgeschwender et al.’s DSL, an overarching composition between the de-
ployment and structural concerns is not possible. Further, the authors provide
no details on how the platforms are actually modeled. Both approaches, how-
ever, hide software framework-specific knowledge in the code generators. The
BRICS component model [BG16] and the BRIDE toolchain [BWV14] provide
meta-models and a development process to model CBRSs in a framework-
agnostic way. While the approach does not consider the robotic hardware,
it provides explicit meta-models to model platform-specific Component-Port-
Connector (CPC) systems for different robotics software frameworks (i.e. ORO-
COS RTT and ROS). Due to the vertical SoC between the PIM and the explicit
PSM, model transformations are required to generate a system model that
contains platform-specific knowledge from a platform-independent model.

The majority of approaches applies some kind of horizontal SoC for con-focus is predom-
inantly on the

(in)dependence on
software frameworks

�

cerns related to the 5C’s, while separating the platform-independent aspects
from the platform-specific ones. However, the consideration of the software
and hardware aspects, appears to vary from being only implicitly considered
inside the transformations, over considering only the hardware or the software,
to providing explicit modeling support for both aspects. Even though the dif-LM&C is rarely

robotics-specific and
explicitly described

�

ferent publications are concerned with the LM&C of different robotics system
aspects, only Ringert et al. describe their LM&C architecture, including the
necessity for the composition of transformations, in detail.
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3 .1 l3dim : layered 3 dimensions approach

In the following I introduce the Layered 3 Dimensions (L3Dim) approach
which is a LM&C architecture, specifically tailored towards covering the differ-
ent concerns of a robotic system for CI & compliant interaction. In contrast to the majority of related
works that use vertical and horizontal SoC with an almost exclusive focus
on software-related concerns, L3Dim combines vertical and horizontal SoC
based on the natural interactions and couplings of the robotics capabilities-, & capability

software-, and hardware-related concerns. Figure 3.1 shows an exemplary in-
stantiation of the approach, which is used to aid the explanation below.
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Figure 3.1: An exemplary instantiation of the L3Dim approach with the main focus on
modeling a component-based robot control system that performs a specific
compliant interaction with the environment. The size of the layers (Li) is
of no relevance. Layer borders are marked as dashed lines. Model trans-
formations are used to cross from a more abstract to a less abstract layer.
Layers are vertically separated. However, for readability reasons the verti-
cal axis runs from the center outward. E.g., layer L1 is on a higher level of
abstraction than L0.

3 .1 .1 Vertical Layers

L3Dim vertically separates concerns by their modeling purpose, to achieve � vertical SoC w.r.t.
the modeling purpose
to support natural
cohesion

high cohesion of naturally related aspects on the individual layers. To model
a CBRS this means that platform-independent (i.e. capabilities) and platform-
specific (i.e. software and hardware) concerns are considered to reside on the
same level of abstraction, since both kinds of concerns are essential to the very
nature of a CBRS, coexisting and mutually influencing each other. For instance,
hardware constraints have an impact on the choice of the software frameworks,
and the kinematics of a robot influence the choice of a certain capability (e.g., a
control algorithm). In contrast to that, a classical vertical SoC would artificially
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decouple and separate the platform-independent and -specific concerns onto
different levels of abstraction. Hence, any influence would only happen uni-
directional via model transformation, effectively preventing the natural and
mutual influence of the concerns. As a result, a PSM is created by a transfor-
mation of the PIM, supplied with the required platform-specific information.
Analogous to the development process in [BWV14], each change to a PIM sys-
tem model, would require redoing the transformation into a new PSM as well
as supplying the missing platform-specific information again. Instead, L3Dimno vertical SoC of

PIM and PSM
�

explicitly supports the bidirectional interaction of the concerns by composing
them on the same abstraction level.

In L3Dim, each layer Li has its own modeling purpose and contains only
the aspects of concerns related to that purpose. As shown in Figure 3.1, three
layers are chosen to model CBRS for CI. Note that depending on the chosen
level of granularity and the different modeling purposes, more or less layers
can be introduced. The important point is that a high cohesion is achieved in
the individual layers. The least abstract layer (L0) represents the real robotic
system. Producing an executable software artifact to realize such a system is
the overarching purpose of the modeling approach. Hence, the purpose of L1
is to abstract the real system in form of a component-based system model,
involving functional and non-functional capabilities, software, as well as hard-
ware platform aspects to the necessary degree. L2 is the layer with the highest
abstraction. Its purpose is to model the desired robot behavior in physically
compliant interaction with the environment. The models in each layer do not
know about the modeling purpose of any other layer. Instead, they solely fo-
cus on their own purpose. L2 for instance, models the compliant interaction,
but does not care about how the modeled information is used (i.e. to create a
robotic system). This ensures high cohesion towards a layer’s modeling pur-
pose and low coupling between the individual layers.

Each layer (Li) is considered as a set of constraints and requirements that
the next less abstract layer (Li−1) needs to conform to. As in classical vertical
SoC, L3Dim connects the individual layers via unidirectional model transfor-
mations. These transformations, are used to realize the set of constraints and
requirements by creating and changing model fragments on the next less ab-
stract layer. For instance, the definition of a compliant behavior on L2 demands
a suitable control (e.g., impedance) component to be modeled on L1.

Starting the modeling process at the highest layer, allows the model transfor-model transforma-
tions decrease the

abstraction level and
realize constraints on

less abstract layers

�

mations to directly realize some of the specified requirements by generating
the respective model fragments. Other requirements however, can not be in-
ferred from the more abstract models and need to be manually modeled on
the lower layer.

3 .1 .2 Horizontal Dimensions

L3Dim uses a horizontal separation of platform-specific and platform-agnosticPIM and PSM con-
cerns coexist on the
same vertical layer

�

concerns to facilitate their composition by keeping them on the same level of
abstraction. However, in related work, a vertical SoC is usually used to separate
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both types of concerns. The advantage of using a horizontal SoC instead is that
it increases the exchangeability through coexistence (see Section 3.4.1.2) and
enables the mutual influence of the concerns in form of imposing overarching
constraints.

Inspired by the work of Ratiu et al. [Rat+12], L3Dim introduces the con-
cept of horizontal dimensions & dimension. Since L3Dim was initially designed to support
the modeling of robotics control systems, three orthogonal dimensions were
chosen for that purpose, considering the insights gained from the Robot Ap-
plication Development Process [Bis+10]: Hardware Platform, Software Platform,
and Capability. These dimensions are used to categorize orthogonal concerns
on the same layer of abstraction to enable their flexible composition based on
the composition rules of their associated dimension. This allows the concerns � dimensions maintain

concern modular-
ity while enabling
explicit composition

to mutually influence each other and to express dimension-overarching rela-
tionships between model fragments.

• Hardware Platform (platform-specific) dimension: representing any kind
of hardware that is involved in a robotic system. This includes robotic
platforms and their kinematic structure, robot-specific constraints and
interfaces, as well as dynamics, safety constraints, control interfaces, and
so on. Explicitly considering the hardware platform has proven to be an
essential concern for robotic systems, since it is addressed by various
contributions, e.g., [FBC13; RGG94; BSS11; FBC12].

• Software Platform (platform-specific) dimension: describing the character-
istics of software frameworks (i.e. middlewares) and their requirements
for code generation. In contrast to the hardware platforms, this dimen-
sion mainly focuses on component frameworks (e.g., OROCOS RTT and
ROS [Qui+09]), middlewares (e.g., YARP [MFN06], RSB [WW11]), as well
as all other software-related aspects, such as interface protocols (e.g., the
Fast Research Interface (FRI)1). The majority of the represented software
frameworks in this dimension provides requirements and essential infor-
mation for code generation.

• Capability (platform-independent) dimension: defining isolated aspects
that are reusable and that can be composed to cover the functional and
non-functional concerns of the system. This dimension builds the third
pillar of the approach, covering the functional parts of a system that are
agnostic to any software or hardware framework. It includes concerns
from different (sub)domains, such as coordination, vision, motion gener-
ation, etc.

In this work I mainly consider robotic systems that encompass a set of capa-
bilities that are adapted to a set of software frameworks and are deployed on
one or more different robots in the real world as well as in simulation.

1 web.archive.org/web/20180704013224/http://cs.stanford.edu/people/tkr/fri/html

web.archive.org/web/20180704013224/http://cs.stanford.edu/people/tkr/fri/html
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3 .1 .3 Guidelines to Support Language Evolution for LM&C

Especially in the field of robotics, which involves heterogeneous concerns
from numerous well-established and newly emergent domains, a LM&C ap-
proach needs to explicitly support language evolution to achieve an extend-language evolution &

able, reusable, and stable DSL and model composition [Nor+16a; CP10; EGR12;
RDN10; Whi+09; Erd+15]. As long as a (sub-)domain is not entirely covered
by a DSL, language evolution is imminent, since the chosen abstractions are
likely to be extended over time [RDN10; Erd+15]. Even a completely explored
domain is usually not set in stone, especially when our understanding of it
changes [Whi+09; EGR12]. Hence, the related DSLs need to be changed to
incorporate the correct domain abstractions. Other aspects may even be com-
pletely removed from the composition in order to be replaced, such as an
outdated software platform. The impact of language evolution on the affectedlanguage evolution

needs to be con-
sidered to achieve

an extendable,
reusable, and sta-

ble composition

�

DSLs and the global composition can range from tiny to massive. Especially
an unpredictable evolution can have devastating effects on a LM&C that is
heavily based on reuse, potentially causing a cascade of changes that prop-
agate through the entire composition [Whi+09]. The main challenge for an
extendable and reusable LM&C approach is to maintain the modularity of the
individual concerns, while minimizing the impact of changes on the compo-
sition and between the DSLs. The guidelines (gx) below aid in the develop-
ment of a LM&C approach with explicit support for language evolution. These
guidelines are closely followed by the conceptual and technical realization of
L3Dim.

language modules for composition (g1) Modularization of DSLs
and generators is the core requirement for composition, to maximize reuse,
and to enable distributed development [Dho+12; Kar+09]. A library-based ap-
proach offers the possibility to flexibly chose the subset of required DSLs and
generators for a particular modeling purpose [HR13].

exchangeability of heterogeneous modules (g2) A non-invasive
and loosely coupled composition of heterogeneous model fragments is re-
quired to achieve seamless exchangeability. Meaning that unrelated heteroge-
neous DSLs are syntactically integrated without the need to introduce depen-
dencies between the languages or having to modifying either of them [Voe11].
For instance, replacing platform-specific model fragments (e.g., OROCOS RTT
by ROS), has no impact on the platform-independent fragments [Kar+09].

well-defined interfaces for lm&c (g3) A truly extensible composi-
tion can only be achieved through well-defined interfaces [HR13] that are used
as extension points in the composition, and to restrict the language evolution
to predefined points, making its impact on the composition predictable.

limiting the impact of language evolution (g4) To limit the im-
pact of changes on other parts of the composition, a semantic and highly cohe-
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sive modularization along the (robotics) concerns needs to be realized. Thereby
limiting the propagation of changes to only closely concern-related DSL mod-
ules. Hence, making the propagation predictable. Reusing different generator
modules to form a transformation pipeline instead of using a single monolithic
generator, limits the language evolution to the single modules instead of the
entire transformation process [Voe11].

3 .2 l3dim’s modularization and composition mechanisms

In order to realize the introduced horizontal and vertical SoC of L3Dim, while
naturally supporting language evolution, the presented LM&C mechanisms
(see Section 2.4.2.3) are used. For the technical implementation of the LM&C
mechanisms, JetBrains Meta Programming System (MPS) [MPS] is chosen in
this thesis. MPS is a tool specifically designed for the efficient design, technical
composition, and reuse of DSLs on the abstract and concrete syntax level. In
contrast to other language workbenches [Fow05], MPS achieves & projectionalprojectional
editing by decoupling of the AST & abstract syntax treefrom the concrete syntax. Thereby support-
ing the seamless mixing and exchanging of textual, tabular, or other graphical
representations [Völ+13].

3 .2 .1 Composing Horizontal Dimensions

The capability, software, and hardware platform dimensions separate the con-
cerns so that distributed development and SoR is possible. Capabilities rep-
resent concerns that are platform-independent, but cannot produce an exe-
cutable system without the platform-specific concerns. Concerns from either
the hardware or software platform dimension are highly replaceable and de-
pend on the requirements of the robotics application or on the availability of
certain software frameworks or hardware parts. Capabilities generally limit
the set of applicable software and hardware platforms, while the platforms
can define requirements on the capabilities. For instance, the DoF of the cho-
sen robot may influence the controller choice, whereas the software framework
may restrict the timing behavior model of the system to non-parallel execution.

L3Dim chooses a non-invasive LM&C that preserves the modularity and � platform-independent
concerns are non-
invasively com-
posed with platform-
specific concerns,
while their modular-
ity is preserved

independence of the DSL modules in the dimensions (g1), that does not com-
promise their exchangeability (g2), but that enables the modeling of concern-
overarching requirements, constraints, and analyzes. The annotation mecha-
nism, presented in Section 2.4.2.3, is used as an interface (see Figure 3.2) to
compose the software and hardware platform with the capability dimension
(g3), creating an extension point for enriching platform-independent models
with platform-specific information without introducing new dependencies.

Each of the dimensions, contains a language module that acts as the com- � core languages pro-
vide composition
interfaces using an-
notations

mon base for all other language modules in the same dimension. The common
bases equip derived languages with the necessary mechanisms and interfaces
to support the embedding of other modules. This way, a platform-agnostic ca-
pability, such as a component instance representing a control component, can



44 modeling robot control systems

be enriched with information regarding the execution environment and the
kinematics and dynamics parameters of the to be controlled robot.

Figure 3.2: Visualization of the interfaces used to compose the Capability, Software
Platform, and Hardware Platform dimension.

3 .2 .1 .1 Capability Dimension

Each DSL in this dimension represents aspects of functional or (non)functional
robotics concerns in form of language modules that are derived from the Ca-
pability DSL as the common base. From this common language, each of the de-
rived DSLs inherits an interface (ICanBePlatformAnnotated) that enables the
embedding of language modules from the two platform dimensions. This al-
lows platform-specific constraints to be applied onto capabilities, and capabili-
ties to be transformed by generators according to platform-specific needs. Note
that no direct dependencies are introduced between capability and platform-
specific language modules. For most of the platform-independent concerns,
there exist related work in the literature [Nor+16a].

3 .2 .1 .2 Hardware Platform Dimension

To represent robotic hardware platforms, the Hardware Platform DSL is in-
troduced, which forms the common base in this dimension. It provides the
IAmHardwarePlatform annotation as an anchor point to force robot-specific con-
straints onto models from the capability dimension. Each supported hardware
platform is represented as a language module that extends the base language
and specializes the inherited annotation to match its platform (see IAmLWR4+

in Figure 3.2). Using this annotation, robot-specific constraints can be imposed
on the PIM, which can then be considered on the model level or in the model
transformations. This dimension also includes the modeling of sensors (e.g.
force-torque sensors), interfaces (e.g. ethernet ports), and computation units
(e.g. external workstations).
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3 .2 .1 .3 Software Platform Dimension

The common base language in this dimension is the Software Platform DSL.
Analogous to the Hardware Platform dimension, it entails the IAmSoftware-

Platform annotation. Each software framework (e.g., middleware, component-
based, or control framework) is represented by adapting the inherited annota-
tion from its base language to the respective platform (see IAmOrocos in Fig-
ure 3.2). Language modules in this dimension can be specially tailored to-
wards extending, restricting, or analyzing capabilities based on software re-
quirements.

In case a software platform requires additional model information (e.g., the
period of a component execution) in order to satisfy their software framework
requirements, the platform can make use of the demand mechanism. By spe-
cializing and implementing the IDemand interface, a platform-specific demand
can be introduced that mandates to be fulfilled. If there is no DSL in the ca-
pability dimension to fulfill the demand, the software platform can provide a
model fragment that allows the manual specification of the missing informa-
tion (g3 , g4), until a suitable capability is developed (see Section 4.2).

Note that concerns can also be dimension-overarching. DSL modules for
these concerns inherit the interfaces from their primary dimension. They are
conceptually and technically realized as adapter languages, which provide & adapter language

DSL aspects, such as meta-models, constraints, and transformations, based � achieves concern-
and dimension-
overarching com-
position

on the combination of multiple independent languages, without compromis-
ing their independence [Völ+13]. Those languages are also applied to com-
bine multiple concerns within one dimension. Creating such a fine-grained
and loosely coupled composition between concerns, results in a DSL depen-
dency graph that is structured along the robotics concerns. Thereby achieving
a predictive propagation of changes (g4). For instance, a change in a concern-
overarching DSL module does not affect the modules for the individual con-
cerns. Similarly, a change in the e.g., Component DSL can only affect other
modules related to that specific concern. It cannot affect modules related to
different concerns.

3 .2 .2 Linking Vertical Layers

Model transformations are used to establish a link between models on vertical
layers with different modeling purposes. For instance, a CI task model that
defines the robot’s behavior, imposes constraints on the component-based sys-
tem model that is used for the generation of the executable software system.
Model transformations aid in realizing these constraints, by generating model
fragments in the system model, such as suitable control component instances
for the CI task.

L3Dim uses multi-staged transformations to iteratively transform a model � modular transfor-
mation pipelines,
instead of single
monolithic transfor-
mations

into a model of the next lower layer until the target software artifact is gener-
ated. Inspired by Voelter et al. [Völ+13], multi-staged transformation pipelines
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are formed by combining modular and highly cohesive transformations (g1)
related to the different robotics concerns, fostering reuse and exchangeabil-
ity (g2). This is especially beneficial for the generation of a system for dif-
ferent software platforms (e.g., OROCOS RTT or ROS), since it allows the
introduction of an intermediate layer (IL) (gray boxes) for the transforma-intermedi-

ate layer (IL)
&

tions. As it can be seen in Figure 3.3, the intermediate layer (IL) separates the
platform-independent transformations from the platform-specific transforma-
tions that produce a software artifact. This way, transformations of platform-
independent aspects do not need to consider platform-specific transformations,IL enables reuse

and exchangeability
�

since they can be reused from the IL languages’ generators (backend reuse).
Additionally, languages below the IL are implicitly reusing all transformations
that happen above the IL. Thus, they only need to provide transformations
from the IL languages to their own DSL (frontend reuse).
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Figure 3.3: Adaption of the multi-staged transformation concepts [Völ+13] to the pro-
posed generator composition: The intermediate layer (IL) that is depicted
by the gray boxes, allows for a separation between backend and frontend
language models. Here, backend models are more abstract and technology-
independent, while frontend models are very close to the target technolo-
gies. Backend models are able to make use of the frontend generators of
the IL without being aware of the individual generators. This allows for
a flexible exchange of frontend generators to support different generation
targets. Here, OROCOS RTT is used as generation target and execution
environment. However, it is also possible to ignore the IL and directly gen-
erate towards a specific target using a suitable generator. Note, only an
excerpt of the existing language modules is displayed in this figure.

In this approach, multiple transformations are applicable to the same (e.g.,well-defined inter-
faces and platform-

specific annota-
tions enable au-
tomatic pipeline

configuration and
limit the propa-

gation of changes

�

system) model, generating e.g., a system for different target platforms. Hence,
the high flexibility becomes a disadvantage, requiring the selection of suitable
transformations that combined generate the desired target artifact from a spe-
cific input model. This problem can be addressed by predefining transforma-
tion pipelines, which in turn reduce the flexibility. L3Dim automatically forms
the transformation pipelines, using the non-invasive annotations of the plat-
form dimensions and an explicit selection of suitable transformations based
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on their interface. In L3Dim, each transformation provides a well-defined inter-
face that precisely defines its applicability (g3), based on a valid input model
fragment, the to be produced output fragment, and additional constraints on
the input and output. Such an interface creates an isolated transformation
stage to which language evolution is bound to, preventing its propagation
towards other transformations of the multi-staged pipeline (g4).

L3Dim reuses the annotation mechanism for the horizontal dimension com-
position, to guide the configuration of transformation pipelines:

(platform) annotation unaware Transformations that are unaware
of annotations can be applied to any suitable model fragment that it is de-
signed for. This rule ensures the default behavior of backend and frontend
reuse as described by Voelter et al. [Völ+13].

(platform) annotation aware Transformations that are aware of an-
notations are restricted to be applied only to model fragments that the trans-
formation is designed for and that are marked with a specific annotation. The
transformation is able to remove, change, or pass on the annotation of the
source to the resulting model fragment. Hence, transformation pipelines are
initiated by annotated model fragments and iteratively formed, constrained
by the previously applied transformations. This case adds the aspect of re-
configuration to transformation reuse, as transformations can use and store
additional information in the annotation to change the behavior of annotation-
aware transformations.

While the general idea behind annotation-awareness for transformations is
applicable to several different aspects, in this work the focus is set on the gen-
eration towards different component-based (i.e. OROCOS RTT and ROS) and
control (i.e. PIDC and QP-based SoT) frameworks. By selecting the set of trans-
formations that are required to generate OROCOS RTT and ROS systems, e.g.,
different components of the same system, can be annotated with one of the
selected software platforms (see Figure 3.15). Transformations pipelines are
then automatically formed to generate the executable code for the respective
platform. By deselecting the ROS platform for instance, components cannot be
annotated to be realized using ROS anymore. Hence, no code for ROS is gen-
erated. This way, multi-staged transformation pipelines are formed naturally,
avoiding the need for predefined pipelines and preserving the flexibility that
comes with backend and frontend reuse. Further, it is allowed to use different
transformations on the same source model fragment to e.g., generate towards
different targets. For instance, a model of a component could be generated into
its CPP-based OROCOS RTT realization as well as into a documentation of its
interface. An exemplary transformation pipeline can be seen in Figure 3.14.
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3 .3 compliant simulation and modeling architecture (cosima)

CoSiMA, which is short for “Compliant Simulation and Modeling Architec-Compliant Simu-
lation and Mod-

eling Architec-
ture (CoSiMA)

&

ture”, is a concrete instantiation of L3Dim to allow the domain-specific model-
ing of real-time capable robotic systems for CI tasks and their generation into
executable component-based control architectures. The resulting architecture
can be simulated as well as executed on the real robotic hardware. In addition
to the modeling environment, which is realized using MPS, CoSiMA includes
an execution environment as well as a (physics) simulation environment. The
execution environment is real-time capable and technically connects the in-CoSiMA uses a con-

crete instantiation
of L3Dim to model

real-time component-
based control system
architectures for CI

�

dividual software and hardware components. It incorporates well-established
technologies, such as OROCOS RTT, ROS, and RSB [WW11]. The simulation
environment is used to verify the executed system and to support environ-
mental (e.g., geometric) information during the design of a robotic system.
Gazebo [KH04] and Bullet [Cou15] are the currently supported simulators.
CoSiMA is published in [Wig+18; WW19; Wig+17a] and has so far been used
to control Universal Robot’s UR 5, Franka Emica’s Panda, Kuka’s IIWA, LWR
4+, and Omnirob, as well as IIT’s COMAN and COMAN+. Figure 3.4 shows
a selection of scenarios realized with CoSiMA by the consortium of CogI-
Mon [Cog19]. Due to the focus on CI, CoSiMA is designed to support the

Figure 3.4: Exemplary scenarios realized in CogIMon [Cog19] using CoSiMA. Thanks
to the involved project partners. Further scenarios are shown in Chapter 8.

development, simulation, and analysis of real-time-constrained CBRSs, before
the deployment on the real robotic platforms (see Chapter 4). For this purpose,
CoSiMA supports the fully transparent switching between simulation and the
real hardware of robots, ranging from single manipulators to humanoid robots,
with minimal effort.

In the following, CoSiMA’s modeling environment is described in detail. For
further detail on the other environments, please refer to the respective publi-
cations. Figure 3.5 gives an overview of the developed DSL modules to modeloverview of

CoSiMA’s lan-
guage modules

�

the control architectures of robotic systems. The figure is structured into three
parts. The lowest part is concerned with the core languages for the three di-
mensions of L3Dim and their specializations. The middle part of the figure
displays the currently supported domain concerns of a robotic system, associ-
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ated with a single dimension. The upper part of the figure consists of adapter
languages (dashed border) that compose concerns of the same or of different
dimensions. This set of DSL modules is used and extended in the following
chapters to eventually realize the experimental scenarios in Chapter 8. Note
that modules for e.g., domain-specific types, are omitted.
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Figure 3.5: Overview of the dependencies of the supported DSL modules to model
robotic systems. Modules that only contain domain-specific types are omit-
ted for readability. The DSLs are grouped into three parts: Core languages
and their extensions for each dimension, languages covering different do-
main concerns, and domain overarching languages, which are realized as
adapter languages (dashed border). The modules make use of the modu-
larization and composition mechanisms, introduced in Section 2.4.2.3. This
set of language modules is used and extended throughout this thesis. Col-
ors indicate dimension affiliation.

3 .3 .1 Platform-Independent Capabilities

The structural architecture of a CBRS is covered by the Component DSL (cf.
Section 2.3.1.4). It is developed based on the CPC meta-model, since most & Component-Port-

Connectorrobotic systems can conceptually be boiled down to a variant of it [Dho+12;
BG16]. The DSL allows the modeling of component interface definitions,2 their
composition into a system, and their interconnection to define the data-flow
for communication. In addition to the meta-model, a DSL can introduce con-
straints on the interaction of the meta-model’s concepts (see Figure 2.4). In this
case, the Component DSL introduces constraints, ensuring that only datatype-
wise compatible ports of components can be connected together. The same
holds true for the direction of a port. Thus, input ports can be connected to

2 An Algorithm DSL is developed in the VeriComp project, extending CoSiMA to explicitly cover
the computation concern (cf. Section 2.3.1.1) beyond the component interface.
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output ports, while any other combination is forbidden. Figure 3.6 shows an
exemplary control architecture modeled using the Component DSL.

Figure 3.6: Concrete textual (left) and graphical (right) syntax of the Component DSL.

The coordination concern (cf. Section 2.3.1.3) of a robotic system is addressed
by the Coordination DSL. It enables the modeling of the behavioral aspects
in form of finite state machines (FSMs) on the component- and system-level.finite state ma-

chine (FSM)
&

While the conceptual foundation of this DSL builds on the SCXML flavor of
FSMs [W3C15], it could be realized with any other suitable formalism for co-
ordination, such as behavior trees.

The Systems Coordination DSL is developed as an adapter language to com-
bine the structural and coordination aspects of the system, by introducing ref-
erences of model fragments based on the Component DSL into models of the
Coordination DSL (see Figure 3.7). This way, a FSM can access the structural
system architecture to change the configuration of a component, turn it on or
off, and react to the component’s state changes. Without the reference to the
Component DSL, there is no explicit access to a component. Thus, a FSM could
only resort to firing an event, which may or may not be implicitly associated
with, and received by, the desired component. The combined meta-model is
shown in Figure 3.8.

Systems Coordination DSL

extends uses

Coordination DSL Component DSL

Bi Bj Bk Al Am

Figure 3.7: Adapter language composition visualized for the Systems Coordination DSL.
Boxes represent language modules and circles represent concepts. Con-
cepts (i, j,k, l,m) with the same capital letter are based on the same meta-
model or an extension of it.
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Another platform-independent capability is covered by the Kinematics Dy-
namics DSL. It supports the modeling of kinematic and dynamics entities and
constraints (e.g., links and joints), which can be used to define a kinematic
chain or tree. It is conceptually based on the Unified Robot Description For- & Unified Robot De-

scription Format
(URDF)

mat (URDF) [Gar09], which is well-known and widely used. This capability is
used by the (hardware) platform-specific Robot Platform DSL to model different
robots.
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Figure 3.8: Illustration of the meta-model integration between Coordination DSL
(turquoise), Component DSL (black), and Systems Coordination DSL (purple).
This composition enables the combination of structural and coordination
system concerns. An example model can be seen in Figure 3.16.

3 .3 .2 Robots as Hardware Platform

Since a robot is an integral part of a robotic system, it is essential to model the
targeted robots to formulate requirements on the desired system architecture
and to constrain incompatible aspects.

The Robot Platform DSL describes a robot in terms of its physical and compu-
tational platform. This also includes the supported control modes of the joints
(i.e. position control, velocity, control, and torque control), as well as the in-
terface specification and protocol for communication (e.g., ROBOLLI [Ajo+14]
or FRI). The physical appearance of the robot is modeled using the Kinematics
Dynamics DSL. Currently, there is no need to create a DSL extension of the
Robot Platform DSL for a specific platform, such as the KUKA LWR4+ or the
COMAN. This is because the generic mechanisms of the Robot Platform DSL
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Figure 3.9: Screenshot of a System architecture model with a RobotComponentInst that
allows the access to a robot platform in form of a robot interface, which is
connected to a controller ComponentInst. In addition to generic data type
checks, robot-specific properties can be checked as well, such as the explicit
addition or subtraction of the gravity term in the control signal, which is
sent to the robot via the interface component. This model is based on the
meta-model shown in Figure 3.10.
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Figure 3.10: Meta-model excerpt combining the Robot Platform DSL (blue), the Kine-
matics Dynamics DSL (orange), and the Component DSL (black) via the
Robot Platform Component DSL (green). This allows to model a robot plat-
form, using predefined kinematic structures (RobotModel), the supported
KinematicChains, relevant ComputationUnit, and InterfaceDescriptors.
Instances of RobotPlatforms can be referenced by RobotComponentInsts
to be integrated in a System of the Component DSL.
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allow the configuration for a specific robot on the model level. Even if this is
sufficient for the scenarios covered in this thesis, the possibility and mecha-
nisms are given to support robot-specific extensions once the need arises.3

The Robot Platform Component DSL is an adapter language that combines
aspects of a robotic platform with the Component DSL. This is achieved anal-
ogous to the Systems Coordination DSL by extending the Component DSL and
referencing the Robot Platform DSL. With this, it is possible to instantiate a ro-
bot interface component in a system’s component-based architecture model,
which references a specific robot platform. Different constraints are then im-
posed on the system model, which for instance prevents the system to establish
a connection between the ports of the interface component and any other com-
ponent with unsupported data-types, considering the available control modes
of the chosen robot (see Figure 3.9). The meta-model is shown in Figure 3.10.

3 .3 .3 OROCOS RTT as Software Platform

OROCOS RTT is chosen as execution environment in CoSiMA for the realiza-
tion of the robotic scenarios in this thesis. Hence, it needs to be available as
software platform on the model level. In the Software Platform dimension, the
OROCOS DSL is created to contain the IAmOrocos annotation, which special-
izes IAmSoftwarePlatform (see Figure 3.11). Once the annotation mechanisms
are properly adapted to support the OROCOS RTT platform, further DSLs can
be created that enrich capabilities with OROCOS RTT-specific constraints and
provide suitable model transformations.

Figure 3.11: Illustration of the concepts supporting OROCOS as a software platform
in the composition. While the concepts of the OROCOS DSL (blue bor-
der) specialize the necessary concepts of the Software Platform DSL (gray
border), the interface ICanBePlatformAnnotated from the Capability DSL
(orange border) represents the annotation target for software platforms.

