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Abgrenzung des eigenen Beitrags gemäß

§10(2) der Promotionsordnung

Most of the results presented in this thesis have been published in joint work with several

co-authors. As a guiding principle, whenever I cite individual results from these publications

to which I did not contribute, I explicitly mention the name of the author(s) that I think it

should be attributed to.

(1) The results on ergodicity in Section 4.1 are joint work with T. Spindeler and have been

published in [GS20]. Here, I provide a slightly different perspective, introducing the

ergodic measures as orbit averages of invariant measures, but the core of the arguments

remains the same.

(2) The results on topological entropy in Section 4.2.1 are taken from the single-authored

paper [Goh20], with a slightly polished presentation.

(3) The results on measure-theoretic entropy in Section 4.2.2 are joint work with A. Mitchell,

D. Rust and T. Samuel [GMRS21]. Here, I use a slightly different formalism via condi-

tional entropies.

(4) The results on diffraction in Section 4.3 are original. However, they are meant to be

part of an upcoming joint publication with N. Mañibo and D. Rust [GMR].

(5) The results on almost minimal substitutions in Section 5.2 are based on joint work with

B. Eichinger [EG21]. I have taken the liberty to discuss a smaller family of substitutions

to avoid technicalities.

(6) The results on mixed potentials in Section 5.3 are joint work with J. Chaika, D. Damanik

and J. Fillman and will appear in [CDFG].

(7) The results on super-polynomial scaling of g-measures in Section 6.2 and parts of the

material in Section 6.1 are essentially taken from joint work with M. Baake, M. Coons

and J. Evans [BCEG21]. This includes a result (Proposition 6.1.24) that was announced

in [BCEG21] but is derived for the first time in this work. The main result of Section 6.2

(Theorem 6.2.2) is a variant of [BCEG21, Thm. 1.4] that holds for a larger family of

examples, but offers a slightly different conclusion.

(8) The results on the multifractal analysis of the Thue–Morse measure in Section 6.3 are

joint work with M. Baake, M. Kesseböhmer and T. Schindler [BGKS19]. The material

in Section 6.3 is meant to be complementary to [BGKS19], filling in some details, while

leaving out others.
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Introduction

A central motive of this thesis is the study of configurations with aperiodic order. Here, a

configuration may refer to a bi-infinite sequence of symbols, a tiling of the plane or a countable

subset of Euclidean space, modelling, for example, the positions of atoms in a material.

Although higher-dimensional examples might be visually more appealing (and physically more

relevant), we stick to the one-dimensional case. This is because the one-dimensional theory

is better understood and generalizations to the higher-dimensional situation are often more

involved or simply not available. A configuration x is periodic if it coincides with a translated

version of itself. That is, x = x + t, for some translation vector t ̸= 0. In this case, every

finite pattern repeats at regular distances, given by multiples of t. In the aperiodic case, we

can get an intuition for the amount of (dis)order in a configuration by asking how close we

are to the periodic situation. Does a finite pattern repeat at all? If so, how much does the

distance vary between two consecutive appearances of the same pattern? Does the pattern

appear with a well-defined frequency? How many different patterns of a predetermined size

can we find? How does this number change as we vary the size of the pattern?

All of these questions require the observer to “scan” the configuration, that is, to obtain

information from arbitrary positions. A myopic observer may instead prefer to shift the

configuration itself. This naturally places us into the mathematical framework of dynamical

systems, requiring a small change of perspective. Now, the (symbolic) configuration x is

regarded as a “point”, and the shift S by a unit length maps x to a new point Sx. Iterating

this procedure gives rise to a sequence of points x, Sx, S2x, . . . (the forward orbit of x), which

are naturally embedded into a larger space of configurations X that is invariant under S. We

call the pair (X,S) a dynamical system, which can be equipped with additional mathematical

structure like a topology, a metric, or a measure. With this, we have a full-fledged and well-

developed theory at our disposal. Not only can the questions formulated in the last paragraph

be rephrased in the language of dynamical systems; we also obtain a variety of more refined

measurements of disorder.

In fact, these measurements of disorder reflect different ways to look at dynamical sys-

tems. Some are purely combinatorial in nature, others draw on the topological structure or

refer to an associated measure. Of particular importance is ergodicity, a measure-theoretic

mixing property of a dynamical system. A more information-theoretic perspective yields the

concept of entropy. This measures to what degree it is possible to predict the next step

of a point by measurements that were performed in the past. Yet another approach deals

with a unitary operator, introduced by Koopman [Koo31], which maps a function f on X

to the function f ◦ S. The spectrum of this operator is known as the dynamical spectrum of

(X,S). Curiously, the dynamical spectrum is, under appropriate assumptions, accessible by

scattering experiments on the individual configurations, which yields the so-called diffraction
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Introduction

spectrum [BL04]. Indeed, diffraction spectra have played an important role in stimulating the

interest in aperiodic order. This is due to the discovery of quasicrystals by Dan Shechtman via

electron diffraction experiments on an alloy [SBGC84]. The outcome of these experiments, a

diffraction image of sharp (Bragg) peaks and a tenfold rotation symmetry, stirred some com-

motion in the crystallographic community, ranging from skepticism to upright denial. This

is because a tenfold rotation symmetry is known to be irreconcilable with periodic structures

in 3-dimensional space, challenging the at that time widely accepted belief that Bragg peaks

indicate a periodic structure. The existence of quasicrystals was eventually confirmed, earn-

ing Shechtman the Nobel Prize in Chemistry in 2011. For more on the intriguing history of

quasicrystals, compare [BG13].

Another phenomenological way to access the degree of (dis)order of a material is to measure

its electronic transport properties. In the framework of quantum mechanics, a valence electron

in a material is described by a wave function that reflects the probability of observing it in

certain regions if a measurement is performed. The time evolution of this wave function is

driven by the self-adjoint Schrödinger operator, modelling the influence of the underlying

material. If the material is sufficiently disordered, electrons are “trapped” and electronic

transport is inhibited—a phenomenon that became widely known as Anderson localization.

On the other hand, periodic materials allow for a free transport of valence electrons, provided

their energy matches a set of allowed values, known as the electronic band structure. In

the mathematical model, this band structure is given by the spectrum of the corresponding

Schrödinger operator. Configurations with an intermediate degree of disorder have been

shown to exhibit interesting and anomalous behaviour, like giving rise to a spectrum that

forms a Cantor set of Lebesgue measure 0 [DFb].

As a set, the spectrum of an operator does not offer sufficient insight into its dynamical

properties. It is therefore customary to consider spectral measures, which carry more refined

spectral information. Such a measure is singular if it gives full weight to a set of vanishing

Lebesgue measure. In the most extreme case, it is supported on a single point. If single points

carry no weight, we speak of a (singular) continuous measure. The implications of singularity

vary, depending on the context. If the spectral measure is related to the dynamical spectrum,

it points towards an ordered system. If the spectral measure is related to a Schrödinger

operator, singularity points towards disorder.

The zoo of the different concepts of disorder is not consistent, in the sense that the same

configuration might be classified as ordered if viewed from one angle and as disordered if

viewed from another angle. There are some deep and interesting connections between the no-

tions of disorder, but in general, their interdependencies remain obscure and call for the study

of specific (families of) examples. It is a non-trivial task to obtain meaningful mathematical

models of configurations with aperiodic order that, at the same time, offer some control over

its properties. An important tool to generate many such examples in a constructive manner

is the concept of a substitution. Starting from a finite pattern, it brakes down the pattern into

smaller constituents, each of which is replaced by a larger pattern, according to a fixed set of

replacement rules. Iterating this procedure eventually leads to an infinite configuration that

inherits some hierarchical structure from the production process. Despite being aperiodic in

x



non-trivial cases, the configurations that arise from a substitution can be deemed to be quite

ordered, according to several characterizations. One way to increase the disorder in the con-

struction is to apply the local replacement rules randomly ; we speak of a random substitution

in this case. The interest in random substitutions (in different disciplines) has been sporadic

over the last decades, and they have gained renewed attention only recently.

Outline of the thesis

After collecting some of the mathematical prerequisites in Chapter 1, we devote Chapter 2

to a short and biased exposition of the theory of dynamical systems, with an emphasis on

symbolic dynamics.

Since substitutions provide the foundation for many of the models discussed in this thesis,

we take our time discussing their basic properties in Chapter 3. Random substitutions are

introduced as natural extensions. The recent literature features random substitutions in

two common disguises. Only one of them makes reference to the probabilities assigned to a

specific production rule, whereas the other is more combinatorial in nature. We explore the

connections and differences in some detail.

Chapter 4 contains the main results on random substitutions. First, we show that iterating

a random substitution naturally leads to an invariant distribution, generalizing observations

from [BSS18] and [MT-JU18]. Under the classic assumption of primitivity, the orbit average

of this distribution is shown to define an ergodic measure on the substitution dynamical

system. We prove that both the topological and the measure-theoretic entropy of this system

can be computed (with explicit bounds on the precision) by following the production process

of the random substitution. In many cases, this leads to an explicit formula for the entropy.

Regarding diffraction, we take up a key splitting into expectation and variance, that was

introduced by Godrèche and Luck to study the random Fibonacci substitution [GL89]. We

show for a large class of random substitution that this produces a splitting of the diffraction

measure into a pure point part (consisting of Bragg peaks) and an absolutely continuous part

(observable as a diffuse background). While the result on the variance part is rather general,

the result on the expectation part is formulated under more restrictive (and not yet optimal)

conditions. Given the evasive nature of the Pisot substitution conjecture—an analogue of this

result in the realm of substitutions—this does not come as a surprise.

Schrödinger operators that are associated to dynamical systems are the main objects of

interest in Chapter 5. In the first part of this chapter, we consider dynamical systems arising

from substitutions. We show that dropping a standard assumption on the nature of the sub-

stitution (primitivity) allows for new spectral features to arise that have not been observed

for primitive substitutions. Inter alia, we show that, in an appropriately chosen situation, the

corresponding Schrödinger operator admits an eigenvalue that is an accumulation point of

the spectrum. The corresponding eigenfunction represents a localized electronic state. In the

second part of the chapter, we are concerned with an important property of a symbolic dy-

namical system, called Boshernitzan’s condition, which is known to lead to a Cantor spectrum

of Lebesgue measure 0. We prove that this property is stable under periodic perturbations.
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Introduction

In Chapter 6, we focus on the Thue–Morse measure, the diffraction measure associated

to a classic configuration of aperiodic order [Mah27]. This paradigmatic example of a sin-

gular continuous measure has been studied extensively, including a multifractal analysis of

its scaling behaviour in the mathematical physics literature [GL90]. We revisit this analysis

and put it in the context of the modern thermodynamic formalism. In this framework, the

Thue–Morse measure exhibits a pathology that requires one to extend the existing methods.

This technical advancement could be of independent interest.

We close with an outlook on progress and open questions.

xii



1. Preliminaries

It is the aim of this chapter to collect some of the basic mathematical tools and concepts that

will find applications as we progress towards our main results. At first, to avoid ambiguities,

we fix some notational conventions in Section 1.1.

In Section 1.2, we present Lebesgue’s decomposition theorem, an important device to cate-

gorize the singularity of a measure and associated objects. In particular, this provides a key

splitting for the spectrum of Schrödinger operators in Chapter 5. Then, we discuss Radon

measures as complex-valued functionals and their Fourier transformability—a problem that

will naturally occur in the context of diffraction.

The classic Perron–Frobenius theorem on the spectral properties of irreducible non-negative

matrices is recalled in Section 1.3. This will be an invaluable tool to analyze how certain

characteristics of a pattern change under the substitutions that we introduce in Chapter 3.

A random version of substitutions is the main object of interest in Chapter 4. This naturally

requires some background on Markov chains, which is provided in Section 1.4. In the form of

a random walk on the torus, we will also encounter Markov chains as we discuss g-measures

in Chapter 6.

1.1. Basic conventions

Let us agree to call a real number x (strictly) positive if x > 0 and non-negative if x ⩾ 0. The

natural numbers N = {1, 2, 3, . . .} are assumed to be positive, and we write N0 = N ∪ {0} for

the non-negative integers. Likewise, we set R+ = {x ∈ R : x > 0} and R⩾0 = {x ∈ R : x ⩾ 0}.
The set inclusion ⊂ is understood to include equality, and we write ∅ for the empty set. We

write A ⊔ B for the disjoint union of sets A,B with A ∩ B = ∅. If the set X is understood

and A ⊂ X, we denote the complement of A by AC = X \A. Manipulations of sets are to be

understood elementwise. For example, given A,B ⊂ Rd, we use the Minkowski sum

A+B = {a+ b : a ∈ A, b ∈ B}.

A singleton set {x} is often identified with x notationally. We refer to countable subsets of

Rd as point sets.

The cardinality of a finite set S is denoted by #S. We also adopt the notations #S = 0 if

S = ∅ and #S = ∞ if S is an infinite set. A set Λ ⊂ Rd is called locally finite if, for every

compact subset K ⊂ Rd, we have #(Λ ∩K) <∞.

In several places, we will use the intuitive bra-ket notation on the vector space Rd. In

this case, we denote x ∈ Rd by |x⟩ if it is understood as a column vector and by ⟨x| for
the corresponding row vector. Both can be understood as elements of Rd, reflecting the

1



1. Preliminaries

self-duality of this vector space. Concatenation of these objects is understood as matrix

multiplication. In this formalism, the scalar product of x, y ∈ Rd is denoted by ⟨x, y⟩ = ⟨x|y⟩,
where one of the vertical bars is dropped, in line with standard conventions. Likewise, the

expression |y⟩⟨x| naturally defines a (projection) matrix on Rd.
For x ∈ C, we write the complex conjugate of x as x. We equip Cd with the scalar product

⟨x, y⟩ =
∑d

j=1 xjyj , which induces the standard metric on Cd. Likewise, we equip Rd with

the Euclidean metric and regard it as a topological space.

Given a topological space X, we write C(X) for the vector space of continuous functions

f : X → C. We also set Cc(Rd) for the functions in C(Rd) with compact support. Every

topological space X is tacitly equipped with the corresponding Borel σ-algebra B, and we

write M(X) for the set of Borel measures on X, as well as M1(X) for the simplex of proba-

bility measures in M(X). We denote by Lp(X,µ) the Banach space of equivalence classes of

measurable functions f : X → C, such that |f |p is integrable. For every µ-integrable function

f : X → C, we set µ(f) =
∫
X f dµ. For p = 2, the scalar product

⟨g, f⟩ =

∫
X
g(x)f(x) dµ(x),

for all f, g ∈ L2(X,µ), turns L2(X,µ) into a Hilbert space. If X = Z, with the discrete

topology, and µ is the counting measure on Z, we write ℓ2(Z) instead of L2(Z, µ).
For a measurable function g : X → R⩾0 and a regular Borel measure µ ∈ M(X), we let gµ

be the measure defined by

(gµ)(A) =

∫
X
1A(x)g(x) dµ(x),

for every Borel set A, where 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. If X is Rd (or a

compact subset of Rd), we denote by λL the standard Lebesgue measure on X. In this case,

we sometimes identify g and gλL.

In many places, we will be concerned with iterations of a map f : S → S on a set S. Let

us write fn for the n-fold concatenation f ◦ . . . ◦ f if n ∈ N, and f0 := Id: x 7→ x. If f is

invertible, we also write f−n for (f−1)n, for all n ∈ N.
Finally, we introduce some probabilistic notation. Given a probability space (Ω,F ,P), we

call a measurable map Y : Ω → R a random variable. If (X,B) is a general Borel space,

we call a measurable map Y : Ω → X an X-valued random variable. We adopt the usual

convention to write {Y ∈ C} for the set Y −1(C) = {ω ∈ Ω : Y (ω) ∈ C}, provided C ∈ B.
The expectation value of a random variable, Y with respect to P, is generically denoted by

E[Y ], and we write V[Y ] = E
[
Y 2
]
− E[Y ]2 for the corresponding variance.

1.2. Measures and functionals

1.2.1. Lebesgue decomposition

Two measures µ, ν on a measurable space (X,F) are called (mutually) singular , denoted by

µ ⊥ ν, if there exists an A ∈ F such that µ(A) = 0 and ν(X \ A) = 0. We say that µ is

2



1.2. Measures and functionals

absolutely continuous with respect to ν, denoted by µ ≪ ν, if µ(A) = 0 whenever ν(A) = 0

for A ∈ F . The measures µ and ν are called equivalent , denoted µ ∼ ν, if µ≪ ν and ν ≪ µ.

For the following general decomposition theorem, compare for example [Hal74, Sec. 32].

Fact 1.2.1. Let µ, ν be σ-finite measures on some measurable space (X,F). Then, there is

a unique pair of σ-finite measures µ1, µ2 such that µ = µ1 + µ2, µ1 ⊥ ν and µ2 ≪ ν. ■

A more refined statement is possible if we restrict to regular Borel measures on Rd. Here,
we will take the standard Lebesgue measure λL as a reference measure and say that a measure

µ is absolutely continuous or singular if the corresponding attribute holds relative to Lebesgue

measure.

Let µ ∈ M(Rd) be a regular Borel measure. We call Pµ = {x ∈ Rd : µ({x}) > 0} the set

of pure points of µ. We say that µ is continuous if Pµ = ∅, and we say that µ is pure point

if µ(A) =
∑

x∈A∩Pµ
µ({x}) for every Borel set A. We call a measure singular continuous

if it is both singular and continuous. The following classic result is known as the Lebesgue

decomposition theorem; compare [BG13, Thm. 8.3].

Fact 1.2.2. Every regular Borel measure µ on Rd has a unique (Lebesgue) decomposition

µ = µpp + µsc + µac,

where µpp is a pure point measure, µsc is singular continuous, and µac is absolutely continuous

(with respect to Lebesgue measure). ■

If only one of the components is present in the Lebesgue decomposition of µ, we say that µ

is of pure type. In this case, we refer to the attribute • ∈ {pp, sc, ac} such that µ = µ• as the

spectral type of µ. We also write µc = µsc+µac for the continuous part of µ and µs = µpp+µsc
for the singular part of µ.

1.2.2. Radon measures

Every (positive) locally finite measure µ ∈ M(Rd) defines a linear functional on the vector

space Cc(Rd) by

µ(g) :=

∫
Rd

g(x) dµ(x), (1.1)

for all g ∈ Cc(Rd). This functional is positive in the sense that µ(g) ⩾ 0, whenever g ⩾ 0. In

fact, the positive linear functional on Cc(Rd) are in one-to-one correspondence, via (1.1), to the

locally finite, regular Borel measures on Rd. This is due to the Riesz–Markov representation

theorem [Rud87, Ch. 2].

Example 1.2.3. Given x ∈ Rd, we define the Dirac measure δx via δx(A) = 1, precisely if

x ∈ A, and δx(A) = 0 otherwise, for every Borel set A. As a linear functional, this takes the

form δx(g) = g(x), for all g ∈ Cc(R
d). ♢

We push the correspondence between measures and linear functionals one step further by

defining measures as linear functionals, even if they are not positive.

3



1. Preliminaries

Definition 1.2.4. A Radon measure on Rd is a (complex) linear functional µ on Cc(Rd) such
that, for every compact K ⊂ Rd, there is some constant cK with |µ(g)| ⩽ cK ||g||∞, for all

g ∈ C(K).

We call a Radon measure µ real , if µ(f) ∈ R for every real-valued f ∈ Cc(Rd). It is called
positive if µ(g) ⩾ 0 for all g ⩾ 0. Recall that every positive Radon measure may be regarded

simply as a measure. For a complex-valued, continuous function f on Rd, we define fµ via

(fµ)(g) = µ(fg), for all g ∈ Cc(Rd). In particular, if c ∈ C, we obtain (cµ)(g) = cµ(g), for all

g ∈ Cc(Rd). Given a Radon measure µ, we further define,

µ̃ : g 7→ µ
(
g̃
)
, g̃ : x 7→ g(−x),

for all g ∈ Cc(Rd). This will be important in the context of autocorrelation measures.

Example 1.2.5. The main motivation for the introduction of Radon measures is to obtain

a framework for weighted Dirac combs. For a locally finite point set D ⊂ Rd, the Dirac comb

δD :=
∑
x∈D

δx

forms a locally finite measure. Given a family of complex weights (wx)x∈D, we obtain a Radon

measure via

ω =
∑
x∈D

wxδx, ω : f 7→
∑
x∈D

wxf(x).

It is straightforward to verify that ω̃ =
∑

x∈D wxδ−x. ♢

For every Radon measure µ, there exists a smallest positive Radon measure |µ| such that

|µ(g)| ⩽ |µ|(g) for all g ∈ Cc(Rd) with g ⩾ 0. The Radon measure µ is said to be finite if |µ|
defines a finite measure on Rd. We call µ translation bounded if supx∈Rd |µ|(x+K) < ∞ for

every compact K ⊂ Rd.

Definition 1.2.6. The convolution of two finite Radon measures µ and ν on Rd is defined as

(µ ∗ ν)(g) =

∫
Rd×Rd

g(x+ y) dµ(x) dν(y).

We call a Radon measure µ on Rd positive definite if µ(g ∗ g̃) ⩾ 0 for all g ∈ Cc(Rd). If µ

is finite, it is straightforward to verify that µ ∗ µ̃ is always positive definite.

1.2.3. Fourier transform

We are interested in the Fourier transform of Radon measures. Naively, we would like to define

µ̂(g) = µ(ĝ). Unfortunately, the space Cc(Rd) is not invariant under the Fourier transform

and hence, the expression µ(ĝ) is generally not well-defined. We therefore resort to a different

space of functions as an intermediate step.

Let S(Rd) be the Schwartz space on Rd. The Fourier transform of a function ϕ ∈ S(Rd) is
defined as

ϕ̂(k) =

∫
Rd

e−2πikxϕ(x) dx,
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1.3. Non-negative matrices

for all k ∈ Rd, using kx as a shorthand for ⟨k, x⟩. The Fourier transform is a homeomorphism

on S(Rd). In particular, ϕ̂ ∈ S(Rd) for all ϕ ∈ S(Rd). The corresponding dual space S ′(Rd)
is the space of continuous linear functionals on S(Rd). An element T ∈ S ′(Rd) is called a

tempered distribution. The Fourier transform T̂ of T ∈ S ′(Rd), is defined as

T̂ (ϕ) = T
(
ϕ̂
)
,

for all ϕ ∈ S(Rd). We call a linear functional Tµ : S(Rd) ∪ Cc(Rd) → C a tempered measure,

if the restriction T of Tµ to S(Rd) is a tempered distribution, and the restriction µ of Tµ to

Cc(Rd) defines a Radon measure. The Fourier transform T̂ may or may not have an extension

to a tempered measure T̂µ. If it exists, such an extension is unique because S(Rd) ∩ Cc(Rd)
lies dense in Cc(Rd). In this case, we write µ̂ for the restriction of T̂µ to Cc(Rd), and we

call µ̂ the Fourier transform of µ. The following criterion for the Fourier transformability of

measures, based on a theorem by Bochner–Schwartz, will be of great avail in the context of

diffraction; compare [BG13, Prop. 8.6].

Proposition 1.2.7. If a Radon measure µ on Rd is positive definite, its Fourier transform

µ̂ exists, and is a translation bounded (positive) measure on Rd. ■

The Fourier transform can be made more explicit if µ is a finite Radon measure. In this

case, µ̂ exists and takes the form µ̂ = fµ̂λL, with

fµ̂(k) =

∫
Rd

e−2πikx dµ(x),

defining a bounded, uniformly continuous function on Rd, see [BG13, Ch. 8.6]. With some

abuse of notation, we write µ̂(k) for fµ̂(k). If µ is supported on the unit interval, we call

µ̂(k), with k ∈ Z, the Fourier–Stieltjes coefficients of µ, see [BG13, Ch. 8.7], and [Rud62] for

general background.

1.3. Non-negative matrices

We write Mat(d,R) for the ring of d × d-matrices with entries in R. This notation extends

to the matrix rings Mat(d,Z) and Mat(d,C) with obvious meaning. The 1-norm of v ∈ Rd is

given by ||v||1 =
∑d

i=1 |vi|. It will sometimes be convenient to index a (square) matrix by a

finite set A instead of a subset of the natural numbers. In this case, we write Mat(A,R) for
the ring of matrices (Mab)a,b∈A, with Mab ∈ R, for all a, b ∈ A.

A matrix M ∈ Mat(d,R) is called positive, written M > 0, if Mij > 0 for all 1 ⩽ i, j ⩽ d.

Likewise, a non-negative matrix M ⩾ 0 is such that all entries of M are non-negative. Given

two matrices M,N ∈ Mat(d,R), we set M > N if M −N > 0 and M ⩾ N if M −N ⩾ 0.

Definition 1.3.1. A non-negative matrix M ∈ Mat(d,R) is called irreducible if for each pair

of indices (i, j) there exists a power q ∈ N such that (M q)ij > 0. The matrix M ⩾ 0 is called

primitive if there exists a q ∈ N such that M q > 0.
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Remark 1.3.2. If a matrix M is irreducible, there exists a number p ∈ N such that Mp

decays into a direct sum of primitive matrices (possibly after a permutation of indices). We

call the smallest such number p the period of M . Hence an irreducible matrix is primitive if

and only if it is aperiodic, that is, if its period is p = 1. ♢

Arguably the most important tool for the study of non-negative matrices is the Perron–

Frobenius (PF) theorem. It goes back to work of Perron, who studied positive matrices, and

subsequent generalizations to non-negative matrices by Frobenius. The PF theorem is rather

a family of results than a single assertion; for the formulation below compare [BG13, Thm. 2.2,

Thm. 2.3]. A more exhaustive treatment, including infinite-dimensional generalizations, can

be found in [Sen81] and [Scha99]. Recall that we call a non-zero vector L a left eigenvector

of M with respect to an eigenvalue λ if ⟨L|M = λ⟨L|.

Theorem 1.3.3 (Perron–Frobenius). Let M ∈ Mat(d,R) be a non-negative irreducible ma-

trix. Then, the spectral radius λ = ρ(M) is a simple eigenvalue of M , and there exist

corresponding left and right eigenvectors L and R with strictly positive entries and normal-

ized as ⟨L|R⟩ = ||R||1 = 1. If M is also primitive, λ is strictly larger in modulus than every

other eigenvalue of M , and

lim
n→∞

1

λn
Mn = |R⟩⟨L|,

with geometric rate of convergence. ■

In the situation of Theorem 1.3.3, we call λ the PF eigenvalue of M , whereas L and R are

called the (properly normalized) left and right PF eigenvectors of M , respectively.

1.4. Markov chains

We approach the subject of Markov chains in several steps, dealing first with finite, then

countable and finally uncountable state spaces. Our focus will shift as we pass through these

cases, motivated by the different applications that they find throughout this thesis.

1.4.1. Finite state space

Let S be a finite set, comprising the states of the system. A Markov matrix is a non-negative

matrix M ∈ Mat(S,R) with
∑

s∈SMrs = 1 for all r ∈ S. It follows that λ = 1 is an

eigenvalue of maximal modulus for M . We call a probability vector π on S an equilibrium

vector if ⟨π| = ⟨π|M .

We interpret Mrs as the probability of passing from r to s in one time step. We say that

s is accessible from r, denoted by r ⇝ s, if there is some k ∈ N0 such that (Mk)rs > 0. If

r ⇝ s and s⇝ r, we say that r and s communicate, denoted by r ↔ s. Communication is an

equivalence relation, the corresponding equivalence classes are called communication classes;

compare [Bre20, Ch. 2] for background.

Recall that a state s is said to be recurrent if the probability of a finite return time to itself

is equal to 1. Instead of making this precise, we give an equivalent definition. We emphasize

that this works only because S is assumed to be finite.

6



1.4. Markov chains

Definition 1.4.1. We call a state s ∈ S recurrent if s⇝ r implies r ⇝ s for all r ∈ S. It is

called transient otherwise.

Let R ⊂ S be the set of recurrent states. Since recurrence is a class property, R decays

into a finite collection of communication classes R1, . . . ,Rm, called recurrence classes. By

construction, the restriction Mj of M to a recurrence class Rj is irreducible. Let pj ∈ N
denote the period of the irreducible matrix Mj . The least common multiple p of all the

integers {pj}1⩽j⩽m is called the period of M . The restriction of Mp to Rj decays into pj
primitive components, for all 1 ⩽ j ⩽ m.

Remark 1.4.2. The sets of recurrent and transient states remain the same for every power

of the Markov matrix M , however the recurrence classes may become smaller. Hence, what

we have gained by passing from M to Mp is that we can assume that the restriction of Mp

to each of its recurrence classes is primitive. ♢

Up to replacing M by some of its powers, we can assume that it has period p = 1. In this

case, we say that M is aperiodic. For each recurrence class Rj , there is a unique equilibrium

vector πj of M that is supported on Rj . The long term behaviour of M is captured by the

following result; compare [Bre20, Ch. 6]. Here, we denote by es the unit vector given by

(es)s = 1 and (es)r = 0 if r ̸= s.

Fact 1.4.3. Let M be an aperiodic Markov matrix on the state space S with recurrence classes

R1, . . . ,Rm and corresponding equilibrium vectors π1, . . . , πm. For every s ∈ S, there exists

a unique probability vector cs = (cs,j)1⩽j⩽m such that

lim
n→∞

⟨es|Mn =
m∑
j=1

cs,j⟨πj |,

holds for all s ∈ S. ■

We call cs,j the absorption probability of s by the class Rj . The vector cs is a unit vector

whenever s is itself a recurrent state.

1.4.2. Countable state space

Assume now that S is a countable set. A Markov matrix M = (Mrs)r,s∈S on S is a non-

negative matrix on the infinite index set S with the property that
∑

s∈SMrs = 1 for all r ∈ S.

A homogeneous Markov chain on S with Markov matrix M is a sequence of S-valued random

variables (Xn)n∈N0 on some probability space (Ω,F ,P) such that

P[Xn+1 = sn+1|Xn = sn, . . . , X0 = s0] = P[Xn+1 = sn+1|Xn = sn] = Msnsn+1 , (1.2)

for all n ∈ N and s0, . . . , sn+1 ∈ S. The initial distribution P ◦ X−1
0 , together with M ,

uniquely determines the distribution of the sequence-valued random variable (Xn)n∈N0 on

SN0 . Conversely, given an initial distribution vector π0 on S and a Markov matrix M , a

corresponding Markov process with the required properties always exists. This is due to
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Kolmogorov’s extension theorem; compare for example [Kle14, Thm. 14.36]. The probability

vector πn, corresponding to the measure P ◦X−1
n on S, can be calculated from

⟨πn| = ⟨π0|Mn,

for all n ∈ N. We will mostly be concerned with the case that every row ofM has only finitely

many non-zero entries. In this case, every component of ⟨πn| can be calculated from a finite

sum.

1.4.3. General state space

Let X be a complete metric space with Borel σ-algebra B. In this case, we replace the concept

of a Markov matrix by that of a Markov kernel.

Definition 1.4.4. A Markov kernel on (X,B) is a map κ : (X,B) → [0, 1] such that

(1) x 7→ κ(x,A) is a measurable function, for all A ∈ B.
(2) A 7→ κ(x,A) is a probability measure, for every x ∈ X.

For a general state space, events like {Xn = x} typically form a null set. We therefore

have to be careful in generalizing the Markov property from (1.2). For an appropriate notion

of conditional probabilities, see Appendix A and [Kle14, Ch. 8]. In the following, we use

the notation σ(X0, . . . , Xn) for the smallest σ-algebra generated by the random variables

X0, . . . , Xn.

Given a Markov kernel κ on (X,B) and an initial probability distribution µ0, there exists

an X-valued, homogeneous Markov chain (Xn)n∈N0 on some probability space (Ω,F ,P) such
that P ◦X−1

0 = µ0, and

P[Xn+1 ∈ A|σ(X0, . . . , Xn)] = κ(Xn, A), (1.3)

holds P-almost surely, for all A ∈ B and n ∈ N0. This follows from a famous result due to

Ionescu-Tulcea; see for example [Kle14, Thm. 14.32].

Together with the initial distribution µ0, the relation (1.3) fixes the finite-dimensional

distributions P ◦ (X0, . . . , Xn)
−1 unambiguously. In fact, the distribution of the random

sequence (Xn)n∈N0 is uniquely determined by µ0 and the transition kernel κ. A relation

between the distributions µn = P ◦X−1
n can be found by integrating (1.3). Indeed, we have

µn+1 = κ∗µn, for all n ∈ N0, where

(κ∗µ)(A) =

∫
x∈X

κ(x,A) dµn(x),

for all A ∈ B and Borel probability measures µ on X. The Markov operator κ∗ : µ 7→ κ∗µ is

called the dual of the transition kernel κ.

8



2. Dynamical systems

Throughout substantial parts of this thesis, the structures that we investigate can be modelled

by bi-infinite sequences. Equipping the space of sequences with an index-shift places us into

the realm of symbolic dynamical systems, which we introduce in Section 2.1 as our key players.

The field of dynamical systems offers an impressive variety of concepts that assess the

degree of (dis)order of the system, most of them invariant under appropriate isomorphisms.

For the exposition in this chapter, we cluster them into three different groups.

The mixing properties presented in Section 2.2 characterize how well the underlying space is

exhausted by following the orbit of single points (or small neighbourhoods). Some of these

notions make reference to an associated measure while others only rely on the topological

structure.

In Section 2.3, we adopt a point of view inspired by information theory and introduce the

notions of topological and metric entropy. The connection between the two concept emerges

via a variational principle.

An operator-theoretic approach yields a spectral characterization of the underlying dynamical

system. In Section 2.4, we develop the formalism for both unitary and self-adjoint operators.

The unitary Koopman operator gives rise to the dynamical spectrum which is closely related

to the (sometimes more easily computable) diffraction spectrum. The self-adjoint Schrödinger

operator will be the main object of interest in Chapter 5.

2.1. Symbolic dynamics

2.1.1. From dynamical systems to symbolic sequences

For the sake of this thesis, a (topological) dynamical systems (X,T ) consists of a compact

space X, equipped with a continuous map T : X → X. The map T may or may not be

invertible, but for most of the examples that we will encounter, T is surjective. The dynamics

on the base space X is induced by iterating the map T . That is, given x ∈ X, we should

think of Tnx as the position of x at time n ∈ N0. If T is invertible, we even take n ∈ Z and

interpret negative integers as pertaining to the past. Following this idea, the orbit of x ∈ X

under T is defined as,

orbT (x) = {Tnx : n ∈ I},

where, here and in the following, I = Z if T is invertible and I = N0 otherwise. We simply

write orb(x) if the map T is understood. In many situations (X,T ) is equipped with a

measure µ, which we tacitly assume to be defined on the Borel σ-algebra that is induced by

the topology on X. We say that µ is T -invariant , if µ = µ ◦ T−1. We denote by MT (X) the

space of T -invariant (Borel) measures on X, and by M1
T (X) the convex subset of probability
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2. Dynamical systems

measures in MT (X). Given µ ∈ M1
T (X), we call (X,T, µ) a measure-preserving dynamical

system.

From a general dynamical system, we obtain a symbolic coding by coarse-graining the

space X. This procedure is justified by the fact that, in practical situations, only a finite

resolution is available. More precisely, we consider a partition of X into Borel sets, given by

α = {Xa}a∈A, where the alphabet A constitutes a finite index set. Being a partition means

that X = ∪a∈AXa and that, for a, b ∈ A with a ̸= b, the sets Xa and Xb are disjoint. We

follow the dynamics of a point x ∈ X by recording in a string of symbols the succession of

sets that are visited by the orbit of x. That is, we obtain a coding map

πα : x 7→ (an)n∈I,

where an is the uniquely determined letter such that Tnx ∈ Xan , for all n ∈ I. If the partition
α is chosen wisely and if the map T is chaotic enough, we can recover the point x from the

sequence πα(x) and narrow down the position of x to a small region by just considering a

finite number of symbols from the sequence πα(x). Questions about the dynamics on X are

hence naturally translated to questions about the obtainable successions of symbols. This

point of view is particularly relevant for the discussion of metric entropy in Section 2.3.

2.1.2. Symbolic notation

In what follows, we set up the basic notation for combinatorics on words. This is mostly in line

with the conventions in [BG13, Ch. 4] to which we refer for further details; see also [LM95].

We start with a finite set A, called alphabet. Elements of A are called letters. To exclude

trivial cases, we assume that #A ⩾ 2. A word is an element of A+ =
⋃
n∈NAn. If u ∈ An,

we say that u is of length n, and write |u| = n in this case. Given 1 ⩽ j ⩽ n and u ∈ An,

we denote by uj the j-th entry of the n-tuple u. In line with standard conventions, we write

u1u2 · · ·un instead of (u1, u2, . . . , un) for a word u in An. The concatenation of two words

u = u1 · · ·un ∈ An and v = v1 · · · vm ∈ Am, is given by uv = u1 · · ·unv1 · · · vm ∈ An+m. Thus,

the set of words A+ forms a (free) semigroup under concatenation. It can be extended to a

monoid A∗ = A+ ∪ {ε} by adding the empty word ε, satisfying εv = vε = v for all v ∈ A+.

We call a word v a prefix of another word u if there is a word v′ ∈ A∗ such that u = vv′.

Similarly, v is a suffix of u, if there is v′ ∈ A∗ such that u = v′v. Given u ∈ An and

1 ⩽ j ⩽ k ⩽ n, we call

u[j,k] := uj · · ·uk

a subword of u. By convention, u[j,j] = uj for all 1 ⩽ j ⩽ |u|. For two words u, v with

|v| ⩽ |u|, we set

|u|v = #{1 ⩽ j ⩽ |u| − |v|+ 1 : u[j,j+|v|−1] = v}

to be the number of times that v occurs in u as a subword. Note that different occurrences

of v in u may overlap. We write v ◁ u if v occurs as a subword of u. In the special case that

v = a ∈ A is a letter, we obtain |u|a = #{1 ⩽ j ⩽ |u| : uj = a}. The Abelianisation of a word

u is given by

Φ(u) = (|u|a)a∈A.
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Intuitively, the Abelianisation erases the specific order of letters in a word as it amounts to

counting their absolute numbers.

For n ∈ N and u ∈ A+, we write un = u · · ·u for the n-fold concatenation of the word u

with itself. Formally, we set u0 = ε. In Chapter 5, we will also be concerned with rational

powers of a word u. For u = u1 · · ·um, and 1 ⩽ k < m, we write uk/m = u1 · · ·uk, for the

prefix of u of length k. Accordingly, given s = n+ k/m, for n ∈ N and 1 ⩽ k < m, we set

us = unu1 · · ·uk,

for all u ∈ Am.

2.1.3. From symbolic sequences to dynamics

In order to get back to dynamical systems, we consider the spaces of (bi-)infinite sequences of

symbols, AN and AZ. Let I stand for N or Z in the following. We equip AI with the product

topology inherited from the discrete topology on A. Thus, AI is a compact space due to

Tychonoff’s theorem [Cec37,Tyc30]. It is noteworthy that the topology on AI is metrizable.

Somewhat arbitrarily, we fix a metric on AI by

d(x, y) =
∑
n∈I

δxn,yn
2n

,

that is, two sequences x, y ∈ AI are close precisely if they agree on a large window around

the origin. For x = (xn)n∈I ∈ AI, and j, k ∈ I satisfying j ⩽ k we set x[j,k] = xj · · ·xk. The

topology on AI is generated by cylinder sets of the form

[v]j = {x ∈ AI : x[j,j+|v|−1] = v},

with v ∈ A+ and j ∈ I. We write [v] for the cylinder set starting at the origin, that is, we

set [v] = [v]1 if I = N and [v] = [v]0 if I = Z. These sets are both closed and open and hence

termed clopen. In the bilateral case, we also make use of the notation

[u.v] = {x ∈ AZ : x[−|u|,|v|−1] = uv},

for u, v ∈ A+. We define the (left) shift action S : AI → AI, via the prescription (Sx)n = xn+1

for all n ∈ I. We call the compact dynamical system (AI, S) the full shift on A. The map

S is invertible on AI precisely if I = Z. A bi-infinite sequence x = (xn)n∈Z ∈ AZ is often

represented in the form

x = · · ·x−2x−1.x0x1x2 · · · ,

where the lower dot indicates the position between the entries of index −1 and 0. If x is

S-periodic, it can be written in the form

x = vZ = · · · vvv.vvv · · · ,

for some v ∈ A+. We say that x is eventually periodic to the right if there is some k ∈ Z such

that

(Skx)[0,∞) = vN,
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for some v ∈ A+, with obvious meaning. Likewise, x is called eventually periodic to the left

if (Skx)(−∞,−1] = v−N, for some k ∈ Z and v ∈ A+. If v ∈ A is a letter, we use the term

eventually constant instead of eventually periodic.

Definition 2.1.1. A subshift of (AI, S) is a dynamical system (X, S), given by an S-invariant

closed subset X of AI, equipped with the restriction of S to X. The language of X is defined

as

L(X) = {v ∈ A+ : [v] ∩ X ̸= ∅},

words in L(X) are called legal, and we set Ln(X) = L(X) ∩ An, for all n ∈ N. We call (X, S)
a one-sided (two-sided) subshift if I = N (I = Z).

Remark 2.1.2. In Definition 2.1.1, we identify the restriction of S to X with S, by slight

abuse of notation. Also, the term subshift sometimes refers to just X instead of (X, S). If the
subshift is understood, we frequently write [v]j in place of [v]j∩X, for v ∈ A+ and j ∈ I. Since
X is S-invariant by definition, the legal words are precisely those that appear as a subword

of some element in X. ♢

Let us present some particularly prominent examples of subshifts [LM95]. In Chapter 3,

we will focus on another paradigmatic family of subshifts, arising from substitutions.

Example 2.1.3. Given v ∈ A+, the periodic orbit X = orbS(v
Z) is a finite set, hence closed,

and clearly S-invariant. That is, (X, S) is a subshift. The cardinality of X is bounded by |v|
but might be smaller if v is itself an integer power of a shorter word. ♢

Example 2.1.4. Let #A = n and A ∈ Mat(n,R) a matrix with entries in {0, 1}, indexed by

the alphabet A. We call

XA = {x ∈ AI : Axixi+1
= 1 for all i ∈ I}

a Markov subshift with transition matrix A (unless XA = ∅). By construction, (XA, S) is a

subshift. ♢

Example 2.1.5. Let F ⊂ A+ be a finite collection of forbidden words. The subshift given

by

XF = {x ∈ AI : x[j,k] /∈ F for all j, k ∈ I, with j ⩽ k}

is called a subshift of finite type (SFT), provided it is non-empty. ♢

Every Markov subshift XA is an SFT, with F = {ab ∈ A2 : Aab = 0}. Conversely, every

SFT is conjugate to a Markov subshift [LM95] in the following sense.

Definition 2.1.6. Let (X1, T1) and (X2, T2) be compact dynamical systems. We say that

(X2, T2) is a (topological) factor of (X1, T1) if there exists a continuous, surjective map

π : X1 → X2 such that π ◦ T1 = T2 ◦ π. In this case, we call π a factor map. If π is even a

homeomorphism, we say that (X1, T1) and (X2, T2) are (topologically) conjugate and call π

a topological conjugation.
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· · · x−3 x−2 x−1 x0 x1 x2 x3 x4 x5 x6 · · ·

· · · y−3 y−2 y−1 y0 y1 y2 y3 y4 y5 y6 · · ·

g

Figure 2.1.: Sliding block code ϕg acting on x, yielding the sequence y = ϕg(x).

Topological conjugacy is an important concept in the study of dynamical system because it

preserves the dynamical properties, due to the defining commutation relation. In particular,

all of the topological characteristics of dynamical systems that we encounter in the following

sections are invariant under conjugacy. If (X1, T1) and (X2, T2) are both subshifts, factor

maps and conjugations take a particular form. For simplicity, we assume that both subshifts

are defined over the same alphabet (possibly by taking the union of the original alphabets).

Definition 2.1.7. Let (X1, S) and (X2, S) be subshifts of (AI, S). Given n ∈ N and a function

g : Ln(X1) → L1(X2), we define the (basic) sliding block code ϕg : X1 → X2 via

ϕg : x 7→ ϕg(x), (ϕg(x))j = g(x[j,j+n−1]),

for all j ∈ I. A general sliding block code is of the form ϕg ◦ Sk, for some k ∈ I.

An illustration of a basic sliding block code for some function g : L4(X1) → L1(X2) is

shown in Figure 2.1. It is easy to verify that every sliding block code is continuous and

commutes with the shift action and is hence a factor map. On the other hand, given a

factor map π : X1 → X2 between subshifts, we can deduce that π is a sliding block code

from the requirement that π−1([a]) is clopen for all a ∈ L1(X2) and π ◦ S = S ◦ π. Hence,

sliding block codes are precisely the factor maps between subshifts. This is the content of the

Curtis–Lyndon–Hedlund theorem; compare [LM95, Thm. 6.2.9].

There is a natural analogue of topological factor maps and topological conjugations to

measure-preserving dynamical systems, which again offers a natural tool for their classifica-

tion.

Definition 2.1.8. Let (X1, T1, µ1) and (X2, T2, µ2) be measure-preserving dynamical systems.

We call (X2, T2, µ2) a (measure-theoretic) factor of (X1, T1, µ1) if there is a measurable map

π : X1 → X2 such that µ2 = µ1 ◦ π−1 and π ◦ T1 = T2 ◦ π holds almost surely. In this case,

we call π a factor map. If π is a bijection (up to null sets), we say that (X1, T1, µ1) and

(X2, T2, µ2) are metrically ismorphic and call π a metric isomorphism.

Every topological conjugation π between (X1, T1) and (X2, T2) also constitutes a metric

isomorphism between (X1, T1, µ) and (X2, T2, µ ◦ π−1), for every µ ∈ M1
T (X1). However, not

every metric ismorphism arises in this manner; in general, it corresponds to a more coarse-

grained perspective on the underlying spaces.

All of the measure-theoretic characteristics that we present in the following are invariant

under metric isomorphisms. Within a class of dynamical systems, we call a characteristic a
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complete invariant if it is the same for two dynamical systems precisely if these systems are

isomorphic. We invite the reader to think of a complete invariant as a fingerprint of dynamical

systems.

2.2. Mixing properties

2.2.1. Topological characteristics

Definition 2.2.1. A dynamical system (X,T ) is said to be topologically transitive if for every

pair of non-empty open sets U, V ∈ X, there exists an integer n ∈ N such that

Tn(U) ∩ V ̸= ∅. (2.1)

In this situation, (X,T ) is topologically mixing if there exists an n0 ∈ N, depending on U and

V , such that (2.1) holds for all n ⩾ n0.

