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A UNIFYING FRAMEWORK FOR SUBMODULAR MEAN FIELD GAMES

JODI DIANETTI, GIORGIO FERRARI, MARKUS FISCHER, AND MAX NENDEL

Abstract. We provide an abstract framework for submodular mean field games and iden-
tify verifiable sufficient conditions that allow to prove existence and approximation of strong
mean field equilibria in models where data may not be continuous with respect to the measure
parameter and common noise is allowed. The setting is general enough to encompass qual-
itatively different problems, such as mean field games for discrete time finite space Markov
chains, singularly controlled and reflected diffusions, and mean field games of optimal timing.
Our analysis hinges on Tarski’s fixed point theorem, along with technical results on lattices
of flows of probability and sub-probability measures.

Keywords: Mean field games; submodularity; complete lattice of measures; Tarski’s fixed
point theorem; Markov chain; singular stochastic control; reflected diffusion; optimal stop-
ping.
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1. Introduction

Mean field games (MFGs in short) are limit models for non-cooperative symmetric N - player
games with interaction of mean field type as the number of players N tends to infinity. They
have been proposed independently by [39] and [42], and since their introduction they have
attracted increasing interest in various fields of Mathematics ranging from PDE theory to
stochastic analysis and game theory, as well as in applications in Economics, Finance, Biology,
and Engineering, among others; we refer, for instance, to the recent two-volume book [19] for
an extensive presentation of theoretical results and applications.

The interest in identifying a key property that allows to prove existence and approxima-
tion of equilibria for a general class of MFGs has motivated our study. Inspired by the early
contribution of Topkis [56] on submodular N -player games in a static setting, we identify sub-
modularity as a relevant structural condition and explore the flexibility of lattice-theoretical
techniques in MFGs enjoying a submodular structure. Submodular MFGs have already been
considered in the literature; see [1] for a class of stationary discrete time games, [59] for a class
of finite state MFGs with exit, [20] for optimal timing MFGs, and [25] for MFGs involving a
regularly controlled one-dimensional Itô-diffusion. In this work, we push the analysis of ours
[25] much forward, and we provide an abstract framework for submodular MFGs, which em-
beds qualitatively different problems and allows to show existence and approximation of their
mean field equilibria. The results of our work can be informally presented as follows.

(1) The submodular structure of the game yields an alternative way of establishing exis-
tence of MFG solutions by using the lattice-theoretical Tarski’s fixed point theorem,
rather than topological fixed point results. This allows to treat systems with coefficients
that are possibly discontinuous in the measure variable, as well as to prove existence
of strong solutions in settings involving a common noise.

(2) The set of MFG solutions enjoys a lattice structure so that there exist a minimal
solution and a maximal solution with respect to a suitable order relation.
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(3) A learning procedure, which consists of iterating the best-response-map (thus comput-
ing a new flow of measures as best-response to the previous measure flow) converges to
the minimal (or the maximal) MFG solution, for appropriately chosen initial measure
flows.

These claims are made precise in Theorem 2.6, under suitable assumptions that are for-
mulated at a general abstract level. Those requirements do not involve nondegeneracy of the
underlying noise and are satisfied in a variety of formulations of the mean field game problem,
including deterministic frameworks. Clearly, the setting of our previous work [25] is included.
Furthermore, in this paper we highlight the flexibility of the approach by considering four
qualitatively different problems, in which the representative agent minimization problem in-
volves as a state variable: (i) a finite state discrete time Markov chain (cf. Section 4); (ii) a
singularly controlled Itô-diffusion, possibly affected by a common noise (cf. Section 5); (iii)
an Itô-diffusion facing a reflecting boundary condition (cf. Section 6); a general progressive
stochastic process whose evolution can be stopped by the representative player (cf. Section
7). Here a common source of noise is also allowed. For each of these examples, existence and
approximation results are derived through a suitable application of Theorem 2.6. It is worth
noting that fine properties of lattices of probability and sub-probability measures are needed
in order to apply Theorem 2.6 in the different examples. As we were unable to find a precise
reference for those properties, we present them in brevity in Section 3. Given the generality of
the setting in which they are obtained, we believe that those findings are of interest on their
own and might be a useful technical tool in other works as well.

The approach that we follow in this paper focuses exclusively on the representative agent
minimization problem, without reformulating the problem in terms of a related forward-
backward system or of the master equation. Whether those reformulations of the mean field
game problem allow to obtain results of a similar fashion as ours is, to the best of our knowl-
edge, an open question that we leave for future research.

1.1. Existence and approximation results in MFGs. Questions of existence and ap-
proximation of mean field equilibria have been addressed in the literature at various degrees
of generality and through different mathematical techniques.

General existence results for solutions to the MFG problem can be obtained through Ba-
nach’s fixed point theorem if the time horizon is small (cf. [39]). For arbitrary time horizon, a
version of the Brouwer-Schauder fixed point theorem, including generalizations to multi-valued
maps, can be used; cf. [17] and [41] (see also [31] in the context of MFGs with singular controls).
In the presence of a common noise (i.e., an aggregate source of randomness), the existence of
a weak MFG solution (i.e., not adapted to the common noise) can be established for a general
class of MFGs. On the other hand, the existence of a strong MFG solution (i.e., adapted to
the common noise) has been addressed mainly under conditions which imply uniqueness of
equilibria. For example, in [20] an analogue of the famous result by Yamada and Watanabe
is derived, and it is used to prove existence and uniqueness of a strong solution under the
Lasry-Lions monotonicity conditions (see [42]). Under lack of uniqueness, existence of strong
solutions remains mainly an open question.

Since uniqueness of equilibria in game theory is the exception rather than the rule, it is
not surprising that multiple solutions often arise also in MFGs. This phenomenon has been
investigated mainly on a case by case basis, and specific examples with multiple solutions have
been presented in the recent literature [3, 22, 23, 55], among others. Interestingly, the submod-
ularity assumption appears implicitly in a number of classical linear-quadratic models (see,
e.g., [9]) and in [3, 14, 22, 23], although this property is not exploited therein. The increasing
interest in non-uniqueness of solutions together with the perspective of characterizing many
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models through a unique key structural property has been one of the main motivations for our
study of submodular MFGs.

Once existence is established, it is natural to investigate how and whether solutions to MFGs
can be approximated in a constructive way. This problem has been addressed by Cardaliaguet
and Hadikhanloo [18]. They analyze a learning procedure – similar to what it is known as
"fictitious play" (cf. [38] and the references therein) – where the representative agent, starting
from an arbitrary flow of measures, computes a new flow of measures by updating the average
over past measure flows according to the best-response to that average. For potential mean
field games, the authors establish convergence of this kind of fictitious play via PDE methods.
Similar approaches have been further developed in some more recent works (see [28, 50, 61],
among others) with the help of machine learning techniques, providing a rich set of tools able
to address computational aspects in MFGs. As already discussed, our result also contributes
to the approximation question since the submodularity condition provides convergence of a
simple learning procedure à la Topkis [57], consisting of iterating the best-response map (see
[25], and also [24] in the context of N -player games). In particular, this type of algorithm
seems to be quite promising when combined with reinforcement learning methods, as shown
in the recent [43] for stationary discrete time finite state MFGs with complementarities.

1.2. Examples. We now discuss in more detail the applications of Theorem 2.6 that we
present in this work, by also reviewing the related literature.

1.2.1. Submodular mean field games with finite state discrete time Markov chains. We start
with a simple class of finite state discrete time MFGs where expected costs are to be minimized
over a finite time horizon. Control acts on the Kolmogorov equation, that is, on the transition
matrix that determines the evolution of the state probability vector. Mean field interaction
only occurs through the measure variable appearing in the cost coefficients. We relate our
model to the general set-up of Section 2 and provide sufficient conditions so that part a) of
Theorem 2.6 applies, yielding existence of solutions. We also give a simple example of a class of
two-state models satisfying those conditions. They are related to the continuous time two-state
MFGs studied in [33, 22], also see [8], which exhibit multiple solutions.

The study of finite state discrete time MFGs goes back to [32], where existence and conver-
gence to equilibrium for a class of finite horizon problems were established. For discrete MFGs
of this type satisfying an analogue of the Lasry-Lions monotonicity condition, convergence of
a “fictitious play” learning procedure is proved in [36]. There, discrete models are also shown
to approximate corresponding continuous time and space MFGs. Existence of solutions for
a general class of finite and infinite horizon discrete MFGs is established in [26], and their
connection with the underlying N -player games investigated. Discrete time MFGs with more
general state space have been studied recently under various optimality criteria; see [52, 53]
for infinite horizon discounted cost and risk sensitive problems, respectively, [60] for ergodic
MFGs, and [12] for risk averse problems. Existence of solutions in those works is established
through a topological fixed point theorem; in particular, cost coefficients are assumed to de-
pend continuously on the measure variable. Although our simple discrete models fall under the
framework of, for instance, [26], the continuity assumptions there are not needed here, since
here, as in the aforementioned [59] and [1], we rely on an order-theoretic fixed point result.
Lastly, we mention that our finite state MFGs do not involve common noise. Choosing a com-
mon noise for finite state problems is in fact less straightforward than in the usual continuous
space setting; see the recent works [6, 7] for continuous time finite state problems.

1.2.2. Submodular mean field games with singular controls. The number of papers considering
MFGs of singular stochastic controls is still relatively limited. [31] employs a relaxed approach
in order to establish existence for a general class of MFGs involving singular controls, while the
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more recent [30] extends the analysis to MFGs in which interaction takes place both through
states and controls. In [14] and [35] MFGs for finite-fuel follower problems are considered. By
employing, respectively, the connection to problems of optimal stopping and PDE methods,
the structure of the mean-field equilibrium as well as its connection to Nash equilibria for the
corresponding N -player stochastic differential games is derived. Finally, [16] and [15] study
stationary MFGs, i.e. games in which the interaction comes through the stationary distribution
of the population of players. [15] considers ergodic and discounted performance criteria, and
studies the relation across the corresponding equilibria; in [16] the representative player can
employ two-sided controls in order to adjust a geometric dynamics and optimize a certain
discounted payoff. It is worth noting that none of the previous contributions allows for the
presence of common noise, which we can instead treat in our analysis. We can indeed show that
the class of submodular MFGs with geometric dynamics that we consider in Section 5.1 admits
strong equilibria (i.e. adapted to the common noise), which can in fact also be approximated
through the previously discussed learning algorithm à la Topkis. In the case of a general
nonconvex setting, a weak formulation of the singular control MFG is employed, and existence
of mean field equilibria is proved by means of an approximation result through Lipschitz-
continuous controls. Furthermore, convergence of the learning procedure is also established
(see Section 5.2).

1.2.3. Submodular mean field games with reflecting boundary conditions. Theorem 2.6 yields
also existence and approximation of equilibria for submodular MFGs in which the represen-
tative player can employ regular controls in order to adjust the drift of a one-dimensional
Itô-diffusion which is constrained, via a Skorokhod reflection, to live in a bounded interval (cf.
Section 6). These models have received recent interest since they naturally arise as suitable
limits of interacting queuing systems, see [5] and [4]. As in [5], we employ a weak (distribu-
tional) approach, and, by enforcing additional mild technical requirements on the data of the
problem, an application of Tanaka’s formula for continuous semimartingales allows to embed
the considered MFG into the class of abstract submodular MFGs for which Theorem 2.6 holds.
Then, existence and approximation of mean field equilibria follow.

1.2.4. Supermodular mean field games with optimal stopping. In Section 7 we consider a class
of MFGs where the representative agent can choose a stopping time in order to stop the
evolution of a general multi-dimensional progressive process, while maximizing a certain re-
ward functional. The model is formulated by including the presence of a common noise. By
assuming that the running profit function is increasing with respect to the stochastic order
put on the lattice of sub-probability measures, the game enjoys a supermodular (rather than
submodular, since here we are dealing with a maximization problem) structure that allows to
invoke Theorem 2.6 and show existence of equilibria. Furthermore, under suitable continuity
requirements, convergence of a learning procedure is obtained.

Models involving MFGs of optimal stopping have been considered in the economic literature
mostly in stationary settings (see [45] and [48] in the context of industry equilibria) and, more
recently, under greater generality also in the mathematical literature; see [13], [2], and [10].
Using a relaxed solution approach, in [13] and [2] an Itô-diffusive setting not allowing for a
common noise is considered (see also Example 7.9 in Section 7). In [10], an analytical approach
to MFGs of optimal stopping is developed through the study of the associated variational
inequality. Explicit use of the supermodular property and of the Tarski’s fixed point theorem
in a MFG of stopping with common noise is made in [21] (see also Example 7.10 in Section 7).

1.3. Outline of the paper. The rest of the paper is organized as follows. Section 2 presents
the general approach to submodular MFGs. There, we state and prove Theorem 2.6. Section
3 derives the properties of lattices of probability and sub-probability measures needed in the
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paper. The remaining sections deal with applications of the abstract setup: Section 4 deals with
MFGs having discrete time finite space Markov chains as state variables; Section 5 considers
MFGs with singular controls; Section 6 treats MFGs with reflecting boundary conditions, while
MFGs of optimal stopping are addressed in the final Section 7. For the reader’s convenience,
we collect some lattice-theoretical preliminaries in Appendix A.

General notation

For a fixed finite time horizon T ∈ (0,∞), we introduce the following canonical spaces:
(1) C denotes the space of R-valued continuous functions defined on [0, T ], endowed with

the supremum norm and the Borel σ-algebra B(C) generated by the supremum norm.
(2) For a set A ⊂ R, let Λ denote the set of deterministic relaxed controls on [0, T ] × A;

that is, the set of positive measures λ on [0, T ]×A such that λ([s, t]×A) = t−s for all
s, t ∈ [0, T ] with s < t. The set Λ is endowed with the topology of weak convergence
of probability measures, and B(Λ) denotes the related Borel σ-algebra.

(3) D denotes the Skorokhod space of R-valued càdlàg functions, defined on [0, T ], endowed
with the Borel σ-algebra B(D) generated by the Skorokhod topology. On the space
D consider the pseudopath topology τT

pp; that is, the topology on D induced by the
convergence in the measure dt+δT on the interval [0, T ], where dt denotes the Lebesgue
measure, and δT denotes the Dirac measure at the terminal time T . For the topological
space (D, τT

pp), the Borel σ-algebra induced by the topology τT
pp, coincides with the σ-

algebra induced by the Skorokhod topology (see the Appendix in [44]).
(4) D↑ denotes the set of elements of D which are nonnegative and nondecreasing, endowed

with the Borel σ-algebra B(D↑) induced by the Skorokhod topology. Note that D↑ is
a closed subset of the topological space (D, τT

pp).
(5) V denotes the set of elements of D with bounded total variation, endowed with the

Borel σ-algebra B(V) induced by the Skorokhod topology. Furthermore, the space V
is a closed subset of the topological space (D, τT

pp).