The main purpose of specializing the Component DSL is to cover additional
structural and behavioral aspects that are key concepts of OROCOS RTT: For
instance, so-called activities4 need to be defined to manage the order and
scheduling of OROCOS RTT (C++) components. Since the Component DSL
does not have any concept that is even remotely related to such an activity
(see the black bordered concepts in Figure 3.12), it needs to be included as a

3 For instance to add support for soft robots in the future.
4 For more information see Chapter 4 and http://www.orocos.org/stable/documentation/rtt/
v2.x/doc-xml/orocos-components-manual.html#corelib-activities

http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html#corelib-activities
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html#corelib-activities
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Figure 3.12: Excerpt of the composed meta-model that allows the modeling of re-
quired information in form of i.e. an RTTActivity, which is realized as
a demand of the OROCOS software platform. The demand mechanism of
the Software Platform DSL (gray) is specialized for OROCOS in the ORO-
COS DSL (blue). The OROCOS Component DSL (green) uses the RTTActiv-
ity and ActivityDemand to provide a demand for the component mod-
eling capability. Finally, every IComponentInst from the Component DSL
(black) that is annotated with the IMOrocos annotation, is responsible to
satisfy the associated ActivityDemand.

new concept, i.e. RTTActivity. Hence, aspects such as activities are treated as
mandatory for the specific software platform and, thus are reflected by a de-
mand (i.e. IAmOrocosDemand). Each demand utilizes the demand mechanism
from the Software Platform DSL. In contrast to optional aspects of a software
platform, demands are used to express the need for information which is cru-
cial to the creation of a valid model. Here, each ComponentInst that is anno-
tated with the OROCOS platform, demands additional information regarding
its execution time semantics. The information can be provided using an RTTAc-

tivity or by platform-agnostic abstractions in form of other domain models
(see the Timing DSL in Chapter 4). In addition to the structural aspects, the
OROCOS Component DSL adds an OROCOS RTT specific life cycle to com-
ponents and their instances by involving concepts from the Coordination DSL
(see Figure 3.8). This way, a life cycle is represented as a set of states and transi-
tions. Further constraints ensure (1) that all the required states of the life cycle
are exposed as operations by the components and (2) that the call order and
preconditions of the operations are valid. These operations can then be used
by models of the Systems Coordination DSL for the orchestration of the system.
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3 .3 .4 Modular Generator Composition for OROCOS RTT

With the introduced DSLs one is able to model a component-based robotics
control system, constrained by the chosen robotic platform and supplied with
the necessary information to execute the system using OROCOS RTT as soft-
ware platform. To transform the model fragments (gray) into artifacts (blue) � overview of

CoSiMA’s gener-
ator modules for
OROCOS RTT

for execution, verification, or visualization, different generator modules are
developed (see Figure 3.13). These generators contain model-to-model (M2M)
and model-to-text (M2T) transformations that are used to arrange generator
pipelines for the different system concerns.
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Figure 3.13: Overview of CoSiMA’s generator modules for OROCOS RTT. The arrows
indicate the pipelines that are automatically formed to produce the de-
sired software artifacts. Arrows with the same number belong to the same
pipeline. The pipeline marked in teal is explained in detail below.

The automatically formed generation pipeline, marked in teal in Figure 3.13,
is explained in the following. This pipeline generates the structural architec-
ture, i.e. component instances and their connections, as well as a system-level
state machine for coordination into an OROCOS Program Script (OPS), which & OROCOS Program

Script (OPS)can be executed in an OROCOS RTT environment. Figure 3.14 shows the
model fragments that are transformed via multiple transformation stages. The
pipeline starts with the OROCOS System Coordination Generator, which takes
an annotated GlobalStateMachine from the Systems Coordination DSL as in-
put. Note, other model fragments contained in, or referenced by, the Global-

StateMachine are depicted per row via fragment placeholders and tail-less
arrows respectively. Additionally, the generator only becomes applicable, if
the GlobalStateMachine references a System that contains at least one Compo-

nentInst that is annotated with OROCOS RTT as software platform. Thereby
ensuring that at least one OROCOS RTT component is instantiated, while the
generation of the StateMachine and Connections is optional. In the first genera-
tion stage (1st row), the OROCOS System Coordination Generator uses a transfor-
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generation pipeline that transforms the static system model and an asso-
ciated coordination model into an OPS file that can be executed with ORO-
COS RTT. Downward pointing brackets represent transformation steps,
performed by the indicated generator.

mation that targets annotated GlobalStateMachine model fragments and turns
them into a Document model of the OPS DSL, while passing on the annotation.
In the same stage, the ComponentInst and Connection model fragments are
copied into the Document model for future transformations, while the System

is removed. Of course only annotated ComponentInsts and Connections that
connect OROCOS-annotated ComponentInsts are copied. After that first trans-
formation stage, the OROCOS Coordination Generator and the OROCOS Com-
ponent Generator are automatically applied to the remaining untransformed
fragments (2nd row). While the first generator deems state machine models to
be valid inputs if they itself or their parent are annotated, the latter only ap-
plies itself to directly annotated component instances. Here, both generators
transform model fragments into fragments of the OPS DSL. Eventually, the
M2M transformation process is completed and the resulting OPS DSL model
is converted into a text-based OPS file, by reusing M2T transformations from
the OPS Generator (see Figure 3.3). The OPS file can then be passed into the
OROCOS RTT deployer5 binary for execution.

One note regarding Connections: They are not discussed here since their
generation is straight-forward. However, in case a system deploys components
with an additional software framework, such as ROS, an explicit generator
module needs to provide the correct transformations. Regarding OROCOS and

5 http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html

http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
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ROS, the connections are realized as default topics on the ROS-side, while the
OROCOS-side is additionally configured to use a plugin that allows for real-
time safe communication between real-time and non-real-time environments.

Two other pipelines are explained in Appendices A.1 and A.2.

3 .4 evaluation

This section discusses the L3Dim approach and its concrete instantiation in
CoSiMA along qualitative and quantitative aspects. The qualitative aspects are
analyzed in how far the presented approach addresses the challenges, intro-
duced in Section 3.1.3. Afterwards, a quantitative evaluation of the amount
of reuse in the approach is conducted. This is followed by an application of
common object-oriented software metrics to analyze the modularization and
composition of DSL modules within CoSiMA.

3 .4 .1 Qualitative Evaluation of L3Dim and CoSiMA

This evaluation is based on the guidelines (gx) to face the challenges of lan-
guage modularization and composition, as introduced in Section 3.1.3. These
guidelines are condensed from the suggestions and lessons learned of the DSL
community. Each guideline is discussed separately in how far it is followed by
CoSiMA and the general L3Dim approach.

3 .4 .1 .1 Language Modules for Composition (G1)

This guideline treats modularization and composition as two equally impor-
tant sides of a coin. Especially in the context of the robotics domain, modu-
larization does not make considerable sense without composition—and vice
versa. The L3Dim approach supports vertical and horizontal modularization
to support e.g., distributed development by following the paradigms of SoC
and SoR. Flexible composition is enabled through non-invasive composition
mechanisms (i.e. annotations and adapter languages) and implicitly formed
generator pipelines. L3Dim is designed to import only the required set of lan-
guage and generator modules for a specific application from a module library.
This kind of flexibility allows to decide the exact degree of coverage that is
needed for the desired model (i.e. capabilities) and to only generate the arti-
facts that are needed for the execution with a specific platform (e.g., OROCOS
RTT). Using such a library-based modularization is also encouraged by Horst
et al. [HR13]. In L3Dim, modules can be extended or reused e.g., to model
concern-overarching aspects (see Figures 3.9 and 3.16) or to use the IL to reuse
existing generator modules (see Figure 3.13).

3 .4 .1 .2 Exchangeability of Heterogeneous Modules (G2)

Exchangeability is a direct result of the support for SoC and the separation
into the three dimensions. Intra- and inter-dimension composition makes use
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of suitable composition mechanisms (see Section 2.4.2.3), such as adapter lan-
guages and annotations respectively (see Figure 3.15), to compose heteroge-
neous modules without introducing additional dependencies. Embedding in
form of annotations allows the separation of platform-independent and -spe-
cific models, while preserving horizontal composability. This is necessary, be-
cause capabilities, software, and hardware platforms are individual aspects of
the same model and thus should reside on the same abstraction level (see Sec-
tion 3.1.2). The fact that moving from a PIM to a PSM does not require model
transformations, which are often one-directional or lossy, greatly improves the
exchangeability. For instance in L3Dim, replacing the used software platform
by another one, only requires to change the affected annotations.

Figure 3.15: Screenshot of an activity demand to provide the required timing informa-
tion of a ComponentInst for the execution with OROCOS RTT. The model
is based on the meta-model seen in Figure 3.12.

Figure 3.16: Screenshot of a State from the Coordination DSL that defines calls to Op-
erations of a ComponentInst from the Component DSL. These calls are
enabled by a composition in form of the Systems Coordination DSL (see Fig-
ure 3.8). The user warning is realized through the additional use of con-
straints defined by the Robot Platform Component DSL.

However, in the classical case of vertically separated PIMs and PSMs, the old
PSM is discarded and a copy of the original PIM is required to be transformed
into a PSM for another software platform, loosing all the modeled elements
of the previous PSM. In the worst case, if the original PIM is not available
anymore, the PSM needs to be transformed back to the PIM and then gener-
ated into the new PSM again. This however, is rarely feasible, because all the
transformations need to be designed to be reversible.
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Overall, the key to exchangeability are sensitive dependency management
and the incorporation of extension points through concrete interfaces and com-
position mechanisms.

3 .4 .1 .3 Well-Defined Interfaces for LM&C (G3)

In L3Dim there are two kinds of interfaces that allow exchangeability, reuse,
and guiding the language evolution. The first kind is defined by the specific
modularization and composition scheme of the three dimensions (see Sec-
tion 3.2.1). In this case, embedding is used to ensure a non-invasive composition
(see Section 2.4.2.3). This way adding a new software platform, following the
existing composition mechanisms, is straight-forward and automatically up-
holds the overall level of exchangeability. By defining clear extension points,
as done through the three core dimension languages, the language evolution
is restricted to a predefined path. Thus, the propagation of possible changes
through the stack of DSL modules are known or can at least be estimated
in preface. Such a restriction avoids an undesired evolution, since the evolu-
tion can therefore only happen at the predefined extension points (see Sec-
tion 3.4.1.4).

The second kind of interface is defined by using an IL for language extension
and generation. This layer acts as an interface between models to reuse exist-
ing generators (see Figure 3.3). The IL defines a particular structure in which
generators are designed to fit in. Reusing transformations greatly minimizes
duplicated code, maximizes reuse, and increases maintainability.

In L3Dim, language and generator evolution is restricted by the dedicated
interfaces and mechanisms, embracing evolution and forcing it to happen in
the expected bounds (see Section 3.3.4).

3 .4 .1 .4 Limiting the Impact of Language Evolution (G4)

Supporting evolution requires the ability to change elements of a DSL with-
out triggering a cascade of changes, which has an impact on diverse other
language modules. At the generator-level, this is achieved by L3Dim through
the composition of flexible generator pipelines and the delegation of respon-
sibilities to the IL. For instance, changes in the Robot Platform Component DSL
would only have an impact on the OROCOS Robot Platform Component Gener-
ator but not on the complete generation process. This is due to the fact that
the generator transforms a model based on a DSL, which is part of the IL (i.e.
Component DSL), delegating further transformation responsibilities to the IL.

In general, the degree of evolution that needs to be actively considered dur-
ing the DSL design, depends on its stability [Mar95], which in essence is based
on the dependencies between the DSL modules. The stability of the modules
in CoSiMA is quantitatively analyzed in Section 3.4.2.2. Modules with a high
number of afferent couplings & afferent coupling(i.e. dependent modules), pose a higher risk for
a change to affect several other modules. Therefore, those modules need to
consider and guide language evolution as described previously. An example
in CoSiMA is the software platforms that use the introduced demand mecha-
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nism (see Section 3.2.1.3) to provide a concrete extension point for aspects that
cannot be modeled using a dedicated DSL at the moment (see Figure 3.15).
This allows for an incremental evolution, supporting the introduction of new
DSLs into CoSiMA to cover previously unmodeled6 but required concerns.

Several afferent couplings urge the language designer to prevent unfore-
seen changes as much as possible. This is why, if possible, this kind of lan-
guage modules should be based on mature formalisms that are not likely to
experience (impactful) changes, except at the predefined extension points. In
CoSiMA for instance, the Component DSL is thus based on the well-established
CPC scheme, the Coordination DSL is based on FSM, and the Kinematics Dynam-
ics DSL relies on the widely-used URDF scheme.

DSL modules that do not carry a responsibility for other modules (i.e. low
number of afferent couplings), have more flexibility regarding their evolution.
This is due to the fact, that the consequences of a change are not as grave,
since they do not influence numerous other modules. Modules in that position
can be used to cover currently not well-understood or not completely covered
domains, which are thus prone to frequent or heavy changes. Through this
kind of flexibility, incremental development is enabled.

3 .4 .2 Quantitative Evaluation of CoSiMA

This part of the evaluation aims at quantifying the reuse and stability of
CoSiMA’s language composition. First, the actually reused elements are ana-
lyzed and compared with the additional effort that would occur by not reusing
parts of existing DSLs. Second, an analysis is conducted that applies an object-
oriented design quality metric to evaluate the stability of the DSLs in CoSiMA.

3 .4 .2 .1 Reuse and Effort Analysis

To gain insights on how the reusability, achieved through the modularization
and composition of CoSiMA, has a positive impact on the required develop-
ment effort, four platform-specific and capability-overarching DSLs are ana-
lyzed in Table 3.1. As it can be seen, extending upon the Component DSL to
support a specific software platform (i.e. NAOqi7 and OROCOS) requires
the development of significantly fewer concepts, compared to not reusing
existing DSL modules. While the OROCOS Component DSL saves 54.5 % ex-
tra effort through reuse, the Robot Platform Component DSL saves a total of
416.7 %. Hence, without reuse, 4.2 times more concepts would need to be im-
plemented to allow the modeling of the robot hardware in combination with
the component-based structure of a CBRS.

Through the introduction of dimensions by L3Dim, a semantic modulariza-
tion along the (sub-)domains is incentivized. This allows the elements of the
languages to be reduced to ones that are essential to the language’s purpose.
Necessary elements from other (sub-)domains are reused from the respective

6 These aspects may indeed be modeled, but not with a dedicated DSL.
7 For details on the NAOqi extension, please refer to [Wig+17b].
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languages. This way, a high cohesion is achieved, and the maintainability is
increased due to the limited scope of the languages and the reduced set of in-
volved elements. By increasing the degree of reuse, the development effort of
supporting e.g., another software framework is significantly reduced (see Ta-
ble 3.1).

1) NAOqi Comp. OROCOS Comp. Robot P. Comp. Sys. Coord.

2) Comp. NAOqi Soft. P. Comp. OROCOS Soft. P. Comp. Robot P. Comp. Coord.

3) 16.0 % 100.0% 40.0 % 8.0 % 33.3 % 20.0 % 32.0 % 47.4 % 28.0 % 20.9 %

4) 19.6% 10.3% 33.8% 24.7%

5) +23.9% +54.5% +416.7% +76.7%

6) 0.14 : 1 0.42 : 1 2.89 : 1 0.55 : 1

1) Adapter language module. 2) Reused language modules.

3) Percentage of reused concepts from the set of available concepts per language module.

4) Percentage of reused concepts from the total set of available concepts.

5) Additional implementation effort of concepts in percent in case of no reuse.

6) Ratio of reused to created concepts in an adapter language module.

Table 3.1: Language reuse and development effort of adapter languages: e.g., the Ro-
bot Platform Component DSL reuses 32 % of all the concepts in the Compo-
nent DSL, and 33.8 % of the concepts from all the reused DSLs combined.
With a ratio of 2.89 : 1, significantly more concepts are reused than newly cre-
ated. Without reuse, 416.7% ≈̂ 4.2 times more concepts would be required
to be implemented. Thereby, significantly increasing the development effort.

3 .4 .2 .2 Stability Analysis

The semantic modularization of DSLs into dimensions along (sub-)domains
and concerns, leads to several benefits, such as cohesion, maintainability, and
a reduced development effort. However, it also leads to a fine-grained modu-
larization that results in an increased number of DSLs. Together with the high
degree of reuse in CoSiMA, couplings in form of dependencies are naturally
introduced between the DSLs. Even though the dependencies are reduced to a
minimum (e.g., non-invasive composition), their number cannot be reduced to
zero. Language evolution potentially causes cascades of changes to propagate
through the entire composition. Depending on the strength of the coupling
between the DSLs, language evolution needs to be considered and handled to
different degrees. The stability metric, introduced by Martin [Mar95], offers
a way to determine the required degree for each DSL and to act as a guide
towards a stable basis for composition. Martin proposes two characteristics to
classify a (DSL) module: Independence and Responsibility. Independent modules
do not have dependencies. Responsible modules are heavily depended upon
by other modules. Modules that are both independent and responsible, do not
need to and should not change. To calculate the stability of a module, afferent
couplings (Ca), i.e. dependencies from other modules, and & efferent couplingefferent couplings
(Ce), i.e. dependencies on other modules, are put in relation as the instability
index

I =
Ce

Ca+Ce
, (3.1)
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which ranges from 0 (stable) to 1 (instable). An index of 0 does not necessarily
mean that the module is stable, but that it needs to be stable, which means
that it needs to especially consider language evolution. In contrast to that, an
index of 1 does not mean that a module is instable, but that changes do not
have a significant impact on other modules. Applying this metric to the DSLs
of CoSiMA leads to the findings displayed in Table 3.2: The core DSLs of the
three dimensions are the basis of the language composition and the root of the
dependency graph. Thus, they need to be stable, even though the Hardware
Platform DSL is not yet depended on as much, which explains the rather high
index. Languages that cover the core concerns of CBRS modeling, e.g., Com-
ponent DSL, Coordination DSL, Timing DSL, need to be stable as well. This is
achieved by being grounded in well-known and accepted formalisms (see Sec-
tion 3.4.1.4) that are very unlikely to change. Semi-stable modules, such as the
OROCOS DSL and the Robot Platform DSL, are prone to changes and poten-
tially have an impact on other modules. While the OROCOS DSL reduces this
potential by mainly specializing inherited interfaces and mechanisms, the Ro-
bot Platform DSL remains a potential source of fluctuation for the Robot Platform
Component DSL. However, since this language has a high instability index, it
is very flexible in adapting to changes. For this reason, it is desirable to not
only use stable modules. If all parts of a system would be entirely stable, there
would be no room left for changes [Mar95], thus preventing evolution. Hence,
all languages that are still work in progress or build on a non-established con-
ceptual base are chosen to be instable (high index). This way, changes are pre-
vented from rippling through the DSLs, while being able to adapt and extend
the current state of composition.

Ca Ce I

Capability 11 0 0.000

Software Platform 12 5 0.294

Hardware Platform 1 2 0.667

Component 111 1 0.009

Coordination 25 1 0.038

Chapter 3 Systems Coordination 2 53 0.964

Kinematics Dynamics 148 1 0.007

OROCOS 1 4 0.800

OROCOS Component 1 6 0.857

Robot Platforms 14 8 0.364

Robot Platform Component 0 72 1.000

Timing 11 5 0.313

Chapter 4 Timing Component 0 22 1.000

Timing OROCOS Component 0 4 1.000

Physical Entities (World) 6 5 0.455

Chapter 6 Compliant Interaction 2 84 0.977

Control Frameworks 0 3 1.000

Table 3.2: Stability [Mar95] analysis of CoSiMA’s DSL modules. Based on afferent cou-
plings (Ca) and efferent couplings (Ce), the instability of a module is deter-
mined. The metric ranges from 0 (stable) to 1 (instable).
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The visualized dependencies in Figures 3.5 and 3.17 show that the stability
of the composition allows an isolation of DSL (sub-)graphs per dimension or
concern without impacting DSLs that are closer to the root of the dependency
graph. For instance, all DSLs related to OROCOS can flexibly be removed from
the composition and exchanged by DSLs for another framework. The same
goes for concerns, such as timing. The advantage is a flexible composition that
can be optimized for the specific modeling use case.

Software Platform
CapabilitiesHardware Platform

Component
Coordination

Systems Coordination

Component

Coordination

OROCOS

Software Platform

OROCOS Component

OROCOS

Robot Platforms

Hardware Platform

Kinematics Dynamics

Robot Platform Component

Robot Platforms

Timing

Systems Coordination

Timing Component

Timing

Timing OROCOS Component

OROCOS Component

World

Compliant Interaction

Compliant Interaction

WorldControl Frameworks
Kinematics Dynamics

Figure 3.17: Visualization of the DSL dependencies in CoSiMA. A DSL on the left
depends on DSLs on the right.

3 .5 conclusion

In this chapter, the application of MDE for robotics is motivated due to the
complexity and heterogeneity of the robotics domain. While the application
of MDE for comparably complex domains such as avionics and automotive
is considered best practice, it is unfortunately not yet the default approach
in robotics. Most of the approaches that do employ MDE, focus on particular
sets of subdomains and do not propose a general methodology to address
(component-based) robotics system modeling in an extensible, reusable, and
modular way.

Hence, this chapter introduces the L3Dim approach, which aims at particu-
larly addressing these aspects. It incorporates best practices of software design,
such as SoC, SoR, and vertical as well as horizontal composition of DSLs, tai-
lored towards robotics. This chapter further proposes guidelines that are based
on related work and suggestions from the community to addresses the chal-
lenges of language modularization and composition. Along these guidelines,
the proposed L3Dim approach introduces a three-dimensional model-based
composition approach for developing component-based robot control systems,
which is specifically designed to conceptually cover heterogeneous concerns
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of the robotics domain, e.g., component-based systems, coordination, and mo-
tion control. Apart from modeling platform-independent capabilities, L3Dim
specifically considers software and hardware platform modeling as separate di-
mensions. Together with a truly modular and flexible multi-staged code gener-
ator composition to support multiple heterogeneous generation targets, these
three dimensions form the pillars of L3Dim. The MPS-based modeling part of
CoSiMA is presented, which is based on the L3Dim approach and features a
set of language and generator modules, enabling the modeling of coordinated
component-based robotic systems, and the generation towards OROCOS RTT
as execution environment. CoSiMA is evaluated with special focus on reuse
and language evolution, including extensibility. The qualitative and quantita-
tive evaluations show that the correct use of L3Dim greatly improves modu-
larity and reuse, while at the same time supporting the successful interplay of
concerns from the different system aspects, i.e. hardware, software, and capa-
bilities.

The presented set of modules build the foundation for the extensions in
Chapters 4, 6 and 7. Further extensions are developed in cooperation with
colleagues from other institutes, such as in the RobMoSys [Rob16] ITPs “Veri-
Comp” and “CMCI”. While the extensions made in VeriComp add the mod-
eling and verification of the internal algorithmic behavior of a component as
an additional capability, CMCI [CMC20] provides an abstraction to model QP-
specific solver aspects, targeting the generation towards QP software frame-
works, i.e. OpenSoT [Roc+15], instead of PIDC. The mentioned extensions are
not in the scope of this thesis and are therefore not discussed here.

As of writing this thesis, CoSiMA has already managed to be used in several
publications and is recognized by related works at the border between robotics
and software engineering [Iun+20; Bar19; SH20; de +21].



“ The most reliable way to forecast the future is to try to
understand the present.

”
— John Naisbitt

4
T I M I N G M O D E L I N G I N C O S I M A

This chapter covers the modeling of non-functional timing properties as additional
capability, which is added as an extension to CoSiMA. The modeled properties are
used as constraints to synthesize a schedule that is executed with the proposed execu-
tion semantics, realized in OROCOS RTT. This chapter is based on [Wig+18; WW19;
Moh+18].

With the current rise of collaborative robots entering various fields of the
industry, considering and ensuring safety as well as reliability becomes more
and more important [Lot+16]. When deploying a robotic system in a sensi-
tive environment, especially if it includes collaborative interactions with hu-
mans, a faulty behavior could lead to a hazard, endangering the robot, the
environment, or even worse a human being. Thus, it is mandatory to pro-
vide guarantees on the system’s behavior [Gob+16; Cho+13]. While this is
already necessary for non-real-time applications, it is even more mandatory
for real-time CBRSs [Car12]. In order to be able to give guarantees for such
a system that acts dynamically in the physical world, a recent trend is to ap-
ply model-driven engineering techniques to specify and analyze the system
and its behavior [RMT14]. However, investigating non-functional properties
such as the real-time execution behavior has not yet been a major concern
in robotics, since current research tends to address mainly functional capa-
bilities [Nor+16a]. In contrast to that, other domains such as avionics [Mor15],
automotive [Per+12], and embedded systems in general [Ouh+11; AMS07], are
aware that the modeling of the execution time behavior (e.g., reaction times)
is a crucial aspect in the development process [Arn00]. With that in mind, this
chapter introduces an extension to CoSiMA that integrates the modeling and
analysis of the execution time behavior for robotic systems along the L3Dim
approach. The extension allows the identification and correction of potential
timing or performance problems early on, thereby leading to a significant re-
duction of the development costs and person-hours for maintenance [Kra10;
Boh+09; Car12].
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related work on timing modeling for cbrs There are currently
very few publications in the field of robotics that consider timing specifi-
cation and analysis an integral part of the development process, and even
less that actually model timing aspects for analysis and code generation of
robotic systems. These findings are supported by the survey of DSLs in robot-timing properties

and execution time
behavior are un-

derrepresented con-
cerns in robotics
system modeling

�

ics [Nor+16a] as well as by the Robotics DSL Zoo [Nor+16b], suggesting that
the modeling of execution time aspects are an underrepresented concern, com-
pared to other concerns in robotics that are already well covered. In domain-
specific approaches such as RobotML [Dho+12] or BCM [Bru+13], timing-
related aspects are often entirely hidden in the components or framework, and
sometimes even in the hardware (interfaces) [NBB16]. Nevertheless, there are
approaches in the literature that do explicitly formalize non-functional timing
requirements (e.g., [COU16]). The majority of these approaches, however, only
covers a single aspect e.g., the worst-case execution time (WCET) [RMT14], the
worst-case response time (WCRT) [Gob+16; Lot+16; Cho+13; Kra10; Boh+09;
Car12], or the clock- and precedence-semantics [Mal08; AMS07]. Each aspect
alone, is not enough to sufficiently cover the timing behavior of a real-time
CBRS. Fortunately, there are a few publications that consider an adequate
amount of aspects [Lot18] and use them for extensive model-based analyzes
and to facilitate the integration of existing analyzers and visualizations into the
workflow via model-transformation [Lot+16]. While those approaches use the
model information for analyses and visualization, they do not use the model
to generate code that realizes an execution conform to the modeled timing
constraints. To the best of my knowledge, there is currently no approach that
covers the timing aspects essential for (real-time) robotic systems, and com-
bines them with model-based design-time support, analyzes, and executable
code generation.

4 .1 domain analysis

To ensure a desired system behavior, timing constraints need to be enforced
on the execution of the individual components. In the literature, this is com-
monly approached by applying the existing work on real-time systems (RTSs)
to component-based systems. A RTS is usually abstracted by a set of schedu-
lable activities1 A. Multiple instances2 (ai,j) of the activities (ai ∈ A) are
grouped into a schedule S.

4 .1 .1 Timing Characteristics for Component-Based Robotic Systems

Each activity is defined by a set of timing-related characteristics (see Fig-
ure 4.1): The first is the release date (ri,j), marking the earliest time the jth

instance of an activity (ai) can be executed. The actual starting time is defined
by si,j ∈ [ri,j,di,j −min(duri,j)], where duri,j denotes the execution time and
di,j marks the deadline of the jth instance. Consequently, the completion date is

1 Sometimes called tasks in this context.
2 Sometimes called jobs or executions.
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represented by ci,j ∈ [ri,j +min(duri,j),di,j]. The time from the release to the
completion date defines the response time (Ri,j), which needs to be less or equal
to the relative deadline (Di) of the activity (ai). In general, the WCRT is defined
as WCRTi = max∀j(Ri,j). Under sequential circumstances, the WCRT can be
treated as the WCET [BTv08]. The WCRT also includes the system-level over-
heads and preemption times [Die+17]. In this thesis however, non-preemptive
scheduling is assumed. There exist numerous approaches to determine the
WCET in the literature. However, doing so is not a trivial task, especially in the
preemptive multi-processor case [CBG01]. Still, the most common approaches
can be sorted into static analyses [CP00] and dynamic analyses [RS04]. An-

t

ai,j

si,j ci,j

ri,j ri,j+1di,jduri,j

Di

jth period

Figure 4.1: Timing characteristics of a real-time activity execution. The hatched areas
represent the earliest and the latest possible execution of the activity in-
stance ai,j.

other important characteristic relates to the activation pattern of an activity. A
periodic activation demands the release dates to be fixed to a time interval Ti:

ai,j ai,j+1

ri,j ri,j+1

Ti
t

Figure 4.2:
Periodic activation.

ri,j = ri,1 + (j− 1)Ti . (4.1)

The sporadic activation pattern allows for a more flexible release date, based on
a minimum separation time Ti:

ai,j ai,j+1

ri,j ri,j+1

> Ti
t

Figure 4.3:
Sporadic activation.

ri,j > ri,j−1 + Ti . (4.2)

Aperiodic activities may arise at any instant and are often triggered by an exter-
nal event:

ai,j ai,j+1

ri,j ri,j+1

> 0
t

Figure 4.4:
Aperiodic activation.

ri,j > ri,j−1 . (4.3)

In the following the timing aspects of a RTS are grounded into the context of
a CBRS by mapping each activity to a component instance. This means that
the activation pattern and the WCET are considered per component instance.
More important than the individual worst-case execution and response times,
is the worst-case end-to-end response time (WCE2ERT) [MM06]3 for the sys-
tem’s execution. A robotic system that interacts with the environment, natu-
rally senses information from the environment and acts to influence it. In the

3 Sometimes referred to as whole system response time [Die+17].
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same manner, a CBRS forms a control cycle by chaining multiple components
together, starting with the sensed information and responding with a respec-
tive action [Lot+15]. In the following, I refer to such a sequence of components
as sense-react chain (SRC)sense-react chain & [WW19]. An example is shown in Figure 4.5.
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Figure 4.5: Static view of an exemplary closed-loop control system. Two mixed SRCs
are shown. The shorter one starts with a3 and ends with a4. While a4
gets event-triggered upon completion of the previous activity, a3 is clock-
triggered with a frequency of 1kHz. This configuration mixes data and trig-
ger chains. Alternatively (green), instead of being clock-triggered, the next
iteration of the SRC could directly be started upon completion of a4. This
would turn the type of the SRC into a pure trigger chain. The longer SRC
involves all four activities, but is activated with only half the frequency of
the faster SRC. This means that for the calculation of the E2ERT, the itera-
tion of the faster SRC counts that begins after the completion of a2. This
data-flow dependency is also captured in the precedence sequence on the
right, which is however not sufficient to capture the activities’ activation
patterns. Note that here activity and component is used synonym.