Remark 2.2.2. If (X,T ) = (X, S) is a subshift, both topological transitivity and topological

mixing can be expressed as a combinatorial condition. Indeed, (X, S) is topologically transitive

if and only if, for all u, v ∈ L(X), there is a word w such that uwv ∈ L(X). If |w| can take

any integer value greater than some n0, the system (X, S) is even topologically mixing. We

refer to [LM95, Ch. 6] for details. ♢

Example 2.2.3. Let (XA, S) be a Markov subshift with transition matrix A. Let Â be

the restriction of A to the index set given by L(XA), that is, we set Âab = Aab for all

a, b ∈ L(XA). Then, (XA, S) is topologically transitive if and only if Â is irreducible and

(XA, S) is topologically mixing if and only if Â is primitive. This is straightforward to verify

from Remark 2.2.2. ♢

For compact and metrizable dynamical systems, there is a useful characterization of topolog-

ical transitivity that follows from a more general result by Silverman [Sil92]; see also [AC12].

Fact 2.2.4. Let X be a compact metrizable space. If (X,T ) is topologically transitive, there

exists a point x ∈ X such that orbT (x) is dense in X. The converse holds if X has no

isolated points. ■

Points with a dense orbit in X are sometimes called hypercyclic. In particularly convenient

situations, all points in X are hypercyclic.

Definition 2.2.5. A dynamical system (X,T ) on a compact metrizable space X is called

minimal if, for every x ∈ X, the orbit orbT (x) is dense in X.

Another equivalent definition of minimality often found in the literature is that X,∅ are

the only T -invariant subsets of X. Periodic orbits are particularly simple examples of minimal

systems; we will encounter more interesting examples in Chapter 3.

14
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2.2.2. Measure-theoretic characteristics

For the remainder of this section, we assume that a dynamical system (X,T ) is equipped

with a T -invariant Borel measure µ. A useful property of such a measure with far-reaching

consequences is ergodicity.

Definition 2.2.6. Given a dynamical system (X,T ) and µ ∈ MT (X), we say that the

measure µ is ergodic if, for every measurable set A with A = T−1A, we have µ(A) = 0 or

µ(AC) = 0.

We will encounter dynamical systems with an infinite (but σ-finite) ergodic measure in

Chapter 5. For background on infinite ergodic theory, we refer to the book by Aaronson

[Aar97]. In the following, we stick to the more common case that µ is a probability measure.

Under this assumption, there are many useful characterizations of ergodicity in the literature;

compare for example [Pet83,Wal82]. A particularly useful property of ergodic probability

measures is that they allow us to replace orbit averages for typical points by integration

over the underlying space. This is the content of Birkhoff’s ergodic theorem [Bir31]. In the

following form, it is taken from [Pet83, Thm. 4.4].

Theorem 2.2.7 (Birkhoff). Let (X,T, µ) be a measure-preserving dynamical system. The

measure µ is ergodic if and only if, for all f ∈ L1(X,µ),

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
X
f dµ

holds for µ-almost every x ∈ X. ■

The ergodic probability measures on a dynamical system (X,T ) are precisely the extremal

points of the convex set of T -invariant Borel probability measures M1
T (X). In particular,

there always exists at least one ergodic measure.

Definition 2.2.8. We call a dynamical system (X,T ) uniquely ergodic if there exists precisely

one ergodic probability measure on (X,T ). If, in addition, (X,T ) is minimal, we call it strictly

ergodic.

Although we may think of unique ergodicity as the analogue of minimality in the measure-

theoretic category, the two notions are independent in general. A condition by Boshernitzan

establishes a connection between the two properties for subshifts.

Definition 2.2.9. Let (X, S) be a subshift. For an invariant measure µ on (X, S), we set

µ(n) = min{µ[v] : v ∈ Ln(X)}. We say that (X, S) satisfies Boshernitzan’s condition if there

exists an invariant measure µ such that

lim sup
n→∞

nµ(n) > 0.

If, in addition, (X, S) is minimal, we call it a Boshernitzan subshift .

15



2. Dynamical systems

If (X, S) is minimal, Boshernitzan’s condition implies that it is also uniquely ergodic [Bos92].

It has also become an invaluable condition in the analysis of Schrödinger operators defined

on symbolic dynamical systems; we will come back to this in Chapter 5.

There is yet another formulation of ergodicity, which underlines its interpretation as a

mixing property. A measure µ ∈ M1
T (X) is ergodic on (X,T ) precisely if

lim
n→∞

1

n

n−1∑
k=0

µ(T−kA ∩B) = µ(A)µ(B),

for all measurable A,B ∈ X. That is, ergodicity means convergence of µ(T−kA ∩ B) to

µ(A)µ(B) in a Cesàro sense. Stronger notions of convergence can be related to stronger

versions of mixing.

Definition 2.2.10. Let µ ∈M1
T (X). We say that µ is weakly mixing on (X,T ) if

lim
n→∞

1

n

n−1∑
k=0

|µ(T−kA ∩B)− µ(A)µ(B)| = 0,

for all measurable A,B ∈ X. We say that µ is strongly mixing on (X,T ) if

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B), (2.2)

for all measurable A,B ∈ X.

From these definitions, it is immediate that strong mixing implies weak mixing, which in

turn implies ergodicity. Hence, within this hierarchy, ergodicity is in fact the weakest notion

of mixing.

Example 2.2.11. Consider the full shift (AZ, S), equipped with the Bernoulli measure µ,

defined via

µ([v1 · · · vn]) = (#A)−n,

for all v1 · · · vn ∈ An and n ∈ N. It is easy to verify the defining relation for strong mixing

in (2.2) if A,B are cylinder sets. This is in fact enough to conclude strong mixing because

the cylinder sets (determining the first position) form a semi-algebra of sets that generate the

Borel σ-algebra; compare the discussion in [Pet83, Ch. 2.5]. ♢

2.3. Entropy and complexity

2.3.1. Measure-theoretic entropy

Picture a situation where the orbit of a point is observed with finite resolution, modelled by

some coarse-graining of the underlying space. The entropy of the dynamical system measures

the average amount of information about the initial point that we can gain per step, provided

we have a complete understanding of the underlying dynamics.
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2.3. Entropy and complexity

We start from a measure-preserving dynamical system (X,T, µ). As in Section 2.1, we

model the coarse-graining by some finite measurable partition α = {Xa}a∈A. To avoid tech-

nicalities, we further assume that µ(Xa) > 0 for all a ∈ A. A small value of µ(Xa) corresponds

to a small a-priori probability of finding a point x in Xa and hence to a larger gain of informa-

tion if x ∈ Xa is revealed to hold true. More formally, we define the information function as

Iα(x) = − log(µ(Xa)), whenever x ∈ Xa. We obtain the corresponding entropy by averaging

over all x ∈ X.

Definition 2.3.1. Let α = {Xa}a∈A be a finite, measurable partition ofX and µ a probability

measure on X. The entropy of the partition α is defined as

Hµ(α) =

∫
X
Ia dµ = −

∑
a∈A

µ(Xa) logµ(Xa).

Let us denote by P the collection of all finite measurable partitions of X such that every

element of the partition has positive µ-measure. Given α, β ∈ P, we call

α ∨ β = {A ∩B : A ∈ α,B ∈ β}

the common refinement of α and β. More generally, we say that β is a refinement of α,

denoted by α ⩽ β if, for every B ∈ β, there is some A ∈ α such that B ⊂ A. We say that

α and β are independent if µ(A ∩ B) = µ(A)µ(B) for all A ∈ α and B ∈ β. The definition

of entropy is chosen in such a way that Hµ(α ∨ β) = Hµ(α) +Hµ(β), whenever α and β are

independent.

In several applications, we are interested in the additional gain of information that we

obtain from a partition α ∈ P, provided that the chosen element of a second partition β ∈ P
is already known. Given B ∈ β, we define the conditional measure µB via

µB(A) = µ(A|B) =
µ(A ∩B)

µ(B)
,

for all measurable A ⊂ X. The conditional information function is defined as the function

Iα|β, satisfying Iα|β(x) = − log(µB(A)), whenever x ∈ A∩B, for A ∈ α and B ∈ β. Likewise,

the conditional entropy is defined as

Hµ(α|β) =

∫
X
Iα|β dµ =

∑
B∈β

µ(B)HµB
(α).

Let us state a few properties of (conditional) entropy that will become useful in Chapter 4.

The proofs are textbook material, compare for example [Kel98,Pet83].

Fact 2.3.2. The (conditional) entropy satisfies the following properties.

(1) Hµ(α) ⩽ Hµ(α ∨ β) for all α, β ∈ P, with equality if and only if β ⩽ α up to null sets.

(2) Hµ(α ∨ β) = Hµ(β) +Hµ(α|β) for all α, β ∈ P.

(3) Hµ(α|β) ⩽ Hµ(α) for all α, β ∈ P, with equality if and only if α and β are independent.

■
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2. Dynamical systems

Remark 2.3.3. We can also associate a partition α to a random variable V on (X,µ) that

can take values in a finite set S. More precisely, we set α(V ) = {V −1(s) : s ∈ S}. In this

case, we define Hµ(V ) = Hµ(α(V )) with slight abuse of notation. Given two such random

variables V and W on (X,µ), we similarly define Hµ(V |W ) = Hµ(α(V )|α(W )). This point

of view will become relevant in Section 4.2. ♢

Let us introduce some reference to the dynamics to our discussion of entropy. Given α ∈ P,

we collect the information that we obtain from observing the succession of sets in α that are

visited by the orbit of some unknown point x ∈ X. For n ∈ N, the condition Tnx ∈ A can

alternatively be formulated as x ∈ T−nA. That is, observing the orbit at time n corresponds

to choosing one of the sets in T−nα. Hence, the accumulated (average) information that we

have obtained after n steps is given by the entropy of the partition

αn := α ∨ T−1α ∨ · · · ∨ T−(n−1)α.

In general, Hµ(αn) will diverge as n → ∞. However, the entropy per step is often a useful

characteristic. This is well-defined due to a result by Fekete [Fek23] because (Hµ(αn))n∈N is

a subadditive sequence by virtue of Fact 2.3.2.

Definition 2.3.4. Given a measure-preserving dynamical system (X,T, µ) and a partition

α ∈ P, we define

hµ(T, α) = lim
n→∞

1

n
Hµ(αn).

The (measure-theoretic) entropy of µ on (X,T ) is given by

hµ(T ) = sup
α∈P

hµ(T, α).

Measure-theoretic entropy also appears under the terms metric entropy and Kolmogorov–

Sinai entropy in the literature. Let I = Z if T is invertible and I = N0 otherwise. We say that α

is a µ-generator with respect to T , if the smallest σ-algebra containing all of the sets in T−nα,

for all n ∈ I, is the Borel σ-algebra on X, up to µ-null sets. The following result goes back to

Kolmogorov [Kol59] and Sinai [Sina59], in this form it is taken from [Kel98, Thm. 3.2.18].

Theorem 2.3.5 (Kolmogorov–Sinai). Let α be a µ-generator with respect to T . Then,

hµ(T ) = hµ(T, α). ■

Example 2.3.6. Let (X, S) be a subshift over some alphabet A. We note that the partition

α = {[a] : a ∈ A}, together with the shift action S, generates the collection of cylinder sets

and hence the complete Borel σ-algebra. That is, the entropy of µ ∈ M1
S(X) is given by

hµ(S) = − lim
n→∞

1

n

∑
v∈Ln(X)

µ([v]) log(µ([v])).

A trivial upper bound for hµ(S) is given by log(#A). ♢

If the measure µ is not only T -invariant but even ergodic, it is possible to obtain the entropy

hµ(T ) from individual points almost surely. This became known as the Shannon–MacMillan–

Breiman theorem. We formulate it here in the special case that (X,T ) is a subshift which is

most relevant for us; compare [Kel98, Thm. 3.2.7] for the more general result.
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2.3. Entropy and complexity

Theorem 2.3.7 (Shannon–MacMillan–Breiman). Let (X, S) be a subshift, equipped with an

ergodic measure µ ∈ M1
S(X). Then,

hµ(S) = lim
n→∞

− 1

n
log(µ([x1 · · ·xn])),

holds for µ-almost every x ∈ X. ■

2.3.2. Topological entropy

Topological entropy was introduced by Adler, Konheim and McAndrew as an analogue of

measure-theoretic entropy [AKM65]. Indeed, the construction closely follows the ideas pre-

sented in the last section; we refer to [Wal82, Ch. 7] for background. Instead of a measurable

partition, we start from a finite open cover U of the compact space X. We define N(U) as the
cardinality of the smallest open subcover of U . The entropy of U is given byH(U) = logN(U).
The common refinement of two finite open covers U ,V is given by

U ∨ V = {A ∩B : A ∈ U , B ∈ V, A ∩B ̸= ∅}.

Since T is continuous, each of the collections T−n(U) is a finite open cover of X, and the

same holds for

Un = U ∨ T−1U ∨ · · · ∨ T−(n−1)U ,

for all n ∈ N. Again, H(Un)n∈N is a subadditive sequence and hence, the limit in the following

definition is well-defined.

Definition 2.3.8. Given a dynamical system (X,T ) and a finite open cover U of X, we define

htop(T,U) = lim
n→∞

1

n
H(Un).

The topological entropy on (X,T ) is given by htop(T ) = supU htop(T,U).

The concept of topological entropy can be extended to non-compact metric spaces X using

the concept of (n, ε)-separated sets (or alternatively (n, ε)-spanning sets), going back to ideas

of Bowen [Bow73]. For compact metric spaces, all three definitions coincide. A relation be-

tween topological entropy and measure-theoretic entropy was established by Dinaburg [Din70],

Goodman [Goo71] and Goodwyn [Goo72]. This takes the form of a variational princi-

ple [Wal82, Thm. 8.6].

Theorem 2.3.9. Let (X,T ) be a dynamical system on a compact metric space X. Then,

htop(T ) = sup{hµ(T ) : µ ∈ M1
T (X)}. ■

We call µ ameasure of maximal entropy if htop(T ) = hµ(T ). In Chapter 6, we will encounter

a related, but slightly more general variational principle.

Example 2.3.10. Let (XA, S) be a Markov subshift with irreducible transition matrix A.

Let λ be the PF eigenvalue of A and L,R the left and right PF eigenvectors, respectively.

The Parry measure µ on (XA, S) is defined via

µ([x1 · · ·xn]) =
Lx1Rxn
λn−1
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for all x1 · · ·xn ∈ Ln(XA) and n ⩾ 2. It can be shown that µ is the unique measure of

maximal entropy on (XA, S) [Par64], see also [Mañ87]. ♢

For a subshift (X, S), the topological entropy can in fact be calculated as a combinatorial

quantity. Let us define the complexity function corresponding to X by

c : N → N, c(n) = #Ln(X).

Then, the topological entropy of (X, S) is given by

htop(S) = lim
n→∞

log(c(n))

n
;

compare [Pet83, Ex. 3.6]. If the topological entropy of (X, S) is equal to 0, it is customary to

study the growth behaviour of the complexity function instead.

2.4. Spectral properties

2.4.1. Spectral theory for normal operators

In this section, we give a brief exposition of the spectral theorem; see for example [Con90] for

a more thorough introduction to the topic. Let N be a normal, bounded linear operator on

a separable Hilbert space H. The spectrum of N is defined as

σ(N) = {z ∈ C : (N − z) is not invertible}.

The spectral theorem asserts that N can be represented by a multiplication operator on

an appropriate function space; compare [Pet83, Ch. 1.4], [Con90, Thm. 10.1] and [EFHN15,

Thm. 18.2].

Theorem 2.4.1 (Spectral theorem). There is a sequence of finite Borel measures (νn)n∈I
on C, with I finite or countable, such that ν1 ≫ ν2 ≫ · · · , and such that N is unitarily

equivalent to the operator M = ⊕n∈IMn on ⊕n∈IL
2(C, νn), where

Mn : L
2(C, νn) → L2(C, νn), (Mnf)(z) = zf(z),

for all n ∈ I. Each of the measures νn, with n ∈ I, is unique up to equivalence. ■

The spectrum of each of the operatorsMn is given by the topological support of νn [Con90,

Ex. 2.5]. Since the measures νn are nested by absolute continuity (and since unitary equiva-

lence preserves the spectrum), we observe

σ(N) = supp(ν1).

We call ν1 a measure of maximal spectral type. Identifying the complex plane C with R2, we

can apply the Lebesgue decomposition to ν1, yielding

ν1 = ν1,pp + ν1,sc + ν1,ac.
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This provides refined spectral information about N . For example, a number λ ∈ C is an

eigenvalue of N if and only if ν1,pp({λ}) > 0. This motivates us to define, for • ∈ {pp, sc, ac},

σ•(N) = supp(ν1,•).

Note that σ(N) = σpp(N) ∪ σsc(N) ∪ σac(N), but in general this union is not disjoint.

In some cases, we are interested in the iterates of N on a single element h ∈ H. Assume

that the unitary equivalence between N and M relates h to (fn)n∈I . Then, for all n ∈ N, we
obtain

⟨h,Nnh⟩H =
∑
m∈I

∫
C
zn|fm(z)|2 dνm(z) =

∫
C
zn dνh(z),

where νh =
∑

m∈I |fm|2νm. We call νh the spectral measure of h, and note νh ≪ ν1.

The Schrödinger operators that we shall consider in Chapter 5 are bounded, self-adjoint

operators on a separable Hilbert space and are hence covered by the results in this section.

In this case, the spectrum is a subset of the real line. For a discussion of spectral theory with

a view towards Schrödinger operators, see [DFa, Ch. 1].

2.4.2. The dynamical spectrum

Of particular importance in the study of a measure-preserving dynamical system (X,T, µ) is

the Koopman operator

UT : L
2(X,µ) → L2(X,µ), f 7→ f ◦ T.

Let us further assume that X is a compact metric space. In this case, the Hilbert space

L2(X,µ) is separable, as follows from [Bil95, Thm. 19.2]. The operator UT is unitary, hence

both normal and bounded, and the results of the preceding section are applicable. We call

σ(UT ) the dynamical spectrum of (X,T ). This set is contained in the complex unit circle S1

because UT is an isometry. Given a measure of maximal spectral type ν of UT , we relate

attributes of the equivalence class of ν to the dynamical spectrum. For example, we say that

the dynamical spectrum is pure point if ν = νpp.

The measure-theoretic mixing properties of the system (X,T, µ) discussed earlier can in

fact be rephrased as spectral properties of the Koopman operator; compare [Que10, Prop. 3.1]

and [Que10, Prop. 3.10] for the proof of the following result. Recall that we assume X to be

a compact topological space and µ ∈ M1
T (X) a T -invariant probability measure on X.

Fact 2.4.2. The measure-preserving dynamical system (X,T, µ) is ergodic if and only if

λ = 1 is a simple eigenvalue of UT , that is, the constant functions in L2(X,µ) are the only

functions with f = f ◦ T . The system (X,T, µ) is weakly mixing if and only if λ = 1 is a

simple eigenvalue of UT and UT has no further eigenvalues. ■

It is also possible to rephrase strong mixing in terms of properties of the measure of maximal

spectral type ν [Que10, Prop. 3.9]. Further, it is worth pointing out that, due to a theorem

by von Neumann, every ergodic and invertible dynamical system (X,T, µ) with pure point

dynamical spectrum is isomorphic to a rotation on some compact abelian group, equipped
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with the Haar measure [PF02, Thm. 1.5.4]. For this class of systems, the dynamical spectrum

is a complete invariant. As a rough guiding principle, the more ordered a system (X,T, µ),

the more singular is the dynamical spectrum. We refer to [Que10, Ch. 3] for a more detailed

discussion.

2.4.3. Diffraction as a spectral measure

If the dynamical system is a subshift (X, S, µ), a useful family of spectral characteristics are

diffraction measures. These can be constructed as particular spectral measures. We start

by choosing an arbitrary weight vector τ ∈ CA. This induces a function πτ ∈ L2(X, µ) via

πτ (x) = τx0 , for all x ∈ X. The corresponding spectral measure ντ = νπτ satisfies by definition

γ(n) := ⟨πτ , UnSπτ ⟩L2(X,µ) =

∫
S1
zn dντ (z), (2.3)

for all n ∈ Z. We call γ : Z → C the autocorrelation sequence of (X, S, µ). We remark that

there is a unique finite Borel measure ντ satisfying (2.3) for all n ∈ Z; see [BG13, Prop. 8.7]

and [PF02, Thm. 1.5.7]. Hence, the spectral measure ντ is in fact independent of the choice

of the measures ν1 ≫ ν2 ≫ · · · from the spectral theorem. Identifying S1 with the torus T
via the map t 7→ e2πit, we may regard ντ as a measure on T, yielding

γ(n) =

∫
T
e2πint dντ (t).

That is, the sequence (γ(n))n∈Z arises from the (inverse) Fourier transform of the finite

measure ντ on T. We call the measure ντ the diffraction of (X, S, µ) with respect to τ . Since

the diffraction ντ is absolutely continuous with respect to the measure of maximal spectral

type ν, every component that is present in the Lebesgue decomposition of ντ is also present in

the Lebesgue decomposition of ν. Often, it is even possible to obtain the measure of maximal

spectral type from (generalized) diffraction measures [BLvE15].

Let us further assume that µ is ergodic on (X, S). In this case, we obtain by Birkhoff’s

ergodic theorem

γ(n) =

∫
X
πτ (y)πτ (S

ny) dµ(y) = lim
m→∞

1

m

m−1∑
j=0

τxjτxj+n
, (2.4)

for µ-almost every x ∈ X. This gives a justification to call γ the autocorrelation sequence.

2.4.4. Diffraction for point sets and measures

In line with [BG13, Ch. 9], we discuss a slightly different notion of diffraction, related to point

sets and associated measures. Thinking of a sequence x ∈ AZ as a way to store a succession

of symbols, it is natural to define the symbolic point sets

Λsa(x) = {n ∈ Z : xn = a}, (2.5)

for all a ∈ A. By construction, Z =
⋃
a∈A Λsa(x) holds for all x ∈ AZ. This corresponds to

placing the symbols in x on the real line with equal spacing. More generally, we choose a
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length vector L ∈ RA
+ and leave a gap of length La after a letter a before placing the next

symbol. Thus, we obtain a sequence of positions (ℓn(x))n∈Z, defined recursively via ℓ0(x) = 0

and ℓn+1(x) = ℓn(x) + Lxn for all n ∈ Z. In this case, we obtain

Λa(x) = {ℓn(x) : xn = a},

which implicitly depends on L. We recover the symbolic point sets in (2.5) if we set La = 1

for all a ∈ A.

Regarding the letters in A as place holders for different types of atoms, we assign distinct

scattering amplitudes according to some τ ∈ CA. The atomic structure is then modelled by

ω(x) =
∑
a∈A

τaδΛa(x), δΛa(x) =
∑

r∈Λa(x)

δr.

The weighted Dirac comb ω(x) naturally defines a translation bounded (complex) Radon

measure on R. If x ∈ AN is a one-sided sequence, the above quantities are defined analogously,

and ω(x) is a Radon measure on R+. In the following, we fix an averaging sequence (Bn)n∈N
by Bn = [−n, n] if x ∈ AZ and Bn = [0, n] if x ∈ AN. Further, we denote by ωn = ω|Bn the

restriction of the Radon measure ω to Bn.

Definition 2.4.3. Given ω = ω(x), an autocorrelation measure of x (with respect to the

averaging sequence (Bn)n∈N) is a vague accumulation point γ(x) of the sequence (γn)n∈N,

where

γn =
ωn ∗ ω̃n
|Bn|

.

Since all the measures γn(x) are positive-definite, so is γ(x). Hence, by the theorem of

Bochner–Schwartz [ReS80, Thm. IX.10], the Radon measure γ(x) has a well-defined Fourier

transform γ̂(x) = γ̂(x), as a positive tempered measure; see Proposition 1.2.7. We call γ̂(x)

a diffraction of x.

Remark 2.4.4. Assume that µ is an ergodic probability measure on a subshift (X, S). Then,
there exists an almost sure autocorrelation γ, that is, for µ-almost every x ∈ X and ω = ω(x),

the limit

γ(x) = lim
n→∞

ωn ∗ ω̃n
|Bn|

exists and equals γ. This follows by Birkhoff’s ergodic theorem; we provide a proof of a slightly

more general result in Lemma 4.3.1. Hence, there is also an almost sure diffraction measure

γ̂. In the symbolic setting, that is, if La = 1 for all a ∈ A, a straightforward calculation yields

γ =
∑
n∈Z

γ(n)δn,

with γ(n) as in (2.4); compare [BG13, Ex. 9.1]. Interpreting ντ as a measure on [0, 1), we

obtain

γ̂ = δZ ∗ ντ ,

which establishes a link between the two notions of diffraction measures. This correspondence

can be pushed further to more general choices of L by considering the dynamical system

that arises from a suspension of (X, S, µ); compare [BLvE15] for the details of this relation,

and [CFS82, Ch. 11] for background on suspension flows. ♢
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2. Dynamical systems

2.4.5. D-function of minimal systems

The D-function of a minimal dynamical system (X,T ) was advertised as a new topological

invariant of dynamical systems in [Ye92]. It was also implicitly used in the work of Dekking

[Dek78] and Kamae [Kam72]. As we discuss in this section, the D-function is just a different

perspective on some part of the dynamical spectrum.

Throughout this section, assume that (X,T ) is a minimal and invertible dynamical system

on a compact metric space X. We call λ ∈ S1 a topological eigenvalue of (X,T ) if there exists

a continuous function f ∈ C(X) such that

f(Tx) = λf(x),

for all x ∈ X. We say that λ = e2πiq with q ∈ [0, 1) is rational if q ∈ Q. Note that λ is an

eigenvalue of UT , for every invariant measure µ on (X,T ) with full topological support. Con-

versely, a rational eigenvalue of UT : L
2(X,µ) → L2(X,µ) is indeed a topological eigenvalue

if (X,T ) is a Boshernitzan subshift. The proof of this statement will appear in [CDFG].

We are interested in the mixing behaviour of powers of T onX. Unfortunately, (X,Tn) need

not be minimal for general n ∈ N. But it decays into minimal components in a satisfactory

manner, as was shown in [Ye92, Thm. 3.1]; see also [GH55, Thm. 2.24].

Fact 2.4.5. For every n ∈ N, there exists a unique number s(n) ∈ N that divides n and

a finite partition {X0, · · · , Xs(n)−1} of X such that each Xj is Tn-minimal, and we have

TXj = Xj+1 mod s(n), for all 1 ⩽ j ⩽ s(n). ■

We call the assignment n 7→ s(n) the D-function of (X,T ). Using some basic proper-

ties of the D-function stated in [Ye92], the following relation to topological eigenvalues is

straightforward to show; we provide a proof in [CDFG].

Fact 2.4.6. For every n, the number s(n) is the largest divisor k of n with the property that

e2πi/k is a topological eigenvalue of (X,T ). ■

In particular, it follows from Fact 2.4.2 that (X,Tn) is minimal for all n ∈ N if (X,T )

admits a weakly mixing probability measure of full support. In fact, it suffices to show the

absence of rational topological eigenvalues other than 1 to reach the same conclusion.
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3. Substitutions and their generalizations

It is the aim of this chapter to introduce substitutions as a device to produce self-similar and

non-periodic sequences, using just a finite number of symbols. A stochastic generalization

of the substitution concept permits one to produce sequences with positive entropy, while

keeping the long-range correlations of substitution sequences that are responsible for the

sharp peaks in the diffraction image.

3.1. Substitutions

The material in the first part of this section is standard and we largely follow [BG13] in our

notation. As we wish to set the stage for the introduction of random substitutions, we focus

on concepts that readily generalize to the random setting. We will make extensive use of the

symbolic notation introduced in Section 2.1.2.

Definition 3.1.1. Let A be a finite alphabet. A substitution on A is a map ϱ : A → A+. It

extends to an endomorphism A+ → A+. That is, for u = u1 · · ·un ∈ An we define

ϱ(u1 · · ·un) = ϱ(u1) · · · ϱ(un),

to be understood as a concatenation of words.

We call a word of the form ϱn(a) for some n ∈ N and a ∈ A a (level-n) inflation word . A

substitution is said to be of constant length ℓ ∈ N if |ϱ(a)| = ℓ for all a ∈ A.

Example 3.1.2. The period doubling substitution ϱ : a 7→ ab, b 7→ aa is a substitution of

constant length 2 on the binary alphabet A = {a, b}. The substitution can be iterated on a

letter as follows:

a 7→ ab 7→ ϱ(ab) = ϱ(a)ϱ(b) = abaa 7→ abaaabab 7→ · · · .

It is remarkable that ϱn(a) is a prefix of ϱm(a) for all m ⩾ n. We will come back to this

observation later. ♢

The self-similar structure associated to a substitution is best understood in an infinite

setting. On a sequence x = (xn)n∈Z, we define the action of a substitution ϱ as

ϱ(x) = · · · ϱ(x−2)ϱ(x−1).ϱ(x0)ϱ(x1)ϱ(x2) · · · ,

thus extending ϱ to a (continuous) map AZ → AZ. We are interested in structures that can

be generated by repeated application of the substitution ϱ. For finite words, this leads to the
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3. Substitutions and their generalizations

concept of admissible and legal words and gives rise to the concept of a substitution subshift

in the setting of bi-infinite sequences. We call a word u ∈ A+ admissible (under ϱ) if there

exists a letter a ∈ A and a power n ∈ N such that u ◁ ϱn(a). It is straightforward to verify

that the substitution subshift

Xϱ = {x ∈ AZ : x[j,k] is admissible for all j, k ∈ Z with j ⩽ k}

is indeed closed and S-invariant, as well as ϱ-invariant (provided that it is non-empty). In

line with Definition 2.1.1, the language of a substitution is given by

L(Xϱ) = {x[j,k] : x ∈ Xϱ and j, k ∈ Z, with j ⩽ k}.

We often write L for L(Xϱ) if the substitution is understood, and Ln = L∩An. A word u ∈ A+

is called legal if u ∈ L. We note that every legal word is admissible, but not necessarily vice

versa. For a more detailed account of this distinction, we refer to [MR18]. The following

result shows that, for most substitutions ϱ, the substitution subshift and the language are in

fact meaningful objects.

Lemma 3.1.3. Both Xϱ and L(Xϱ) are non-empty precisely if there exists a letter a ∈ A
such that |ϱn(a)| → ∞ as n→ ∞.

Proof. If |ϱn(a)| remains bounded for all n ∈ N and a ∈ A, there is a maximal length of

admissible words, implying that Xϱ = ∅. Conversely, assume that limn→∞ |ϑn(a)| = ∞. Let

x(n) be the sequence

x(n) = · · · ϱn(a)ϱn(a).ϱn(a)ϱn(a) · · ·

and set y(n) = S⌊|ϱn(a)|/2⌋x(n), which amounts to shifting the origin approximately to the

middle of the word ϱn(a). Since AZ is compact, the sequence (y(n))n∈N has an accumulation

point y ∈ AZ. By construction, all subwords of y appear in ϱn(a) for some n ∈ N and hence

y ∈ Xϱ.

A similar compactness argument shows that every point x ∈ Xϱ can be de-substituted

in the sense that there are y ∈ Xϱ and 0 ⩽ j ⩽ |ϱ(y0)| such that x = Sj(ϱ(y)), see for

example [EG21, Lemma 2.2]. If the choice for y and j are unique for every x ∈ Xϱ, the

substitution ϱ is called recognizable. It was shown only recently (in this generality) that

a substitution ϱ is recognizable precisely if (Xϱ, S) is not periodic [BSTY19, Thm. 5.3]. A

classic analogue of this result was shown by Mossé under the additional assumption that the

substitution ϱ is primitive [Mos92]. Primitivity is in fact a central property that is satisfied

by many of the classic examples [BG13]. We devote the next section to the definition of

primitivity and the exploration of some of its consequences.

3.1.1. Primitive substitutions

The structure of the substitution subshift (Xϱ, S) becomes somewhat simpler if we can guar-

antee that all letters indeed occur in all level-n inflation words for large enough n. Since

this property depends only on the Abelianisation of the inflation words, it is convenient to
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3.1. Substitutions

introduce a device that determines how the Abelianisation of a word u changes as we let ϱ

act on u. The matrix M ∈ Mat(A,Z) with entries Mab = |ϱ(b)|a for a, b ∈ A, is called the

substitution matrix associated to ϱ. Indeed, we have

|Φ(ϱ(u))⟩ =

(∑
b∈A

|u|b|ϱ(b)|a
)
a∈A

= M |Φ(u)⟩,

for every u ∈ A+.

Definition 3.1.4. A substitution ϱ is called primitive precisely if its substitution matrix M

is primitive.

Hence, ϱ is primitive iff there exists a power m ∈ N such that all entries ofMm are positive.

This amounts to requiring that ϱm(a) contains every letter of the alphabet for all a ∈ A. In

particular, we have |ϱm(a)| → ∞ as m → ∞ for all a ∈ A and hence the subshift Xϱ is non-

empty. Given a primitive substitution matrixM , we write λ for its PF eigenvalue and L,R for

the corresponding left and right PF eigenvectors, normalized as ⟨L|R⟩ = ∥R∥1 = 1; compare

Theorem 1.3.3. Primitivity is a central property of substitutions and will be assumed for the

bulk of this thesis. In Chapter 5, however, we will be concerned with a family of non-primitive

substitutions.

Example 3.1.5. Let ϱF : a 7→ ab, b 7→ a, which constitutes the famous Fibonacci substitution.

The name reflects the property that the length of inflation words (|ϱnF (b)|)n∈N is precisely the

Fibonacci sequence. This is derived in a straightforward manner from the observation that

the substitution matrix takes the form

M =

(
1 1

1 0

)
.

Since M2 > 0, the Fibonacci substitution is primitive. Indeed, both a and b appear in every

level-2 inflation word. The eigenvalues of M are the golden ratio τ = (1 +
√
5)/2 and its

algebraic conjugate, τ ′ = −1/τ . ♢

Example 3.1.6. The substitution ϱ : a 7→ a, b 7→ bba is a non-primitive substitution. As we

iterate ϱ, we obtain

b 7→ bba 7→ bbabbaa 7→ bbabbaabbabbaaa

and observe that the word an occurs at the end of ϱn(b) for all n ∈ N. This is easily proved

by induction and implies that there can be arbitrarily large gaps between two occurrences of

b in legal words. ♢

Remark 3.1.7. If the substitution ϱ is primitive, there is an alternative route to the definition

of the subshift Xϱ. We first construct an explicit element of Xϱ that is invariant under (some

power of) ϱ and then obtain the whole subshift as an orbit closure under the shift action.

This is the approach adopted in [BG13, Ch. 4]. Take an admitted word u1u2 of length 2 and

iterate it under the substitution ϱ. By the pigeon hole principle, there are letters a, b ∈ A
and powers m < n such that b is the last letter of the words ϱm(u1) and ϱ

n(u1) and a is the
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3. Substitutions and their generalizations

first letter of both ϱm(u2) and ϱn(u2). Hence, both ϱm(u1).ϱ
m(u2) and ϱn(u1).ϱ

n(u2) have

the word a.b around the origin. With r = n−m, we get that b is the last letter of ϱr(b) and

a is the first letter of ϱr(a). By induction, we obtain that ϱrj(a) is a prefix of ϱrk(a) for all

j, k ∈ N with j ⩽ k. Similarly, ϱrj(b) is a suffix ϱrk(b) for j ⩽ k. The sequence

x⋆ = lim
n→∞

· · · ϱnr(b)ϱnr(b).ϱnr(a)ϱnr(a) · · ·

is therefore a well-defined element of Xϱ. Note that the periodic continuation of the words

ϱnr(a) and ϱnr(b) is immaterial for the limiting sequence x⋆, since all but the central copies

get “shifted out to infinity” in both directions. With this in mind, we also write

x⋆ = (ϱr)∞(b).(ϱr)∞(a) = lim
n→∞

ϱnr(b).ϱnr(a),

with slight abuse of notation. It is straightforward to verify that x⋆ is invariant under ϱr.

Every power of a primitive substitution in fact gives rise to the same subshift, hence there is

no loss of generality in assuming that r = 1. ♢

This is an instance of the self-similarity alluded to earlier: If we replace every letter a in

x⋆ by its level-n inflation word ϱn(a) for an arbitrary n ∈ N, we recover the same sequence.

This property is at the heart of powerful renormalisation techniques [BG13,BGM19,Mañ19]

and has strong consequences. For instance, it guarantees that every legal word occurs with

bounded gaps and with a well-defined frequency in every sequence x ∈ Xϱ. In the language

of dynamical systems, these observations take the following form; compare [BG13, Thm. 4.3].

Fact 3.1.8. If ϱ is a primitive substitution, the dynamical system (Xϱ, S) is strictly ergodic,

that is, minimal and uniquely ergodic. ■

Recall that minimality means that every point in the space has a dense orbit. In particular,

we can choose the explicit point x⋆ and obtain

Xϱ = {Sjx⋆ : j ∈ Z}.

Similarly, there is a natural way to construct the unique shift-invariant (and hence ergodic)

measure as an orbit average of the Dirac measure δx⋆ , supported on the point x⋆. Indeed, the

weak limit

µϱ = lim
n→∞

1

n

n−1∑
j=0

δx⋆ ◦ S−j .

exists and is shift-invariant by construction. The convergence follows because every weak

accumulation point of this sequence is necessarily shift-invariant and the existence of more

than one accumulation point would contradict the unique ergodicity of (Xϱ, S).
By the Morse–Hedlund theorem [MH38], the subshift (Xϱ, S) has a bounded complexity

function precisely if it is periodic. If it is non-periodic and ϱ is primitive, its complex-

ity function c : N → N satisfies c(n) ∈ Θ(n), where Θ(f(n)) denotes the class of functions

g : N → N such that f(n)/g(n) is bounded from above and below by positive constants, for

all n ∈ N. For arbitrary substitutions, the complexity function falls into one of the classes
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3.1. Substitutions

Θ(1),Θ(n),Θ(n log log n),Θ(n log n) or Θ(n2). Compare [Pan84] for a proof of this statement

in the context of one-sided sequences, as well as a neat characterization of the different cases.

A presentation of this result in English may be found in [DLR13]. In any case, the entropy

is trivial.

Fact 3.1.9. For every substitution subshift (Xϱ, S), the topological entropy is 0. ■

Finally, let us expand a bit on the interpretation of the right and left PF eigenvectors of

a primitive substitution. Although the following is well-known [Que10, Ch. 5], we provide a

short proof, as it illustrates how PF theory translates to properties of primitive substitutions.

Furthermore, the general idea of this proof readily generalizes to random substitutions.

Lemma 3.1.10. Let ϱ be a primitive substitution, with PF eigenvalue λ and R,L the right

and left PF eigenvectors, respectively, normalized as ⟨L|R⟩ = ∥R∥1 = 1. Then,

La = lim
n→∞

|ϱn(a)|
λn

,

Ra = lim
n→∞

|ϱn(b)|a
|ϱn(b)|

= µϱ([a]),

for all a, b ∈ A.

Proof. Since Φ(ϱn(u)) = MnΦ(u) for all n ∈ N and u ∈ A+, the substitution matrix of ϱn is

given by Mn for all n ∈ N. By a straightforward application of the PF theorem, we get

|ϱn(a)|
λn

=
1

λn

∑
b∈A

(Mn)ba
n→∞−−−→

∑
b∈A

RbLa = La,

for all a ∈ A. Due to the unique ergodicity of (Xϱ, S, µϱ), the letter frequencies exist uniformly

in sequences x ∈ Xϱ and are given by µϱ([a]) for all a ∈ A. In particular, they can be calculated

from large inflation words as

µϱ([a]) = lim
n→∞

|ϱn(b)|a
|ϱn(b)|

= lim
n→∞

λ−n(Mn)ab∑
c∈A λ

−n(Mn)cb
=

RaLb∑
c∈ARcLb

= Ra,

for an arbitrary b ∈ A.

3.1.2. The geometric picture

By Lemma 3.1.10, Ra is the frequency of the letter a in large legal words, whereas La controls

the relative size of large inflation words. More precisely, we have |ϱn(a)| = Laλ
n + o(λn),

where o(λn) denotes an error term that, divided by λn, converges to 0 as n → ∞. We can

make this relation exact, removing the error term o(λn), by changing to the geometric setting.

Here, we replace every letter a ∈ A by an interval Ia of length La. A word u1 · · ·un is replaced

by a string of intervals Iu1 · · · Iun that are positioned next to each other. Accordingly, the

geometric length of the word u = u1 · · ·un ∈ A+ is given by

L(u) = Lu1 + · · ·+ Lun =
∑
a∈A

La|u|a = ⟨L|Φ(u)⟩.
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a

τ

ϱF
a b
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τ2

b
ϱF

a

1 τ

Figure 3.1.: Geometric analogue of the Fibonacci substitution ϱF : a 7→ ab, b 7→ a. All lengths

have been scaled by a factor 1 + τ−2 relative to the entries of L.

Instead of replacing a letter by a word, the substitution now acts by replacing an interval by

a string of adjacent intervals, called a patch; see Figure 3.1 for an illustration. Since

L(ϱ(u)) = ⟨L|Φ(ϱ(u))⟩ = ⟨L|M |Φ(u)⟩ = λL(u),

the geometric length of a word changes exactly by the factor λ under the substitution—this

is a consequence of choosing the lengths of the intervals according to the entries of the left

PF eigenvector L. The action of ϱ therefore amounts to an inflation rule: We stretch every

interval by a factor λ and cut up the resulting interval into smaller intervals according to the

substitution. A sequence x ∈ Xϱ is replaced by a bi-infinite string of intervals (tiling) in the

geometric picture. Placing a point at the left endpoint of each interval of type Ia we thus

obtain a point set Λa(x) for all a ∈ A and we set Λ(x) = ∪a∈AΛa(x) for the set of all endpoints
of intervals. For a more formal definition of these sets, recall Section 2.4.4. By convention, we

always have 0 ∈ Λ(x) and Λ(x) is a Delone set for all x ∈ Xϱ, that is, the distance between two

adjacent points is bounded from above and from below by two universal, positive constants;

compare [BG13, Ch. 2] for background. The normalization ⟨L|R⟩ = 1 ensures that the density

of the point set Λ(x) is given by 1 for all x ∈ Xϱ.

Example 3.1.11. Recall the Fibonacci substitution ϱF : a 7→ ab, b 7→ a from Example 3.1.5,

with PF eigenvalue τ = (1+
√
5)/2. The right and left PF eigenvectors are R = τ−2(τ, 1) and

L = (1 + τ−2)−1 (τ, 1), respectively. There are precisely two fixed points under ϱ2F in XϱF ,
one of them is given by

x⋆ = · · · ababa.abaab · · · .

In the geometric setting, this gives rise to a self-similar tiling, compare Figure 3.2. ♢

This procedure can be formalized further and extended to work in higher dimensions, we

refer to [BG13, Ch. 5] for more details. An alternative way to produce aperiodic Delone

sets is the powerful notion of a cut and project scheme; see [BG13, Ch. 7] for a detailed

account of this method, including its relation to substitutions. In one dimension, a geometric

analogue of (Xϱ, S) is most elegantly formalized as a suspension. We refer the interested

reader to [CFS82, Ch. 11] for general background on suspension flows and to [Mol13] for its

application in the context of substitutions. Since we will mostly work in the symbolic setting,

we will be content with the more informal description given in this section.
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a b a b a a b a a b

ϱ(b) ϱ(a) ϱ(a) ϱ(b)

· τ2

· · ·

· · ·

· · ·

· · ·

0

Figure 3.2.: Inflation rule, performed on a fixed point x⋆ of ϱ = ϱ2F , with λ = τ2. Using

ϱ(a) = aba and ϱ(b) = ab we obtain the same tiling under inflation.

3.1.3. Almost minimal substitutions

Almost minimal substitutions were introduced by Yuasa in [Yua07] and later generalized to

the class of substitutions of some primitive components in [HY11]. The main outcome of

Yuasa’s study is a characterization of the set of (not necessarily finite) ergodic measures on

the substitution subshift for such substitutions. In this section, we highlight some of the

key differences and similarities between almost minimal and primitive substitutions. For

simplicity, we mostly stick to the case of a binary alphabet.

Recall the non-primitive substitution ϱ : a 7→ a, b 7→ bba from Example 3.1.6. Like for

primitive substitutions, this substitution admits a fixed point, of the form

x⋆ = · · · aaaaaaaaaa.bbabbaabbabbaaa · · · = lim
n→∞

ϱn(b).ϱn(b),

and we again find Xϱ = {Sjx⋆ : j ∈ Z}. In this sense, ϱ is close to a primitive substitution.

However, the point aZ ∈ Xϱ clearly does not have a dense orbit and hence the subshift (Xϱ, S)
is not minimal. A closer inspection yields that it is almost minimal in the following sense.

Definition 3.1.12. A subshift (X, S) is almost minimal if it contains precisely one fixed

point y = Sy under the shift map and all points in X \ {y} have a dense S-orbit in X. We

call a substitution ϱ almost minimal if (Xϱ, S) is almost minimal.

Remark 3.1.13. In general, non-primitive substitutions need not be almost minimal. We

refer to [MR18] for an overview of some of the topological phenomena that can occur in the

absence of primitivity. However, in the special case of a binary alphabet A = {a, b}, every
(non-empty) substitution subshift (Xϱ, S) is either minimal or almost-minimal [EG21]. If the

subshift (Xϱ, S) is minimal, it is in fact conjugate to a subshift that arises from a primitive

substitution [MR18]. ♢

For the remainder of this section, let us fix A = {a, b}. We will not be interested in

the trivial cases, when Xϱ is either empty or finite. Up to a renaming of the letters, every

non-primitive substitution on A is either trivial or of the form

ϱ : a 7→ ap, b 7→ u, (3.1)

for some p ∈ N and u ∈ A+. We distinguish several cases, depending on p and r = |u|b. First,
note that non-triviality requires that r > 0 and |u|a > 0.
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� If r = 1, we either have Xϱ = {aZ} or Xϱ is the orbit closure of x = a∞.ba∞. We add

this to the list of trivial cases.

� If r ⩾ 2 and u = bvb for some v ∈ A+, then (Xϱ, S) is minimal precisely if p = 1 and

almost minimal otherwise.

� If r ⩾ 2 and u = av or u = va for some v ∈ A+, the subshift (Xϱ, S) is almost minimal.