2. A general approach to submodular MFGs

In this section, we consider an abstract version of a mean field game. The aim of this
section is to collect fundamental structural conditions and arguments, which provide a common
basis for the examples treated in the next sections. For the lattice-theoretical notions and
preliminaries that are used throughout this section and the rest of this paper, we refer to
Appendix A.

2.1. Formulation of the abstract model. Let (L,¬L) be a complete and Dedekind super
complete lattice, which represents the set of possible distributions of players, see Definition
A.1. Let E be the set of strategies of the representative player. The set E is endowed with
a topology and a map p : E → L, which can be interpreted as a projection, which maps
each strategy to a related distribution. The representative player wants to minimize a cost
functional J : E × L→ R, depending also on the distribution of her opponents.

We make the following assumption (see also Remark 2.7 for a generalization):

Assumption 2.1. For every µ ∈ L, we assume that:
(1) The set argminE J(·, µ) is nonempty and J(·, µ) is lower semicontinuous;
(2) For any sequence (νn)n ⊂ argminE J(·, µ) such that p(νn) is nondecreasing or non-

increasing in L, there exists a subsequence (nj)j∈N and ν ∈ argminE J(·, µ) such that
νnj converges to ν as j →∞ and pν = supj p(νnj ) or pν = infj p(νnj ), respectively.
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For µ ∈ L, we define the set of best responses R(µ) ⊂ L by

R(µ) := p
(
argmin
ν∈E

J(ν, µ)
)
.

Definition 2.2. We say that µ ∈ L is a mean field game equilibrium if µ ∈ R(µ), i.e. µ is a
fixed point of the best-response-map.

2.2. Submodularity conditions and properties of the best-response-map. Existence
of MFG solutions is subject to the following abstract structural condition.

Assumption 2.3 (Submodularity Conditions). There exist operations ∧E,∨E : E × E → E
such that:

(1) The projection p behaves like a homeomorphism of lattices; that is,

p(ν ∧E ν̄) ¬L pν ∧L pν̄ ¬L pν ∨L pν̄ ¬L p(ν ∨E ν̄), for each ν, ν̄ ∈ E.

(2) The cost functional satisfies the following submodularity properties

J(ν ∨E ν̄, µ̄)− J(ν̄, µ̄) ¬ J(ν ∨E ν̄, µ)− J(ν̄, µ) ¬ J(ν, µ)− J(ν ∧E ν̄, µ),

for each ν, ν̄ ∈ E and µ, µ̄ ∈ L with µ ¬L µ̄.

We underline that Condition 2 in Assumption 2.3 coincides with the conditions in [56] only
in the case in which (E,∧E,∨E) is a lattice.

We start our analysis with the following result on the structure of the sets of best responses.

Lemma 2.4. Under Assumptions 2.1 and 2.3 we have that:
a) The set R(µ) is directed, i.e., for every η1, η2 ∈ R(µ), there exist η∧, η∨ ∈ R(µ) such

that η∧ ¬L η1 ∧L η2 and η∨ L η1 ∨L η2.
b) For all µ, µ ∈ L with µ ¬L µ, inf R(µ) ¬L inf R(µ) and supR(µ) ¬L supR(µ).
c) For every µ ∈ L, inf R(µ) ∈ R(µ) and supR(µ) ∈ R(µ).

Proof. Let µ, µ ∈ L with µ ¬L µ. Moreover, let η1 ∈ R(µ) and η2 ∈ R(µ). Then, by definition
of R(µ) and R(µ), there exists ν1 ∈ argminν∈E J(ν, µ) and ν2 ∈ argminν∈E J(µ, ν) with
pν1 = η1 and pν2 = η2. By Condition 1 in Assumption 2.3, we can define ν∧, ν∨ ∈ E by
ν∧ := ν1 ∧E ν2 and ν∨ := ν1 ∨E ν2, leading to pν∧ ¬L pν1 ∧L pν2 and pν∨ L pν1 ∨L pν2. The
optimality of ν1 and ν2 for η1 and η2, respectively, together with Condition 2 in Assumption
2.3, imply that

0 ¬ J(µ, ν∨)− J(µ, ν2) ¬ J(µ, ν∨)− J(µ, ν2) ¬ J(µ, ν1)− J(µ, ν∧) ¬ 0.

This shows that η∧ := pν∧ ∈ R(µ) and η∨ := pν∨ ∈ R(µ). Now, the statement in a) directly
follows by choosing µ = µ. Moreover, η∧ ∈ R(µ) and η∨ ∈ R(µ) imply that

inf R(µ) ¬L η∧ = pν∧ ¬L pν2 = η2 and η1 = pν1 ¬L pν∨ = η∨ ¬L supR(µ).

Taking the infimum over all η2 ∈ R(µ) and the supremum over all η1 ∈ R(µ) yields the
assertion in b).

We now prove the claim in c) for the infimum. Since L is, by assumption, Dedekind super
complete, there exists a sequence (µn)n ⊂ R(µ) such that inf R(µ) = infn µn. Therefore we
can find a sequence (νn)n ⊂ argminJ(·, µ) with pνn = µn. We can inductively define a new
sequence (ν∧,n)n by setting

ν∧,1 := ν1 and ν∧,n+1 := ν∧,n ∧E νn+1, n  1.

As shown in the proof of part a), we have that ν∧,1 ∈ argminJ(·, µ), and by induction, we
deduce that ν∧,n ∈ argmin J(·, µ) for each n ∈ N. Define now the sequence (µ∧,n)n setting,
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µ∧,n := pν∧,n for each n ∈ N, and note that µ∧,n ∈ R(µ). Moreover, Condition 1 in Assumption
2.3 implies that

µ∧,n+1 = p(ν∧,n+1) = p(ν∧,n ∧E νn+1) ¬L pν∧,n ∧L pνn+1 = µ∧,n ∧L µn+1,

which, at the same time, implies that (µ∧,n)n is nonincreasing in L and that µ∧,n ¬L µn for
each n ∈ N. Hence we have

inf R(µ) = inf
n
µn = inf

n
µ∧,n.

Moreover, by Assumption 2.1, there exists a subsequence (nj)j∈N and a limit point ν ∈
argminE J(·, µ) such that

pν = inf
j
p(ν∧,nj ) = inf

j
µ∧,nj = inf R(µ),

so that inf R(µ) ∈ R(µ). □

2.3. Existence and approximation of MFG solutions. For the approximation of MFG
solutions, we will enforce the following additional continuity requirements (see again Remark
2.7 for a generalization).

Assumption 2.5. For any sequence (νn)n ⊂ {argminE J(·, µ) |µ ∈ L} such that p(νn) is
increasing or decreasing in L, there exists a subsequence (nj)j∈N and ν ∈ E such that νnj
converges to ν as j →∞ and pν = supj p(νnj ) or pν = infj p(νnj ), respectively.

Moreover, respectively, for any nondecreasing or nonincreasing sequence (µn)n ⊂ L, we
assume that

(1) for any ν ∈ E, J(ν, supn µ) = limn J(ν, µn) or J(ν, infn µ) = limn J(ν, µn)),
(2) for any sequence (νn)n ⊂ E converging to ν ∈ E, we have that J(ν, supn µ) ¬
lim infn J(νn, µn) or J(ν, infn µ) ¬ lim infn J(νn, µn).

We can then state the main result of this section.

Theorem 2.6. Under Assumptions 2.1 and 2.3 we have that
a) the set of mean field game equilibria M is nonempty with infM ∈M and supM ∈M .

If R(µ) is a singleton for all µ ∈ L, then M is a nonempty complete lattice.
Moreover, if Assumption 2.5 is satisfied, then

b) the learning procedure µ0 := inf L and µn := inf R(µn−1), for n ∈ N, is monotone
increasing and it converges to infM ,

c) the learning procedure µ0 := supL and µn := supR(µn−1), for n ∈ N, is monotone
decreasing and it converges to supM .

Proof.
a) Follows directly from Lemma 2.4 together with Tarski’s fixed point theorem applied

to the maps µ 7→ inf R(µ) and µ 7→ supR(µ).
b) By Lemma 2.4, it follows that the sequence (µn)n∈N0 is increasing. By completeness

of the lattice L, we can set µ∗ := supn µn. We next want to prove that µ∗ = infM .
For any n ∈ N, by Lemma 2.4 and the definition of µn, we can find

νn ∈ argmin
E

J(·, µn−1)

with pνn = µn. By Assumption 2.5, we can take a subsequence (νnj )j and a limit point
ν∗ such that νnj converges to ν∗ and pνnj converges to pν∗ as j → ∞. This implies
that pν∗ = µ∗. Moreover, we have

J(νnj , µnj−1) ¬ J(ν, µnj−1), for any ν ∈ E and j ∈ N.
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Exploiting the continuity properties of J in Assumption 2.5, we may pass to the limit
as j →∞ in the previous inequality, and obtain that

J(ν∗, µ∗) ¬ J(ν, µ∗), for any ν ∈ E and j ∈ N.

This, in turn, implies that ν∗ ∈ argminE J(·, µ∗), so that µ∗ = pν∗ ∈ R(µ∗). Therefore,
µ∗ is a MFG solution.

We next want to prove that µ∗ is the minimal MFG solution. Let µ ∈M be another
mean field game equilibrium. Then, µ0 ¬L µ, which, by Lemma 2.4, implies that
µ1 = R(µ0) ¬L R(µ). Inductively, one obtains that µn ¬L µ for all n ∈ N0, which
implies that µ∗ ¬L µ. Since µ∗ ∈M , it follows that µ∗ = infM .

c) Follows by arguments analogous to the one used in the proof of part b).
□

The following remark proposes a set of purely order-theoretical conditions, alternative to
those in Assumptions 2.1 and 2.5, respectively. These will be employed in the proof of Propo-
sition 4.2.

Remark 2.7. The proofs of Lemma 2.4 and Theorem 2.6 show that all stated properties remain
valid if Assumption 2.1 is replaced by the following purely order-theoretic assumptions:

• For every µ ∈ L, the set argminE J(·, µ) is nonempty and the set R(µ) is closed
under monotone sequences; that is, for any nondecreasing or nonincreasing sequence
(µn)n ⊂ R(µ), there exists ν ∈ argminE J(·, µ) such that pν = supn µn or pν =
infn µn, respectively;

and if Assumption 2.5 is replaced by the following two order-theoretic conditions:
• For any ν ∈ E, J(ν, ·) is continuous over monotone sequences in L;
• For any sequence (νn, µn)n ∈ E × L such that pνn and µn are nondecreasing or

nonincreasing, there exist ν ∈ E such that pν = supn pνn or pν = infn pνn and
J(ν, supn µ

n) ¬ lim infn J(νn, µn) or J(ν, infn µn) ¬ lim infn J(νn, µn), respectively.

3. Lattices of measures related to submodular MFG

In this section, we discuss lattices of measures arising in the context of submodular MFGs.
Again, we refer to the Appendix A for the lattice-theoretic preliminaries. Throughout this
section, let B(R) denote the Borel σ-algebra on R andM¬1 denote the set of all sub-probability
measures, i.e., the set of all (nonnegative) measures on B(R) with µ(R) ¬ 1. We identify a
distribution µ ∈M¬1 by its survival function µ0, i.e., we identify

µ(s) = µ0(s) := µ
(
(s,∞)

)
for all s ∈ R.

OnM¬1, we consider the partial order ¬st arising from first order stochastic dominance, given
by

µ ¬st ν if and only if µ0(s) ¬ ν0(s) for all s ∈ R.
Recall that, for µ, ν ∈M¬1, µ ¬st ν if and only if

(3.1)
∫
R
h(x) dµ(x) ¬

∫
R
h(x) dν(x)

for all nondecreasing functions h : R → [0,∞). In particular, µ(R) ¬ ν(R). Note that (3.1)
holds for all nondecreasing functions h : R → R if and only if µ ¬st ν and µ(R) = ν(R). For
a detailed discussion on the properties of the partial order ¬st for probability measures, we
refer to [54, Section 1.A].

By identifying a sub-probability measure µ with its survival function µ0, the set M¬1
coincides with the set of all nonincreasing right-continuous functions F : R → [0,∞) with
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lims→−∞ F (s) ¬ 1 and lims→∞ F (s) = 0. In particular, the partial order ¬st induces a lattice
structure onM¬1 via(

µ ∨st ν
)
(s) := µ0(s) ∨ ν0(s) and

(
µ ∧st ν

)
(s) := µ0(s) ∧ ν0(s) for all s ∈ R.

Further, we would like to recall that the weak convergence coincides with the pointwise con-
vergence of survival functions at every continuity point, i.e., µn → µ weakly as n→∞ if and
only if

µn0 (s)→ µ0(s) as n→∞ for every continuity point s ∈ R of µ0,

and that the weak topology onM¬1, i.e., the topology induced by the weak convergence of sub-
probability measures, is metrizable. As a consequence, the lattice operations (µ, ν) 7→ µ ∨st ν
and (µ, ν) 7→ µ ∧st ν are continuous maps M¬1 ×M¬1 → M¬1, and the weak topology is
finer than the interval topology (see Definition A.4 in Appendix A), since every closed interval
is weakly closed.

Lemma 3.1. Every bounded and nondecreasing or nonincreasing sequence (µn)n∈N ⊂ M¬1
converges weakly to its supremum or infimum w.r.t. ¬st, respectively.

Proof. First, observe that a nonincreasing function R→ R is right-continuous if and only if it
is lower semicontinuous. Hence, for every sequence (µn)n∈N ∈ M¬1, which is bounded above,
the supremum supn∈N µn w.r.t. ¬st exists, and it is exactly the pointwise supremum of the
survival functions (µn0 )n∈N.

For a nonincreasing function F : R→ R, we define its lsc-envelope F∗ : R→ R by

F∗(s) := sup
δ>0

F (s+ δ) for s ∈ R.

Then, F (s)  F∗(s)  F (s + ε) for all s ∈ R and ε > 0. That is, F∗ differs from F only
at discontinuity points of F . For a sequence (µn)n∈N ∈ M¬1, which is bounded below, the
infimum infn∈N µn w.r.t. ¬st is then given by the lsc-envelope of the pointwise infimum of
the survival functions (µn0 )n∈N. Since the weak convergence of a sequence of sub-probability
measures coincides with the pointwise convergence of the related survival functions at every
continuity point, the assertion follows. □

Let (S,S, π) be a σ-finite measure space. We denote the Borel σ-algebra of the weak topology
by B(M¬1) and the lattice of all equivalence classes of S-B(M¬1)-measurable functions S →
M¬1 by L0st = L0(S,S, π;M¬1). An arbitrary element µ of L0st will be denoted in the form
µ = (µt)t∈S . On L0st we consider the order relation ¬L0st , given by µ ¬L0st ν if and only if
µt ¬st νt for π-a.a. t ∈ S.