The time from sensing to acting of a SRC represents the end-to-end re-
sponse time (E2ERT), which consequentially leads to the WCE2ERT being the
largest possible response time of a SRC. To describe the execution semantics
of such a chain, it can be classified into a trigger-chain, a data-chain, or a mix-
ture of both [MMS12b]. A trigger-chain is defined by having only one trigger-
ing source per SRC. In terms of activities, this means that the first activity in
the chain is triggered by e.g., a clock, an event, or an interrupt, while sub-
sequent activities are triggered upon completion of the previous activity. In
contrast to that, a data-chain uses independent triggers for each activity. De-
pending on the type of SRC, the calculation of the WCE2ERT needs to be
approached differently [MMS12b]. Figure 4.5 shows a mixed chain that brings
in aspects from the data-chain type, by composing multiple trigger-chain type
control loops with different triggers. Since low-level control loops are mainly
data-flow driven, the execution order of the involved activities are implicitly
defined and constrained by their data-flow. Hence, this data-dependency can
be specified with a Precedence Task Graph (PTG) [But11b] by introducing
precedence constraintsprecedence constraint & between activities [But11a]. Using a PTG it can be de-
termined which parts of the system can be executed in parallel and which
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activities need to wait for others to finish, e.g., because they depend on pre-
viously processed results from another activity. However, specifying a PTG is
not sufficient to cover the semantics of data-chains, since in this case the execu-
tion order cannot be completely deduced from the data-flow. For instance, to
ensure a stable control behavior of the robot, the components need to be exe-
cuted with different frequencies rather than in the exact sequence that is shown
in Figure 4.5. A direct and potentially fatal consequence is that components
process old input data, which frequently occurs in robotics [MMS12a; Ben+09].
Thus, in addition to a PTG, the independent triggers for the (sub)chains need
to be modeled as well.

Once the execution semantics of a system are defined, a suitable schedule
needs to be found. In light of the numerous works on scheduling that exist
in the literature [Bru+16], a schedule basically represents an assignment of
activities to processing cores over time [Ouh13], defining the points in time
when activities start and end, such that the three major types of constraints
are satisfied [Dej16]: time-related, resource, and objective function constraints.

time-related constraints Time-related constraints can be expressed
in form of the same precedence constraints as used by PTGs. An activity ai
precedes another activity aj, if it is completed before the other one starts:

ci 6 sj . (4.4)

Additionally, transition-time constraints can be used to constrain the timing
gaps between activities. Since a low-level control loop should usually run as
fast as possible, this type of constraint will not be explained further.

resource constraints Resource constraints are used to define the ac-
cess to a resource (m), shared by a set of activities (Ωm). While there are
various different kinds of resource models in the literature, exclusively unary
resources [Vil04] are assumed in the following. A unary resource can only be ac-
cessed by one activity at any point in time. Thus, a disjunction of precedence
constraints is introduced by this kind of constraint:

∀
i 6=j
ai,aj ∈ Ωm : ci 6 sj ∨ cj 6 si . (4.5)

Since processing cores are commonly represented as resources, core affinity
constraints are used to define the processing cores, an activity can be executed
on. Hence, either adding or removing the activity from Ωm for the respective
processor resource m.

objective function constraints Different constraints can be formu-
lated on the optimization of a schedule. A common objective function con-
straint is to minimize the makespan of a schedule. The makespan defines the
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width of the time window in which the schedule exists. Minimizing it means
minimizing the maximum completion date of all activities:

minimize max
ai∈S

(ei) , (4.6)

where S denotes the set of activities, involved in the schedule. Other objective
function constraints might concern minimizing the amount of used resources
or the earliness and tardiness of the activities [Ouh13].

4 .1 .2 Separation of Roles and Concerns

To cover the aforementioned timing concerns of a CBRS, their responsibilities
need to be distributed among the developer roles (see Section 2.3.2). In partic-
ular, the Component Supplier, the System Builder, and the Performance Designer
need to be addressed.

component supplier The Component Supplier is naturally interested in
determining general execution properties, such as the WCET/WCRT and the
memory consumption, in order to provide this information alongside the as-
sociated components. Especially, the WCET of a component is later used as
ground-truth for validation and analyses, conducted by other roles. Suitable vi-
sualizations for the concerns of this role found in the literature are histograms
or classical one-dimensional plots.

system builder The responsibility of the System Builder is to create a
system and its data-flow by drawing on the components provided by the Com-
ponent Supplier. From those components, SRCs need to be created. This task
includes defining precedence constraints in form of a PTG, specifying the trig-
ger types of the SRCs, and constraining data items on how far an input can
date back to be still considered valid for processing. Together with the Be-
havior Developer, the System Builder defines the WCE2ERT for the system at
which it is still capable of performing the desired behavior in a stable manner.
This optionally includes the specification of the maximum time / minimal fre-
quency that different control cycles (i.e. sub-SRCs) are allowed to be updated,
in order to keep the robot stable. In Figure 4.5, the shortest and faster control
cycle keeps the robot stable using low-level commands, while the longest and
lower cycle executes higher-level commands.

performance designer The Performance Designer takes care of realiz-
ing the system planned by the System Builder in terms of activities that are
assigned to processing cores. Here, the challenge is not only to make the sys-
tem schedulable, but also to meet the different requirements, specified by the
other roles. Therefore, this role has very different concerns and thus requires
other support as compared to the previously mentioned roles. The main con-
cern of this role is to create a suitable schedule. This involves not only all
the previously defined timing-related constraints, but also the capabilities of
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the targeted hardware platform. The number of available processor cores in-
fluences the degree of parallelization and thus the actual WCE2ERT. This is
important, because the main objective of the Performance Designer is to avoid
a violation of the WCE2ERT. In the case of a violation, the system is consid-
ered to be not schedulable and another iteration of the development process
is required, triggering the System Builder to optimize the system and the PTG.
This, hopefully enabling the Performance Designer to eventually find a schedu-
lable solution. Depending on the trigger type of the SRCs, suitable activation
patterns need to be chosen for the activities [Lot+15]. While these new re-
quirements seen individually do not seem to be overly expensive, the entire
set of requirements however, yields a highly complex optimization problem
that requires concern-specific views in terms of analyses and visualizations
to support this role: The actual system’s execution and its data-flow need to
be compared to the specified SRCs. A visualization in form of e.g., a timing
diagram with data-flow information is suitable for this purpose.
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Figure 4.6: Illustration based on an excerpt of Figure 3.5, showing the integration of
the timing-related DSL modules into the existing module composition of
CoSiMA.

4 .2 modeling of timing constraints

The findings from the domain analysis are realized in three DSL modules.
These modules extend CoSiMA to support the modeling of constraints on the
execution time behavior of a (real-time) CBRS. Following the L3Dim approach,
the timing-related modules are seamlessly integrated into the existing composi-
tion structure of CoSiMA. Figure 4.6 shows the integration using an excerpt of
the extended Figure 3.5. While the general timing concepts, such as the WCET,
the WCE2ERT, and the SRCs are captured in the Timing DSL as new modeling
capability, the concepts needed for the capability- and dimension-overarching
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integration are realized in the Timing Component DSL and in the Timing ORO-
COS Component DSL respectively. Figure 4.7 shows the composition on the
concept-level along the involved DSL modules, depicted in Figure 4.6. As iden-
tified in the domain analysis, the different concerns are distributed among dif-
ferent roles to avoid overwhelming a single role with various different tasks.
With the same mindset, the modeling responsibilities are split up as well, re-
lieving the individual developers and offering the possibility for a modular
workflow.

RTTTimingActivity

[1..1] annotates

RTTActivity

Implements
Extends

Child
Reference

Figure 4.7: Timing DSL (gray) meta-model including dependencies to concepts of re-
lated language modules from CoSiMA, namely, Component DSL (green),
Timing Component DSL (blue),Timing OROCOS Component DSL (orange),
OROCOS Component DSL (red), and MPS’ BaseLanguage DSL (purple).

4 .2 .1 Worst-Case Execution Time Modeling

The findings of the domain analysis show that for the verification of the tem-component-level
aspects of the

timing concern

�

poral behavior of each task, the WCET is usually combined with the WCRT to
take into account the interference of other tasks executing on the same process-
ing core [Lau+14]. While the WCRT is heavily concerned with the scheduling-
overhead, the WCET is more appropriate to cover the execution time of a task
itself. Thus, the concept of the WCET occurs to be an essential part of a tim-
ing analysis, especially for non-preemptive scheduling with unary resources
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as used in CoSiMA (see Section 4.3). The Timing DSL contains the WCET con-
cept, which is put into the context of component-based systems by using the
ComponentTimingAnnotation from the Timing Component DSL, connecting the
timing with the component modeling capability. The annotation can be added
to an IComponent model fragment, allowing the Component Supplier to en-
rich the component description with the WCET as well as the independent
processing time (IPT) [WW19] (see Figure 4.9). In contrast to the WCET, the
IPT provides information regarding the time it takes until a component enters
a phase where none of the other components in a SRC is dependent on the
data-flow or processing of that component (see Figure 4.8). This information
is optional, but when provided it can be used to improve the schedulability of
a CBRS. This is because, it decouples the execution of components that have
data-flow precedence constraints, from the completion of the preceding com-
ponent execution. In general, if component ak is dependent on the data-flow
information of component ai, ak,j needs to wait for the completion of ai,j. Us-
ing the idea of IPT, ak,j can be executed in parallel to ai,j once the data-flow
constraints are met, even though the execution of ai,j has not yet finished. Us-
ing solely unary resources (i.e. processing cores), the IPT only has an effect if
multiple resources are available. Otherwise, the subsequent components need
to wait until their predecessor is fully completed. Note that determining the
IPT is however not less challenging than the WCET.

t

ai,jm1

ri,j di,j rk,j

ak,j

dk,j

ipti

(a) Single unary processing core

t

ai,jm1
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ri,j di,j
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dk,j

ipti

(b) Multiple unary processing cores

Figure 4.8: Comparing the influence of the IPT on the E2ERT of two activities (ai,ak),
scheduled on a single or multiple unary processing cores (m1,m2).

4 .2 .2 Worst-Case End-To-End Response Time and Sense-React Chain Modeling

The main task of the System Builder in the context of timing modeling is to � system-level aspects
of the timing concernsort the ComponentInsts involved in the system into one or more SRCs. A

SenseReachChain in general is a sequence of SenseReactChainEntrys, which
represent executable units. Both concepts are provided by the Timing DSL. In
the realm of component-based systems, the SRC resembles a sequence of com-
ponent executions using SenseReactChainComponentEntrys from the Timing
Component DSL that reference ComponentInsts from the Component DSL. Each
sequence can either be classified as a trigger-chain or a data-chain (see Chain-

Type). The type generally depends on the activation patterns associated with
the individual SRCs (see Equations 4.1 to 4.3). A mixture can be achieved by
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Figure 4.9: Excerpt from the model of the FloatingBasePose component, including the
interface in terms of ports and operations, as well as additional timing
information e.g., the WCET.

composing multiple chains. In addition to that, data-flow constraints need to
be specified in form of precedence constraints [But11a] or a PTG using the
binary timing relations ExecuteBefore and ExecuteAfter (see Equation 4.4).
With this, SRCs can be modeled and the Performance Designer can be tasked
to find a schedule that meets the specification (see Section 4.3). However, not
every schedule will result in the desired behavior of the modeled robotic sys-
tem. According to the domain analysis, in a lot of scenarios, it is crucial to
specify the WCE2ERT that a SRC is allowed to have in order to ensure a stable
control behavior of the system and robot [MMS12b]. Hence, when specifying a
SRC the System Builder needs to provide the maximal desired E2ERT, which
is then used to check if such a chain can be executed in the specified amount
of time. As it can be seen in Figure 4.10, model-checks can be applied. For
instance, the duplication of precedence constraints, already implied by the
sense-react chain, can be detected.

4 .2 .3 Core Affinity and Schedule Modeling

To model an executable schedule that meets the specified SRC of the System
Builder, the per-component timing information from the Component Supplier
needs to be involved as well. This is the non-trivial responsibility of the Per-
formance Designer, who has the option to define additional core affinity con-
straints, to restrict which component should or should not be executed on
which cores (see Section 4.1.1). This decision may be influenced by application-
specific knowledge. Core affinity constraints are modeled with the ICoreAffin-

ityConstraint concept offered by the Timing DSL. The outcome of the Perfor-
mance Designer’s task is a TimingConstraints model that contains a valid
Schedule (see Figure 4.7). The Timing Component DSL provides the ability to



4.3 synthesis of an executable schedule 75

link a TimingConstraints model to a System model. The link to a system
is used to supply the necessary (timing) information to map the platform-
independent schedule to the execution semantics of a e.g., software platform,
with which the system will be deployed and executed. In case of OROCOS
RTT, the ActivityDemand from the OROCOS Component DSL is satisfied by
instantiating a RTTTimingActivity from the Timing OROCOS Component DSL
that delegates the responsibility to the modeled TimingConstraints for the
respective System model.

Now even though the composed model is sufficient to generate an exe-
cutable system with explicitly defined execution behavior, a mapping between
the modeled and the actual execution semantics of the chosen software plat-
form needs to exist. However, defining the execution of a component in terms
of period and priority as it is offered by OROCOS RTT, is not sufficient to
express all aspects of which the Timing DSL is capable of modeling. There-
fore, an extension to the execution semantics of OROCOS RTT is presented
in Section 4.3.2.

Figure 4.10: Excerpt from a system’s timing model, including the defined sense-react
chain as well as precedence and core constraints. Furthermore, a set of
timing-related model checks are shown.

4 .3 synthesis of an executable schedule

The previously introduced DSL modules allow the specification of timing con-
straints on a modeled system as well as the manual specification of a schedule.
However, creating a schedule that meets all the specified requirements is still
a tough task for the Performance Designer, especially if the data-flow depen-
dencies in the system are complex and involve a great amount of components.
To support the Performance Designer in performing this task, a homogeneous
transformation is used that enriches an existing model with additional infor-
mation. The aim of the transformation is to use the model information (e.g.,
SenseReactChain) provided by other roles to synthesize a suitable Schedule.
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The challenge of creating such a transformation is addressed in the follow-
ing: In general, finding a schedule can be formulated as a scheduling prob-
lem, where n jobs need to be mapped to m resources. According to the do-
main analysis, resource, objective function, and time-related constraints are the
three major types of constraints that have an impact on the resulting sched-
ule (see Section 4.1.1). For this work the problem formulation of a Flexible
Job Shop Scheduling Problem (FJSSP) [CK16] is used. Let J = {J1, . . . , Jn} be
a set of n jobs and M = {M1, . . . ,Mm} be a set of m available machines (i.e.
resources). Regarding the resource constraints, the machines (i.e. processing
cores) are considered to be unary (see Equation 4.5) and there is no predefined
constraint that associates a specific job (i.e. activity) with a specific machine.
Instead, a job can be mapped to any machine, as long as this mapping doesmachines refer to

processing cores
�

not violate any other constraint. Further, each job Ji is characterized by a set
of r non-preemptive operations:

Oi = {Oi,1, . . . ,Oi,r} , r 6 m . (4.7)

Each set of operations represents the potential executions of the associated
job on the chosen machines. The elements in the sets O are influenced by
the modeled core affinity constraints: CanOnlyRunOnCoresConstraint and Can-

NotRunOnCoresConstraint. Additionally, the execution time of the operations
inside a set Oi is considered to be the same:

∀k : ei,k = ei . (4.8)

This means that there is no difference in execution time using different ma-
chines. The objective function for this particular problem is to minimize the
makespan (see Equation 4.6), which will result in the shortest E2ERT of the
SRC that is schedulable. The time-related constraints are covered in form of
the precedence constraints (see Equation 4.4) that are modeled in a SenseRe-

actChain. Figure 4.11 shows an exemplary graph visualization of the prece-
dence constraints, where the nodes represent the elements of O.

To solve the FJSSP it can be turned into a Constraint Satisfaction Problem
(CSP), for which multiple solvers exist. A benchmark of current state-of-the-art
solvers, including Google’s CP-SAT,4 is presented in [DT19]. A CSP is a combi-
natorial optimization problem. It is formally defined by a triplet CSP(V ,D,C),
where V defines a set of decision variables, D represents a set of domains (i.e.
possible values for the variables), and C defines a set of constraints on the as-
signments of values to variables [Dej16]. In order to represent the previously
defined FJSSP, V , D, and C are chosen as follows:

variables V : For each operation Oi,k two variables are defined. The starting
time si,k and the completion date ci,k. The variables are set into relation
according to si,k+Di = ci,k, where Di is the (worst-case) execution time
(i.e. the relative deadline) or (if provided) the IPT.

4 https://developers.google.com/optimization

https://developers.google.com/optimization
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Figure 4.11: Screenshot of the interactive visualization in MPS for the possible compo-
nent executions (nodes) on each processing core (machine), derived from
the modeled timing constraints. Arrow-headed and dotted lines indicate
precedence and machine constraints respectively. The red lines indicate
the precedence constraints associated with the component executions that
are part of the resulting schedule.

domains D(X): The domains for the variables are defined as
D(si,k) = [0,horizon] and D(ci,k) = [0,horizon], where the horizon
marks the end of the valid time window for the schedule. In this case
it equals the specified WCE2ERT of the SRC.

constraints C : There are disjunctive and conjunctive constraints. The first
kind is used to formulate resource constraints: ∀Oi,k,Oq,k i 6= q : si,k +

Di 6 sq,k ∨ sq,k +Dq 6 si,k ensures that a machine can only process
one operation at a time. Whereas, the latter kind is used to express prece-
dence constraints: ∀i,q where i precedes q ∧ i 6= q : si,k + e 6 Sq,p,

where e =

min(ipti,Di) if k 6= p and ipti exists

Di else
.

This constraint ensures that precedence is not violated and operations ex-
ecuted on different machines can make use of the IPT if provided. This al-
lows to start the execution of another operation even though the previous
execution is not yet completed, but the necessary data-flow information
exchange is already completed. Since each operation of a job represents
an execution alternative for a specific machine, only one operation of
each job is allowed to be contained in the final schedule: ∀i∃̇k : si,k ∈ S,
where S denotes the resulting schedule, consisting of a set of starting
times for the chosen operations.
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4 .3 .1 Synthesis Using a Homogeneous Model Transformation

A homogeneous transformation is created to enrich the existing model with a
suitable schedule that respects the modeled timing constraints. To this end, the
transformation first translates the existing model into a CSP that is fed to e.g.,
Google’s CP-SAT solver. Second, the output of the solver is then lifted back
in form of a schedule into the model. A graphical visualization of a schedule
model in CoSiMA can be seen in Figure 4.12.

Inimplementation
concepts shown

in the meta-model
in Figure 4.7

� detail, the amount of available cores is extracted from the cores-property of
the TimingConstraints. The involved ComponentInsts are inferred through the
reference to the System and the individual WCETs and IPTs are collected from
the Component description properties of the instances. The conjunctive con-
straints are extracted from the precedence constraints of the SenseReactChains
and the additional ones, defined in the TimingConstraints. In contrast, dis-
junctive constraints are solely derived from the core execution constraints of
the TimingConstraints. Eventually, the set O (see Equation 4.7) is formed us-
ing the modeled information, leading to the definition of the set of the CSP
constraints (C), by drawing on the extracted conjunctive and disjunctive con-
straints. To lift the solved schedule into the existing model, a Schedule model
fragment is created, which is populated with ScheduleEntries, associating
each ComponentInst with a core for execution, the start time, and the estimated
duration based on the provided WCET.

Figure 4.12: Screenshot of the lifted schedule based on the constraints displayed in Fig-
ure 4.11 lifted back into MPS.

Once a schedule is found, it can either be an optimal schedule or a feasible
one, which means that the solver did not find an optimum. In both cases,
however, the schedule meets the specified requirements. The WCE2ERT of the
SRC can also be treated as a weak constraint for the solver, to get an initial
idea of the schedule, or if the WCE2ERT is unknown. In this case, the found
schedule will still be lifted into the modeling environment, but indicated with
an error (see Figure 4.10). This is useful for the Performance Designer and
ultimately for the System Builder as well, since the defined SRC cannot be
scheduled in the desired amount of time. In such a case, the development
process needs another iteration, including the System Builder to optimize the
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architecture and SRCs, to eventually enable the Performance Designer to find
a valid schedule.

4 .3 .2 Execution Semantics of the Schedule

To execute a synthesized schedule, the chosen execution environment needs
to support appropriate execution semantics. Unfortunately, the semantics of
OROCOS RTT are not expressive enough to realize the synthesized schedules.
OROCOS RTT uses the concept of activities, where each component needs to
be assigned to an activity, which in turn executes the assigned components in
sequence on a particular core. An OROCOS RTT activity is mainly defined by
its activation, which is either periodic or aperiodic, and by its priority. To close
the gap between the modeled schedule and the capabilities of the execution
environment, I extended the execution semantics of OROCOS RTT to provide
a target for the schedule generation from CoSiMA.

4 .3 .2 .1 CoSiMA’s Core Scheduler

Being limited to the execution semantics of OROCOS RTT, results in a mul-
titude of schedules that can be modeled, but that cannot be mapped to or
executed with OROCOS RTT. In fact, to produce a stable robot behavior, it is
according to [Mor15] in most cases not mandatory to ensure that all communi-
cations and computations are completed within a fixed time interval. Instead,
the flow-preservation [Tal+04] property is sufficient for the execution seman-
tics. Flow-preservation guarantees that the data-flow between two components
is preserved even if the execution times vary. Hence, as long as the WCE2ERT
of a SRC does not exceed a defined maximum, the system is able to produce
a stable behavior while also compensating for varying execution times of the
components.

The flow-preserving execution semantics are implemented as an extension
for OROCOS RTT that provides an API, which directly integrates into the
OROCOS RTT scripting language (i.e. OPS). Thereby, facilitating the genera-
tion of schedules. In contrast to the approach proposed by [Mor15], a non-
invasive strategy is used, which avoids changes to the OROCOS RTT frame-
work itself. To realize a desired schedule on the technical level, Core Schedulers
(implemented as OROCOS RTT TaskContexts) are introduced per involved pro-
cessing core. Components that are scheduled on the same processing core are
linked to the same Core Scheduler. The execution of each component can be
conditioned by different constraints (e.g., precedence constraints). A scheduler
sequentially triggers the execution of the linked components in a provided
execution order, while respecting the precedence constraints. To coordinate
multiple schedulers, one is selected to be the Coordinator that initiates a new
iteration of the schedule. The Coordinator is triggered conform to the trigger of
the sense-react chain, which is either time-based (i.e. periodic activation), or
data-based, representing an activation based on an (external) event. Note, to
start a new iteration as fast as possible, the event can also be the completion
signal of the last component in the SRC.



80 timing modeling in cosima

As seen in Figure 4.13, all Core Schedulers have four phases:

τ1,i τ1,i+1 S2

checkConstraint()

checkConstraint()

trigger()

checkConstraint()

nextActiveComp()

resetConstraints()

checkConstraint()

τ2,iS1

signalCompletion()

nextActiveComp()
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signalCompletion()
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trigger() 
(next iteration) 
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Start 
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return
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start()
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trigger()
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End 
Phase

τ2,i requires signal

from τ1,i but also

from τ1,i+1 so τ2,i will
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will be triggered.

 
the end of the SRC
iteration, so they
prepare for the next
iteration. S1 is the
master and triggers

activation criterion. 

signalEndIteration()
end iteration signal

the S based on an

both S reached

Figure 4.13: This sequence diagram shows an exemplary execution of two Core Sched-
uler (S1 and S2) with their associated TaskContexts (τS,i, where S is the
index of the associated Core Scheduler and i is the index in the execu-
tion order). In this execution, all four phases are visualized. τ1,i has no
constraints and is the first task to be executed. τ2,j needs the completion
signal from τ1,i and τ1,i+1 in order to execute, so it waits until it is woken
by a signal. After all tasks are completed, the coordinator (S1) schedules
the next iteration and notifies the other Core Scheduler (S2).

init. phase In the first phase, all constraints for the linked components are
initialized and the associated ports for inter-core signaling are created.
Further, each component gets assigned to a Core Scheduler, and sorted
according to the provided execution order. Finally, the scheduler that is
responsible for the first component in the SRC, becomes the Coordinator
that coordinates all other schedulers.
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start phase Before the schedulers are ready to enter the run phase, they
verify that all required ports are connected ensuring that inter-core sig-
naling is enabled. Afterwards, the run phase is entered automatically.

run phase This phase starts with checking the precedence constraints for
the currently active component in the execution order. If not all con-
straints are fulfilled, the Core Scheduler yields until woken by a signal
and then reevaluates the constraints. Instead, if all constraints are satis-
fied, the execution of the currently active component is triggered. Once a
component completed its execution, an execution-completed signal is fired
to notify the other schedulers. Eventually, the next component in the ex-
ecution order becomes the currently active component.

end phase Once one iteration of the execution order has finished, the end
phase is entered and the schedulers reset all constraints and the first com-
ponent becomes the currently active one again. Every Core Scheduler waits
for the coordinator to trigger the next iteration of the SRC. The following
iterations omit the init and start phase.

A schedule containing components that make use of the concept of IPT,
will result in the generation of an additional constraint for each precedence-
constrained successor on another Core Scheduler. Instead of waiting for the
execution-completed signal, the successor components can already start with
their parallel execution as soon as the IPT signal is received. This allows to
realize a more optimized schedule in particular cases, where the preceding
component uses a lot of time for computations that are irrelevant for the
precedence-constrained successors.

4 .3 .2 .2 Transformation from Model to Execution Environment

The Timing OROCOS Component DSL provides a M2T generator, which takes
the modeled Schedule and the SRC and translates them into a set of OPS state-
ments that relate to the API exposed by the extended execution semantics (i.e.
OPS). For each core on which a component should be executed, a Core Sched-
uler is instantiated, except if a core would only contain one component that
is also the trigger of the sense-react chain. In this case, no Core Scheduler is
used for a particular core to prevent execution overhead. All components in
the schedule are sorted into their associated Core Scheduler together with the
precedence constraints defined in the SRC. Due to the fact that the extended
execution semantics use a flow-preservation approach, the concrete start times
of the component executions are not relevant. Instead, the overall trigger type
of the SRC is used to determine the coordinator Core Scheduler and how it
initiates a new control cycle (e.g., time-based or event-based). A detailed ex-
planation of the transformation pipelines is given in Appendix A.3.
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4 .4 evaluation

The work presented in this chapter is evaluated from two different points of
view: First, the integration of the created language and generator modules
into the composition structure of CoSiMA is investigated. Second, the vertical
application of CoSiMA shows the modeling of a robotic case study and the
analysis of the system’s execution in terms of explainability and predictability.

4 .4 .1 Integration into CoSiMA’s Composition Structure

As described in detail in Section 4.2, the timing-specific concepts are realized
in one language module: Timing DSL. Two adapter language modules are re-
quired to achieve a seamless integration with the existing CoSiMA DSL stack,
namely Timing Component DSL and Timing OROCOS Component DSL. Note that
the integration is completely non-invasive on the language (i.e. meta-model)
as well as on the model level. Hence, there is no need to change existing lan-
guage modules and the model fragments related to the timing concern can
be dynamically added or removed from the rest of the model without invali-
dating other concerns. This is achieved through the use of annotations to link
Component DSL with Timing DSL model fragments. The final transformation of
the Timing OROCOS Component DSL hooks automatically into the generation
pipeline of the OROCOS Component DSL generator, since both target the gen-
eration of OPSs statements (see Appendix A.3). Therefore, no additional gen-
erators need to be created. Instead, front-end and back-end reuse of already
existing generators is performed.

Figure 4.14: Screenshot of the system model showing the components used in the case
study and their data-flow connections.
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4 .4 .2 Case Study: Bipedal Walking

As a case study for CoSiMA’s timing modeling, the control of the humanoid ro-
bot COMAN (see Figure 4.15) is investigated.5 In this experiment, COMAN is
tasked with walking on a straight line using a Zero Moment Point-based [Kaj+03]
approach. For tasks such as bipedal walking, the correct time-wise execution
is of upmost importance. Thus, modeling a system for such tasks, ignoring the
timing concerns may lead to an executable system, however, with an unpre-
dictable behavior, e.g., a falling robot. The system itself is modeled with the
DSLs presented in Section 3.3. A screenshot of the system model in CoSiMA
showing the involved components and their data-flow connections can be seen
in Figure 4.14.

floating base (base) is responsible to compute the position and orienta-
tion of the robot’s floating base. Its inputs are the current robot configu-
ration as well as the active support foot.

com primitive (com) provides reference trajectories for the center of mass
(CoM) and feet (swing/support) of the robot to the inverse kinematics
component (Whole Body IK). The other output of this component is an
indicator for the current swing foot (left/right) which is needed by the
Floating Base component.

whole body ik (ik) solves the inverse kinematics of the humanoid robot.
Given a desired Cartesian velocity, current body configuration, null-space
choice, and pose of the floating base, it solves the IK using a closed loop
inverse kinematic (CLIK) method and sends the results to the robot.

redundancy resolution (rr) provides a null-space joint motion behav-
ior that influences the Whole Body IK. For this particular case, we try to
find joint values that keep the robot’s torso near its upright configuration.

robot interface (robot_gazebo) resembles the interface to the robot. It
provides the robot’s feedback in terms of joint position, velocity and
torques to the components and forwards control commands to the ro-
bot.

The software platform OROCOS requires a definition of activities for each
component. Without the timing model and the new execution semantics, the
OROCOS RTT activities need to be chosen manually, which is very error-prone.
The system model is eventually transformed into an executable system for
OROCOS RTT using the generator pipelines, described in Section 3.3.4. The
resulting unstable behavior can be seen in Figure 4.15 (a)-(d).

A timing-analysis with CoSiMA’s introspection tools reveals that the order
of execution of the components results in com being executed after ik. This
leads to com sending its data to a later iteration of ik, meaning that ik operates
on “old” data, causing the robot to fall (see Figure 4.16).

5 Special thanks to my colleagues from CogIMon for providing the functional algorithms for this
scenario as well as for creating the motivation for this work in the first place.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.15: Simulation of the walking COMAN. Images (a)-(d) show an unstable be-
havior that leads to the robot falling down, while (e)-(h) show the ex-
pected walking sequence.

Figure 4.16: CoSiMA’s introspection tool to analyze the execution behavior, shows a
faulty execution cycle. Short vertical lines represent output (black) and
input ports with (green =̂ new, cyan =̂ old, red =̂ no) data. The green
lines indicate the correct data-flow, whereas the red line indicates the
actual but wrong data transfer. The red circle marks the occurrence of the
problem. The correct execution introspection can be seen in Figure 4.17.