The minimal case in the second item was investigated in [dOL02], so we will focus on the cases

where ϱ is almost minimal in the following. Returning to our initial example of an almost

minimal substitution ϱ : a 7→ a, b 7→ bba, we observe that the letter frequencies of both a and b

are not well-defined in the fixed point x⋆. Hence, its orbit closure (Xϱ, S) cannot be uniquely

ergodic. This turns out to be a general feature of almost minimal substitutions of the form

in (3.1), as long as p < r. If p ⩾ r, the occurrences of b in points x ∈ Xϱ become so rare

that b has a vanishing frequency. A more detailed analysis reveals that, apart from the trivial

ergodic measure δaZ , the subshift (Xϱ, S) always supports an additional ergodic measure that

is finite precisely if p < r. This is a special case of [Yua07, Prop. 5.4 and Thm. 5.6]. The

precise statement is as follows.

Proposition 3.1.14 ([Yua07]). Let ϱ be a non-trivial almost minimal substitution on A =

{a, b} of the form in (3.1). Up to a scaling factor, there exists a unique non-atomic ergodic

measure µ on (Xϱ, S) which is finite on every clopen set disjoint from aZ. With an appropriate

scaling, this measure satisfies

µ([u]) = lim
n→∞

|ϱn(b)|u
|ϱn(b)|b

,

for all u ∈ A+. The measure µ is finite if and only if |ϱ(a)|a < |ϱ(b)|b. ■

Remark 3.1.15. The question whether µ is a finite measure depends on the growth behaviour

of |ϱn(b)|, compared to |ϱn(b)|b = rn as n → ∞. Taking powers of the substitution matrix,

we find that |ϱn(b)| ∼ rn if p < r, |ϱn(b)| ∼ nrn if p = r, and |ϱn(b)| ∼ pn if p > r. Here, we

use the notation f(n) ∼ g(n) to denote that f(n)/g(n) → 1 as n → ∞. The variety of this

behaviour is rich enough to provide examples of almost minimal substitutions on A = {a, b}
with complexity functions in each of the classes Θ(n),Θ(n log logn),Θ(n log n) and Θ(n2),

compare [EG21] and [Pan84] for details. More refined estimates of the complexity function

for such examples can be found in [Cas97]. ♢

For the sake of brevity and transparency of the exposition, we restrict to an even smaller

class of almost minimal substitutions that already exhibits many of the decisive features

that can occur for a binary alphabet. A more exhaustive treatment of all almost minimal

substitutions on A = {a, b} can be found in [EG21].

Definition 3.1.16. A simple almost minimal substitution on A = {a, b} is a substitution of

the form

ϱp,r,j : a 7→ ap, b 7→ bjabr−j ,

for some p, r ⩾ 2 and 1 ⩽ j ⩽ r − 1. We denote by Sams = {ϱp,r,j : p, r ⩾ 2, 1 ⩽ j ⩽ r} the

collection of all simple almost minimal substitutions.
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We readily verify that for a simple almost minimal substitution all admitted words are in

fact legal. Hence we drop this distinction in the following. Like with the introductory example,

we can construct Xϱ from an eventually constant fixed point of ϱ for all ϱ ∈ Sams. Let Xec
ϱ

be the set of all eventually constant sequences in Xϱ. These sequences are still exceptional in

the sense that Xec
ϱ is a countable subset of the uncountable set Xϱ. More precisely, we have

the following.

Lemma 3.1.17. For every ϱ ∈ Sams, there are exactly 4 fixed points of ϱ in AZ, given by

x⋆cd = lim
n→∞

ϱn(c).ϱn(d),

for c, d ∈ A. We have x⋆cd ∈ Xϱ precisely if cd is a legal word. Every eventually constant

sequence y ∈ Xϱ is an element of the S-orbit of one of these fixed points.

Proof. Let x⋆ ∈ AZ be a fixed point under ϱ and set c = x−1 and d = x0. Since ϱ(b) has b as

its first and its last letter, the limit limn→∞ ϱn(b) is well-defined, both as a left-sided and a

right-sided sequence. The same holds for limn→∞ ϱn(a) = a∞. Hence,

x⋆ = lim
n→∞

ϱn(x⋆) = lim
n→∞

ϱn(· · ·x−3x−2)ϱ
n(x−1).ϱ

n(x0)ϱ
n(x1x2 · · · ) = lim

n→∞
ϱn(c).ϱn(d),

since both |ϱn(c)| → ∞ and |ϱn(d)| → ∞ as n → ∞. As soon as cd is a legal word, all

subwords of x⋆ are legal and therefore x⋆ ∈ Xϱ.
The last claim is obvious for y = aZ = x⋆aa. Hence, assume that y ̸= aZ and y ∈ Xϱ is

eventually constant to the left. Up to a finite shift, y is of the form y = a∞.y+ for some

y+ ∈ AN with y+0 = b. We can decompose y into level-n inflation words for arbitrary n.

Since ϱn(a) = apn and ϱn(b) always starts with the letter b, this decomposition is of the form

ϱn(a).ϱn(b) around the origin. Performing the limit n → ∞, we find that y = x⋆ab. If y ∈ Xϱ
is eventually constant to the right, we argue analogously.

Note that aa, ab, ba are always legal for ϱ = ϱp,r,j ∈ Sams and bb is legal precisely if r ⩾ 3.

The fixed point x⋆bb is the only fixed point that is not eventually constant. However, since the

measure µ is non-atomic and Xec
ϱ is countable, µ-almost every sequence x ∈ Xϱ has infinitely

many occurrences of b to both sides of the origin.

3.1.4. Substitutions on a compact alphabet

In our setting, substitutions on a compact alphabet arise as a book-keeping device in the

context of random substitutions. More precisely, we will see in Chapter 4 that taking expec-

tation values naturally semi-conjugates random substitutions to substitutions on a compact

alphabet in an appropriate sense. Another application of substitutions on a compact alphabet

arises if the fixed point of an almost-minimal substitution is decomposed into so-called return

words; we refer to [EG21] for details.

Apparently, substitutions on compact alphabets have not received much attention in the

literature, a notable exception being [DOP18]. A systematic study of their properties has

been initiated recently [MRW21,MRW], and we largely follow their notational conventions in

this short exhibition.
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In this section, let A be a compact topological Hausdorff space, called a compact alphabet.

We can again concatenate letters to words and carry over much of the symbolic notation

introduced in Section 2.1.2. Naturally, we equip An with the product topology for n ∈ N,
and A+ = ⊔n∈NAn with the corresponding disjoint union topology.

Definition 3.1.18. A substitution on the compact alphabet A is defined as a continuous

map ϱ : A → A+.

In contrast to the case of a finite alphabet, the continuity of ϱ is not automatic because

small neighbourhoods of letters are no longer singleton sets in general. In particular, if A
is connected, this implies that ϱ is of constant length; see [MRW]. Just as we have seen for

substitutions, the action of ϱ naturally extends to a map on A+ and on AZ. An adequate

definition of primitivity needs a slightly more careful approach; compare [DOP18,MRW].

Definition 3.1.19. A substitution ϱ on a compact alphabet A is called primitive if for every

non-empty open subset U ⊂ A, there exists a number m ∈ N such that for all a ∈ A, the

word ϱm(a) contains some letter in U .

With this definition, many of the properties of primitive substitutions on a compact alpha-

bet resemble those in the finite alphabet case. We will not use these properties and therefore

refer to [MRW21,MRW] for further details.

3.2. Random substitutions

As we discussed in Section 3.1, substitutions give rise to self-similar structures of relatively

low complexity. In particular, every substitution subshift has vanishing topological entropy,

compare Fact 3.1.9. On the other hand, many classical examples of subshifts in the positive

entropy regime like subshifts of finite type or sofic subshifts lack any reasonable notion of

long-range order [LM95]. Random substitutions provide examples of structures that combine

long-range correlations with a positive topological and measure-theoretic entropy. This was

illustrated by Godrèche and Luck in their pioneering work [GL89] at the example of the

random Fibonacci substitution. Over the decades, random substitutions have reappeared in

several disguises and across multiple disciplines. They made their possibly first appearance as

D0L-systems in the context of formal language theory [RoS76], were introduced asM -systems

in a seminal paper by Peyrière [Pey80] and have served as models for structures in DNA

sequences under the name expansion-modification systems [Li89]. In the context of random

percolation, they were taken up by Dekking, Meester and van der Wal to investigate the

occurrence of phase transitions [DM90,DvdW01]. Another application of random substitution

deals with the undecidability of the domino problem on certain surface groups [ABM19].

Besides these somewhat scattered appearances in the literature, random substitutions have

been the object of renewed interest in recent years. Koslicki and Denker took up ideas

of Peyrière and formalized random substitutions as substitution Markov chains in [Kos12,

KD16]. This was later extended to the setting of sequence spaces in [MT-JU18]. Building

on [GL89], the diffraction measure was analyzed for more families of random substitutions
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3.2. Random substitutions

by Moll [Mol14] and by Baake, Spindeler and Strungaru [BSS18], while entropy calculations

for several random substitutions were performed by Nilsson [Nil12, Nil13]. A systematic

study of topological properties of random substitution subshifts was initiated by Rust and

Spindeler [RS18] and complemented over the last few years in a series of papers [EMM21,

GRS19,MMRT20,MRST21,Rus20]. In Chapter 4, we will outline results on the ergodicity

of random substitution subshifts [GS20] and provide general tools to calculate (or at least

approximate) the topological and measure-theoretic entropy associated with these subshifts

[Goh20,GMRS21].

3.2.1. Set-valued substitutions

Recall that a substitution is determined by its action on letters of the alphabet A. The basic

idea behind a random substitution ϑ is to introduce some freedom which word in A+ a letter

gets mapped to, under the application of ϑ. We will stick with the standard convention that

there is only a finite number of choices for each letter. Depending on the context and research

interest, these choices are either considered as a set of words, or equipped with a probability

assignment. For the sake of definiteness, we introduce both concepts under different names,

but will later refer to both as random substitutions if the context is clear. Sometimes, we will

refer to substitutions in the sense of Definition 3.1.1 as deterministic substitutions when we

wish to emphasize on the difference to random substitutions.

Let A be a finite alphabet and F(A+) denote the collection of finite subsets of A+. In

analogy to the concatenation of words, we define a concatenation of sets A,B ∈ F(A+) as

AB = {uv ∈ A+ : u ∈ A, v ∈ B},

which naturally turns F(A+) into a semigroup. The concatenation of sets satisfies the dis-

tributive laws A(B ∪ C) = AB ∪ AC and (B ∪ C)A = BA ∪ CA for all A,B,C ∈ F(A+).

Hence, F(A+) forms a semiring with ∪ as addition and concatenation as multiplication.

Given a function f on words and A ⊂ A+, we set f(A) = {f(u) : u ∈ A}. In particular, for

A ∈ F(A+), |A|, |A|a and Φ(A) are finite sets of integers or vectors, respectively. If B is a

singleton set, we identify it with its unique element.

Definition 3.2.1. A set-valued substitution is a map ϑ : A → F(A+). It extends uniquely to

a map ϑ : F(A+) → F(A+) via

ϑ(u) = ϑ(u1) · · ·ϑ(un),

for all u = u1 · · ·un ∈ A+ and

ϑ(A) =
⋃
u∈A

ϑ(u),

for all A ∈ F(A+).

In this setting, we call every u ∈ ϑn(a) for some n ∈ N and a ∈ A a (level-n) inflation word .

Just like a substitution preserves the semigroup structure on A+, a set-valued substitution

preserves the semiring structure on F(A+).
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Lemma 3.2.2. The map ϑ : F(A+) → F(A+) is a semiring endomorphism on F(A+).

Proof. The relation ϑ(A ∪ B) = ϑ(A) ∪ ϑ(B) for all A,B ∈ F(A+) is immediate from the

definition of ϑ. Similarly, it is easy to verify that ϑ(uv) = ϑ(u)ϑ(v) for all u, v ∈ A+. This

implies for all A,B ∈ F(A+),

ϑ(AB) =
⋃

w∈AB
ϑ(w) =

⋃
u∈A,v∈B

ϑ(u)ϑ(v) =

(⋃
u∈A

ϑ(u)

)(⋃
v∈B

ϑ(v)

)
= ϑ(A)ϑ(B),

where we have used of the distributive law in the penultimate step.

The extension to F(A+) allows us to concatenate set-valued substitutions and in particular

to take powers of a single set-valued substitution ϑ.

Example 3.2.3. The set-valued Fibonacci substitution is given by ϑ : a 7→ {ab, ba}, b 7→ {a}.
On the word ab ∈ A+, the set-valued Fibonacci substitution acts as

ϑ(ab) = ϑ(a)ϑ(b) = {ab, ba}{a} = {aba, baa}.

The square of ϑ is given by

ϑ2(b) = ϑ(ϑ(b)) = ϑ(a) = {ab, ba},
ϑ2(a) = ϑ(ϑ(a)) = ϑ({ab, ba}) = {aba, baa} ∪ {aab, aba} = {aab, aba, baa}.

We note that ϑn(b) = ϑn−1(a) for all n ∈ N. ♢

The substitution subshift and the language of a set-valued substitution ϑ are defined in

a similar manner as for deterministic substitutions, compare Section 3.1. We call a word

u ∈ A+ admissible (for ϑ) if there exists some n ∈ N, a ∈ A and v ∈ ϑn(a) such that u is a

subword of v. The subshift Xϑ comprises all sequences x ∈ AZ such that every subword of x

is admissible, and the language L = L(Xϑ) is the set of all subwords that appear in sequences

of Xϑ. In general, we cannot expect (Xϑ, S) to be minimal. That is because it contains a lot

of substitution subshifts that we get by restricting each set ϑ(a) to one of its elements.

Definition 3.2.4. Let ϑ be a set-valued substitution on A. We call a substitution ϱ on A a

marginal of ϑ if ϱ(a) ∈ ϑ(a) for all a ∈ A.

Whenever ϱ is a marginal of ϑn for some n ∈ N, we clearly have Xϱ ⊂ Xϑ. In fact, it is

not hard to show that the union of these substitution subshifts lies dense in Xϑ [RS18]. It is

therefore intuitive that the behaviour of ϑ depends on the properties of these marginals.

Definition 3.2.5. We call a set-valued substitution ϑ primitive if there exists a power n ∈ N
such that some marginal of ϑn is primitive.

Suppose that ϱ is a primitive marginal of ϑn for some n ∈ N. Then, ∅ ̸= Xϱ ⊂ Xϑ
and hence, the subshift of a primitive set-valued substitution is always non-empty. Also,

Xϑ = Xϑn for all n ∈ N if ϑ is primitive [RS18]. Unfortunately, unlike in the deterministic

setting, primitivity is not yet enough for the powerful machinery of PF theory to be applicable

to set-valued substitutions. However, the analysis becomes easier if there are some properties

that are shared by all marginals of ϑ.
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3.2. Random substitutions

Definition 3.2.6. A set-valued substitution ϑ is said to be of constant length ℓ, with ℓ ∈ N,
if all marginals of ϑ are of constant length ℓ. We call ϑ compatible if every marginal of ϑ has

the same substitution matrix M . In this case, we call Mϑ =M the substitution matrix of ϑ.

Both of these properties are stable under taking powers of the set-valued substitution

ϑ. This also shows that a compatible set-valued substitution is primitive if and only if its

substitution matrix is primitive. Compatibility can alternatively be expressed by demanding

that Φ(ϑ(a)) is a singleton for all a ∈ A. In that case,Mab = |ϑ(b)|a for all a, b ∈ A. Similarly,

ϑ is of constant length ℓ ∈ N precisely if |ϑ(a)| = ℓ for all a ∈ A.

Example 3.2.7. We call ϑ : a 7→ {ab, ba}, b 7→ {aa} the set-valued period doubling substi-

tution. Its marginals are given by ϱ1 : a 7→ ab, b 7→ aa and ϱ2 : a 7→ ba, b 7→ aa. The first

marginal ϱ1 is the standard period doubling substitution from Example 3.1.2. In fact, both

marginals give rise to the same subshift Xϱ. The set-valued substitution ϑ is clearly of con-

stant length 2 since |ϑ(a)| = |ϑ(b)| = 2. Also, ϑ is compatible, with uniform Abelianisation

vectors Φ(ϑ(a)) = (1, 1) and Φ(ϑ(b)) = (2, 0). Its substitution matrix

M =

(
1 2

1 0

)
is primitive and hence the same applies to ϑ. Somewhat surprisingly, the subshift Xϑ contains

a dense set of S-periodic sequences [Rus20]. ♢

It is readily verified that the set-valued Fibonacci substitution from Example 3.2.3 is also

both compatible and primitive. Combining compatibility and primitivity has strong conse-

quences. Some of them will be explored in Chapter 4. Here, we give a result on uniform letter

frequencies as a foretaste. The proof is basically the same as for the corresponding result on

deterministic substitutions [Que10, Prop. 5.9]. We give a sketch for the sake of completeness.

Lemma 3.2.8. Let ϑ be a primitive, compatible set-valued substitution with substitution

matrix M and corresponding right PF eigenvector R. For every ε > 0, there exists a number

n0 ∈ N such that for all u ∈ L(Xϑ) with |u| ⩾ n0, we have∣∣∣∣ |u|a|u|
−Ra

∣∣∣∣ < ε,

for all a ∈ A.

Proof. Suppose u ∈ Ln for some large n ∈ N. Let m ∈ N be the maximal level of an inflation

word that is completely contained in u. We can write u as

u = v0v1 · · · vm−1vmv
′
m−1 · · · v′1v′0,

where for all j, we have vj ∈ ϑm(wj) ∪ {ε} for some wj ∈ L and v′j ∈ ϑj(w′
j) ∪ {ε} for some

w′
j ∈ L. By the maximality of m, we have |wm| ⩽ ℓ := maxa∈A |ϑ(a)|. We can further assume

that |wj |, |w′
j | ⩽ ℓ for all 0 ⩽ j ⩽ m − 1. Let λ be the PF eigenvalue of M . By the PF

theorem, for every b ∈ A and j ∈ N, we have∣∣|ϑj(b)|a − |ϑj(b)|Ra
∣∣ ⩽ crj ,
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a
ϑ

a b b

b
ϑ

a

b b

Figure 3.3.: The geometrically compatible set-valued substitution ϑ : a 7→ {abb}, b 7→ {a, bb}.

for some c > 0 and 0 < r < λ. This implies that

||u|a − |u|Ra| ⩽ 2cℓ
m∑
j=0

rj ⩽ Crm,

for some C > 0. Since |u| ⩾ c′λm for some c′ > 0, the claim follows.

It is a natural question to ask, under which conditions we can interpret a set-valued sub-

stitution ϑ as a (set-valued) inflation rule, compare the discussion in Section 3.1.2. For this,

we require that both the inflation factor and the lengths of the intervals are fixed and there

is only freedom in which way to cut up the interval corresponding to ϑ(a) (for some a ∈ A)

into smaller intervals. Set-valued substitutions that are both primitive and compatible meet

these requirements. In this case, the inflation factor is given by the PF eigenvalue λ and the

interval lengths are encoded in the left PF eigenvector L. Likewise, if ϑ is of constant length

ℓ, we can choose ℓ as the inflation factor and take the unit length for each of the intervals Ia,

with a ∈ A. If ϑ meets the minimal requirements to be interpreted as an inflation rule, we

call it geometrically compatible.

Definition 3.2.9. A set-valued substitution ϑ is called geometrically compatible if there exists

a real value λ > 1 and a vector L ∈ RA with strictly positive entries such that, for every

marginal ϱ of ϑ, λ is an eigenvalue of Mϱ with left eigenvector L. In this situation, we call λ

the inflation factor of ϑ.

If ϑ is geometrically compatible, then so are all of its powers ϑn, for n ∈ N. The class of

geometrically compatible set-valued substitutions is larger than just the union of the primitive

compatible class and the constant-length class. We illustrate this with a couple of examples.

Example 3.2.10. The set-valued substitution ϑ : a 7→ {abb}, b 7→ {a, bb} is neither compati-

ble nor of constant length. But it is geometrically compatible, since both marginals share the

same left eigenvector L = (2, 1) with eigenvalue λ = 2; compare Figure 3.3.

An example with a non-integer inflation factor is given by ϑ : a 7→ {ab, ca}, b, c 7→ {a}. This is
yet another version of the Fibonacci substitution. We have λ = τ and can choose L = (τ, 1, 1).

Both set-valued substitutions in this example are primitive. ♢
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Unlike for primitive deterministic substitutions, the letter frequencies need not be well-

defined for geometrically compatible set-valued substitutions. Hence, there is no obvious

choice for the normalization of the left eigenvector L and there remains a scaling factor as a

free parameter. At least if ϑ is primitive, the letter frequencies exist in an almost sure sense,

if we assign probability vectors to the set ϑ(a), with a ∈ A. This naturally leads us to the

definition of a substitution Markov matrix in the next section.

3.2.2. Substitution Markov matrices

We obtain a random substitution from a set-valued substitution ϑ by choosing a probability

vector

Pa : ϑ(a) → (0, 1], u 7→ Pa,u

with
∑

u∈ϑ(a) Pa,u = 1, for all a ∈ A. The value Pa,u is to be interpreted as the probability of

mapping a to u under the application of ϑ.

Definition 3.2.11. A substitution Markov matrix is a Markov matrix P , that is indexed by

A×A+ and contains only finitely many non-zero entries. We write Pa = (Pa,u)u∈A+ for the

probability vector corresponding to a ∈ A. The set-valued substitution associated to P is

given by

ϑ : a 7→ supp(Pa) = {u ∈ A+ : Pa,u > 0},

for all a ∈ A. The pair ϑP = (ϑ, P ) is called a random substitution.

Remark 3.2.12. Since ϑ is uniquely determined by P , we might as well call P a random

substitution. We have chosen to include ϑ in the definition because it is customary to put

emphasis on the set of words that can be reached under a random substitution. ♢

Example 3.2.13. The random Fibonacci substitution ϑP on A = {a, b} is determined by

Pa,ab = p, Pa,ba = 1 − p and Pb,a = 1. It has one free parameter p ∈ (0, 1). We represent ϑP
in a visually more appealing form as

ϑP :


a 7→

{
ab, with probability p,

ba with probability 1− p,

b 7→ a.

This will be the standard format to represent explicit examples of random substitutions in

the following. The marginals of ϑP are recovered in the limiting cases p→ 0 and p→ 1. ♢

We extend the action of a random substitution from letters to words by requiring that each

letter is mapped independently. Hence, the tuple (v1, · · · , vn) of letters is mapped to the tuple

of words (u1, · · · , un) with probability Pv1,u1 · · ·Pvn,un under ϑ. At first sight, it might seem

tempting to take this as the probability for mapping v = v1 · · · vn to u = u1 · · ·un. However,
the word u ∈ A+ does not necessarily determine such a decomposition into inflation words

(u1, · · · , un) uniquely. We therefore need to proceed with more caution. Given u, v ∈ A+,

with v = v1 · · · vn ∈ Ln, we define

Dv(u) =
{
(u1, · · · , un) : u = u1 · · ·un, and uj ∈ ϑ(vj) for all 1 ⩽ j ⩽ n

}
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to be the set of all inflation word decompositions of u induced by v. Note that Dv(u) is empty

unless u ∈ ϑ(v). Finally, we extend P to a Markov matrix, indexed by A+, via

Pv,u =
∑

(u1,···un)∈Dv(u)

n∏
j=1

Pvj ,uj ,

for all u, v ∈ A+ with |v| = n. By convention, Pv,u = 0 if Dv(u) = ∅ and hence Pv,u > 0 if

and only if u ∈ ϑ(v).

Remark 3.2.14. If |ϑ(a)| is a singleton set for all a ∈ A, the set Dv(u) is either empty or

a singleton set for all u, v ∈ A+ because v uniquely determines the “cutting points” in the

inflation word decomposition of u. This holds in particular if ϑ is compatible or of constant

length, and thus for many cases of interest. Changing to the geometric picture, we easily

verify that the same is true if ϑ is geometrically compatible. On the other hand, consider

ϑ : a 7→ {a, ab}, b 7→ {ba, a}. Here, Dab(aba) = {(a, ba), (ab, a)} has cardinality 2. ♢

Starting from an initial word u ∈ A+, we would like to describe the stochastic process of

words that we obtain by iterated applications of the random substitutions. This was formal-

ized by Peyrière [Pey80] and later by Denker and Koslicki [KD16]; compare also [GMRS21].

Definition 3.2.15. Let ϑP a random substitution on A and u ∈ A+. A corresponding

substitution Markov chain is a word-valued homogeneous Markov chain (ϑnP (u))n∈N0 on some

probability space (Ωu,Fu,Pu) that satisfies ϑ0P (u) = u and

Pu
[
ϑn+1
P (u) = w|ϑnP (u) = v

]
= Pv,w,

for all v, w ∈ A+ and n ∈ N0.

Remark 3.2.16. Instead of starting from u ∈ A+, we could start from an arbitrary distribu-

tion of words. The Markov matrix P uniquely determines all the (finite) joint distributions

of random words in (ϑnP (u))n∈N. This will suffice for most of this work. There is still some

freedom in the choice of the probability space (Ωu,Fu,Pu). There is an explicit construction

following ideas from the theory of Galton–Watson processes, compare [GS20]. This has the

advantage of an additional structure that ensures the measurability of certain induced substi-

tutions, constructed from ϑP . If the context is clear, we mostly write P instead of Pu. It is

important to note that the construction of P ensures that ϑnP (a)ϑ
n
P (b) (as a random variable

on (Ωa×Ωb,Fa×Fb,Pa⊗ Pb)) defines the same distribution as ϑnP (ab) on (Ωab,Fab,Pab), for
all n ∈ N and a, b ∈ A. We refer to [GS20] for details. ♢

The distribution of ϑnP (u) is given by P[ϑnP (u) = v] = Pnuv and hence coincides with the

distribution of ϑPn(u) for all n ∈ N. Since ϑn is the set-valued substitution associated to Pn,

we consistently define ϑnP = (ϑn, Pn) to be the nth power of ϑP for all n ∈ N.
We carry over some of the characterizations of set-valued substitutions introduced in Sec-

tion 3.2.1, mutatis mutandis, to random substitutions. That is, we say that a random sub-

stitution ϑP = (ϑ, P ) is primitive/compatible/geometrically compatible/of constant length if

the corresponding attribute holds for ϑ. Likewise, the substitution subshift and the language
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of ϑP = (ϑ, P ) are given by the corresponding objects for ϑ. The advantage of the random

setting is that, even if Φ(ϑ(a)) is a set (and hence Φ(ϑP (a)) a random vector), we can average

over all possibilities to get a unique value.

Definition 3.2.17. The substitution matrix M = MϑP
∈ Mat(#A,R) of a random substi-

tution ϑP is defined by Mab = E|ϑP (b)|a for all a, b ∈ A.

This should not be confused with the substitution Markov matrix P . Again, M is related

to the Abelianisation of ϑP . More precisely,

E
[ ∣∣Φ(ϑn+1

P (u)
)〉 ∣∣Φ(ϑnP (u)) ] = M

∣∣Φ(ϑnP (u))〉,
for all n ∈ N0, as follows from a straightforward calculation [GS20, Prop. 3.3]. As a direct

consequence, we observe that

E
[
|ϑnP (b)|a

]
= E

[〈
ea
∣∣Φ(ϑnP (b))〉] = ⟨ea|Mn|Φ(b)⟩ = (Mn)ab

for all a, b ∈ A. Hence, Mn is the substitution matrix for ϑnP for all n ∈ N. The substitution

matrix provides an alternative characterization of primitivity, even if ϑ is not compatible.

Lemma 3.2.18. A random substitution ϑP is primitive if and only if its substitution matrix

M is primitive with PF eigenvalue λ > 1.

Proof. First, assume that ϑP = (ϑ, P ) is primitive. Let ϱ be a primitive marginal of ϑn.

Then, Mm
ϱ is strictly positive for some m ∈ N. Since ϱm is a marginal of ϑnm, this implies

that (Mnm
ϑP

)ab = E[|ϑnm(b)|a] > 0 for all a, b ∈ A. Hence, MϑP
is primitive. By a similar

argument, E
[
|ϑnmP (a)|

]
> 1 for all a ∈ A, implying that λ > 1.

Conversely, assume that M is primitive with PF eigenvalue λ > 1 and PF eigenvectors L,R.

SinceMn = λn|R⟩⟨L|+o(λn), we can choose n ∈ N large enough to ensure that E[|ϑnP (a)|b] ⩾ 1

for all a, b ∈ A. This also implies E[|ϑnP (a)|] ⩾ #A for all a ∈ A. For a fixed a ∈ A, choose

ua ∈ ϑn(a) with |ua| ⩾ #A. For each b ∈ A, choose a letter uaj and vj ∈ ϑn(uaj ) such that

|vj |b ⩾ 1. Since |ua| ⩾ #A, we can choose a different j for each b. Due to this construction,

the word

va = v1 · · · v|ua| ∈ ϑn(ua) ⊂ ϑ2n(a)

contains every letter b ∈ A. We repeat this procedure for every a ∈ A. Setting ϱ : a 7→ va, we

obtain a marginal of ϱ2n with strictly positive substitution matrix Mϱ. We conclude that ϑP
is primitive.

Unlike for deterministic substitutions, having a primitive substitution matrix M for a ran-

dom substitution does not imply that its PF eigenvalue λ is larger than 1. This can be seen

from the example ϑP = (ϑ, P ) with ϑ : a, b 7→ {a, b}. Demanding λ > 1 excludes such trivial

cases. Primitivity also has the following convenient consequence.

Lemma 3.2.19. Let ϑP be a primitive random substitution. Then, limn→∞ |ϑnP (a)| = ∞
holds Pa-almost surely for all a ∈ A.
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Proof. Let a ∈ A. The limit always exists because (|ϑnP (a)|)n∈N is a non-decreasing sequence

of random variables. Possibly replacing ϑP by one of its powers, we can assume E[|ϑP (b)|] > 1

and hence P[|ϑP (b)| ⩾ 2] > 0 for all b ∈ A, due to primitivity. Given N ∈ N, the probability

that |ϑnP (a)| ⩽ N therefore decays exponentially with n. By an application of the Borel–

Cantelli lemma, this implies that limn→∞ |ϑnP (a)| > N holds almost surely. Since N was

arbitrary, the claim follows.

As a last step, let us extend the action of a random substitution to sequence spaces. This is

the point of view adopted in [MT-JU18]. Since we leave the realm of countable state spaces,

the substitution Markov matrix P is replaced by a Markov kernel P : AN ×B → [0, 1] on the

Borel space (AN,B); compare Section 1.4. Given x ∈ AN and u ∈ An, it is defined on the

corresponding cylinder set via

P (x, [u]) = P[ϑ(x1 · · ·xn)[1,n] = u] =
∑

v,v
[1,n]

=u

Px
[1,n]

,v .

Since the cylinder sets generate the clopen topology, this uniquely determines P . Measura-

bility in the first argument follows from the observation that the above expression is locally

constant in x. Given u, v ∈ An, it is natural to define P ([v], [u]) as the common value P (x, [u])

for all x ∈ [v]. More specifically,

P ([v], [u]) = P
[
ϑ(v)[1,n] = u

]
.

The dual operator P ∗ on the space M1(AN) satisfies

(P ∗µ)(B) =

∫
AN
P (x,B) dµ(x),

for every Borel set B ⊂ AN and µ ∈ M(AN). For u ∈ An, this yields

(P ∗µ)([u]) =
∑
v∈An

µ([v])P ([v], [u]).

The extension to AZ works similarly. To be precise, for u ∈ Am, v ∈ An and x ∈ AZ, we set

P (x, [u.v]) = P
[
ϑ(x−m · · ·x−1.x0 · · ·xn−1)[−m,n−1] = u.v

]
.

For I ∈ {Z,N}, the transition kernel P induces a substitution Markov chain on AI, just like

in Definition 3.2.15. Given an initial distribution µ on AI, ϑP (µ) has therefore a well-defined

distribution P ∗µ. With some abuse of notation, we also write ϑP (µ) for its distribution P
∗µ.

We summarize this as follows.

Definition 3.2.20. Let ϑP be a random substitution on A and µ ∈ M1(AN). We denote by

ϑP (µ) the Borel measure defined by

(ϑP (µ))([u]) =
∑

v,|v|=|u|

µ([v])P
[
ϑP (v)[1,n] = u

]
,

for all u ∈ A+. Similarly, for µ ∈ M1(AZ), and u ∈ Am, u′ ∈ An,

(ϑP (µ))([u.u
′]) =

∑
v∈Am,v′∈An

µ([v.v′])P
[
ϑP (v.v

′)[−m,n−1] = u.u′
]

defines a Borel measure ϑP (µ) ∈ M1(AZ).
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A random substitution ϑP = (ϑ, P ) and its associated set-valued substitution ϑ are intimately

related. For notational simplicity, we will mostly refer to both concepts as the “random

substitution ϑ” in the following. Hence, the expression ϑ(a) stands for both a random word

ϑP (a) and for the set of words suppϑP (a). The actual meaning will be clear from the context.

Some operations on ϑ(a) pertain unequivocally to either a random setting (like probabilities

or expectations) or to a set notation (like cardinalities or elements). On the other hand,

operations on words can be applied to ϑ(a) in both interpretations, and the outcome is

consistent. To be more precise, let f be a function on A+. Then, f(ϑP (a)) = f ◦ ϑP (a) is a
concatenation of a function with a random variable and hence a random variable. Likewise,

f(suppϑP (a)) = supp f(ϑP (a)) is a well-defined set. Hence, this notational ambiguity should

hopefully not lead to confusion.

Let us give a short outline of the main results of this chapter. Generalising the idea of a

fixed point, we show in Proposition 4.1.3 that every non-trivial random substitution ϑ admits

an invariant distribution (under some power of the random substitution). If the random

substitution is primitive, the orbit average of this invariant distribution produces a measure

µϑ on the subshift (Xϑ, S) that reflects the frequencies of words in large random inflation

words. We prove in Theorem 4.1.13 that the measure µϑ is ergodic on (Xϑ, S).
The entropy of random substitution subshifts is considered in Section 4.2. If the random

substitution is primitive and compatible, we show that both the topological and the measure-

theoretic entropy can be obtained from the substitution Markov chain. For v ∈ A+ and

n ∈ N, recall the notation HP(ϑ
n(v)) for the entropy of the finite partition generated by the

word-valued random variable ϑn(v); see Remark 2.3.3.

Theorem 4.0.1. Let (Xϑ, S) be the subshift of a primitive compatible random substitution.

The topological entropy sϑ = htop(S) of (Xϑ, S) satisfies

sϑ = lim
n→∞

log#ϑn(v)

|ϑn(v)|
,

for all v ∈ A+. The entropy hϑ = hµϑ(S) of the ergodic measure µϑ on (Xϑ, S) is given by

hϑ = lim
n→∞

HP(ϑ
n(v))

|ϑn(v)|
,

for all v ∈ A+.

The statement of this result is refined in Theorem 4.2.10 and Proposition 4.2.17. There, we

show that an appropriate averaging procedure provides explicit upper and lower bounds in
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terms of the family {ϑn(a)}a∈A, for every n ∈ N. We also provide sharp conditions for these

bounds to be attained.

The last part of this chapter, Section 4.3, deals with the diffraction of (Xϑ, S), where ϑ
is a primitive compatible random substitution. Due to the ergodicity of µϑ, the diffraction

measure γ̂ = γ̂(x) is the same for µϑ-almost every x ∈ Xϑ. We show that this diffraction

measure can be recovered from the substitution Markov chain via

γ̂ = lim
n→∞

γ̂(ϑn(a)),

for all a ∈ A, where γ̂(ϑn(a)) is the expected value of the (renormalized) diffraction measure

of the random word ϑn(a). Using an idea of Godrèche and Luck [GL89], the approximants

can be decomposed into a sum, corresponding to first and second moments, as

γ̂(ϑn(a)) = γ̂ex(ϑn(a)) + γ̂var(ϑn(a)).

See Definition 4.3.3 for details. The following will be proved in Theorem 4.3.4.

Theorem 4.0.2. Let ϑ be a primitive, geometrically compatible random substitution. For

every a ∈ A, the vague limits

γ̂ex = lim
n→∞

γ̂ex(ϑn(a)) and γ̂var = lim
n→∞

γ̂var(ϑn(a))

both exist, and are independent of a ∈ A. The measure γ̂var is absolutely continuous with

respect to Lebesgue measure.

An expression for the density of γ̂var in terms of an infinite series is provided in Proposi-

tion 4.3.9. The spectral type of γ̂ex is more difficult to determine. If ϑ is of constant length

ℓ, we call it scrambling if, for all a, b ∈ A, there exists a position 1 ⩽ j ⩽ ℓ such that the

random letters ϑ(a)j and ϑ(b)j coincide with positive probability.

Theorem 4.0.3. Let ϑ be a primitive compatible random substitution of constant length.

Assume further that some power of ϑ is scrambling. Then, γ̂ex is a pure point measure.

Both γ̂ex and γ̂var can also be obtained from the ϑ-invariant distribution; we refer to

Theorem 4.3.27 for the details. In Section 4.3.3, we show that the assumption of constant

length can be relaxed to that of an integer inflation factor λ, provided ϑ is geometrically

compatible.

4.1. Invariant and ergodic measures

The subshift Xϑ of a random substitution ϑ is a purely combinatorial object as it can be

constructed from the corresponding set-valued substitution. It therefore lacks a probabilistic

interpretation. Another apparent deficit of Xϑ is that many properties like the frequencies of

letters are in general not well-defined. Even in the compatible case, where letter frequencies

do exist uniformly, the frequencies of larger words still fail to exist. As a result, there is no

natural autocorrelation or diffraction measure associated to (Xϑ, S) as a topological dynamical
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system. We address both points by choosing an appropriate measure on Xϑ that reflects the

substitution probabilities encoded in the substitution Markov matrix P . With respect to

this measure, the word frequencies will be defined almost surely. It is possible to choose this

measure to be either invariant under (some power of) ϑ or under S (but not both). We start

with the discussion of substitution invariant measures on Xϑ.
Recall from Remark 3.1.7 that a primitive substitution ϱ admits a fixed point x∗ under

ϱr for some r ∈ N. By the strict ergodicity of (Xϱ, S), the autocorrelation and diffraction

measure are the same for every x ∈ X and can hence be calculated from x∗. The point x∗ is

convenient because it is constructive and allows us to use renormalisation techniques. For a

random substitution ϑ, the concept of a fixed point x∗ is naturally replaced by that of a fixed

measure ν∗. Just like x∗ emerges as a limit of iterating ϱ on AZ, we obtain ν∗ as a limit of

iterating ϑ on M1(AZ). In principle, there might be several such limiting measures, but we

will we see that they are all convex combinations of measures from a finite set.

For ease of notation, we first work on AN. The arguments readily generalize to AZ. Con-

vergence is understood in the weak topology. On sequence spaces, this is equivalent to con-

vergence on every cylinder set [Bil99, Thm. 2.2]. That is, we say that limn→∞ ϑn(µ) → ν∗ if

for all u ∈ A+,

lim
n→∞

ϑn(µ)([u]) = ν∗([u]).

Recall that for u ∈ Am,

ϑ(µ)([u]) =
∑
v∈Am

µ([v])P
[
ϑ(v)[1,m] = u

]
.

This has the structure of a product between a vector and a matrix.

Definition 4.1.1. Let ϑ be a random substitution on A and m ∈ N. The m-prefix matrix

M (m) is a Markov matrix on Am with entries

M (m)
u,v = P

[
ϑ(u)[1,m] = v

]
,

for all u, v ∈ Am. The m-prefix vector µ(m) of a measure µ ∈ M1(AN), is a Am-indexed

probability vector, with µ
(m)
v = µ([v]), for all v ∈ Am.

With this notation, limn→∞ ϑn(µ) = ν is equivalent to

lim
n→∞

〈
µ(m)

∣∣(M (m))n =
〈
ν(m)

∣∣,
for all m ∈ N. Recall the basic notions of Markov chains on a finite state space from Sec-

tion 1.4.

Definition 4.1.2. Let ϑ be a random substitution with 1-prefix matrix M (1) and let r be

the period of M (1). Then, we call r the period of ϑ.

Possibly replacing ϑ by ϑr, we assume that ϑ is of period 1 in the following. Hence, the

restriction ofM (1) to each of its recurrence classes Rj is primitive. Let us denote by X+
ϑ ⊂ AN

the image of Xϑ under the projection x 7→ x[1,∞).
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Proposition 4.1.3. Let ϑ be a random substitution of period 1 such that |ϑn(a)| → ∞ as

n → ∞ holds almost surely for all a ∈ A. Assume that R1, . . . ,Rs ⊂ A are the recurrence

classes of M (1) and let caj be the absorption probability from a ∈ A to class Rj. Then, for

each 1 ⩽ j ⩽ s, there is a probability measure νj on AN with the following properties.

(1) ϑ(νj) = νj.

(2) If µ ∈ M1(AN), with
∑

a∈Rj
µ[a] = 1, we have limn→∞ ϑn(µ) = νj.

(3) The topological support of νj is contained in X+
ϑ and

∑
a∈Rj

νj [a] = 1.

In general, limn→∞ ϑn(µ) =
∑

a∈A µ[a]
∑s

j=1 cajνj, for all µ ∈ M1(AN).

Proof. Let j ∈ {1, . . . , s} be fixed and assume that
∑

a∈Rj
µ[a] = 1. In words, the 1-prefix

vector µ(1) is supported on Rj . Since the restriction of M (1) to Rj is primitive, with some

equilibrium vector πj , we find

lim
n→∞

〈
µ(1)

∣∣(M (1))n = ⟨πj |.

Now, let m > 1 and

Lm(j) = {u ∈ Lm : P[ϑn(a)[1,m] = u] > 0 for some n ∈ N, a ∈ Rj}.

We prove that Lm(j) is a recurrence class of M (m) with period 1. As a first step, we show

that the restriction of M (m) to Lm(j) is primitive. For each u ∈ Lm(j), choose a pair (au, nu)

in Rj ×N such that P[ϑnu(au)[1,m] = u] > 0. Since M (1) is primitive on Rj , there exists a k0
such that P[ϑk(a)1 = au] > 0 for all k ⩾ k0. Hence, there exists a number n ∈ N such that

P[ϑn(a)[1,m] = u] > 0,

for all u ∈ Lm(j) and a ∈ Rj . Since every word in Lm(j) starts with a letter in Rj , this

implies that

(M (m))nv,u = P[ϑn(v)[1,m] = u] > 0,

for all u, v ∈ Lm(j), that is, M (m) restricts to a primitive matrix on Lm(j).
Note that the vector µ(m) is supported on the set Am(j) = {u ∈ Am : u1 ∈ Rj} ⊃ Lm(j).

We claim that all words in Am(j) \ Lm(j) are transient under M (m). Let u ∈ Am(j) \ Lm(j)
with u1 = a. There exists an n ∈ N and w ∈ ϑn(a) such that |w| ⩾ m. That is, w[1,m] ∈ Lm(j)
is a prefix of some word in ϑn(u). That means that u is absorbed with positive probability

by the recurrence class Lm(j) and hence it is transient. Since Lm(j) is the only recurrence

class in Am(j), the absorption probability is in fact 1.

Let πj,m be the equilibrium vector of M (m) on Lm(j). By Fact 1.4.3, we obtain

lim
n→∞

〈
µ(m)

∣∣(M (m))n =
〈
πj,m

∣∣,
for all m ∈ N. Defining νj([v]) = πj,mv for all v ∈ Am,m ∈ N, we get limn→∞ ϑn(µ) = νj . By

construction, ϑ is a continuous operator on M1(AN) in the weak topology and hence

ϑ(νj) = ϑ
(
lim
n→∞

ϑn(µ)
)
= lim

n→∞
ϑn+1(µ) = νj ,
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with µ as above. Since Lm(j) ⊂ L for all m ∈ N, it follows immediately that the support of

νj is contained in X+
ϑ . For the general case, note that a word u ∈ Am with u1 = a is absorbed

with probability caj by A
m(j) and hence by Lm(j). Another application of Fact 1.4.3 yields

lim
n→∞

〈
µ(m)

∣∣(M (m))n =
∑
a∈A

µ[a]
s∑
j=1

caj
〈
πj,m

∣∣,
and the last claim follows.

Remark 4.1.4. As an immediate consequence of Proposition 4.1.3, we obtain that M (1) has

a unique recurrence class in A if and only if there is a unique ϑ-invariant measure ν ∈ M1(AN)

such that limn→∞ ϑn(µ) = ν for all µ ∈ M1(AN). We note that the arguments in the proof

of Proposition 4.1.3 do not rely on ϑ acting independently on neighboring letters. This yields

an improvement of [MT-JU18, Thm. 1], where independence was not required, but it was

implicitly assumed that M (m) is a primitive matrix on Am for all m ∈ N. ♢

Remark 4.1.5. The discussion of ϑ-invariant distributions on the two-sided subshift (Xϑ, S)
can be done in an analogous fashion. Here, instead of just considering prefixes, we consider

prefixes and suffixes simultaneously. The analogue ofM (1) is a matrixM , indexed by L2(Xϑ),
where the entry Mu1u2,v1v2 is the probability that the last letter of ϑ(u1) is v1 and the first

letter of ϑ(u2) is v2. That is, we think of L2(Xϑ) as legal seeds, placed symmetrically around

the origin; compare the discussion in Remark 3.1.7. If M has period 1 (otherwise we take

powers of ϑ), the recurrence classes of M are in 1-to-1 correspondence with the ϑ-invariant

distributions on (Xϑ, S). ♢

We can find a more explicit form for the invariant measures νj if ϑ satisfies some uniform

growth assumption.

Definition 4.1.6. We say that a random substitution grows uniformly if

lim
n→∞

min{|u| : u ∈ ϑn(a)} = ∞,

for all a ∈ A.

Lemma 4.1.7. Let ϑ be a random substitution satisfying the assumptions in Proposition 4.1.3

and assume that ϑ grows uniformly. For m ∈ N, let nm ∈ N be the minimal number such

that |ϑnm(a)| ⩾ m for all a ∈ A. Then, given v ∈ Am, we have

νj([v]) =
∑
b∈Rj

πjb P
[
ϑn(b)[1,m] = v

]
,

for all n ⩾ nm, where πj denotes the equilibrium vector of M (1) restricted to the class Rj.