In the sequel, we consider a family (Ln)n∈N of Dedekind σ-complete sublattices of M¬1,
which correspond to a countable number of constraints, and a family (Bn)n∈N ⊂ S of measur-
able sets, on which the constraints in terms of the family (Ln)n∈N should be satisfied. Before
we state the main result of this section, we list some possible choices for measurable spaces
(S,S, π), Dedekind σ-complete lattices L = Ln, and measurable sets B = Bn ∈ S for n ∈ N.

Example 3.2.
a) The measure space (S,S, π) can be, e.g.,

• S = [0, T ], S = B([0, T ]), π = δ0 + λ[0,T ], also with [0,∞) instead of [0, T ] and
e−δtdt instead of λ,
• Ω× [0, T ], S the σ-algebra of all predictable processes, and π = P⊗ (δ0 + λ[0,T ]).

b) The following are possible choices for L = Ln:
• The simplest choice is L =M¬1 or L = {µ ∈M¬1 |µ(R) = 1}.
• Another choice is L = {µ ∈M¬1 |µ ¬st µ ¬st µ} with µ, µ ∈M¬1. If µ = µ =: ν,

this results in L = {ν}. Note that µ ≡ 0 is not excluded.
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• Let a, b ∈ R with a ¬ b. Then, L = {µ ∈ M¬1 | suppµ ⊂ [a, b]} is Dedekind
σ-complete. In fact, a sub-probability µ ∈ M¬1 is an element of L if and only if
its survival function µ0 is constant on (−∞, a) and (b,∞), a property that carries
over to suprema and infima of countably many elements of L. The same holds
true if the interval [a, b] is replaced by [a,∞) or (−∞, b].
• Another possible choice is L = {δx |x ∈ R} (Dirac measures).

c) Possible choices for B = Bn are
• B = {0} or B = {0} × Ω in order to prescribe an initial condition,
• B = [0, T ] or B = Ω × [0, T ] in order to give a condition that should be satisfied

for all times t ∈ [0, T ] and in all states ω ∈ Ω,
• B = A× (t1, t2] in order to prescribe a condition on a certain event A during the

time period (t1, t2].

We consider the set

L :=
{
µ ∈ L0st

∣∣ ∀n ∈ N : π
(
{t ∈ S |µt /∈ Ln} ∩Bn

)
= 0
}
.

That is, the set of all measurable flows (µt)t∈S of sub-probability measures such that, for all
n ∈ N, µt ∈ Ln for π-a.a. t ∈ Bn. The following theorem is the main result of this section.

Theorem 3.3.
a) The lattice L is Dedekind super complete.
b) If M ⊂ L is a nonempty set, which is bounded above or below and directed upwards or

downwards, then there exist sequences (µn)n∈N ⊂ M and (µn)n∈N ⊂ M with µn ¬L0st
µn+1 and µn L0st µ

n+1 for all n ∈ N and

µn → supM ∈ L and µn → infM ∈ L weakly π-a.e. as n→∞,

respectively.

Proof. Since every σ-finite measure can be transformed to a probability measure without
changing the null-sets, we may, w.l.o.g., assume that π(S) = 1. By Remark 3.1, and since the
lattices (Ln)n∈N are Dedekind σ-complete, L is Dedekind σ-complete. Let Φ: R → (0, 1) be
the cumulative distribution function of the standard normal distribution, i.e.

Φ(x) :=
1√
2π

∫ x

−∞
e−y

2/2 dy for all x ∈ R.

The map S → R, t 7→
∫
RΦ(x) dµt(x) is S-B(R)-measurable for every µ ∈ L0st, since the

bounded and continuous function Φ: R → (0, 1) induces a continuous (w.r.t. the weak topol-
ogy) functionalM¬1 → R. Hence,

F : L → R, µ 7→
∫
S

∫
R
Φ(x) dµt(x) dπ(t)

is well-defined and strictly increasing, since Φ is nonnegative and strictly increasing, see, e.g.,
[54, Theorem 1.A.8]. The assertions now follow from Lemma A.3 and Lemma 3.1. □

4. Submodular mean field games with Markov chains

Throughout this section, let d ∈ N\{1} and S := {1, . . . , d} be a finite state space. We endow
S with the natural order, and identify elements of the set P(S) of all probability measures
with their probability vectors according to

µ ≡ (µ1, . . . , µd) :=
(
µ({1}), . . . , µ({d})

)
, µ ∈ P(S).
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We consider probability vectors as row vectors. On P(S), we introduce a partial order ⪯
through

µ ⪯ ν if and only if
l∑

i=1

µi 
l∑

i=1

νi for all l ∈ {1, . . . , d}.

This corresponds to the usual stochastic order in terms of cumulative distribution functions
when interpreting S = {1, . . . , d} as a subset of R with the natural order. As a consequence,
we have

(4.1)
d∑
i=1

ciµi 
d∑
i=1

ciνi whenever µ ⪯ ν and S ∋ i 7→ ci ∈ R is nonincreasing,

see, for instance, [54, Section 1.A.1].
For µ, ν ∈ P(S), their greatest lower bound µ∧ν and least upper bound µ∨ν, respectively,

are given by

(µ ∧ ν)j := max


j∑

k=1

µk,
j∑

k=1

νk

−max

j−1∑
k=1

µk,
j−1∑
k=1

νk

 and

(µ ∨ ν)j := min


j∑

k=1

µk,
j∑

k=1

νk

−min

j−1∑
k=1

µk,
j−1∑
k=1

νk

 for all j ∈ {1, . . . , d},

where we use the convention
∑0
k=1 µk := 0 and

∑0
k=1 νk := 0. Then, (P(S),⪯) is a complete

lattice.
We consider a fixed finite time horizon T ∈ N and a fixed initial distribution η ∈ P(S). Let

L be the set of all flows

µ : {0, . . . , T} → P(S) with µ0 = η,

and let ¬L be the partial order on L induced by ⪯, that is,

µ ¬L ν if and only if µt ⪯ νt for all t ∈ {0, . . . , T}.

The greatest lower bound µ ∧L ν and the least upper bound µ ∨L ν of two elements µ, ν ∈ L
are then given by(

µ ∧L ν
)
t
:= µt ∧ νt and

(
µ ∨L ν

)
t
:= µt ∨ νt for all t ∈ {0, . . . , T}.

Observe that (L,¬L) is again a complete lattice.
Let Γ be a non-empty set; Γ represents the set of control actions for the representative player.

Define the set U of Γ-valued open-loop strategies as the set of all mappings u : {0, . . . , T−1} →
Γ.

Let A(γ))γ∈Γ, be a family of transition matrices on S. Thus, for each γ ∈ Γ, A(γ) =
(aij(γ))i,j∈S is a d× d-matrix with nonnegative entries such that

d∑
j=1

aij(γ) = 1 for all i ∈ S.

For u ∈ U , we define the flow µu of laws of the controlled Markov chain recursively through

µu0 := η and µut+1 := µ
u
tA(ut) for all t ∈ {0, . . . , T − 1},(4.2)

where η ∈ P(S) is the fixed initial distribution and we recall that elements of P(S) are
identified as row vectors.

Let E be the subset of U × L given by

E := {(u, µu) : u ∈ U} ,
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and let p : E → L be the projection on the second component:

p(u, µ) := µ for all (u, µ) ∈ E.
Thus, p(u, µu) = µu for all u ∈ U .

Let f : {0, . . . , T − 1}×S×P(S)×Γ→ R, g : S×P(S)→ R be functions, representing the
running and terminal costs, respectively. Define a functional J : E × L→ R according to

J
(
(u, µu), µ

)
:=

T−1∑
t=0

d∑
i=1

f
(
t, i, µt, ut

)
µut,i +

d∑
i=1

g
(
i, µT
)
µuT,i,

where, for µ ∈ L, t ∈ {0, . . . , T}, and i ∈ S, µt,i denotes the i-th coordinate of µt.
As in Section 2, we define the best response map R : L→ 2L according to

R(µ) := {p(ν) : ν ∈ argminE J(·, µ)} .
The following conditions on the solution map and J will entail the assumptions of the

general setup:

Assumption 4.1 (Sufficient conditions). Suppose that ¬U is a partial order on U making
(U ,¬U ) a complete lattice such that:

(1) For every sequence (un)n∈N ⊆ U ,

inf
n∈N

µun = µu
∧

with u∧ = inf
n∈N

un and

sup
n∈N

µun = µu
∨

with u∨ = sup
n∈N

un.

(2) For all µ̂, µ̌ ∈ L and û, ǔ ∈ U with µ̂ ¬L µ̌, û ¬U ǔ,

J
(
(ǔ, µǔ), µ̌

)
− J
(
(û, µû), µ̌

)
¬ J
(
(ǔ, µǔ), µ̂

)
− J
(
(û, µû), µ̂

)
.

(3) Given any µ ∈ L, we have for all sequences (un)n∈N ⊆ U , with u∧ := infn∈N un and
u∨ := supn∈N un,

J
((
u∧, µu

∧)
, µ
)
= inf

n∈N
J ((un, µun), µ) and

J
((
u∨, µu

∨)
, µ
)
= sup

n∈N
J ((un, µun), µ) ,

or else

J
((
u∧, µu

∧)
, µ
)
= sup

n∈N
J ((un, µun), µ) and

J
((
u∨, µu

∨)
, µ
)
= inf

n∈N
J ((un, µun), µ) .

Proposition 4.2. Given Assumption 4.1, the set E together with the pointwise lattice opera-
tions

(u, µu) ∧E (v, µv) := (u ∧U v, µu ∧L µv) and (u, µu) ∨E (v, µv) := (u ∨U v, µu ∨L µv),
for u, v ∈ U , becomes a lattice, and the best response map R, the projection p, and the cost
functional J satisfy Assumption 2.3 and the alternative for Assumption 2.1 from Remark 2.7.

Proof. First observe that, thanks to Condition 1 in Assumption 4.1, the operations ∧E , ∨E
are well-defined in the sense that if ν, ν̄ ∈ E, then ν ∧E ν̄ and ν ∨E ν̄ are again elements of E.

Since µ ∧L µ̄ ¬L µ ∨L µ̄ for all µ, µ̄ ∈ L, we find that the projection p satisfies Condition 1
in Assumption 2.3. Indeed, if (u, µu), (v, µv) ∈ E, then

p
(
(u, µu) ∧E (v, µv)

)
= µu ∧L µv = p

(
(u, µu)

)
∧L p
(
(v, µv)

)
¬ p
(
(u, µu)

)
∨L p
(
(v, µv)

)
= µu ∨L µv = p

(
(u, µu) ∨E (v, µv)

)
.
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Again, thanks to Condition 1 in Assumption 4.1, we have

(4.3) µu ¬L µv for all u, v ∈ U with u ¬U v,
for in that situation, setting u1 := u and un := v, for n ∈ N\{1}, we find µu = µu∧Lµv ¬L µv.

Let (u, µu), (v, µv) ∈ E, and let µ̂, µ̌ ∈ L be such that µ̂ ¬L µ̌. Set ǔ := u∨U v. Then, thanks
to Conditions 1 and 2 in Assumption 4.1,

J
(
(u, µu) ∨E (v, µv), µ̌

)
− J
(
(v, µv), µ̌

)
= J
(
(ǔ, µǔ), µ̌

)
− J
(
(v, µv), µ̌

)
¬ J
(
(ǔ, µǔ), µ̂

)
− J
(
(v, µv), µ̂

)
= J
(
(u, µu) ∨E (v, µv), µ̂

)
− J
(
(v, µv), µ̂

)
.

This establishes the first inequality in Condition 2 in Assumption 2.3. The second inequality
in Condition 2 in Assumption 2.3 is a consequence of Condition 3 in Assumption 4.1. In fact,
thanks to Condition 3 in Assumption 4.1, we have for every µ ∈ L and all (u, µu), (v, µv) ∈ E,

J
(
(u, µu) ∨E (v, µv), µ

)
+ J
(
(u, µu) ∧E (v, µv), µ

)
= J
(
(u ∨U v, µu ∨L µv), µ

)
+ J
(
(u ∧U v, µu ∧L µv, µ

)
= min {J ((u, µu), µ) , J ((v, µv), µ)}+max {J ((u, µu), µ) , J ((v, µv), µ)}
= J ((u, µu), µ) + J ((v, µv), µ) .

Let µ ∈ L and ((un, µun))n∈N ⊂ E be such that J((un, µun), µ) ↘ infν∈E J(ν, µ) as n → ∞.
Notice that this infimum exists in [−∞,∞). Set

û := inf
n∈N

un and ǔ := sup
n∈N

un.

By Condition 1 in Assumption 4.1, we have

µû = inf
n∈N

µun and µ̌ = sup
n∈N

µun .

By Condition 3 in Assumption 4.1 (we only treat the first case there, the second is obtained
by interchanging infima and suprema), we find that

J
(
(û, µû), µ

)
= inf

n∈N
J
(
(un, µun), µ

)
and J

(
(ǔ, µǔ), µ

)
= sup

n∈N
J
(
(un, µun), µ

)
.

It follows that infν∈E J(ν, µ) = J((û, µû), µ), which shows that (û, µû) ∈ argminE J(·, µ) and
thus µû ∈ R(µ). In particular, the set of best response distributions is non-empty.

Now, suppose that (µn)n∈N ⊆ R(µ). For n ∈ N, choose un ∈ argminu∈U J((u, µu), µ) such
that µun = µn. Define û and ǔ in the same way as above. By Condition 1 in Assumption 4.1,
we have

µû = inf
n∈N

µn and µǔ = sup
n∈N

µn,

and, by Condition 3 in Assumption 4.1 (in the first case there), we find again that

J
(
(û, µû), µ

)
= inf

n∈N
J
(
(un, µun), µ

)
and J

(
(ǔ, µǔ), µ

)
= sup

n∈N
J
(
(un, µun), µ

)
.

But un ∈ argminu∈U J((u, µu), µ) for every n ∈ N, hence

inf
n∈N

J
(
(un, µun), µ

)
= sup

n∈N
J
(
(un, µun), µ

)
.