To approach this problem, a suitable schedule needs to be created, ensuring
that the data is received when it is needed. Therefore, the timing model that
can be seen in Figure 4.10 is created. Here, the main focus is on the data-
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Figure 4.17: CoSiMA’s introspection tool to analyze the execution behavior, showing
a correct execution cycle. The color coding next to the component names,
indicate the (Core Scheduler) thread they belong to.

dependencies. From the model, the schedule in Figure 4.12 is synthesized.
Note that the WCET and IPT of the involved components are determined using
a sample-based approach for this experiment, since this is not in the focus of
this work. Please refer to [Lot+16] for more details on that topic. Additionally,
the schedule is transformed to be interpreted by CoSiMA’s Core Scheduler. In
this experiment, only one Core Scheduler is instantiated on core 2. It takes care
of scheduling com, base, and ik in sequence. To avoid over-head as described
in Section 4.3.2.1, the robot interface is the only component that is running
on core 3 without a Core Scheduler. In this particular case, this is possible,
because the robot interface component represents the beginning of the SRC.
The resulting and correct robot behavior can be seen in Figure 4.15 (e)-(h). An
introspection of the system’s execution behavior in Figure 4.17 shows that the

Figure 4.18: This figure shows a visualization based on collected execution samples
of the system. It can be seen that the execution conforms to the schedule
in a flow-preserving manner. The x indicates the firing of the IPT event,
which is needed by the com component in order to execute. ∆tsrc−model
corresponds to the WCRT of the modeled SRC, while ∆tsrc−real also
includes the execution-overhead of the Core Scheduler.
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data-flow complies to the precedence constraints of the SRC. The visualization
of the collected execution samples from the Core Scheduler and the system’s
components in Figure 4.18 shows that the execution behavior conforms to the
synthesized schedule in a flow-preserving manner. We did a similar scenario
modified for the physio-therapeutic juggling with patients in [Moh+18].

4 .5 conclusion

This chapter presented a DSL extension to CoSiMA that allows the modeling
of the non-functional execution timing behavior of component-based robotic
systems. Making this non-functional aspect explicit, increases the explainabil-
ity and opens up the possibility for verification. Through the domain analysis
that was conducted, it became clear that constraints, such as precedence and
core constraints, are essential aspects for modeling the timing behavior. The
concepts for the meta-models are chosen in a way to allow a straight-forward
generation to formulate a FJSSP, which in turn is used to synthesize a sched-
ule that conforms to the modeled constraints. In order to execute and analyze
the schedule, the execution semantics of OROCOS RTT are extended to sup-
port the property of flow-preservation, which ensures data freshness. Thus,data freshness &

adding another layer of explainability and reliability to the execution of such
a system. With the presented approach the flow, execution order, and machine
(core) constraints are preserved from the model to the execution level. The full
support of additional constraints and execution patterns of SRCs still remain a
challenge. For instance, more than one time-trigger is currently not supported
within one SRC. Further, defining constraints for alternating execution cycles
can currently not intuitively be modeled. Instead, the SRC needs to be unrolled
to span the representative execution cycles for the desired behavior. In case the
gap between the modeled and the execution time behavior is required to be
closed beyond the flow-preservation criterion, additional challenges arise that
include the proper estimation of WCET in multi-core systems as well as the
right consideration of the impact of the memory bandwidth on the systems’
execution.

Even though the synthesis of such an executable schedule is a very useful
application, showing the richness of the timing model, the primary aim of
this chapter is to showcase the domain-overarching integration of CoSiMA,
which in this case is used to create a seamless combination of non-functional
and functional aspects of CBRSs. Inspired by this, we further conducted re-
search on model-based performance testing for robotics software components
in [Wie+18].



Part II

C O M P L I A N T I N T E R A C T I O N

This part sets the focus on researching the domain of CI and its
composable integration into the modeling structure of CoSiMA.
Chapter 5 is dedicated to the analysis of the domain to find the
right abstractions to model CI tasks in terms of a task description.
Chapter 6 translates the concepts from the previous chapter into an
extension of CoSiMA, which allows to practically create valid CI
task models. Chapter 7 establishes the link between the task model
and the system model via a synthesis mechanism. The synthesis is
presented for the projected inverse dynamics control approach.





“ Look deep into nature, and then you will understand
everything better.

”
— Albert Einstein

5
C I D O M A I N A N A LY S I S A N D M O D E L I N G

This chapter provides insights on the very nature of environmental interaction and its
relation to a task description. These insights are essential to consolidate the concepts,
necessary to enable the modeling of compliant interaction tasks. This chapter is based
on [WDW20; Deh+ss].

Describing the task that a robot is asked to perform, is generally the first
step towards creating a robotics application. Without a task, there is no need
for a robot to actually move. The behavior exhibited by a robot is always, but
not exclusively, depending on the task. However, a task does not fully define
the behavior, it rather defines requirements that bound the behavior. Hence, it
controls the flexibility (in the action space) that the robot has to perform the
task. Describing a task as e.g., move to frame 1 results in an underspecification
that gives the robot a lot of flexibility. Therefore, it would be totally fine for a
redundant robot to arrive at that frame with a different and randomly chosen
redundancy resolution every time. Colliding with objects during the execution
would also be completely valid, as long as the task does not state otherwise.
Especially for compliant interactions with e.g., humans, the gap between the
desired task and the exhibited behavior needs to be closed to avoid danger-
ous situations. Nowadays, in most skill-based approaches this flexibility is re-
duced by additional constraints. These constraints however, are hidden inside
the skills and their realizations, and are not explicitly represented on the task
level [BS09; Sto09; SG07]. For applications that try to avoid contacts with the
environment as much as possible, it might be sensible to request a collision-
free path per default for every task. However, it is generally never a good
idea to introduce hidden assumptions, since they prevent traceability and pre-
dictability. Especially, for applications that rely on compliant interactions with
the environment, the relation between the task and the behavior needs to not
only be free of hidden assumptions, but also clearly controllable. This requires
a way to explicitly describe the interaction with the environment, which is
composable with the other aspects that form a task description (see RQ 3).
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5 .1 task description for compliant interaction

While there is a widespread agreement in the robotics community that a task
description is essential, there is no common agreement about the individual
aspects that form a task and how they are represented. A similar situation canno consensus

about the abstrac-
tion level of a task

�

be found in the literature regarding the terminology of “tasks” and “skills”.
Both terms are used to describe performable actions. According to Scioni et
al. [Sci16], the two words are even used interchangeably sometimes. From
a global point of view, there is also no distinctive separation between what
counts as a task, a skill, or a skill primitive (see Table 5.1). Within the context

Publication Mission Task
(Sub)

Skill

(Skill, Motion, Device)

Primitive

(Elemental)

Action

[SLS17]
Do order picking

for order 45

Grasp blue cup
Grasp object

with constraint
- -

[Näg+18] - -
Screw,

Push,

Idle

- -

[Tho+13] - TakeAndPlugObject GraspObject - MoveTo

[MW01] -
Peg-In-Hole,

Screwing
- MoveTo -

[Klo+11] - - Alignment Linear PTP -

[Buc+14] - - - -
Grasping,

Peg-In-Hole,

Screwing

[Sch+18]

[Ped+16]
- Assemble rotor Pick Object Move PTP -

[SWW18] - -
Pick and Place,

Peg-In-Hole,

Screwing

- -

[Bjö+11] - - SnapFit - -

Table 5.1: Different interpretations of the terminology of skill-based approaches. A
clear example is the activity of screwing, which is addressed as task, skill,
and action by different publications.

of the individual publications, however, there is a clear hierarchical separation
between the terms. This separation is sometimes so strong that each level ap-
pears as a black box that hides essential information, related to its realization
and composability (e.g., [Tho+13]). To overcome the negative impact on com-
posability and interpretability, other authors, such as Nägele et al. [Näg+18],
propose to soften the hierarchy. By only using e.g., skills and explicitly pro-
viding the relevant information for self-composition, the level of abstraction
can be flexibly increased. Inspired by this composition-friendly mindset, I will
use the term “task” as core concept for the approach introduced in Chapter 6,
which will act as a synonym for skills and actions.

Independent of the terminology, there exist individual aspects that are re-
quired to create a task description. The most prominently mentioned ones
related to compliant interaction with the environment are (see Figure 5.1):

trajectories allow the definition of task-specific motions that provides set-
points to the control system. Trajectories can be position-, velocity-, or
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force-based, either in joint space as well as in task space [Klo+11; Näg+18;
SWW18].

coordination is realized in the majority of skill-based approached by hier-
archical statecharts [Van+13b; NWS15; Tho+13; Klo+11; Näg+18]. Other
approaches use guarded sequencing based on pre and post conditions
[MW01; Buc+14; Sch+18; Ped+16; Bjö+11].

monitors manage the evaluation of specified conditions. If a condition is
met, the monitor triggers an event. While pre and post conditions are
evaluated discretely, stop conditions [Näg+18] and guards are continu-
ously evaluated [Ped+16; Sch+18; Tho+13; MW01].

compliant interaction needs to be considered in the task description,
especially considering CI tasks [Ped+13; Sci+16] (see Figure 1.1). In the
majority of approaches, this aspect is rather a world description than
a description of the environmental interaction, limited to the manipu-
lated object, the used robot, or a set of feature coordinates [de +07]. Even
though this aspect is heavily underrepresented, the community agrees
on it being a part of the task description [Sci+16; Van+13b; Bor+16]. In
the following, the interaction refers to the exchange of physical forces.

Task

Compliant Interaction
objects and

geometric, kinematic, and
dynamic relations

Trajectories
timed

force/motion
profiles

Coordination
e.g., state

charts

Monitors
conditions
(including
pre/post)

Figure 5.1: The individual aspects that form a task description, extracted and con-
densed from the literature.

While there is mostly a clear separation between the monitors, trajectories,
and coordination, the physical CI is often entangled in these aspects. To bene-
fit from the separation of concerns in terms of reusability and scalability, the
interaction needs to be decoupled and made explicit. Petersen et al. [Ped+16],
for instance, considers the environment to exist outside the task and the skill.
I propose that the interaction is considered as a context for the task, which is
shared between different tasks. This way, each task is able to influence the in-
teraction for itself and by being a context for subsequent or parallel active tasks.
For instance, if the interaction is separate but composable with a trajectory, it
is easy to exchange the trajectory.

In the following, the focus lies on describing the physical interaction. The
other aspects of the task description are equally important, but sufficiently
covered by multiple other publications. Those aspects are not addressed in
detail, except for their relation to the CI with the environment.
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5 .2 contact-based interactions

As previously mentioned, approaches that consider compliant interactionsa description of the
environment alone

is not sufficient

�

with the environment, model the environment to different degrees, using dif-
ferent abstractions. The most natural abstractions utilize geometrical objects
and relations [Ad14] to describe the state of the environment. Kresse and
Beetz [KB12b] for instance, use a symbolic approach to introduce geomet-
ric constraints between physical entities (e.g., constraint keep-over spatula oven).
This idea is even carried over to recent approaches. Migimatsu et al. [MB20]
use a symbolic representation for object-centric pre and post conditions of
black box actions (i.e. pick, place, and push) to predict and define the environ-
mental interaction. This, however, rather models discrete environmental states
than the actual interaction.

To describe the compliant interaction with the environment, I argue that thea description of
the interaction

with the environ-
ment is necessary

�

focus needs to be extended from the environmental state and the geometric re-
lations of the entities to their kinematic and dynamic interaction. An overview
of the conceptual aspects, presented in the following, is given in Figure 5.2
below:

Task

Compliant
Interaction

Monitors Trajectories Coordination

ContactEntity

Frame
Body/
Link

Contact
Surface

Contact
Situation

Contact
Model

Joint

Kinematic
Chain

Compliance
Frame

Controllable
Frame

Virtual
Manipulator

Force
Constraint

Contact
Transition

Contact
Prioritization

Motion
Constraint

Natural Artificial

TypeCoupling

Feature

And

Mandatory

Optional

Requires

Or

Xor

Figure 5.2: Feature diagram showing the relations of the conceptual aspects for the CI
task description, discussed in this chapter.

5 .2 .1 Compliant Interaction Modeling via Contacts

In a multitude of publications [SB18; LRS11; EWS03; CFD19; EB15; KSP08;
Len+13], a contact can be viewed as the natural interface through which (phys-
ical) interaction is possible. A contact couples two physical entities, i.e. geo-
metric (rigid) bodies. We use the term couplingscoupling & to describe the interactions
between the entities, which are characterized by the forces that can be trans-
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mitted through the contact and the allowed relative motion of the contacting
entities. A coupling can be influenced by properties, such as the contact sur-
face geometry and the material properties, i.e. friction and deformation [LRS11;
SWW]. Contacts and their couplings can be expressed in different spaces (i.e.
task and joint space), depending on the type of their contacting geometries.
The behavior of a robot in a contact situation can be described by a composition
of real (i.e. natural) and virtual (i.e. artificial) contacts (see Section 2.1). Virtual
contacts employ virtual couplings to impose an artificial behavior, which is not
imposed by the real environment. An example is the tracking of a trajectory as
explained in Section 5.2.2.3.

5 .2 .2 Expressing Contact Couplings via Constraints

Couplings can be represented by a mixture of equality and inequality con-
straints, depending on the contact situation [PB93]. Unilateral constraints for
instance may prevent one of the coupled entities from moving against the con-
tact normal and penetrating the other coupled entity [KLB08]. Based on the
works of Mason [Mas81], Raibert et al. [RC81], Featherstone et al. [FTK99],
and Bruyninckx et al. [Bd96], constraints can be either “natural” or “artificial”.
This classification also determines the type of the coupling and the respective
contact. In contrast to a natural constraint which is enforced by the environ-
ment, an artificial constraint is used to realize an interaction that is desired by
a (high-level) task.

Controlled Frame
Compliance Frame {CF}

Contact Surface

body

FN

FT

(a) Unilateral

FN1

FT1

FN2

FT2

(b) Bilateral

Figure 5.3: Rigid body contact constraints. (a) shows a unilateral contact. −FN denotes
the contact force along the normal direction, while FT represents tangential
contact forces, which can be caused by e.g., friction. (b) shows a combina-
tion of two contacts, resulting in a bilateral contact constraint. Here, the
controlled body is constrained in one (a) or two (b) directions. The con-
strained DoF depend on the contact surfaces (e.g., f-f see Section 5.2.3).

Considering the contact situation in Figure 5.3a, the coupling between the
EEF entity (i.e. body) of the robot arm and the ground can be represented by
the following types of constraints:

5 .2 .2 .1 Rigid Contact Constraint

A contact divides the task space into a wrench and a motion subspace at the
contact point. Contacts are generally unilateral (see Figure 5.3a). However, a
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contact constraint can artificially assume a bilateral contact (see Figure 5.3b),
to not only ensure that the contacting bodies are not penetrating each other,
but also that the contact is not broken. Assuming a rigid-body contact model,
the relative wrench and velocity of the coupled entities are bound to a zero
Cartesian velocity and acceleration at the contact point [Deh+18; FTK99] by

Jic q̇ = 0 ∧ Jic q̈ + J̇ic q̇ = 0 , (5.1)

where Jic ∈ R6×D describes the constrained Jacobian associated with the ith
contact point, and D the number of joints (i.e. DoFs). However, considering
that Figure 5.3a depicts only a natural and unilateral contact, Equation 5.1
needs to be extended by

λλλf,n > 0 , (5.2)

ensuring that an artificial contact force1 λλλf,n can only be applied in the con-
tact normal direction (n) to allow pushing and prevent pulling. To determine
the separation into subspaces, a contact constraint refers to the contact surface
(see Section 5.2.3). The separation can be based on individual wrench and mo-
tion directions (cf. TFFTask Frame

Formalism
& ) or on the space spanned by a composition of different

contact surfaces.

5 .2 .2 .2 Force Constraint

A force constraint can be used alone or in combination with a contact con-
straint to define the wrench exerted in the wrench subspace. To apply a pres-
sure into a contact, a direct force control approach can be used (see Equa-
tion 2.17) for instance. Further, total compliance in a particular direction can
be realized by ensuring the contact wrench to be zero:

λλλf,n = 0 ∧ λλλt,n = 0 . (5.3)

Total compliance makes the robot’s motion behavior solely dependent on ex-
ternal perturbations in the selected direction (see Figure 6.18).

5 .2 .2 .3 Motion Constraint

A different contact situation is depicted in Figure 5.4a. Instead of a rigid
contact model, a soft contact model based on a mass-spring-damper (MSD)
model [KLB08] is used to describe the interaction of the EEF’s body being
trapped between two elastic bodies. Figure 5.4b shows a bilateral motion con-
straint that is used to artificially resemble the model shown in Figure 5.4a. To
achieve the same behavior, the two MSD models need to be converted into a
single corresponding one.

Using a MSD model is only one way to represent a motion constraint. How-
ever, for compliant interactions it is desirable to support a coupling that when

1 The subscripts ( )f and ( )t refer to the contact forces and torques of the contact wrench λλλ.
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Compliance Frame {CF}

pN

body1 body2body3

(a) Compliant Bilateral Contact

Compliance Frame {CF}

pN

body1
(virtual) Equilibrium Point

(b) Virtual Mass-Spring-Damper

Figure 5.4: The compliant coupling of the contact situation in (a) motivates the mod-
eling of an artificial coupling based on a mass-spring-damper model (b)
to represent a common motion constraint. The conversion from (a) to (b)
requires a transformation of the two MSD models (a) into a single MSD
model (b). The mass for the models is often chosen to be the EEF’s mass,
although inertia shaping could be employed as well.

perturbed, makes the Compliance Frame (CF) � in figures, frames are
denotes as { · }, see
Notation on page xv

virtually behave as a physi-
cal MSD system. To achieve this behavior, typically a second-order linear re-
lationship between position and force is introduced via an impedance con-
troller [Vd16]. The advantage of an impedance controller is that it is especially
suited to cope with unknown forces that result from unmodeled dynamics
and interactions with e.g., humans. It also ensures a stable response to antici-
pated or unstructured disturbances [Hog85]. The external perturbation Fx of a
Cartesian controller is given by:

Fx = Λd ¨̃x + Dd ˙̃x + Kdx̃ , (5.4)

where x̃ = x − xd and xd is the virtual equilibrium point, Λd is the desired
inertia, Dd is the desired damping, and Kd is the desired stiffness matrix.
While the equation depicts a task space formulation, it can be formulated for
the joint space analogously. An overview of impedance control variants can be
found in [Sch+19].

5 .2 .3 Contact Surface Constraints

The contact surface—even a virtual one—has a direct impact on the constraints � relation between
contact surfaces and
constraints

that realize the behavior of a coupling. While constraints can be formulated in-
dependently, the behavior is a result of their composition. A surface geometry
naturally adds additional constraints to a coupling. These constraints can be
derived from topological contact primitives. A common approach is to catego-
rize topological contact primitives based on the contacting geometries [XJ01].
In contrast to low-level primitives such as the point contact [LMT84; Don85]
or surface contact notation [PK08; KKK16], which can also be considered as
multiple point contacts at the corners of the contact surface [LRS11], Xiao
and Ji [XJ01] present 10 different higher-level primitives, which are based on
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combinations of point, edge, and surface contacts: principal contacts (PC)2

pci = (a-b), a, b ∈ {vertex, edge, face}. A point contact for instance is repre-
sented by (v-v), (v-e), or (v-f). The symmetrical cases are omitted for brevity.
The constraints specific to this type of contact would restrict the bodies from
locally moving against the contact normal, while at the same time enabling
the bodies to freely move along the remaining non-restricted DoFs [KLB08].
By combining the PCs with the classification of motion constraints, introduced
by Morrow and Khosla [MK97], which aim at providing specific geometric
interpretations for different classes of constrained DoFs, the constrained and
free DoFs for a specific contact situation can be derived. For instance, if no con-
tact is established, the situation would be referred to by Morrow and Khosla
as “Free (unconstrained) motion”, which belongs to the class of aaa, meaning
that the translation of and rotation about x, y, and z are completely free. Hence,
all six DoFs can be used for pure motion control. In case of a contact described
by (v-f), the situation would be classified as aac, meaning that only the trans-
lational component of the z direction is constrained, resulting in five free DoFs
and one constrained DoF. Table 5.2 shows the combination of contact types
and constraint classes introduced by [XJ01] and [MK97] respectively.

Contact Type Constraint Class DoF

- (1|1) (1|1) (1|1) ≡ aaa 6

f-f (1|0) (1|0) (0|1) ≡ bbc 3

f-e/e-f (1|1) (1|0) (0|1) ≡ abc 4

f-v/v-f (1|1) (1|1) (0|1) ≡ aac 5

e-e(-c) (1|1) (1|1) (0|1) ≡ aac 5

e-v/v-e (1|1) (0|1) (0|1) ≡ acc 4

v-v (0|1) (0|1) (0|1) ≡ ccc 3

e-e(-t) (1|0) (0|1) (0|1) ≡ bcc 3

Table 5.2: This table shows the different types of contacts with the associated con-
straint classes and the resulting DoF for the non-constrained space, using
the notations of [XJ01; MK97].

Each contact surface geometry relates to a set of natural constraints, which
can be combined with further artificial constraints that are not bound to any
physical relation, but are purely chosen to express a desired behavior. On the
one hand, the constraints of a coupling together define the (virtual) contacting
surface that can be represented in terms of PCs. On the other, using TFF or
a similar approach, it is also possible to derive the set of constraints from the
PCs, since one or more constraints can be used to represent the constrained
directions imposed by the PCs. Table 5.2 forms the basis for the conversion
between contact surface primitives and the DoFs that are targeted by the con-
straints.

2 The first element of the pair represents a contact surface associated with the robot, while the
other one represents a surface on an object.
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5 .2 .4 Kinematic Chains and Joint Constraints

Constraints can also be used to describe multi-body entities. A robot arm for
instance is formed by a series of (single-body) entities (i.e. links) that are only
allowed to move in a certain way. How the links are kinematically chained
together depends on the used mechanism (i.e. joint). A joint can be consid-
ered analogous to a contact, which couples two or more3 links. Prismatic and
revolute are very common types of joints, defining the DoFs that the coupled
links are allowed to move with respect to each other. Using Table 5.2, the dif-
ferent types of joints can be represented as motion constraints by translating
the DoFs into constraint classes for contact surfaces. In addition to the general
DoFs that can be used for motion, joints are constrained by mechanical limits
that further restrict the motion in the defined DoFs. While most of the geo-
metric and kinematic constraints are formulated in the Cartesian space, joint
constraints are usually formulated in the joint space.

5 .2 .5 Virtual Manipulator Constraints

In � a frame or body can
only be controlled
when connected to a
source of forces

the physical world, an entity can only be moved through forces. If an entity
is not able to produce the necessary forces to move itself, it needs to rely on
other external forces. While natural constraints are realized by the physical en-
vironment, artificial ones can only be realized by a source of controllable forces.
In case of a robot arm, the last link or EEF can only be controlled, because the
individual joints represent natural constraints that can be artificially controlled.
Hence, an artificial motion constraint that acts on a controllable entity (i.e. an
EEF) can be realized. This in turn means that any entity that is in contact with
a controllable entity, becomes controllable as well to a certain degree. The de-
gree depends on the type of contact that is established. Following that idea,
the task specification can be made object-centric, instead of being solely robot-
or EEF-centric. An object-centric approach allows to specify a task indepen-
dent of how the constraints are realized eventually [Sha+20]. Figure 5.5 shows
a box that is tasked with moving towards the edge of the table to brush off

(a) Static Single Grasp (b) Static Dual Grasp (c) Dynamic Dual Grasp

Figure 5.5: Different ways to turn the box into a virtual manipulator in order to wipe
the small objects off the table.

3 In case of a kinematic tree, which is used to represent a humanoid robot for instance.
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the small objects. The box itself is not controllable. Only when a contact with
a controllable entity is established, then the box becomes controllable and the
artificial motion constraint for moving forward can be realized. In Figure 5.5a,
the box is grasped by an actuated kinematic chain (i.e. a robot arm), turning
the uncontrollable box into a Virtual Manipulator (VM) [LDC18; Has+05]. As it
can be seen in Figure 5.5b, creating a VM is not limited to one kinematic chain,
instead multiple chains can be combined as a closed kinematic tree as long
as the internal forces are accounted for by employing a force closure or even a
form closure using a suitable grasp. While the grasps in the first two images are
considered rigid and fixed, the grasp in Figure 5.5c is very dynamic and relies
on a constant application of forces to maintain the contact while moving.

The VM is created based on the grasp matrix G that relates the manipulated
object twist to the contact twists of B manipulators [Deh+18]:

G =
[
Gi . . .GB

]
∈ R6×6B, Gi =

[
Ri 0

S(ri) Ri

]
∈ R6×6, (5.5)

where Ri represents the rotation matrix of the ith contact frame. ri is the dis-
tance between the ith contact position and the object’s Center-of-Mass (CoM).
S(r) is the skew-symmetric matrix. The geometry of the (virtually) manipu-
lated object needs to be encoded into G. To control the internal forces, as
needed in Figure 5.5c, the nullspace projection of G can be used. The result-
ing contact wrench does not produce any net wrench, i.e. GFc = 0. Since the
motion of the box should not be affected by the forces that maintain the grasp,
only the internal wrench is allowed to be controlled by

Jint ∈ R6B×D =
(
I − GT (G+)T

)
J1 0

. . .

0 JB

 , (5.6)

where Ji represents the ith manipulator Jacobian and D the combined number
of joints. For more detail, including the compensation for object dynamics,
please refer to [Deh+18; Lin+18; Deh18].

5 .3 contact situations and transitions

Contacts that happen at the same point in time, can be grouped together in a
Contact Situation (CS). Such a situation represents one element in a high-level
contact state space to describe an interval in time or rather a discrete state
of the environment [XJ01]. While a CS can be modeled explicitly during the
design phase of a system, it can also be formed implicitly during runtime by
the set of contacts that exist at that point in time.
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5 .3 .1 Prioritizing Contacts and Constraints

Within a single contact situations it is essential to define the importance of
the individual constraints. For instance, the behavior of hyper-redundant ro-
bots, such as humanoids, in multi-contact situations, is generally defined by a
multitude of constraints [Aud+14; PK08; PK05; Yun+99]. However, not all the
constraints can be satisfied in every situation. Hence, through prioritization a
set of constraints are defined that need to be satisfied at any cost, while others
become optional. As shown in Figure 1.1l, the humanoid robot uses different
contacts with the environment to support itself while raising a leg. In this case,
the constraints related to a stable stance are more important than the (motion)
constraints that achieve reaching a target position with the leg. Considering a
simpler task, such as sanding a part, it is more important to ensure that the
same force is exerted into the contact direction than it is to perfectly follow
the sanding trajectory. Applying more or less pressure would result in uneven
sanding, while deviations from the motion trajectory can be easily fixed.

There are numerous works on prioritization of control tasks to achieve a de-
sired behavior. A very prominent one is the stack-of-tasks approach (see Sec-
tion 2.2.2). It supports two types of prioritization, i.e. strict and soft, which are
conceptually lifted to manage the prioritization of constraints: The idea of a
strict prioritization is that lower priority constraints do not influence the ex-
ecution of the higher level constraint. In contrast to that, a soft prioritization
introduces a weighting between the constraints, which allows the constraints
to influence each other, but also does not guarantee the correct execution of
the constraints. Both, projection-based and QP-based control frameworks pro-
vide the means to realize the two prioritization mechanisms [DOA15; Hof+17a;
Roc+15].

5 .3 .2 Contact Transitions

Several manipulation tasks require the establishing and breaking of contacts.
In order to successfully accomplish such tasks, the transition from non-contact

� the separation into
free and constrained
spaces orthogonally
decouples motions
and forces, based on
the duality between
force and motion at a
contact [KLB08]

(free-space motion) to contact (constrained-space motion) and vice versa is
mandatory [FBJ06; JC92]. This is why the physical interaction aspect of a task
description contains one or more CSs. Thus, allowing the transitioning be-
tween different contacts and non-contact states, by traversing from one CS to
another. Such a transition is realized by deactivating and activating sets of con-
tacts together with the constraints that describe their couplings. Each CS can
have guards that restrict or allow the traversal based on predefined conditions.
Those guards can be uni- or bi-directional. The former type allows entering
a CS (e.g., when a contact is established), while the latter actively triggers a
transition to another CS (e.g., when a contact breaks). These conditions can be
based on the internal high-level task coordination state or on sensor data.

In order to realize a transition between contact states and situations, differ-
ent approaches exist, covering the estimation and identification of the active
contacts as well as for the detection of the transition between contact states.
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In [Mir+18] a confidence-based approach is presented to transition between
controllers upon contact in a discrete way:

u(x, xe,ϕ) =

{
u1(x, xe,ϕ) if P(‖x̂− x̂e‖ 6 δ, θ̄) 6 δp
u2(x, xe,ϕ) if P(‖x̂− x̂e‖ 6 δ, θ̄) > δp

, (5.7)

where u1(·) and u2(·) are control controllers that are (de)activated based on
the confidence δp for the distance between the system and the agent (e.g., the
robots’ EEF and the desired position). Here, each controller implements force
and motion constraints to realize a CS.

A means to not only (de)activate controllers but enable a transition on the
prioritization-level of the individual control tasks that form a controller, is
offered by the dynamically consistent Generalized Hierarchical Control (Dyn-
GHC) [DS19] approach. DynGHC allows to continuously reprioritize stacks
of control tasks and to even switch between strict and soft hierarchies. The
prioritization of K control taskseach control task

is assumed to pro-
duce a joint torque

control signal

� are encoded in the matrix

Ψ =


α1,1 α1,K

. . .

αK,1 αK,K

 ∈ RK×K , (5.8)

where the priority for each pair of control tasks < i, j > is represented as a
scalar value αi,j ∈ {0, 1} for a strict or a soft αi,j ∈ (0, 1) hierarchy. The entries
αi,i ∈ [0, 1] define the (de)activation of a task in the hierarchy. The priorities
related to a control task τττi are rearranged into a diagonal matrix Ai that is
used to create the shaped projector NAi . The final control law is given by

τττ =

K∑
i=1

NAiτττi . (5.9)

By smoothly adjusting α, the prioritization of control tasks can be changed,
which with regard to the satisfaction of constraints means that a smooth traver-
sal between contact constraints and thus contact situations is possible.

5 .4 conclusion

In this chapter, a domain analysis was conducted towards answering RQ 3

“What are suitable abstractions to model the CI in tasks?”. First, the aspects
that are essential to a task description for CI were investigated and the need
for an explicit and in-depth consideration of the compliant interaction was mo-
tivated. Second, the different kinds of abstractions used to describe individual
parts of the compliant interactions with the environment that can be found
in the literature are investigated. The outcome of this chapter is the insight
that a suitable abstraction for CIs is based on the physical entities that enter
a compliant interaction through the natural interface of contacts. Contacts im-
pose force and motion constraints, expressed in the geometry, kinematics, and



5.4 conclusion 101

dynamics domain, on the motion behavior exhibited by a robot. By choosing
an abstraction that is grounded in the task-space, the description of the CI be-
comes intuitive and explainable. Grouping the contacts into contact situations,
allows to define the transitions between situations that are essential to estab-
lishing and breaking a contact. A prioritization of the constraints is used to
impose a desired (artificial) behavior. The same can be done by the other task-
related aspects, such as trajectories and coordination, which further constrain
the interaction in an artificial way to produce a desired behavior. Hence, it is
important that the description of the CI part of the task is composable with
the other aspects of the task description. The insights of this chapter are con-
solidated as a conceptual base for the domain-specific modeling of CI tasks,
presented in Chapter 6.