Proof. Let m ∈ N be fixed. Comparing with the proof of Proposition 4.1.3, we see that it

suffices to show that the probability vector q on Am with

qv =
∑
b∈Rj

πjb P
[
ϑn(b)[1,m] = v

]
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for all v ∈ Am, is supported on Lm(j) and invariant under M(m). The first claim is obvious.

For the second, we first observe that, for n ⩾ nm,∑
b∈Rj

πjb P[ϑ
n+1(b)[1,m] = v] =

∑
b∈Rj

πjb

∑
c∈A

P[ϑ(b)1 = c]P[ϑn(c)[1,m] = v]

=
∑
c∈Rj

πjc P[ϑn(b)[1,m] = v],

where we have used that πj is invariant under M (1) with entries M
(1)
b,c = P[ϑ(b)1 = c]. Hence,

the expression for q is indeed independent of the choice of n. Finally,(
⟨q|M (m)

)
v
=

∑
w∈Lm(j)

qw P[ϑ(w)[1,m] = v] =
∑

w∈Lm(j)

∑
b∈Rj

πjb P[ϑ
n(b)[1,m] = w]P[ϑ(w)[1,m] = v]

=
∑
b∈Rj

πjb P[ϑ
n+1(b)[1,m] = v] = qv

and the claim follows.

In the following, we make the additional assumption that ϑ is primitive. Our next aim

is to show that, given a ϑ-invariant measure ν on X+
ϑ , the word frequencies are well-defined

ν-almost surely. For u ∈ L and x ∈ X+
ϑ , we define

fu(x) = lim
n→∞

|x[1,n]|u
n

,

provided the limit exists. Similarly, we set fu(v) = |v|u/|v| for v ∈ A+. It is a classic result

that the word frequencies exist almost surely for the stochastic process (ϑn(a)). This is a

corollary of [Pey80, Thm. 1], compare also [GS20, Prop. 4.3].

Fact 4.1.8. Let ϑ be a primitive random substitution. Then, for every u ∈ L(Xϑ), there

exists a word frequency fu ∈ (0, 1) such that for all a ∈ A,

lim
n→∞

fu(ϑ
n(a)) = fu,

holds P-almost surely. ■

Due to the assumed ϑ-invariance of ν, we can decompose sequences x in the support of ν

into level-n inflation words for arbitrary levels. Combining this idea with the Borel–Cantelli

lemma, we can translate the P-almost sure existence of letter frequencies to a ν-almost sure

existence. A first step into this direction is the following [GS20, Lemma 4.2].

Lemma 4.1.9. Let ϑ be a primitive random substitution, u ∈ L(Xϑ) and ε > 0. Then, there

exist k ∈ N, c > 0 and n0 ∈ N with the following property. If v ∈ An for some n ⩾ n0, then

P
[∣∣fu(ϑk(v))− fu

∣∣ > ε
]
⩽ e−cn.

48



4.1. Invariant and ergodic measures

Sketch of proof. For the full, somewhat technical proof, we refer to [GS20]. To convey some

basic ideas, we sketch a proof for the special case that ϑ is of constant length ℓ. For large

enough k, an occurrence of u in ϑk(v) is either contained in ϑk(vj) for some 1 ⩽ j ⩽ n

or appears at the boundary of two such inflation words. For the latter, there are at most

(n− 1)(|u| − 1) possibilities. Hence, for ε < |fu(ϑk(v))− fu|, we require

εnℓk <
∣∣|ϑk(v)|u − nℓkfu

∣∣ ⩽ |u|n+

n∑
j=1

∣∣|ϑk(vj)|u − ℓkfu
∣∣. (4.1)

For large enough k, |u|n ⩽ εnℓk/2, and (4.1) implies

ε

2
n ⩽

n∑
j=1

|fu(ϑk(vj))− fu|. (4.2)

For each a ∈ A, let Pa ⊂ {1, . . . , n} be the set of positions j with uj = a and na = #Pa. By

(4.2), there exists a constant C > 0 and a letter a ∈ A with na ⩾ Cn such that

ε

4
⩽

1

na

∑
j∈Pa

|fu(ϑk(vj))− fu|. (4.3)

For large enough k, the expected value of fu(ϑ
k(vj)) differs from fu by less than ε/8 due to

Fact 4.1.8. Hence, the probability for (4.3) decays exponentially with n ∈ N by Cramér’s

theorem on large deviations [dHo00, Thm. I.4]. As soon as we drop the assumption that ϑ is

of constant length, we additionally need some control on the relative sizes of level-k inflation

words. Once again, we can use large deviation results to find an exponentially decaying bound

for the probability of ‘exceptional behaviour’.

Theorem 4.1.10. Let ϑ be a primitive random substitution and ν ∈ M1(X+
ϑ ), ϑ

r-invariant

for some r ∈ N. Then, for ν-almost every x ∈ X+
ϑ , we have fu(x) = fu, for all u ∈ L(Xϑ).

Proof. Without loss of generality, we assume that r = 1. By the Borel–Cantelli lemma, it

suffices to show that, for every ε > 0 and u ∈ A+,∑
m∈N

ν
(
{x : |fu(x[1,m])− fu| > 2ε}︸ ︷︷ ︸

=:Am

)
< ∞.

Let k, n0 ∈ N and c > 0 as in Lemma 4.1.9. Since ν is ϑk-invariant, we have

ν(Am) = ϑk(ν)(Am) =
∑
v∈Am

ν([v])P
[∣∣fu(ϑk(v)[1,m]

)
− fu

∣∣ > 2ε
]
.

Note that ϑk(v)[1,m] only depends on the smallest prefix v′ of v such that |ϑk(v′)| ⩾ m. The

length of this prefix is a random variable. In any case, with µ = max{|u| : u ∈ ϑ(a), a ∈ A},
we have |v′| ⩾ m/µk. By the minimality of v′, m ⩽ |ϑk(v′)| < m + µk. For large enough m,

the term µk becomes negligible and hence,∣∣fu(ϑk(v)[1,m]

)
− fu

∣∣ > 2ε =⇒
∣∣fu(ϑk(v′))− fu

∣∣ > ε.
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For m ⩾ n0µ
k, the probability for this event is bounded by e−cm/µ

k
, due to Lemma 4.1.9.

Finally, this implies

ν(Am) ⩽
∑
v∈Am

ν([v]) e−cm/µ
k
⩽ e−cm/µ

k
,

and the assertion follows.

Proposition 4.1.11. Let ϑ be a primitive random substitution, r ∈ N and ν a Borel proba-

bility measure on Xϑ that restricts to a ϑr-invariant measure on X+
ϑ . Then, the weak limit

µϑ = lim
n→∞

1

n

n−1∑
j=0

ν ◦ S−j ,

exists and defines an S-invariant measure µϑ ∈ M1(Xϑ) with µϑ([u]) = fu for all u ∈ L(Xϑ).
In particular, µϑ has full support on Xϑ.

Proof. Since M1(Xϑ) is compact in the weak topology, the sequence (νn)n∈N, defined by

νn =
1

n

n−1∑
j=0

ν ◦ S−j

has an accumulation point µ ∈ M1(Xϑ). By construction, this accumulation point is S-

invariant. It therefore suffices to show that limn→∞ νn([u]) = fu for all u ∈ L. For u ∈ Lm
and j ∈ N0, we have

ν(S−j [u]) = ν([x[j+1,j+m] = u]) = Eν
[
|x[j+1,j+m]|u

]
,

for a ν-distributed random variable x on Xϑ. Hence,

lim
n→∞

νn([u]) = lim
n→∞

1

n

n−1∑
j=0

Eν
[
|x[j+1,j+m]|u

]
= lim

n→∞
Eν

[
|x[1,n+m−1]|u

n

]

= Eν
[
lim
n→∞

fu
(
x[1,n]

)]
= fu,

where the penultimate step follows by dominated convergence and the last step is due to

Theorem 4.1.10. Since fu > 0 for all u ∈ L by Fact 4.1.8, it follows that the topological

support of µϑ equals Xϑ.

Remark 4.1.12. It should be stressed that the measure µϑ depends neither on the choice of

the ϑr-invariant measure ν on X+
ϑ , nor on its extension to Xϑ. Due to the existence of word

frequencies, we also obtain µϑ from ν-almost every x′ ∈ X+
ϑ and an arbitrary extension to

x ∈ Xϑ, by

µϑ = lim
n→∞

1

n

n−1∑
j=0

δx ◦ S−j .

An alternative approach is to define µϑ([u]) = fu for all u ∈ L and to verify that this

extends consistently and uniquely to a shift-invariant probability measure; see [GS20,Mol13]

for details. ♢
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For a certain family of primitive random substitutions, it was announced in [Mol13] that

the corresponding measures µϑ are not only S-invariant but in fact ergodic. However, the

original proof contains a small gap. In [GS20], ergodicity of µϑ was shown for all primitive

random substitutions. At this point, we get the same result, basically for free.

Theorem 4.1.13. Let ϑ be a primitive random substitution. Then, the dynamical system

(Xϑ, S, µϑ) is ergodic.

Proof. This is a corollary of Proposition 4.1.11 and the proof of Theorem 4.1.10. To establish

S-ergodicity of µϑ, it suffices to show that, for µϑ-almost every x ∈ Xϑ, the word frequencies

fu(x) exist and are equal to µϑ[u], for all u ∈ L; compare [Mol13, Prop. 4.21] and [GS20].

Again, this statement on the word frequencies follows by the Borel–Cantelli lemma if, for

every ε > 0 and u ∈ A+, ∑
m∈N

µϑ
(
{x : |fu(x[1,m])− fu| > 2ε}︸ ︷︷ ︸

=:Am

)
< ∞.

By construction,

µϑ(Am) = lim
n→∞

1

n

n−1∑
j=0

ν(S−jAm).

A slight modification of the proof of Theorem 4.1.10 shows that there are k, n0 ∈ N and

c, µ > 0 such that ν(S−jAm) ⩽ e−cm/µ
k
, for all j ∈ N0 and large enough m ⩾ n0µ

k. This

implies µϑ(Am) ⩽ e−cm/µ
k
for large enough m ∈ N, and the claim follows.

Remark 4.1.14. For a primitive random substitution ϑ andm ∈ N, we can compute fu for all

u ∈ Lm, using a finite algorithm. This employs the concept of an induced random substitution

ϑm, defined on Lm as the corresponding alphabet. There is a primitive substitution matrix

Mm associated to ϑm with (normalized) PF eigenvector Rm. The values fu are precisely the

entries of Rm. We refer to [GS20,Mol13,Kos12] for details. For deterministic substitutions,

this construction is classic [BG13,Que10]. ♢

Ergodicity is in fact the strongest measure-theoretic mixing result that we can expect

to hold in such generality for primitive random substitutions. This is because there are

primitive random substitutions with a non-trivial pure point part in the diffraction measure,

which excludes weak mixing [Mol13,Goh17,BSS18]. We will explore the diffraction measures

associated to primitive random substitutions in Section 4.3.

4.2. Entropy

4.2.1. Topological entropy

To obtain general, yet useful, estimates of the entropy associated with a random substitu-

tion system requires some control over the random substitution at hand. The task becomes

considerably easier if letter frequencies are well-defined and if the powerful machinery of PF

theory is available. To avoid being overly repetitive, we fix some notation for the remainder

of this section.
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Assumption 4.2.1. Let ϑ be a primitive, compatible random substitution. We write M for

its substitution matrix and λ for the corresponding PF eigenvalue. The left and right PF

eigenvectors of M are denoted by L and R, with ⟨L|R⟩ = ||R||1 = 1.

Since topological entropy makes no reference to a measure on (Xϑ, S), we regard ϑ as a

set-valued substitution throughout this section. Recall from Section 2.3.2 that the topological

entropy of (Xϑ, S) can be calculated by

sϑ := htop(S) = lim
n→∞

log#Ln
n

.

That is, we are looking for the exponential growth rate of the set of legal words, as their

length increases. On the set of legal words, we unfortunately lack an immediate recursive

structure. This is different for the set of inflation words. Indeed, we obtain

ϑn+k(a) = ϑn(ϑk(a)) =
⋃

v∈ϑk(a)

ϑn(v), (4.4)

for all k, n ∈ N and a ∈ A. For the cardinality of these sets, it is important to assess whether

the union in (4.4) is disjoint or contains overlaps. We give a name to the two extremal cases.

Definition 4.2.2. For k, n ∈ N, we say that ϑ satisfies the identical set condition of type

(k, n), denoted by (k,ISC,n), if

u, v ∈ ϑk(a) =⇒ ϑn(u) = ϑn(v),

for all a ∈ A. We say that ϑ satisfies the disjoint set condition of type (k, n), denoted by

(k,DSC,n), if

u, v ∈ ϑk(a) and u ̸= v =⇒ ϑn(u) ∩ ϑn(v) = ∅,

for all a ∈ A. Finally, we say that (ISC) [or (DSC)] holds for ϑ, if (1,ISC,n) [or (1,DSC,n)]

holds for all n ∈ N, respectively.

The conditions (ISC) and (DSC) are important because they will enable us to give an

explicit formula for the topological entropy sϑ.

Example 4.2.3. If ϑ is of constant length, a sufficient condition for (DSC) is ϑ(a)∩ϑ(b) = ∅,

for all a, b ∈ A with a ̸= b [Goh20, Cor. 20]. This applies in particular to the set-valued period

doubling substitution ϑ : a 7→ {ab, ba}, b 7→ {aa} from Example 3.2.7. That disjointness of

the inflation sets ϑ(a) and ϑ(b) is not necessary for (DSC) can be seen from the example

ϑ : a, b 7→ {cac, cca}, c 7→ {abb}.

Here, ϑn(a) = ϑn(b), but ϑn(a)∩ϑn(c) = ∅, for all n ∈ N. The latter observation also suffices

to conclude that ϑn(cac) and ϑn(cca) are disjoint for all n ∈ N, and hence, (DSC) holds.

Example 4.2.4. The set-valued Fibonacci substitution ϑ : a 7→ {ab, ba}, b 7→ {a} from Ex-

ample 3.2.3 satisfies neither (DSC) nor (ISC). This is because the sets ϑ(ab) = {aba, baa} and
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ϑ(ba) = {aab, aba} have a non-trivial intersection. Therefore, both (1,DSC,1) and (1,ISC,1)

fail to hold. A slight adaptation, given by

ϑ : a, c 7→ {ab, ba}, b 7→ {c},

satisfies (1,DSC,1) but not (1,DSC,2).

Remark 4.2.5. The different types of conditions, listed in Definition 4.2.2, are in fact not

independent. For instance, it is a straightforward exercise to show that (1,ISC,1) implies

(k,ISC,n) for all k, n ∈ N. Hence, (ISC) is particularly easy to check. Another consequence

is that, if ϑ satisfies (ISC), so does ϑn for all n ∈ N.
For (DSC), the situation is in some sense reversed: For all k, n ∈ N, (k,DSC,n) also implies

(1,DSC,1). The converse is not true in general, as we can see from Example 4.2.4. With

some tedious, yet straightforward work, we can show that (DSC) holds for either all or none

of {ϑn}n∈N. ♢

Definition 4.2.6. Given n ∈ N, let θn denote the logarithmic cardinality vector on A, with

entries

θna = log#ϑn(a),

for all a ∈ A.

The logarithmic cardinality of ϑn(v) for general words v ∈ A+ can be obtained from θn in

a straightforward manner. Indeed, using compatibility, we verify that

log#ϑn(v) = log

|v|∏
j=1

#ϑn(vj) =

|v|∑
j=1

θnvj = ⟨θn|Φ(v)⟩, (4.5)

for all n ∈ N and v ∈ A+.

Lemma 4.2.7. Let k, n ∈ N. Then,

⟨θn|Mk ⩽ ⟨θn+k| ⩽ ⟨θn|Mk + ⟨θk|,

to be understood elementwise. The lower bound is an equality if and only if ϑ satisfies

(k,ISC,n). The upper bound is an equality if and only if ϑ satisfies (k,DSC,n).

Proof. For a ∈ A and v ∈ ϑk(a), we have by (4.5),

log#ϑn(v) = ⟨θn|Φ(v)⟩ = ⟨θn|Mk|ea⟩.

In particular, all of the sets ϑn(v) with v ∈ ϑk(a) have the same cardinality. Hence, taking

cardinalities in (4.4), we find

⟨θn+k|ea⟩ = log#ϑn+k(a) ⩾ log#ϑn(v) = ⟨θn|Mk|ea⟩,

with equality precisely if all of the sets ϑn(v) with v ∈ ϑk(a) coincide. Similarly,

⟨θn+k|ea⟩ = log#ϑn+k(a) ⩽ log
(
#ϑk(a)#ϑn(v)

)
= ⟨θn|Mk|ea⟩+ ⟨θk|ea⟩,

with equality precisely if all of the sets ϑn(v) with v ∈ ϑk(a) are disjoint.
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4. Random substitutions

Proposition 4.2.8. There is a well-defined limit vector

θ = lim
k→∞

1

λk
θk,

which satisfies
⟨θn|R⟩
λn

L ⩽ θ ⩽
⟨θn|R⟩
λn − 1

L, (4.6)

for all n ∈ N. The lower bound is non-decreasing in n.

Proof. We first note that, for all n ∈ N,

⟨θ| := lim inf
k→∞

1

λn+k
⟨θn+k| ⩾ lim inf

k→∞

1

λn
⟨θn| 1

λk
Mk =

⟨θn|R⟩
λn

⟨L|,

due to Lemma 4.2.7. The last expression is non-decreasing in n, since

⟨θn+1|R⟩
λn+1

⩾
⟨θn|M |R⟩
λn+1

=
⟨θn|R⟩
λn

,

for all n ∈ N. By the upper bound in Lemma 4.2.7, we obtain

⟨θ| := lim sup
k→∞

⟨θn+k|
λn+k

⩽ lim sup
k→∞

⟨θn|
λn

1

λk
Mk +

1

λn
lim sup
k→∞

⟨θk|
λk

=
⟨θn|R⟩
λn

L+
1

λn
⟨θ|,

and hence,

θ ⩽
⟨θn|R⟩
λn − 1

L.

Since the upper and the lower bound in (4.6) converge to the same (positive) vector as n→ ∞,

we conclude that θ = θ, and the limit is well-defined.

Corollary 4.2.9. We have θ = sL, with

s := lim
n→∞

⟨θn|R⟩
λn

.

For all v ∈ A+, we have

s = lim
n→∞

#ϑn(v)

|ϑn(v)|
.

Proof. The first claim is an immediate consequence of Proposition 4.2.8. For the second claim,

let v ∈ A+ and recall from (4.5) that #ϑn(v) = ⟨θn|Φ(v)⟩. By the PF theorem,

lim
n→∞

|ϑn(v)|
λn

=
∑
a∈A

La|v|a = ⟨L|Φ(v)⟩.

Combined with Proposition 4.2.8, this yields

lim
n→∞

#ϑn(v)

|ϑn(v)|
= lim

n→∞

λ−n⟨θn|Φ(v)⟩
λ−n|ϑn(v)|

=
⟨θ|Φ(v)⟩
⟨L|Φ(v)⟩

= s,

and the claim follows.
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We show that this value s is indeed the topological entropy of the dynamical system (Xϑ, S),
providing an improvement of the first part of Theorem 4.0.1, stated in the introduction of

this chapter.

Theorem 4.2.10. Let ϑ be a primitive compatible random substitution. The topological

entropy of (Xϑ, S) is given by

sϑ = lim
n→∞

⟨θn|R⟩
λn

= lim
n→∞

1

λn

∑
a∈A

Ra#ϑ
n(a).

For all n ∈ N, it satisfies
⟨θn|R⟩
λn

⩽ sϑ ⩽
⟨θn|R⟩
λn − 1

. (4.7)

The lower bound is an equality if and only if ϑn satisfies (DSC), while the upper bound is an

equality if and only if ϑn satisfies (ISC).

Proof. By Corollary 4.2.9, the first claim follows from the second. Since ϑ is primitive, we

have sϑ = sϑn , for all n ∈ N, and hence it suffices to show the second claim for n = 1. For an

arbitrary a ∈ A and m ∈ N, the legal words of length |ϑm(a)| contain ϑm(a) and hence

sϑ ⩾ lim
m→∞

#ϑm(a)

|ϑm(a)|
⩾

⟨θ1|R⟩
λ

,

again by Corollary 4.2.9 and Proposition 4.2.8. For the upper bound, we use that large words

can be decomposed into inflation words. Let ε > 0. In Lemma 3.2.8 we have seen that letter

frequencies exist uniformly in L. Hence, there is a number n0 ∈ N such that for all n ⩾ n0
and u ∈ Ln, we have |fa(u) − Ra| < ε for all a ∈ A. By a similar argument, we can assume

that |ϑ(u)| ⩾ n(λ − ε) for all u ∈ Ln. Let mn = ⌊n(λ − ε)⌋ − ℓ, where ℓ = maxa∈A |ϑ(a)|.
Then, for every w ∈ Lmn there is a v = v1 · · · vn ∈ Ln such that w is a subword of some word

in ϑ(v), overlapping the first inflation word ϑ(v1). This implies

#Lmn ⩽ ℓ#ϑ(Ln) ⩽ ℓ
∑
u∈Ln

#ϑ(u).

By (4.5) and the assumption on letter frequencies, we have for u ∈ Ln that

log#ϑ(u) = ⟨θ1|Φ(u)⟩ ⩽ n⟨θ1|R⟩+ nε
∑
a∈A

#ϑ(a) = n
(
⟨θ1|R⟩+ εc

)
,

for some constant c that is independent of ε and n. We obtain,

log#Lmn ⩽ log
(
ℓen(⟨θ

1|R⟩+εc)#Ln
)

= log(ℓ) + n
(
⟨θ1|R⟩+ εc

)
+ log(#Ln).

Finally, this yields

sϑ = lim
n→∞

log#Lmn

mn
⩽

⟨θ1|R⟩+ εc+ sϑ
λ− ε

ε→0−−−→ ⟨θ1|R⟩
λ

+
sϑ
λ
,

and hence

sϑ ⩽
⟨θ1|R⟩
λ− 1

.
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If ϑ satisfies (DSC), we have, due to Lemma 4.2.7,

⟨θm|R⟩ = ⟨θ1|R⟩+ λ⟨θm−1|R⟩ = . . . =

m−1∑
k=0

λk⟨θ1|R⟩ =
λm − 1

λ− 1
⟨θ1|R⟩,

for all m ∈ N, and thereby,

sϑ = lim
m→∞

⟨θm|R⟩
λm − 1

=
⟨θ1|R⟩
λ− 1

.

If ϑ does not satisfy (DSC), there is m ∈ N with

sϑ ⩽
⟨θm|R⟩
λm − 1

<
⟨θ1|R⟩
λ− 1

.

The claim on the lower bound being an equality precisely if (ISC) holds for ϑ, follows in a

similar manner.

Remark 4.2.11. As we discussed in Remark 4.2.5, (DSC) holds either for all or for none

of the powers of ϑ. Hence, either sϑ is equal to the upper bound in (4.6) for all n ∈ N, or
it is strictly smaller than the upper bound for all n ∈ N. For the lower bound, we do not

have a similar dichotomy. It is possible to construct an example such that ϑ does not satisfy

(ISC), but ϑ2 does. Comparing with Remark 4.2.5, we observe that (DSC) is in general more

difficult to check, but is better behaved under taking powers. ♢

In general, it is not easy to determine whether the subshift (Xϑ, S) contains S-periodic

sequences; some criteria were established in [Rus20]. If periodic sequences exist, they are

necessarily dense in the subshift [RS18]. In that case, we will show that they can also be

used to recover the topological entropy. This is similar to the situation for SFTs [LM95]. In

fact, every topologically transitive SFT can be written as a primitive random substitution

subshift [GRS19]. Given a length n ∈ N, we write

P(n) = {v ∈ Ln | vZ ∈ Xϑ},

for the set of periodic seeds of length n.

Proposition 4.2.12. Assume that (Xϑ, S) contains an S-periodic sequence. Then,

lim sup
n→∞

log#P(n)

n
= sϑ.

Proof. If Xϑ contains an S-periodic sequence, there are q ∈ N and v ∈ P(q) ̸= ∅. By

construction, we have ϑm(v) ⊂ P(|ϑm(v)|) for all m ∈ N. Hence,

lim sup
m→∞

log#P(|ϑm(v)|)
|ϑm(v)|

⩾ lim
m→∞

log#ϑm(v)

|ϑm(v)|
= s = sϑ,

by Corollary 4.2.9 and Theorem 4.2.10. The opposite inequality is immediate since P(n) ⊂ Ln
for all n ∈ N.
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Example 4.2.13. As we have seen in Example 4.2.3, the condition (DSC) is fulfilled by

the set-valued period doubling substitution ϑ : a 7→ {ab, ba}, b 7→ {aa}. The right PF eigen-

vector is easily determined as R = (2/3, 1/3), and we obtain θ1 = (log(2), 0). Hence, by

Theorem 4.2.10, the topological entropy is given by

sϑ = ⟨θ1|R⟩ = 2

3
log(2).

This was already obtained in [BSS18], using different methods. ♢

For more examples and a useful sufficient condition for (DSC) that builds on previous work

of Rust [Rus20], we refer to [Goh20].

4.2.2. Measure-theoretic entropy

We still adopt the notation from Assumption 4.2.1. In particular, ϑ denotes a primitive

compatible random substitution throughout this section. However, we now regard ϑ as a

genuinely random object as introduced in Section 3.2.2 and equip the subshift (Xϑ, S) with the

ergodic measure µϑ from Proposition 4.1.11. The measure-theoretic entropy of the dynamical

system (Xϑ, S, µϑ) is given by

hϑ := hµϑ(S) = lim
n→∞

− 1

n

∑
u∈Ln

µϑ([u]) logµϑ([u]) = lim
n→∞

1

n

∑
u∈Ln

φ(µϑ([u])),

where we have used the notation φ(x) = −x log x, which defines a non-negative, concave

function on [0, 1]. Unfortunately, the exact calculation of µϑ([u]) = fu for long words u is

computationally very expensive, even with the algorithm presented in Remark 4.1.14. It is

therefore of practical use to find an algorithm for the computation of hϑ that works with the

Markov process (ϑn(a))n∈N, with a ∈ A, instead. The construction in this section is inspired

by our approach on topological entropy via inflation words, and many of our previous results

find their complement in the measurable setting. Instead of taking log-cardinalities of the

inflation sets ϑn(a), we consider the entropy of the probability distribution, defined by the

random variable ϑn(a). More precisely, we consider

H
(
ϑn(a)

)
:= HP

(
ϑn(a)

)
=
∑
v∈L

φ
(
P[ϑn(a) = v]

)
,

which is the entropy of the measurable partition (ϑn(a))−1A+ of the probability space (Ωa,Pa);
compare the discussion in Remark 2.3.3. Note that this is identical to the entropy of the fi-

nite probability vector Pna = (Pna,v)v∈ϑn(a). We have H(ϑn(a)) ⩽ log#ϑn(a), with equality

precisely if Pna is a uniform distribution on the set ϑn(a).

Definition 4.2.14. For n ∈ N, we write Hn for the vector on A, with Hn
a = H(ϑn(a)), for

all a ∈ A.

By compatibility, the random variables ϑn(v1 · · · v|v|) and (ϑn(v1), . . . , ϑ
n(v|v|)) induce the

same probability vector, up to a renaming of indices. Since neighbouring letters are mapped
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independently, we obtain that the entropy functional acts additively, due to Fact 2.3.2, that

is,

H
(
ϑn(v)

)
=

|v|∑
j=1

H
(
ϑn(vj)

)
= ⟨Hn|Φ(v)⟩,

for all n ∈ N and v ∈ A+. Instead of the inflation set recursion (4.4), we get, for all n, k ∈ N,

H
(
ϑn+k(a)|ϑk(a)

)
=

∑
v∈ϑk(a)

P
[
ϑk(a) = v

]
H
(
ϑn(v)

)
= E

[〈
Hn
∣∣Φ(ϑk(a))〉]

= ⟨Hn|Mk|ea⟩,
(4.8)

where we have used the homogeneity of the Markov process (ϑn(a))n∈N in the first step.

Lemma 4.2.15. For all n, k ∈ N, we have

⟨Hn|Mk ⩽ ⟨Hn+k| ⩽ ⟨Hn|Mk + ⟨Hk|.

The upper bound is an equality if and only if (k,DSC,n) holds. The lower bound is an equality

if and only if (k,ISC,n) holds and Pnv is the same vector for all v ∈ ϑk(a).

Proof. By the general properties of (conditional) entropies in Fact 2.3.2,

H
(
ϑn+k(a)|ϑk(a)

)
⩽ H

(
ϑn+k(a)

)
⩽ H

(
ϑn+k(a)|ϑk(a)

)
+H

(
ϑk(a)

)
,

for all n, k ∈ N and a ∈ A. The lower bound is an equality if and only if ϑk(a) and ϑn+k(a)

are independent. That is only possible if Pnv is the same vector for all v ∈ ϑk(a). The upper

bound is an equality if and only if ϑk(a) is completely determined by ϑn+k(a). This is a

reformulation of (k,DSC,n). The claim now follows from (4.8).

The result in Lemma 4.2.15 motivates the following modification of the identical set con-

dition.

Definition 4.2.16. We say that ϑ satisfies (ISC) with identical production probabilities if for

all a ∈ A and n ∈ N,
u, v ∈ ϑ(a) =⇒ Pnu = Pnv .

The last expression is equivalent to P[ϑn(u) = w] = P[ϑn(v) = w], for all w ∈ A+.

The following is a slightly more detailed version of our results in [GMRS21]. The last claim

motivates the name measure-theoretic inflation word entropy for the quantity h.

Proposition 4.2.17. There is a well-defined limit vector

H = lim
m→∞

1

λm
Hm = hL,

where h = limm→∞ λ−m⟨Hm|R⟩ satisfies

⟨Hn|R⟩
λn

⩽ h ⩽
⟨Hn|R⟩
λn − 1

,
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for all n ∈ N. The lower bound is an equality if and only if ϑn satisfies (ISC) with identical

production probabilities. The upper bound is an equality if and only if ϑn satisfies (DSC).

Further, for all v ∈ A+,

h = lim
n→∞

H(ϑn(v))

|ϑn(v)|
.

Proof. Note that the recursion for the sequence (Hn)n∈N in Lemma 4.2.15 and the recursion

for the sequence (θn)n∈N in Lemma 4.2.7 are precisely the same. The proofs of Proposi-

tion 4.2.8 and Corollary 4.2.9 (and the last part of the proof of Theorem 4.2.10) therefore

carry over mutatis mutandis.

Theorem 4.2.18 ([GMRS21]). Let ϑ be a primitive compatible random substitution. The

entropy of the measure-theoretic dynamical system (Xϑ, S, µϑ) satsifies hϑ = h, with h as in

Proposition 4.2.17.

Sketch of proof. The full details of the proof can be found in [GMRS21]. We try to convey the

basic ideas here. For n ∈ N, let µ(n) denote the probability vector on Ln, with µ(n)v = µϑ([v]).

It can be shown that µ(⌊λn⌋) has a similar distribution to ϑ(µ(n)), up to modifications that

are negligible for the entropy calculation in the limit of large n. Hence,

hϑ = lim
n→∞

1

λn
H
(
µ⌊λn⌋

)
= lim

n→∞

1

λn
H
(
ϑ(µ(n))

)
.

Also, we can assume that for u ∈ Ln and a ∈ A, we have |u|a ≈ nRa by the uniform existence

of letter frequencies. We obtain, regarding u as a µ(n)-distributed random word,

H(ϑ(µ(n))|µ(n)) = Eµ(n) [H(ϑ(u))] = Eµ(n) [⟨H1|Φ(u)⟩] ≈ n⟨H1|R⟩.

For the lower bound, this yields

hϑ ⩾ lim
n→∞

1

λn
H
(
ϑ(µ(n))|µ(n)

)
=

1

λ
⟨H1|R⟩.

For the upper bound, we obtain

hϑ ⩽ lim
n→∞

1

λn
H
(
ϑ(µ(n))|µ(n)

)
+

1

λn
H
(
µ(n)

)
=

1

λ
⟨H1|R⟩+ 1

λ
hϑ

and it follows that
⟨H1|R⟩
λ

⩽ hϑ ⩽
⟨H1|R⟩
λ− 1

.

The corresponding identities for arbitrary n ∈ N are found by replacing ϑ with ϑn.

Example 4.2.19. As a random substitution, the set-valued period doubling substitution

from Example 3.2.3 takes the form

ϑ : a 7→

{
ab with prob. q,

ba with prob. 1− q,
b 7→ aa,

59



4. Random substitutions

with q ∈ (0, 1). The entropy of the random values ϑ(a) and ϑ(b) is given by

H(ϑ(a)) = −q log q − (1− q) log(1− q),

and H(ϑ(b)) = 0, respectively. As we already discussed in Example 4.2.13, ϑ satisfies (DSC).

Hence, we obtain from Theorem 4.2.18 that

hϑ = −2

3

(
q log q + (1− q) log(1− q)

)
,

which has a unique maximum for q = 1/2, in which case hϑ = sϑ. That is, µϑ is a measure

of maximal entropy on (Xϑ, S) if and only if q = 1/2. ♢

4.3. Diffraction

In this section, we still assume that ϑ is a primitive random substitution, but we slightly

weaken the compatibility assumption to that of geometric compatibility; compare Defini-

tion 3.2.9. Hence, for every sequence x ∈ Xϑ and a ∈ A, we have a corresponding (typed)

point set Λa(x), as defined in Section 3.1.2 and Section 2.4.4.

Let τ ∈ CA denote an arbitrary vector of complex weights. Recall the definition of the

weighted Dirac comb ω(x) =
∑

a∈A τaδΛa(x) from Section 2.4.4. This naturally defines a

translation bounded (complex) Radon measure on R. If x ∈ AN is a one-sided sequence, the

above quantities are defined analogously and ω(x) is a Radon measure on R+. Similarly, for

u ∈ A+, the left endpoints of the corresponding interval-pattern are given by ℓ1(u) = 0 and

ℓn+1(u) = ℓn(u) + Lun , for all 1 ⩽ n ⩽ |u| − 1, and we define

Λa(u) = {ℓn(u) : un = a},

for all a ∈ A, in obvious analogy to the infinite case. Note that ω(u) =
∑

a∈A τaδΛa(u) is

a finite measure on R and therefore has a well-defined Fourier transform that is absolutely

continuous relative to Lebesgue measure, represented by the density

ω̂(u)(k) =
∑
a∈A

τa
∑

r∈Λa(u)

e−2πikr.

For notational convenience, we also set ω̂(u) := ω̂(u) and suppress the explicit dependence

on k notationally.

Lemma 4.3.1. If (vn)n∈N is a sequence of words such that limn→∞ |vn| → ∞, and if, for

every u ∈ A+, there is a word frequency fu, such that

lim
n→∞

|vn|u
|vn|

= fu,

we obtain that the vague limit

γ = lim
n→∞

γ(vn), with γ(vn) =
ω(vn) ∗ ω̃(vn)

L(vn)

exists and depends only on (fu)u∈A+.
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4.3. Diffraction

Proof. Let Λna = Λa(vn) for all n ∈ N and a ∈ A. Note that the set of obtainable patch sizes

Lg = {L(u) : u ∈ L} is locally finite and that the distance of any two points in Λ(vn) is in Lg
by construction. The approximation of the autocorrelation takes the form

γ(vn) =
∑
a,b∈A

τaτb
∑
z∈Lg

ηnab(z)δz,

where

ηnab(z) =
1

L(vn)
#
(
(Λna − z) ∩ Λnb

)
.

Note that r ∈ (Λna−z)∩Λnb precisely if there is a patch in the geometric image of vn that has an

interval of type b positioned at r and an interval of type a positioned at r+z. Word frequencies

in vn translate to patch frequencies in its geometric image. Therefore, limn→∞ ηnab(z) exists

for every a, b ∈ A and z ∈ Lg and depends only on the word frequencies. Since Lg is locally

finite, this entails vague convergence of γ(vn).

In the following, all limits of measures are understood in the vague topology if not explicitly

stated otherwise. The observation that the autocorrelation measure depends only on the word

frequencies shows that there is a µϑ-almost sure autocorrelation measure associated to (Xϑ, S).
It also provides us with several ways to obtain this measure as a vague limit. For the following,

recall the notation

γn(x) =
ωn(x) ∗ ω̃n(x)

|Bn|

for the normalized autocorrelation measure corresponding to ωn(x), the restriction of ω(x) to

the ball Bn, compare Definition 2.4.3.

Corollary 4.3.2. Let ϑ be a primitive, geometrically compatible random substitution and

(Xϑ, S, µϑ) the associated ergodic dynamical system. Further, assume that ν is a ϑp-invariant

measure on Xϑ. Then, there is a positive definite measure γϑ = γ, called the autocorrelation

of ϑ, such that

γ = lim
n→∞

γn(x),

for µϑ-almost every x ∈ Xϑ and ν-almost every x ∈ X+
ϑ . It also satisfies

γ = lim
n→∞

γ(ϑn(a)),

Pa-almost surely, for all a ∈ A. ■

We call the Fourier transform γ̂ of this measure the diffraction measure of ϑ. By dominated

convergence, we have in particular,

γ = lim
n→∞

Eν [γ(x[1,n])],

and

γ = lim
n→∞

Ea
[
γ
(
ϑn(a)

)]
.
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4. Random substitutions

Note that, although defined on different probability spaces, both relations take a very similar

form. The key insight of Godrèche and Luck was that there is an appropriate splitting of

the approximants that gives rise to different spectral components of the diffraction measure.

This was made rigorous for several examples of primitive, compatible random substitutions

in [BSS18, Goh17, Mol14]. The idea of splitting the influence of a randomization on the

diffraction measure into its contributions corresponding to first and second moments is not

only useful for random substitutions; it has also found applications in the context of point

processes and Bernoullization procedures, see for example [BBM10,DV-J05].

Definition 4.3.3. Let v be a random word on some probability space (Ω,P). We define,

γex(v) =
1

L(v)
E[ω(v)] ∗ Ẽ[ω(v)],

and

γvar(v) =
1

L(v)

(
E
[
ω(v) ∗ ω̃(v)

]
− E[ω(v)] ∗ Ẽ[ω(v)]

)
,

satisfying E[γ(v)] = γex(v) + γvar(v). The Fourier transformed measures are denoted by

γ̂ex(v) =
1

L(v)

∣∣E[ω̂(v)]∣∣2 , γ̂var(v) =
1

L(v)

(
E
[∣∣ω̂(v)∣∣2]− ∣∣E[ω̂(v)]∣∣2) ,

respectively, and satisfy E[γ̂(v)] = γ̂ex(v) + γ̂var(v).

We will use this definition for a sequence of random words (vn)n∈N, given by either the

random inflation words (ϑn(a))n∈N, for some a ∈ A, or by (x[1,n])n∈N on (X+
ϑ , S, ν). Our

ultimate goal is to study the diffraction measure γ̂ associated with ϑ. Since the Fourier

transform is vaguely continuous on positive definite measures [MS17, Lemma 4.11.10], we

find that

γ̂ = lim
n→∞

E[γ̂(vn)] = lim
n→∞

(
γ̂ex(vn) + γ̂var(vn)

)
, (4.9)

in both cases. For vn = x[1,n], we will write instead γ̂
ex
ν (vn) and γ̂

var
ν , when we wish to specify

the dependence on the distribution ν.

4.3.1. Absolutely continuous part of the diffraction

Heuristically, γ̂var(vn) contains the “fluctuations” introduced by the random substitution, and

we therefore expect this part to give an absolutely continuous component in the limit n→ ∞.

Our next aim is to make this precise for vn = ϑn(a).

Theorem 4.3.4. Let ϑ be a primitive, geometrically compatible random substitution. Then,

for every a ∈ A, the vague limit

γ̂var = lim
n→∞

γ̂var
(
ϑn(a)

)
exists, is independent of a ∈ A, and is absolutely continuous with respect to Lebesgue measure.
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4.3. Diffraction

Before we prove this result, we need some preparation. Note that for a random word v,

γ̂var(v) is in fact a rescaled version of the variance

V
[
ω̂(v)

]
= E

[∣∣ω̂(v)∣∣2]− ∣∣E[ω̂(v)]∣∣2 .
Definition 4.3.5. For every n ∈ N0, let V

n = (V n
a )a∈A denote the vector with

V n
a = V

[
ω̂(ϑn(a))

]
,

for all a ∈ A.

Lemma 4.3.6. We have V[ω̂(ϑn(v))] = ⟨V n|Φ(v)⟩, for all v ∈ A+ and n ∈ N0.

Proof. For a, b ∈ A, we have that ω(ab) = ω(a) + δLa ∗ ω(b). Since there is a well-defined

inflation factor λ, the action of the random substitution ϑn yields

ω(ϑn(ab)) = ω(ϑn(a)) + δλnLa ∗ ω(ϑn(b)).

Note that the convolution with δλnLa just gives a multiplicative phase under the Fourier

transform. Since the summands are independent random measures, applying first the Fourier

transform and then the variance, we obtain

V
[
ω̂
(
ϑn(ab)

)]
= V

[
ω̂
(
ϑn(a)

)]
+ V

[
ω̂
(
ϑn(b)

)]
.

For general v ∈ A+, it follows in a similar manner that

V
[
ω̂
(
ϑn(v)

)]
=
∑
a∈A

V
[
ω̂
(
ϑn(a)

)]
|v|a = ⟨V n|Φ(v)⟩,

for arbitrary n ∈ N, and the claim follows.

This can be used to derive a recursion for the (function-valued) vectors (V n)n∈N.

Proposition 4.3.7. For every n ∈ N0, we have ⟨V n+1| = ⟨∆n+1|+ ⟨V n|M , where

∆n+1
a =

1

2

∑
u,v∈ϑ(a)

PauPav
∣∣E[ω̂(ϑn(u))]− E

[
ω̂
(
ϑn(v)

)] ∣∣2,
for all a ∈ A. In particular, for all n ∈ N,

⟨V n| =
n∑
j=1

⟨∆j |Mn−j . (4.10)

Proof. Let a ∈ A. By the Markov property, we obtain that

E
[
ω̂
(
ϑn+1(a)

)]
=

∑
u∈ϑ(a)

PauE
[
ω̂
(
ϑn(u)

)]
, E

[
|ω̂
(
ϑn+1(a)

)
|2
]
=

∑
u∈ϑ(a)

PauE
[
|ω̂
(
ϑn(u)

)
|2
]
.

From this, a straightforward calculation gives

V[ω̂(ϑn+1(a))] = ∆n+1
a +

∑
u∈ϑ(a)

PauV[ω̂(ϑn(u))].
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4. Random substitutions

Invoking Lemma 4.3.6, we find∑
u∈ϑ(a)

PauV[ω̂(ϑn(u))] =
∑
u∈ϑ(a)

Pau⟨V n|Φ(u)⟩ = ⟨V n|M |ea⟩,

which completes the proof of the first claim. Note that V 0
a = 0, for all a ∈ A. Iterating the

relation ⟨V n| = ⟨∆n|+ ⟨V n−1|M yields the second claim.

A key observation is that each component ∆n defines a non-negative density function. As

an intermediate step, we consider pointwise convergence of the densities defining V n.

Lemma 4.3.8. For every k ∈ R, we have

lim
n→∞

1

λn
⟨V n(k)| =

( ∞∑
m=1

1

λm
⟨∆m(k)|

)
|R⟩⟨L|.

Proof. This follows from (4.10), in conjunction with the PF theorem. If the series on the

right hand side converges, it follows by dominated convergence that

lim
n→∞

1

λn
⟨V n(k)| = lim

n→∞

n∑
m=1

⟨∆m(k)|
λm

Mn−m

λn−m
=

( ∞∑
m=1

⟨∆m(k)|
λm

)
|R⟩⟨L|.

If
∑n

m=1 λ
−m⟨∆m

a (k)| diverges as n→ ∞ for some a ∈ A, then

lim inf
n→∞

n∑
m=1

(
⟨∆m(k)|
λm

Mn−m

λn−m

)
b

⩾ lim inf
n→∞

⌊n/2⌋∑
m=1

⟨∆m(k)|
λm

 |R⟩Lb
2

= ∞,

holds for every b ∈ A. Here, we have used that all entries of λ−rM r are positive for all

r ∈ N.

Finally, Theorem 4.3.4 is an immediate consequence of the following result, which also

provides an expression for the density function corresponding to γ̂var.

Proposition 4.3.9. The function g : R → [0,∞], with

g(k) =

( ∞∑
m=1

1

λm
⟨∆m(k)|R⟩

)

is locally integrable with respect to Lebesgue measure, and we have

lim
n→∞

γ̂var
(
ϑn(a)

)
= gλL,

in the vague topology, for all a ∈ A.

Proof. Let a ∈ A and gn : R → R,

gn(k) = γ̂var
(
ϑn(a)

)
(k) =

1

Laλn
V n
a (k).
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4.3. Diffraction

Similarly, we set hn(k) = γ̂ex(ϑn(a))(k). We have established in Lemma 4.3.8 that the

pointwise convergence gn(k) → g(k) as n → ∞ holds for all k ∈ R. Let f ∈ Cc(R). Recall

from (4.9) that

lim
n→∞

∫
R
|f(x)|(gn(k) + hn(k)) dk = γ̂(|f |) < ∞,

and that hn(k) ⩾ 0 for all k ∈ R by construction. Hence, by Fatou’s lemma,∫
R
|f(k)|g(k) dk =

∫
R
lim inf
n→∞

|f(k)|gn(k) dk ⩽ lim inf
n→∞

∫
R
|f(k)|gn(k) dk < ∞.

This implies that g is locally integrable with respect to Lebesgue measure. Additionally, we

have for every n ∈ N and k ∈ R that

gn(k) =
1

Laλn

n∑
m=1

⟨∆m(k)|Mn−m|ea⟩ ⩽ C
1

La

n∑
m=1

1

λm
⟨∆m(k)|R⟩La ⩽ Cg(k)

holds for some C > 0 that is independent of n and k. The vague convergence gnλL → gλL as

n→ ∞ follows by Lebesgue’s dominated convergence theorem.

4.3.2. Singular part of the diffraction

As a result of (4.9) and Theorem 4.3.4, we immediately obtain the following.

Corollary 4.3.10. The measure

γ̂ex = lim
n→∞

γ̂ex(ϑn(a))

is well-defined as a vague limit and independent of a ∈ A. ■

We hence have found a splitting

γ̂ = γ̂ex + γ̂var,

where the last term is an absolutely continuous measure. In this section, we want to investigate

the spectral type of the measure γ̂ex. More specifically, we will establish criteria that ensure

that γ̂ex is a pure point measure. This will be done for a more restricted class of random

substitutions.