It follows that µû ∈ R(µ) as well as µǔ ∈ R(µ). In particular, any monotone sequence in R(µ)
has a limit in R(µ). We thus see that the alternative for Assumption 2.1 from Remark 2.7 is
satisfied. □

By Proposition 4.2, Remark 2.7 and part a) of Theorem 2.6, one immediately obtains:
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Corollary 4.3. Given Assumption 4.1, the set M of solutions to the finite state mean field
game is nonempty and contains infM as well as supM .

The following example shows a family of simple two-state models where the assumptions of
Proposition 4.2 are satisfied.

Example 4.4. Choose d = 2, and set Γ := [0, 1] (with the natural order ¬). Choose p, q ∈ (0, 1]
with p ¬ q, and define controlled transition matrices A(γ) according to

A(γ) .=
(
1− pγ pγ
1− qγ qγ

)
for all γ ∈ Γ.

With this choice, for all γ ∈ Γ = [0, 1] and all µ = (µ1, µ2) ∈ P(S) = P({1, 2}),
µA(γ) =

(
1− γ

(
p+ µ2(q − p)

)
, γ
(
p+ µ2(q − p)

))
.

For µ, µ̄ ∈ P(S), we have that µ ⪯ µ̄ if and only if µ2 ¬ µ̄2, and that

{µ ∧ µ̄, µ ∨ µ̄} = {µ, µ̄} .
Therefore, if µ, µ̄ ∈ L, then for all t ∈ {0, . . . , T},{(

µ ∧L µ̄
)
t
,
(
µ ∨L µ̄

)
t

}
= {µt, µ̄t} .

It also follows that
µA(γ) ⪯ µ̄A(γ̃) whenever γ ¬ γ̃ and µ ⪯ µ̄.

In case µ = µ̄, we have, for all γ, γ̄ ∈ Γ and (γn)∈N ⊂ Γ,
µA(γ ∧ γ̄) = (mA(γ)) ∧ (µA(γ̄)) , µA(γ ∨ γ̄) = (µA(γ)) ∨ (µA(γ̄)) ,
µA
(
inf
n∈N

γn
)
= inf {µA(γ) : n ∈ N} , µA

(
sup
n∈N

γn
)
= sup {µA(γ) : n ∈ N} .

We introduce a partial order ¬U on U by

u ¬U ũ if and only if µu ¬L µũ.

Then, the greatest lower bound u ∧U v of two elements u, v ∈ U is defined as follows: Set
µ̂ := µu ∧L µv, and define

(
u ∧U v

)
0
:= min {u0, v0} and, for t ∈ {0, . . . , T − 2},(

u ∧U v
)
t+1
:= min

{
ut ·

p+ (µut )2(q − p)
p+ (µ̂t)2(q − p)

, vt ·
p+ (µvt )2(q − p)
p+ (µ̂t)2(q − p)

}
.

By induction, one checks that, for every t ∈ {0, . . . , T − 1},(
u ∧U v

)
t
∈ [0, 1], µu∧

Uv
t = µ̂t.

Indeed, the claim holds for t = 0. Now, suppose that it holds up to time t and that µut+1 = µ̂t+1.
Then µ̂t+1 = µutA(u(t)) and there exists γ̃ ∈ {u(t), ũ(t)} such that µ̂t+1 ⪯ µ̂tA(γ̃). But then

(µ̂t+1)2 = u(t)
(
p+ (µut )2(q − p)

)
¬ γ̃
(
p+ (µ̂t)2(q − p)

)
,

hence

0 ¬ u(t) · p+ (µ
u
t )2(q − p)

p+ (µ̂t)2(q − p)
¬ γ̃ ¬ 1.

Moreover,(
µ̂tA

(
u(t) · p+ (µ

u
t )2(q − p)

p+ (µ̂t)2(q − p)

))
2
= u(t) · p+ (µ

u
t )2(q − p)

p+ (µ̂t)2(q − p)
·
(
p+ (µ̂t)2(q − p)

)
= (µ̂t+1)2

since µ̂t+1 = µutA(u(t)) by assumption. The case µ̂t+1 = µũtA(ũ(t)) is handled in the same
way.
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In analogy with the greatest lower bound, one defines the least upper bound u∨U ũ. It follows
that for all u, ũ ∈ U ,

µu∧
U ũ = µu ∧L µũ, µu∨

U ũ = µu ∨L µũ.

Let (un)n∈N ⊆ U . Set µ̂ := infn∈N µun, and define û ∈ U by setting û(0) := infn∈N un(0),

û(t+ 1) := inf
{
un(t) ·

p+ (µunt )2(q − p)
p+ (µ̂t)2(q − p)

: n ∈ N
}
, t ∈ {0, . . . , T − 2}.

By induction, one checks that µû = µ̂, hence the part of Condition 1 in Assumption 4.1
regarding the greatest lower bound is satisfied. The upper bound part is analogous.

Regarding the costs, choose zero running costs f ≡ 0 and terminal costs g given by

g(i,m) := φ(i) · ψ(m2), i ∈ {1, 2},
where φ(2) < φ(1) and ψ : [0, 1]→ R is nondecreasing (but not necessarily continuous). Then,
for u ∈ U , µ ∈ L,

J ((u, µu), µ) =
((
φ(2)− φ(1)

)
(µuT )2 + φ(1)

)
· ψ ((µT )2) .

Here, if (µ(n))n∈N ⊂ L and µ̂ = infn∈N µ(n), µ̌ = supn∈N µ(n), then

(µ̂T )2 = inf
{
(µ(n)T )2 : n ∈ N

}
, (µ̌T )2 = sup

{
(µ(n)T )2 : n ∈ N

}
.

The form of J and Condition 1 in Assumption 4.1 therefore imply that Condition 3 in As-
sumption 4.1 holds.

In order to check the submodularity condition (i.e., Condition 2 in Assumption 4.1), let
µ̂, µ̌ ∈ L and û, ǔ ∈ U be such that µ̂ ¬L µ̌, û ¬U ǔ. Then

J
(
(ǔ, µǔ), µ̌

)
− J
(
(û, µû), µ̌

)
=
((
φ(2)− φ(1)

) (
(µǔT )2 − (µûT )2

))
· ψ ((µ̌T )2) ,

J
(
(ǔ, µǔ), µ̂

)
− J
(
(û, µû), µ̂

)
=
((
φ(2)− φ(1)

) (
(µǔT )2 − (µûT )2

))
· ψ ((µ̂T )2) .

But φ(2)−φ(1) < 0, while (µǔT )2− (µûT )2  0 by Condition 1 in Assumption 4.1 since û ¬U ǔ,
and ψ((µ̂T )2) ¬ ψ((µ̌T )2) since µ̂ ¬L µ̌ and ψ is nondecreasing. It follows that

J
(
(ǔ, µǔ), µ̌

)
− J
(
(û, µû), µ̌

)
¬ J
(
(ǔ, µǔ), µ̂

)
− J
(
(û, µû), µ̂

)
,

which is Condition 2 in Assumption 4.1.

5. Submodular mean field games with singular controls

In this section, we specialize to mean field games with singular controls, and show that they
can be embedded into the general set-up given in Section 2. In the following, we consider MFGs
with common noise in which the representative player faces a convex optimization problem (see
Subsection 5.1 below) and MFGs without common noise, in which the representative player
faces a nonconvex optimization problem (see Subsection 5.2 below). In these two models, the
operations, which are postulated in the Assumption 2.3, can be constructed with different
techniques. These operations can be explicitly constructed in the case in which the dynamics
are given by controlled geometric Brownian motions and the costs are convex in the state
variable. When the dynamics are nonlinear, the construction of such operations is provided by
approximating singular controls via regular controls, and exploiting the results in [25].

Throughout this section, we take measurable functions

f : [0, T ]× R× P(R)→ R,
g : R× P(R)→ R,
c : [0, T ]→ [0,∞),
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satisfying the following conditions.

Assumption 5.1.
(1) For dt-a.a. t ∈ [0, T ], the functions f(t, ·, µ) and g(·, µ) are lower semicontinuous and,

for some p > 1 and all (t, x, µ) ∈ [0, T ]× R× P(R),

κ(|x|p − 1) ¬ f(t, x, µ) ¬ K(1 + |x|p), κ(|x|p − 1) ¬ g(x, µ) ¬ K(1 + |x|p),

with constants K,κ > 0;
(2) For dt-a.a. t ∈ [0, T ], the functions f(t, ·, ·) and g have decreasing differences in (x, µ);

that is, for φ ∈ {f(t, ·, ·), g},

φ(x̄, µ̄)− φ(x, µ̄) ¬ φ(x̄, µ)− φ(x, µ),

for all x̄, x ∈ R and µ̄, µ ∈ P(R) with x̄  x and µ̄ st µ.
(3) The cost c is nonincreasing and continuously differentiable with c > 0.

5.1. Controlled geometric Brownian motion and common noise.

5.1.1. Formulation of the model. Let Assumption 5.1 be satisfied with p = 2. Let W =
(Wt)t∈[0,T ] and B = (Bt)t∈[0,T ] be two independent Brownian motions on a complete filtered
probability space (Ω,F ,F,P). Define the set of admissible monotone controls as the set V↑ of all
F-adapted càdlàg, nondecreasing, square-integrable, and nonnegative processes ξ = (ξt)t∈[0,T ]
such that

(5.1) E
[ ∫ T

0
ξ2t dπ(t)

]
<∞, where π := dt+ δT .

Let b ∈ R, σ, σo  0, and Fo := (Fot )t∈[0,T ] denote the filtration generated by σoB (which
is trivial in the case of no common noise, i.e., for σo = 0). Let x0 be a square integrable
F0-random variable. For each ξ ∈ V↑, let Xξ = (Xξ

t )t∈[0,T ] denote the unique strong solution
to the linearly controlled geometric dynamics, given by

(5.2) dXξ
t = X

ξ
t (b dt+ σdWt + σodBt) + dξt, t ∈ [0, T ], Xξ

0− = x0.

For any P(R)-valued Fo-progressively measurable process µ = (µt)t∈[0,T ], we introduce the
cost functional

J(ξ, µ) := E
[ ∫ T

0
f(t,Xξ

t , µt)dt+ g(X
ξ
T , µT ) +

∫
[0,T ]

ctdξt

]
, ξ ∈ V↑,

and consider the singular control problem infξ∈V↑ J(ξ, µ). We say that (Xµ, ξµ) is an optimal
pair for the flow µ if J(ξµ, µ) ¬ J(ξ, µ) for each admissible ξ and Xµ = Xξµ .

Definition 5.2. A P(R)-valued Fo-progressively measurable process µ = (µt)t∈[0,T ] is an equi-
librium of the MFG with singular controls and common noise if

(1) there exists an optimal pair (Xµ, ξµ) for µ,
(2) µt = P[Xµ

t ∈ · |FoT ] P-a.s., for any t ∈ [0, T ].

5.1.2. Optimal controls and a priori estimates. Recalling that c > 0, we enforce the following
requirements.

Assumption 5.3. For dt-a.a. t ∈ [0, T ], the functions f(t, ·, µ) and g(·, µ) are strictly convex.

Under Assumption 5.3, by employing arguments as those in the proof of Theorem 8 in
[46], it can be shown that for any process µ, there exists a unique optimal pair (Xµ, ξµ).



A UNIFYING FRAMEWORK FOR SUBMODULAR MEAN FIELD GAMES 17

Moreover, since the control, which constantly equals to 0, is suboptimal, the growth conditions
in Assumption 5.3 imply that

κE
[ ∫ T

0
|Xµ

t |2dt+ |X
µ
T |
2
]
− κ(1 + T ) ¬ J(ξµ, µ)

¬ J(0, µ) ¬ KE
[ ∫ T

0
|X0t |2dt+ |X0T |2

]
+K(1 + T ),

so that, for some constant C̄ > 0 independent of µ, we have

E
[ ∫ T

0
|Xµ

t |2dt+ |X
µ
T |
2
]
¬ C̄.

Therefore, for a suitable generic constant C > 0 (changing from line to line), we obtain

E[|ξµT |
2] ¬ E

[(
Xµ
T − x0 −

∫ T

0
Xµ
t (b dt+ σdWt + σodBt)

)2]
¬ CE

[
|Xµ

T |
2 + |x0|2 +

∫ T

0
|Xµ

t |2dt
]
¬ C,

and, by a standard use of Grönwall’s inequality, we conclude that

(5.3) E[|Xµ
t |2 + |ξ

µ
t |2] ¬M, for each t ∈ [0, T ],

for a constant M > 0, which does not depend on µ.

5.1.3. The control set E and its operations. Define

E :=
{
(Xξ, ξ) | ξ ∈ V↑, Xξ solution to (5.2)

}
and

p(Xξ, ξ)t(A) := P[Xξ
t ∈ A |FoT ], A ∈ B(R).

Due to (5.1), the set E is a subset of the space L2π of R2-valued progressively measurable pro-
cesses ν such that ∥ν∥π,2 := E

[ ∫ T
0 |νt|2dπ(t)

]
<∞, endowed with the norm ∥ · ∥π,2. Moreover,

the lower semicontinuity properties of J in Assumptions 2.1 and 2.5 are satisfied, while the
continuity of J w.r.t. µ holds by assuming f and g to be continuous in µ.

Observe that, for each ξ ∈ V↑, the solution to the SDE (5.2) is, P-a.s., given by

(5.4) Xξ
t = Et

[
x0 +

∫
[0,t]
E−1s dξs

]
with Et := exp

[(
b− (σ

2+(σo)2)
2

)
t+ σWt + σoBt

]
for each t ∈ [0, T ]. Hence, defining the map Φ: V↑ → V↑ by Φt(ξ) :=

∫
[0,t] E−1s dξs, we have,

P-a.s.,
Xξ
t = Et[x0 +Φt(ξ)], for each t ∈ [0, T ].

Moreover, for ξ̄, ξ ∈ V↑ and ζ̄ := Φ(ξ̄) and ζ := Φ(ξ), we define, P-a.s., the controls

(5.5) ξ∧t :=
∫
[0,t]
Esd(ζ̄ ∧ ζ)s and ξ∨t :=

∫
[0,t]
Esd(ζ̄ ∨ ζ)s, for each t ∈ [0, T ],

and obtain

X ξ̄
t ∧X

ξ
t = Et[x0 + ζ̄t ∧ ζt] = Et

[
x0 +

∫
[0,t]
E−1s dξ∧s

]
= Xξ∧

t and(5.6)

X ξ̄
t ∨X

ξ
t = Et[x0 + ζ̄t ∨ ζt] = Et

[
x0 +

∫
[0,t]
E−1s dξ∨s

]
= Xξ∨

t .

According to (5.5), we introduce the operations ∧E,∨E : E × E → E via

(5.7) (X ξ̄, ξ̄) ∧E (Xξ, ξ) := (Xξ∧ , ξ∧) and (X ξ̄, ξ̄) ∨E (Xξ, ξ) := (Xξ∨ , ξ∨).