“ Abstraction is one of the greatest visionary tools ever in-
vented by human beings to imagine, decipher, and depict
the world.

”
— Jerry Saltz

6
C I L A N G U A G E D E S I G N A N D ( M E TA - ) M O D E L I N G

This chapter presents the transfer of the insights from the domain analysis into a DSL
that allows the modeling of CI tasks as an extension of CoSiMA. This chapter is based
on [WDW20; Deh+ss].

As stated in Chapter 1, the realization of emerging robotics applications
that involve CIs & compliant interaction, becomes feasible with the rise of hardware that leverages
precise torque control and built-in force-torque sensors, capable of entering a
compliant interaction (e.g., COBOTs). Correlating with this rise is the continu-
ous search for software development approaches for designing executable task
descriptions for the emerging contact-rich applications. In particular this is
shown in Figure 6.1 by the sudden but sustained increase in DSL publications,
providing MDE approaches related to the robotics task and skill modeling.
Choosing modeling over programming is proven to cope with the challenges
of similarly complex domains, such as automotive and aerospace [AGD18].

This chapter presents an answer to RQ 3 in form of a DSL as an extension to
CoSiMA, which allows the modeling of robotics tasks with particular focus on
CI. To this end, the insights gained in Chapter 5 are transformed into concepts
and meta-models for the modeling of CI tasks based on contact situations in
which interactions occur through a set of contacts. To model the effect of the
contacts on the behavior of the contacting physical entities, different kinds of
force and motion constraints are modeled. The constraints are expressed in the
geometry, kinematics, or dynamics domain. In contrast to other publications,
this approach makes no distinction between tasks, skills, or skill primitives,
since the interaction of the scenario is abstracted by a common concept: the
involved contacts. Thus, creating a common representation to express, for ex-
ample, a peg-in-hole task or a screwing motion. Despite the focus on CI, other
task-related aspects, such as coordination or trajectories, further constrain the
behavior of the robot. Hence, the approach presented in this chapter, must en-
sure the composability with those aspects on a concept and language (i.e. DSL)
level.
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Figure 6.1: Keyword-based trend analysis of control frameworks and task-related DSL
publications. The two axes show the number of publications, collected
using [Dim]. The used keywords are presented in the legend. A Google-
based [Goo] interest search for the keyword cobot is overlaid in gray, which
spans the range from zero to the maximum recorded interest in percent.
Further, the release dates of prominent COBOTs are added.

6 .1 related work

Several DSLs in the robotics domain were developed over the last years, which
utilize different levels of abstraction. Approaches with a high level of ab-
straction, usually choose a skill-based representation to increase the ease of
use and to lower the required expert knowledge. One of those approaches is
LightRocks [Tho+13], a DSL for skill-based robot programming, which uses
Statecharts to coordinate the skills depending on pre and post conditions. The
authors state that LightRocks allows generating code “while hiding controller
specific implementation details”. This perfectly highlights the wide-spread
problem of DSLs that only allow modeling on a high abstraction level. Here,
the abstraction is raised so far that even the lowest supported level, repre-
sented by LightRocks’ Elemental Actions, hides the actual implementation of
the robot’s behavior in black boxes (e.g., Move Close, MoveTo Grasp, and Move
Back). Hiding e.g. robot-specific aspects, such as how the redundancy is han-
dled, in favor of the usability increases the gap between the envisioned and the
resulting behavior and limits the general applicability. Another downside of a
black box approach is being limited to very trivial composition mechanisms,
which is why the majority of skill-based solutions only support the sequenc-
ing of skills. A solution to the problem of composition and orchestration is
proposed by Nägele et al. [Näg+18; Näg+19]. The core concept of their DSL
is built on a prototype-based inheritance for skills, which breaks a skill down
to a constraint-based representation. This representation enables more sophis-
ticated composition patterns, such as the parallel execution and prioritization
of skills.

The concept of describing a desired robotics task in terms of constraints
on relative motions between points of interest is adopted by different ap-
proaches on the lower end of the spectrum of abstraction. Klotzbücher et
al. [Klo+11] present a DSL that allows to define low level motion and force con-
straints, which are based on TFFTask Frame

Formalism
& . The constraint models are platform-agnostic.
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Multi-staged model transformations are used to compose the constraints with
hardware- and software-specific aspects. In contrast to LightRocks, this en-
ables the explicit switching of the used robot, causing minimal changes to
the constraint models. Aertbeliën et al. [Ad14] introduce a task specification
DSL (eTaSL), which lifts the general idea of TFF to feature variables and repre-
sents geometric operations between rigid bodies (i.e. scalar, vectors, transfor-
mation matrices, etc.) as expression graphs on the geometry and kinematics
level. While geometric relations between objects can be modeled, eTaSL does
not explicitly consider the robot, the task, and the environment, since all are
essentially modeled as feature variables, expression graphs, and position or
velocity level constraints. Expression graphs are used to model the error func-
tion of a constraint explicitly. For task space constraints however, the resulting
behavior is implicitly defined by a first order linear system and only repre-
sented on the model level by a time constant. eTaSL can model equality as
well as inequality constraints, which can be used to describe joint limits. Bar-
tels et al. [BKB13] present a DSL to model geometric position level constraints
between objects. Compared to eTaSL, a higher level of abstraction is used by
explicitly modeling and visualizing the robot and the geometric environment.
While the static relations between objects are modeled, the dynamic realization
(i.e. how a constraint is realized) is not considered on the model level. Van-
thienen et al. [Van+13b] introduce a DSL for iTaSC [Smi+08], whose level of
abstraction lies in between the previous approaches. The DSL explicitly mod-
els the robots and the geometric objects in the world. Additionally, it uses fea-
ture coordinates to constrain the relative motions between the objects, which
is similar to eTaSL. However, the constraints can be prioritized on multiple
levels of prioritization, while eTaSL only supports up to two. The satisfaction
of constraints and thus the definition of the resulting behavior is implicitly ref-
erenced by the selected controller. Compared to eTaSL, different controllers for
the realization can be chosen on the model level, but their semantic relation
to the resulting behavior is not made explicit. For instance, joint positions are
hardcoded in the controller without a link to the available joints in the virtual
kinematic chain (VKC) that is used.

Table 6.1 shows a comparison of the mentioned approaches in terms of dif-
ferent aspects, which act as inspiration for the CI task modeling in CoSiMA.
It can be seen that Vanthienen et al. [Van+13b] already address most of the
aspects, but lack a complete formalization of the meta-model as well as suit-
able tool support. Even though the approach explicitly considers the physical
environment, including the robot, it does not consider contacts or contact sur-
faces. The same holds true for almost all other related work. Further, it can be
seen that the approaches are mainly designed to support single, or individu-
ally controlled robots. To the best of my knowledge, none of the mentioned
approaches support dynamically closed VKCs and are limited to kinematic
interaction. A dynamically closed VKC allows controlling e.g., two robots that
create a closed VKC through maintaining a rigid or soft contact, forming a
single robot, where even dynamics level constraints can be imposed on the
combined robots.
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DSL CoSiMA [Klo+11] [Tho+13] [Van+13b] [BKB13] [Ad14] [Näg+19]

Explicit Environment 3 7 7 3 3 7 7

Separated Interaction 3 7 7 3 7 3 7

Prioritization Levels Multiple 7 7 Multiple 7 1-(2) Multiple

Constraint Behavior 3 7 7 3 7 3 7

Task Transitions 3 3 3 3 7 7 3

Formalization MM (MM) Math (MM) 7 7 7

Tool Support 3 7 3 7 3 7 7

Abstraction Level 1 2 1 3 1 2 2 1 3

Dynamically Closed VKC 3 7 7 7 7 7 7

Contacts and Contact Surfaces 3 7 7 7 7 7 7

Table 6.1: Comparison of CoSiMA’s CI task modeling with relevant and related DSLs.
The compared aspects refer to the modeling and not to the functional ca-
pabilities of the underlying execution frameworks. A DSL is formalized via
a meta-model MM or mathematically Math. Presentations of only small
meta-model excerpts are marked with (MM). Abstraction levels range from
low-level control (1), over behavior constraints (2), to high-level actions (3).

6 .2 modeling contact-based compliant interactions

In this section, I introduce the CI task modeling with CoSiMA along the win-
dow wiping example shown in Figure 3.4 (right). The aim of the wiping task
is to establish and maintain a contact with the window, while following a pre-
defined trajectory to clean the window’s glass.

Every necessary modeling step is presented using the relevant concrete syn-
tax and the underlying concepts in form of meta-model excerpts. The gen-
eral idea behind this approach is to model the physical and virtual entities
in the environment and to explicitly constrain their interaction using contact
constraints (i.e. ICIConstraints) to form discrete ContactSituationsimplementation con-

cepts of a constraint
and a contact situa-

tion, see Figure 6.14

� that can
be transitioned between in a contact state graph that is decoupled from, but
loosely composable with, the other task-related aspects.

6 .2 .1 Physical Environment Model

The first step towards defining a task description that models a desired robotic
behavior in (physical) contact situations, requires the specification of the rel-
evant physical entities (i.e. bodies) and virtual points of interest (i.e. frames).
While bodies provide geometric, kinematic, as well as dynamic information,
the compliant interaction is modeled on the frames.

Figure 6.2 shows the specification of an environmental state using the World

concept. In this example, the World contains the window as a single Body. The
robot is modeled using a MultiBodyFromRobotModel, which references a Robot-

Model defined with concepts from the Kinematics Dynamics DSL. It includes the
mobile platform, the robot manipulator, as well as the rigidly attached win-
dow cleaner. The virtual entities in the World model, are chosen to represent
key points for the actual task. The NamedFrame {m}in the text, frames

are marked with
an underline { · } to

avoid confusion, see
Notation on page xv

� defines a frame, which is
directly expressed in the world frame {w} to be externally controlled to realize
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Figure 6.2: Environment model with physical and virtual entities (i.e. objects and
frames). A screenshot (right) of the model in MPS, and of the objects and
frames (left), directly generated from the model into the simulator is shown.
For readability, frame names and transformation arrows are overlaid. The
line on the window represents a commanded motion trajectory.

NamedFrame

IMonitor

MultiBodyFromRobotModel

World

Body

NamedFrameRef FrameRef

Cube

 size_x : Expression

 size_z : Expression

 size_y : Expression

IFrame

Pose_As_PositionAndQuaternion

 ry : Expression

 ty : Expression

 rw : Expression

 rz : Expression

 rx : Expression

 tx : Expression

 tz : Expression

IVirtualEntity

LinearCartesianTrajectory

 time : Expression

IPoseType

Frame

fixed : EBoolean = false

bodyFrame : EBoolean = false

ITrajectoryIPhysicalEntity

RobotModel

FrameFromLink RobotLink

[0..1] initialPose

[0..*] monitors

[1..1] origin

[0..*] virtualEntities
[0..*] physicalEntities

[1..1] frame [1..1] ref

[1..1] reference

[1..1] end

[0..*] control

[1..1] start

[0..1] robotmodel

[0..1] robotlink

Figure 6.3: Excerpt of the World DSL meta-model that allows the modeling of physi-
cal and virtual entities (see Figure 6.2). The core concepts are Frame and
Body. Concepts from the Kinematics Dynamics DSL (orange) are reused by
reference. Other aspects of a task description, i.e. ITrajectory (white) are
defined based on the same core concepts (i.e. Frame).
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a trajectory. The NamedFrame {c} represents the compliance frame at which the
contact with the surface of the window will be established and with respect
to which the motion of the robot will be controlled. The frame is expressed
with reference to the EEF link (i.e. FrameFromLink) of the chosen robot (i.e.
RobotLink). All the relevant concepts to model the physical and virtual enti-
ties of an environmental world state can be seen in Figure 6.3.

Those concepts act as an extension point for more sophisticated concepts
that involve multiple or completely new domains. The MultiBodyFromRobot-

Model for instance extends the Body concept, to allow the composition with the
Kinematics Dynamics DSL by referencing a RobotModel concept. Since the Kine-
matics Dynamics DSL is based on the URDF formalism, it offers the possibility
to relate single rigid bodies to one another by introducing different kinds of
RobotJoints. Thereby, allowing to model multi-body entities such as a robot
manipulator in form of KinematicChains, including joint limits.

6 .2 .2 Modeling Contacts and Constraints

To define the interaction between physical or virtual entities, different kinds
of constraints (i.e. derived from the ICIConstraintICIConstraint is

the implementation
concept from which

all constraint con-
cepts are derived,

see Figure 6.5.

� ) are used to restrict their
relative motion (see Figure 6.4). In the case of defining the interaction between
two physical bodies in a KinematicChain, a robot joint represents one or more
natural constraints that act on features (e.g., frames) defined on the involved
bodies (e.g., robot links) (see Section 5.2.4). CoSiMA uses a common represen-
tation based on artificial and naturalthe type is de-

fined using the
CType concept

� ICIConstraints to model the compliant
interaction between entities (see Figure 6.5). To this end, the following three
different types of constraints can be arbitrarily composed to express an inter-
action.

Figure 6.4: The screenshot of the DSL (right) shows a contact constraint and a mass-
spring-damper constraint acting on the compliance frame {c}, describing
the compliant interaction towards target frames {s} at the window surface
and {m} for the tracking of a desired motion trajectory. The screenshot of
the simulator shows the visualization of the specified constraints (left).
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Figure 6.5: Excerpt of the Compliant Interaction DSL meta model, showing the con-
straint concepts and their link to the concepts Frame and Body.

6 .2 .2 .1 Contact Constraint

Based on the insights from the domain analysis a contact is modeled between
two Bodys (see Section 5.2.2.1), where the combination of the target and refer-
ence surface defines the ContactConstraint (see Section 5.2.3). The constraint
represents the restrictions imposed by the surface on the individual transla-
tional and rotational DoFs. Table 5.2 realizes a conversion between the DoFs
and principal contacts (PCs) � presented in Sec-

tion 5.2.3
. PCs increase the explainability of the contact sur-

face by adding a semantic meaning to describe the contact constraint based
on combinations of vertex, edge, and face primitives. Therefore, providing a
clear interpretation of the DoFs in form of well-known mechanisms, such as
a ball joint, a slider, or a hinge. Further restrictions can be expressed over the
individual DoF to give the user more control. This may also include combina-
tions that cannot be interpreted by a PC. Additionally, a contact can impose
unilateral and bilateral constraints. This choice however, has a direct impact
on the set of software control frameworks that are capable of realizing such a
constraint.
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In the wiping example, a contact is established between the compliance
Frame {c} of the window cleaner and the Frame {s} at the window’s glass, dur-
ing the wiping action. As it can be seen in Figure 6.4, the contact constraint
uses a rigid contact model, constraining the motion bilaterally using the PC
(e-f). This prevents any translational motion in the Z (tz) direction and any
rotational motion in the Y (ry) direction w.r.t. the surface of the glass. This
also means, that wrenches can be applied in the constrained directions. For in-
stance, without any artificially applied torques in Y, the window cleaner would
adapt to a potential tilting of the glass surface.

6 .2 .2 .2 Mass Spring Damper Constraint

The second type of constraint are motion constraints such as the MassSpring-

DamperConstraint. These kinds of constraints are usually artificial, e.g., de-
scribing the compliant tracking of a trajectory. Depending on the respective
space in which such a constraint is expressed, a MassSpringDamperConstraint

concept or a JointMassSpringDamperConstraint concept can be used. In the
first case, impedance parameters are defined for one or more relative Carte-
sian motion directions between the involved Frames. In the second case, the
constraint is expressed in the joint space instead of the Cartesian space. This
is done, because it is more intuitive and widely adopted than to express joint
constraints or limits in the Cartesian space.

In case of the wiping example, a MSDmass-spring-damper & constraint is used that connects the
motion Frame {m} to the compliance Frame {c}, imposing an impedance be-
havior with the equilibrium point at {m} (see Figure 6.4). Hence, a coupling
is created that allows the tracking of a motion guided by {m}. This motion
can for instance be provided by a trajectory generator. Further information
regarding the behavior of the constraint is described in the domain analysis
(see Section 5.2.2.3).

6 .2 .2 .3 Force Constraint

An artificial contact ForceConstraint can be used in a direction in which a
motion is not possible. This is usually the case in contact situations. Such a
constraint can be used in addition to a ContactConstraint to apply a wrench
in one or more Cartesian DoF. The wrench is applied at the target Frame ex-
pressed in a reference Frame. Similar to a MSD constraint, the to be constrained
DoFs can be individually chosen. The BoundedValue concept is used to offer
the possibility to specify lower and upper bounds. This way, inequality and
unilateral constraints can be modeled. Using the ForceConstraint in addition
to an artificial ContactConstraint enables the specification of a totally com-
pliant behavior as described in Section 5.2.2.2. A single ForceConstraint can
only achieve total compliance if no other motion constraint is present.

Figure 6.6 shows the artificial contact ForceConstraint that is used in addi-
tion to the other constraints in the wiping example to enforce a contact force
in the Z (tz) direction of the Frame {c}, which is expressed in the same frame.
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Figure 6.6: The screenshot of the DSL shows a force constraint that constrains the force
exerted into the contact normal direction.

6 .2 .3 Virtual Manipulator Constraint with Internal Wrench Handling

Natural constraints represent physically existing relationships, while artifi-
cially imposed constraints need a source of controllable forces to be realized.
As discussed in Section 5.2.5, a Body can only be controlled with respect to a
Frame, if it is in contact with another controllable Body to ensure the transmis-
sion of forces. A robot’s EEF link, for instance, can only be controlled if it is
part of a controllable kinematic chain, because the EEF itself does not contain
any controllable sources of forces. The DoFs with which the body can be con-
trolled depends on the type of contact. In CoSiMA, everything that is turned
into a controllable body via a non-rigid attachment to another controllable
body is called a Virtual Manipulator (VM). This includes grasped or pushed
bodies for instance. Since the EEF is rigidly connected through a physical joint
to the rest of the robot’s kinematic chain, it becomes a controllable physical
manipulator that can be used to turn previously uncontrollable bodies into
controllable ones. For instance, a body that is pushed by an EEF, can create a
virtual manipulator as long as the contact is maintained. However, the avail-
able DoFs of the manipulator depend on the kind of contact and are usually
unilateral, since the robot cannot pull the pushed body. To overcome this, mul-
tiple controllable bodies can be used to create contacts with an object, such as
a box (see Figure 6.7), to form a closed kinematic chain. Hence, turning the
box into a VirtualManipulator. Again, the box can only be controlled as long
as the referenced ContactConstraints forming the chain are maintained. Us-
ing a form closure avoids the need to maintain the contact through artificial
forces. In contrast, a force closure requires the artificial application of internal
wrenches. As it can be seen in Figure 6.7, a force closure is created due to the
controlled EEFs squeezing the box. This means that a certain force needs to
be applied into the contact to maintain the closed kinematic chain. Physically
closing a kinematic chain offers the possibility to treat the involved robots as
one single robot and also enables the distribution of the necessary torques (to
move the box) over both robots on the dynamics level. Modeling a virtual ma-
nipulator in the wiping example is not necessary, since the window cleaner is
screwed to the EEF. Instead, an example using a VM is presented in Chapter 8.
The meta-model for modeling the CI constraints is shown in Figure 6.5.
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vmc2vmc1

vm1

Figure 6.7: The definition of a VirtualManipulator is shown. Depending on the in-
volved contact constraints (e.g., vmc1 and vmc2) and the type of closure
(i.e. grasp), the internal force needs to be artificially controlled to maintain
the virtual kinematic chain on the dynamics level.

6 .2 .4 Modeling Constraint Prioritization Structures

The prioritization of constraints is necessary, since a robot cannot guarantee an
arbitrary amount of constraints in any given situation. In fact, this strongly de-
pends on the constraints, the (sub)space they are acting on, the robot, and the
current state of the world. In CoSiMA however, overconstraining the robot’s
task and joint space is not prevented, since conflicting constraints may be used
to create (desirable) interferences. In order to ensure the satisfaction of essen-
tial constraints, such as maintaining a contact or keeping the center-of-mass
of a robot inside the support polygon, constraints need to be prioritized. For
this, the redundancy of the controlled robot can be exploited. As mentioned
in Section 5.3.1, CoSiMA supports multiple levels of strict prioritization as well
as (intra-level) soft prioritization.

For each ContactSituation, a CompliantControlArchitecture1 concept is
instantiated, which contains a prioritization structure (PS) per KinematicChain
used in the respective CSContact Situation & . The ICIConstraints of a ContactSituation are sep-
arated by the kinematic chain and are reflected in the associated PS.

A PS forms a tree that comprises a set of ControlTasks (vertices) and IC-

CARelations (edges) to impose different types of prioritization. The beginning
of a PS is marked by an Entry_Relation (see Figure 6.8a), which provides the
context for the control tasks and relations in terms of the controllable joints
represented by a KinematicChain K and the Frames that can be targeted by
the respective type of control task. Figure 6.8 shows the concrete syntax of the
supported ICCAEntry concepts.

1 CompliantControlArchitecture is abbreviated as CCA, e.g., InterfaceCCARelations and
CompliantInteraction as CI, e.g., InterfaceCompliantInteractionConstraint.
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A CompliantControlArchitecture can be transformed into an executable
robotics software architecture, for a chosen software control framework (see
Chapter 7). The prioritization concepts are presented below and the associated
meta-model is shown in Figure 6.9.

(a) (b) (c) (d) (e)

Figure 6.8: Concrete syntax of the concepts to model a prioritization structure: (a) En-
try_Relation, (b) Nullspace_Relation, (c) WeightedSum_Relation, (d) Mo-
tionForceSubSpace_Relation, and (e) ControlTask. I and O denote links
to other ICCAEntrys. CF, K, τ, F, and R denote references to the controllable
target frame, the kinematic chain, the identifier of the control task, the
control formalism, and the platform-dependent realization of a formalism
respectively.
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Figure 6.9: Excerpt of the Compliant Interaction DSL meta-model containing the prior-
itization concepts. Each ControlTask references an ICIConstraint that it
realizes via a suitable control formalism. An exception is the ContactCon-
straint which is realized via a subspace relation, providing a ContactFil-
ter. The color coding indicates that this meta-model reuses concepts from
other meta-models.
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6 .2 .4 .1 Control Task

A ControlTask (see Figure 6.8e) represents a control formalism F (IController-
Formalism) applied to a referenced controllable Frame CF; both depend on the
space, the ControlTask is expressed in: task space (CartesianController) or
joint space (JointSpaceController). In the case of a joint space control task,
the controllable entity (CF) represents a subset of joints from the Kinematic-

Chain, which is given by the context of the encapsulating PS, instead of a
frame. The used formalism itself is not directly tied to a specific implementa-
tion of a control equation. Instead, each formalism can be realized by a set of
control implementations. The set of suitable implementations depends on the
chosen software control framework that is globally annotated to a CI model
(see Figure 6.16). Note that all implementations associated with the same for-
malism produce a control behavior that conforms to the general definition of
the formalism (see Figure 6.10).

IControllerFormalism

IJointControllerFormalismICartesianControllerFormalism

JointMassSpringDamperController

CartesianConstraintController

CartesianMassSpringDamperController

JointLimitOptimizationController

DirectForceController

Figure 6.10: This meta-model excerpt shows the supported controller formalisms. De-
pending on the abstract concepts they are derived from, it is determined
which kind of constraint can be represented by the formalism.

The link between a control task and the constraint it has to realize is estab-
lished via a direct reference. Each ControlTask can reference one constraint of
any type, except for a ContactConstraint, which is a special case explained
in Section 6.2.4.4. In fact, a control task maps the referenced constraint to a
suitable formalism for realization and embeds the constraint into a prioritiza-
tion structure. The referenced constraint can then be exploitedmodel-to-model & by the M2M
transformations of the synthesis in Chapter 7 to parameterize the associated
formalism. Thereby, also configuring the software implementation of the actual
control components.

6 .2 .4 .2 Strict Prioritization

The Nullspace_Relation concept (see Figure 6.8b) is used to model a strict pri-
oritization between two ControlTasks, based on the literature presented in Sec-
tion 2.2.2. Let e be an instance of this concept. Semantically the Nullspace_-

Relation enforces that the control signal of the ControlTask e.O0 is not in-
terfering with the signal of e.I0 if the target frame of e.I0 is also chosen for
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the relation itself: e.CF = e.I0.CF. That also means that the second task can
only be accurately performed if enough DoF are available. Otherwise, it is
performed at best, without interfering with the primary task. A CustomFilter

can be used to further shape the nullspace. However, in contrast to the Motion-

ForceSubSpace_Relation, the Nullspace_Relation does not enforce the active
control of the created subspace. A similar specification is possible in the Math
of Task (MoT) [Hof+17a] DSL. In general the realization of the relation is inde-
pendent of a specific formulation. Both, a PIDC- and a QP-based realization is
able to support this kind of prioritization.

6 .2 .4 .3 Soft Prioritization

A soft prioritization is represented by the WeightedSum_Relation concept e
(see Figure 6.8c). Each ControlTask e.Oi linked by this relation is on the
same prioritization level (see Section 2.2.2). Scalar weighting factors e.wi are
used to superimpose the weighted set of control tasks e.Oi [BK11; Mor+13a].
All weighting factors in the same relation need to sum up to 1. Analogous
to the Nullspace_Relation, the WeightedSum_Relation is formalism-agnostic
and can be realized by PIDC- and QP-based frameworks alike. In addition to
its role as a prioritization relation, the WeightedSum_Relation can also be struc-
turally referred to as a control task, thus allowing the same positioning in the
tree structure of a PS (as a vertex).

6 .2 .4 .4 Motion-Force Subspace Relation

The MotionForceSubSpace_Relation concept e (see Figure 6.8d) divides the
task space into separate subspaces (e.g., constrained “force” and unconstrained
“motion” space), to avoid the interference of control tasks. As described in Sec-
tion 2.2.3, this is commonly used to represent a rigid body contact at which
the unconstrained space refers to the motion subspace, while the constrained
space represents the contact wrench space. In the first space, movement is
possible while the exertion of forces is not. Whereas in the latter space, it
is the other way around. In contrast to the Nullspace_Relation that uses a
CustomFilter, this relation uses a ContactFilter to split the space into two
subspaces, each individually controlled by a ControlTask. A ContactFilter

further establishes a link to the ContactConstraint that is realized by this PS
(sub)tree. The default behavior of this relation prioritizes the wrench space
(e.O0) strictly higher than the motion space (e.O1). The rationale behind this is
that maintaining a contact is often more important than the accurate execution
of a motion trajectory; especially for polishing tasks [ZB20]. This also means
that each ContactConstraint requires the instantiation of a respective Motion-

ForceSubSpace_Relation. In general the separation of the subspaces can be
freely chosen2 at any controllable frame.

A MotionForceSubSpace_Relation is a special ICCARelation, that divides
the task space and realizes a behavior based on the chosen contact model. The
resulting subspaces can be further constrained by ICIConstraints and other

2 as long as the property of orthogonality is ensured.
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ICCARelations. In addition to providing a prioritization structure for other
control tasks, the MotionForceSubSpace_Relation also takes on the role of a
control task itself. This is similar to a WeightedSum_Relation, which is also not
conceptually derived from a ControlTask, but which is positioned as a control
task (i.e. vertex) in the PS.

6 .2 .4 .5 Composing Prioritization Relations

Having a look at the PS for the contact situations of the wiping example during
the wiping motion, shown in Figure 6.11, one can see that an Entry_Relation

is used as root node, referencing the same robot instance as in the World model.
During the wiping motion there is a contact established that is modeled by a
MotionForceSubSpace_Relation to separate the control of the contact forces
from the wiping motion. Since for this wiping task, it is more important to
maintain the contact than to accurately follow the trajectory, the default behav-
ior of this relation is perfectly suited. The contact ForceConstraint used in
the example is represented by the ControlTask (“force1”) acting on the frame
{c}. The chosen formalism is of the type DirectForceController, which de-
scribes a feed forward force. In the motion space, a ControlTask (“motion1”)
that uses a CartesianMassSpringDamperController formalism is followed by
a joint space ControlTask (“nullspace_tracking”) that operates in the nullspace
of the Cartesian control task. While the Cartesian control task acts on the frame
{c}, the joint space control task acts on the kinematic chain of the selected ro-
bot. Using the respective FormalismMappings (see Figure 6.16), the control tasks
have an explicit link to the constraints (i.e. ICIConstraints) that define the con-establishing this

link is essential
for the synthe-

sis in Chapter 7

�

trol task configuration (e.g., impedance parameters, controlled DoF, etc.).

Prioritization Structure View

Formalism Configuration View

Figure 6.11: Screenshot of the concrete graphical syntax for the prioritization of the
control tasks, which are linked to the specified constraints in Figure 6.4.

As it can be seen in Figure 6.9, the structural composition of a PS is given by
the relation interfaces: I1I1ORelation, II2ORelation, and INORelation. Each
interface defines structural restrictions to ensure that compositions which can-
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not be realized are directly ruled out: correct-by-design. Every derived relation,
such as the Nullspace_Relation, WeightedSum_Relation, and MotionForce-

SubSpace_Relation, is based on one of those interfaces and thus inherits the
structural restrictions. Note that the remaining compositions are syntactically
valid, but they do not have to produce a meaningful behavior.

Figure 6.12 uses a simplified syntax to show a set of structurally valid PSs.
To make the user aware of potential problematic compositions, the user is
notified if control tasks operate on the same target frame as a prioritization
relation that is closer to the root node in the respective branch of the PS tree.
Such a notification would be issued in Figure 6.12a, as well as in Figure 6.12b
if the lower ControlTask or one of the branches of the WeightedSum_Relation

targets the same frame as the Nullspace_Relation. Figure 6.12c potentially
only makes sense if the filters of both MotionForceSubSpace_Relations are
different. In Figure 6.12d it cannot be ensured that the ContactConstraint

represented by the MotionForceSubSpace_Relations can be properly enforced,
since it becomes weighted in the WeightedSum_Relation.

(a) (b) (c) (d)

Figure 6.12: Different valid PSs. C, N, Σ, S denote a ControlTask, a Nullspace_Re-
lation, a WeightedSum_Relation, and a MotionForceSubSpace_Relation
respectively. Omitted structural elements are denoted by three vertical
dots.