Assumption 4.3.11. We denote by ϑ a primitive random substitution of constant length

ℓ ⩾ 2 throughout this section.

In particular, ϑ is geometrically compatible with L = (1, . . . , 1) and λ = ℓ. Hence, ω(v) is

supported on N for all v ∈ A+. For each a ∈ A, the same holds for

E[ω(ϑ(a))] =
∑
b∈A

τb
∑
u∈ϑ(a)

P[ϑ(a) = u]δΛb(u)
=

ℓ∑
n=1

∑
b∈A

τb P[ϑ(a)n = b] δn,

=:

ℓ∑
n=1

⟨πan|τ⟩δn,

(4.11)
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which again acquires the form of a weighted Dirac comb, where the weights are determined

by the vectors πan, with

⟨πan|eb⟩ = P[ϑ(a)n = b], (4.12)

for all b ∈ A and 1 ⩽ n ⩽ ℓ. More generally, if v is a random word with well-defined length

|v|, we define the positional marginal of v at n as the probability vector πn(v), with

⟨πn(v)|ea⟩ = P[vn = a], (4.13)

for all a ∈ A and 1 ⩽ n ⩽ |v|. With this notation, we easily generalize (4.11) to

E[ω(v)] =
|v|∑
n=1

⟨πn(v)|τ⟩δn. (4.14)

Before we continue, let us put this observation into a proper framework.

Definition 4.3.12. We denote by ∆A the probability simplex indexed by A, that is,

∆A =
{
π ∈ [0, 1]A :

∑
a∈A

⟨π|ea⟩ = 1
}
.

The weighted Dirac comb corresponding to a word π = π1 · · ·πn ∈ (∆A)n is given by

ω(q) =
n∑

m=1

⟨πm|τ⟩δm.

Definition 4.3.13. Let v be a random variable on some probability space (Ω,P) such that

|v| = m is well defined. The marginalization of v maps v to an element π(v) ∈ (∆A)m, given

by the word

π(v) = π1(v) · · ·πm(v),

where πn(v) is the positional marginal of v at n, defined in (4.13), for all 1 ⩽ n ⩽ m.

We will also write π(u)n for πn(u), emphasizing the point of view that π(u) should be

regarded as a word and π(u)n as one of its letters.

With the new notation, we can rewrite (4.14) in the compact form

E[ω(v)] = ω(π(v)).

In the next step, we try to understand how the marginalization of a random word v changes

if the random substitution ϑ is applied. First, assume v = a ∈ A is a (deterministic) letter.

Then, π(a) = ea and π(ϑ(a)) = πa1 · · ·πaℓ , with πan = πn(ϑ(a)), as defined in (4.12). This

motivates us to define a map

ϑ : ea 7→ πa1 · · ·πaℓ ,

for all a ∈ A. Extending this to a linear map in each component leads to the following

concept.
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4.3. Diffraction

Definition 4.3.14. Let ϑ be a primitive random substitution of constant length ℓ. The

average substituton ϑ is a substitution of constant length ℓ on the compact alphabet ∆A,

which is defined for π ∈ ∆A by

ϑ(π) = ϑ(π)1 · · ·ϑ(π)ℓ,

where, for all 1 ⩽ n ⩽ ℓ, 〈
ϑ(π)n

∣∣ = ⟨π|Mn,

with

Mn =
∑
a∈A

|ea⟩⟨πan| =
(
P[ϑ(a)n = b]

)
a,b∈A.

We refer to ϑn : ∆
A → ∆A, π 7→ ϑ(π)n as the n-th column of the substitution ϑ.

Note that Mn is a Markov matrix for all 1 ⩽ n ⩽ ℓ, which ensures that ϑ : ∆A → (∆A)+ is

a well-defined map. It is extended to an endomorphism on (∆A)+ by concatenation, as usual.

It is straightforward to verify that the consistency equation ϑ
n
= ϑn holds for all n ∈ N.

Example 4.3.15. Recall the random period doubling substitution

ϑ : a 7→

{
ab with prob. p,

ba with prob. 1− p,
b 7→ aa,

from Example 4.2.19, with

M1 =

(
p 1− p

1 0

)
, M2 =

(
1− p p

1 0

)
.

The average substitution takes the form ϑ(π) =
(
⟨π|M1

)(
⟨π|M2

)
, for all π ∈ ∆A. ♢

Lemma 4.3.16. Let u be a random word on (Ω,P) such that |u| ∈ N is well-defined. Then,

the map π : u 7→ π(u) semi-conjugates the actions of ϑ and ϑ, that is,

π(ϑ(u)) = ϑ(π(u)).

Proof. Let |u| = 1. Then, for all 1 ⩽ n ⩽ ℓ and a ∈ A, we have〈
πn(ϑ(u))

∣∣ea〉 = P
[
ϑn(u) = a

]
=
∑
b∈A

P[u = b]P
[
ϑ(b)n = a

]
= ⟨π(u)|Mn|ea⟩,

implying that πn(ϑ(u)) = ϑn(π(u)), for all 1 ⩽ n ⩽ ℓ. If |u| = m ∈ N, we obtain

π(ϑ(u)) = π(ϑ(u1)) · · ·π(ϑ(um)) = ϑ
(
π(u1)

)
· · ·ϑ

(
π(un)

)
= ϑ

(
π(u)

)
,

and the claim follows.
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All of the definitions and arguments presented in this section naturally extend to the infinite

setting. In particular, if x is a random sequence, distributed according to some probability

measure µ on AN, we set π(x) = (πn(x))n∈N, where πn(x) is the positional marginal satisfying,

⟨πn(x)|ea⟩ = µ[xn = a],

for all n ∈ N and a ∈ A. For easier reference, we collect in the following result the analogue

of the previous observations in the setting of infinite sequences.

Lemma 4.3.17. Let x be a AN-valued random sequence, with distribution µ. Then,

Eµ[ω(x)] = ω(π(x)),

and

π(ϑ(x)) = ϑ
(
π(x)

)
,

where ϑ(x) has distribution ϑ(µ). ■

Corollary 4.3.18. Let ν be a ϑ-invariant measure on X+
ϑ and let x denote a ν-distributed

random sequence. Then, the sequence π(x) ∈ (∆A)N with

⟨πn(x)|ea⟩ = ν[xn = a],

for all n ∈ N and a ∈ A, is invariant under ϑ. That is,

⟨π(x)m+sℓ| =
〈
ϑ(π(x))m+sℓ

∣∣ = ⟨π(x)s+1|Mm,

for all 1 ⩽ m ⩽ ℓ, and s ∈ N0.

Proof. By Lemma 4.3.17, we have

ϑ
(
π(x)

)
= π(ϑ(x)).

Since ν is ϑ-invariant, the distributions of x and ϑ(x) coincide, implying π(ϑ(x)) = π(x).

Remark 4.3.19. The sequence π(x) is ℓ-automatic as defined in [Que10]. There, it was

shown that, if ϑ is primitive, the orbit closure of π(x) is strictly ergodic [Que10, Cor. 12.2].

Unfortunately, primitivity of ϑ does not necessarily entail that ϑ is also primitive, even if

we restrict it to L1(π(x)) = {π(x)n : n ∈ N}. For a counterexample, consider the random

substitution

ϑ : a 7→ ab, b 7→

{
bb, with prob. 1/2,

ba, with prob. 1/2,

and ν the ϑ-invariant measure with ν[x1 = a] = 1. Here,M1 is the identity and the stable dis-

tribution of M2 is given by π = (1/3, 2/3). Since ϑ(π) = ππ and (1, 0) ∈ L1, this substitution

is not primitive. Of course, we can also choose a ϑ-invariant measure ν with (ν[a], ν[b]) = π,

to obtain π(x) = πN and hence a primitive substitution ϑ on the alphabet L1(π(x)) = {π}.
Whether such a construction is possible in general is open at this point and remains to be

determined. ♢
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4.3. Diffraction

Up to replacing ϑ by one of its powers, we can always assume that a ϑ-invariant measure

exists on X+
ϑ . This provides us with a way to approach the diffraction of the expected Dirac

comb. Since

γexν (x[1,n]) =
ωn ∗ ω̃n

n
, ωn := Eν

[
ω
(
x[1,n]

)]
,

the vague accumulation points of

(γ̂exν (x[1,n]))n∈N

are precisely the diffraction measures of

Eν(ω(x)) = ω(π(x)),

along Bn = [0, n], as n→ ∞. The weighted Dirac comb

ω(π(x)) =
∞∑
n=1

⟨π(x)n|τ⟩δn =
∞∑
n=1

q∗nδn,

is the Dirac comb of the bounded, complex valued sequence q∗ ∈ CN, where q∗n = ⟨π(x)n|τ⟩
for all n ∈ N. As such, it is a translation bounded measure, and pure point diffraction can be

characterized in terms of mean-almost periodicity of the sequence q∗.

Definition 4.3.20. Let (A, d) be a metric space and (nm)m∈N a non-decreasing sequence of

natural numbers. A sequence q ∈ AN is called mean-almost periodic (m.a.p.) with respect to

(nm)m∈N, if, for every ε > 0, there is a relatively dense set Eε ⊂ Z such that, for all k ∈ Eε,

lim sup
m→∞

1

nm

∑
n⩽nm

d(qn, qn+k) ⩽ ε,

where the assignment of q−n is arbitrary for n ∈ N0. A sequence q is m.a.p. if it is m.a.p.

with respect to (n)n∈N and hence with respect to every non-decreasing sequence.

We easily observe that q⋆ is m.a.p. for all choices of τ if and only if π(x) is m.a.p. in the

variation distance dv, given by

dv(π1, π2) = max
a∈A

|⟨π1 − π2|ea⟩|,

for all π1, π2 ∈ ∆A. Due to the constant-length property, a natural candidate for the collection

of mean-almost periods is the sequence of sets (En)n∈N, with En = ℓnZ. It is a classic result

that a (bounded) complex valued sequence q gives rise to a pure point diffraction measure

if and only if q is mean-almost periodic. In the uniquely ergodic setting, this can be found

in [Que10, Lemma 6.6]. We refer to [LSS20] for a generalization to arbitrary translation

bounded measures. The following is an immediate corollary of [LSS20, Thm. 2.13].

Fact 4.3.21. Let ω =
∑∞

n=1 qnδn, for some bounded q ∈ CN. Let γ̂ be a diffraction measure

of ω with respect to the averaging sequence ([0, nm])m∈N. Then, γ̂ is a pure point measure if

and only if q is m.a.p. with respect to (nm)m∈N. ■
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4. Random substitutions

Our next aim is to give a criterion that ensures that q∗ is m.a.p.. For deterministic substi-

tutions of constant length, this was solved by Dekking in terms of the coincidence condition;

we refer to [Dek78] for details. Before we formulate an analogue of this result, we introduce a

concept that quantifies how far a Markov matrix is from a projection to its equilibrium state.

Definition 4.3.22. For a Markov matrix M on the state space A, Dobrushin’s coefficient

δ(M) is defined as

δ(M) =
1

2
max
a,b

∑
c∈A

|Mac −Mbc|.

We call a matrix M scrambling if δ(M) < 1.

In the following, we assume that every Markov matrix is defined on the state space A. The

notion of scrambling Markov matrices was originally introduced by Hajnal [Haj58] for the

study of weak ergodicity of non-homogeneous Markov chains. There, an equivalent formulation

was used, without reference to Dobrushin’s coefficient. We state it as a lemma for easier

reference and omit the straightforward proof; compare [Sen81, Thm. 2.10].

Lemma 4.3.23. The Markov matrix M is scrambling if and only if, for all a, b ∈ A, there

exists a letter c ∈ A such that Mac > 0 and Mbc > 0. ■

Some elementary but useful facts about Dobrushin’s coefficient are listed below. They

can be found in [Bre20, Ch. 12], to which we also refer for a general introduction to non-

homogeneous Markov chains. In fact, restricting the action of a Markov matrix to an appro-

priate subspace of RA, δ can be interpreted as an operator norm [NS99], so the following does

not come as a surprise.

(1) 0 ⩽ δ(M) ⩽ 1 for every Markov matrix M .

(2) δ(M) = 0 precisely if M has identical rows.

(3) δ(MN) ⩽ δ(M)δ(N) for all Markov matrices M,N .

(4) dv(⟨π1|M, ⟨π2|M) ⩽ dv(π1, π2)δ(M) for every Markov matrix M and π1, π2 ∈ ∆A.

The last property implies that every scrambling matrix acts as a contraction on (∆A, dv).

It should be noted that for a product N1 · · ·Nr of Markov matrices to be scrambling it is

sufficient but not necessary, that one of the matrices N1, . . . , Nr is scrambling.

Definition 4.3.24. Let ϑ be a primitive random substitution of constant length ℓ, with

average substitution ϑ. We call ϑ scrambling if one of the Markov matrices Mn, defined by

Mn = (P[ϑ(a)n = b])a,b∈A is scrambling.

Proposition 4.3.25. Let π(x) ∈ (∆A)N be a ϑ-invariant sequence. If ϑ is scrambling, the

sequence π(x) is mean-almost periodic and every diffraction measure of ω(π(x)) is pure point.

Proof. Let m ∈ N be a fixed power of the substitution ϑ and let M
[m]
n with 1 ⩽ n ⩽ ℓm be

the transition matrices, satisfying 〈
ϑ
m
(π)n| =

〈
π|M [m]

n ,
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4.3. Diffraction

for π ∈ ∆A. For every such n, there is a multi-index i = i(n) = (i1, . . . , im) in the set

Im = {1, . . . , ℓ}m such that

M [m]
n = M(i) := Mim · · ·Mi1 ,

and the assignment n 7→ i(n) is a bijection between {1, . . . , ℓm} and Im. This construction

is classic for automatic sequences; we refer to [Que10, Ch. 12] for details. Since π(x) is

ϑ
m
-invariant, we have for all j ∈ {1, . . . , ℓm} and k ∈ N0 that

⟨π(x)j+kℓn | = ⟨π(x)k+1|M
[m]
j ,

and hence, for all k1, k2 ∈ N0,

dv(π(x)j+k1ℓm , π(x)j+k2ℓm) ⩽ dv(π(x)k1+1, π(x)k2+1)δ(M
[m]
j ) ⩽ δ(M

[m]
j ).

Hence, we need to show that δ(M
[m]
j ) is small as we average over j. Assume that Mr is

scrambling with δ = δ(Mr) < 1, and let

Imk = {i ∈ Im : in = r for precisely k numbers n}.

By the submuliplicativity of Dobrushin’s coefficient, we obtain δ(M(i)) ⩽ δk for every i ∈ Imk .

This yields

ℓm∑
j=1

δ(M
[m]
j ) =

m∑
k=0

∑
i∈Imk

δ(M(i)) ⩽
m∑
k=0

∑
i∈Imk

δk =
m∑
k=0

(
m

k

)
(ℓ− 1)m−kδk = (ℓ− 1 + δ)m,

and hence, for all k ∈ Z,

lim sup
n→∞

1

n

n∑
j=1

dv
(
π(x)j , π(x)j+kℓm

)
⩽ lim sup

n→∞

1

nℓm

n∑
s=1

ℓm∑
j=1

dv
(
π(x)j+sℓm , π(x)j+(s+k)ℓm

)
⩽ lim sup

n→∞

1

nℓm

n∑
s=1

ℓm∑
j=1

δ(M
[m]
j ) ⩽

(ℓ− 1 + δ)m

ℓm
⩽ ε,

for large enough m ∈ N. This implies that π(x) is mean-almost periodic. The same holds

for the sequence q∗, with q∗n = ⟨π(x)n|τ⟩, for all n ∈ N. Hence, every diffraction measure of

ω(π(x)) is a pure point measure by Fact 4.3.21.

At this point, we have a criterion that ensures that every vague accumulation point of

(γ̂ex(x[1,n]))n∈N is a pure point measure. It remains to relate this to the spectral type of the

measure γ̂ex = limn→∞ γ̂ex(ϑn(a)), for a ∈ A. Since the distribution of ϑn(a) converges weakly

to a ϑ-invariant measure ν, it seems intuitive that both problems are related. However, weak

convergence is not the right notion to ensure convergence of the corresponding diffraction

measures.
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4. Random substitutions

Proposition 4.3.26. Assume that ϑ
n
(ea) converges in mean to π(x), that is,

lim
n→∞

1

ℓn

ℓn∑
j=1

dv
(
ϑ
n
(ea)j , π(x)j

)
= 0.

Then, the diffraction of ω(π(x)) exists, with respect to the averaging sequence ([0, ℓn])n∈N,

and is given by

γ̂ex = lim
n→∞

γ̂
(
ϑ
n
(ea)

)
,

where the limit is well-defined due to Corollary 4.3.10. ■

This is implicitly a condition on the mean convergence of equi-translation bounded mea-

sures; compare [BSS18] for background and a more detailed discussion. The proof is imme-

diate from [BSS18, Thm. 8.6] and therefore omitted. Conveniently, the mean convergence of

ϑ
n
(ea) also follows if ϑ is scrambling.

Theorem 4.3.27. Let ϑ be a primitive random substitution of constant length ℓ, with diffrac-

tion measure γ̂, and assume that some power of ϑ is scrambling. Then, the spectral compo-

nents of γ̂ are given by the vague limits

γ̂pp = γ̂ex = lim
n→∞

γ̂ex(ϑn(a)) = lim
n→∞

γ̂exν (x[1,ℓn])

and

γ̂ac = γ̂var = lim
n→∞

γ̂var(ϑn(a)) = lim
n→∞

γ̂varν (x[1,ℓn]),

for all a ∈ A, and every measure ν on X+
ϑ that is invariant under some power of ϑ. Addi-

tionally, γ̂ has no singular continuous component.

Proof. Possibly replacing ϑ by one of its powers, we can assume that ϑ itself is scrambling.

Also, without loss of generality assume that ν is ϑ-invariant. By Proposition 4.3.9 and

Corollary 4.3.10, the vague limits

γ̂var = lim
n→∞

γ̂var(ϑn(a)), γ̂ex = lim
n→∞

γ̂ex(ϑn(a)),

both exist and are independent of a ∈ A, where γ̂var comprises an absolutely continuous

measure. Since π(x) is invariant under ϑ, we have

π(x)[1,ℓn] = ϑ
n
(π(x)1),

for all n ∈ N and hence, for all 1 ⩽ j ⩽ n,

dv
(
ϑ
n
(ea)j , π(x)j

)
= dv

(
⟨ea|M [n]

j , ⟨π(x)1|M [n]
j

)
⩽ δ

(
M

[n]
j

)
,

with M
[n]
j as in the proof of Proposition 4.3.25. Following the same calculations, we find that

for some 0 ⩽ δ < 1,

lim sup
n→∞

1

ℓn

ℓn∑
j=1

dv
(
ϑ
n
(ea)j , π(x)j

)
⩽ lim sup

n→∞

1

ℓn

ℓn∑
j=1

δ
(
M

[n]
j

)
⩽ lim

n→∞

(ℓ− 1 + δ)n

ℓn
= 0.
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4.3. Diffraction

By Fact 4.3.26, we obtain that

lim
n→∞

γ̂exν
(
x[1,ℓn]

)
= lim

n→∞

1

ℓn
∣∣ω̂(π(x)[1,ℓn])∣∣2 = γ̂ex,

which is a pure point measure due to Proposition 4.3.25. It follows that γ̂ = γ̂ex + γ̂var and

lim
n→∞

γ̂varν

(
x[1,ℓn]

)
= γ̂ − lim

n→∞
γ̂exν
(
x[1,ℓn]

)
= γ̂var,

which concludes the proof.

Remark 4.3.28. In [BSS18], an analogue of Theorem 4.3.27 was shown for the random

period doubling substitution, inter alia. There, the proof relied on the observation that the

sequence π(x) is in fact strongly almost periodic. This has the advantage of providing a

nice interpretation in terms of a weighted model set and paves the way to find an explicit

formula for the diffraction intensities via Fourier–Bohr coefficients. On the other hand, as

the name suggests, strong almost periodicity is a much stronger condition than mean almost

periodicity. If the almost periods are assumed to be En = ℓnZ, with n ∈ N, it requires that

every sequence (Nn)n∈N with Nn ∈ {M1, . . . ,Mℓ} is weakly ergodic, that is, δ(N1 · · ·Nn) → 0

as n→ ∞. On the other hand, for the proof of Theorem 4.3.27, we only require that the set

of matrices S = {M1, . . . ,Mℓ} is mean-weakly ergodic in the sense that

lim
n→∞

1

ℓn

∑
N1···Nn∈Sn

δ(N1 · · ·Nn) = 0.

We also stress that the result in Theorem 4.3.27 is not a uniform result for all x ∈ Xϑ but

rather for almost every x, with respect to µ. For example, it applies to the random Thue–

Morse substitution ϑ : a 7→ {ab, ba}, b 7→ {ba}, while there are certainly points in Xϑ (arising

from the deterministic Thue–Morse substitution) with a singular continuous component in

the diffraction spectrum. ♢

As the next result shows, the conclusions of Theorem 4.3.27 hold in particular for every

primitive, constant-length random substitution ϑ on a binary alphabet A, provided that ϑ is

non-deterministic.

Lemma 4.3.29. Let ϑ be a primitive random substitution of constant length on the alphabet

A = {a, b} and assume that max{#ϑ(a),#ϑ(b)} ⩾ 2. Then, ϑ is scrambling.

Proof. Without loss of generality, assume that #ϑ(a) ⩾ 2 and let u, v ∈ ϑ(a) with u ̸= v.

Then, there is a position j such that uj ̸= vj . This implies that (Mj)aa > 0 and (Mj)ab > 0,

that is, Mj has a row of strictly positive entries. It follows that Mj is scrambling.

In particular, for every primitive random substitution of constant length on a binary al-

phabet, the almost sure diffraction does not contain a singular continuous component. More

generally, if more marginals are added to a primitive, constant-length random substitution,

it may gain, but never loose, the scrambling property. Heuristically, it appears that singular

continuous diffraction components are not robust under fluctuations.
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4. Random substitutions

Remark 4.3.30. If M is a scrambling matrix, it is straightforward to verify that, for some

power n, Mn has a strictly positive column. Hence, ϑ has a scrambling power ϑm if and only

if there is a power ϑn, a letter a ∈ A and a position j such that P[ϑn(b)j = a] > 0 for all

b ∈ A. This is a natural generalization of Dekking’s coincidence condition for a deterministic

substitution ϱ, requiring that for some power ϱn, a ∈ A and position j, we have ϱn(b)j = a

for all b ∈ A [Dek78]. More precisely, there is a scrambling power of ϑ precisely if there exists

a marginal of some power of ϑ that satisfies the coincidence condition. ♢

Example 4.3.31. As soon as we leave the realm of binary alphabets, both scrambling and

the conclusion of Theorem 4.3.27 can fail. We illustrate this with an example that is inspired

by the classic Thue–Morse substitution. Let ϑ be a random substitution on A = {a, b1, b2}
with a 7→ {ab1, ab2} and bi 7→ {bia} for each i ∈ {1, 2}. Choosing a weight vector τ with

τb := τb1 = τb2 makes the distinction between b1 and b2 invisible and hence “factors” naturally

to the original Thue–Morse sequence, which is known to have a purely singular continuous

diffraction measure if τa = −τb. This measure will be studied in detail in Chapter 6. ♢

4.3.3. Integer inflation factor

Using mean-almost periodicity to establish that γ̂ex is a pure point measure is a mechanism

that works also outside the constant-length setting. In fact, for deterministic substitutons,

there are several algorithms to establish mean-almost periodicity, if the characteristic polyno-

mial of the substitution matrix is irreducible, and if the inflation factor λ is a Pisot number ,

that is, if all the algebraic conjugates of λ are smaller than 1 in modulus. This is related to the

famous Pisot substitution conjecture and hence there is a vast literature on this and related

problems; for an overview we refer to [ABB+15, Sing06] and references therein. There is a

natural generalization of the overlap algorithm [SS02,Sol97] to the random setting. However,

this requires some additional technical preparation that is outside the scope of this thesis;

we refer to the forthcoming work [GMR]. Here, we illustrate how the results on primitive,

constant-length random substitutions can be extended beyond the constant-length case if the

PF eigenvalue λ is an integer.

Given a geometrically compatible, primitive random substitution ϑ on A, with PF eigen-

value λ ∈ N, we associate a constant-length random substitution ϑ′ on a new alphabet A′.

We call ϑ′ the pure core of ϑ, in line with [BBJS12, Sec. 4], where this term was used in the

context of deterministic substitution. For this construction, we again rely on the geometric

picture; compare Section 3.1.2. First, identify the largest rational number r such that, for

every a ∈ A, there is a natural number na ∈ N with La = nar. The main idea is to slice

the interval Ia of length La into na smaller intervals of length r each. This replaces each

letter a ∈ A by a concatenation of letters a1 · · · ana
. Formally, we introduce the new alphabet

A′ = {a1, . . . , ana
: a ∈ A} and a morphism φ : A+ → (A′)+, defined via φ(a) = a1 · · · ana

for

all a ∈ A. This construction ensures that the symbolic length of φ(u) for some u ∈ A+,

|φ(u)| =
|u|∑
n=1

|φ(un)| =
1

r

|u|∑
n=1

Lun =
1

r
L(u),
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4.3. Diffraction

ϑ

Figure 4.1.: Deriving ϑ′(a1) = {a1a2, b1a1} and ϑ′(a2) = {b1b1, a2b1} from ϑ(a) = {abb, bab}
in Example 4.3.33. Tiles of type a and b are coloured in orange and blue, respec-

tively. Dotted lines indicate the splitting a 7→ a1a2. Different types of decorations

correspond to a1 and a2 on the left hand sides and their respective images on the

right hand side.

is the same as the geometric length of u, up to a universal factor. By geometric compatibility,

each u ∈ ϑ(a) satisfies L(u) = λLa and hence |φ(u)| = λna. We can therefore consistently

define a random substitution ϑ′ on A′, via

ϑ′(am) = φ(ϑ(a))[(m−1)λ+1,mλ], (4.15)

for all a ∈ A and 1 ⩽ m ⩽ na, to be understood either as an equality of sets or equality of

distributions. We emphasize that the set φ(ϑ(a)) is contained in ϑ′(φ(a)), but it is in general

not equal. In that sense, the situation is more subtle than for deterministic substitutions.

Remark 4.3.32. Alternatively, we could define (4.15) as an equality of random variables. In

that case, ϑ′ is modelled on the same probability space as ϑ, but it no longer acts independently

on neighbouring letters. Hence, ϑ′ could no longer be regarded as a random substitution in

the sense defined here, but still fits in the framework provided by Peyriére [Pey80]. This

bears some resemblance to the induced random substitution [GS20]. For our discussion below,

depending only on marginal distributions, both approaches yield the same expressions. ♢

Example 4.3.33. Consider the random substitution

ϑ : a 7→

{
abb, p,

bab, 1− p,
b 7→ a,

which is primitive and geometrically compatible, with λ = 2 and L a multiple of (2, 1). The

diffraction of ϑ was discussed in detail in [Goh17]. Its pure core ϑ′ on A′ = {a1, a2, b1} is

given by

ϑ′ : a1 7→

{
a1a2, p,

b1a1, 1− p,
a2 7→

{
b1b1, p,

a2b1, 1− p,
b1 7→ a1a2.

For an illustration, compare Figure 4.1. Note that ϑ′(ϕ(a)) = ϑ′(a1a2) contains the words

b1a1b1b1 and a1a2a2b1, which do not correspond to words in ϑ(a). We observe that (ϑ′)2 is

scrambling. ♢

The pure core ϑ′ of ϑ can be used to model the action of ϑ on expected Dirac combs. Since

a letter of length 1 in A′ corresponds to a subinterval of length r of some interval Ia, a ∈ A,
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we first need to apply a rescaling. Given a Radon measure ω on R, we denote by r.ω the

Radon measure with

(r.ω)(f) =

∫
R
f(rx) dω(x),

for all f ∈ Cc(R). With slight abuse of notation, we use the same symbols P and E in the

context of formally different probability spaces in the following.

Lemma 4.3.34. Let τ, τ ′ be weight vectors on A,A′, respectively, such that τ ′am = τa if

m = 1, and τ ′am = 0 otherwise, for all a ∈ A and 1 ⩽ m ⩽ na. Then, the corresponding

weighted Dirac combs ω, ω′ satisfy, for every a ∈ A+ and n ∈ N,

E[ω(ϑn(a))] = r.E[ω′((ϑ′)n(φ(a)))].

Sketch of proof. The pure core ϑ′ of ϑ is constructed in such a way that ϑ′(am) corresponds to

the restriction of the (typed) point set Λ(ϑ(a)) to the interval (r(m− 1)λ, rmλ]. At the same

time, it determines the restriction of Λ(ϑ′(ϕ(a))) to ((m − 1)λ,mλ] by the constant-length

property. The same holds for higher powers of the substitution ϑ. Although (ϑn)′ and (ϑ′)n

do not coincide as random substitutions, they have the same marginal distributions, that is,

P[(ϑ′)n(a)j = b] = P[(ϑn)′(a)j = b],

for all a, b ∈ A′, n ∈ N, and 1 ⩽ j ⩽ λnna. Note that the choice of τ ′ erases all control

points that do not correspond to the starting point of an interval Ia, with a ∈ A. From these

observations, the relation follows in a straightforward manner. The full details of the proof

will appear in [GMR].

Corollary 4.3.35. Let ϑ be a geometrically compatible primitive random substitution with

integer PF eigenvalue λ. If some power of the pure core ϑ′ is scrambling, then γ̂ = γ̂pp + γ̂ac
and

γ̂pp = lim
n→∞

γ̂ex(ϑn(a)), γ̂ac = lim
n→∞

γ̂var(ϑn(a)),

for all a ∈ A.

Proof. This follows in principle from Lemma 4.3.34 and Theorem 4.3.27. We want to apply the

reasoning of Theorem 4.3.27 to the constant-length random substitution ϑ′ to obtain that the

expected Dirac combs of large inflation words give rise to a pure point diffraction measure. The

only subtlety is that, in Lemma 4.3.34, we start iterating from a word φ(a) = a1 · · · ana
instead

of a single letter. However, we verify that the proof of Theorem 4.3.27 readily generalizes to

that case.
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5.1. Schrödinger operators and symbolic dynamics

In this chapter, we consider discrete Schrödinger operators HV : ℓ2(Z) → ℓ2(Z), defined by

(HV ψ)n = ψn+1 + ψn−1 + Vnψn,

for some bounded potential V = (Vn)n∈Z ∈ RZ. The operator HV is self-adjoint and bounded

by the assumption that V is bounded. Its spectrum σ(HV ) is hence a compact subset of R.
The potential V models the influence of a surrounding material. We will mostly be concerned

with the case that this material exhibits some kind of aperiodic order. More precisely, we

start with a symbolic subshift (X, S), where each sequence x ∈ X serves as a choice for

some configuration. To obtain the corresponding potential V = V (x), we choose a bounded

continuous function f : X → R and set Vn(x) = f(Sn(x)), for all n ∈ Z. It is natural to assume

that V0(x) = f(x) is most sensitive to changes in x that happen near the origin. Often, it

is even assumed that f(x) = g(x0), for some g : A → R, depends only on one coordinate. In

general, we make the somewhat weaker assumption that f depends only on a finite window

around the origin, that is, it is locally constant.

To summarize, we are concerned with a family of Schrödinger operators {HV (x)}x∈X associated

to a symbolic subshift (X, S), satisfying

(HV (x)ψ)n = ψn+1 + ψn−1 + Vn(x)ψn,

for all x ∈ X and ψ ∈ ℓ2(Z), where Vn(x) = f(Snx) for some locally constant function

f : X → R. More generally, the subshift (X, S) can be replaced by any (topological) dynamical

system. This puts us in the framework of Schrödinger operators with dynamically defined

potentials; compare [Dam17] for a review on this topic. With the exception of Section 5.3.1,

we will stick to the case that (X, S) is a subshift. For a comprehensive introduction to

the spectral theory of discrete Schrödinger operators, we refer the interested reader to the

upcoming monographs [DFa,DFb].

The pivotal role of Schrödinger operators in quantum mechanics comes from the fact that

they drive the equation of motion for quantum states. In our current formulation, the sequence

ψ ∈ ℓ2(Z) models the wave function of a valence electron at a given point in time (t = 0) if

the normalization condition ||ψ||2 = 1 is satisfied. This normalization reflects that, for n ∈ N,
the value ψn is a probability amplitude, that is, |ψn|2 is the probability of finding the particle

at position n. We are interested in the time evolution {ψ(t)}t∈R, where t ∈ R is a time

parameter, ψ(0) = ψ and ψ(t) ∈ ℓ2(Z) for all t ∈ R satisfies the time-dependent Schrödinger

equation

i∂tψ(t) = HV ψ(t),
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5. Schrödinger operators

which implicitly depends on the potential V . The long-term behaviour of ψ(t) can be

characterized in terms of spectral properties of HV . This is summarized in the celebrated

RAGE theorem, termed this way by Barry Simon due to the important contributions of Ru-

elle [Rue69a], Amrein–Georgescu [AG73] and Enss [Ens78]. In the following formulation, it

is taken from [Dam17, Thm. 2.1].

Theorem 5.1.1. Let ψ(0) = ψ ∈ ℓ2(Z) and ψ(t) a solution to the Schrödinger equation

i∂tψ(t) = HV ψ(t). If µψ is the spectral measure corresponding to the pair (HV , ψ), we have

(1) µψ = µψ,pp iff, for all ε > 0, there is N ∈ N0 such that, for all t ∈ R,∑
|n|⩾N

|ψn(t)|2 < ε.

(2) µψ = µψ,c iff, for all N ∈ N0,

lim
T→∞

1

2T

∫ T

−T

∑
|n|⩽N

|ψn(t)|2 dt = 0.

(3) µψ = µψ,ac implies that

lim
|t|→∞

∑
|n|⩽N

|ψn(t)|2 = 0,

for all N ∈ N0. ■

In words, eigenvalues lead to localized solutions, continuous spectral measures correspond

to solutions that flow out of every given box on time average, and if the spectral measure is

absolutely continuous, the corresponding solution eventually escapes to infinity.

This explains why we are not only interested in the spectrum as a set but also want to

understand which components are present in the Lebesgue decomposition of the measure of

maximal spectral type ν. Arguably, the best quantitative understanding of the spectral data

has been achieved in the case that V is a periodic sequence. In this case, ν = νac and σ(HV )

is a finite union of closed intervals that can be calculated explicitly. On the other hand,

if (Vn)n∈N are iid random variables, drawn from a finite set, σ(HV ) still has finitely many

gaps but ν = νpp for almost-every choice of the potential. This nourishes the heuristic that

the spectral type becomes more singular the more disorder is introduced to the potential

(note that this is in stark contrast to diffraction). There is a long standing quest to make

this intuition more precise, relating structural properties of V to spectral properties of the

associated Schrödinger operator HV .

Coming back to the family {HV (x)}x∈X, we can either start from structural information on

individual points x or from properties that pertain to the whole subshift (X, S). In the latter

case, we would like to establish uniform spectral results on HV (x), either for all x ∈ X or at

least for elements x ∈ X that are in some sense typical for the subshift. Standard strong-

approximation arguments [ReS80, Thm. VIII.24] readily provide the following, well-known

tool for the comparison of the sets {σ(HV (x))}x∈X.

Lemma 5.1.2. Assume that (X, S) is a symbolic subshift and that x, y ∈ X are such that x

is contained in the orbit closure of y under the shift map. Then, σ(HV (x)) ⊂ σ(HV (y)). ■
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5.1. Schrödinger operators and symbolic dynamics

In particular, we have σ(HV (x)) ⊂ σ(HV (y)) for all x ∈ X if the orbit of y is dense in X
and σ(HV (x)) is uniformly constant if (X, S) is minimal. A similar relation exists for the

ac-part, with the inclusion in the opposite direction [DFa, Ch. 2]. However, none of these

relation extends to the spectral components σpp(HV (x)) and σsc(HV (x)). Still, given an ergodic

probability measure µ on (X, S), it is a classic result that each of the spectral components is

constant for µ-almost every x ∈ X. This was generalized recently to infinite ergodic measures,

which will become important in the next section. The following is a corollary of a more general

theorem [BDFL21], adapted to our setting.

Theorem 5.1.3. Let µ be a σ-finite, non-atomic ergodic measure on a subshift (X, S). Then,
there are compact sets Σ,Σpp,Σsc,Σac ⊂ R such that for µ-almost every x ∈ X, we have

σ•(HV (x)) = Σ• for each • ∈ {∅,pp, sc, ac}. ■

We call E ∈ R a generalized eigenvalue of HV (x) if there exists a polynomially bounded

solution ϕ ∈ CZ to the difference equation

ϕn−1 + ϕn+1 + f(Snx)ϕn = Eϕn, (5.1)

for all n ∈ Z. We call such a sequence ϕ a generalized eigensolution. The spectrum

σ(HV (x)) coincides with the closure of the set of generalized eigenvalues of HV (x). The sets

σpp(HV (x)), σsc(HV (x)), σac(HV (x)) can be characterized in a similar manner, using more re-

fined control on the growth behaviour of the generalized eigensolutions [DFa]. With a slight

shift of perspective, we can rewrite (5.1) as a matrix equation(
ϕn+1

ϕn

)
= AE(S

nx)

(
ϕn
ϕn−1

)
, AE(S

nx) =

(
E − f(Snx) −1

1 0

)
,

for all n ∈ Z. Hence, in order to determine the growth behaviour of ϕ, we can alternatively

study the product of matrices AnE(x), where

AnE(x) =


AE(S

n−1x) · · ·AE(x), for n > 0,

Id, for n = 0,

AE(S
−nx)−1 · · ·AE(S−1x)−1, for n < 0.

This observation is at the heart of many results that relate the structure of x to spectral

properties of HV (x). The matrix product AnE(x) can be obtained by sampling the single

SL(2,R)-valued matrix function AE : x 7→ AE(x) along the orbit of x. This leads to the

following concept.

Definition 5.1.4. Let E ∈ R. The corresponding (Schrödinger) cocycle is given by the skew

product

(S,AE) : X× R2 → X× R2, (x, v) 7→ (Sx,AE(x)v).

We call (S,AE) uniformly hyperbolic if there are c > 0 and r > 1 such that ||AnE(x)|| ⩾ cr|n|,
for all n ∈ Z and x ∈ X. Further, we set

UH = {E ∈ R : (S,AE) is uniformly hyperbolic}.
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5. Schrödinger operators

Cocycles are a classic tool in the spectral theory of Schrödinger operators [DFa]. They have

also been shown to be useful in the context of diffraction theory recently [Mañ19].

It is easily verified that (S,AE)
n = (Sn, AnE) holds for all n ∈ Z and hence that uniform

hyperbolicity is genuinely a property of the cocycle (S,AE). There are several useful equiva-

lent conditions for (S,AE) to be uniformly hyperbolic; we refer to [DFa] for an overview. A

hyperbolic cocycle (S,AE) corresponds to solutions to the difference equation (5.1) that are

exponentially increasing in at least one direction, ruling out E as a Schrödinger eigenvalue.

In fact, we have the following useful characterization, going back to Johnson [Joh86]; compare

also [DEG15, Thm. 4.6].

Theorem 5.1.5. For every x ∈ X with a dense orbit in X, we have σ(HV (x)) = R \ UH. ■

In general, a particularly simple description is available for the absolutely continuous com-

ponent σac(HV (x)) of the spectrum. First, let us assume that x, and hence V (x), is a periodic

sequence. If p denotes the period of V (x), we have by standard arguments [DFa,DFb] that

σ(HV (x)) = σac(HV (x)) =
{
E ∈ R : tr

(
ApE(x)

)
∈ [−2, 2]

}
.

Due to a celebrated result by Remling [Rem11], σac(HV (x)) is non-empty precisely if V (x) is

eventually periodic. If V (x) is eventually periodic to the right, there is an eventual period

p ∈ N, such that V + = limn→∞ SnpV is periodic. Similarly, V − = limn→∞ S−nqV exists and

is periodic for a unique q ∈ N, if V (x) is eventually periodic to the left. We have

� σac(HV (x)) = σ(HV +), if V (x) is only eventually periodic to the right.

� σac(HV (x)) = σ(HV −), if V (x) is only eventually periodic to the left.

� σac(HV (x)) = σ(HV +) ∪ σ(HV −), if V (x) is eventually periodic to both sides.

Often, we consider V (x) that are not eventually periodic and hence σac(HV (x)) = ∅ will be

the typical situation. This holds uniformly if (X, S) is a non-periodic subshift that arises from

a primitive substitution ϱ. Since (X, S) is minimal, we have Σ = σ(HV (x)) for all x ∈ X in this

situation. A remarkable feature of this model for aperiodic order is that Σ is always a Cantor

set of Lebesgue measure 0. This was originally proved using trace maps [BG94, LTWW02].

Later, it was shown by Damanik and Lenz [DL06a,DL06c] that this phenomenon holds for

the more general class of Boshernitzan subshifts. Recall from Definition 2.2.9 that (X, S) is

said to satisfy Boshernitzan’s condition if there exists an invariant measure µ on (X, S) such
that

lim sup
n→∞

nµ(n) > 0, with µ(n) = min{µ([v]) : v ∈ Ln(X)}.

and that (X, S) is called a Boshernitzan subshift if, in addition, it is also minimal. Bosher-

nitzan’s condition has strong implications on the growth behaviour of AnE(x) for every x ∈ X
and E ∈ σ(HV (x)). This can be used to conclude the following.

Theorem 5.1.6 ([DL06a]). Let (X, S) be a Boshernitzan subshift. Then, for every x ∈ X,
the spectrum Σ = σ(HV (x)) is a Cantor set of Lebesgue measure 0 for all x ∈ X, unless V (x)

is periodic. ■
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5.1. Schrödinger operators and symbolic dynamics

Remark 5.1.7. Primitive subshifts satisfy the even stronger assumption limn→∞ nµ(n) > 0.

This is consistent with the observation that the complexity function corresponding to such a

subshift grows at most linearly. In general, this need not hold for a Boshernitzan subshift,

since nkµ(nk) needs to be bounded away from 0 only on a subsequence (nk)k∈N of natural

numbers. In fact, it was shown recently that there are Boshernitzan subshifts such that

the corresponding complexity function grows faster than any polynomial on an appropriate

subsequence [CK21]. Boshernitzan’s criterion covers the vast majority of subshifts for which

Cantor spectrum of Lebesgue measure 0 is known. Notable exceptions occur in the context

of Toeplitz sequences [LQ11,LQ12] and for the recently introduced class of leading sequences

[GLNS19]. ♢

For the Fibonacci substitution subshift, the trace map formalism [AP86,KKT83], together

with tools from hyperbolic dynamics, offers a route to a more refined analysis of the spec-

trum. This includes estimates for the Hausdorff dimension of the spectrum Σ [DG11], as well

as establishing the uniform absence of Schrödinger eigenvalues [DL99]. To the best of the au-

thor’s knowledge, there are no known examples of sequences x from a primitive substitution

subshift (X, S) such that HV (x) admits an eigenvalue. Still, proving absence of eigenvalues for

general primitive substitution subshifts turns out to be notoriously difficult. It is customary

to resort to structural criteria that guarantee the absence of Schrödinger eigenvalues at least

for a subset of X. We present two particularly prominent conditions in the following. These

are most naturally formulated for the potential sequence V = V (x) instead of x. Since f is

assumed to be locally constant, the set R = f(X) is finite and hence V (x) ∈ RZ is a sequence

over the finite alphabet R ⊂ R, for each x ∈ X. In fact, the function V : x 7→ V (x) is a sliding

block code; compare Definition 2.1.7.

Given a finite alphabet A, and a word u = u1 · · ·un ∈ A+, we define the reflected word

ũ = un · · ·u1 ∈ A+ by reversing the order of the letters in u. We call u a palindrome if u = ũ.

If x[ℓ,k] = u for some sequence x and ℓ, k ∈ Z, we say that u is centered at (ℓ+ k)/2 in x.

Definition 5.1.8. Let B > 1. A sequence y ∈ AZ is called B-strongly palindromic if there

exists a sequence (Pn)n∈N of palindromes, centered at cn > 0 in y, satisfying cn → ∞ as

n→ ∞, and

lim
n→∞

Bcn

|Pn|
= 0.

We call y strongly palindromic if it is B-strongly palindromic for all B > 1.

Theorem 5.1.9 ([HKS95]). If V ∈ RZ is a strongly palindromic sequence, HV has no

eigenvalues. ■

If V is B-strongly palindromic for some, but not all B > 1, it is sometimes still possible

to exclude eigenvalues on a subset of σ(HV ); compare our discussion in [EG21] for details.

Another useful symmetry that helps to exclude eigenvalues is a local threefold repetition

property on arbitrary scales.

Definition 5.1.10. We call V ∈ RZ a Gordon potential, if there exists a sequence of words

(vn)n∈N ∈ R+ such that limn→∞ |vn| = ∞ and for all n ∈ N,

V ∈ [vn.vnvn].
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5. Schrödinger operators

The following statement, known as the Gordon lemma, goes back to a result by Gordon

[Gor76], and is textbook material [DFa] by now.

Lemma 5.1.11. For every Gordon potential V , the corresponding Schrödinger operator HV

admits no eigenvalues. ■

Remark 5.1.12. Often, if HV (x) has no eigenvalues for a single x ∈ X, this property can be

extended to a relevant subset of X, especially if (X, S) is strictly ergodic. To explain this, we

first note that the set of eigenvalues of HV is invariant under a shift of the potential. Hence,

the set

E = {x ∈ Xϱ : HV (x) has no eigenvalues}

is shift-invariant and therefore is either null or conull with respect to every ergodic measure

µ on (X, S). That is, µ-almost everywhere absence of eigenvalues is equivalent to µ(E) > 0,

which is sometimes easier to establish. On a different note, E is a Gδ set due to a classic result

by Simon [Sim95]. Hence, in order to show that E is generic (a dense Gδ set), it suffices to

show that HV (x) has no eigenvalues for some x ∈ X with a dense S-orbit. ♢

5.1.1. Main results of this chapter

Let us come back to the heuristic that eigenvalues of HV (x) are indicative of structural dis-

order in x. The apparent absence of eigenvalues for primitive substitution subshifts (X, S) is
then maybe not too surprising, given that (X, S) is of low complexity in more than one direc-

tion: in a topological sense (minimal), a measure-theoretic sense (uniquely ergodic), as well

as in a combinatorial sense (at most linear growth of the complexity function). Almost min-

imal substitutions provide a class of subshifts that are slightly more complex in all of these

senses. They are therefore natural candidates to probe the details of the aforementioned

heuristic. In fact, somewhat surprisingly, it is possible to produce Schrödinger eigenvalues in

this framework.