Note that, in light of (5.6), the operations ∧E,∨E satisfy Condition 1 in Assumption 2.3.
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5.1.4. The submodularity condition. Using the definition of ξ∨, the linearity of the integral,
and that ζ̄ ∨ ζ − ζ̄ = ζ − ζ̄ ∧ ζ, we obtain that, for each t ∈ [0, T ],

(5.8) ξ∨t − ξ̄t =
∫
[0,t]
Es(d(ζ̄ ∨ ζ)s − dζ̄s) =

∫
[0,t]
Es(dζs − d(ζ̄ ∧ ζ)s) = ξt − ξ∧t P-a.s.

Recalling the definition of the measure π in (5.1), for µ, µ̄ ∈ L, we define the order relation

(5.9) µ ¬L µ̄ if and only if µt ¬ νt, P-a.s., for π-a.a. t ∈ [0, T ].

Now, let µ, µ̄ be two P(R)-valued, Fo-progressively measurable processes with µ ¬L µ̄ and
ξ, ξ̄ ∈ V↑. Using (5.6) and (5.8), we find

J(ξ∨, µ̄)− J(ξ̄, µ̄) = E
[ ∫ T

0
(f(t,X ξ̄

t ∨X
ξ
t , µ̄t)− f(t,X

ξ̄
t , µ̄t))dt

]
(5.10)

+ E
[
g(X ξ̄

T ∨X
ξ
T , µ̄T )− g(X

ξ̄
T , µ̄T ) +

∫
[0,T ]

ctd(ξ∨ − ξ̄)t
]

= E
[ ∫ T

0
(f(t,Xξ

t , µ̄t)− f(t,X
ξ̄
t ∧X

ξ
t , µ̄t))dt

]
+ E
[
g(Xξ

T , µ̄T )− g(X
ξ̄
T ∧X

ξ
T , µ̄T ) +

∫
[0,T ]

ctd(ξ − ξ∧)t
]

= J(ξ, µ̄)− J(ξ∧, µ̄).

Moreover, by using (5.6) and Assumption 5.1, we obtain that

J(ξ, µ̄)− J(ξ∧, µ̄) ¬ E
[ ∫ T

0
(f(t,Xξ

t , µt)− f(t,X
ξ̄
t ∧X

ξ
t , µt))dt

]
(5.11)

+ E
[
g(Xξ

T , µT )− g(X
ξ̄
T ∧X

ξ
T , µT ) +

∫
[0,T ]

ctd(ξ − ξ∧)t
]

= J(ξ, µ)− J(ξ∧, µ).

Note that (5.10) and (5.11) imply that Condition 2 in Assumption 2.3 is satisfied, so that the
operations ∧E,∨E verify all the requirements of Assumption 2.3.

Moreover, taking ξ ∈ argminV↑ J(·, µ) and ξ̄ ∈ argminV↑ J(·, µ̄), and using (5.10) and (5.11)
we find that ξ∧ ∈ argminV↑ J(·, µ) and ξ∨ ∈ argminV↑ J(·, µ̄). Therefore, by the uniqueness of
optimal controls, we conclude that ξ∧ = ξ and ξ∨ = ξ̄, so that

(5.12) Xµ
t ¬ X

µ̄
t , π-a.e., whenever µ ¬L µ̄.

5.1.5. The lattice L. We move on to the identification of a suitable partially ordered set
(L,¬L). Thanks to the a priori estimate (5.3) and Chebyshev’s inequality for conditional
probabilities, we obtain (employing the convention x/0 =∞ for any x  0)

P[Xµ
t ¬ x|FoT ] 

(
1− E[|Xµ

t |2|FoT ]
(x ∨ 0)2

)
∨ 0 

(
1−
ess supµ E[|X

µ
t |2|FoT ]

(x ∨ 0)2
)
∨ 0(5.13)

=: µMaxt

(
(−∞, x]

)
,

as well as

(5.14) P[Xµ
t ¬ x|FoT ] ¬

E[|Xµ
t |2|FoT ]

(x ∧ 0)2
∧ 1 ¬

ess supµ E[|X
µ
t |2|FoT ]

(x ∧ 0)2
∧ 1 =: µMint

(
(−∞, x]

)
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for any P(R)-valued Fo -progressively measurable flow µ. From (5.12), we see that the set
{Xµ |µ is a P(R)-valued Fo -progr. meas. flow} is directed downwards (and upwards). There-
fore, by the monotone convergence theorem,

ess sup
µ

E[|Xµ
t |2|FoT ] ∈ L1(Ω;P),

so that ess supµ E[|X
µ
t |2|FoT ] < ∞ P-a.s. We deduce that the Fo-progressively measurable

processes µMin and µMax are P(R)-valued and that, for all P(R)-valued Fo -progressively
measurable flows µ,

(5.15) µMint ¬st P[Xµ
t ∈ · |FoT ] ¬st µMaxt P-a.s., for all t ∈ [0, T ].

We therefore consider the set L of all P(R)-valued, Fo-progressively measurable processes µ
with

µMint ¬ µt ¬ µMaxt P-a.s., for π-a.a. t ∈ [0, T ],
endowed with the order relation ¬L defined in (5.9). Since the ordered set (L,¬L) is a special
instance of the lattice L considered in Section 3, which is, in addition, order-bounded, it is a
complete and Dedekind super complete lattice.

5.1.6. Existence and approximation of equilibria. For any µ ∈ L, set R(µ)t := P[Xµ
t ∈ · |FoT ],

for each t ∈ [0, T ]. Thanks to (5.15), the best-reply-map R : L→ L is well-defined and the MFG
equilibria of the MFG with singular controls correspond to processes µ ∈ L with R(µ) = µ.

We can now state and prove the main result of this subsection.

Theorem 5.4. The set of solutions of the MFG with singular controls and common noise is
a nonempty complete lattice. Moreover, if f and g are continuous in (x, µ), then

(1) the learning procedure µn defined inductively by µ0 = inf L and µn+1 = R(µn) is
nondecreasing in L and it converges to the minimum MFG solution,

(2) the learning procedure µn defined inductively by µ0 = supL and µn+1 = R(µn) is
nonincreasing in L and it converges to the maximal MFG solution.

Proof. The fact that the set of MFG solutions is a nonempty complete lattice is a direct con-
sequence of Theorem 2.6. We therefore just prove the convergence of the learning procedure
in Claim 1 (Claim 2 can be proved analogously). Even if the sequential compactness in As-
sumption 2.5 is not satisfied, the arguments in the proof of Theorem 2.6 can be recovered as
follows.

We first observe that, thanks to (5.12) and the definition of R, the sequence µn is nonde-
creasing in L. Hence, setting (Xn, ξn) := (Xµn , ξµ

n

), again by (5.12) we have that Xn
t ¬ Xn+1

t ,
P ⊗ π-a.e., for any n ∈ N. Therefore, we can define the process Xt := supnX

n
t , and, by the

monotone convergence theorem and the estimates in (5.3), we conclude that Xn → X in L2π
as n→∞. Next, we define the control process ξ by setting

ξt := Xt − x0 −
∫ t

0
Xs(bdt+ σdWs + σodBs).

The convergence of Xn in L2π implies that ξn → ξ in L2π as n→∞, so that ξ is nondecreasing.
Employing Lemma 3.5 in [40], we can take càdlàg versions of X and ξ, so that (X, ξ) ∈ E.
After repeating the arguments from the proof of Theorem 2.6, the proof is complete. □

5.2. Nonconvex case without common noise. In this subsection, we treat a model of
mean field games with singular controls and no common noise, for a general drift and a not
necessarily convex running cost. As a consequence, optimal controls are in general not unique.
In comparison with the previous subsection, this case requires a more technical analysis, which
makes use of a weak formulation of the problem in the spirit of [37].
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5.2.1. Model formulation. Let σ  0 be a constant and b : [0, T ] × R → R be a Lipschitz
continuous function. In order to come up with a weak formulation of the problem, the initial
value of the dynamics will be described through a fixed initial distribution ν0 ∈ P(R), satisfying
|ν0|p :=

∫
R |y|pdν0(y) <∞ with p > 1 from Assumption 5.1.

Definition 5.5. A tuple ρ = (Ω,F ,F,P, x0,W, ξ) is said to be an admissible singular control
if

(1) (Ω,F ,F,P) is a filtered probability space satisfying the usual conditions;
(2) x0 is an F0-measurable R-valued random variable with P ◦ x−10 = ν0;
(3) W is a standard (Ω,F ,F,P)-Brownian motion;
(4) ξ : Ω× [0, T ]→ [0,∞) is an F-adapted nondecreasing càdlàg process.

We denote by Ew the set of admissible singular controls.

Again, since b is assumed to satisfy the usual Lipschitz continuity and growth conditions, for
any ρ ∈ Ew there exists a unique process Xρ : Ω× [0, T ]→ R solving the system’s dynamics
equation that now reads as

(5.16) Xρ
t = x0 +

∫ t

0
b(t,Xρ

t )dt+ σWt + ξt, t ∈ [0, T ].

Then, for a measurable flow of probability measures µ, we define the cost functional

J(ρ, µ) := EP
[ ∫ T

0
f(t,Xρ

t , µt)dt+ g(X
ρ
T , µT ) +

∫
[0,T ]

ctdξt

]
, ρ ∈ Ew,

and we say that ρ ∈ Ew is an optimal control for the flow of measures µ if it solves the optimal
control problem related to µ; that is, if J(ρ, µ) = infEw J(·, µ).

Definition 5.6. A measurable flow of probabilities µ is a MFG equilibrium if
(1) there exists an optimal control ρ ∈ Ew for µ,
(2) µt = P ◦ (Xρ

t )
−1 for any t ∈ [0, T ].

5.2.2. Reformulation via control rules and preliminary remarks. In order to have a topology
on the space of admissible controls, we reformulate the problem in terms of control rules. We
introduce the following canonical space (Ω,F) by

(5.17) Ω := R× C ×D ×D↑, F := B(R)⊗ B(C)⊗ B(D)⊗ B(D↑).

We define the set of control rules as

E := {νρ | ρ ∈ Ew}, where νρ := P ◦ (x0,W,Xρ, ξ)−1 for ρ = (Ω,F ,F,P, x0,W, ξ) ∈ Ew,

and, with a slight abuse of notation, we set J(νρ, µ) := J(ρ, µ). In this way, E is naturally
defined as a subspace of the topological space P(Ω).

Remark 5.7 (Existence of optimal controls). Under the standing assumptions, it is shown
in [37] that, for each measurable flow of probabilities µ, J(·, µ) is lower semicontinuous and
the set argminE J(·, µ) ⊂ E is nonempty (see Theorem 3.6 and Theorem 3.8 in [37]). Also,
one can show that (see Theorem 3.7 in [37]), for each sequence (νn)n∈N ⊂ argminE J(·, µ), we
can find an admissible singular control ν ∈ argminE J(·, µ) such that, up to a subsequence, νn
converges weakly to ν in P(Ω).

Now, for any measurable flow of measures µ, if ρ ∈ argminEw J(·, µ), we can repeat (with
minor modifications) the arguments leading to (5.3) in order to get a priori estimates on the
moments of optimally controlled trajectories; namely, we have

(5.18) EP[|Xρ
t |p + (ξT )p] ¬M, for any t ∈ [0, T ] and ρ ∈ argmin

Ew
J(·, µ),
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with a constant M > 0 independent of the flow of measures µ. Therefore, following computa-
tions similar to those leading to (5.13) and (5.14) (see also Lemma 3.4 in [49]), we can find
µMin, µMax ∈ P(R) such that, for any flow of measures µ, one has

(5.19) µMin ¬st P ◦ (Xρ
t )
−1 ¬st µMax, for any t ∈ [0, T ] and ρ ∈ argmin

Ew
J(·, µ).

We thus define the set of feasible flows of measures L as the set of all equivalence classes
(w.r.t. the measure π := dt + δT on the interval [0, T ]) of measurable flows of probabilities
µ : [0, T ] → P(R) with µt ∈ [µMin, µMax] for π-a.a. t ∈ [0, T ]. On L we consider the order
relation ¬L given by µ ¬L ν if and only if µt ¬st µ̄t, for π-a.a. t ∈ [0, T ], with the lattice
structure given by

(µ ∧L µ̄)t := µt ∧st µ̄t and (µ ∨L µ̄)t := µt ∨st µ̄t for π-a.a. t ∈ [0, T ].
Again, this is a particular instance of the lattice L considered in Section 3, and it is, by defi-
nition, norm-bounded, As a consequence, (L,¬L) is a complete and Dedekind super complete
lattice.

Next, we can define the set

EM ,w := {ν ∈ Ew | (5.18) holds} and EM := {νρ | ρ ∈ EM ,w},
so that argminE J(·, µ) ⊂ EM for any flow µ. We observe that, due to the Meyer-Zheng
tightness criteria (see Theorem 4 on p. 360 in [47]), the set EM is a relatively compact subset
of P(Ω). Moreover, the projection map

p : E → L with p(νρ) := P ◦ (Xρ)−1, for ρ = (Ω,F ,F,P, x0,W, ξ) ∈ Ew,
satisfies the conditions in Assumption 2.1 and Assumption 2.5.

Let 2L be the set of all subsets of L. Then, thanks to (5.19), the best-response correspondence
R : L → 2L, given by R(µ) :=

{
pν
∣∣ ν ∈ argminE J(·, µ)} for µ ∈ L, is well-defined. The flow

of measures µ∗ ∈ L is a solution to the mean field game with singular controls if µ∗ ∈ R(µ∗).

5.2.3. Existence and approximation of solutions. In order to employ the results from Section
2, we begin by providing the following technical result.

Lemma 5.8. There exists two operations ∧E,∨E : EM ×EM → E satisfying Assumption 2.3.

Proof. The argument exploits an approximation scheme of the singular controls through reg-
ular controls and the results derived in [25]. We divide the proof in four steps.
Step 1. For i = 1, 2, take control rules νi = νρi ∈ EM with ρi = (Ωi,F i,Fi,Pi, xi0,W i, ξi) ∈
EM,w. Without loss of generality, we can assume that the controls ρ1, ρ2 are defined on a
same stochastic basis (Ω,F ,F,P, x0,W ); that is, (Ωi,F i,Fi,Pi, xi0,W i) = (Ω,F ,F,P, x0,W ),
for i = 1, 2.