6 .3 ci composition and other task aspects

Up until this point, the presented modeling approach was mainly focused on
one aspect of the task description, i.e. specifying the compliant environmental
interaction. Even though the focus of this thesis is not to present new solutions
to model the other aspects of a task description, the composition between the
CI and the other models is still considered in the following.

As discussed in the domain analysis (see Chapter 5), trajectories do not di- � CI and trajectory
compositionrectly belong to the compliant interaction model. Trajectory models are used

in combination with CI models to complement a task description. In CoSiMA,
trajectories are represented as a path with additional timing constraints on the
execution. Thus, a Cartesian motion trajectory uses a geometric path, while a
force or velocity trajectory uses a force or velocity profile respectively. A trajec-
tory generator then interprets the trajectory model and provides set points to
a control task. On a conceptual level to compose the trajectory model with the
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constraints that are realized by the control tasks which receive the setpoints of
the trajectory, the Frame concept is used as a common representation. Hence,
a very loose and exchangeable coupling between the trajectory and CI aspects
of a task description can be achieved. Such a trajectory model for the wiping
example can be seen in Figure 6.13.

Figure 6.13: A model of a linear Cartesian motion trajectory for the wiping example,
acting on the Frame {m}, which is constrained by a mass-spring-damper
constraint in the CI model.

ExecuteTrajectory

 override_time : Expression

 traj : ITrajectory

CSSwitchedTransition

ContactSituationIGuard

GuardByMonitor

 monitor : IMonitor

SwitchCS

 override_time : Expression

Transition

StateMachine

TransitionTarget

StateLike

Action

State

World

 monitors : IMonitor

[0..1] toCS

[0..1] fromCS

[0..1] refCS

[0..*] incoming_guards

[0..*] outgoing_guards

[1..1] switchTo

[0..*] actions

[1..1] target

[0..*] states

[0..*] transition

[0..1] world

Figure 6.14: Excerpt of the meta-model that shows the relevant concepts for the loosely
coupled composition of the CI model and task coordination. The color
coded concepts are reused from the world meta-model (blue) and the
Coordination DSL (green).

The aspect of monitors to observe an external or internal signal perceivedCI and moni-
tor composition

�

by a system is widely used and covered by numerous publications concerned
with task specifications. Monitors are commonly used in conjunction with
the task coordination aspect to specify conditions for state transitions. As dis-
cussed in the domain analysis, the majority of relevant approaches use some
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kind of state-chart-based coordination mechanism for the task coordination.
In CoSiMA, this coordination is modeled in the Coordination DSL based on
the well-known SCXML [W3C15] formalism (see Section 3.3 and [Wig+17a;
Wig+17b; Nor16]). Approaches that consider the CI to a relevant degree, have � loose coupling of CI

and task coordinationa tight coupling, where the state of the interaction is governed by the global
task coordination. In contrast to that, CoSiMA strictly separates the state of the
CI from the task coordination, but allows modeling IMonitors and CI-specific
coordination Actions to achieve a loose coupling. This way, the environmental
state can change independent of the task coordination state. Analogous to the
coordination, the CI state space is modeled based on an extension of the Coor-
dination DSL (see Figure 6.14), where each state is represented by a Contact-

Situation, forming a contact situation graph. Per default, this graph can be
freely transitioned. This means that each state is connected to every other state
by a Transition. Using IGuards, these default transitions can be constrained:
One possibility is to use monitors to e.g., react to perceived changes in the en-
vironment. The DSL extension also provides additional Actions related to the
CI state switching for the task coordination. This allows the artificial changing
of internal CI states.

6 .4 discussion

In this section, the integration of the CI modeling approach into CoSiMA is
discussed. Further, it is compared to the closely related approaches identified
in Section 6.1. This is followed by a discussion of the benefits that arise from
the decoupling of the task-related aspects.

6 .4 .1 Integration into CoSiMA’s Composition Structure

The introduced concepts in this chapter aid the purpose to model a CI task
description. By using the L3Dim composition mechanisms, the concepts can
be integrated into the existing DSL composition of CoSiMA in form of three
new DSLs: World DSL, Compliant Interaction DSL, and Control Frameworks DSL.
Even though the DSLs in the composition target different modeling purposes
(see Figure 3.1), their model fragments coexist in a unified and rich model.

Figure 6.15 shows the integration of the three CI-related DSLs into CoSiMA.
While the World DSL reuses concepts from the Kinematics Dynamics DSL, the
Compliant Interaction DSL strongly relies on the concepts from the World DSL
for the modeling of contact constraints. It inherits the state machine concepts
from the Coordination DSL to model the contact state graph. Hence, it also in-
herits the L3Dim mechanism of the Capability DSL to be platform-annotatable.
This is important for the flexible modeling and synthesis. That way, a platform-
independent CI task description can be annotated using the Control Frame-
works DSL with a software platform specialization for control frameworks,
such as PIDC or OpenSoT. This way, additional constraints and restrictions
can be enforced on the model depending on the requirements and functional-
ities of the chosen software control framework. The OpenSoT annotation for
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Figure 6.15: Integration of the CI DSLs into the existing composition of CoSiMA.

instance can further reduce the set of valid PSs to avoid structures such as
shown in Figure 6.17. The respective annotation is provided by the Control
Frameworks DSL for every supported control framework. The annotation uses
the FormalismMapping concept to establish the mapping between framework-
independent IControllerFormalisms and Components from the Component DSL.
Note, the mapping is relevant for the synthesis in Chapter 7.

IAmSoftwarePlatform

IAmSoftwareControlFramework

IAmPIDC IAmOpenSoT

[1..*] map

[1..1] component

[1..1] formalism_type

IControllerFormalism

FormalismMapping

Component

(a) (b)

(c)

Formalism Component

Figure 6.16: Annotating a software control framework (e.g., PIDC) to the platform-
independent CI task description model using the Control Frameworks DSL.
(a) shows the annotation, (c) shows the mapping between formalisms
and components, and (b) shows the relevant meta-model concepts. Color
coded concepts are reused from other DSLs: Software Platform DSL (pur-
ple), Compliant Interaction DSL (brown), and Component DSL (green).
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Figure 6.16 shows the annotation and mapping model for the wiping exam-
ple. The concept of a Task is technically used as a root container to combine
the different task-related aspects identified in Section 5.1, such as the contact
state graph, a global task coordination, and the trajectories. Monitors are not
referenced as first class model elements, since they are modeled inside the con-
tact situations. The Task concept is the root element in the AST & abstract syntax treefor the task
description modeling and defines the annotation target for a software control
framework.

6 .4 .2 Comparison with Related Approaches

As previously discussed and shown in Table 6.1, eTaSL and the DSL of iTaSC
are closely related to the presented CI modeling approach of CoSiMA. One
key difference is that CoSiMA supports closing a VKC on the dynamics level.
This means that constraints on the joint configuration can be modeled over the
entire closed VKC. Further, compensation forces for an unactuated body (e.g.
a grasped box) can be distributed and optimized over the entire closed VKC
as well.

Cartesian control tasks 
for left and right hand

Joint control tasks 
for redundancy resolution

Cartesian control tasks 
for left and right elbow

Soft Prioritization

Strict Prioritization

Figure 6.17: The PS shown in (a) cannot be modeled using MoT. (b) shows a compo-
sition of soft and strict prioritization structures that is as similar as it can
be achieved by MoT. However, it still does not match with (a).

In terms of the prioritization of constraints or control tasks, approaches � the prioritization
modeling in CoSiMA
is equally or even
more expressive
compared to related
approaches

such as eTaSL and iTaSC allow strict and soft prioritization—as does CoSiMA.
However, the priority level and weighting factor are directly modeled in the
individual configurations of the tasks by the other approaches. Math of Task
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(MoT) [HT21; Hof+17b] features a similar approach. It is a DSL to define stacks
of QP-based control tasks. Instead of separating the information for prioritiza-
tion among the different control task configurations, MoT uses a unified way
to model the prioritization, which is similar to CoSiMA’s concept of PSs. From
a pure modeling perspective, eTaSL, iTaSC, and MoT are limiting their expres-
siveness by solely relying on a priority and weighting factor per control task.
For instance, CoSiMA allows to model a strict prioritization in a (sub)branch
of a soft prioritization (see Figure 6.17). To the best of my knowledge, this
is not possible with the other approaches. In MoT the reason is tied to it be-
ing designed in close relation to the implementation of the soft and strict pri-
oritization mechanisms in the OpenSoT framework, which solves sequential
QPs. Combining and weighting multiple sequential QP problems (i.e. SoTs) is
currently not possible in OpenSoT. Further, in CoSiMA the MotionForceSub-

Space_Relation is introduced to structurally support the modeling of control
tasks applied to different subspaces. A similar concept can be found in MoT,
called subtasks. Since CoSiMA and MoT are conceptually very close, MoT pro-
vides a suitable generation target for the realization of CI tasks modeled in
CoSiMA to be executed using QPs via OpenSoT in addition to a realization
using PIDC.

6 .4 .3 Decoupling Coordination and CI

CoSiMA realizes the proposed loose coupling of the different task-related as-
pects (see Section 6.3). A great advantage comes from the decoupling of the
coordination from the CI modeling. Both aspects are often deeply entangled
in related skill frameworks. This means that for instance a specific contact sit-
uation is only considered in the context of a specific skill. The skill that is
executed next has no knowledge about the previous contact situation. This
leads to an unnecessary discretization of the robot’s motions. In CoSiMA, the
general task coordination operates independent of the contact state graph and
its transitions. This enables the following two types of behaviors:

compliant interaction changes Assuming the case a robot transi-
tions from a free space state without contacts to a contact situation where itcontact situations

can change indepen-
dent of the trajectory
or coordination state

�

is physically guided along one direction (see Figure 6.18). By loosely coupling
the task coordination state space and the CI contact state graph, the execution
of a trajectory (i.e. Traj 1) does not need to be split into discrete motion events.
In the majority of skill frameworks, one skill would cover the free space mo-
tion, whereas a subsequent one would cover the rest of the motion, while being
in contact with the guide. In CoSiMA, such a separation is not necessary. The
entire motion can be executed independent of the contact situation, since the
active contact state acts as a context for the motion execution. Hence, once in
contact (i.e. CS1), the trajectory would lose its impact in the guided direction
and regain it once the robot enters free space again. Of course, the coordination
and contact state graph are notified every time a state change happens.
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Figure 6.18: The robot follows a trajectory while being in the coordination state A.
During the execution, the contact situations state changes and a transi-
tion is triggered from CS0 to CS1 in the contact state graph. There is no
need for the system to stop and change to another skill. Hence, a smooth
execution is performed also during changes in the contact situations.

task coordination changes Assuming a scenario in which it is vital
to maintain a specific contact situation throughout the whole execution of a � trajectories and co-

ordination states
can change indepen-
dent of the contact
situation

scenario (see Figure 6.19). In conventional skill frameworks, each skill would
require an internal representation of the contact state, because the CI is not
shared among skills, but is often directly encoded. This means that if the first
skill establishes a contact situation, the following skills need to know this in
preface. In CoSiMA, a contact situation can be used as a context for the en-
tire task coordination. This way, a contact state can be upheld without being
specifically encoded into different coordination states.
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Figure 6.19: The contact situation CS0 creates a virtual manipulator. Even during state
changes in the general task coordination, the closed VKC is maintained.
This is due to the contact state acting as context for the entire coordination
aspect instead of being limited to a single skill.
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6 .5 conclusion

While the previous chapter conducted a domain analysis to cover RQ 3 in
terms of finding a conceptual base to approach the description of CI tasks, this
chapter answers the second part of RQ 3: How to turn the conceptual base
into a set of domain-specific meta-models? To this end, the presented meta-
models were developed. They allow the technical modeling of CI tasks, while
also being fully integrated into CoSiMA as DSLs. Hence, they reuse existing
model elements from e.g., the robotic platform and the system coordination
concerns and provide the model input for the synthesis in Chapter 7.

These meta-models allow the creation of CI models using an explainable
abstraction, grounded in physical constraints from the geometry, kinematics,
and dynamics domain. Additionally, a prioritization of the constraints can be
modeled to define the influence of constraints on each other and to handle
potential overconstrainedness on the task space DoF.

By choosing the CI abstractions to be composable with other task-related
aspects such as trajectories or coordination, every task that is modeled in this
way can be boiled down to a common set of abstractions. Technically, this com-
mon conceptual base allows (1) the decomposition of a task model into its
different aspects, (2) the individual comparability of these aspects, (3) and a
flexible (re)composition. Thereby, overcoming the currently predominant ap-
proach of treating a task or skill as a black box, and opening up the possibility
for task-overarching constraints and verifications. Hence, further providing the
required information to smoothly blend between tasks during the execution.

In contrast to the exemplary model fragments that are used to aid the expla-
nation of the underlying concepts in this chapter, a more sophisticated appli-
cation of the meta-models can be seen in Chapter 8.



“ Nothing is lost, nothing is created,
everything is transformed.

”
— Antoine Lavoisier

7
C I A R C H I T E C T U R E S Y N T H E S I S

This chapter presents the synthesis of an executable control architecture for a robotic
system that realizes a modeled CI task. The synthesis contains two generator pipelines,
used to transform the CI model into (1) a component-based control architecture model
and into (2) a graph-based representation of the compliant interaction to configure the
architecture to the task. The resulting models are generated into an executable ORO-
COS RTT-based PIDC software architecture. The chapter is based on [WDW20].

In Chapter 3 the transformation from a component-based robotic system
model to an actual executable software system was presented. To overcome
the implicitness of the task definition in such a system, Chapter 6 presented
a DSL extension to CoSiMA, which allows for the explicit modeling of a task
description with particular focus on the CI. This chapter links the task to the
system model by synthesizing a component-based control architecture & control architecturefor the
robotic system, based on the modeled CI task. Two generators are developed
and integrated into CoSiMA that use four different transformations to generate
the control architecture for the chosen control framework (i.e. PIDC) and to
configure it with the modeled CI task.

First, a reference architecture is introduced that acts as a blueprint, which
is populated with component models for the PIDC framework. While the
blueprint itself is framework-independent, its concrete instantiation depends
on the chosen framework (i.e. PIDC). To reuse the existing generator pipelines
of CoSiMA, the component models are assumed to represent existing imple-
mentations based on the chosen software platform (i.e. OROCOS RTT).

The second step is the introduction of a set of transformations that synthe-
size an instantiation of the reference architecture for the chosen control frame-
work, based on the CI task model. This directly addresses RQ 4. The resulting
artifacts of the transformations are a component-based control architecture in
form of a System model and a configuration artifact that holds the required
task knowledge (i.e. the contact state graph, control formalism parameters, and
monitors). A task-level coordination needs to be provided if an active switch-
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ing of contact situations is desired rather than a passive switching, which is
solely based on sensory data. Note that trajectories and the task-level coordi-
nation are excluded from the presented synthesis and need to be manually
supplied by the Behavior Developer for now.

The last step addresses the OROCOS RTT- and PIDC-specific interpretation
of the configuration artifact by the synthesized control architecture.

7 .1 cosima’s reference architecture for ci

We developed a suitable reference architecture for CI, based on the experiences
gained in the CogIMon [Cog19] and CMCI [CMC20] projects, that is generally
control framework independent. The structural view of the reference architec-
ture is shown in Figure 7.1 below.

Trajectories

State Control (2) Task Prioritization (3)

JS Motion
Trajectory

TS Motion
Trajectory

TS Force
Trajectory

Robot State
(KinDyn)

TS Impedance
Control

JS Impedance
Control

TS Force
Control

Control Task
Prioritization

Scheme (Prio)Contact
Constraints

(Task)

Robot Interface

Robot
Interface

Contact Handling (4)

Contact Switching Service

(1)

Figure 7.1: Structural view of the reference architecture that is instantiated with the
synthesized knowledge from the contact situations.

In general, there are four major parts that define configuration points in the
framework-independent architecture, namely the control components, the task
component, the prioritization component, and the contact (situation) switching
service. The interface to command a robot, the kinematics and dynamics com-
ponent providing several state-related robot quantities (e.g., Jacobian, Carte-
sian Pose, etc.), and the trajectory generators are necessary for the actual exe-
cution of a CI task. However, they are not directly in the focus of this work and
are thus ignored by the synthesis. The components relevant for the synthesis
are described in the following:

task component (1) The task component provides the inputs for the con-
trol components in the associated task (Cartesian or joint) space. This means
that the data (e.g., Jacobians) is also modified according to the subspace the
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controller is tasked to operate in. The (sensory) data relevant for the moni-
tors and guards of contact state transitions are also automatically provided by
this component. Currently, the link to the task-level coordination needs to be
manually performed by the System Builder.

control components (2) Each control component represents an instan-
tiation of the Component concept from the Component DSL, which is mapped
to a suitable control formalism by the software control framework annotation
(i.e. IAmPIDC see Section 6.4.1). A control component receives its input from the
task component. Depending on the type of controller, different quantities are
provided through the task component.

prioritization component (3) The prioritization component receives
the control signals of all control components and superimposes them, based
on the active contact situation in the contact state graph, into a single control
signal that is sent to the robot.

contact switching service (4) This service provides an interface for
the task coordination to switch between contact situations. When a transition
is triggered or finished, the task, the prioritization, and the control compo-
nents are notified. During a transition the task component shapes the data it
provides according to the requirements of the new contact situation, while the
prioritization component is triggered to blend from the current PS & prioritization struc-

ture
to the new

one. To evaluate transitions and guards, the service receives the monitor data
provided by the task component and forwards it to the task coordination.

7 .2 synthesis of the system’s configuration

The aim of this synthesis is to instantiate the reference architecture in form
of a System � the System concept

belongs to the Com-
ponent DSL

model with the set of control components and their specific con-
figurations, required to ensure the constraints that are modeled in the contact
situations of the CI task. The synthesized system model can afterwards be
enriched with further system-related concerns (e.g., timing). Eventually it is
transformed into an executable software system (see Figure 7.3).

Two generators are developed to achieve this. The CI Config Generator uses
the following multi-staged M2M & model-to-modeltransformations A, B, and C to transform the
modeled PSs, that prioritize the constraints of the CSs & Contact Situation, into a configuration
model. This model contains the information that cannot be expressed in the
component-based structure of the control architecture, i.e. the prioritization
and parameterization of the control components. In contrast, the CI System Gen-
erator, explained in Section 7.3, uses the multi-staged M2M transformations A
and D to generate the system’s control architecture model (using the System

concept) based on the chosen control framework (i.e. PIDC) and the reference
architecture.
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transformation a The aim of this transformation is to generate a set
of unified prioritization graphs U from the prioritization structures associated
with the modeled CSs. In terms of prioritization, each CS is represented by a
CompliantControlArchitecture concept instance CCAi that contains one or
more Entry_Relations that define the roots of the PSs (see Section 6.2.4). The
following definition of a graph is used throughout this chapter:

Definition: Graph

A graph G is defined by a 5-tuple (V ,E,σv,σe,Σ), where

• V = V(G) is the set of vertices of the graph G,

• E = E(G) ⊆ V × V is the set of edges of G,

• each edge e ∈ E is represented as an ordered pair of vertices,

• the label functions σv : V → Σ and σe : E → Σ map vertices and
edges to labels of the set Σ.

To achieve this aim, each PS gets transformed into a graph Ĝi,Kr , where Kr istransformation
step A.1

in Figure 7.2

�

the kinematic chain referenced by the Entry_Relation of the PS. Every control
task sharing the same controllable frame CF and formalism F is mapped to the
same vertex τl1 in the graph. The relations, i.e. Nullspace_Relation ("N") and
MotionForceSubSpace_Relation ("S"), introduced in Section 6.2.4, are mapped
to edges that connect two associated control tasks and are directed towards
the higher prioritized one. The label σe((τu, τv)) for the edge (τu, τv) indi-
cates the type (i.e. "N", "Σ", or "S") and CF of the relation. In contrast to the
other relations, the WeightedSum_Relation ("Σ") cannot be directly mapped to
an edge. Instead, inspired by Equation 5.8, the relation is transformed into
multiple weighted Σ-edges between the involved control tasks. Further, if the
Entry_Relation of a PS references a virtual manipulator as Kr that uses a
ForceClosure, a new vertex needs to be added to Ĝi,Kr . This vertex represents
the control task that controls the internal forces to maintain the virtual ma-
nipulator. An additional S-edge (i.e. Svmr) represents the relation between the
motion and internal force subspaces. The generation of the vertex and edge for
the virtual manipulator is described in Algorithm 7.1.

Since all control tasks will be instantiated in the reference architecture as
control components, all of them need to be considered (for prioritization) in
every CS. However, if a control task is not part of a particular CS, it needs
to be disabled once that CS is active. Hence, the resulting graphs Ĝ = {Ĝi,Kr}transformation

step A.2
in Figure 7.2

�

are combined into the unified graphs U = {UKr}, grouped by the associated
kinematic chain Kr of the source PS, where

UKr =
⋃
i

Ĝi,Kr . (7.1)

1 Vertices are indicated by τ, because they refer to control tasks.
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Algorithm 7.1 Transformation A.1: Virtual Manipulator

Input: A graph Ĝi,Kr where Kr refers & see Definition 7.1 for
the graph definition
(i.e. V , E, σe, σv)

to a virtually closed kinematic chain
1: if the associated VirtualManipulator constraint uses ForceClosure then

Introduce a control task to control the internal force of the VM:
2: find � the colored step pro-

duces the colored
edges in Figure 7.2

the vertex vroot ∈ V(Ĝi,Kr) without an outgoing edge,
i.e.¬(∃u ∈ V(Ĝi,Kr) : (vroot,u) ∈ E(Ĝi,Kr))

3: let vvm be a vertex
4: σv(vvm)← unique_name("ifctrl") . generates e.g., ifctrl1, ifctrl2, ...
5: V(Ĝi,Kr)← V(Ĝi,Kr)∪ vvm
6: E(Ĝi,Kr)← E(Ĝi,Kr)∪ (vroot, vvm)
7: σe((vroot, vvm))← "Svm"r . e.g., Svm1,2

8: end if
Output: Ĝi,Kr ∈ Ĝ

transformation b The aim of this transformation is to derive the pri-
oritization information of the control tasks, the control formalism parameters,
and the subspace filters for all involved kinematic chains per contact situa-
tion CCAi. By applying Algorithm 7.2, the graphs {UKr} and {Ĝi,Kr} together � transformation

step B.1 in Fig-
ure 7.2

yield the prioritization graphs {Gi,Kr}. For each contact situation, the respec-
tive graph Gi,Kr then contains the prioritization information of the control
tasks V(Gi,Kr) for the kinematic chain Kr.

Inspired by the insights gained from the domain analysis in Section 5.3, the � transformation
step B.2priority of a pair of tasks <τu, τv> is defined by the direction and label of

the connecting edges and is expressed as a scalar value αu,v ∈ R+. N-edges
express a strict prioritization hierarchy by choosing αu,v ∈ {0, 1}. Whereas a Σ-
edge expresses a soft hierarchy by choosing αu,v ∈ [0, 1]. The (de)activation of
a task in the hierarchy is specified by the diagonal entries αu,u ∈ [0, 1]. Eventu-
ally, each Gi,Kr is expressed in form of a prioritization matrix (cf. Equation 5.8)
by calculating its adjacency matrix:

Ψi,Kr = (αuv) ∈ Rk×k = Adj(Gi,Kr) , (7.2)

where k denotes the number of control tasks in the graph.
The advantage of deriving the prioritization graphs of the PSs using a uni-

fied graph representation is the possibility to blend between contact situations
(e.g., CCAa → CCAb) by blending between the prioritization graphs (e.g.,
Ga,Kr → Gb,Kr). Given CoSiMA’s PIDC-based control framework implementa-
tion that employs a mixture-of-controllers approach [Deh18], a dynamic repri-
oritization of control tasks is supported at runtime. This means that by inter-
polating {Ψcurrent} and {Ψnew} for all Kr, the synthesized robotic system is
able to achieve a continuous transition from one contact situation to another.

An exemplary application of the transformations A and B can be seen in Fig-
ure 7.2.
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Prioritization Structure

Graph Representation

Unified Graph

Prioritization Graph

Step A.1
Trans.

Step A.2
Trans.

Step B.1
Trans.

vm

vm

vm

internal
force

Figure 7.2: Multi-staged M2M transformations for the generation of prioritization graphs from
the PSs of the CI models (i.e. CompliantControlArchitectures). Control tasks are
denoted as τ. Transformation step A.1 translates each PS into a graph and step A.2
combines them into unified graphs. The final prioritization graphs are created by
B.1 based on the unified graphs. Colored edges are described in Algorithm 7.2.
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Algorithm 7.2 Transformation B.1: Prioritization Graphs

Input: The graph sets Ĝ and {UKr} from the previous transformation & see Definition 7.1 for
the graph definition
(i.e. V , E, σe, σv)

1: for each Ĝi,Kr ∈ Ĝ do
1) Make implicit nullspace relations explicit:

2: Ep ← {(v,u) | ∀v,u ∈ V(Ĝi,Kr) : path(v,u)∧¬pathdirect(v,u)} � the three colored
steps produce the
colored edges in
Figure 7.2

3: σe((v,u))← "N"σv(u) | ∀v,u : (v,u) ∈ Ep
4: E(Gi,Kr)← E(Ĝi,Kr)∪ Ep

2) Deactivate irrelevant vertices (i.e. /∈ Gi,Kr) and turn them into subordi-
nates of the relevant vertices:

5: V ′′ ← V(UKr) \ V(Gi,Kr)
6: E ′′ ← {(v, v) | v ∈ V ′′}
7: σe(e)← "off " | ∀e ∈ E ′′
8: σe((v,u) ∈ E ′′)← "N"σv(u) | ∀v,u : v ∈ V ′′ ∧ u ∈ V(Gi,Kr)
9: V(Gi,Kr)← V(Gi,Kr)∪ V

′′

10: E(Gi,Kr)← E(Gi,Kr)∪ E
′′ ∪ {(v,u) ∈ E(UKr) | ∀v,u ∈ V

′′}
3) Introduce a deactivated vertex for the virtually closed kinematic chain
as subordinate to all other vertices:

11: if Kr is a virtually closed kinematic chain then
12: let vm be a vertex
13: σv(vm)← "τK"
14: E ′′′ ← {(vm,u) | u ∈ V(Gi,Kr)}
15: σe(e)← "N"σv(u) | e = (vm,u) ∈ E ′′′
16: V(Gi,Kr)← V(Gi,Kr)∪ vm
17: E(Gi,Kr)← E(Gi,Kr)∪ E

′′′

18: end if
19: end for
Output: G = {Gi,Kr}

transformation c The aim of this transformation is to derive (1) the pa- � transformation C

rameterization of the control tasks and (2) the filters that define the subspaces
from the VirtualManipulators and ContactConstraints, associated with the
vertices and edges in {Gi,Kr} per ContactSituation. Each vertex represents
a ControlTask concept instance in a PS that is defined by its IController-

Formalism and realizes a specific ICIConstraint (see Section 6.2). Formalisms
have different parameters that need to be configured to achieve a certain con-
trol behavior. For instance, any mass-spring-damper-based formalism needs
their stiffness and damping parameters to be set. These parameters are de-
rived from the reference of the ControlTask to the ICIConstraint. Due to the
parameters being specific to a certain formalism, the parameters can currently
only be derived from the pairs of ICIConstraint and IControllerFormalism,
defined in the FormalismMappings (see Figure 6.16). The MassSpringDamper-

Constraint and JointMassSpringDamperConstraint, for instance, are realized
by a CartesianMassSpringDamperController as well as a JointMassSpring-

DamperController respectively. In this case, the stiffness and damping param-
eters for every active DoF are persisted per contact situation.
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The second kind of derived information is related to the (sub)spaces the
control tasks operate in. First, the controllable frame CF is determined for each
control task in {Gi,Kr}. Second, the DoFs a control task operates in are derived
from the DoFs constrained by the e.g., MassSpringDamperConstraint or Force-
Constraint. Third, each control task that is connected by the arrow’s head of
an edge with a subspace relation label (i.e. SCFp) is employed in the constraint
space of a contact, while tasks connected by the arrow’s tail are employed in
the unconstrained space. The respective filter is then derived from the contact
surface of the ContactConstraint referenced via the MotionForceSubSpace_-

Relation, represented by the edge. In the case of a VMVirtual Manipulator & , the internal forces are
handled analogously by retrieving the subspace filter from the associated Vir-

tualManipulator constraint. Since the PIDC implementation used throughout
this thesis currently only supports bilateral constraints, the definition of any
other type is avoided directly on the model level, when choosing PIDC. There-
fore, each filter f can be represented as a matrix Γf = (γfjl) ∈ Rd×d, where

1 ---
2 Config:
3 - Robot: kuka_iiwa_14
4 JointDof: 7
5 ControlTasks:
6 - Name: τ0
7 ControllableFrame: {Type: frame, Name: frame_c, Dof: d}
8 ...
9 ContactSituations:

10 - Name: CS0
11 CustomFilters:
12 - τ0: filter0
13 ...
14 SubspaceFilters:
15 - τ0: filter_c_0
16 ...
17 - τk: filter_m_0
18 Params:
19 - τ0:
20 - stiffness: [300.0, 300.0, 300.0, 300.0, 300.0, 300.0]
21 - damping: [3.0, 3.0, 3.0, 3.0, 3.0, 3.0]
22 ...
23 PrioritizationMatrix: [
24 [τ0, ... , τk], [α0,0, ... , α0,k], ... , [αk,0, ... , αk,k]
25 ]
26 ...
27 ...
28 Filters:
29 - Filter: filter_c_0
30 Type: ComponentWise
31 Data: [[γc00,0, ... , γc0d,0], ... , [γc00,d, ... , γc0d,d]]
32 - Filter: filter_m_0
33 Type: ComponentWise
34 Data: [[γm00,0 , ... , γm0d,0], ... , [γm00,d, ... , γm0d,d]]
35 ...

Listing 7.1: Example of a YAML-based configuration artifact. The math notation is
chosen to visually indicate the control tasks (orange), the elements of the
prioritization matrix (magenta), and the elements of the subspace filter
matrices (blue). Monitors are excluded for brevity.
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d denotes the DoFs of the (task)space that is filtered. The individual direc-
tions can be component-wise constrained with γj,j = 1, while unconstrained
directions are defined by γj,j = 0. Note that it is the responsibility of the task
component to interpret the matrix to produce the concrete task-related quanti-
ties (see Section 7.3.2).
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Figure 7.3: Model-to-model transformation pipelines (P1 and P2) showing the vertical
synthesis of an executable PIDC-based OROCOS RTT control system from
the CI task model. The PIDC annotation stores a reference to the Task,
which allows to resolve the link to the configuration model and eventually
the configuration artifact (e.g. YAML file). The CI Config Generator and the
CI System Generator implement the synthesis transformations, while the CI
Component Generator uses the PIDC annotation to resolve the link to the
configuration artifact in form of OROCOS operations that are woven into
the existing OPS model.