Theorem 5.1.13. There is an almost minimal substitution ϱ, with an associated ergodic

subshift (Xϱ, S, µ) and a sliding block potential function V on Xϱ, with the following properties.

(1) The almost sure spectral sets satisfy Σ = Σsc and Σpp = Σac = ∅.

(2) There exists a point x ∈ Xϱ such that σ(HV (x)) = Σ, and HV (x) admits an eigenvalue

that is an accumulation point of the spectrum.

In Section 5.3, we investigate the influence of a periodic background, added to the potential

arising from a subshift (X, S). This is modelled via a dynamical system of the form (X×Zp, T ),
where Zp = Z/pZ is the cyclic group, equipped with addition modulo p, and T is defined

as T (x,m) = (Sx,m + 1), for all (x,m) ∈ X × Zp. At first, we show that if (X, S) is a

Boshernitzan subshift, the system (X×Zp, T ) inherits some of its essential properties, leading

to the following result.

Theorem 5.1.14. Let (X, S) be a Boshernitzan subshift and f : X×Zp → R a locally constant

function, with corresponding potential V (y) = (f(Tny))n∈Z, for all y ∈ X × Zp. Then, for
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every y ∈ X×Zp, the spectrum σ(HV (y)) is a Cantor set of Lebesgue measure 0, unless V (y)

is a periodic sequence. Further,

#
{
σ(HV (y)) : y ∈ X× Zp

}
⩽ s(p),

where s : N → N denotes the D-function of the minimal system (X, S).

In Lemma 5.3.6, we obtain a modification of Gordon’s criterion that covers the product

space (X × Zp, T ). This provides some examples, where eigenvalues can be excluded almost

surely.

If X = AZ is the full shift, we expect the Schrödinger operators on (AZ×Zp, T ) to give rise

to spectra with only a finite number of gaps, almost surely. In the case p = 2, we show the

stronger result that the almost sure spectrum can be obtained from finitely many periodic

points.

Theorem 5.1.15. Let A be a finite alphabet and (AZ, S) the full shift on A. Assume that

f : AZ × Zp → R, satisfies f(x,m) = f(x′,m) for all x, x′ ∈ AZ with x0 = x′0 and m ∈ Zp.
Let V (y) = (f(Tny))n∈Z for all y ∈ AZ × Zp. Then, for every point y with a dense T -orbit

in X× Zp,
σ(HV (y)) =

⋃
a,b∈A

σ(HV ((ab)Z,0)).

This uses a characterization of uniformly hyperbolic cocycles that was presented in [ABY10].

5.2. Almost minimal substitutions

In this section, we are interested in Schrödinger operators associated with almost minimal

substitutions. More precisely, we consider the collection Sams of simple almost minimal

substitutions, as defined in Definition 3.1.16. For the following, let p, r ⩾ 2 and 1 ⩽ j ⩽ r− 1

be arbitrary but fixed and let ϱ = ϱp,r,j , with

ϱp,r,j : a 7→ ap, b 7→ bjabr−j

be the corresponding substitution in Sams. Iterating ϱ on a yields ϱn(a) = ap
n
for all n ∈ N0.

Starting from b, the substitution rule satisfies the recursion

ϱn+1(b) = (ϱn(b))jap
n
(ϱn(b))r−j ,

for all n ∈ N0. Let µ be the unique non-atomic ergodic measure on (Xϱ, S). Given x ∈ Xϱ,
recall that V (x) ∈ RZ satisfies Vn(x) = f(Snx), for all n ∈ N and some locally constant

f : X → R. To avoid trivialities, we assume the following throughout.

Assumption 5.2.1. The function f : X → R is non-constant, that is, R = f(X) consists of

more than one point.

Lemma 5.2.2. The subshift (V (Xϱ), S) is almost minimal and infinite. Further, the eventu-

ally periodic sequences in V (Xϱ) are in fact eventually constant and precisely the images of

the eventually constant sequences in Xϱ.
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Proof. Since V is a topological factor map from (X, S) to (V (X), S), almost minimality is

clearly preserved. As f is non-constant, we have #V (Xϱ) > 1. For a moment, suppose that

#V (Xϱ) = n > 1 is finite. Then, almost minimality implies that V (Xϱ) consists of a single

n-periodic orbit under the shift map, contradicting the fact that V (aZ) is a fixed point under

S. By the same argument, all eventually periodic sequences in V (Xϱ) are in fact eventually

constant. Finally, if x ∈ Xϱ is not eventually constant, it contains every allowed word infinitely

often to both sides of the origin. This forbids V (x) to be eventually constant.

Corollary 5.2.3. There are compact sets Σ,Σpp,Σsc,Σac ⊂ R such that, for µ-almost every

x ∈ X, we have σ•(HV (x)) = Σ• for each • ∈ {∅,pp, sc, ac}. Further, we have the following.

(1) The almost sure spectrum is in fact almost uniform, in the sense that Σ = σ(HV (x)) for

all x ∈ Xϱ \ {aZ}.
(2) We have σac(HV (x)) = ∅, unless x ∈ orb(x∗ab) ∪ orb(x∗ba) ∪ {aZ}. In particular, the

almost sure ac-part of the spectrum Σac is empty.

(3) The spectrum of the point aZ is given by σ(HV (aZ)) = σac(HV (aZ)) = f(aZ) + [−2, 2].

This set is strictly contained in Σ.

(4) If x ∈ orb(x∗ab) ∪ orb(x∗ba) is an eventually constant point, the ac-part of its spectrum

is given by σac(HV (x)) = f(aZ) + [−2, 2].

Proof. The first claim is immediate from Theorem 5.1.3. By almost minimality, every point

x ∈ Xϱ \ {aZ} has a dense orbit in Xϱ and since V : X → RZ is continuous, the same holds for

V (x) in V (Xϱ). Together with Lemma 5.1.2, this implies the first item. From Lemma 3.1.17,

we know that the eventually periodic points in Xϱ are precisely the orbits of x∗ab, x
∗
ba and aZ.

Again, this is preserved as we apply V , due to Lemma 5.2.2. The discussion in Section 5.1

therefore yields the remaining three items, except for the strict inclusion f(aZ)+ [−2, 2] ⊊ Σ.

The inequality holds because σ(HV ) = r + [−2, 2] is only possible for the constant potential

V with Vn = r for all n ∈ Z [KP03, Thm. 8].

5.2.1. Generic absence of eigenvalues

The aim of this section is to establish criteria for the generic absence of eigenvalues via strongly

palindromic potentials. Although the main conclusion of this section will be superseded by a

stronger result later on, we believe that this approach is still instructive because it extends

to more general almost minimal substitutions. First, we need a criterion that ensures that

V (x) is strongly palindromic as soon as x is strongly palindromic. Without loss of generality,

assume that f(x) = g(x[0,d]), for some g : Ld+1 → R, depends only on the first d+1 coordinates

for some d ∈ N0.

Definition 5.2.4. We say that g : Ld+1 → R is reflection invariant if g(u) = g(ũ) for all

u ∈ Ld+1.

If d = 0, the function g is automatically reflection invariant. If g is reflection invariant, it is

straightforward to verify that the corresponding sliding block code maps palindromic words
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of length m + d to palindromic words of length m for all m ∈ N0. In particular, the image

V (x) of a strongly palindromic sequence x is again strongly palindromic in this case.

Clearly, aZ ∈ Xϱ is strongly palindromic. However, to obtain generic absence of Schrödinger

eigenvalues we need a strongly palindromic sequence that has a dense orbit in Xϱ. Thus, we
are led to ask about strongly palindromic sequences in Xϱ \ {aZ}.

Lemma 5.2.5. If there exists a strongly palindromic sequence x ∈ Xϱ \ {aZ}, it follows that

ϱ(b) is a palindrome.

Proof. Let x ∈ Xϱ \ {aZ} be strongly palindromic and let u be a finite subword of x. Strong

palindromicity implies that every part of x is eventually covered by some palindrome. Hence,

there exists a palindrome P ◁ x such that u ◁ P and we obtain ũ ◁ P̃ = P ◁ x. Decomposing

x into inflation words, we can write it as a bi-infinite concatenation of words of the form

ϱ(a) = ap and ϱ(b) = bjabr−j . From this structure it follows that every occurrence of the

word bapb in x can be extended to the word abr−japbja. Since x has a dense orbit, it indeed

contains u = abr−japbja. We have seen above that this implies that abjapbr−ja = ũ ◁ x. This

is only possible if j = r − j and hence ϱ(b) = bjabj is a palindrome.

Conversely, if ϱ(b) is a palindrome, it follows by induction that ϱn(b) is a palindrome for all

n ∈ N. Hence, we obtain a sequence of palindromes that eventually contains every legal word

and we might be inclined to think that strongly palindromic sequences exist in Xϱ \ {aZ}.
However, the situation is a bit more subtle.

Lemma 5.2.6. If ϱ = ϱp,r,j with r = 2 and j = 1, there are no B-strongly palindromic

sequences in Xϱ \ {aZ} for all B > 1.

Proof. In this situation, we have ϱ : a 7→ ap, b 7→ bab. Let B > 1 and for the sake of

establishing a contradiction assume that x ∈ Xϱ \ {aZ} is B-strongly palindromic. Since B-

strong palindromicity is preserved under the shift map, we can assume that x0 = b without

loss of generality. Let P ◁x be a palindrome centered at c > 0 in x and let n ∈ N be maximal

with the property that u = bap
n
b ◁ P . Note that ϱn+1(b) contains precisely one occurrence of

u, positioned at its center. Decomposing x into words of the form ϱn+1(b) and ϱn+1(a) = ap
n+1

we conclude that P is contained in ap
k
ϱn+1(b)ap

k
, for some k ⩾ n + 1, with u at its center.

Since ϱn+1(b) can be extended to the word ϱn+2(b) = ϱn+1(b)ap
n+1

ϱn+1(b) either to its right

or its left, we have in fact k = n+ 1. We get an upper bound for |P | by

|P | ⩽ |ϱn+1(b)|+ 2pn+1 ⩽ CMn

for some M,C > 0. On the other hand, since x0 = b and P has the word bap
n
b at its center,

it follows that

c ⩾
1

2
pn.

In particular, there is a monomial function g such that |P | ⩽ g(c). This contradicts the

assumption that there exists a sequence of palindromes Pn, centered at cn, such that |Pn|
grows exponentially faster than cn.
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0

ϱn1(b) ϱn1(b)y(1)

ϱn2(b) ϱn2(b)y(2)

ϱn3(b)y(3)

Figure 5.1.: Illustration of the nesting property of the predetermined parts of the sequences

y(1), y(2) and y(3). The undetermined parts of the sequences are displayed as

dotted regions.

Within the class of simple almost minimal substitutions, the substitution in Lemma 5.2.6

is in fact the only such counterexample.

Proposition 5.2.7. Let ϱ = ϱp,r,j ∈ Sams, and assume that ϱ(b) is a palindrome and that

j ⩾ 2. Then, there is a strongly palindromic sequence in Xϱ \ {aZ}.

Proof. The decisive difference to the example in Lemma 5.2.6 is that we are now in a situation

where the word bb is legal because bb ◁ ϱ(b) = bjabj if j ⩾ 2. This enables us to find a nested

inclusion of palindromes such that the length of the palindromes grows arbitrarily faster than

the shift in their center. A strongly palindromic sequence y ∈ Xϱ emerges as an appropriate

limit of this construction. The details follow.

First recall that ϱn(b) is a palindrome for all n ∈ N and note that for n1, n2 ∈ N with n1 < n2,

we have that ϱn1(b)ϱn1(b) is a suffix of ϱn2(b). Let (nm)m∈N0 be a strictly increasing sequence

of natural numbers, to be specified later. For each m ∈ N, let x(m) ∈ Xϱ be a sequence that

is of the form

x(m) = · · · ϱnm(b).ϱnm(b) · · ·

around the origin. Since ϱnm(b)ϱnm(b) is a suffix of ϱnm+1(b), we obtain that S−|ϱnm (b)|x(m+1)

takes the same form as x(m) around the origin but specifies a larger patch. Inductively, we

define ℓ1 = 0 and ℓm+1 = ℓm+ |ϱnm(b)|, for all m ∈ N. By construction, the sequence, defined

by y(m) = S−ℓmx(m), for all m ∈ N, converges to some y ∈ Xϱ ⊂ {aZ} as m → ∞; compare

Figure 5.1. For eachm ∈ N the sequence y contains the palindrome Pm+1 = ϱnm+1(b)ϱnm+1(b),

with its center shifted away from the origin by
∑m

j=1 |ϱnj (b)|. Choosing the sequence (nm)m∈N
appropriately, we can ensure that

lim
m→∞

B
∑m

j=1 |ϱ
nj (b)|

2|ϱnm+1(b)|
= 0,

for all B > 1, and hence that y is strongly palindromic.

Remark 5.2.8. The ideas presented in the proofs of Lemma 5.2.6 and Proposition 5.2.7 can

be generalized to obtain a characterization of strong palindromicity for all almost minimal

substitutions on A = {a, b} [EG21, Thm. 4.36]. There, an additional phenomenon can occur

that is not covered by the results in this section. More specifically, recall the substitution
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ϱ : a 7→ a, b 7→ bba from Section 3.1.3. There are uncountably many B-strongly palindromic

sequences in Xϱ\{aZ} precisely if B < 4 and no B-strongly palindromic sequences in Xϱ\{aZ}
if B ⩾ 4. The existence of such a critical value for the parameter B seems to be a novel

phenomenon. In the cases where strongly palindromic sequences exist, a little bit of extra

effort shows that they form an uncountable set of measure 0 with respect to the non-atomic

S-ergodic measure µ on Xϱ [EG21]. ♢

Corollary 5.2.9. Assume that g is reflection invariant, ϱ = ϱp,r,j ∈ Sams, with j ⩾ 2 and

that ϱ(b) is a palindrome. Then, for all x in a generic subset of X, HV (x) has no eigenvalues

.

Proof. This follows by combining Proposition 5.2.7 with Theorem 5.1.9 and Remark 5.1.12.

5.2.2. Almost sure absence of eigenvalues

In order to show µ-almost everywhere absence of Schrödinger eigenvalues, it suffices that

µ(G) > 0 holds for

G = {x ∈ Xϱ : V (x) is a Gordon potential};

compare Remark 5.1.12. Again, there is no loss of generality in assuming that f(x) = g(x[0,d])

depends only on the first d+ 1 coordinates. Given n ⩾ d, the sliding block structure implies

that V (x) ∈ [w.ww] for some w ∈ Rn, provided that x ∈ [v.vvv[1,d]] for some v ∈ Ln (with the

convention that v[1,0] = ϵ is the empty word). The classic approach to show that µ(G) > 0

goes as follows; compare [DL06b, Thm. 3] for the special case d = 0. First,

G ⊃
⋂
k⩾d

⋃
n⩾k

Gn,

where

Gn =
⋃
v∈Ln

[v.vvv[1,d]],

for all n ∈ N with n ⩾ d. This is just a reformulation of the observation that V (x) is a Gordon

potential if x ∈ Gn for infinitely many values of n ∈ N. If µ is a finite measure, we have

µ(G) ⩾ µ(lim sup
n→∞

Gn) ⩾ lim sup
n→∞

µ(Gn),

and it suffices to show that µ(Gn) remains bounded away from 0 on a subsequence. If µ

is infinite, the relation µ(lim supn→∞An) ⩾ lim supn→∞ µ(An) no longer holds for arbi-

trary sequences of measurable sets (An)n∈N. Indeed, for An = [an.a2n+d], we obtain that

lim supn→∞An = {aZ}, and hence

0 = µ({aZ}) = µ(lim sup
n→∞

An) < lim sup
n→∞

µ(An) = ∞.

This also shows that the observation An ⊂ Gn is not particularly useful for our purposes.

Since µ([b]) = 1, a natural workaround is to restrict everything to the set [b]. We obtain

µ(G ∩ [b]) = µ(lim sup(Gn ∩ [b])) ⩾ lim sup
n→∞

µ(Gn ∩ [b]),
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which also holds if µ is an infinite measure. This can be used to show the following adaptation

of [DL06b, Thm. 3] to the almost minimal setting.

Lemma 5.2.10. Assume that there is a word u ∈ Lb := {v ∈ L : v1 = b} such that uuub ∈ L.
Then, HV (x) has no eigenvalues for µ-almost every x ∈ Xϱ.

Proof. By the discussion above, we have

µ(E) ⩾ lim sup
n→∞

µ(Gn ∩ [b]),

and it thus suffices to show that the µ-measure of the sets

Gn ∩ [b] =
⋃
v∈Lb

n

[v.vvv[1,d]]

is bounded away from 0 on a subsequence. Recall the definition of µ on cylinder sets from

Proposition 3.1.14. Setting nk = |ϱk(u)|, we obtain

µ(Gnk
∩ [b]) =

∑
v∈Lb

nk

µ[v3v[1,d]] = lim
m→∞

∑
v∈Lb

nk

|ϱm(b)|v3v[1,d]
rm

, (5.2)

for all k ∈ N. Let j ∈ N be such that uuub ◁ ϱj(b). Then, for every k ∈ N, we have

wk := ϱk(uuub) ◁ ϱj+k(b). Note that wk starts and ends with the word ϱk(b). It therefore

contains at least |ϱk(b)|b − d = rk − d words v3v[1,d] ∈ Lb with |v| = nk (counted with

multiplicities). That is, ∑
v∈Lb

nk

|ϱj+k(b)|v3v[1,d] ⩾ rk − d,

for all k ∈ N. On the other hand, we have, provided m > j + k,

|ϱm(b)|w ⩾ |ϱm−j−k(b)|b |ϱj+k(b)|w = rm−j−k|ϱj+k(b)|w,

for all w ∈ L. Together with (5.2), this yields

µ(Gnk
∩ [b]) ⩾ lim

m→∞

1

rm

∑
v∈Lb

nk

rm−j−k|ϱj+k(b)|v3v[1,d] ⩾
1

rj
− d

rj+k
,

for all k ∈ N, and the claim follows.

The index of a subshift is the largest (not necessarily integer) power of a word that can

appear in its language. In Lemma 5.2.10, it was further assumed that u starts with the letter

b. This motivates us to define the index for the subset Lb as follows.

Definition 5.2.11. The index of Lb = {v ∈ L : v1 = b} is given by

Ind(Lb) = sup{s ∈ Q : vs ∈ Lb for some v ∈ Lb}.

With this notation, the requirement in Lemma 5.2.10 can be stated as Ind(Lb) > 3. In

[EG21, Prop. 4.46], we give an algorithm to determine Ind(Lb) for arbitrary almost minimal

substitutions on A = {a, b}. For the class Sams, this takes a particularly simple form.
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5.2. Almost minimal substitutions

Proposition 5.2.12. If ϱ = ϱp,r,j ∈ Sams, we have Ind(Lb) = r.

Proof. We first show that Ind(Lb) ⩾ r. For r = 2, this follows from ϱ : b 7→ bab 7→ babapbab

and hence baba ∈ Lb. If r ⩾ 3, we have that bb is legal and so is ϱ(bb) = bjabrabr−j , implying

that br ∈ Lb.
Now, assume conversely that us ∈ Lb for some s ⩾ r. Let k ∈ N be maximal with the property

that ak ◁ us. Since u starts with the letter b, this implies that bak ◁ u and bakb ∈ L. Hence,

k = pn for some n ∈ N. We can find us as a subword of x, for all x ∈ Xϱ \{aZ}. We write x as

a concatenation of the words ϱn+1(b) and ϱn+1(a), with at most r copies of ϱn+1(b) next to

each other. Note that ϱn+1(a) = ap
n+1

and ϱn+1(b) contains a single occurrence of ap
n
. Hence,

each occurrence of u overlaps a word ϱn+1(b) in this decomposition and us cannot contain

ϱn+1(a) by the maximality of k = pn. We distinguish two cases. If r = 2, ϱn+1(b) = vap
n
v,

for some v ∈ Lb and it follows that s = 2 and u = vap
n
. If r ⩾ 3, having r − 1 occurrences

of bap
n
b in ur enforces that u is a cyclic permutation of the word ϱn+1(b). In fact, it follows

that u = ϱn+1(b) and r = s.

Remark 5.2.13. The proof of Proposition 5.2.12 also allows us to determine the words u in

Lb such that ur is legal. For r = 2, these are precisely the words of the form u = ϱn(b)ap
n
,

with n ∈ N0. For r ⩾ 3, these are the words of the form u = ϱn(b), with n ∈ N0. ♢

Corollary 5.2.14. Let ϱ = ϱp,r,j ∈ Sams with r ⩾ 4. Then, for µ-almost every x ∈ Xϱ,
HV (x) admits no eigenvalues.

Proof. This follows by combining Proposition 5.2.12 with Lemma 5.2.10.

5.2.3. Eigenvalues for eventually constant sequences

Consider the substitution ϱ = ϱp,5,1, with p > 5, that is,

ϱ : a 7→ ap, b 7→ bab4.

Since p > r, the ergodic measure µ is infinite by Proposition 3.1.14. Also, r = 5 implies that

the spectrum of HV (x) is singular continuous for µ-almost every x ∈ Xϱ, by Corollary 5.2.14.

In this section, we show that this result is sharp in the sense that there exists a sequence

x∗ ∈ Xϱ and a choice of the potential function f such that HV (x∗) admits an eigenvalue. More

precisely, recalling the notation from Lemma 3.1.17, we set

x∗ = x∗ab = a∞.ϱ∞(b).

We proved the following in [EG21, Prop. 5.13].

Proposition 5.2.15. Let ϱ = ϱp,5,1, with p > 5 and x∗ = x∗ab. There exists a choice of the

potential function f and E ∈ R such that E is an eigenvalue of the operator HV (x∗). The

corresponding eigenstate ψ is exponentially decaying to both sides.

89



5. Schrödinger operators

Sketch of proof. We provide here an outline of the essential arguments. The full details can

be found in [EG21]. We can decompose ϱ∞(b) as

ϱ∞(b) = ϱ(b)am1ϱ(b)am2ϱ(b)am3 · · · ,

for some sequence (mn)n∈N. For notational convenience, we write An for AnE(x
∗) in the

following. We will construct an exponentially decaying solution ψ ∈ ℓ2(Z) of the equation

HV (x∗)ψ = Eψ explicitly. Setting v = (ψ0, ψ−1), this requires that both A−n|v⟩ and An|v⟩
decay exponentially as n → ∞. Assuming that the function f(x) = g(x0) depends only on

the first coordinate, we obtain A−n = TE(a)
−n and A|ϱ(b)| = TE(b)

4TE(a)TE(b), where

TE(c) =

(
E − g(c) −1

1 0

)
,

for c ∈ {a, b}. A straightforward calculation shows that there are parameters g(a), g(b), E ∈ R
with the property that TE(a) is hyperbolic and

TE(a)
mA|ϱ(b)| = A|ϱ(b)| TE(a)

−m (5.3)

for all m ∈ N [EG21, Lemma 5.15]. Intuitively, (5.3) means that A|ϱ(b)| acts as a ‘switch’

between the stable and unstable eigenspace of TE(a). Choosing v in the unstable eigendirec-

tion of TE(a), we immediately obtain that A−n|v⟩ decays exponentially. It remains to show

that An|v⟩ also decays exponentially as n→ ∞. As a first step, we consider the subsequence

nk ∈ N, defined by

x∗[0,nk−1] = ϱ(b)am1 · · · ϱ(b)amk ,

for all k ∈ N. By (5.3),

Ank = TE(a)
mkA|ϱ(b)| · · ·TE(a)m1A|ϱ(b)| = (A|ϱ(b)|)k TE(a)

−h(k), (5.4)

where h(k) =
∑k

j=1(−1)j+1mj . Hence, we need to show that h(k) → ∞ as k → ∞, sufficiently

fast. By induction, it follows that x∗ starts with the word

ϱn+1(b) = ϱn(b)amrn−1 (ϱn(b))4,

for all n ∈ N, where mrn−1 = pn denotes the largest power of a in ϱn+1(b). Since rn−1 is

odd, this shows that the first occurrence of a new largest number in the sequence (mn)n∈N
always happens at an odd position. A more careful analysis yields that h(k) ⩾ pn, whenever
rn ⩽ k < rn+1 [EG21, Lemma 5.16]. This bound on k also implies that x∗[0,nk−1] is a prefix

of ϱn+1(b) and hence that nk ⩽ Cpn, for some constant C > 0. That is, h(k) ∼ nk, and

since p > r, the number k becomes negligible in comparison. It follows that Ankv decays

exponentially fast in nk, due to (5.4).

Finally, assume that n ∈ N with nk < n ⩽ nk+1. That is x∗[0,n−1] = x∗[0,nk−1]u, for some

prefix u of ϱ(b)ank+1 . First, if u is a prefix of ϱ(b), we have An = MuA
nk , for some matrix

Mu whose norm is uniformly bounded and the asymptotic behaviour is unaltered. Otherwise,

u = ϱ(b)as for some 0 ⩽ s ⩽ nk+1 and

An = (A|ϱ(b)|)k+1 TE(a)
−hn
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for some hn between h(k) and h(k + 1). We can therefore bound An|v⟩ by interpolating

between Ank |v⟩ and Ank+1 |v⟩. It follows that An|v⟩ decays exponentially in n.

Remark 5.2.16. The point x∗ = a∞.ϱ∞(b) in Proposition 5.2.15 represents a fusion of a

non-trivial structure to the right with a constant potential to the left. The eigenfunction ψ

that was constructed in the proof of Proposition 5.2.15 is localized around the origin, which

constitutes the boundary point of ϱ∞(b). It is therefore reminiscent of a surface state, a

common phenomenon that appears at the boundary of a solid; compare [KP97] for background

and the history of this concept.

Remark 5.2.17. The results in Section 5.2.1 and Section 5.2.2 are persistent in the sense

that they hold irrespective of a linear scaling of the function f . This is not the case for

Proposition 5.2.15, as the method of proof singles out distinct values of the coupling constant

g(b)−g(a). It remains an open question whether a Schrödinger eigenvalue occurs for arbitrary

(or at least an infinite set of) coupling constants. The solutions of the equations of the form

TE(a)A
|ϱn(b)| = A|ϱn(b)|TE(a)

−1 (5.5)

are nested, in the sense that all parameters (g(b)− g(a), E) solving (5.5) for a fixed n = n0,

also form a solution for all n ⩾ n0. A natural next step would be to investigate if the number

of solutions diverges as n→ ∞. The proof of Proposition 5.2.15 can be adapted to show that

for each such solution, there is an exponentially decaying eigensolution ψ to the equation

HV (x∗)ψ = Eψ. ♢

Corollary 5.2.18. Let ϱ be an almost minimal substitution as defined in Proposition 5.2.15.

There exists a potential function f such that the operator HV (x)

(1) has purely singular continuous spectrum, for µ-almost every x ∈ Xϱ,
(2) admits an eigenvalue that is not an isolated point of the spectrum, for a dense set of

points x ∈ Xϱ,
(3) has purely absolutely continuous spectrum if x = aZ ∈ Xϱ.

Proof. The first item follows from Corollary 5.2.14. By Proposition 5.2.15, HV (x∗) admits an

eigenvalue E for an appropriate choice of f . The same holds for all x in the shift-orbit of x∗,

which lies dense in Xϱ. This also implies that E ∈ σ(HV (x∗)) = Σ = Σsc and hence E cannot

be isolated because a singular continuous measure supports no isolated points.

This, together with the general observations in Corollary 5.2.3, proves Theorem 5.1.13.

Remark 5.2.19. The precise spectral nature of the operator HV (x∗) from Proposition 5.2.15

remains open. Since x∗ is eventually constant, we know that σac(HV (x∗)) = g(a) + [−2, 2].

There are two possibilities. Either Σ\σac(HV (x∗)) consists entirely of (infinitely many) eigen-

values, or σsc(HV (x∗)) ̸= ∅, in which case all spectral components appear for HV (x∗). Both

cases would be interesting and somewhat surprising. ♢

An analogue of Proposition 5.2.15 holds for some, but not all, almost minimal substitutions

on A = {a, b}. For example, a similar construction works for ϱ : a 7→ ap, b 7→ bab2, with p > 3.
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In contrast, for ϱ : a 7→ ap, b 7→ bba, with p ⩾ 2, one can show explicitly that there are no

eigenvalues for HV (x∗), with x
∗ = a∞.ϱ∞(b), at least as long as f(x) = g(x0) depends only on

the first coordinate [EG21, Prop. 5.18]. Hence, the fact that x∗ is eventually constant to the

left certainly does not suffice alone to guarantee the occurrence of Schrödinger eigenvalues.

5.3. Mixed potentials

So far, we were concerned with Schrödinger operators with potentials that reflect the struc-

tural properties of a single sequence. As a next step, we wish to investigate the case that there

are two sources for the potential with different structural properties. This models situations

such as an aperiodically ordered material (mathematical quasicrystal) that is combined with

a periodic background potential. Regarding the spectrum of the corresponding Schrödinger

operator, we thus create a test for the stability of certain properties (like Cantor spectra of

Lebesgue measure 0 or absence of eigenvalues) under periodic perturbations. This will be

our main focus in Section 5.3.1. In fact, rather than testing directly the stability of spectral

properties, we instead analyze the stability of certain structural properties that ensure the

spectral property in question. Heuristically, our finding is that periodic backgrounds do not

seem to alter much of the qualitative behaviour of the spectrum for many of the well-studied

models of aperiodic order. In Section 5.3.2, we turn to the combination of a random and

a periodic potential. If the periodic potential has period 2, we show how to calculate the

corresponding spectrum explicitly.

5.3.1. Minimal subshifts and periodic potentials

Assume that x is an element of a minimal subshift (X, S) over the alphabet A and that x′ is an

element of a periodic subshift (X′, S) with period p. We model the combined influence of x and

x′ via a potential V (x, x′) that acts as a sliding block code on both x and x′. Since (X′, S) is p-

periodic, it is in fact topologically conjugate to the cyclic rotation (Zp,+1), where Zp = Z/pZ
and addition is understood modulo p. As V depends only on the dynamical properties of

x′, there is no loss of generality in assuming that V is a function on (X × Zp, T ), where

T : (x,m) 7→ (Sx,m + 1), for all (x,m) ∈ X × Zp. More precisely, V (x,m) = (Vn(x,m))n∈Z,

where

Vn(x,m) = f(Tn(x,m)) = f(Snx,m+ n),

for all n ∈ Z and some locally constant function f . Recall that, due to the minimality of

(X, S), the spectrum σ(HV (x)) does not depend on x ∈ X. Can we expect the same behaviour

for (X × Zp, T )? In general, the answer is no, but we can give a bound on the number of

different spectral sets that can occur.

The space X × Zp consists of p disjoint copies of X that are visited in a cyclical order

under the action of T . Let us fix one of these copies, say X× {0}. The first return of a point

(x, 0) ∈ X×{0} in the corresponding T -orbit to the set X×{0} is given by T p(x, 0) = (Spx, 0).

Similar reasoning applies to X × {m} for all m ∈ Zp. Hence, the first return map induced

by T on X × {m} is naturally identified with Sp on X for all m ∈ Zp. This allows us to
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X× {0}
X× {1}
X× {2}
X× {3}
X× {4}
X× {5}

X0 X1 X2

Figure 5.2.: Schematic for the decomposition of X × Zp, for p = 6 and s(p) = 3. The set

XT1 is highlighted in red. The dots indicate the action of T on some element in

X1 × {0}.

infer the orbit structure of (X × Zp, T ) from corresponding results on (X, Sp). Recall that

(X, Sp) decays into a disjoint cycle of Sp-minimal sets X0, · · · ,Xs(p)−1, where s(p) denotes the

D-function corresponding to the minimal subshift (X, S).

Lemma 5.3.1. (X × Zp) can be written as a union of s(p) disjoint, T -minimal subsets

XT0 , · · · ,XTs(p)−1, where, for all 0 ⩽ j ⩽ s(p)− 1,

XTj =

p−1⋃
k=0

T k
(
Xj × {0}

)
.

Proof. First, the sets XTj indeed cover the whole space since

s(p)−1⋃
j=0

XTj =

p−1⋃
k=0

T k(X× {0}) = X× Zp.

Note that T k(Xj × {0}) = (Xj+k × {k}). From this, disjointness is straightforward to verify.

We refer to Figure 5.2 for an illustration. It remains to show that XTj is minimal for all

0 ⩽ j ⩽ s(p)−1. The elements in XTj are precisely those of the form (Skx, k) for some x ∈ Xj
and k ∈ Zp. Let (Skx, k) and (Smy,m) be two such elements. Since x and y belong to the

same Sp-minimal component of X, there is a sequence (nm)m∈N such that limm→∞ Snmpx = y.

Consequently,

lim
m→∞

Tnmp+m−k(Skx, k) = lim
m→∞

(SmSnmpx,m) = (Smy,m).

This shows that every point in XTj has a dense orbit in XTj .

Corollary 5.3.2. For all p ∈ N, we have

#{σ(HV (x,m)) : (x,m) ∈ X× Zp)} ⩽ s(p),

where s : N → N is the D-function on (X, S). ■
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In general, this only gives an upper bound for the number of different spectra σ(HV (x,m)),

with (x,m) ∈ X×Zp. Showing that the spectra arising from different T -minimal components

are indeed different is a difficult problem, in general. This has been achieved for a specific

example, with X the Thue–Morse substitution subshift and p = 4 [CDFG21], thanks to a

construction by Fillman.

Remark 5.3.3. If (X, S) admits no root of unity as a topological eigenvalue, we obtain

that s(p) = 1 for all p ∈ N. In this case, all elements in X × ZP give rise to the same

Schrödinger spectrum. This applies for instance to the subshift (XF , S) arising from the

Fibonacci substitution ϱF ; compare Example 3.1.5 and [BG13]. We discuss the D-function

for some more examples in [CDFG21]. ♢

In the following, we specialize to the case that (X, S) is a Boshernitzan subshift. Since

Boshernitzan’s condition is formulated for symbolic subshifts, it will be convenient to regard

(X × Zp) as a symbolic subshift over the alphabet A′ = A × Zp. More precisely, we define

a function h : X × Zp → (A′)Z with h(x,m)n = (xn,m + n) ∈ A′ for all n ∈ Z and we set

Y = h(X× Zp). This corresponds to “merging” x coordinatewise with the periodic sequence

in Zp that describes the orbit of m. Then, h defines a topological conjugation between

(X × Zp, T ) and (Y, S). In particular, (Y, S) also decays into a disjoint union of minimal

subsets Y0, · · ·Ys(p)−1, where Yj = h(XTj ) for all 0 ⩽ j ⩽ s(p)− 1.

Proposition 5.3.4. The subshift (Yj , S) is a Boshernitzan subshift for each 0 ⩽ j ⩽ s(p)−1.

Proof. Let µ be the unique ergodic probability measure on (X, S) and µ′ the uniform proba-

bility measure on Zp. Then, µ × µ′ is a T -invariant probability measure on X × Zp, and its

pushforward ν = (µ×µ′)◦h−1 is an S-invariant measure on (Y, S). This measure assigns the

same value to each of the S-minimal subsets. Indeed,

ν(Yj) = (µ× µ′)(XTj ) =

p−1∑
k=0

µ(Xj)µ′({0}) =
1

s(p)
,

where we have used that µ(Xj) = µ(X0) = s(p)−1, for all 0 ⩽ j ⩽ s(p) − 1. We claim that,

for each j, the conditional probability measure

νj = s(p)ν|Yj

satisfies Boshernitzan’s condition on (Yj , S). Since the sets Y0, · · · ,Ys(p)−1 are disjoint and

compact, there is a positive distance between pairwise different sets Yj and Yk. Hence, there
is a number n0 such that for each n ⩾ n0 and u ∈ Ln(Y), the set [u] is completely contained

in precisely one of the sets Y0, . . . ,Ys(p)−1. In other words, Ln(Y) decays into a disjoint union

Ln(Y) =

s(p)−1⊔
j=0

Ln(Yj),

for all n ⩾ n0. The set Ln(Yj) consists precisely of the words u = (a1,m) · · · (an,m+n) with

a1 · · · an ∈ Ln(Xj) and m ∈ Zp. For such a word u, we have

ν([u]) = (µ× µ′)
(
h−1([u])

)
= µ([a1 · · · an])µ′({m}) =

1

p
µ([a1 · · · an]).
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5.3. Mixed potentials

From n ⩾ n0, it follows that [u] ⊂ Yj . This yields νj([u]) = s(p)ν([u]) and hence,

νj(n) = inf
{
νj([u]) : u ∈ Ln(Yj)

}
=

s(p)

p
inf
{
µ([v]) : v ∈ Ln(Xj)

}
⩾

s(p)

p
µ(n).

Since (X, S) is a Boshernitzan subshift with unique S-invariant measure µ, this yields that

lim supn→∞ n νj(n) > 0 and the claim follows.

From this, the main result of this Section follows as a Corollary.

Theorem 5.3.5. Let (X, S) be a Boshernitzan subshift and p ∈ N. Then, for every point

(x,m) ∈ X × Zp, the spectrum σ(HV (x,m)) is a Cantor set of Lebesgue measure 0, unless

V (x,m) is a periodic sequence.

Proof. The idea of proof is to use that (X× Zp, T ) is topologically conjugate to the subshift

(Y, S), which decays into a disjoint union of Boshernitzan subshifts due to Proposition 5.3.4.

More specifically, the function

f̃ = f ◦ h−1 : Y → R,

inherits the property of being locally constant from the function f . The corresponding sliding

block code (potential)

Ṽ : y 7→
(
f̃(Sny)

)
n∈Z

satisfies Ṽ (h(x,m)) = V (x,m), for all (x,m) ∈ X × Zp. By Poposition 5.3.4, h(x,m) per-

tains to a Boshernitzan subshift and the claim follows from the general criterion, given in

Theorem 5.1.6.

Together with Corollary 5.3.2, this proves Theorem 5.1.14. Next, we turn to the question

of whether the absence of Schrödinger eigenvalues carries over from (X, S) to the system

(X × Zp, T ). Often, a slight modification of the conditions or methods that are used to rule

out Schrödinger eigenvalues for (X, S) can be adapted to cover (X × Zp, T ) as well. We

illustrate this at the example of Gordon’s criterion; compare the discussion in Section 5.2.2.

Lemma 5.3.6. Assume that f(x,m) = g(x[0,d],m) and let Gn =
⋃
v∈Ln

[v.vvv[1,d]] ⊂ X, for
all n ∈ N. If lim supn→∞ µ(Gnp) > 0, then

E = {(x,m) ∈ X× Zp : HV (x,m) has no eigenvalues }

is a set of full measure for every T -invariant probability measure on X× Zp.

Proof. First, we characterize the T -ergodic measures on X×Zp. By Proposition 5.3.4, each of

the subshifts (Yj , S) is strictly ergodic and hence, the same holds for the conjugate subshifts

(XTj , T ), for each 0 ⩽ j ⩽ s(p) − 1. It follows that the ergodic measures on (X × Zp, T ) are

precisely those of the form

µj = s(p)(µ× µ′)|XT
j
,

with 0 ⩽ j ⩽ s(p)− 1. Hence, it suffices to show that µj(E) = 1 in order to obtain the same

conclusion for each T -invariant probability measure on X×Zp. In fact, due to the ergodicity
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of µj , we only need to show µj(E) > 0. Let j be fixed in the following. The additional

factor p in the sequence (Gnp)n∈N harmonizes the 3-block structure of elements in Gnp ⊂ X
with the p-periodicity of the factor (Zp,+1). Indeed, the assumption on f ensures that, for

(x,m) ∈ Gnp × Zp, we have V (x,m) ∈ [u.uu], for some u ∈ Rnp. Hence, by Gordon’s lemma

5.1.11, E contains the set

G = lim sup
n→∞

(Gnp × Zp).

The intersection with XTj yields

(Gnp × Zp) ∩ XTj =

p−1⋃
k=0

(Xj+k ∩ Gnp)× {k}

and hence

µj(Gnp × Zp) =
s(p)

p

p−1∑
k=0

µ(Xj+k ∩ Gnp) = µ(Gnp),

where the last step follows from the fact that the sets X0, . . . ,Xs(p)−1 form a partition of X.
We get the desired relation via µj(E) ⩾ µj(G) ⩾ lim supn→∞ µ(Gnp) which is larger than 0 by

assumption.

If (X, S) is a substitution subshift, the condition lim supn→∞ µ(Gnp) > 0 can be established

using the self-similar structure. The following result is similar to Lemma 5.2.10 in spirit.

Proposition 5.3.7. Let ϱ be a primitive substitution with corresponding subshift (X, S) and
p ∈ N. Assume that there exists a word u ∈ L(X) with uuuu1 ∈ L(X) and the property that

|ϱn(u)| is divisible by p for infinitely many n ∈ N. Then, given any T -invariant probability

measure ν on X × Zp, for ν-almost every (x,m) ∈ X × Zp, the operator HV (x,m) has no

eigenvalues.

Sketch of proof. Without loss of generality, f(x,m) = g(x[0,d],m) for some d ∈ N0. By

Lemma 5.3.6, it suffices to show that lim supn→∞ µ(Gnp) > 0. The proof for this statement

follows similar lines as for Lemma 5.2.10 and is essentially provided in [DL06b]. We also refer

to [CDFG21] for details.

Example 5.3.8. Proposition 5.3.7 applies in particular if ϱ is a primitive substitution of

constant length ℓ, p = ℓk for some k ∈ N0, and Ind(X) > 3. This holds for example for

the period doubling substitution ϱ : a 7→ ab, b 7→ aa if p = 2k, with k ∈ N0. In fact, if

f(x,m) = g(x0,m) depends only on one coordinate, it is possible, for this particular example,

to show that HV (x,m) has no eigenvalues for any (x,m) ∈ X × Zp [CDFG21]. The proof of

this result generalizes the methods in [Bel90, BBG91,Dam01], by modifying the trace map

formalism to incorporate periodic decorations. ♢

Example 5.3.9. Consider the Fibonacci substitution ϱ : a 7→ ab, b 7→ a from Example 3.1.5,

with subshift (XF , S), and let p ∈ N be arbitrary. It is classic that ϱn(a)ϱn(a)ϱn(a)a ∈ L(XF )
for all large enough n ∈ N [Ber99, Prop. 4]. The substitution matrix M has determinant −1

and is hence invertible over the integers. By the pigeon hole principle, there are j, k ∈ N
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with j ̸= k such that M j |Φ(a)⟩ ≡ Mk|Φ(a)⟩ mod p. Since equality modulo p is preserved

under applications of M and M−1 (both integer matrices), this shows that
(
Mn|Φ(a)⟩

)
n∈Z

is periodic modulo p. This periodic cycle of vectors includes M−2|Φ(a)⟩ = (1,−1). Hence,

there is a lattice of integers n with

|ϑn(a)| = ⟨(1, 1)|Mn|Φ(a)⟩ ≡ ⟨(1, 1)|(1,−1)⟩ = 0 mod p.

We can thus apply Proposition 5.3.7 and obtain almost sure absence of Schrödinger eigenvalues

with respect to every T -invariant measure on XF × Zp. ♢

Remark 5.3.10. The Fibonacci subshift (X, S) is an instance of a Sturmian subshift. These

are precisely the minimal subshifts on a binary alphabet that have minimal word complexity

(p(n) = n + 1 for all n ∈ N). They also arise from codings of the translation action by an

irrational number α ∈ (0, 1) on the one-dimensional torus. We were able to show in [CDFG21]

that Proposition 5.3.7 applies to Sturmian subshifts for Lebesgue-almost every α ∈ (0, 1),

uniformly for all p ∈ N. More precisely, the result holds for all α ∈ (0, 1) with an unbounded

continued fraction expansion. This is only a sufficient condition and does not cover the

Fibonacci subshift, for which different arguments are available; compare our discussion in

Example 5.3.9. ♢

5.3.2. Random and periodic potentials

Here, we take A to be a finite alphabet of arbitrary cardinality and (X, S), with X = AZ

the full shift. A natural choice for an ergodic probability measure on (X, S) is the Bernoulli

measure µ = ϱZ, where ϱ denotes the uniform distribution on A. If f(x) = g(x0) depends only

on the first coordinate, this constitutes an instance of the famous Anderson model. In this

case, the spectral type is pure point with exponentially decaying eigensolutions for µ-almost

every x ∈ X; compare [BDF+19] and references therein. The spectrum is easy to determine.

Fact 5.3.11. For the Bernoulli shift (AZ, S, µ), with f(x) = g(x0), the almost sure spectrum

is given by

Σ = g(A) + [−2, 2] =
⋃
a∈A

σ(HV (aZ)).

This result is well-known and there are several ways to prove it. We present here a line

of thought that will also be fruitful for the analysis of mixed potentials later on. First,

Σ = σ(HV (x)) for every x ∈ AZ with a dense orbit and hence, σ(HV (aZ)) ⊂ Σ follows

from Lemma 5.1.2, for all a ∈ A. On the other hand, invoking Theorem 5.1.5, we know

that R \ Σ = UH is the set of energies E ∈ R such that the associated cocycle (S,AE) is

uniformly hyperbolic. It then remains to show that (S,AE) is uniformly hyperbolic for E in

the complement of g(A) + [−2, 2].

In the context of SL(2,R)-valued cocycles, it is often convenient to view a matrix A as a

map on the real projective space RP1. That is, identifying a point v ∈ R2 with its equivalence

class in RP1, we view A as a function

A : RP1 → RP1, v 7→ Av,
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and, by linearity of A, this map is well-defined. The advantage of this point of view is that

the application of a hyperbolic A ∈ SL(2,R) contracts the complement of the contracting

eigendirection towards the expanding eigendirection in RP1. More precisely, for every con-

nected open set I ⊂ RP1 that contains the expanding eigendirection and does not contain the

contracting eigendirection, we have AI ⋐ I, meaning that the closure of AI is contained in

the interior of I. From now on, with a slight change of perspective, we also regard (S,AE) as

a map

(S,AE) : X× RP1 → X× RP1.

For the full shift, there is a useful characterization of uniformly hyperbolic cocycles; in the

following form, it is taken from [ABY10, Thm. 2.2].