Introduce a Wong-Zakai-type approximation of ξi by defining the sequences of processes
(ξi,n)n∈N through

ξi,nt :=

{
n
∫ t
t−1/n ξ

i
sds, t ∈ [0, T ),

ξiT , t = T,
(5.20)

for each n ∈ N. Recall that processes are always (implicitly) assumed to be equal to 0 for
negative times. Further, note that, since EP[|ξiT |p] <∞ (recall that ξi ∈ EM,w by assumption),
the processes ξi,n are Lipschitz continuous on the time interval [0, T ). However, they may have
discontinuities at time T . Moreover, for each i = 1, 2 and all n ∈ N, denote by Xi,n the solution
to the controlled SDE

Xi,n
t = x0 +

∫ t

0
b(s,Xi,n

s )ds+ σWt + ξ
i,n
t , t ∈ [0, T ].
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Next, since the processes ξi,n have Lipschitz paths and are nondecreasing, we can find
F-adapted processes ui,n : Ω× [0, T ]→ [0,∞) such that

ξi,nt =
∫ t

0
ui,ns ds, t ∈ [0, T ).

Observing that the processes ui,n can be regarded as regular controls, we wish to employ
the results from [25] in order to construct ρ∧, ρ∨. However, we need to take care of possible
discontinuities at time T .

As in Lemma 2.10 in [25], for each n ∈ N, we find two F-adapted [0,∞)-valued processes
u∧,n, u∨,n such that, defining P-a.s.,

(5.21) ξ∧,nt :=
∫ t

0
u∧,ns ds and ξ∨,nt :=

∫ t

0
u∨,ns ds, for each t ∈ [0, T ),

we have, for each t ∈ [0, T ), P-a.s.,

X1,nt ∧X
2,n
t = x0 +

∫ t

0
b(s,X1,ns ∧X2,ns )ds+ σWt + ξ

∧,n
t and(5.22)

X1,nt ∨X
2,n
t = x0 +

∫ t

0
b(s,X1,ns ∨X2,ns )ds+ σWt + ξ

∨,n
t .

This suggest to define the processes ξ∧,n and ξ∨,n at time T by setting, P-a.s.,

ξ∧,nT := X1,nT ∧X
2,n
T − x0 −

∫ T

0
b(s,X1,ns ∧X2,ns )ds− σWT and

ξ∨,nT := X1,nT ∨X
2,n
T − x0 −

∫ T

0
b(s,X1,ns ∨X2,ns )ds− σWT .

We define

ρ∧,n := (Ω,F ,F,P, x0,W, ξ∧,n),
ρ∨,n := (Ω,F ,F,P, x0,W, ξ∨,n),
ρi,n := (Ω,F ,F,P, x0,W, ξi,n), for i = 1, 2,

so that, by virtue of (5.22) and the definition of ξ∧,nT and ξ∨,nT , we obtain, P-a.s.,

(5.23) X1,nt ∧X
2,n
t = X

ρ∧,n

t and X1,nt ∨X
2,n
t = X

ρ∨,n

t , for any t ∈ [0, T ].

Moreover, we observe that the processes ξ∧,n and ξ∨,n are nondecreasing.
Step 2. In this step, we prove that

(5.24) J(ρ∧,n, µ) + J(ρ∨,n, µ) = J(ρ1,n, µ) + J(ρ2,n, µ).

This is again done by adapting arguments from [25], taking care of possible discontinuities of
the processes ξi,n, ξ∧,n, ξ∨,n at time T .

For a generic admissible control ρ = (Ω,F ,F,P, x0,W, ξ) ∈ Ew, using integration by parts
and the controlled SDE (5.16), we rewrite the cost functional as

J(ξ, µ) = EP
[ ∫ T

0
f(t,Xρ

t , µt)dt+ g(X
ρ
T , µT ) + cT ξT −

∫ T

0
ξtc
′
tdt

](5.25)

= EP
[ ∫ T

0

(
f(t,Xρ

t , µt)− cT b(t,X
ρ
t )− ξtc′t

)
dt+ g(Xρ

T , µT ) + cTX
ρ
T

]
− cTEP[x0]

= G1(ρ, µ)−G2(ρ, µ) +H(ρ, µ)− cTEP[x0],
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where we have set

G1(ρ, µ) := EP
[ ∫ T

0

(
f(t,Xρ

t , µt)− cT b(t,X
ρ
t )
)
dt

]
,

G2(ρ, µ) := EP
[ ∫ T

0
ξtc
′
tdt

]
,

H(ρ, µ) := EP[g(Xρ
T , µT ) + cTX

ρ
T ].

Observing that the functional G1 depends on the control only on the interval [0, T ), thanks
to the construction of u∧,n, u∨,n provided in the Step 1, we can repeat the arguments in the
proof of Lemma 2.11 in [25] in order to come up with

(5.26) G1(ρ∧,n, µ) +G1(ρ∨,n, µ) = G1(ρ1,n, µ) +G1(ρ2,n, µ).

Moreover, from the definition of u∧,n and u∨,n in Step 1, as in the proof of Lemma 2.11 in
[25], we see that

ξ∧,nt + ξ
∨,n
t =

∫ t

0
(u∧,ns + u

∨,n
s )ds =

∫ t

0
(u1,ns + u

2,n
s )ds = ξ

1,n
t + ξ

2,n
t , for each t ∈ [0, T ),

so that

(5.27) G2(ρ∧,n, µ) +G2(ρ∨,n, µ) = G2(ρ1,n, µ) +G2(ρ2,n, µ).

Finally, we easily find that

(5.28) H(Xρ∧,n

T , µ) +H(Xρ∨,n

T , µ) = H(Xρ1,n

T , µ) +H(Xρ2,n

T , µ).

Therefore, adding (5.26), (5.27), and (5.28), and using the representation in (5.25), we obtain
(5.24).
Step 3. Set Xi := Xρi , i = 1, 2, and define the right-continuous processes ξ∧, ξ∨ by setting

ξ∧t := X
1
t ∧X2t − x0 −

∫ t

0
b(s,X1s ∧X2s )ds− σWt,(5.29)

ξ∨t := X
1
t ∨X2t − x0 −

∫ t

0
b(s,X1s ∨X2s )ds− σWt.

The aim of this step is to prove that the controls ρ∧ := (Ω,F ,F,P, x0,W, ξ∧) and ρ∨ :=
(Ω,F ,F,P, x0,W, ξ∨) are admissible, and that the control rules

ν1 ∧E ν2 := νρ
∧

and ν1 ∨E ν2 := νρ
∨

satisfy the conditions in Assumption 2.3.
From (5.20), we immediately see that, P-a.s.,

(5.30)

{
ξi,nt → ξit as n→∞ for all continuity points t ∈ [0, T ) of ξi,
ξi,nT → ξiT as n→∞.

Therefore, using (5.30) and Grönwall’s inequality, we deduce that, P-a.s.,

(5.31)

{
Xi,n
t → Xi

t as n→∞ for all continuity points t ∈ [0, T ) of Xi,

Xi,n
T → Xi

T as n→∞.

This allows to take limits in (5.23) in order to conclude that, P-a.s., for π-a.a. t ∈ [0, T ], we
have

(5.32) X1,nt ∧X
2,n
t → X1t ∧X2t , X1,nt ∨X

2,n
t → X1t ∨X2t , ξ∧,nt → ξ∧t , ξ∨,nt → ξ∨t .
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Since the processes ξ∧,n and ξ∨,n are nonnegative and nondecreasing, also the limit processes
ξ∧ and ξ∨ are nonnegative and nondecreasing, hence ρ∧ and ρ∨ are admissible. Moreover, by
definition of ξ∧ and ξ∨, we have

Xρ∧

t = X
1
t ∧X2t ¬ X1t ∨X2t ¬ X

ρ∨

t , P-a.s., for each t ∈ [0, T ],

which proves that ν1 ∧E ν2 and ν1 ∨E ν2 satisfy Condition 1 in Assumption 2.3.
Step 4. We conclude by proving that ν1 ∧E ν2 and ν1 ∨E ν2 satisfy Condition 2 in Assumption
2.3. We begin by observing that, for a generic constant C > 0, by Grönwall’s inequality, we
have

|Xi,n
t |p ¬ C

(
1 + |x0|p + σp sup

s∈[0,T ]
|Ws|p + |ξi,nT |

p
)
,

so that, by definition of ξi,n, we obtain

(5.33) sup
n
sup
t∈[0,T ]

|Xi,n
t |p ¬ C

(
1 + |x0|p + σp sup

s∈[0,T ]
|Ws|p + |ξiT |p

)
∈ L1(Ω;P),

where the integrability condition of the right hand side follows from the fact that ν1, ν2 ∈ EM .
Therefore, thanks to the convergences in (5.30) and (5.31) and the estimate (5.33), the growth
conditions on f and g allows to employ the dominated convergence theorem in order to come
up with

J(ρi, µ) = EP
[ ∫ T

0
f(t,Xρi

t , µt)dt+ g(X
ρi
T , µT ) +

∫
[0,T ]

ctdξ
i
t

]
(5.34)

= lim
n

EP
[ ∫ T

0
f(t,Xρi,n

t , µt)dt+ g(X
ρi,n

T , µT ) +
∫
[0,T ]

ctdξ
i,n
t

]
= lim

n
J(ρi,n, µ).

Now, an integration by parts together with the limit behaviour in (5.32) and Fatou’s lemma
yields the estimate

J(ρ∧, µ) = EP
[ ∫ T

0
f(t,Xρ∧

t , µt)dt+ g(X
ρ∧

T , µT ) + cT ξ∧T −
∫ T

0
ξ∧t c
′
tdt

]
(5.35)

¬ lim inf
n

EP
[ ∫ T

0
f(t,Xρ∧,n

t , µt)dt+ g(X
ρ∧,n

T , µT ) + cT ξ
∧,n
T −

∫ T

0
ξ∧,nt c′tdt

]
= lim inf

n
J(ρ∧,n, µ).

Similarly, it follows that

J(ρ∨, µ) ¬ lim inf
n

J(ρ∨,n, µ).(5.36)

Finally, exploiting (5.34), (5.35), and (5.36), we can take limits in (5.24) in order to obtain
Condition 2 in Assumption 2.3. □

Thanks to Lemma 5.8 and Remark 5.7, we see that all Assumption 2.1 and 2.3 are satisfied.
As a consequence of Theorem 2.6 we have the following result.

Theorem 5.9. The set of mean field game equilibria M is nonempty with infM ∈ M and
supM∈M. Moreover, if f and g are continuous in (x, µ), then

(1) the learning procedure µn defined inductively by µ0 = inf L and µn+1 = inf R(µn) is
nondecreasing in L and it converges to the minimum MFG solution,

(2) the learning procedure µn defined inductively by µ0 = supL and µn+1 = supR(µn) is
nonincreasing in L and it converges to the maximal MFG solution.
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5.3. Remarks and extensions. The previous arguments can be easily adapted in order to
cover many classical settings, which typically arise in the literature on stochastic singular
control, such as, for example, MFGs where the optimization problem concerns an infinite
time-horizon discounted criterion or involves controls of bounded variation, rather than just
monotone. A similar setting has been, for example, considered in [35]. In the following, we
illustrate a few specific settings of interest.

Remark 5.10 (Controlled Ornstein-Uhlenbeck process and common noise). We underline
that the results of Subsection 5.1 can also be obtained if the underlying dynamics is given by a
controlled Ornstein-Uhlenbeck process; that is, if the state process evolves according to

dXξ
t = θ(λ−X

ξ
t )dt+ σdWt + σodBt + dξt, t ∈ [0, T ], Xξ

0− = x0,

with κ, λ ∈ R, σ, σo  0. In this case, the state process can be explicitly written as

Xξ
t = e

−θt
(
x+ λ(eθt − 1) +

∫ t

0
eθs(σdWs + σodBs) +

∫
[0,t]

eθsdξs

)
,

and, for ξ, ξ̄ ∈ V↑, we have Xξ ∧X ξ̄ = Xξ∧ and Xξ ∨X ξ̄ = Xξ∨ by setting

ξ∧t :=
∫
[0,t]

e−θsd(ζ ∧ ζ̄)s, ξ∨t :=
∫
[0,t]

e−θsd(ζ ∨ ζ̄)s, ζ :=
∫
[0,t]

eθsdξs, ζ̄ :=
∫
[0,t]

eθsdξ̄s.

Therefore one can introduce, as in (5.7), operations that satisfy all the requirements from
Assumption 2.3.

Remark 5.11 (Mean-field-dependent dynamics and relation to [14]). The approach from
Subsection 5.1 also allows to cover problems, where the drift of the underlying state process
depends in an increasing way (w.r.t. first-order stochastic dominance) on the mean field, in
such a way that 5.3 holds true. This could be, for example, achieved if b in (5.2) is replaced by
a bounded increasing function of (µt)t∈[0,T ].

Another example is given by the two-dimensional MFG of finite-fuel capacity expansion
considered in [14]. Therein, the mean of a uniformly bounded purely controlled process affects
in a nondecreasing way the drift of an uncontrolled Itô-diffusion and there is no mean field
dependence in the profit functional. We refer to Remark 3.15 in [14] for additional details on
how the existence of a mean field equilibrium for the problem considered in that paper can be
indeed achieved via our lattice-theoretic techniques.

6. Submodular mean field games with reflecting boundary conditions

In this section, we consider a MFG model with reflecting boundary conditions, in which the
state process of the representative player is forced to remain in a certain interval of the state
space. These types of models were recently introduced in [5] (see also [4]), motivated by appli-
cations to queueing systems consisting of many strategic servers that are weakly interacting.
Also, a particular setting in the same class of models is studied in [34], motivated by a model
for the production of exhaustible resources. Here, we consider a version of the model in [5]
with submodular cost, which we solve through the results of Section 2.

6.1. Formulation of the model. Fix M > 0 and x0 ∈ [0,M ]. Consider the set LM of all
measurable functions µ : [0, T ] → P([0,M ]) with µ0 = δx0 , endowed with the lattice struc-
ture coming from the order relation ¬L of π := δ0 + dt + δT -pointwise first order stochastic
dominance. As in the previous section, this leads to a complete lattice (LM ,¬L).