After � the colors refer
to Listing 7.1

the application of the transformations A, B, and C, the control tasks (or-
ange), the prioritization matrices {Ψi,Kr} (magenta), the formalism parameters
(green), and the subspace filters {Γf} (blue) are persisted in one configuration
artifact via the CI Config Generator. For the experiments in Chapter 8 a YAML2

representation is chosen as the concrete syntax of the artifact. An example of
such a representation is shown in Listing 7.1.

Figure 7.3 shows an overview of the transformation pipelines formed by the
CI Config Generator, the CI System Generator (explained in Section 7.3 below),
and a set of reused generators to synthesize an executable control system that

2 https://yaml.org/spec/1.2/spec.html

https://yaml.org/spec/1.2/spec.html
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uses PIDC as control framework and OROCOS RTT as execution environment.
The CI Config Generator uses the transformations A, B, and C that are presented
in this section, to form a transformation pipeline (see P1 in Figure 7.3) that gen-
erates a YAML-based configuration artifact from the set of {CCAi}. This artifact
is used to configure the software system to the CI task. Note that in order to
exclusively allow the generation of models that can actually be realized by
the chosen control framework implementation, only rigid contact models are
currently supported.

7 .3 synthesis of the system’s pidc architecture

This section introduces the transformation pipeline (see P2 in Figure 7.3) that
is formed by the CI System Generator by drawing on the unified graphs U
from transformation A to generate a component-based control architecture for
the PIDC framework based on the reference architecture. To this end, a new
transformation D generates a System model using the Component DSL by in-transformation D �

stantiating the control Components along with the PIDC-specific variants of the
other non-control Components of the reference architecturei.e. kinematics and

dynamics, task,
prioritization,

robot interface,
and contact switch-
ing service compo-

nents in Figure 7.1

� . This transforma-
tion leverages insights from previous work, conducted in [WDW20; Wig+17a;
Wig+17b; Deh+18; Deh18].

In the following, the PIDC-specific implementations for the instantiated com-
ponents of the reference architecture are described:

7 .3 .1 Control Components

In the reference architecture for PIDC, all control tasks produce a joint torque
signal. Tasks that share the same formalism F are executed in the same control
component. To know which Component needs to be instantiated as a Compo-

nentInst in the System model to realize the formalism of a specific control task
τ ∈ U, the FormalismMappings (see Section 6.4.1) defined in the PIDC annota-
tion (see Figure 7.3) is used. All the necessary inputs for each control task are
stacked and processed simultaneously. Eventually the resulting torque control
signal for each task is stacked and passed to the prioritization component. This
mechanism allows to reduce the amount of instantiated control components.
The CartesianImpCtrl component (in Figure 8.14) for instance combines Equa-
tion 2.18b and Equation 5.4 to form the control law defined as:

τττm = PJTx
[
hc +Λcẍd − Dd ˙̃x − Kdx̃

]
, (7.3)

where hc = ΛcJxM−1
c (Ph − Ṗq̇) −ΛcJ̇xq̇ denotes the operational space grav-

itational, centrifugal, and coriolis effects. The parameters Kd and Dd are ex-
posed to be set by the task component, according to the values defined for
the currently active contact situation in the generated configuration artifact
(i.e. YAML file). The control law for the JointSpaceImpCtrl component (in Fig-
ure 8.14) is designed analogously in the joint space. To apply a desired wrench
λ in a particular direction (e.g., contact direction) expressed in the controllable
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frame, the WrenchCtrl component (in Figure 8.14) implements its control law
as follows:

τττc = (I − P)JTcλλλ . (7.4)

7 .3 .2 Task Component

The main quantities that the PIDC-specific task component provides are a task
matrix (i.e. Jacobian J), a projection matrix P for a potential subspace projec-
tion, a constraint consistent joint-space inertia matrix Mc, their derivatives, and
compensation quantities for gravitational and coriolis effects. All quantities are
expressed in the world frame W with relation to the controllable frame CF. A

� see Figure 6.9 for the
meta-model of the
concepts

CustomFilter is realized as modification of the Jacobian. In the case of a Con-

tactFilter (i.e. subspace filter), two selection matrices are formed based on
the DoFs of all contact constraints associated with the same controllable frame:
CFSf for the constraint space and CFSm = I − CFSf for the unconstrained
space. The respective constraint (WJc) and unconstrained (WJx) Jacobians are
denoted as3

WJc = WRCF
CFSf CFRW

WJ , (7.5)
WJx = WRCF

CFSm CFRW
WJ , (7.6)

where WRCF is the transformation between the controllable and the world
frame. In the case the respective control task is not employed in a subspace (i.e.
no subspace filter is used), the control task is fully employed in the complete
and unconstrained space (CFSm = I), resulting in P = I. While the subspace
projection for control tasks in the unconstrained space is denoted as

P = I −WJc+ WJc , cf. Equation 2.15 , (7.7)

I−P defines the projection for control tasks in the constraint space. In addition
to that, the constraint consistent joint-space inertia matrix is defined as

Mc = PM + I − P . (7.8)

For each closed VKC & virtual kinematic
chain

(i.e. VM), the Jacobian for the task, constraint, and inter-
nal wrench, based on Equation 5.6, are provided analogous to non-VM manip-
ulators.

Figure 7.4 shows the internal distribution and stacking of the quantities in
one specific instance of a configured task component. The input quantities
provided by the robot state in the reference architecture (see Figure 7.1) is
separated by the involved kinematic chains. In the case a VM is present, the
quantities from the associated chains are stacked and forwarded to the VM
chain. In the next step, all chains forward their quantities to the individual
control tasks, where the filters and other modifications are applied. In the last

3 The superscript W( ) and the target frame CF may be added or neglected for readability.
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step, the modified quantities are stacked per control formalism to create the
right output for the instantiated control components in the system.

Figure 7.4: Example introspection of a configured task component. The right part
shows a zoomed-in region of the graph on the left. The received quan-
tities are separated per kinematic chain and distributed per control task,
modified, and then stacked per control formalism to be sent to the instan-
tiated control components. The position and dimension of a quantity in a
stack is indicated by the numbers in the respective grid row.

7 .3 .3 Prioritization Component

The PIDC-specific prioritization component uses a continuous prioritization
approach [Deh18] to change the prioritization of control tasks by smoothly
blending between the PSs, interpolating Ψcurrent and Ψnew. The task com-
ponent is configured with the synthesized PS graphs (i.e. Gi,Kr) for each CS
that are represented per kinematic chain Kr as a matrix Ψi,Kr = Adj(Gi,Kr)

(see Equation 7.2) in the configuration artifact. Here, Adj(·) denotes the adja-
cency matrix of a graph. This means that upon a trigger, a smooth traversal
of the contact state graph from one CS to another is possible. In the special
case of using a VM, the resulting control signal of the prioritized control tasks,
associated with the kinematic chains that form the VM, is inserted as a virtual
control task (τK) into the prioritization graph of the VM (see purple step in
Algorithm 7.2). This enables the smooth blending between a closed VKC and
the individual use of the involved robots.
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7 .3 .4 Contact Switching Service

The contact switching service requires the information of the individual pri-
oritization graphs {Gi,Kr} to command a contact situation transition. Upon an
internal or external trigger (i.e. from the task coordination), the task and pri-
oritization components are simultaneously commanded to execute a smooth
transition. Analogously, the control components are commanded to change
the parameterization of their formalisms accordingly. By using the developed
PIDC implementation, the prioritization matrices {Ψi,Kr} can either be transi-
tioned instantaneously or linearly using a scalar transition factor.

The OROCOS RTT-specific implementation of this service loads the required
information from the generated YAML configuration artifact. In addition to
that, the service is able to load a separately modeled task-level coordination in
form of an & OROCOS State

Description
OSD to trigger transitions based on the coordination.

7 .4 conclusion

This chapter presented the synthesis of an executable software control system
from a modeled CI task. A (control) framework independent reference archi-
tecture is introduced, which acts as a blueprint to be adapted and configured
to realize a modeled CI task. The reference architecture together with the task
model define the input for the presented generator pipelines. One part of the
developed model transformations populates the reference architecture with
the required control components for the chosen software execution framework
(i.e. OROCOS RTT) and the control framework (i.e. PIDC). Another part of
the transformations generates a configuration artifact that is independent of
the component-based architecture. The artifact is used to infuse the CI task
specific knowledge into the individual components of the system to provide
the task-related quantities. To this end, the PIDC-specific implementation of
the components for the execution with OROCOS RTT is configured with a
framework-specific interpretation of the information persisted in the configu-
ration artifact. In addition to the transformations introduced in this chapter,
the synthesis pipeline reuses already existing transformations to generate an
executable artifact of the system model for OROCOS RTT in form of an OPS.

This chapter addresses RQ 4 “How to link the task to the control system?”
by synthesizing a control framework-specific architecture as part of the system
model that is tailored to the modeled CI task via a generated configuration
artifact. RQ 1 “How to use MDE to compose the robotics concerns?” is ad-
dressed by the developed generator modules (i.e. CI System Generator and CI
Config Generator) which are integrated into CoSiMA’s generator composition to
form new transformation pipelines. By reusing the Component DSL to express
the structural model of the control architecture, CoSiMA’s LM&C mechanisms
are also reused to allow the composition with other system-related concerns.
Together, a link is established from the task description (on the L2 Compliant
Interaction level) over the control architecture model (on the L1 Robot Control
System level) to the executable robotic system (on the L0 Real Soft. System level
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in Figure 3.1). This link is used to enforce the task-related constraints via the
control architecture on the robot’s behavior. As a result, the explainability and
predictability is significantly increased, leading to a reduction of the gap be-
tween the envisioned task and the robot’s behavior (see Section 1.2).



Part III

P E R S P E C T I V E S

This part takes a global perspective on CoSiMA. The following
Chapter 8 on page 141 gives an experimental evaluation of three
representative CI applications, modeled and executed in CoSiMA.
Based on these experiments an overview of CI tasks that can be
modeled and realized is presented to answer RQ 5. Chapter 9 on
page 159 is the last chapter of this thesis. It summarizes the advan-
tages and limitations of the presented approach. This is followed
by an outlook of possible future work and extensions to CoSiMA.





“ It doesn’t make a difference how beautiful your guess is.
It doesn’t make a difference how smart you are, who made
the guess, or what his name is. If it disagrees with experi-
ment, it’s wrong.

”
— Richard P. Feynman

8
E VA L U AT I O N

This chapter showcases three different scenarios as case studies that are modeled and
executed with CoSiMA. The focus of each of the three scenarios is on the realization
of different characteristics, such as the use of multiple CSs, a VM, and the loose cou-
pling between the task aspects (i.e. CI, trajectories, and coordination). Followed by an
investigation of the effects of the different tasks on the synthesized control architecture,
this chapter closes with a discussion on the currently supported CI constraints and
CoSiMA’s scalability to other control and execution frameworks. This chapter is based
on [WDW20; Wig+17a; Deh+18; Deh+ss].

The previous chapters introduced the modeling and generation of robotic
systems for CI tasks using CoSiMA. This chapter chooses three different sce-
narios as case studies, which are entirely realized with CoSiMA, to answer RQ
5. Each case study focuses on a relevant characteristic of CI tasks:

1. Tetra-Arm Object Handling: multiple constraints forming a VM.

2. Dual-Arm Yoga Mat Rolling: transitioning between multiple CSs.

3. Single-Arm Clamp Assembly: interplay between CI and task coord.

The scenarios are realized using PIDC and OROCOS RTT as execution envi-
ronment. They are executed in simulation as well as on the real robot using a
generated system with the same synthesized control architecture, where only
the interface component for the robot is exchanged (i.e. sim or real). In the
following, each scenario displays its coordination states using images from the
actual execution on the real hardware, while the modeled CSs are visualized
in the corresponding simulated environment.

8 .1 tetra-arm object handling

This first scenario is introduced to showcase the ability of CoSiMA to model
and simultaneously control multiple robots to perform a task together. The
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experimental setup can be seen in Figure 8.1. The focus of this case study is
on the VMVirtual Manipulator & that is formed by four KUKA LWR 4+1 to manipulate a 9.2 kg
octagonal prism. Our aim was to create (1) an impedance behavior between
the prism and a virtual frame that follows a (circular) path as well as (2) a
compliant behavior that allows human interaction. To achieve both kinds of

Figure 8.1: The university of Braunschweig, Edinburgh, and Bielefeld collaborated to
set up the tetra-arm scenario at the institute of robotics and process control.
Bielefeld and Braunschweig each provided two KUKA LWR 4+ for the ex-
periment. The setup is overlaid with the relevant frames and the individual
(orange, robot1) and VM (green) trajectories.

interaction, a VM is created in an object-centric way to turn the octagonal
prism into a controllable entity. Thereby, combining and treating the individual
robots as a single one. The VM is able to distribute the applied forces over
the combined DoFs and to compensate for the modeled weight of the object
(see Figure 8.4b).

The scenario is divided into 3 CSsContact Situation & , which are switched by the associated
state transition in the task coordination (see Figure 8.2). To model the CSs, a
world model involving the physical and virtual entities (i.e. robots, objects, and
frames) needs to be specified first (see Figure A.5). The relevant frames for the
prism object and for one of the four robots are depicted in Figure 8.1 along with
the trajectories, which are indicated in orange and green. As a second step, the
constraints for each CS are modeled using the previously defined physical and
virtual entities. CS1 describes a single MSDmass-spring-damper & constraint between the controllable
frame {ci}in the text, frames

are marked with
an underline { · } to

avoid confusion, see
Notation on page xv

� at the EEF of each robot and the respective frame {mi} that follows
an individual trajectory (orange) to approach the desired contact location on
the object’s surface {si}. This CS is used as context for the initial state of the
task coordination (Individual Approach). Once each robot has reached its con-
tact point, a transition to CS2 is triggered by the coordination. CS2 models the
octagonal object as a VM, by introducing bilateral surface-to-surface contact

1 The scenario was jointly achieved by the universities of Edinburgh, Braunschweig, Bielefeld.
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mass-spring-damper contact force (internal VM) fully compliant

desired context

Figure 8.2: The states of the task coordination (top row) relate to the contact situations
(bottom row), in which they are executed (curved dashed arrows). Here,
contact state transitions are triggered by a transition in the coordination
(round-tail arrow). The main constraints in each CS are visually overlaid
for readability.

constraints at the four contact points (i.e. {s1}, {s2}, {s3}, {s4}), which constrains
the translational Z and the rotational X as well as Y direction of the robots’
controllable frames ({ci}). Triangular metal plates with slip-resistant rubber
domes at each corner are used as EEFs to establish a force-closure grasp. Thus,
an active control of the internal forces is required to maintain a rigid con-
nection. A VM constraint is modeled, based on the four contact constraints,
which approximates the octagonal prism by a cube. Of course more complex
geometries can be described using the URDF-based abstractions supported in
CoSiMA. Here, the modeled VM constraint also defines a heuristically chosen
contact force that is applied as internal force towards the center of all contacts.
With this constraint the object’s center {obj} becomes controllable. For CS2 a
MSD constraint is modeled between {obj} and a virtual frame {mobj}, enforc-
ing the robotic system to realize an impedance behavior while compensating
for the objects weight and inertial properties of the entire virtual manipulator.
Parallel to switching from CS1 to CS2, the coordination state is changed to
Lift / Move, which moves {mobj} along a circular trajectory (green). Note, the
modeled constraints for CS2 can be seen in Figure A.6. Upon changing the
coordination state to Human Interaction, CS3 is activated. CS3 is very similar
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to CS2. Instead of the MSD constraint, a force2 constraint is modeled for the
6 Cartesian directions of the VM and zero forces are commanded. As a result,
the robotic system’s behavior changes from following a circular trajectory to
solely compensating for the modeled weight of the object. This means that the
system is not capable to withstand any external forces (except for gravity) and
the object can be compliantly moved by the human.
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Figure 8.3: Overview of the prioritization models. (a) shows the individual constraint
prioritization for each of the 4 robots. (b) employs a Cartesian MSD control
task on the VM and a lower prioritized joint-space redundancy resolution
control task on the combined joints of the VM. (c) is similar to (b) except
for the Cartesian force control task to achieve total compliance (including
gravity compensation).

To properly define the behavior in a contact situation, the modeled con-
straints need to be prioritized. Figure 8.3 shows the prioritization structures
needed to switch between individually controlled manipulators and the cre-
ation of the VM. The first PSprioritiza-

tion structure
& in the top row (a) shows the prioritization for a

single robotic manipulator (here: robot1) in contact with the octagonal object.
In this case, maintaining the contact force (τ1) is higher prioritized than the
Cartesian motion control (τ2). On the lowest priority level, an additional joint-
space MSD is realized to handle the redundancy resolution (τ3). In contrast to

2 Note, a contact constraint is not needed, since the Cartesian space does not need to be divided.
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(a), (b) and (c) define the prioritization based on the combined kinematic chain
of the VM (vm1) that is formed by the modeled contact constraints (vmci). The
bottom row of Figure 8.3 visualizes the prioritization graphs, which are syn-
thesized from the PSs. Switching between the individually controlled robots
(a) to the VM (b or c) is done by introducing the result of the first PS into the
second or third PS (denoted as τK). Thus, allowing a smooth transition back
and forth.

(a) Circular motion tracking (b) Additional weight compensation

Figure 8.4: Both plots show the desired position (red) plotted against the actual posi-
tion (blue) of the VM (i.e. octagonal object). (a) and (b) refer to CS2 in Fig-
ure 8.2. While (a) shows the tracking of a circular motion, (b) shows the
adaptation to an online change in the object’s mass. We published both
figures in [Deh+18].

Figure 8.4 shows the actual behavior of the robotic system in terms of (a)
tracking the circular trajectory by the VM and (b) compensating for the mod-
eled weight of the octagonal object in the world model. Since the tracking and
compensation error in both cases is very small, it proves that the modeled
VM was properly established. To the best of my knowledge, this is the first
experiment, treating more than three industrial manipulators in a cooperative
manner for dexterous object manipulation using a force-closed grasp. More
detail on the execution of this scenario can be found in [Wig+17a; Deh+18].3

8 .2 dual-arm yoga mat rolling

The bi-manual rolling of a yoga mat is chosen to investigate the transition
between several CSs, where a task coordination state can be executed in dif-
ferent CSs, depending on predefined conditions. A photo of the experimental
setup can be seen in Figure 8.5. In contrast to the first case study, there is
no one-to-one mapping between the CSs and the coordination states. Depend-
ing on the evaluation of predefined conditions by the task coordination, using
the information provided by the modeled monitors (see Figure 8.7), the CSs
are switched and used as a context for the execution of the currently active
coordination state.

Figure 8.6 depicts the task coordination and the CSs. Rolling the yoga mat a
single time requires sequencing the (Re)Grasp Left, (Re)Grasp Right, and Rotate
Forward states. Depending on the size of the yoga mat, the optional state Pull

3 A video of the tetra-arm experiment can be found at https://youtu.be/HPNOChspXcM

https://youtu.be/HPNOChspXcM
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Figure 8.5: Dual-arm yoga mat rolling experiment, overlaid with the relevant frames
and the individual (orange) and VM (green) trajectories. The two KUKA
LWR 4+ robots each use a Barrett BH8-282 gripper as EEF, which includes
a F/T sensor in the wrist.

CFVM

TFVM

CFL

CFR
TFR

TFL

CFR

CFL

TFR

TFL

CFR

CFL

TFL

TFR

(Re)Grasp Left (Re)Grasp Right Rotate Forward Pull Back

CS1: MSD only CS2: MSD, Compliance X CS3: MSD, Cstr. Z, Compl. X CS4: VM, MSD, Constraint Z

Guard 1

Guard 2

mass-spring-damper contact force (internal VM) fully compliant

Guard X SM guard for transition

desired context

Figure 8.6: The states of the task coordination (top row) relate to the contact situations
(bottom row), in which they are executed (curved dashed arrows). Here,
contact state transitions are triggered by a transition in the coordination
(round-tail arrow). The main constraints in each CS are visually overlaid
for readability.

Back needs to be used to avoid violating the limits of the robots’ workspace.
The scenario begins with the left hand approaching and grasping the mat,
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which is initially pre-rolled a single time. This state is always executed in
CS1, which models a MSD & mass-spring-damperconstraint between each hand {CFi} and the target
frames {TFi}. Depending on the state, a trajectory is executed (e.g., Graspi)
that moves the target frame to the minimal distance from the table, where the
fingers can be safely closed. Predefined wrench monitors are used to abort the
trajectory and stop the movement of the hand once a certain resistance (i.e.
2N), caused by a contact with the mat, is perceived. Once the left hand is in
contact, the coordination is changed to (Re)Grasp Right, which performs the
same behavior for the right hand. Once the two hands are in contact with the
mat, a transition is triggered to Rotate Forward. Depending on the perceived
wrench by the F/T sensors, the contact situation is switched to CS2 or CS3.
If the mat is not yet thick enough, CS2 is chosen to prevent the hands from
pressing into the table. Otherwise, CS3 is chosen to compress the mat and
compensate for the increasing radius while rolling. In both cases a contact
constraint at frame {CFi} is modeled that constrains the rolling direction (i.e.
X) to ensure a compliant forward motion guided by the mat. This prevents the
commanded joint torques to exceed their safety limits, due to the friction forces
between the material of the mat and the surface of the table. In addition to that,
CS3 also constrains the Z direction and models a force constraint that applies
a constant force to compress the mat. An excerpt of the data collected from
the experiment is shown in Figure 8.8. For illustrative reasons, a segment is
chosen where the mat is thick enough to show CS3. Once the forward rotation
is finished, the new position of the robots, caused by the compliant forward
motion, is used to update the current position for the next motion command.
The next state Pull Back is used to avoid reaching the limits of the robots’
workspace. In CS4, a VM for both manipulators is modeled that reflects the
geometry of a cylinder, creating the controllable frame {obj}. While the mat
is pulled back using a MSD constraint ({mobj}), a contact constraint in the
world’s Z direction prevents the VM’s trajectory to lift the mat. A small force
(λλλf,z = −2 N) is applied to ensure staying in contact and to compensate for
disturbances that arise from dragging on an uneven surface.

Figure 8.7: A state machine coordination model (left) is able to use predefined moni-
tors (right) to evaluate conditions for coordination state transitions that act
as guards. Once the respective condition is met and the transition is trig-
gered, the actions defined below are executed (e.g., switching the contact
situation).
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Having a look at Figure 8.8, it can be seen that the resulting behavior matches
the modeled one. Further, it can be seen that a smooth traversal between the
modeled contact situations is possible. Hence, the modeling of CI tasks that
involve multiple CSs to achieve their goal is supported. By leveraging combina-
tions of motion and contact constraints, the interaction with the environment
can be treated to the task’s advantage. In this case study, a desired compli-
ance is modeled, which enables the manipulator to adapt to the radius of
the mat that increases with every rolling cycle. This scenario also shows that
CSs and coordination states are loosely coupled, since a CS can be considered
as a context in which a coordination state or a trajectory is executed. Hence,
reusability of CSs and coordination states can be achieved. More details on
this experiment can be found in [WDW20].4

Figure 8.8: Recorded data of the yoga mat rolling experiment. Textual annotations are
added to interpret the data. The top row indicates the active task coordi-
nation state and the row below the active contact situation. Note that the
bottom plot has a different legend compared to the plots above.

4 A video of the dual-arm experiment can be found at https://youtu.be/c2shW903Eo4

https://youtu.be/c2shW903Eo4
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8 .3 single-arm clamp assembly

The third scenario targets the terminal assembly domain by realizing the single-
arm snap-fitting of electrical clamps onto a rail. A photo of the experimental
setup can be seen in Figure 8.9.

Figure 8.9: Single-arm clamp assembly experiment, overlaid with the relevant frames.
An exemplary trajectory is indicated in orange. The scenario relies on the
internal F/T estimation of the KUKA IIWA14 for the assembly step and
on an Intel RealSense D415 in combination with a CNN-based detection of
the clamps to calculate the grasping point.

The previous case study was focused on the loose coupling between the CSs
and the task coordination, and how a CS can be activated by the coordination
to achieve a desired task. The aim of this experiment is to investigate the ben-
efits of separating both aspects further. Instead of enforcing a CS by the task
coordination, the activation of a CS is here only based on the actual state of
the interaction with the environment.

In this case study the CSs are modeled to represent the compliant interac-
tions that are likely to occur during the snap-fitting process. As it can be seen
in Figure 8.10, there are no triggers from the coordination state transitions to
the CS transitions (indicated by an arrow with round tail and triangular head).
Instead, the triggers are inverted. This means that the coordination is notified
when a CS is switched. Every assembly of a clamp begins in free-space (i.e.
CS1). The Approach Table state asks a non-RT & Convolutional Neu-

ral Network (CNN)
Convolutional Neural Network

(CNN)-based component to detect a clamp on the table and to provide a valid
grasping point to a path planning component. The resulting trajectory is then
executed using the modeled MSD constraint in CS1 to grasp and lift the clamp,
before approaching a location on the table, which is close to the rail. Upon sens-
ing a contact with the table (see Figure 8.12) the CS is changed to CS2. Thus,
ensuring the contact with the table using a constant force of 3.8N. The next
coordination state Approach Rail drags the clamp towards the rail. Upon reach-
ing a contact with the rail (cf. Guard2) CS3 is activated, which makes the Z
direction completely compliant, allowing the edge of the rail to align the po-
sition of the clamp. In the Y direction, the contact with the rail is maintained
by modeling a contact constraint with a contact force of 10N. To assemble the
clamp, the Snap-Fit Clamp state rotates the clamp until it snaps onto the rail.



150 evaluation

Approach Table Approach Rail Snap-Fit Clamp Retract

CS1: MSD only CS2: MSD, Cstr. Z CS3: MSD, Cstr. Y, Compl. Z

Guard
1

Fz > 8N

CS1: MSD only

Guard
2

Fy<-10N

Guard
3

Fz > 45N

mass-spring-damper fully compliant

Guard X CS guard for transition

desired context
(omitted for readability)

contact force

Figure 8.10: The states of the task coordination (top row) relate to the contact situa-
tions (bottom row), in which they are executed (curved dashed arrows).
Here, contact state transitions are triggered by a transition in the coordi-
nation (round-tail arrow). The main constraints in each CS are visually
overlaid for readability. The coordinate system is shown at the top left.

After the coordination is notified by the change from CS3 back to CS1 due to
a predefined sensed force in the Z direction that detects the snap (cf. Guard3),
the coordination state is changed to Retract. This state lifts the arm again and
initiates the assembly of the next clamp.

Onedisadvantage of im-
plicitly modeling

the task using only
motion trajectories

� approach is to realize the task of assembling a clamp without mod-
eling the different CSs. In that case, the challenge of describing the task is
shifted to the motion trajectory, which is tracked using an impedance behav-
ior. To achieve the desired contact forces to align the clamp with the rail and
to perform the snap-fit motion, the trajectory needs to provide suitable set-
points. These set-points have to be chosen so that the displacement, caused by
a physical contact, results in the desired contact forces (see Figure 8.11, top
row). However, this is not a favorable approach, since the successful execution
heavily depends on the correct positioning of the set-points. The set-points in
turn depend heavily on the correctness of the perceived locations of the clamp
and the rail. Thus, offering only a minimal tolerance for uncertainties, which
might lead to an unwanted behavior, giving rise to safety-critical forces. With
this approach it is not possible to prioritize the maintaining of a contact over
the execution of a motion. Further, the developer needs to have an in-depth
understanding of the used impedance behavior to design the required trajec-
tories that achieve the desired contact forces and motions to solve the task.
Hence, making this a challenge that does not scale well to complex scenarios
with multiple contacts.

In contrastadvantage of explic-
itly modeling the

task using contacts

� to that, each CS in this case study is modeled with a guard that
enables the automatic switching of CSs based on only i.e. sensed data (see Fig-
ure 8.12). Thereby, achieving a decoupling of the coordination and the motion
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(a) (b) (c) (d)

(e) (f) (g) (h)

contact force
translation rotation
trans. vel./force rot. vel./torque

Figure 8.11: Realization of the scenario using only impedance control (top row) and
using hybrid control (bottom row). In the first case, the responsibility of
realizing the contact situations and i.e. upholding a certain contact force is
shifted towards the trajectory. Hence, the programming of the trajectories
is more challenging than in the second case, where the contact situations
are enforced independent of the trajectories.
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Figure 8.12: Model excerpt showing the specification of a Guard (e.g., Guard1), which
triggers a transition to another CS (e.g., CS2).

trajectories (see Figure 8.10, guards in bottom row). As a result, the CSs are
responsible for achieving the desired interaction with the environment, pro-
viding a safe context for the execution of motion trajectories. This means that
once in contact, the robot does not exert unwanted forces that are caused by a
motion command, since the contact constraints are prioritized over the MSD
constraints. Hence, increasing the tolerance for uncertainties. This approach
further reduces the complexity of designing suitable trajectories, since they do
not need to account for creating the desired contact forces anymore. Now, in-
stead of precise position set-points, a suitable trajectory can consist of a combi-
nation of independent velocities and forces to achieve the task (see Figure 8.11,
bottom row). Another benefit of decoupling the CSs from the task coordina-
tion, is the possibility to choose the granularity for the coordination in terms
of states and trajectories to solve the assembly task. A developer for instance
might benefit from a separation of the required trajectory into segments along
multiple coordination states to foster exchangeability and reuse that leads to
an increased comprehensibility and decrease of the design complexity. On the
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other end of the spectrum, a single state that executes a single trajectory can
be used to achieve the task. The single trajectory might be derived from learn-
ing by demonstration [Arg+09], or generated via trajectory optimization. In
both cases, the CSs enable an increased tolerance for uncertainties and pro-
vides a safe context for the execution of the chosen trajectories, as can be seen
in Figure 8.13. The figure shows the snap-fitting of one clamp using the real
hardware.5

Simple Cartesian trajectories are chosen for this case study that connect two
positions linearly. In the figure it can be seen that in each CS, there is a devi-
ation from the commanded trajectory that coincides with the directions, con-
strained by the modeled contact. Even though the deviations become quite
large (e.g., in Z), the forces applied into the surface of the table remain at the
desired value (i.e. 3.8N). This shows that the motion trajectories are not capable
of influencing the behavior in a way that undesired force are exerted, avoiding
damaging the clamp, the rail, or the table. By comparing the model of the CI
constraints and the actual predefined forces in Figure A.7 with Figure 8.13, it
can be seen that the executed behavior matches the modeled one.
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Figure 8.13: Shows the assembly of a grasped clamp. The reactivation of CS1 and the
state Retract are omitted due to page restrictions. All quantities are shown
based on the {eef} frame. It can be seen that the modeled contact forces
are coupled to the interpolation of the CSs and the time allocated for the
transitions (gray areas).