Theorem 5.3.12. Let (S,A) be an SL(2,R)-valued cocycle over the full shift AZ, where

A(x) = T (x0) for all x ∈ AZ. Then, (S,A) is uniformly hyperbolic if and only if there is a

non-empty open subset M ⊂ RP1 with M ̸= RP1 such that T (a)M ⋐M holds for all a ∈ A.

It is possible to take M with finitely many connected components, and these components with

disjoint closures. ■

Proof of Fact 5.3.11. We apply Theorem 5.3.12 to (S,AE), with E /∈ g(A) + [−2, 2] and

AE(x) = TE(x0). In this case, E /∈ σ(HV (aZ)), which is equivalent to TE(a) being hyperbolic

with eigenvalue λa, with |λa| > 1, for all a ∈ A. The corresponding expanding and contracting

eigendirections are given by (λa, 1) and (λ−1
a , 1), respectively. In particular, all contracting

eigendirections are of the form (x, 1), with |x| < 1, and all expanding eigendirections are of

the form (x, 1), with |x| > 1. In other words, the connected open set

M = {(x, 1) : |x| > 1} ⊂ RP1

contains all of the expanding and none of the contracting eigendirections. Thus, T (a)M ⋐M
for all a ∈ A, and we conclude with the help of Theorem 5.3.12 that (S,AE) is uniformly

hyperbolic.

Again, we modify this model via a p-periodic background for some p ∈ N. Hence, we

consider (X × Zp, T ) with T (x,m) = (Sx,m + 1), where addition is taken modulo p, and

denote by µ′ the Haar measure on Zp. It is a straightforward exercise to verify that µ× µ′ is

ergodic on (X × Zp, T ). We maintain that f depends only on the first coordinate of x, that

is, f(x,m) = g(x0,m), for some g : A× Zp → R. The corresponding sliding block code gives

the potential

V (x,m) = (g(xn,m+ n))n∈Z,

for all (x,m) ∈ X× Zp.

Remark 5.3.13. The space (X × Zp, T ) is topologically conjugate to an SFT. In fact, if g

is injective on A × Zp, the space (V (X × Zp), S) is itself an SFT. It is conceivable that this

model still exhibits Anderson localization (pure point spectrum with exponentially decaying

eigensolutions). Substantial steps into this direction have been made recently [ADZ20]. ♢
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5.3. Mixed potentials

In what follows, we show how to calculate the µ × µ′-almost sure spectrum Σ explicitly,

if p = 2. Here, we will build on our discussion of the corresponding result for the Anderson

model, given in Fact 5.3.11. As a first step, we relate (T,AE) to a cocycle on a full shift.

Lemma 5.3.14. Let E ∈ R. The cocycle (T,AE) is uniformly hyperbolic precisely if the

cocycle (S2, ÃE) is uniformly hyperbolic on the full shift (X, S2) over the alphabet A2, where

ÃE(x) = TE(x0, x1), with

TE(x0, x1) =

(
(E − g(x0, 0))(E − g(x1, 1))− 1 g(x1, 1)− E

E − g(x0, 0) −1

)
, (5.6)

defines a locally constant SL(2,R)-valued map on X.

Proof. Since the norm of AE (and its inverse) is bounded on X, it follows that (T,AE) is

uniformly hyperbolic, precisely if (T 2, A2
E) is uniformly hyperbolic. Under the action of T 2,

X × Z2 decays into the invariant components X × {m}, with m ∈ Z2. Since T (X × {0}) =

X × {1}, it suffices to consider the cocycle restricted to (X × {0}, T 2) ∼= (X, S2), where the

map (x, 0) 7→ x conjugates T 2 and S2. On this subspace,

A2
E((x, 0)) =

(
E − g(x1, 1) −1

1 0

)(
E − g(x0, 0) −1

1 0

)
= TE(x0, x1),

with TE(x0, x1) as defined in (5.6).

We obtain the following reformulation of Theorem 5.1.15.

Proposition 5.3.15. The µ× µ′-almost sure Schrödinger spectrum on (X× Z2, T ) is

Σ =
⋃
a,b∈A

σ(HV ((ab)Z,0)).

Proof. Again, Σ = R \ UH = σ(HV (x,m)) for those points (x,m) that have a dense T -orbit

in X × Z2, and the inclusion σ(HV ((ab)Z,0)) ⊂ Σ follows by strong approximation, for all

a, b ∈ A. Conversely, assume that E /∈ σ(HV ((ab)Z,0)), for all a, b ∈ A. In this case, TE(a, b) as

defined in (5.6), is hyperbolic for all a, b ∈ A, and we employ similar methods as in the proof of

Fact 5.3.11 to obtain that (S2, ÃE) is uniformly hyperbolic. More precisely, we show that there

is an open connected subset M ⊂ RP1 which contains all of the expanding eigendirections

and none of the contracting eigendirections, and conclude using Theorem 5.3.12.

Let xa = E − g(a, 0) and yb = E − g(b, 1). The expanding and contracting eigendirections

of TE(a, b) are given by (v+, 1) and (v−, 1), respectively, where

v± = v±(xa, yb) =
xa
2

(
1±

√
xayb − 4

xayb

)
,

and TE(a, b) being hyperbolic is equivalent to xayb /∈ [0, 4]. For a moment, let us fix yb ̸= 0.

A direct calculation yields that v− is monotonically decreasing in xa and that

lim
xa→±∞

v−(xa, yb) = 1/yb.
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xa

v−(xa, 2)

2

1

Figure 5.3.: Plot of v− as a function of xa, for fixed yb = 2, in the region where xayb /∈ [0, 4].

The dashed line indicates the asymptotic value as |xa| → ∞.

From the boundary cases v−(xa, yb) = xa/2 = 2/yb for xayb = 4 and v−(xa, yb) = 0 for xa = 0,

we infer that v−(xa, yb) lies strictly between 0 and 2/yb for all xa with xayb /∈ [0, 4]. This is

illustrated in Figure 5.3. Let

y+ = inf{yb | b ∈ A, yb > 0} and y− = sup{yb | b ∈ A, yb < 0}

be the smallest positive and the largest negative value of yb, respectively. If yb = y+, then

TE(a, b) being hyperbolic implies that xa < 0 or xa > 4/y+ for all a ∈ A. Similarly, we obtain

that xa > 0 or xa < 4/y−. This is still valid for the degenerate cases y+ = ∞ and y− = −∞.

In summary, we have

xa <
4

y−
or xa >

4

y+
,

for all a ∈ A. For a moment, assume that xa, yb > 0. Then,

v+(xa, yb) >
xa
2

>
2

y+
and 0 < v−(xa, yb) <

2

yb
⩽

2

y+
.

Exhausting all possible cases in a similar manner, we obtain that

v−(xa, yb) ∈
(

2

y−
,
2

y+

)
and v+(xa, yb) ∈

[
2

y−
,
2

y+

]C
(5.7)

for all a, b ∈ A. It follows that there is an open connected subset M ⊂ RP1 such that

TE(a, b)M ⋐ M , for all a, b ∈ A. Theorem 5.3.12 in conjunction with Lemma 5.3.14 implies

that E ∈ UH = R \ Σ.

The result in Proposition 5.3.15 allows us to explicitly compute the µ × µ′-almost sure

spectrum Σ. This is because σ(HV ((ab)Z,0)) coincides with the set of those E ∈ R such that

tr
(
TE(a, b)

)
=
(
E − g(a, 0)

)(
E − g(b, 1)

)
− 2 ∈ [−2, 2],

which is the union of two closed intervals. The intervals for different choices of ab ∈ A2 may

or may not overlap, depending on the choice of the function g.
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Remark 5.3.16. Comparing the result in Proposition 5.3.15 with Fact 5.3.11, we observe

that, in both cases, the almost sure spectrum can be built from those sequences which are

constant under an associated full shift. In the situation of Proposition 5.3.15, this full shift is

given by S2, the square of the original shift action. This is the reason for the more complicated

form of the corresponding cocycle, as detailed in (5.6), and thereby for the additional steps

required in the proof of Proposition 5.3.15. More generally, the space (X × Zp, T ) may be

regarded as a discrete suspension of the full shift (X, Sp) over the alphabet Ap, for all p ∈ N,
and it seems natural to ask about a generalization of Proposition 5.3.15. However, already

for p = 3, the inclusion Σ ⊂ ∪a,b,c∈Aσ(HV ((abc)Z,0)) does not hold in general, as can be shown

by numerical calculations. Hence, hyperbolicity of the matrices TE(a, b, c) = A3
E((abc)

Z, 0)

no longer suffices to guarantee uniform hyperbolicity of the associated cocycle on the full

shift. It would be desirable to understand—at least on a heuristic level—why the mechanism

for showing uniform hyperbolicity breaks down for p = 3. However, the dependence of the

eigendirections of TE(a, b, c) on the spectral parameter E is already quite involved, such

that an analysis similar to that in the proof of Proposition 5.3.15 would become tedious. It

therefore seems that some additional insight is required in order to proceed. ♢
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The guiding theme of this chapter is an in-depth study of the classic Thue–Morse measure,

µTM =
∞∏
k=0

(1− cos(2π2kx)), (6.1)

to be understood as a limit of absolutely continuous measures on R in the vague topology. The

Thue–Morse (TM) measure is a paradigmatic example of a singular continuous Riesz product ,

for which the infinite product notation employed in (6.1) is the usual convention [Zyg02,

Ch. V.7]. From the point of view of aperiodic order, the TM measure is important because it

arises as a diffraction measure from the extensively studied TM substitution ϱ : a 7→ ab, b 7→ ba

[BG13, Ch. 10]. It is in fact a measure of maximal spectral type for the associated shift-

dynamical system in the orthocomplement of the pure point component [Que10]. It is possibly

the easiest (and certainly the most famous) example of a singular continuous measure arising

from a substitution dynamical system; compare [Mah27] for the historic origins, and [Que18]

for a recent review.

While the TM measure is certainly the main interest and the guiding example throughout

this chapter, we sometimes take a detour into more general (or related) classes of measures.

The reason for this are twofold. On the one hand, this offers new perspectives on the TM

measure and makes the link to other mathematical fields such as stochastic processes and the

thermodynamic formalism more transparent. On the other hand, it allows us to formulate

several results in proper generality and paves the way for an analogous treatment of a larger

class of singular continuous (diffraction) measures.

We start by collecting some of the characteristic features of the TM measure. As the

diffraction measure of a weighted Dirac comb on the lattice, it is 1-periodic and can hence be

decomposed as µTM = δZ∗µTM|[0,1). In the following we therefore regard µTM as a probability

measure on the torus T, represented by the interval [0, 1). This is the standard approach for

the diffraction of constant length substitutions; compare [Que10]. The inflation factor λ = 2

of the TM substitution also leaves an imprint on its diffraction measure µTM. More precisely,

the TM measure is strongly mixing for the doubling map

T2 : x 7→ 2x mod 1,

on the torus T [Kea72]. The self-similar structure of µTM with respect to the doubling map

also manifests itself in the infinite product representation (6.1). Indeed, denoting by λL the

Lebesgue measure on T, the TM measure is the weak limit of the probability measures 2ngnλL,

where

gn(x) =

n−1∏
k=0

g(T k2 x), g(x) =
1

2
(1− cos(2πx)). (6.2)
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for all n ∈ N. It is an easy but crucial observation that∑
y∈T−1

2 (x)

g(y) = g
(
x
2

)
+ g
(
x+1
2

)
= 1, (6.3)

for all x ∈ T. This allows us to interpret g as the transition probabilities of a stationary

random walk on T, where x is mapped to x/2 with probability g(x/2) and to (x+ 1)/2 with

probability g((x+1)/2) for all x ∈ T. The measure µTM turns out to be the unique invariant

(Borel) probability measure under this process. More generally, given a measurable function g

that satisfies (6.3), the invariant probability measures under the corresponding random walk

became known as g-measures [Kea72]. In Section 6.1, we will give a more detailed introduction

to g-measures and discuss under which condition they are unique, singular continuous and

can be represented as an infinite product.

Since singular continuous measures assign full measure to certain sets of Lebesgue measure

0, but no measure to individual points, it is often difficult to assess or illustrate their mass

distribution. We approach this problem by analyzing the local scaling behaviour, quantifying

how much mass a measure µ accumulates around a given point x. This is done by determining

how fast the measure decays on shrinking neighbourhoods Br(x) as r → 0. More precisely,

we are interested in the upper and lower local dimension of a measure µ at x, given by

dµ(x) = lim inf
r→0

log(µ(Br(x)))

log(r)
, dµ(x) = lim sup

r→0

log(µ(Br(x)))

log(r)
,

respectively, and denote by dµ(x) their common value if the limit exists. In this case, dµ(x)

is called the local dimension of µ at x, and µ(Br(x)) scales roughly like rdµ(x) as r → 0.

Obviously, dµ(x) = ∞ if Br(x) is eventually empty, that is, if x is not in the support of µ.

However, even if x ∈ supp(µ), it is possible that dµ(x) = ∞ due to a decay of µ(Br(x)) that is

faster than any polynomial function in r. As we shall see in Section 6.2, this is indeed the case

for µTM and every dyadic point x ∈ T. In fact, we show that this behaviour is universal for

g-measures, if the corresponding function g has a unique zero at x = 0, and is polynomially

bounded in a neighbourhood of 0. In these cases, we provide a more refined analysis of the

scaling behaviour at the dyadic points in Theorem 6.2.2.

Although dµ(x) reveals no useful information about µ = µTM if x is a dyadic point, there

are still many points x ∈ T such that dµ(x) is a well-defined real number. In fact, we will see

that for all α larger than some minimal scaling exponent, the level sets

F(α) = {x ∈ T : dµ(x) = α}

have positive Hausdorff dimension. Investigating the corresponding dimension

f(α) = dimHF(α),

as a function of α is a typical exercise in multifractal analysis, which we pursue in Section 6.3.

The corresponding theory is well-developed if µ is a g-measure corresponding to a strictly

positive function g. However, many of the classical methods break down if g is allowed to

have a 0, as is the case for the TM measure. We circumvent this problem by exhausting T
with T2-invariant subsets of points that avoid a small neighbourhood of the critical point 0.

The chapter culminates with the following result; compare [BGKS19, Thm. 1].
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Figure 6.1.: The graph of the dimension spectrum α 7→ f(α) (solid line). The dotted lines

indicate the position of the fixed point α∗ = f(α∗).

Theorem 6.0.1. Let α0 = 2− log(3)/ log(2) and α1 = 2. The level sets F(α) are empty for

α < α0 and they are dense for α ⩾ α0. The exceptional set

F̂ = {x ∈ T : dµ(x) is not defined}

has full Hausdorff dimension dimH F̂ = 1. The function f is equal to 0 on (−∞, α0], it is

concave on [α0,∞) and it is equal to 1 on [α1,∞). On the interval (α0, α1), there is a fixed

point α∗ = f(α∗), satisfying

α∗ =
1

log(2)
hµ,

where hµ = hµ(T2) denotes the entropy of µ on (T, T2).

Remark 6.0.2. The multifractal analysis of the TM measure was listed as an open problem in

Queffelec’s recent review [Que18], despite its early appearance in the physics literature [GL90].

The entropy hµ can be calculated numerically with very high precision by interpreting µ as

an equilibrium measure (compare Section 6.3.1) and using ideas from [ZPK99]; see [BGKS19,

Rem. 9.4]. This answers affirmatively a conjecture stated by Queffelec in her review paper

[Que18, Sec. 4.4.1]. ♢

6.1. Some background on g-measures

There are several ways to introduce the notion of a g-measure. Doing so via an associated

Markov chain is a matter of taste and can certainly be avoided—compare the classic expo-

sitions in [Kea72] and [Led74]. However, this perspective offers an additional interpretation

of g-measures as invariant distributions, and makes powerful tools from martingale theory

available. These have been used to great avail by Conze and Raugi in [CR90], which is an
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6. The TM measure as a g-measure
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Figure 6.2.: Illustration of the random walk induced by the g-function on (T, T2) that was

given in (6.2).

invaluable resource for the classification of g-measures in terms of the zeros of the corre-

sponding g-function; we present some of their main results in Section 6.1.2. We only mention

in passing that—after the original work by Keane, motivated by the analysis of diffraction

measures [Kea72]—the study of g-measures has found applications in several fields, such as

multifractal analysis [BGKS19,Fan97,Oli99], wavelet theory [CDF92,CR90,FL98] and learn-

ing models [BK93].

Although we are ultimately interested in invariant measures under the doubling map (T, T2),
some useful methods implicitly require to consider powers of the map T2, given by T k2 = T2k .

We therefore take a step back and consider a more general expansive transformation on the

torus T, given by

Tp : x 7→ px mod 1,

for some p ∈ N \ {1}.
The map Tp is p-to-1 and hence certainly not invertible. In fact, there are p different (right)

inverse branches, given by

Sj : x 7→ x+ j

p
,

for 0 ⩽ j ⩽ p − 1, each satisfying T ◦ Sj(x) = x on T. We construct a “stochastic inverse”

of Tp as follows. For each x ∈ T, map x to a point in T−1
p (x) according to some prescribed

probability vector on

T−1
P (x) = {S0x, S1x, · · · , Sp−1x}.

That is, x maps to Sjx ∈ T−1
p (x) with probability g(Sjx) for some g : T → [0, 1], satisfying

p−1∑
j=0

g(Sjx) = 1, (6.4)

for all x ∈ T; compare Figure 6.2.
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Definition 6.1.1. A (Borel-)measurable function g : T → [0, 1] is called a g-function on

(T, Tp) if it satisfies (6.4) for all x ∈ T.

Every g-function (T, Tp) induces a random walk on T as described above. These processes

have been studied as chains with infinite connections [DoF37] or chains of infinite order

[Har55] in the early literature. The random walk can be described via a Markov kernel on T,
defined by

κ(x, ·) =

p−1∑
j=0

g(jx)δjx(·),

for all x ∈ T. Given a probability measure µ on T (initial distribution) and a function

f ∈ C(T) (observable), the expected value of f is described by µ(f). After one iteration of

the Markov process, the expected value of f changes to∫
T

∫
T
f(y)κ(x,dy) dµ(x).

It is a matter of perspective whether we think of the time evolution as acting on the observable

f or on the initial distribution µ. The former point of view is reflected by the transfer (or

time evolution) operator φg on C(T), defined by

φgf : x 7→
∫
T
f(y)κ(x,dy) =

p−1∑
j=0

g(jx)f(jx),

for all f ∈ C(T). Alternatively, the time evolution of µ is induced by the dual of φg (which

is also the dual operator of the transition kernel κ), acting on µ via

(φg)∗µ : A 7→
∫
T
κ(x,A) dµ(x),

which satisfies ((φg)∗µ)(f) = µ(φgf) for all f ∈ C(T) by construction. Functions and proba-

bility measures that are invariant under the random walk are of particular interest.

Definition 6.1.2. Let g be a g-function on (T, Tp). A function f ∈ C(T) is called g-harmonic

if it satisfies φgf = f . We call µ ∈ M1(T) a g-measure if (φg)∗µ = µ.

By the defining relation of g-functions (6.4), every constant function f is g-harmonic. This

also implies that (φg)∗ maps probability measures to probability measures (as it should), due

to ((φg)∗µ)(1) = µ(φg1) = µ(1).

The fact that the Markov process is a one-sided inverse of Tp finds its complement in

operator-theoretic terms. Indeed, the Koopman operator UTp : f 7→ f ◦ Tp, is a right inverse

of φg, that is,

(φg ◦ UTp)(f) = φg(f ◦ Tp) = f,

for all f ∈ C(T). Similarly, ((φg)∗µ) ◦ T−1
p = µ for all µ ∈ M1(T). In particular, every

g-measure on (T, Tp) is automatically Tp-invariant.
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6. The TM measure as a g-measure

Remark 6.1.3. Conversely, every Tp-invariant measure µ is a g-measure for some appropriate

g-function, that is, Tp-invariant measures and g-measures are in 1-to-1 correspondence. The

corresponding g-function is the Radon–Nikodym derivative of µ with respect to the local lift

µ ◦ Tp [Kea72]. This is consistent with the idea that g describes how much of the mass at

Tpx is transported to x—instead of any of the other points in T−1
p (Tp(x))—under the Markov

chain. ♢

For later applications, it will be convenient to have a closed form expression for the powers

of the operator φg.

Lemma 6.1.4. Let g be a g-function on (T, Tp). For every n ∈ N, we have φng = φgn , where

gn is a g-function on (T, Tpn), given by

gn : x 7→
n−1∏
k=0

g(T kp x). (6.5)

Sketch of proof. First, note that Tpn = Tnp . Iterating the random walk n times, the point Tnp x

follows the trajectory Tnp x 7→ Tn−1
p x 7→ . . . 7→ x with probability

gn(x) = g(Tn−1
p x)g(Tn−2

p x) · · · g(x).

Hence, gn is the g-function corresponding to the n-th power of the original Markov chain.

6.1.1. Lebesgue decomposition of g-measures

Given µ ∈ M1(T), we denote by µ = µpp + µsc + µac the Lebesgue decomposition into the

spectral components of µ. Conveniently, φg acts separately on each of the spectral compo-

nents.

Lemma 6.1.5. We have (φg)∗(µ•) = ((φg)∗µ)• for • ∈ {pp, sc, ac}.

Proof. By the uniqueness of the Lebesgue decomposition, it suffices to show that φg leaves the

classes of pure point/continuous/absolutely continuous and singular measures invariant. This

follows readily from the identity ((φg)∗µ) ◦ T−1
p = µ. First, if µ is supported on a countable

set A, then (φg)∗µ is supported on the countable set T−1
p (A). Conversely, if µ is continuous,

so is (φg)∗µ since,

((φg)∗µ)({x}) ⩽ ((φg)∗µ) ◦ T−1
p ({Tp(x)}) = µ({Tp(x)}) = 0,

for all x ∈ T. Assume that µ ≪ λL and let λL(A) = 0. Then, λL(TpA) ⩽ pλL(A) = 0 and

hence,

((φg)∗µ)(A) ⩽ µ(TpA) = 0,

implying that (φg)∗µ ≪ λL. On the other hand, if µ ⊥ λL, there is a Borel-measurable

set B with µ(B) = 1 and λL(B) = 0. It follows that ((φg)∗µ)(T
−1
p B) = µ(B) = 1 and

λL(T
−1
p (B)) = λL(B) = 0, since λL is Tp-invariant. Hence, (φg)∗µ ⊥ λL, and all cases are

complete.
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6.1. Some background on g-measures

Lemma 6.1.5 immediately implies the following classic result on g-measures; compare

[BDEG88, Thm. 1.2] and [DuF66, Lemma 2.2].

Corollary 6.1.6. For every g-measure µ, we have (φg)∗(µ•) = µ•, for each • ∈ {pp, sc, ac}.
In particular, if the g-measure µ is unique, it is of pure type. ■

Given a g-function, both the absolutely continuous g-measures and the pure point g-

measures are easy to determine. We start by discussing the pure point case. Strong re-

strictions already follow from the requirement that every g-measure is also Tp-invariant. Let

us denote by T(per) the set of Tp-periodic points in T and by orb(x) = {Tnp (x) : n ∈ N0} the

Tp-orbit of x ∈ T. The following result is probably standard, we give an elementary proof for

the reader’s convenience; compare also [BCEG21, Prop. 3.2] for the special case p = 2.

Lemma 6.1.7. Let µ be a Tp-invariant, finite pure point measure on T. Then, µ is a linear

combination of measures in {µx : x ∈ T(per)}, where µx is the uniform distribution on the

orbit of x, given by

µx =
1

#orb(x)

∑
y∈orb(x)

δy.

Proof. Since x ∈ T−1
p (Tpx), we have

µ({Tpx}) = µ ◦ T−1
p ({Tpx}) ⩾ µ({x}),

for all x ∈ T. Hence, if µ({x}) > 0, then µ({y}) ⩾ µ({x}) for all y ∈ orb(x). Because µ

has finite mass, this requires that orb(x) is a finite set and that µ is eventually constant on

orb(x). Hence, there are n,m ∈ N with n > m such that Tmp x = Tnp x. If m > 0, Tm−1
p x and

Tn−1
p x are both contained in T−1

p (Tnp x). Assuming Tm−1
p x ̸= Tn−1

p x, would imply

µ({Tn−1
p x}) + µ({Tm−1

p x}) ⩽ µ({T−1
p (Tnp x)}) = µ({Tnp x}) = µ({Tn−1

p x}),

and hence µ({Tm−1
p x}) = 0, contradicting µ({Tm−1

p x}) ⩾ µ({x}) > 0. It follows that orb(x)

is in fact periodic and that the restriction of µ to this orbit is a multiple of µx.

Proposition 6.1.8. Given a g-function g, the pure point g-measures are precisely the convex

combinations of measures in{
µx : x ∈ T(per) and orb(x) ⊂ g−1(1)

}
.

Proof. By Lemma 6.1.7, every g-measure µ is a linear combination of measures of the form µx
with x ∈ T(per), and µ being a probability measure requires that this combination is convex.

Since the Markov chain maps Tpy with probability g(y) to y, it is straightforward to verify

that

((φg)∗µ)({y}) = g(y)µ({Tpy}),

for all y ∈ T. Given x ∈ T(per), this implies

((φg)∗µx)({y}) = g(y)µx({Tpy}) = g(y)µx({y}),

and hence µx is a g-measure precisely if g(y) = 1 for all y ∈ orb(x).
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6. The TM measure as a g-measure

This settles the classification of pure point g-measures. Within the class of absolutely

continuous probability measures on T, only the Lebesgue measure is Tp-invariant.

Lemma 6.1.9. Let µ ∈ M1(T) be a Tp-invariant measure with µ≪ λL. Then, µ = λL.

Proof. For n ∈ Z, let fn ∈ C(T) be the function fn : x 7→ e2πinx. By the Tp-invariance of µ,

we obtain

µ̂(n) = µ(fn) = µ(fn ◦ Tp) = µ(fpn) = µ̂(pn),

for all n ∈ Z. If n ̸= 0, this yields

µ̂(n) = lim
k→∞

µ̂(pkn) = 0,

due to the Riemann–Lebesgue lemma. Further, µ̂(0) = µ(1) = 1, since µ is assumed to

be a probability measure. By the uniqueness of the Fourier–Stieltjes coefficients (µ̂(n))n∈Z,

see [Rud62, Thm. 1.3.6], this implies that µ = λL.

Proposition 6.1.10. Given a g-function g, there exists a unique absolutely continuous g-

measure, given by λL, precisely if g(x) = 1
p for λL-almost every x ∈ T. Otherwise, there is

no absolutely continuous g-measure.

Proof. By Lemma 6.1.9, λL is the only candidate for an absolutely continuous g-measure. For

every f ∈ C(T), we obtain

((φg)∗λL)(f) = λL(φgf) =

p−1∑
j=0

∫
T
g(Sjx)f(Sjx) dx =

p−1∑
j=0

∫
SjT

p g(y)f(y) dy = (pgλL)(f),

and hence (φg)∗λL = λL precisely if pg(x) = 1 for λL-almost every x ∈ T.

Example 6.1.11. Let p = 2. Consider the g-function given by g(0) = 1, g(12) = 0 and

g(x) = 1
2 , otherwise. Then, δ0 and λL are both g-measures, according to Propisition 6.1.8 and

Proposition 6.1.10. In particular, the g-measure is not unique and there are in fact g-measures

of different spectral types. ♢

Remark 6.1.12. The idea behind the construction in Example 6.1.11 can easily be general-

ized. Recall from Proposition 6.1.8 that the uniform distribution µx on a periodic orbit orb(x)

is a g-measure precisely if g(y) = 1 for all y ∈ orb(x). This is a condition on only finitely many

points. Hence, given any g-function g and a periodic point x, there is a g-function g′ that

differs from g only on finitely many points such that µx is a g-measure for g′. On the other

hand, if µ is a continuous g-measure for g, then it is also a g-measure for g′, since individual

points carry no weight. Hence, continuous g-measures can be combined with arbitrary pure

point g-measures for the same g-function, unless we restrict the class of g-functions by further

regularity assumptions. ♢

The singular continuous g-measures are much harder to assess. In general, the Lebesgue

measure of their topological support can be arbitrarily small and even 0.
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Example 6.1.13. Consider the g-function on (T, T3), given by g(S0x) = g(S2x) = 1
2 and

g(S1x) = 0, for all x ∈ T. It is straightforward to verify that the uniform distribution on the

classical middle-third Cantor set is a g-measure for g. ♢

Conversely, it is a classic result that every g-measure has full support if g is strictly positive

[Wal75, Lemma 2.1]. If the g-measure is assumed to be continuous, this conclusion also holds

under weaker assumptions.

Proposition 6.1.14. Let g be a g-function with at most countably many zeros and let µ be

a continuous g-measure for g. Then, the topological support of µ equals T.

Proof. For every n ∈ N, the sets Sjn · · ·Sj1T, with 0 ⩽ ji ⩽ p − 1, are half-open intervals

of length p−n that form a disjoint partition of T. Due to their arbitrarily small diameter, it

suffices to show that µ assigns positive measure to each such interval. For J = Sjn · · ·Sj1T,
we obtain by Lemma 6.1.4 (and extending the action of φg to step functions),

(φng1J)(x) =
∑

y∈T−n
p x

gn(y)1J(y) = gn(Sjn · · ·Sj1x) =: fJ(x),

for all x ∈ T. Since µ is assumed to be invariant under (φg)∗, we obtain

µ(J) = µ(φng1J) = µ(fJ).

Since g has at most countably many zeros, the same holds for gn and hence for fJ . For every

k ∈ N, let Ak = {x ∈ T : fJ(x) ⩾ 1/k} and B = f−1
J (0). Then,

⋃
k∈NAk ∪ B = T and since

µ is continuous, it assigns no mass to B, yielding 1 = µ(T) ⩽
∑

k∈N µ(Ak). That is, there is

some k with µ(Ak) > 0. Since fJ is non-negative, we obtain

µ(fJ) ⩾
1

k
µ(Ak) > 0,

and the claim follows.

6.1.2. Existence, uniqueness and product representation

The aim for this section is to determine conditions on a g-function such that there is a unique

corresponding g-measure that can be written as an infinite product, as is the case for the

Thue–Morse measure. Indeed, a product form naturally arises by iterating (φg)∗ on the

Lebesgue measure; compare [FL98, Prop. 1].

Lemma 6.1.15. For every n ∈ N, we have (φng )∗λL = pngnλL, with gn as defined in (6.5).

Proof. By Lemma 6.1.4, we have φng = φgn . The identity (φgn )∗λL = pngnλL follows just like

in the proof of Proposition 6.1.10.

That is, (φng )∗λL is an absolutely continuous measure with probability density given by∏n−1
k=0 pg(T

k
p x). If the weak limit µ = limn→∞(φng )∗λL exists, we denote this measure by

∞∏
k=0

p g(T kp x),
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6. The TM measure as a g-measure

with slight abuse of notation. This is what we call the product representation of µ. Such a

measure may or may not be a g-measure. It certainly is if we assume that g is continuous

and hence that (φg)∗ is a continuous operator on M1(T), endowed with the weak topology.

In fact, there are more reasons to restrict our attention to continuous g-functions. As

we discussed in Remark 6.1.12, we cannot hope to obtain a unique g-measure for general g-

functions. In fact, there are even g-functions such that no associated g-measure exists [Kea72].

Conversely, the existence of g-measures is automatic if g is continuous.

Fact 6.1.16 ([Kea72]). If g is a continuous g-function, there is at least one associated g-

measure. ■

However, even in the much studied case that g is strictly positive, continuity of g does not

suffice to obtain uniqueness of the associated g-measure [Kea72]. It is therefore common to

demand some control over the modulus of continuity of g.

Definition 6.1.17. For f ∈ C(T) and δ > 0, let

f [δ] = sup
|x−y|⩽δ

|f(x)− f(y)|.

We say that f is of bounded variation over (T, Tp) if
∑∞

j=0 f [p
−jδ] <∞ for some (equivalently

all) δ > 0.

It is easy to verify that every Hölder continuous function is of bounded variation. If g > 0,

bounded variation of g suffices to conclude that there is a unique g-measure [Wal75]. Finding

weaker regularity assumptions on strictly positive g-functions that ensure uniqueness of the

corresponding g-measure is an active area of research; compare for example [FGP20,JOP12]

and references therein. If g is allowed to have zeros, bounded variation does not suffice to

ensure uniqueness, as is obvious from Proposition 6.1.8. However, even in this case, bounded

variation is still a useful concept; compare our discussion in [BCEG21].

Remark 6.1.18. To appreciate the difference between the cases g > 0 and g ⩾ 0, we invite

the reader to recall the situation for finite state Markov chains. If the Markov matrix is

strictly positive, there is a unique, attractive invariant distribution. Conversely, for arbitrary

Markov matrices, every set of states that is invariant under the process supports an invariant

distribution. Even if the matrix is irreducible, it is possible to approach a limit-cycle of

distributions that are invariant under some power of the Markov matrix; compare for example

[Bre20] for background. Similar phenomena occur in the context of g-functions. ♢

Following the notation in [CR90], we call a closed subset of T invariant, if it is invariant

under the Markov chain induced by g. In more formal terms, this takes the following form.

Definition 6.1.19. A closed subset A ⊂ T is called (g, Tp)-invariant, if, for all x ∈ A and

y ∈ T−1
p (x) with g(y) > 0, it follows that y ∈ A. A closed (g, Tp)-invariant set is said to be

(g, Tp)-minimal if it contains no non-trivial closed (g, Tp)-invariant subsets. We say that g is

proximal on (T, Tp) if there are no two disjoint and closed, (g, Tp)-invariant subsets of T.

112



6.1. Some background on g-measures

We just speak of invariant and minimal subsets if the context is clear. Since invariant sets

can be nested, there can be non-trivial minimal subsets of T, even if g is proximal. However,

since two minimal subsets are either identical or disjoint, g being proximal is equivalent to

having precisely one minimal subset. Just like for finite state Markov chains, the extremal

invariant distributions are supported by disjoint invariant (even minimal) subsets of the state

space—under some regularity assumptions on g. The following is a slight adaptation of [CR90,

Thm. 5.4].

Theorem 6.1.20. Let g be a continuous g-function of bounded variation on (T, Tp). Then,

every (g, Tp)-minimal subset supports precisely one g-measure and these are exactly the ex-

tremal g-measures corresponding to g. In particular, there is a unique g-measure if and only

if g is proximal on (T, Tp).

Sketch of proof. This is essentially [CR90, Thm. 5.4], with a few modifications. In [CR90],

the authors consider the doubling map T2 instead of Tp. As they remark in the introduction,

this is only for the sake of an easier exposition. Also, they consider [0, 1] instead of T as the

state space, but an identification of the endpoints does not alter their arguments. Finally, the

authors do not use the term minimal but formulate the theorem for a maximal set of closed

invariant subsets. However, it becomes clear from their proof that the extremal measures are

indeed supported on minimal subsets.

Remark 6.1.21. The difference between taking ([0, 1], Tp) or (T, Tp) as the base space merits

a closer inspection. From the defining relation of g-functions, it is apparent that g(0) = g(1),

even if 0 and 1 are considered to be separate points. Hence, we consider the same function

g on both spaces. The g-measures on ([0, 1], Tp) that give no mass to {0, 1} are in 1-to-1

correspondence to g-measures on (T, Tp) without a point mass in 0. The same holds for

minimal subsets that do not contain the boundary points. Conversely, the following are all

equivalent to g(0) = 1,

� {0} is minimal on (T, Tp),
� δ0 is a g-measure on (T, Tp),
� both δ0 and δ1 are g-measures on ([0, 1], Tp),

� {0} and {1} are both minimal on ([0, 1], Tp).

This provides an alternative way to verify that Theorem 6.1.20 is valid for (T, Tp) precisely if

it holds for ([0, 1], Tp). ♢

Conveniently, there can be only finitely many minimal subsets of T if the g-function is

continuous [CR90, Prop. 3.1]. Even if there is a unique g-measure, this measure need not

be attractive. In general, it is possible that we approach a limit cycle of measures that are

φdg-invariant for some d ∈ N [CR90, Thm. 6.2]. If there is only one φdg-invariant measure

for all d ∈ N (coinciding with the unique g-measure), this cycle is necessarily contracted

to a single measure and we get convergence. More precisely, we get the following corollary

of [CR90, Thm. 6.2].

Theorem 6.1.22. Assume that g is a continuous g-function of bounded variation. Then,

the following statements are equivalent.
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(1) The function gn is proximal on (T, Tnp ) for all n ∈ N.
(2) The sequence (φng f)n∈N converges uniformly to a constant function for all f ∈ C(T).
(3) The sequence

(
(φng )∗ν

)
n∈N converges weakly to the unique g-measure for all ν ∈ M1(T).

In this case, the unique g-measure is strongly mixing on (T, Tp). In particular, if gn is

proximal for all n ∈ N, the unique g-measure has a product representation, given by

µ =
∞∏
k=0

p g(T kp x).

Sketch of proof. By [CR90, Thm. 6.2], the first point is equivalent to the weak convergence

of (φng )∗δx to the unique g-measure µ, for all x ∈ T. Hence, (3) =⇒ (1).

Using that (φng f)(x) = ((φng )∗δx)(f), we get that (1) implies the pointwise convergence of

(φng f) to µ(f). From the fact that g is of bounded variation, it follows that the sequence

(φng f)n∈N is uniformly equicontinuous; compare our discussion in [BCEG21]. Uniform con-

vergence then follows by the Arzela–Ascoli theorem, and we obtain (1) =⇒ (2).

Under this condition, for all ν ∈ M1(T) and f ∈ C(T),

lim
n→∞

((φng )∗ν)(f) = lim
n→∞

ν(φng f) = ν(cf ) = cf ,

for some constant cf that does not depend on ν. It is straightforward to verify that the

functional µ : f 7→ cf is indeed a measure and that this measure is invariant under (φg)∗.

That is, (2) =⇒ (3), completing the proof of the equivalent conditions.

The strong mixing property goes back to a simple, but elegant argument provided by Keane

[Kea72]. The final statement follows from Lemma 6.1.15 and the discussion thereafter.

To summarize, we obtain a unique g-measure if and only if g is proximal, and this measure

is (globally) attractive if and only if the g-function remains proximal for all accelerations of

the underlying Markov chain. This is an analogue of aperiodicity in the context of irreducible,

finite state Markov chains.

We get one step closer to the TM measure by requiring that g has only finitely many zeros.

In this case, Conze and Raugi provide the following useful criterion [CR90, Cor. 3.4].

Lemma 6.1.23. Let g be a continuous g-function with finitely many zeros. The function g

is proximal precisely if g−1(1) contains at most one finite Tp-orbit. If g−1(1) contains more

than one finite Tp-orbit, these orbits are precisely the minimal subsets of T. ■

This criterion ensures uniqueness of the associated g-measure due to Theorem 6.1.20. We

provide some sufficient conditions for gn being proximal for all n ∈ N. For the sake of

definiteness, we restrict our attention to the doubling map (T, T2). The following is a slight

improvement of a result by Keane [Kea72] that we announced in [BCEG21].

Proposition 6.1.24. Let g be a continuous g-function on (T, T2) of bounded variation and

assume that one of the following conditions holds.

(1) g−1(1) is finite and does not contain a complete T2-orbit.

(2) All zeros of g are contained in (16 ,
5
6 ] ∪ {0} or in [16 ,

5
6) ∪ {0}.

114



6.1. Some background on g-measures

1
6

1
3

2
3

5
6

Figure 6.3.: Possible trajectories of the random walk, provided that condition (2) in Proposi-

tion 6.1.24 holds. At least one of the dotted lines is viable.

Then, there is a unique, globally attractive g-measure corresponding to g, given by the infinite

product

µ =
∞∏
k=0

2 g(T k2 x).

The measure µ is strongly mixing on (T, T2). It is singular continuous precisely if g(0) ̸= 1

and g ̸≡ 1
2 .

Proof. By Theorem 6.1.22, all conclusions, apart from the spectral type of µ, follow if gn is

proximal on (T, Tn2 ) for all n ∈ N.
First, assume that g−1(1) is finite and does not contain a complete T2-orbit and let n ∈ N.

Note that gn(x) = 1 requires that g(T k2 x) = 1 for all 0 ⩽ k ⩽ n− 1. It follows that g−1
n (1) is

also finite and cannot contain a complete Tn2 -orbit. Hence, gn is proximal by Lemma 6.1.23.

Second, assume that all zeros of g are contained in (16 ,
5
6 ] ∪ {0}. Given n ∈ N, we show

that every closed (gn, T
n
2 )-invariant subset A contains the point 0. Let x ∈ A \ {0}. If x ⩽ 1

3 ,

it follows that Sk0x ⩽
1
6 and hence g(Sk0x) > 0 for all k ∈ N. Thereby, gn(S

kn
0 x) > 0 for all

k ∈ N. By the invariance of A, this shows inductively that Skn0 x ∈ A for all k ∈ N and so is

the limit point 0, since A is assumed to be closed. If x > 2
3 , we observe that Sk1x >

5
6 for all

k ∈ N. Since 1 and 0 are identified on the torus, the sequence (Sknx)k∈N converges to 0 and a

similar argument as above yields 0 ∈ A. Finally, if 1
3 < x ⩽ 2

3 , we have S0x ⩽
1
3 and S1x >

2
3 .

Since g(S0x) > 0 or g(S1x) > 0, we can repeat the argument above. Hence, 0 is contained in

every closed (gn, T
n
2 )-invariant subset, implying that gn is proximal; compare Figure 6.3 for

an illustration. The claim for the case that all zeros are in [16 ,
5
6) ∪ {0} follows in the same

manner, with obvious modifications.

Finally, we show that the unique g-measure µ is singular continuous. Due to Proposi-

tion 6.1.10 and the assumption that g is continuous with g ̸≡ 1
2 , it follows that µ is a singular

measure. On the other hand Proposition 6.1.8 shows that µ is continuous, given that g−1(1)

does not support a finite T2-orbit. Indeed, condition (2) implies that g−1(1) is contained in

(13 ,
2
3 ]
C or in [13 ,

2
3)
C . If x ̸= 0, its T2-orbit contains at least one point in (13 ,

2
3 ] and at least

one point in [13 ,
2
3). That is, g

−1(1) cannot support a T2-orbit and the claim follows.

Remark 6.1.25. The second condition in Proposition 6.1.24 is sharp in the following sense.

If we only assume that all zeros of g are contained in the compact interval [16 ,
5
6 ], it is possible

to choose g(16) = g(56) = 0 and hence g(13) = g(23) = 1. In this case, the conclusions of

Proposition 6.1.24 fail. Indeed, for such a choice of g,

µ =
1

2

(
δ 1

3
+ δ 2

3

)
,
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6. The TM measure as a g-measure

is a g-measure that is neither singular continuous nor globally attractive. In fact, we easily

verify that the sequence (φng )∗δ1/3 oscillates between the measures δ1/3 and δ2/3. ♢

Example 6.1.26. The continuous g-function g = 1
2(1−cos(2πx)) is clearly Hölder continuous

and thereby of bounded variation. It satisfies g−1(1) = 1
2 and hence the assumptions of

Proposition 6.1.24. It follows that the infinite product

µ =
∞∏
k=0

(1− cos(2π2kx))

is singular continuous, strongly mixing on (T, T2), and that µ is the unique, attractive g-

measure corresponding to g. This is precisely the TM measure, introduced in (6.1). ♢

Example 6.1.27. Fan, Schmeling and Shen investigate in [FSS21] the scaling behaviour of

the L∞-norm of

pn(x) =

n−1∏
k=0

(1 + cos(2π(2kx+ c))),

for arbitrary c ∈ T as n → ∞. These trigonometric polynomials arise from a family of

generalized TM sequences. Indeed, it is straightforward to verify that

µ =
∞∏
k=0

(1 + cos(2π(2kx+ c)))

is the unique diffraction measure associated to the substitution

ϱ : z 7→ z (e2πicz),

on the compact alphabet {z ∈ C : |z| = 1}. By Proposition 6.1.24, µ is the unique, strongly

mixing and attractive g-measure associated to g(x) = 1 + cos(2π(x + c)). It is singular

continuous unless c = 0, and coincides with the TM measure if c = 1
2 . ♢

Example 6.1.28. Consider the g-function g(x) = 1
2(1 + cos(6πx)) on (T, T2), which is again

of bounded variation. In this case, g−1(1) = {0, 13 ,
2
3} contains two finite T2-orbits and the

extremal g-measures are precisely δ0 and 1
2(δ1/3 + δ2/3), due to Lemma 6.1.23 and Theo-

rem 6.1.20. Although we cannot apply Proposition 6.1.24, we still get that limn→∞ 2ngnλL
exists and is given by

∞∏
k=0

(1 + cos(6π2kx)) =
1

3

(
δ0 + δ 1

3
+ δ 2

3

)
. (6.6)

This is because each of the measures 2ngnλL is invariant under the rotation x 7→ x + 1
3 ,

a symmetry that carries over to each of the weak accumulation points. In fact, the Riesz

product (6.6) describes the Fourier transform of the Dirac comb δ3Z, restricted to the 1-torus.

We therefore arrive at the same conclusion by Poisson’s summation formula; compare [BG13,

Ch. 9]. ♢
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6.2. Super-polynomial scaling

As was discussed in the introduction of this chapter, the TM measure is particularly “thin” in

the neighbourhood of dyadic point. This was already noted by Godrèche and Luck in [GL90].

Here, we discuss this phenomenon for a class of g-measures that includes the TM measure, and

give quantitative upper bounds. Super-polynomial scaling behaviour of diffraction measures

at the origin has received some attention recently [BCEG21,BG19], and is intimately con-

nected to strong assumptions on the balancedness of pattern distributions that were discussed

under the term hyperuniformity [OSST17,OSST19,TS03].

For convenience of notation, we restrict our attention to g-functions over the doubling map

(T, T2), but emphasize that the results in this section easily generalize to the covering map

(T, Tp), with p ∈ N. As a first step, we bound the mass that a g-measure assigns to small

intervals by the product of rescaled copies of the g-function.

Lemma 6.2.1. Let µ be a g-measure, associated to some g-function on (T, T2), n ∈ N and

j1, . . . , jn ∈ {0, 1}. Then,

µ(Sj1 · · ·SjnT) =

∫
T
gn(Sj1 · · ·Sjnx) dµ(x) ⩽ max

x∈T
gn(Sj1 · · ·Sjnx).