Next, we introduce the minimization problem. For technical reasons (i.e., in order to gain
compactness of the set of controls), we do so by using relaxed controls, though we work with
assumptions under which strict optimal controls always exist. For a compact control set A ⊂ R,
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and a Lipschitz continuous function b : [0, T ]× R→ R, we define the set of admissible relaxed
controls as the set Ew of tuples ρ := (Ω,F ,F,P,W, λ, v,X) such that

(1) W = (Wt)t∈[0,T ] is a Brownian motion on the filtered probability space (Ω,F ,F,P),
satisfying the usual conditions,

(2) λ is a P(A)-valued, progressively measurable process,
(3) the couple (v,X) is a solution to the controlled reflected SDE in the domain (0,M):

(6.1)

{
dXt =

(
b(t,Xt) +

∫
A aλt(da)

)
dt+ σdWt + dvt, t ∈ [0, T ], X0 = x0,

Xt ∈ [0,M ],
∫ t
0 1{Xs∈(0,M)}d|v|s = 0, for any t ∈ [0, T ], P-a.s.,

where |v| denotes the total variation of v. Moreover, we define the set of admissible strict
controls Ew,s as the set of elements ρ := (Ω,F ,F,P,W, λ, v,X) ∈ Ew such that λt = δαt
P⊗ dt-a.e. in Ω× [0, T ], for some A-valued progressively measurable process α.

We consider functions f, g, and c as in the beginning of Section 5 satisfying Assumption
5.1, and a lower semicontinuous function l : [0, T ]×R×R→ [0,∞), which is convex in a. For
µ ∈ LM and ρ = (Ω,F ,F,P,W, λ, v,X) ∈ Ew, we define the cost functional

J(ρ, µ) := EP
[ ∫ T

0

(
f(t,Xt, µt) +

∫
A
l(t,Xt, a)λt(da)

)
dt+ g(XT , µT ) +

∫ T

0
ctd|v|t

]
.

We say that ρ ∈ Ew is an optimal singular control for the flow of measures µ if J(ρ, µ) =
infEw J(·, µ).

We are interested in the following notion of equilibrium.

Definition 6.1. A flow of probabilities µ ∈ LM is a MFG equilibrium if
(1) there exists a strict optimal control ρ = (Ω,F ,F,P,W, λ, v,X) ∈ Ew,s for µ,
(2) µt = P ◦ (Xt)−1 for any t ∈ [0, T ].

6.2. Reformulation via control rules and preliminary results. In order to have a topol-
ogy on the space of admissible controls, we reformulate the problem in terms of control rules.

Introduce the canonical space (Ω,F), where

Ω := C × Λ× V ×D, F := B(C)⊗ B(Λ)⊗ B(V)⊗ B(D).

Define the set of relaxed control rules

E := {νρ | ρ ∈ Ew} with νρ := P ◦ (W,λ, v,X)−1, for ρ = (Ω,F ,F,P,W, λ, v,X) ∈ Ew,

and, with a slight abuse of notation, we set J(νρ, µ) := J(ρ, µ). The set of strict control rules
is defined as Es := {νρ | ρ ∈ Ew,s}. In this way, E is naturally defined as a subspace of the
topological space P(Ω). For any ρ = (Ω,F ,F,P,W, λ, v,X) ∈ Ew, the controlled SDE (6.1)
together with Xt ∈ [0,M ] implies the estimate

(6.2) EP[|v|pT ] ¬ K <∞

with a constant K > 0. Moreover, since A is compact, so are Λ and P(Λ). This, together with
(6.2), allows to use the Meyer-Zheng tightness criteria (see Theorem 4 on p. 360 in [47]) to
show that the set E is a relatively compact subset of P(Ω). Moreover, the projection map

p : E → LM with p(νρ) := P ◦ (Xρ)−1, for ρ = (Ω,F ,F,P,W, λ, v,X) ∈ Ew,

satisfies the conditions in Assumption 2.1 and Assumption 2.5.

Lemma 6.2.
(1) For any µ ∈ LM , the set argminE J(·, µ) is nonempty.
(2) If ρ = (Ω,F ,F,P,W,X, λ, v) ∈ Ew, there exists a control ρ̂ = (Ω,F ,F,P,W,X, λ̂, v) ∈

Ew,s such that J(ρ̂, µ) ¬ J(ρ, µ), for any µ ∈ LM .
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Proof. We begin by proving Claim 1. In order to do so, take a minimizing sequence (νn)n ⊂ E
(i.e., limn J(νn, µ) = infE J(·, µ)) and controls ρn = (Ωn,Fn,Fn,Pn,Wn, λn, vn, Xn) ∈ Ew

with νn = νρn . Since the set E ⊂ P(Ω) is relatively compact, we can find a limit point
ν∗ ∈ P(C × Λ × V × D) and a subsequence (not relabelled) such that νn → ν∗ weakly. Up to
using a Skorokhod representation theorem for separable spaces (see Theorem 3 in [27]), we
can assume that there exists a common probability space (Ω,F ,P), on which the processes
(Wn, λn, vn, Xn) are defined together with a process (W,λ, v,X), such that

(Wn, λn, vn, Xn)→ (W,X, λ, v), P-a.s., in C × Λ× V ×D as n→∞,(6.3)

νn = P ◦ (Wn, λn, vn, Xn)−1 and P ◦ (W,λ, v,X)−1 = ν∗.

Also, this convergence allows to show that X is a solution to the SDE Xt = x0+
∫ t
0
(
b(s,Xs)+∫

A aλs(da)
)
ds+ σWt + vt, t ∈ [0, T ], P-a.s. Moreover, by the Lipschitz continuity of the Sko-

rokhod map (see Lemma 2.1 in [5]), we see that the couple (v,X) solves the controlled reflected
SDE (6.1). Therefore, defining ρ∗ = (Ω,F ,F,P,W, λ, v,X) with F being the (extended) fil-
tration generated by (W,λ, v,X), we have that ρ∗ ∈ Ew and ν∗ := νρ∗ . Moreover, using the
convergence in (6.3) and exploiting the lower semicontinuity of the costs f, g, l and the fact
that c is nondecreasing, by Fatou’s lemma we obtain that

J(ν∗, µ) ¬ lim inf
n

J(νn, µ) = inf
E
J(·, µ),

which completes the proof of Claim 1.
We conclude by proving Claim 2. Take ρ = (Ω,F ,F,P,W,X, λ, v) ∈ Ew, set αt :=

∫
A aλt(da),

λ̂ := δαt(da)dt, and consider the control ρ̂ = (Ω,F ,F,P,W,X, λ̂, v) ∈ Ew,s. First of all, we see
that, P-a.s., X solves the equation

Xt = x0 +
∫ t

0
(b(s,Xs) + αs)ds+ σWt + vt, t ∈ [0, T ].

Finally, by convexity of l we can use Jensen’s inequality obtaining

J(ρ̂, µ) = EP
[ ∫ T

0
(f(t,Xt, µt) + l(t,Xt, αt))dt+ g(XT , µT ) +

∫ T

0
ctd|v|t

]
¬ EP

[ ∫ T

0

(
f(t,Xt, µt) +

∫
A
l(t,Xt, a)λt(da)

)
dt+ g(XT , µT ) +

∫ T

0
ctd|v|t

]
= J(ρ, µ),

which completes the proof of the lemma. □

6.3. Existence and approximation of equilibria. We begin by observing that a relaxed
MFG equilibrium can now be seen as a fixed point of the best-response-map

(6.4) R : LM → LM with R(µ) := p(argminEJ(·, µ)), for µ ∈ LM .

We move on by constructing operations ∧E,∨E : E × E → E satisfying Assumption 2.3.
For ν = νρ, ν̄ = ν ρ̄ ∈ E with ρ = (Ω,F ,F,P,W, λ, v,X), ρ̄ = (Ω̄, F̄ , F̄, P̄, W̄ , λ̄, v̄, X̄) ∈ Ew,
we can, without loss of generality (see, e.g., the proof of Lemma 3.4 in [25]), assume these
controls to be defined on the same stochastic basis; that is, (Ω,F ,F,P,W ) = (Ω̄, F̄ , F̄, P̄, W̄ ).
Hence, define

ρ∧ := (Ω,F ,F,P,W, α∧, v∧, X ∧ X̄) and ρ∨ := (Ω,F ,F,P,W, α∨, v∨, X ∨ X̄),

where
λλt := λt1{Xt¬X̄t} + λ̄t1{Xt>X̄t}, v∧t :=

∫ t
0
(
1{Xs<X̄s}dvs + 1{XsX̄s}dv̄s

)
,

λ∨t := λ̄t1{Xt¬X̄t} + λt1{Xt>X̄t}, v∨t :=
∫ t
0
(
1{Xs<X̄s}dv̄s + 1{XsX̄s}dvs

)
.
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Indeed, by the Meyer-Itô formula for continuous semimartingales (see, e.g., Theorem 68 on p.
213 in [51]), we find

Xt ∧ X̄t = Xt + 0 ∧ (X̄t −Xt)

= Xt +
∫ t

0
1{X̄s−Xs¬0}d(X̄ −X)t −

1
2
L0t (X̄ −X)

= x0 + σWt

+
∫ t

0

(
1{Xs<X̄s}

(
b(s,Xs) +

∫
A
aλs(da)

)
+ 1{XsX̄s}

(
b(s, X̄s) +

∫
A
aλ̄s(da)

))
ds

+
∫ t

0

(
1{Xs<X̄s}dvs + 1{XsX̄s}dv̄s

)
− 1
2
L0t (X̄ −X),

where L0t (X̄ −X) is the local time of X̄ −X at 0 (see, e.g., Chapter IV in [51]). We denote by
[X̄ −X, X̄ −X] the quadratic variation of the process X̄ −X (see, e.g., p. 66 in [51]). Since
X̄ −X is a process of bounded variation, we have [X̄ −X, X̄ −X] = 0. Therefore, using the
characterization of local times (see, e.g., Corollary 3 on p. 225 in [51]), we obtain that

L0t = lim
ε→0

1
ε

∫ t

0
1{0¬X̄s−Xs¬ε}d[X̄ −X, X̄ −X]s = 0,

and conclude that

Xt ∧ X̄t = x0 +
∫ t

0

(
b(s,Xs ∧ X̄s) +

∫
A
aλ∧s (da)

)
ds+ σWt + v∧t .

In the same way, the process X∨X̄ solves the SDE controlled by λ∨ with reflection v∨. Finally,
Xt∧X̄t, Xt∨X̄t ∈ [0,M ], and it can be easily verified that the support of the random measures
|v∧| or |v∨| is contained in the set of times at which Xt ∧ X̄t ∈ {0,M} or Xt ∨ X̄t ∈ {0,M},
respectively. This proves that ρ∧, ρ∨ ∈ E, so that, defining ν ∧E ν̄ := νρ∧ , ν ∨E ν̄ := νρ∨ , we
have ν ∧E ν̄, ν ∨E ν̄ ∈ E.

Moreover, one readily verifies that |v∧|t+ |v∨|t ¬ |v|t+ |v̄|t. This together with the fact that
c′ ¬ 0, in turn, yields the estimate

J(ν ∨E ν̄, µ̄)− J(ν̄, µ̄) ¬ J(ν ∨E ν̄, µ)− J(ν̄, µ) ¬ J(ν, µ)− J(ν ∧E ν̄, µ).
Hence, Assumption 2.3 is satisfied.

We can now state the main result of this section.

Theorem 6.3. The set of mean field game equilibriaM is a non empty with infM∈M and
supM∈M. Moreover, If f and g are continuous in (x, µ), then

(1) the learning procedure µn defined inductively by µ0 = inf L and µn+1 = inf R(µn) is
nondecreasing in L and it converges to the minimum MFG solution,

(2) the learning procedure µn defined inductively by µ0 = supL and µn+1 = supR(µn) is
nonincreasing in L and it converges to the maximal MFG solution.

Proof. For relaxed MFG equilibria as in (6.4), the result follows from the general Theorem
2.6. Thanks to Lemma 6.2, this allows to obtain the result for MFG equilibria as in Definition
6.1. □

7. Supermodular mean field games with optimal stopping

In this section we adapt the general results of Section 2 to a MFG, where the representative
agent faces an optimal stopping maximization problem. In particular, we introduce and solve
a version of the model discussed in [13] to which we add a common noise (see Example 7.9
for details). Our formulation also includes a particular case of the model studied in [21] (see
Example 7.10, below).
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7.1. Formulation of the model. Let (Ω,F ,F,P) be a filtered probability space, satisfying
the usual conditions. For 0 < T < ∞, let T denote the set of F-stopping times satisfying
τ ¬ T P-a.s. Let Z = (Z)t∈[0,T ] and B = (B)t∈[0,T ] be progressively measurable stochastic
processes, taking values in Rd1 and Rd2 for d1, d2 ∈ N, respectively. Set X := (Z,B) and
d := d1 + d2. Assume that the process B has independent increments, and denote by FB the
right-continuous extension of the filtration generated by B, augmented by the P-null sets. The
process B represents a common noise, and it can also be deterministic (in this case, FB is
the trivial filtration). For any t ∈ [0, T ], denote by FBt,T the σ-field generated by the family of
increments {Bi

s2 −B
i
s1 | t ¬ s1 ¬ s1 ¬ T, i = 1, ..., d2}. We assume that, for any t ∈ [0, T ], the

σ-fields Ft and FBt,T are independent.
Denote by Lpr.(Ω× [0, T ];M¬1(R)) the set of all processes taking values in the set of sub-

probability measuresM¬1(R), which are FB-progressively measurable. Consider two measur-
able functions

f : [0, T ]× Rd ×M¬1(R)→ R and g : [0, T ]× Rd → R.

Next, for m ∈ Lpr.(Ω× [0, T ];M¬1(R)), we define the profit functional

(7.1) J(τ,m) := E
[ ∫ τ

0
f(t,Xt,mt)dt+ g(τ,Xτ )

]
, τ ∈ T ,

and consider the optimal stopping problem, parametrized by m, which consists of maximizing
the profit functional J(·,m). For a process m, we say that the stopping time τm is optimal for
m if τm ∈ argmaxT J(·,m).

We next consider a continuous function ψ : Rd → R and the following notion of solution.

Definition 7.1. A process m ∈ Lpr.(Ω× [0, T ];M¬1(R)) is a MFG equilibrium if

mt(A) = P[ψ(Xt) ∈ A, t < τm|FBt ], for all A ∈ B(R), t ∈ [0, T ], P-a.s.,

for some τm ∈ argmaxT J(·,m).

7.2. Reformulation and preliminary results. In order to prove existence and approxima-
tion of the equilibria of the MFG, we embed the problem in terms of the general formulation
of Section 2.

Consider the set E := T , endowed with the lattice structure ∧,∨ arising from the order
relation ¬ given by the P-a.s. pointwise order (τ ¬ τ̄ if and only if τ ¬ τ̄ P-a.s.). The lattice
E is complete, so that it is compact in the interval topology, see Appendix A. The lattice
structure on E allows us to directly use some of the results in [58] (see, in particular, Remark
7.6, below).

For τ ∈ E, we define theM¬1(R)-valued process pτ by setting, P-a.s.,

(7.2) (pτ)t(A) := P[ψ(Xt) ∈ A, t < τ |FBt ], for all A ∈ B(R) and t ∈ [0, T ].