5 A video of the single-arm experiment can be found at https://youtu.be/ciBBCnKsjuw

https://youtu.be/ciBBCnKsjuw
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8 .4 conclusion on the modeling of ci

The presented case studies show that the concepts, introduced in Chapter 6,
are suitable to model and realize relevant tasks from the CI domain. Table 8.1
summarizes the constraints to model CI tasks that are currently supported in
CoSiMA. The constraints are classified along their application type (i.e. behav-
ior, scope, VM) and domain (i.e. geometrics, kinematics, dynamics). Behavior
constraints define the general interaction between entities. Scope constraints
set the bounds for the behavior. VM constraints allow the creation of a kine-
matic chain that is virtually closed on the dynamics level.

Constraint

Type

Geometric Kinematic Dynamic

Motion Force

Behavior Geometric Relations Mass-Spring-Damper Contact, Force

(e.g., keep-parallel) (i.e. impedance) (e.g., rigid-body, soft-body)

Joint Types

(e.g., revolute, prismatic)

Scope Joint Pos. Limits Joint Vel. Limits Joint Acc. Limits Joint Force/Torque Limits

Cart. Pos. Limits Cart. Vel. Limits Cart. Acc. Limits Cart. Wrench Limits

VM geometrically closed kinematically closed
dynamically closed

(incl. compensation for inertia)

Table 8.1: Constraints for CI: supported (black) and currently unsupported (gray).

Not all the depicted constraints are prominently presented in the case stud-
ies. Joint Types for instance, geometrically, kinematically, and dynamically re-
late two robotic links to describe a desired behavior (e.g., prismatic or revolute).
Joint constraints are not explicitly found in the CI task model, instead they are
modeled as part of the kinematic chain or a robot platform. The robot plat-
form for a specific robot, is then reused by the scenarios that use the same
robot. Constraints, such as Geometric Relations, are currently not supported in
CoSiMA (see Table 8.1, colored in gray). However, they are covered by related
work on constraint-based programming, e.g., [BKB13; Ad14] and may be a fine
addition to CoSiMA. Considering this limitation, tasks that require constraints
to enforce a robot’s EEF to always be parallel to a frame or another entity
can currently not be modeled. As a result, a purely geometrically or kinemat-
ically closed VKC & virtual kinematic

chain
is not supported to form a controllable VM. Meaning that

a VM cannot be established between entities that are not connected through
physical contacts. Instead, CoSiMA supports the creation of VMs via dynami-
cally closed chains through the use of physical contacts. With that, the VM can
distribute the necessary forces to achieve a task over all involved joints. This
would not be possible on the geometrics or kinematics level.

The majority of the supported constraints can be represented by equality and
inequality constraints. While the modeling environment already supports both
kinds, the chosen PIDC implementation only supports equality constraints.
While this is certainly a limiting factor of the approach, the solutions are not
without downsides. A straight-forward solution would be to use a solver-based
approach for the inequality constraints in combination with PIDC as suggested
in [Deh+ss]. While this would enable the realization of e.g., friction constraints
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to optimize contact forces, joint limits would still remain a challenge. A sec-
ond solution is to completely replace PIDC by a QP-based approach. However,
depending on the number of constraints, it becomes more likely that the QP
solver might not find a solution. In contrast to that, PIDC always returns a
result, however without any guarantees regarding the fulfillment of the con-
straints. Further, PIDC is able to create and change prioritization structures on
the fly, since it is based on projection matrices. Instead, a QP approach would
need to leverage sophisticated strategies, e.g., [Kim+19; LTP15; Jar+13], to en-
able continuous task transitions without discontinuity. Note that this is still
an open research question of its own. Generally, PIDC and QP-based SoT are
suitable control frameworks for CI tasks, both having certain advantages and
disadvantages. In fact, in the RobMoSyS [Rob16] ITP project CMCI [CMC20]
we demonstrated a prototypical integration of the QP-based SoT framework
OpenSoT [Roc+15] into CoSiMA and realized a wiping task similar to the ex-
ample used in Section 6.2. Even though the preliminary results are promising,
it is not in the focus of this thesis.

8 .5 conclusion on the execution of ci

For each of the 3 case studies, an executable component-based control system
is generated that uses OROCOS RTT as execution environment and PIDC as
control framework. The control systems are synthesized from the CI model as
described in Chapter 7 based on the developed reference architecture model.
The first step of the entire generation process is the synthesis of the system’s
control architecture. As it can be seen in Figure 8.14, the models of the 3 sce-
narios only differ in the predefined extension points (green border) of the
reference architecture, while the remaining part stays the same. In the next
step, the synthesized model is enriched with model elements for other system
concerns. This includes concerns such as the component coordination, safety,
deployment, and timing. Since the execution time behavior is especially im-
portant for this thesis (see Chapter 4), the timing model for the experiments
is analyzed as to what degree it is influenced by variations in the synthesized
system model. As it can be seen in Figure 8.15, the sense-react chains for the
scenarios only differ in the predefined extension points of the reference archi-
tecture (green border). The generated schedule shows a similar pattern (see Fig-
ure 8.16), although this might partially be a coincidence, since the solver for
the schedule has no explicit knowledge about the structure of the reference ar-
chitecture. However, due to the precedence and core constraints, the solution
space for the schedule is drastically reduced, which leads to similar appear-
ances for the 3 schedules. Figure A.8 depicts the data collected during one real
execution cycle. It shows that the generated schedule model based on the mod-
eled timing constraints is executable and upholds the precedence-perseverance
property. Note that the implementation that executes the schedule is not opti-
mized, since it is not the main focus of this thesis and there exist numerous
works on that topic alone.
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Figure 8.14: Screenshot of the complete system model, instantiated from the reference
architecture. Variations points are marked by a green border.
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*only for scenarios
involving a VM
(e.g., Tetra and Dual)

Figure 8.15: Timing constraints for the case studies with variation points (green).
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Figure 8.16: Schedule model generated from the timing constraints (see Figure A.9).
Variations of the schedule based on the requirements of the case studies
are marked in green.

The main cause of the variations is grounded in the number of different con-
trol components that are instantiated for the particular case study. The control
components are instantiated depending on the control tasks in the PSprioritiza-

tion structure
& models

(τ in e.g., Figure 8.3). As described in Chapter 7, control tasks are grouped
by their control formalism, instantiating a single suitable control component
per formalism. In these experiments, an additional separation between single
robots and VMs is used for computation time benefits.

• jsMsd0 as joint-space imp. controller for the redundancy resolution.

• csMsd0 as an imp. controller to realize task-space motions.
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• csForce0 as a direct force controller that constantly applies a desired force
and handles the internal force in case of a VM.

• csMsdVM0 and csForceVM0 realize task-space VM motions and forces.

All control tasks using the same formalism are stacked and handled by the
associated control component. Table 8.2 shows the mapping of control tasks to
the control components for each case study.

Component jsMsd0 csMsd0 csMsdVM0 csForce0 csForceVM0

Tetra


τ3,1

red11

· · ·
τ3,4

red14
τ5

redundancy1




τ2,1

msd11

· · ·
τ2,4

msd14

 [
τ4

motion1

]


τ1,1

fctrl11

· · ·
τ1,4

fctrl14
τvm1

ifctrl1


[

τ6
compliance1

]

Dual


τ3,1

red11
τ3,2

red12
τ5

redundancy1


 τ2,1

msd11
τ2,2

msd12

 [
τ4

motion1

] 
τ1,1

fctrl11
τ1,2

fctrl12
τvm1

ifctrl1

 [
τ6

compliance1

]

Single
[

τ3
red1

] [
τ2
msd1

]
∅

[
τ1

fctrl1

]
∅

Table 8.2: Mapping of the control tasks
τi,j
xj to the executable components per scenario,

where τi,j refers to the control task instance i in the prioritization graph rep-
resentation. xj refers to the same control task, but represented as a controller
in the respective PS model. If j is present, it indicates that the same control
task is used for multiple kinematic chains (e.g., robot or VM). In that case,
j denotes the index of the chain. The order of the control tasks shows the
stacking as processed by the individual controller components (i.e. column
headers).

For the experiments in this thesis, OROCOS RTT is used as execution envi-
ronment and generation target for the control system model. It is possible to
use another framework, such as ROS2.0 [OSR] or XBotCore [Mur+17]. If the
framework supports the deterministic hard real-time execution and communi-
cation of multiple components, a one-to-one mapping between the modeled
and the real software components is straight-forward. Thus, in that regard,
the required code generator would be very similar to the one developed for
OROCOS RTT. Further, the framework would need to be capable of realiz-
ing the modeled schedule. Any restrictions in that regard need to be lifted to
the modeling level, preventing the design of an invalid schedule. For instance,
if the real-time execution of components in parallel is not supported by the
framework, this restriction needs to be reflected in the design space of the
schedule. In general, the component executor in ROS2.0 is neither real-time ca-
pable nor deterministic [Cas+19]. However, an advanced executor is presented
in [SLL20], overcoming this limitation by providing deterministic executions,
subject to domain-specific requirements.





“ Science is the process that takes us from
confusion to understanding.

”
— Brian Greene

9
C O N C L U S I O N

In this thesis I have investigated how to bridge the gap between an envisioned
compliant interaction task and the actual robot’s behavior, by increasing the
explainability and predictability through model-driven engineering. The gap
is caused by the inability of explaining and predicting certain parts of the
robot’s behavior that are related to essential but often neglected concerns of
the desired task and the robotic system that produces the behavior.

I argue that by explicitly modeling the individual concerns in a domain-
specific way and by traceably composing them into a unified model that also
describes their mutual interactions, the explainability and predictability can
be significantly increased. Unfortunately, most of the current approaches fall
short in these aspects.

The proposed approach offers a solution to this problem by using a model
level to enable the domain-specific and explicit modeling of individual robot-
ics concerns, such as the compliant interactions with the environment. Con-
sidering the current trend of robotics tasks in increasingly contact-rich situ-
ations, it is crucial to explicitly model the compliant interactions as part of
the task description. Unfortunately, most of the current approaches neglect or
hide the interaction, which potentially causes undesired and even dangerous
situations. In contrast, the developed approach uses physically grounded ab-
stractions that originated from the conducted domain analysis to enable the
accurate modeling of the desired behavior (see RQ 3). These abstractions build
the foundation to verify the exhibited robot’s behavior.

In addition to task-related concerns (e.g., the compliant interaction), system-
related concerns including software and hardware aspects need to be mod-
eled and composed to create a consistent realization on the model and on the
source code level. I proposed a flexible and robotics-specific composition ap-
proach to combine the heterogeneous concerns while maintaining their mod-
ularity (see RQ 1). Different model levels are introduced to allow the domain-
specific representation of the concerns as well as the description of the concern-
overarching interactions. In contrast to related works that often neglect or hide
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certain model levels, all levels are explicitly modeled to avoid the need for
hidden assumptions that have a negative impact on the explainability and pre-
dictability.

The proposed synthesis links the task and the system concerns by express-
ing and enforcing the modeled requirements of the task description on the
system level. This way, the system’s implementation is generated conform to
the modeled task and system concerns. Thus, increasing the predictability of
the robot’s behavior. Using this link, the robot’s behavior and system design
decisions can be explained by being traced back through the model levels to
the associated requirements they originated from. This way, the user can tell
e.g., due to what task-related requirement a certain control algorithm is used
in the system, and is also assured that the resulting behavior matches the spec-
ification.

I presented CoSiMA as an implementation of the proposed approach for the
domain-specific modeling of real-time capable (see RQ 2) robotic systems for
compliant interaction tasks, which are synthesized (see RQ 4) into executable
component-based control architectures that can be simulated as well as exe-
cuted on the real robotic hardware. The analysis of CoSiMA shows that its
high degree of DSL and generator reuse and its explicit support for language
evolution yields a solid foundation for the modeling of robotic systems with
the ability to incrementally cover further concerns of the heterogeneous robot-
ics domains. Hence, offering the potential to further bridge the gap with every
additional concern.

The experiments realized in CoSiMA (see RQ 5) show that the domain-
specific formalization empowers behavior developers (e.g., non-robotics ex-
perts) to express compliant interaction tasks without the need to resort to hid-
den assumptions of e.g., the used control algorithms, as is often required by
other approaches. For instance, setting the equilibrium point of an impedance
controller into a surface to establish a contact is not needed and not encour-
aged in the presented approach, since it does not accurately represent the
desired task. Further it is shown that the presented abstractions are suitable to
model different compliant interaction tasks by explicitly specifying and com-
posing the relevant robotics concerns, including the used software frameworks,
the chosen robotic hardware, and the system’s execution time behavior.

An investigation of the execution of the synthesized systems’ control archi-
tectures shows that the produced behaviors conform to the modeled require-
ments. The ability to conduct this investigation also shows that the modeled
concerns form a suitable foundation for verification.

Overall, this work applies the expertise of model-driven engineering to the
domain of robotics to successfully decrease the gap between an envisioned task
and the robot’s behavior by increasing the explainability and predictability of
real-time robot control systems in compliant interaction with the environment
through the explicit modeling and composition of the relevant concerns.
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outlook

The insights gained through this thesis build the foundation for investigating
further promising research questions. Considering the increasing demand for
robotics applications that involve compliant interaction, the increasing avail-
ability of affordable COBOTs, and the increasing interest of businesses in au-
tomation, two intriguing research directions arise:

One potential direction is to further empower non-experts in specifying and
executing desired robotics tasks. This is motivated by the increasing interest
of small to middle-sized businesses in robotic automation that rarely have in-
house expertise in robotics. The developed approach in this thesis chooses to
explicitly focus on the formalization and composition of robotics system con-
cerns, while currently neglecting user experience in favor of flexibility, scalabil-
ity, and explainability. Manually specifying the compliant interactions could—
depending on the task and the environment—become very complex. By using
simultaneous task and motion planning [Gar+21; MPS21] to automatically find
the right sequence of interactions, in terms of contact situations, contact tran-
sitions, and the necessary motion and force trajectories, the user experience
could be significantly increased.

In contrast to creating a desired behavior to achieve a goal based on the
algorithmics of different planners, the question can be investigated on how to
express an actual demonstration using the compliant interaction abstractions.
Using the explicit and formalized description of the abstractions as a base
for learning by demonstration [ZH18] would offer three major advantages: First,
the demonstrated behavior would be made explainable by being interpreted
in terms of compliant interactions. Second, a behavior could be produced that
achieves a desired task using the extracted knowledge from the demonstration,
allowing the integration of expert knowledge to influence how a specific task
should be solved. Third, the predictability and safety of the robot’s behavior is
ensured due to it being produced by a valid model that is subject to additional
requirements of the different concerns (e.g., execution timing constraints).





A
A P P E N D I X

The following is a selection of supplementary material of no particular order.

a .1 generation of component-level behavior

In general, a component instance that is solely based on the Component DSL,
does only model the interface of the component, not its behavior. Hence, it
relies on predefined (and possibly unmodeled) component behaviors. Consid-
ering the SoC, it makes sense to separate out the computational from the coor-
dination aspects. The Systems Coordination DSL offers the possibility to model a
component’s behavior via an additional life cycle, which is based on the meta-
model from the Coordination DSL. Thus, a state machine can be used to model
the component behavior.

The OROCOS Component Generator provides a transformation to generate
the component and its state machine, which manages the behavior coordina-
tion, into a C++ software component and a OSD script that defines the state
machine. The script is loaded into the software component during runtime.
The input for the transformation are Component model fragments that contain
a StateMachine as life cycle specialization and that are associated with an an-
notated ComponentInst for the generation towards OROCOS RTT. The trans-
formation results in an OROCOS-specific ComponentShell abstraction that is
slightly higher than C++, to which the OROCOS annotation is passed on. This
is necessary to enable the generation of the state machine fragments, by the
OROCOS Coordination Generator and the OROCOS System Coordination Gener-
ator. The application of the two generators depends on the DSLs, the model
fragments of the state machines are based on. Eventually, the ComponentShell

is translated into text-based C++ OROCOS RTT source code, which contains
the file path to the OSD artifact, resulting from the state machine transfor-
mation. An exemplary generator pipeline is visualized in Figure A.1 on the
following page.
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Figure A.1: A generation pipeline that transforms a component instance that has its
behavior defined via a state machine, into OROCOS C++ source code that
exposes the interface for communication which is required by the gener-
ated state machine script (i.e. OSD).

a .2 generation of a robot interface component configuration

In CoSiMA a generic robot interface component is used that essentially needs
the kinematic and dynamic description of the robot and the interface that the
robot should be controlled through to determine which predefined OROCOS
RTT component needs to be used and how it needs to be configured. Once the
right component is identified, the OROCOS Robot Platform Component Genera-
tor creates a ComponentInst model for the chosen interface component. Mean-
while, the robot description is already transformed by the URDF Generator
into an XML-based Document model. Since currently CoSiMA only support
the generation of robot models towards URDF, all robot models are automat-
ically transformed without the need of any kind of annotation. In spite of
this transformation, the created ComponentInst maintains a reference to the
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already (or not yet) generated robot model through an Operation, which be-
longs to the default component interface of a RobotComponentInst. By using
the IL & intermediate layerand translating into a ComponentInst, the OROCOS Component Generator
can be reused, which transforms that component instance into OPS statements.
While the URDF that is generated from the robot description represents an ac-
tual file, the OPS statements can only exist as part of a larger Document. This
means that the generator pipeline displayed in Figure A.2 shows one aspect of
the generation process in Figure 3.14 (right-most column) in more detail.
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RobotPlatform.
RobotPlatform

RobotPlatformComponent.
RobotComponentInst
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OROCOS
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Generator Component.
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XML.
Document
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(part)
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Component

Generator

XML
Generator

OPS
Generator

Component.
Operation

loadURDF(...)

Component.
Operation

loadURDF(...)

URDF
Generator

Figure A.2: A generation pipeline that transforms a robot component instance model
into OPS statements to configure an OROCOS-based robot interface com-
ponent that loads the necessary robot description in form of a generated
URDF file.

a .3 generation of a scheduling configuration

The Timing OROCOS Component Generator provides two transformations. Both
use the RTTTimingActivity from the Timing OROCOS Component DSL as input.
The first transformation handles the generation of an OROCOS activity for
each ComponentInst. The transformation iterates through each ComponentInst

and checks the IMOrocos annotation for an RTTTimingActivity that is used to
satisfy the ActivityDemand of OROCOS’ software platform. Depending on the
referenced TimingConstraints, which includes the synthesized schedule and
the SRC & sense-react chain, two types of OPS DSL statements are generated. First, an idle activ-
ity is generated to satisfy the requirements of OROCOS. Second, statements
related to the precedence and core constraints as well as to the associated Core
Scheduler are generated for the respective ComponentInst. Beyond this point,
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the transformations of the OPS Generator are reused to translate the model into
(plain) OPS text. The generation pipeline is shown in Figure A.3.

OROCOS. 
IMOrocos

Component. 
ComponentInst

OROCOS Component. 
ActivityDemand

Timing
OROCOS

Component
Generator

Timing OROCOS Component. 
RTTTimingActivity

OPS. 
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(part)

OPS 
Generator 

M2M
M2T

Model Fragment
Fragment Placeholder
OROCOS Annotation
Artifact (i.e. File)
Referenced Fragment
Contained Fragment
Reference to Generated Fragment

addPTG(...)

Timing Component. 
TimingConstraints

Figure A.3: A generation pipeline that transforms each RTTTimingActivity into OPS
statements that reflect the Core Scheduler configuration for the associated
ComponentInst.

The second transformation is only executed once. If at least one RTTTimin-

gActivity is present in the model, an initial configuration of the Core Sched-
ulers is needed. The System in which the Core Schedulers need to be config-
ured can be traced back via the referenced TimingConstraints. Once the sys-
tem is found, the OPS Document in which it is eventually transformed into is
resolved and additional OPS statements are added (i.e. weaved) retrospectively.
These statements are injected by the Timing OROCOS Component Generator to
configure the necessary amount of Core Schedulers and to associate them to
their respective core. The generation pipeline is shown in Figure A.4.
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Figure A.4: A generation pipeline that adds (i.e. weaves) the general configuration of
the Core Scheduler into an existing OPS Document model. This pipeline is
only executed once.



A.4 ci world and constraint models 167

a .4 ci world and constraint models

Figure A.5: Physical and virtual entities model for the Tetra-Arm case study.

Figure A.6: Excerpt of the constraints for CS2 depicted in Figure 8.2.
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Figure A.7: Excerpt of the constraints for the CSs depicted in Figure 8.10.
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a .5 timing constraints and schedule
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Figure A.8: One real execution cycle of the synthesized schedule, displayed in Fig-
ure 8.16. The robot interface components 1-3 are omitted in favor of read-
ability. A single core scheduler component is associated to each core. The
execution of a core scheduler is indicated by a red border. Note that the
concrete execution times are not relevant, since they heavily depend on the
properties of the processing hardware. Only the execution order and the
data-flow is representative even for the execution on different hardware.
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Figure A.9: Full set of core and precedence constraints for the tetra-arm scenario,
which is used as input for the schedule solving process.
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abstract syntax tree. used on: pp. 29, 32, 43, 121

C
CBRS

component-based robotic systems. used on: pp. 23–25, 31, 38–40, 48, 49,
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CBSE
component-based software engineering. used on: p. 23
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CIM
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CNN
Convolutional Neural Network. used on: p. 149
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CoSiMA
Compliant Simulation and Modeling Architecture. used on: pp. 11, 48,
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CPC
Component-Port-Connector. used on: pp. 38, 49, 60
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CSP
Constraint Satisfaction Problem. used on: pp. 76, 78
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DynGHC
dynamically consistent Generalized Hierarchical Control. used on:
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end-to-end response time. used on: pp. 68, 73, 74, 76
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end-effector. used on: pp. 16–18, 93–95, 97, 100, 108, 111, 142, 143, 146,
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EMF
Eclipse Modeling Framework. used on: p. xvi

F
FJSSP

Flexible Job Shop Scheduling Problem. used on: p. 76
FRI

Fast Research Interface. used on: pp. 41, 51
FSM

finite state machine. used on: pp. 50, 56, 60

G
GPL

general-purpose language. used on: p. 29

I
IL

intermediate layer. used on: pp. 46, 57, 59, 165
IPT

independent processing time. used on: pp. 73, 76–78, 81, 85

L
L3Dim

Layered 3 Dimensions. used on: pp. 39–43, 45–48, 57–60, 63–65, 71, 119
LM&C

language modularization and composition. used on: pp. 30–33, 37–39,
42, 43, 137

M
M2M

model-to-model. used on: pp. 55, 56, 114, 127, 130
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M2T
model-to-text. used on: pp. 55, 56, 81
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MoT
Math of Task. used on: pp. 115, 121, 122

MPS
JetBrains Meta Programming System. used on: p. 43
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PSI
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PSM
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real-time system. used on: pp. 66, 67
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S
SEA

series elastic actuator. used on: p. 2
SoC
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SoR

separation of roles. used on: pp. 26, 28, 33, 37, 43, 57, 63
SoT
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state-of-the-art. used on: pp. 15, 33
SRC
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T
TFF

Task Frame Formalism. used on: pp. 16–18, 94, 104, 105
TRL

Technology Readiness Level. used on: p. 23

U
URDF

Unified Robot Description Format. used on: pp. 51, 60, 143, 165

V
VKC

virtual kinematic chain. used on: pp. 105, 121, 123, 135, 136, 153
VM

Virtual Manipulator. used on: pp. 98, 111, 132, 135, 136, 141–147, 153,
156, 157

VSA
variable stiffness actuator. used on: p. 2

W
WCE2ERT
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A
abstract syntax

A data structure for the definition of a model, without any notational
details (cf. concrete syntax). used on: p. 29

adapter language
A language to realize dependent model fragments while ensuring the
independence of the underlying languages [Gam+95; Völ+13]. used on:
pp. 45, 49

afferent coupling
The dependencies on a module from other modules. used on: pp. 59–61

C
capability

An isolated functional and non-functional concern of a robotic system,
such as coordination, vision-based perception, motion generation, tim-
ing, task description, or the structural concern of a system, etc. used
on: pp. 6, 15, 39, 40, 43–45, 51, 53, 57, 60, 64, 65, 70, 71, 73

compliance frame
Refers to the frame in which the compliant control behavior is ex-
pressed. It usually relates to a contact point or the EEF of a robot. used
on: pp. 16, 108

compliant interaction
Describes every situation in which external forces influence or even
define the behavior of a robot. This includes the handling, compensa-
tion, and exploitation of physical interactions through contacts, which
are natural interfaces for the exchange of forces. See Section 1.1. used
on: pp. v, 1, 3, 4, 10, 15, 17–19, 22, 37, 40, 89, 90, 92, 94, 100, 103, 106, 108,
117, 159–161

component
A unit of composition that must be composable with other compo-
nents to form a system in a predictable way. Here, a component either
refers to an entity in a component-based framework (e.g., OROCOS
RTT or ROS) or to a modeled abstraction thereof. used on: p. 23
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component-based architecture
An architecture that represents the structural concerns of a system
based on a component model. used on: pp. 4, 27

composability
Composability refers to the ability to combine and recombine parts
meaningfully into a whole for different purposes [PW03; Rob19]. used
on: pp. 6, 58, 90, 103

concern
Originated as “a principle in computer science and software engineer-
ing[,] identif[ying] and decoupl[ing] different problem areas to [be]
view[ed] and solve[d] independent [of] each other [Dij82]” [Rob19]. A
cross-cutting concern, however, “affects multiple properties and areas
in a [robotic] system possibly at different levels of abstraction” [Rob19].
used on: pp. 4, 7–9, 11, 15, 23–28, 30–33, 37–40, 42–45, 48, 50, 55, 57, 60–
62, 65, 66, 70–72, 82, 83, 91, 137, 154, 159

concrete syntax
The concrete syntax of a DSL is what the user interacts with to cre-
ate a model. It can be a combination of textual, graphical, tabular,
etc. [Völ+13] used on: pp. 29, 32, 43

control architecture
An architecture that combines the required structural elements to rep-
resent a control law to command the robot. It can be designed as a
component-based architecture (CBA). It is part of a robotic system.
used on: pp. 7, 8, 11, 125

coupling
Describes the interactions between contacting entities. It is character-
ized by the forces that can be transmitted through the contacts and the
allowed relative motion of the contacting entities. Not to be confused
with afferent coupling or efferent coupling. used on: p. 92

D
data freshness

Is one of the most important data quality attributes in information
systems. The freshness refers to the following questions: How old is
the data with respect to the users expectations? Is there a more recent
data sample? When was the data sample produced? [Bou04; CG00].
used on: p. 86

dimension
Describes a horizontal SoC along semantic categories of the target
domain. In CoSiMA, the robotics-specific dimensions are: Capability,
Software Platform, and Hardware Platform. used on: p. 41

domain
“An area of knowledge or activity; especially one that somebody is
responsible for” [Dic21]. Domains related to robotics are aerospace,
telecommunication, and automotive. The robotics domain itself can
be divided into different subdomains, such as kinematics, sensing, mo-
tion control, reasoning, etc. [Nor+16a]. used on: pp. 7, 9–12, 18, 22–31,
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33, 37, 41, 42, 48, 49, 54, 57, 60, 61, 63–66, 71, 72, 74, 76, 77, 86, 100, 101,
103, 104, 110, 117, 118, 124, 129, 149, 153, 157, 159, 160

E
Ecore

Ecore is the meta-model included in the core Eclipse Modeling Frame-
work (EMF) to describe models and runtime support, based on Meta
Object Facility (MOF). used on: p. xvi

efferent coupling
The dependencies of a module on other modules. used on: p. 61

G
general-purpose language

A programming language that lacks domain-specific features and is
usable in a wide variety of application domains (e.g., C++ or Python).
used on: p. 29

H
heterogeneous transformation

A transformation where the input and output models are based on
different meta-models [Com+16]. used on: p. 29

homogeneous transformation
A transformation where the input and output models are based on the
same meta-model [Com+16]. used on: pp. 29, 75, 78

L
language evolution

Describes the fact that a DSL has to reflect changes of requirements
over time. These changes can be driven by changes in the domain,
target platform, and implementation-related dependencies [Völ+13].
used on: pp. 42, 43, 47

language module
A module that technically implements (parts of) a DSL. used on: pp. 29,
43, 60

language workbench
The term language workbench, coined and popularized by Martin
Fowler in 2005 [Fow05], is a tool that provide high-level mechanisms
for the efficient design, reuse, and composition of (domain-specific)
languages. used on: p. 43

M
meta-model

A model that describes the abstract syntax of a language [Com+16].
used on: pp. 29, 38, 49–52, 54, 58, 163

middleware
A “software layer that provides a programming abstraction as well as
[a] masking [of] the heterogeneity of the underlying networks, hard-
ware, operating systems and programming languages” [CDK05]. used
on: p. 27
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model
A model is an abstraction of reality (for a given purpose) [Rot+89]. In
the context of MDE a model is produced by instantiating the meta-
model concepts of a DSL. used on: pp. 28, 29

model fragment
A part of a model whose AST is a sub-graph of the model’s AST. In
contrast, a model element refers to a single instance of a concept (i.e. a
node) in the AST. used on: pp. 32, 40–42, 45, 47, 55, 56, 82, 119, 124, 163

P
precedence constraint

A (temporal) constraint that enforces the execution of a real-time task
to start after the completion of the preceding task. used on: pp. 68–70,
73, 74, 76–79, 81

program synthesis
A synthesis in the context of generative (meta-)programming is re-
ferred to as a computation (i.e. model transformation) that when ex-
ecuted generates a target program from a meta-program (i.e. DSL
model), used as input [TAD07]. used on: pp. 8, 10, 11, 37, 75, 79, 85,
86, 124–127, 133, 136, 137, 141, 154

projectional
Projectional tools, editors, or views refer to the support of different
projections for the same AST in terms of concrete syntaxes, such as
textual, graphical, or tabular. used on: p. 43

R
robot behavior

Refers to the overall behavior exhibited by a robotic system. On one
side the behavior describes the exhibited (physical-) interaction of the
robot (e.g., impedance control behavior and generated forces and mo-
tions). On the other side, it refers to the software system’s behavior.
This includes the coordination of different actions as well as the exe-
cution, communication, and scheduling of the involved system’s com-
ponents. used on: pp. 3, 15, 37, 65, 89, 103, 138, 144, 159

robotic system
A system that covers robotics-related hardware and software aspects.
Every robotic system uses an architectural structure [KSB16]. A con-
trol architecture represents the structural aspects related to control the
robot. used on: p. 23

Robotics DSL Zoo
A curated website for DSL publications in robotics [Nor+16b]. used on:
p. 33

S
sense-react chain

A sequence of components realizing a control cycle that starts with
sensed information and ends with a respective action. used on: pp. 25–
27, 68, 74, 75, 79, 81, 154
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skill
An action that a robot is capable of performing. Depending on the
literature, it might refer to a screwing motion, the picking of an object,
or a peg-in-hole assembly process, etc. See Section 5.1. used on: pp. 5–8,
15, 16, 26, 37, 89–91, 103, 104, 122–124

structural concern
Represents all aspects that are significant to the structural viewpoint
of a (component-based) system. It focuses on the architectural compo-
nents, connections, constraints and styles that are required to describe
and reason about the system’s structure [Cre+01]. used on: p. 38
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