de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Huber, Felix Michael: Quantum states and their marginals : from multipartite entanglement to quantum error-correcting codesQuantenzustände und deren Marginalien : von multipartiter Verschränkung zu fehlerkorrigierenden Quantencodes. 2017
Inhalt
Title page
Abstract
Zusammenfassung
Contents
List of Illustrations
Figures
Tables
Preface
Chapter 1. Basic concepts
1.1 Fundamentals
1.1.1 Quantum states
1.1.2 Multiple particles
1.1.3 Operators and maps
1.1.4 Entanglement
1.1.5 Entropy and distance measures
1.1.6 Entanglement detection and measures
1.1.7 Bloch representation
1.2 Further notions
1.2.1 Graph states
1.2.2 Quantum exponential families
1.2.3 Absolutely maximally entangled (AME) states
1.2.4 Quantum error-correcting codes
1.2.5 Semidefinite programming
1.2.6 The quantum marginal problem
Chapter 2. Ground and thermal states of local Hamiltonians
2.1 Introduction
2.2 The setting
2.3 Characterization of conv(Qk) via semidefinite programming
2.4 Characterization via the graph state formalism
2.5 Quantum simulation as an application
2.6 Further results
2.6.1 Further results on the information projection
2.6.2 Ground and excited states of local Hamiltonians
2.6.3 States of four parties
2.6.4 Even- and odd-body correlations of qubit states
2.7 Conclusion
Chapter 3. AME state of seven qubits
3.1 The Bloch representation
3.2 Properties of AME state reductions
3.3 Scott bound
3.4 Nonexistence of the seven qubit AME state
3.5 Upper bound for the number of maximally mixed reductions
3.6 AME states of n qubits
3.7 Further results
3.7.1 An iterative semidefinite program to find AME states
3.8 Conclusion
Chapter 4. Ulam's problems for quantum states
4.1 Motivation
4.2 Realizability and uniqueness in graphs
4.3 Graph states
4.4 Weight distribution
4.5 Constraints on the weight distribution
4.6 Detecting illegitimate decks
4.7 When is a weight distribution graphical?
4.8 Conclusion
Chapter 5. Constraints on QECC and AME states
5.1 Introduction
5.2 Motivation
5.3 The Bloch representation
5.4 Quantum error-correcting codes
5.5 The shadow enumerator
5.6 Shor-Laflamme enumerators
5.7 The quantum MacWilliams identity
5.8 The shadow enumerator in terms of the Shor-Laflamme enumerator
5.9 New bounds on absolutely maximally entangled states
5.10 Discussion
5.11 Further results
5.11.1 A generalization of the universal state inversion from the shadow inequalities
5.11.2 An application to the quantum marginal problem
5.11.3 A strong subadditivity - like expression for the linear entropy
5.11.4 Further non-existence results of qubit-codes
5.11.4 Weight distributions of hypothetical codes
5.12 Conclusion
Summary and outlook
Acknowledgments
Appendix: Krawtchouk polynomials
Bibliography