Note that (pτ)t(y,∞) ¬ P[ψ(Xt) > y |FBt ] =: µ
ψ
t (y,∞) P-a.s., for y ∈ R, so that

(7.3) (pτ)t ¬s.t. µ
ψ
t , P-a.s., for each t ∈ [0, T ].

For m, m̄ ∈ Lpr.(Ω× [0, T ];M¬1(R)), we define the order relation

m ¬L m̄ ⇐⇒ mt ¬s.t. m̄t P-a.s., for dt-a.a. t ∈ [0, T ],

and introduce the set of feasible distributions as

L := {m ∈ Lpr.(Ω× [0, T ];M¬1(R)) |m ¬L µψ},

endowed with the order relation ¬L. Thanks to the results in Section 3, the lattice (L,¬L) is
complete and Dedekind super complete (see in particular Example 3.2).
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Observe that, from the definition of p, we have the following monotonicity properties:

(7.4) p(τ ∧ τ̄) ¬L pτ ∧L pτ̄ ¬L pτ ∨L pτ̄ ¬L p(τ ∨ τ̄), for each τ, τ̄ ∈ E.

The following assumption will ensure that the projection p takes values in L and will give
the necessary integrability of the payoffs in order to gain the continuity of the functional J .

Assumption 7.2.

(1) The processes Z and B are continuous;
(2) The functions f, g are nonnegative, g is continuous and

E
[
sup
t∈[0,T ]

(
f(t,Xt, µ

ψ
t ) + g(t,Xt)

)]
<∞.

Lemma 7.3. The map p : E → L as in (7.2) is well defined; i.e., pτ ∈ L for any τ ∈ E.

Proof. Take τ ∈ E. In light of (7.3), we only need to prove that the process pτ is FB-
progressively measurable.

We first show that, for each τ ∈ T and t ∈ [0, T ], P-a.s., we have

(7.5) (pτ)t(A) = P[ψ(Xt) ∈ A, t < τ |FBt ] = P[ψ(Xt) ∈ A, t < τ |FBT ], for all A ∈ B(R).

This can be shown similarly to Remark 1 in [55]. Indeed, for any t ∈ [0, T ], the σ-fields Ft and
FBt,T are independent, so that the r.v.’s Y A

t := 1{ψ(Xt)∈A}1{t<τ}, A ∈ B(R), are independent
from FBt,T . Also, by assumption the σ-fields FBt and FBt,T are independent. It thus follows that,
for any A ∈ B(R), one has

P[ψ(Xt) ∈ A, t < τ |FBT ] = E[Y A
t |FBt ∨ FBt,T ] = E[Y A

t |FBt ] = P[ψ(Xt) ∈ A, t < τ |FBt ], P-a.s.,

which proves (7.5).
We can now prove that the process pτ is right-continuous P-a.s. Indeed, for φ ∈ Cb(R),

t ∈ [0, T ], and a sequence (sn)n ⊂ [0, T ] converging to t with sn  t, we have

lim
n

∫
R
φ(y)(pτ)sn(dy) = limn E[φ(ψ(Xsn))1{sn<τ}|F

B
T ]

= E[φ(ψ(Xt))1{t<τ}|FBT ]

=
∫
R
φ(y)(pτ)t(dy), P-a.s.,

where the convergence follows by the dominated convergence theorem for conditional expecta-
tions, and using the right-continuity of (φ(ψ(Xs))1{s<τ})s∈[0,T ] deriving from Assumption 7.2.
Therefore, (pτ)sn weakly converges to (pτ)t, P-a.s., as n→∞, proving the right-continuity of
pτ .

Finally, since the process pτ is FB-adapted and right-continuous, it is FB-progressively
measurable, completing the proof of the lemma. □

7.3. Existence and approximation of equilibria. We enforce the following structural con-
dition:

Assumption 7.4. For each (t, x) ∈ [0, T ] × Rd, the function f(t, x, ·) is increasing; i.e.,
f(t, x,m) ¬ f(t, x, m̄) for any m, m̄ ∈M¬1(R) with m ¬s.t. m̄.
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From Assumption 7.4, for m, m̄ ∈ L with m ¬L m̄ and τ, τ̄ ∈ E we have

J(τ̄ , m̄)− J(τ̄ ∧ τ, m̄) = E
[ ∫ τ̄

τ̄∧τ
f(t,Xt, m̄t)dt+ g(τ̄ , Xτ̄ )− g(τ̄ ∧ τ,Xτ̄∧τ )

]
 E
[ ∫ τ̄

τ̄∧τ
f(t,Xt,mt)dt+ g(τ̄ , Xτ̄ )− g(τ̄ ∧ τ,Xτ̄∧τ )

]
= E
[ ∫ τ∨τ̄

τ
f(t,Xt,mt)dt+ g(τ ∨ τ̄ , Xτ∨τ̄ )− g(τ,Xτ )

]
= J(τ ∨ τ̄ ,m)− J(τ,m),

which reads as

(7.6) J(τ̄ , m̄)− J(τ̄ ∧ τ, m̄)  J(τ̄ ,m)− J(τ̄ ∧ τ,m) = J(τ ∨ τ̄ ,m)− J(τ,m).

Remark 7.5. It is worth observing that the first inequality in (7.6) corresponds to the fact
that the functional J : E×L→ R has increasing differences, while the second equality in (7.6)
implies that the functionals J(·,m) : L→ R, m ∈ L, are supermodular. In this case, the game
is said to be supermodular, and we refer to [58] for further details.

We consider the best-response-maps

(7.7) R̂(m) := argminE J(·,m) ⊂ E, R(m) := p(R̂(m)) ⊂ L, m ∈ L.

Combining Assumption 7.2 and Assumption 7.4 together with the definition of L, we obtain
that, for any m ∈ L,

(7.8) E
[
sup
t∈[0,T ]

(
f(t,Xt,mt) + g(t,Xt)

)]
¬ E
[
sup
t∈[0,T ]

(
f(t,Xt, µ

ψ
t ) + g(t,Xt)

)]
<∞.

This estimate, together with Assumption 7.2, allows to show that the functionals J(·,m) :
L→ R, m ∈ L, are continuous in the interval topology on E. Therefore, arguing as in Lemma
3.1 in [58], for any m ∈ L the set R̂(m) is nonempty so that, thanks to Lemma 7.3, the best
reply map R : L→ 2L is well-defined. Moreover, m ∈ L is an MFG equilibrium if and only if
m ∈ R(m).

Remark 7.6. We observe that, even if the Condition 2 in Assumption 2.1 is not satisfied, the
same conclusions as in Lemma 2.4 can be deduced as follows. Thanks to the lattice structure
on E and to the supermodularity property in (7.6), we can employ Lemma 3.1 in [58], in order
to obtain that:

(1) The set R̂(m) is a lattice, i.e. for every τ1, τ2 ∈ R̂(m), one has τ1∧ τ2, τ1∨ τ2 ∈ R̂(m);
(2) For all m, m̄ ∈ L with m ¬ m̄, infE R̂(m) ¬ infE R̂(m̄) and supE R̂(m) ¬ supE R̂(m̄);
(3) For every m ∈ L, infE R̂(m) ∈ R̂(m) and supE R̂(m) ∈ R̂(m).

Therefore, due to the monotonicity of the projection p (see (7.4)), for any m ∈ L, we have

(7.9) inf R(m) = p(infE R̂(m)) ∈ R(m) and supR(m) = p(supE R̂(m)) ∈ R(m),

so that the assertions of Lemma 2.4 hold.

Now, we provide the main result of this section. We underline that some of the conditions in
Assumption 2.5 are not satisfied (in particular, the continuity-like property of p for monotone
sequences of stopping times is not satisfied). As a consequence, we obtain a result which is
less general than that of Theorem 2.6 (see Remark 7.8, below), and some of the arguments in
the proof of that theorem need to be adapted in order to prove existence and approximation
of MFG sulutions.
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Theorem 7.7. The set of MFG equilibria M is nonempty with infM ∈M and supM ∈M .
Moreover, if f is continuous in m, we have that the learning procedure mn defined inductively
by m0 = inf L and mn+1 = inf R(mn) is nondecreasing in L and it converges to the minimum
MFG solution.

Proof. The existence and the lattice structure of equilibria follows by Tarski’s fixed point
theorem, since the maps inf R and supR are nondecreasing, see Remark 7.6.

We prove the convergence of the learning procedure (mn)n. Setting, for n  1, τn :=
infE R̂(mn−1), by Remark 7.6, we have that τn ¬ τn+1, mn ¬L mn+1, and mn = pτn for any
n  1. By the completeness of the lattices E and L, we can define τ∗ := supE{τn|n  1} and
m∗ := supnm

n, and we have

(7.10) τn → τ∗ P-a.s. and mn
t → m∗t weakly P⊗ dt-a.e., as n→∞.

By definition of mn and τn, for any n  1, we have J(τn,mn−1)  J(τ,mn−1) for any τ ∈ E.
Therefore, taking limits as n→∞ (justified by the integrability in (7.8) and the convergence
in (7.10)), we obtain J(τ∗,m∗)  J(τ,m∗) for any τ ∈ E, so that

(7.11) τ∗ ∈ R̂(m∗).
Moreover, the sequence (τn)n increasingly converges to τ∗, P-a.s., as n → ∞. Therefore,

using the dominated convergence theorem for conditional expectations and exploiting the left-
continuity of the map 1{t<·}, we find that, P-a.s.,

(pτ∗)t(y) = E[1{ψ(Xt)>y}1{t<τ∗}|F
B
T ]

= lim
n

E[1{ψ(Xt)>y}1{t<τn}|F
B
T ]

= lim
n
(pτn)t(y) = lim

n
mn
t (y), for any (t, y) ∈ [0, T ]× R.

The latter, thanks to the convergence in (7.10), in turn implies that pτ∗ = supnmn = m∗.
This, together with (7.11), gives that m∗ ∈ R(m∗), so that m∗ is a MFG solution.

The fact thatm∗ is the minimal MFG solution follows as in the proof of the general Theorem
2.6, and this completes the proof of the theorem. □

7.4. Comments and examples.

Remark 7.8. We point out that, since the function 1{t< · } is not right-continuous, the learning
procedure (mn)n ⊂ L, which is defined inductively by m0 := supL and mn+1 := supR(mn),
cannot be shown to converge to a MFG equilibrium.

Example 7.9 (MFGs of timing with common noise and interaction of scalar type). As an
example, we may consider a MFG in which the state variable Z evolves according to the SDE

dZt = b(t, Zt)dt+ σ(t, Zt)dWt + σo(t, Zt)dBt, t ∈ [0, T ],
for functions (b, σ, σo) : [0, T ] × Rd1 → ×Rd1 × Rd1×d1 × Rd1×d1 satisfying the usual Lips-
chitz conditions, and for F-adapted independent Brownian motions W and B taking values
in Rd1 and Rd2, respectively. Moreover, one may consider a running profit function f , which
enjoys a scalar nondecreasing dependence on the measure; that is, f is given by f(t, x,m) :=
f̄(t, x, ⟨φ,m⟩), where f̄(t, x, ·) is nondecreasing, φ : R→ [0,∞) is nondecreasing, and ⟨φ,m⟩ :=∫
[0,∞) φ(x) dm(x).
Such a setting resembles the one considered in [13], even if several differences arise between

the problem in [13] and ours. Firstly, in [13] no common noise is considered, and a nondegen-
eracy condition on the volatility matrix is needed in order to employ results from PDE theory.
These requirements are not needed for our lattice-theoretic approach to work. Secondly, in [13]
– in order to establish uniqueness of the MFG equilibrium – a suitable anti-monotonicity prop-
erty is imposed on the dependence of the running profit function with respect to the measure
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variable (see Assumption 8 therein), whereas, in the setting of this example, we need that the
function f is nondecreasing with respect to its third argument. Thirdly, a convergence result
is established in [13] for potential games, while the potential structure is not needed for our
learning procedure to work.

Example 7.10 (MFGs of timing with common noise). A particular example is when Zt =
(t, Z̄t) and ψ(t, z̄, b) = t, for (t, z̄, b) ∈ Rd1 × Rd2. In this case, the fixed point condition in
Definition 7.1 reduces to an identity on the space of P([0, T ])-valued random variables. In
other words, an equilibrium is an FBT -adapted P([0, T ])-valued random variable m such that,
P-a.s.,

mt = P[t < τm|FBT ], for any t ∈ [0, T ] and some τm ∈ argminEJ(·,m).
This example corresponds to a particular case of the MFG of timing with common noise dis-
cussed in [21].

Appendix A. Lattice-theoretic preliminaries

In this section, we collect some notions and preliminaries for lattices. Throughout, we con-
sider a fixed lattice L, i.e., a partially ordered set (poset) in which every finite nonempty subset
has a least upper bound and a greatest lower bound. We start with the following definition.

Definition A.1.
a) We say that L is Dedekind σ-complete if every countable nonempty subset, that is

bounded above or below, has a least upper bound or a greatest lower bound, respectively.
We say that L is Dedekind complete if every nonempty subset, that is bounded above or
below, has a least upper bound or a greatest lower bound, respectively. We say that L is
Dedekind super complete if every nonempty subset, that is bounded above or below, has
a countable subset with the same least upper bound or greatest lower bound, respectively.
We say that L is complete if every nonempty subset of L has a least upper bound and
a greatest lower bound.

b) We say that a set M ⊂ L is directed upwards or directed downwards if, for all x, y ∈M ,
there exists some z ∈M with x ∨ y ¬ z or x ∧ y  z, respectively.

Definition A.2. We say that a map F : L→ R is strictly increasing if
(i) F (x) ¬ F (y) for all x, y ∈ L with x ¬ y,
(ii) for all x, y ∈ L with x ¬ y and F (x) = F (y), it follows that x = y.

The following lemma is a special case of [49, Lemma A.3], and gives a sufficient condition
for a Dedekind σ-complete lattice to be Dedekind super complete. For the proof, we refer to
[49].

Lemma A.3. Let L be a Dedekind σ-complete lattice. If there exists a strictly increasing map
F : L→ R, then L is Dedekind super complete.

A fundamental result by Birkhoff [11, Section X.12, Theorem X.20] and Frink [29] is that
completeness of the lattice L corresponds to the compactness of L w.r.t. the so-called interval
topology, whose definition we briefly recall here.

Definition A.4. The interval topology on L is the smallest topology τ on L such that all
closed intervals of the form

(−∞, a] := {x ∈ L |x ¬ a} and [a,∞) := {x ∈ L |x  a}, for a ∈ L
are closed w.r.t. τ .
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