Sketch of proof. The first step is contained in the proof of Proposition 6.1.14 and the inequal-

ity follows because µ is a probability measure.

If y ∈ T is a dyadic point, it has exactly two binary representations. More precisely, there

are two sequences (yn)n∈N and (yn)n∈N in {0, 1}N, as well as n0 ∈ N with the property that

yn = 0 and yn = 1 for all n > n0, and

y =
∑
n∈N

yn2
−n =

∑
n∈N

yn2
−n.

For each n ∈ N, y is the left endpoint of the interval Sy1 · · ·SynT and the right endpoint of the

interval Sy1 · · ·SynT. The union of these two intervals coincides with the closed ball B2−n(y).

For a moment, assume that y = 0. Then, the product

gn(Sy1 · · ·Synx) =
n∏
k=1

g(Sk0x) (6.7)

consists of many factors that are close to 0 if g is continuous at 0 and satisfies g(0) = 0. If y

is dyadic, we have Tm2 y = 0 for some m ∈ N and a similar observation holds. In order to get

a quantitative bound on products of the form (6.7), we make additional assumptions on the

modulus of continuity of g at 0. In the following, we denote by d(x, y) the natural distance

of points x, y ∈ T.

Theorem 6.2.2. Let µ be a g-measure associated to some g-function on (T, T2), satisfying
g(0) = 0. Assume that there are C, θ > 0 such that

g(x) ⩽ Cd(x, 0)θ,
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6. The TM measure as a g-measure

for all x in some neighbourhood of 0. Then, for every dyadic point y ∈ T,

log2(µ(Br(y))) ⩽ −θ
2
log2(r)

2 +O(log2(r)),

as r → 0+.

Proof. Let y ∈ T be a dyadic point and let m ∈ N such that Tmy = 0. It suffices to prove

the claim for r = 2−n and n ∈ N, the more general statement follows by straightforward

interpolation arguments. In this case, log2(r) = −n and

B2−n(y) = Sy1 · · ·SynT ∪ Sy1 · · ·SynT.

Recall from Lemma 6.2.1 that

µ(Sy1 · · ·SynT) ⩽ max
x∈T

gn(Sy1 · · ·Synx) ⩽
n∏
k=1

max
x∈T

g(Syk · · ·Synx). (6.8)

For k ⩾ m+ 1, we have yk = 0, and hence Syk · · ·Synx = Sn−k+1
0 x. By assumption, there is

a number n0 such that for all j ⩾ n0, we have

g(Sj0x) ⩽ Cd(Sj0x, 0)
θ ⩽ C 2−jθ.

This gives a bound for the factors in (6.8), as long as k ⩾ m+ 1 and n− k + 1 ⩾ n0. Using

the uniform bound 1 for the remaining factors, we obtain

µ(Sy1 · · ·SynT) ⩽
n−m∏
j=n0

max
x∈T

g(Sj0x) ⩽
n−m∏
j=n0

C2−jθ.

By similar reasoning, we get the same bound for µ(Sy1 · · ·SynT). Taking logarithms, we thus

obtain

log2(µ(B2−n(y))) ⩽ −θ
n−m∑
j=n0

j +O(n) = −θ
2
n2 +O(n),

and the claim follows.

Remark 6.2.3. The proof of Theorem 6.2.2 can be refined to obtain some quantitative

control on the constants that are hidden in the error term O(log2(r)). These depend both

on y and on the size of the neighbourhood of 0 where we have control over the modulus of

continuity of g. We leave the details to the interested reader. ♢

Remark 6.2.4. Theorem 6.2.2 should be compared to a similar result that we provided

in [BCEG21, Thm. 1.4]. However, there are some differences. In [BCEG21, Thm. 1.4], we

only consider a (one-sided) neighbourhood of y = 0 instead of general dyadic points and

obtain both upper and lower bound for the associated measure. This comes at the cost

of additional assumptions on g. We emphasize that a non-trivial lower bound is harder to

obtain and requires some global control over g. Indeed, consider a g-function with g(0) = 0

and g(13) = g(23) = 1. Then, µ = (δ1/3 + δ2/3)/2 is a g-measure that has a trivial scaling

around 0. This shows that controlling g only in a neighbourhood of 0 is insufficient to obtain

non-trivial lower bounds. For the special case of the TM measure, a more refined analysis of

the scaling at 0 is possible; compare [BG19]. ♢
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6.3. Multifractal analysis

The general philosophy of a multifractal analysis can be summarized as follows; compare

[Pes97, Ch. 6]. We start from a a set X and some characteristic h : X ′ → R that is well-

defined on some X ′ ⊂ X. The multifractal decomposition of X,

X = X \X ′ ∪
⋃
α∈R

X(α), X(α) =
{
x ∈ X ′ : h(x) = α

}
,

splits X ′ into the level sets with respect to h. Although the sets X(α) might have a very

intricate structure, the “size” of the sets X(α) can often be made more explicit and accessible

to numerical approximations. More precisely, we analyze the spectrum f(α) = dimX(α) for

some dimensional characteristic on X, often taken to be the Hausdorff dimension.

In this section, we establish such a “multifractal miracle” for the dimension spectrum

f(α) = dimHF(α), F(α) = {x ∈ T : dimµ(x) = α}, (6.9)

corresponding to the TM measure µ = µTM. This is done in two steps. First, we re-

late the dimension of the measure at x to the scaling behaviour of gn(x), with the help of

Lemma 6.2.1. Then, the multifractal analysis of the scaling exponents is related to a globally

defined quantity—the topological pressure function, which is one of the central quantities in

the thermodynamic formalism. This route is classic for g-measures corresponding to strictly

positive g-functions [PW01]. We therefore proceed cautiously and first restrict our attention

to T2-invariant subspaces of T that avoid some forbidden neighbourhood of 0. As we send

the size of this neighbourhood to 0, we recover the full dimension spectrum.

Such an approach is more easily formulated in a symbolic setup. Indeed, the system (T, T2)
is intimately related to the one-sided full shift (X, S), with X = {0, 1}N. More precisely, there

is a natural projection

π : (xn)n∈N 7→
∞∑
k=1

xn2
−n,

that induces a topological factor map from (X, S) to (T, T2). This map is invertible on the

complement of dyadic points. Since the countable set of dyadic sets has vanishing Hausdorff

dimension, we identify (X, S) and (T, T2) in the following.

Remark 6.3.1. The identification of (T, T2) and (X, S) also entails that we regard functions

and measures on T as being defined on X in the following. More specifically, given g : T → R,
we consider g̃ = g ◦ π on X. The property of being a g-function is preserved, that is, for all

x ∈ X, ∑
y∈S−1x

g̃(y) = 1,

whenever g satisfies (6.3). Conversely, whenever the set of dyadic points forms a null set for

µ ∈ M(T), there is a unique lift µ̃ ∈ M(X) with µ = µ̃ ◦ π−1. With some abuse of notation,

we will drop the distinction between g and g̃, as well as the distinction between µ and µ̃. ♢
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6. The TM measure as a g-measure

Remark 6.3.2. There is still a subtlety that complicates the identification of (X, S) with

(T, T2). That is because the spaces carry different metric structures, which are relevant for

both the definition of the pointwise dimension dµ(x) and the Hausdorff dimension. Heuris-

tically, the relationship between these metrics becomes more distorted the closer we get to

dyadic points. However, for the SFTs avoiding the point 0 that we consider in the following,

both metrics are bi-Lipschitz equivalent. Hence, for these subspaces, both the pointwise di-

mension dµ(x) and the Hausdorff dimension of subsets are invariant under the identification

due to a classic result [Pes97, Thm. 6.3]. For a more careful notational distinction of the

metric structures, we refer the reader to [BGKS19]. ♢

Given m ∈ N \ {1}, we define (Xm, S) as the subshift of (X, S) that avoids both of the

cylinders [0m+1] and [1m+1], that is,

Xm =
{
x ∈ X : x[j,j+m] /∈ {0m+1, 1m+1} for all j ∈ N

}
. (6.10)

This is a SFT, with F = {0m+1, 1m+1} as the set of forbidden words; compare Example 2.1.5.

For m = 1, the definition in (6.10) would yield a finite orbit, consisting of two points. The

restrictionm ⩾ 2 is hence a non-triviality assumption, guaranteeing that Xm is an uncountable

set. Conveniently, both the thermodynamic formalism and multifractal analysis are well-

developed for SFTs as the underlying dynamical system.

6.3.1. Thermodynamic formalism

Variational principles are ubiquitous in physics. Both the modern formulation of classical

mechanics and the description of elementary particles via quantum field theory are based

on variational principles. The basic idea underlying both theories is that the equations of

motion can be found by minimizing some action functional. A similar approach is taken in

thermodynamics to characterize those distributions in the space of configurations that are

stable and hence physically observable. Here, depending on the physical setup, the role of the

action is taken by some macroscopic quantity that depends on the microscopic distribution,

and a measure minimizing (or maximising) this macroscopic quantity is called an equilibrium

measure. More concretely, let us consider a thermodynamic system that is in exchange with

a heat bath regulating its temperature, and is subject to some potential (energy) function ψ

on the space of configurations X. In this so-called canonical ensemble, the role of the action

is taken by the free energy. If the configuration space is finite, the weight of the equilibrium

state at x ∈ X is known to be proportional to exp(−βψ(x)), where β depends on the temper-

ature. These measures (and their generalizations to infinite systems) became known as Gibbs

measures, thanks to the pivotal contribution of Gibbs to this area of thermodynamics [Gib02].

In the mathematics literature, the contributions of Ruelle [Rue68,Rue69b] led to a revival

and further development of these ideas; we also refer to the monograph by Keller [Kel98] for

an insightful and readable introduction. Compared to the original context in physics, some

changes in notation and conventions took place—some quantities changed their sign, and

the free energy essentially changed its name to pressure—but the basic formalism remained

relatively unchanged.
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Definition 6.3.3. Let (X,T ) be a compact dynamical system and M1
T (X) the set of T -

invariant probability measures on X. Further, let ψ : X → [−∞,∞) be an upper semi-

continuous function, called the (thermodynamic) potential . The (variational) pressure of ψ

is given by

P(ψ) = sup
ν∈M1

T (X)

(
hν(T ) +

∫
X
ψ(x) dν(x)

)
. (6.11)

A measure µ ∈ M1
T (X) that attains the supremum in (6.11) is called an equilibrium measure

for the potential ψ.

For ease of notation, we write ν(ψ) for the integral of ψ with respect to ν, even if it evaluates

to −∞. In the following, we specialize to the case that (X,T ) is in fact a subshift, denoted

by (X, S). Conveniently, it is possible to characterize g-measures on the full shift (X, S) (over
a finite alphabet A) as equilibrium measures due to a result by Ledrappier [Led74, Thm. 1].

We restrict to the case that g is continuous although Ledrappier’s original result is formulated

in greater generality.

Theorem 6.3.4 ([Led74]). Let g be a continuous g-function on the full shift (X, S). Then,

P(log(g)) = 0 and µ ∈ M1
S(X) is a g-measure if and only if it is an equilibrium measure for

the potential ψ = log(g). ■

Since g-measures need not be unique, we immediately see that equilibrium measures need

not be unique either. Since an equilibrium measure µ maximises the sum of the entropy and

the potential energy, it is reasonable to assume that it gives larger weight to regions, where

ψ takes large values. Since µ is also assumed to be invariant, it should in fact favour those

points, where the corresponding orbit remain in regions of high energy. Sampling ψ along

finite parts of the orbit, leads to the quantity

ψn(x) =
n−1∑
k=0

ψ(Skx),

for all n ∈ N and x ∈ X.

Definition 6.3.5. A measure µ ∈ M1
S(X) is called a Gibbs measure with respect to some

potential ψ on X if there are constants C1, C2 > 0 and P ∈ R such that

C1 ⩽
µ([x1 · · ·xn])

exp(ψn(x)− nP )
⩽ C2, (6.12)

for all x ∈ X and n ∈ N.

In fact, we have already encountered Gibbs measures in the last section, although the

defining relation (6.12) was slightly hidden.

Lemma 6.3.6. Let (X, S) be the full shift and g a strictly positive and continuous g-function

on (X, S). Further, assume that g is of bounded variation. Then, its unique g-measure is a

Gibbs measure with respect to the potential ψ = log(g).
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Proof. Let us fix n ∈ N and x1 · · ·xn ∈ {0, 1}n. Translating Lemma 6.2.1 to the symbolic

setting yields

µ([x1 · · ·xn]) =

∫
X
gn(x1 · · ·xny) dµ(y). (6.13)

For ψ = log(g), we easily verify exp(ψn(x)) =
∏n−1
k=0 g(S

kx) = gn(x), for all x ∈ X. Hence, we
obtain from (6.13),

inf
y∈[x1···xn]

exp(ψn(y)) ⩽ µ([x1 · · ·xn]) ⩽ sup
y∈[x1···xn]

exp(ψn(y)).

It remains to verify that the variation of exp(ψn(y)) on [x1 · · ·xn] is bounded by some uniform

multiplicative constant. Since the values of g are contained in a compact interval that is

strictly bounded away from 0, it follows that ψ = log(g) is also of bounded variation. For

y, z ∈ [x1 · · ·xn], we observe that |Sky − Skz| ⩽ 2−n+k, and hence

|ψn(y)− ψn(z)| ⩽
n−1∑
k=0

|ψ(Sky)− ψ(Skz)| ⩽
n∑
j=1

ψ[2−j ] ⩽
∞∑
j=0

ψ[2−j ] =: c < ∞.

Hence, the maximal and the minimal value of exp(ψn(x)) on [x1 · · ·xn] differ by at most a

factor ec, yielding

e−c ⩽
µ([x1 · · ·xn])
exp(ψn(x))

⩽ ec,

irrespective of the choice of x ∈ [x1 · · ·xn], and the claim follows with P = 0.

Hence, we have seen that, for a strictly positive, continuous g-function of bounded variation,

the g-measure is both an equilibrium measure and a Gibbs measure to the same potential

ψ = log(g). It is noteworthy that the parameter P , entering the defining relation of a Gibbs

measure, is given by P = 0 = P(ψ). This is not a coincidence. Indeed, Bowen established

quite general results in this direction in his classic monograph [Bow75]. Combining [Bow75,

Thm. 1.4] and [Bow75, Thm. 1.22] yields the following result.

Theorem 6.3.7 ([Bow75]). Let (X, S) be a topologically mixing SFT and ψ a Hölder contin-

uous function on X. Then, there exists a unique Gibbs measure µψ ∈ M1
S(X) to the potential

ψ, with parameter P = P(ψ). This measure is also the unique equilibrium measure for the

potential ψ. Further, P(ψ) is equal to the topological pressure, defined as

Ptop(ψ) = lim
n→∞

1

n
log

∑
w∈{0,1}n

sup
x∈[w]∩X

exp(ψn(x)), (6.14)

and the limit is well-defined. ■

Remark 6.3.8. Just like g-measures are fixed points under the operator φg, the Gibbs

measure µψ in Theorem 6.3.7 is an eigenmeasure of the dual of the Ruelle–Perron–Frobenius

operator Lψ, defined via

(Lψf)(x) =
∑

y∈S−1x

eψ(y)f(y),
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for all f ∈ C(X). In fact, there is a powerful convergence result under the assumptions in

Theorem 6.3.7, parallel to our discussion in Section 6.1.2. More precisely, there are λ > 0

and h ∈ C(X), such that (Lψ)∗µψ = λµψ, Lψh = λh and

lim
n→∞

1

λn
Lnψ = |h⟩⟨µψ|,

using the intuitive bra-ket notation for elements in C(X) and its dual space. Convergence

is understood in the strong operator topology. Due to its similarity to the classic PF the-

orem, this result became known as the Ruelle–Perron–Frobenius theorem; for details com-

pare [Bow75,Rue68]. The eigenvalue λ is related to the pressure via P(ψ) = log(λ) under the

assumptions in Theorem 6.3.7 [Bow75]. ♢

6.3.2. Birkhoff spectrum and dimension spectrum

Regular potentials

If µ is a Gibbs measure for the potential ψ, the defining relation (6.12) yields

ψ(x) := lim
n→∞

ψn(x)

n
= P − log(2) dµ(x), (6.15)

provided that any (equivalently both) of the limits exist. That is, the multifractal analysis

of the local dimensions of µ is exchangeable with the multifractal analysis of the Birkhoff

averages ψ. We set

b(β) = dimH B(β), B(β) = {x ∈ X : ψ(x) = β},

and call b(·) the Birkhoff spectrum of ψ. Due to (6.15), this is related to the dimension

spectrum in (6.9) via F(α) = B(P − log(2)α) and

f(α) = b(P − log(2)α), (6.16)

for all α ∈ R. It is a folklore in the area of multifractal analysis that both the Birkhoff

spectrum and the dimension spectrum can be related to the (numerically better accessible)

pressure function

p : R → R, p(t) = Ptop(tψ).

We denote the Legendre(–Fenchel) transform of p by

p∗(q) = sup
t∈R

(qt− p(t)).

The following result is classic. Most of it is stated in this form in [PW01, Thm. 1], the explicit

formula for b in terms of p can be extracted from the proof; compare also [JK11,Schm99].

Fact 6.3.9. Let (X, S) be a topologically mixing, one-sided SFT, ψ a Hölder continuous

potential on X and µ the corresponding equilibrium measure. Assume further that µ is not

the measure of maximal entropy on (X, S). Then, there is a non-empty interval (β−, β+) ⊂ R
such that,
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6. The TM measure as a g-measure

(1) b is a strictly concave, real analytic function on (β−, β+), given by

b(β) = − p∗(β)

log(2)
,

where p : t→ Ptop(tψ) is a strictly convex, real analytic function on R.
(2) [β−, β+] = dom(p∗) := {β ∈ R : p∗(β) <∞} is the domain of p∗.

(3) The level sets B(β) are dense in X if β ∈ [β−, β+] and B(β) = ∅ otherwise.

(4) The exceptional set B̂ = {x ∈ X : ψ(x) does not exist} has full Hausdorff dimension,

that is, dimH B̂ = dimHX. ■

Remark 6.3.10. In the situation of Fact 6.3.9, it is clear that b(β) = 0 as soon as β lies

outside of [β1, β2]. A priori, it is possible that b(β1) and b(β2) can be strictly positive, although

b(β1) = b(β2) = 0 is the typical situation (for a residual set of potentials) [Schm99]. ♢

The corresponding relations for F(α) and the dimension spectrum f(α) are easily obtained

from (6.15) and (6.16). Our main goal for the next section is to find an analogue of Fact 6.3.9,

as well as a relation between the Birkhoff and dimension spectrum for the TM measure.

The TM potential

For the remainder of this chapter, we specialise to the TM measure, that is, we set

µ = µTM =
∞∏
k=0

2g(Skx), g =
1

2
(1− cos(2πx)),

and ψ = log(g) for the TM potential. We emphasize that both Theorem 6.3.7 and Fact 6.3.9

do not cover the TM measure because g has a zero and, consequently, the potential ψ has a

singularity at x = 0. In fact, although µTM is an equilibrium measure, due to Theorem 6.3.4,

it cannot be a Gibbs measure. This is because the function exp(ψn(x) − nP ) is 0 at one of

the boundary points of [x1 · · ·xn], irrespective of the choice of P . Nevertheless, we encounter

a Gibbs-like property if we follow the orbit of points x in one of the SFTs Xm, defined in

(6.10).

Lemma 6.3.11. For every m ∈ N, there exists a constant K = K(m) such that

K−1 ⩽
µ([x1 · · ·xn])
exp(ψn(x))

⩽ K,

for all x ∈ Xm and n ∈ N.

Proof. The basic ideas for this proof are similar to those employed in the proof of Lemma 6.3.6,

but some additional care is needed to deal with the singularities in ψ. We start by proving

the upper bound. Due to Lemma 6.2.1,

µ([x1 · · ·xn]) ⩽ sup
y∈[x1···xn]

exp(ψn(y)), (6.17)
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6.3. Multifractal analysis

for all x ∈ X and n ∈ N. Given m ∈ N, denote by ψ[m] the restriction of ψ to the clopen

subset X[m] = X \ {[0m+1], [1m+1]}. This function is Hölder continuous, and we denote by

C = C(m) =
∞∑
k=0

ψ[m][2−k] < ∞

its bounded variation constant. Since Xm ⊂ X[m], we have ψ(y) = ψ[m](y) for y ∈ Xm. Due to

the fact that ψ is increasing on [0] and decreasing on [1], finding the supremum of ψ on some

cylinder set [w] that overlaps Xm amounts to finding the supremum on [w]∩X[m]. Hence, for

all k ∈ N, w ∈ {0, 1}k and z ∈ [w] ∩ Xm ̸= ∅, we obtain

sup
y∈[w]

ψ(y)− ψ(z) ⩽ sup
y∈[w]∩X[m]

ψ[m](y)− ψ[m](z) ⩽ ψ[m][2−k].

Given x ∈ Xm and n ∈ N, this yields

sup
y∈[x1···xn]

ψn(y)− ψn(x) ⩽
n∑
k=1

(
sup

y∈[xk···xn]
ψ(y)− ψ(Sk−1x)

)
⩽ C,

and hence the upper bound follows, with K = exp(C).

For the lower bound, we need to be slightly more careful because the infimum of exp(ψn(y))

on [x1 · · ·xn] yields only the trivial bound 0. However, due to the symmetry of g, we have

µ([0]) = µ([1]) = 0.5, which yields, for j ∈ {0, 1},

µ([x1 · · ·xn]) ⩾
∫
[j]
gn(x1 · · ·xny) dµ(y) ⩾

1

2
inf

y∈[x1···xnj]
gn(y).

Setting j = xn + 1 mod 2, and using x ∈ Xm, we observe that [xk · · ·xnj] ⊂ X[m], for all

1 ⩽ k ⩽ n. Thus, by similar reasoning as above,

ψn(x)− inf
y∈[x1···xnj]

ψn(y) ⩽
n∑
k=1

(
ψ(Sk−1x)− inf

y∈[xk···xnj]
ψ(y)

)
⩽ C,

and the lower bound follows, with the modified constant K = exp(2C).

Corollary 6.3.12. Given m ∈ N, we have

ψ(x) := lim
n→∞

ψn(x)

n
= − log(2) dimµ(x),

for all x ∈ Xm, provided the limit exists. ■

Another reason why it is useful to restrict our attention to the subshifts (Xm, S) is that

it allows us to refer to the powerful machinery presented in the last section. Indeed, Theo-

rem 6.3.7 and Fact 6.3.9 do apply to the subshifts of finite type (Xm, S), together with the

restricted potential

ψ(m) := ψ|Xm
.

Indeed, it is a straightforward exercise to verify that (Xm, S) is topologically mixing, ψ(m) is

Hölder continuous and the corresponding equilibrium measure µm is not equal to the measure
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6. The TM measure as a g-measure

of maximal entropy (the Parry measure) on (Xm, S). It should be noted that exp(ψ(m)(·))
does not define a g-function on (Xm, S) because the sum

∑
y∈S−1x exp(ψ

(m)(y)) can be strictly

smaller than 1. Hence, µm is not a g-measure, but it is a Gibbs measure by Theorem 6.3.7.

We denote the associated pressure function by

pm : R → R, pm(t) = Ptop

(
tψ(m)

)
,

with Ptop as in (6.14), being implicitly defined over (Xm, S). By Fact 6.3.9, it follows that

bm(β) := dimH Bm(β), Bm(β) := B(β) ∩ Xm

satisfies

bm(β) = −p
∗
m(β)

log(2)
, (6.18)

for all β ∈ (β−m, β
+
m), where [β−m, β

+
m] = dom(p∗m). Further, due to Corollary 6.3.12, it imme-

diately follows that

Fm(α) := F(α) ∩ Xm = Bm(− log(2)α) (6.19)

and

fm(α) := dimHFm(α) = bm(− log(2)α) (6.20)

hold for all m ⩾ 2.

Proposition 6.3.13. We have β+m = β+ = log(3/4) for all m ⩾ 2, and (β−m)m⩾2 is a

non-increasing sequence, with limm→∞ β−m = −∞.

Proof. Due to a classic result by Gelfond [Gel68], the maximal Birkhoff average for ψ is given

by

sup
x∈X

ψ(x) = ψ
(
(01)N

)
= log

(
3

4

)
,

compare also [BGKS19, Prop. 3.1] for an alternative proof of this relation. Hence, Bm(β) = ∅
for all β > log(3/4). On the other hand, since the alternating sequence (01)N is contained in

Xm for all m ⩾ 2, it follows that Bm(β) ̸= ∅ for β = log(3/4). That is, β+m = log(3/4) is the

critical value for the onset of empty level sets Bm(β).
On the other hand, since (Bm(β))m⩾2 is an increasing sequence of sets for all β ∈ R, so is

the sequence of intervals ([β−m, β
+
m])m⩾2 that encode the obtainable levels. Hence, (β−m)m⩾2 is

non-increasing. Given m ⩾ 2, we consider the periodic sequence ym = 0m1 ∈ Xm. For large

m ∈ N, the S-orbit of ym is close to the singularity of ψ for a positive fraction of the orbit.

This suffices to conclude that

lim
m→∞

ψ(ym) = −∞.

By definition, ym ∈ Bm
(
ψ(ym)

)
̸= ∅ and hence β−m ⩽ ψ(ym), and the last claim follows.

Corollary 6.3.14. The level set B(β) is dense in X for each β ⩽ log(3/4), and B(β) = ∅ if

β > log(3/4). Also, the exceptional set

B̂ = {x ∈ X : ψ(x) does not exist},

has full Hausdorff dimension dimH B̂ = 1.
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6.3. Multifractal analysis

Proof. The fact that B(β) = ∅ for β > β+ = log(3/4) follows again by Gelfond’s result,

compare the proof of Proposition 6.3.13. On the other hand, for β ⩽ β+, there exists a

m0 ∈ N such that β ∈ [β−m, β
+
m] for all m ⩾ m0, due to Proposition 6.3.13. Hence Bm(β) is

dense in Xm by Fact 6.3.9. Since the union of all Xm with m ⩾ m0 is dense in X, so is the set

B(β) ⊃
⋃

m⩾m0

Bm(β).

Finally, again by Fact 6.3.9, it follows that

dimH(B̂ ∩ Xm) = dimHXm,

which yields

dimH B̂ ⩾ dimH

⋃
m⩾2

(B̂ ∩ Xm) = sup
m⩾2

dimHXm,

by standard properties of the Hausdorff dimension [Pes97, Thm. 6.1]. Hence, it suffices to show

that dimHXm converges to 1 as m→ ∞. There are certainly several ways to do so. We sketch

one version in the following. The SFT is topologically conjugate to a Markov subshift with

a primitive transition matrix A; compare Section 2.1.3 and [LM95]. By [Pes97, Thm. A2.9],

we have

dimHXm =
log(ρm)

log(2)
,

where ρm is the PF eigenvalue of the transition matrix A. Using the methods provided

in [HA21], we obtain that ρm is the largest root of the polynomial

qm(z) = zm+1 − 2zm + 1.

Note that qm(2) = 1 and that q′m(2) → ∞ as m → ∞. From this, it is straightforward to

show that ρm → 2 as m → ∞. We obtain dimH B̂ ⩾ limm→∞ dimHXm = 1, and the proof is

complete.

The proof of Corollary 6.3.14 makes use of the idea that, in order to obtain certain relations

on (X, S), it is possible to first analyze the corresponding relations on (Xm, S), with m ⩾ 2,

and then to “exhaust” (X, S) by the spaces (Xm, S) in an appropriate sense. We build on

this idea in order to push the relation between bm, fm and pm in (6.18) and (6.20) towards a

relation between b, f and the pressure function

p : R → (−∞,∞], p(t) = Ptop(tψ).

By definition, it is straightforward to see that each of the sequences of functions (bm)m,

(fm)m and (pm)m are non-decrasing and bounded by b, f and p, respectively. In fact, we

will see that the sequences converge pointwise to b, f and p, respectively. This requires some

additional control, ensuring that the level sets of ψ(x) and dimµ(x) in X take up a similar

“proportion” (in the sense of Hausdorff dimension) when restricted to Xm, for large enoughm.

The main technical tool in this direction was provided by Schindler in [BGKS19, Lemma 5.2]

and [BGKS19, Lemma 5.3], relating the behaviour of ψn on cylinders in X to the behaviour

of ψn on appropriately chosen cylinders in Xm.
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Figure 6.4.: Illustration of the pressure function t 7→ p(t) (solid line) with the asymptotes

t 7→ (1− 2t) log(2) and t 7→ log(3/4)t (dashed lines).

Lemma 6.3.15 ([BGKS19]). Let m ⩾ 2 and A = {0, 1}. Then, there exists a function

hm : A+ → A+ with the following properties.

(1) Given n ∈ N, we have hm(An) ⊂ An and #h−1
m (v) ⩽ 2⌊n/m⌋ for all v ∈ An.

(2) For every w ∈ An, the word v = hm(w) satisfies [v] ∩ Xm ̸= ∅, and

sup
y∈[w]

ψn(y) ⩽ sup
x∈[v]∩Xm

ψn(x) + 4⌊n/m⌋+ 2m+2,

for all n ∈ N. ■

Remark 6.3.16. In fact, we considered a slightly different potential function in [BGKS19],

given by ψ̃(x) = ψ(x) + log(2), for all x ∈ X. Since µ is the unique equilibrium measure

to both ψ and ψ̃, this choice is somewhat arbitrary. It is straightforward to verify that the

corresponding pressure function is related to p via

p̃(t) := Ptop

(
tψ̃
)
= p(t) + t log(2),

for all t ∈ R, and that the corresponding Legendre transform is obtained from p∗ by a shift

in the argument of magnitude log(2). ♢

Proposition 6.3.17. For every t ∈ R, we have limm→∞ pm(t) = p(t). The convergence is

uniform on every compact subset of R⩾0. In particular, p is convex and continuous on its

domain dom(p) = R⩾0.

Proof. We start by showing pointwise convergence. Since (pm(t))m⩾2 is non-decrasing and

bounded by p(t) for all t ∈ R, it suffices to show that p(t) ⩽ limm→∞ pm(t). Recall that

pm(t) = Ptop(tψ
(m)) = lim

n→∞

1

n
log

∑
w∈{0,1}n

sup
x∈[w]∩Xm

exp(tψn(x)).
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6.3. Multifractal analysis

For t < 0, set ym = 0m1 ∈ Xm as in the proof of Proposition 6.3.13, and recall that

limm→∞ ψ(ym) = −∞. Hence,

pm(t) ⩾ lim
n→∞

1

n
log exp(tψn(ym)) = tψ(ym)

m→∞−−−−→ ∞.

This also shows that p(t) = ∞ for all t < 0. For t ⩾ 0, we group the words in {0, 1}n according

to their images under hm and obtain, using Lemma 6.3.15,

p(t) = lim
n→∞

1

n
log

∑
v∈hm(An)

∑
w∈h−1

m (v)

sup
x∈[w]

exp(tψn(x)) ⩽
4t+ log(2)

m
+ pm(t),

for all m ⩾ 2. Performing the limit m → ∞ yields the desired convergence. Clearly, the

convergence is uniform on every compact subset of R⩾0. Hence, the property of being convex

and continuous on R⩾0 is inherited from the functions pm.

Corollary 6.3.18. The sequence of functions (p∗m)m⩾2 converges pointwise to p
∗ on dom(p∗).

Proof. This follows by standard arguments in convex analysis. Since p is convex and con-

tinuous with a closed domain, it is closed in the sense that p−1(−∞, y] is a closed subset of

R, for all y ∈ R. The same holds for each of the functions pm, with m ⩾ 2. This is enough

to obtain p∗m → p∗ from the pointwise convergence pm → p [JK11, Prop. 4.1]; compare

also [Roc70,SW77] for background on convex analysis and the convergence of epigraphs.

Combining Corollary 6.3.18 with (6.18), we observe that

− p∗(β)

log 2
= lim

m→∞
bm(β) ⩽ b(β), (6.21)

for all β ∈ dom(p∗). Hence, in order to get equality, it suffices to bound b(β) from above

by −p∗(β)/ log(2). Similar reasoning applies to the sequence (fm(α))m⩾2. The proof of the

remaining step is due to a construction by Kesseböhmer in [BGKS19, Sec. 6], which we

reproduce in the following, with minor changes in the presentation.

Proposition 6.3.19. We have limm→∞ fm(α) = f(α) and limm→∞ bm(β) = b(β) for all

α, β ∈ R. Further, for all β ⩽ log(3/4),

b(β) = − p∗(β)

log(2)
,

and b(β) = 0, otherwise. The function f satisfies f(α) = b(− log(2)α) for all α ∈ R.

Proof. We focus on the relation for b, the corresponding result for f is obtained by similar

arguments. By Corollary 6.3.14, b(β) = 0 for β > log(3/4) is immediate. Hence, we assume

β ⩽ log(3/4) in the following. Our aim is to show that, given ε > 0 and s > −p∗(β−ε)/ log(2),
the s-dimensional Hausdorff measure ms

H(B(β)) vanishes. We then obtain

b(β) = dimH B(β) ⩽ lim sup
ε→0

−p
∗(β − ε)

log(2)
⩽ − p∗(β)

log(2)
,
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6. The TM measure as a g-measure

where the last step is due to the fact that p∗ is automatically lower semi-continuous, by

standard properties of the Legendre transform. In particular, (−∞, log(3/4)] ⊂ dom(p∗). In

conjunction with (6.21), this yields the desired relations.

It remains to show that ms
H(B(β)) = 0 in the situation above. As a first step, note that

ψ(x) = β requires that ψn(x) > n(β − ε) eventually, and hence,

B(β) ⊂ lim sup
n→∞

G(n, α− ε), G(n, α− ε) = {x ∈ X : ψn(x) > n(β − ε)},

implying that

ms
H(B(β)) ⩽ lim

k→∞

∑
n⩾k

ms
H

(
G(n, β − ε)

)
. (6.22)

In the following, we cover G(n, β− ε) by cylinders of length n and obtain an upper bound for

the number of such cylinders. This will yield an upper bound for the s-dimensional Hausdorff

measure that decays exponentially with n. Let Γn = {w ∈ {0, 1}n : [w] ∩ G(n, β − ε) ̸= ∅}.
Since β ⩽ log(3/4), the set Γn is non-empty. We bound #Γn in terms of s. First note that

by the assumption on s, there exists a t ⩾ 0 such that

s log(2) > p(t)− t(β − ε).

Given δ > 0, we can find n0 such that for all n ⩾ n0,

p(t) + δ ⩾
1

n
log

∑
w∈Γn

exp(tn(β − ε)) =
log(#Γn)

n
+ t(β − ε).

Choosing δ > 0 small enough, we obtain

s log(2) >
log(#Γn)

n
, (6.23)

for all n ⩾ n0. Using G(n, α− ε) ⊂
⋃
w∈Γn

[w], we get for n ⩾ n0,

ms
H(G(n, α− ε)) ⩽

∑
w∈Γn

ms
H([w]) = #Γne

−ns log(2) = e−n(s log(2)−log(#Γn)/n).

Because of (6.23), there exists a number r > 0 such that s log(2) − log(#Γn)/n ⩾ r, for all

n ⩾ n0. Finally, due to (6.22),

ms
H(B(β)) ⩽ lim

k→∞

∑
n⩾k

e−nr = 0,

and the claim follows.

In the proof of Proposition 6.3.19, we have already seen that (−∞, log(3/4)] ⊂ dom(p∗). In

fact, with a bit more work, it is possible to show that (−∞, log(3/4)] = dom(p∗) [BGKS19].

Hence, we can express b on R as

b(β) = max

{
− p∗(β)

log(2)
, 0

}
. (6.24)

Analyzing the properties of p, it is possible to be more explicit about the form of the Birkhoff

spectrum b.
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6.3. Multifractal analysis

Proposition 6.3.20. The function b is concave on (−∞, log(3/4)], identical to 1 on the

interval (−∞, log(1/4)], and strictly smaller than 1 otherwise. Further, b(β) = 0 for all

β ⩾ log(3/4).

Sketch of proof. Using (6.24), all of the announced properties of b follow from properties of

the pressure function p, that were established by Kesseböhmer and Schindler in [BGKS19,

Prop. 7.1]; compare also [BGKS19, Sec. 8]. Let us sketch an alternative proof for the fact that

b(β) = 1 for all β ⩽ log(1/4) that sheds a different light on this probably most uncommon

feature of the Birkhoff spectrum. By an application of Birkhoff’s ergodic theorem, it follows

that for Lebesgue almost every x ∈ T,

ψ(x) =

∫
T
ψ(x) dλL(x) = log(1/4),

by direct calculation, compare [BGN14]. This implies that the points x ∈ X with ψ(x) =

log(1/4) have full Hausdorff dimension, that is,

b(log(1/4)) = dimH B(log(1/4)) = 1.

On the other hand, bm(log(1/4)) → 1 as m→ ∞ due to Proposition 6.3.19, and bm(β
−
m) ⩾ 0,

with β−m → −∞, as we have seen in Proposition 6.3.13. Since bm is concave, the graph of bm
lies above the line segment connecting the points (β−m, bm(β

−
m)) and (log(1/4), bm(log(1/4))).

For all β < log(1/4), this yields

1 ⩾ b(β) = lim
m→∞

bm(β) = 1,

and the claim follows.

Collecting the results and procedures above, we are now in a position to prove Theo-

rem 6.0.1. Again, we gloss over the subtle differences between (T, T2) and (X, S); compare

Remark 6.3.2 and [BGKS19] for a more careful account.

Proof of Theorem 6.0.1. The statements on the form of the dimension spectrum follow from

Proposition 6.3.20, together with the relation f(α) = b(− log(2)α), which was stated in

Proposition 6.3.19. Using the relation between restricted level sets in (6.19), the proof of

Corollary 6.3.14 is easily adapted to yield the corresponding results for the level sets F(α)

and the exceptional set F̂ . Here, in order to obtain that F(α) = ∅ for α < α0, we use

Gelfond’s result in conjunction with the upper bound of the measure on cylinder sets given

in (6.17).

Finally, by the Shannon–MacMillan–Breiman theorem, stated in Theorem 2.3.7, the local

dimension dµ(x) is µ-almost surely given by

dµ =
hµ

log(2)
,

which is often called the information dimension [GL90]. This means just µ(F(dµ)) = 1. By

standard arguments in dimension theory, this implies that dµ = f(dµ) [Pes97, Ch. 5].
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Remark 6.3.21. The fact that the dimension spectrum f(α) is constant to 1 for all α ⩾ α1

can be traced back to the singularity of ψ(x) at x = 0; compare also the discussion in [GL90].

In fact, as we already discussed in Section 6.2, µ(Br(x)) decays faster than any polynomial at

dyadic points. Due to approximation ideas, it is therefore not surprising that arbitrarily fast

polynomial scaling is typical in the sense of full Hausdorff dimension. In a sense, the pointwise

dimension of µ does not offer enough “resolution” to get a meaningful characterization of the

thin part of µ from the corresponding spectrum. The fastest scaling of µ(Br(x)) is to be

exprected at x = 0, where it satisfies

logµ(Br(x)) ∼ −θ logγ(r), (6.25)

with θ = 1/ log(2) and γ = 2, see [GL90,BCEG21,BG19]. It might well be that we obtain a

meaningful spectrum if we regard the level sets of points x such that (6.25) holds for γ = 2

and some θ ∈ [0, 1/ log(2)] (alternatively for γ ∈ [1, 2] and arbitrary θ). This could lead to a

multifractal analysis that captures the behaviour of µ at points where the scaling is super-

polynomial and seems to be a promising direction for future research. However, the subshifts

Xm are clearly blind to the super-polynomial scaling, calling for new methods. ♢

Remark 6.3.22. It is a special feature of the potential ψ that the singularity is placed

at a fixed point under the doubling map. It seems natural to inquire what happens if the

singularity if shifted to a different point. A multifractal analysis for the more general family

of potentials

ψb(x) = ψ(x+ b),

with b ∈ T, is performed in upcoming work of Fan, Schmeling and Shen [FSS]. It is also

worth noting that, for each b ∈ T, the equilibrium measure that corresponds to ψb is the

diffraction measure of a generalized TM substitution on a compact alphabet, as defined in

Example 6.1.27. ♢
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Outlook

One of the striking features of random substitutions is the coexistence of positive entropy

and non-trivial Bragg peaks in the diffraction image. The latter also signify the existence

of non-trivial dynamical eigenvalues. In [BSS18], it was shown for several examples that the

corresponding eigenfunctions are discontinuous, but that the points of discontinuity form a

null set for the ergodic measure. In this situation, the maximal equicontinuous factor of the

dynamical system is trivial and the pure point part of the dynamical spectrum is captured

by its measure-theoretic analogue, the Kronecker factor. In fact, the Kronecker factor is

the same for all ergodic measures of interest in this case, and it coincides with the maximal

equicontinuous generic factor, which is a purely topological object, defined on the subset of

points with a dense orbit; compare [HY12,Kel20] for background. It would be interesting to

see if these observations hold in general for compatible random substitutions (possibly under

mild extra assumptions), just like some of the other characteristics discussed in Chapter 4.

A natural analogue of the classic Pisot substitution conjecture in the random setting is to

assume absence of a singular continuous component in the diffraction spectrum of (irreducible)

compatible Pisot random substitutions. In full generality, this is probably difficult to establish,

but it should be possible to construct effective algorithms that check this property for specific

examples. This is already work in progress [GMR].

Concerning the algorithms for computing the topological and measure-theoretic entropy of

random substitutions, a generalization to higher dimensions seems to be well within reach,

at least for particularly simple examples like random stone inflations (compare also the ran-

domization of the Penrose tiling, discussed in [GL89]). This would already suffice to cover

the models of random percolation investigated by Dekking and Meester in [DM90]. There,

it was shown that varying the underlying probability parameter can lead to several phase

transitions. Maximising the entropy with respect to this parameter might be a way to single

out a physically reasonable phase.

A general motive, underlying the treatment of random substitutions in this thesis, is that

characteristics that are defined for the limiting objects (bi-infinite sequences) can be most

efficiently calculated or determined by following iterations of the random substitution on finite

words. A similar idea, in the form of so called trace maps, has proved to be fruitful for the

discussion of Schrödinger operators that are associated to deterministic substitutions [BG94].

Although a generalization to random substitutions is certainly desirable, it seems to come

with serious technical obstacles. This is partly due to the fact that spectral properties of

Schrödinger operators are much less robust to small changes in the base dynamics than

characteristics like entropy or diffraction.

The existence of periodic points in a subshift directly yields that the Schrödinger operator

associated to a point with dense orbit exhibits intervals in its spectrum. It is an open question
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whether the same property is implied by positive entropy of the underlying subshift. Many

classic examples in the positive entropy regime like Bernoulli subshifts or subshifts of finite

type also contain periodic points and hence do not help to settle this question. In this regard,

the random Fibonacci subshift, which combines positive entropy with the absence of periodic

points, provides a useful example. The same holds for (aperiodic) Boshernitzan subshifts with

a random background. Unfortunately, for both cases, the study of the Schrödinger spectrum

has remained inconclusive so far.

Regarding the multifractal analysis of the Thue–Morse measure, provided in Chapter 6,

several further research directions suggest themselves. First, the diffraction of more general

substitutions of constant length naturally leads us to consider Matrix-valued Riesz products

[Que10]. In this context, we are dealing with non-commuting objects in general, and hence

the scaling analysis can be expected to become more involved. A non-additive version of the

thermodynamic formalism might be of help; compare [Pes97, Ch. 4] and [Bar96]. On a more

conceptual level, the study of potentials with singularities in the framework of thermodynamic

formalism certainly deserve further, and more systematic, attention. A first step is provided

in [FSS]. Finally, revisiting the idea presented in Remark 6.3.21, it would be desirable to find

a multifractal analysis of the TM measure that accounts for those points of the unit interval

where the measure decays faster than any polynomial.
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A. Conditional probabilities

Let (Ω,F ,P) be a probability space and assume that f is a random variable in L1(Ω,F ,P).
We fix some σ-algebra F0 ⊂ F .

Definition A.0.1. A conditional expectation of f with respect to F0 is an F0-measurable

random variable f0 such that ∫
B
f dP =

∫
B
f0 dP,

for all B ∈ F0.

A conditional expectation of f with respect to F0 always exists and it is unique up to P-null
sets. We denote by E[f |F0] the corresponding equivalence class of functions.

Definition A.0.2. Let A ∈ F . The conditional probability of A with respect to F0 is given

by

P[A|F0] = E[1A|F0].

We emphasize that a conditional probability is an equivalence class of functions that is well-

defined almost surely. To see the connection with the more elementary notion of conditional

probability, assume for a moment that F0 is the σ-algebra generated by some finite partition

{B1, . . . , Bn} of Ω, composed of sets with positive P-measure. Then, we can choose a version

of the conditional probability by

P[A|F0](ω) = P[A|Bj ],

whenever ω ∈ Bj and 1 ⩽ j ⩽ n. Similarly, if Z is a random variable on (Ω,F) that takes

only finitely many values with positive probability, we get, for ω satisfying Z(ω) = z,

P[A|σ(Z)](ω) = P[A|Z = z].

Even for more general random variables Z, P[A|σ(Z)] can be written as a function that

depends only on the values of Z. This is due to the Doob–Dynkin lemma [Bob05, Ch. 2.1].

The same observation holds for conditional expectations. If Y,Z are F-measurable random

variables, it is customary to employ the notation

E[Y |Z] := E[Y |σ(Z)],

which is implicitly a function on Z.
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(2021) 1377–1427; arXiv:2002.04552.

[EFHN15] T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of

Ergodic Theory, GTM 272, Springer, Cham (2015).

[Ens78] V. Enss, Asymptotic completeness for quantum mechanical potential scatter-

ing. I. Short range potentials, Commun. Math. Phys. 61 (1978) 285–291.
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Wahrscheinlichkeitsth. Verw. Gebiete 30 (1974) 185–202.

[LSS20] D. Lenz, T. Spindeler and N. Strungaru, Pure point diffraction and mean,

Besicovitch and Weyl almost periodicity, preprint (2020); arXiv:2006.10821.

[Li89] W. Li, Spatial l/f Spectra in open dynamical systems, Europhys. Lett. 10 (1989)

395–400.

[LQ11] Q.-H. Liu and Y.-H. Qu, Uniform convergence of Schrödinger cocycles over

simple Toeplitz subshift, Ann. Henri Poincaré 12 (2011) 153–172.
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[Que10] M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, 2nd ed.,

LNM 1294, Springer, Berlin (2010).
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