de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Yao, Wei: Semantic annotation and object extraction for very high resolution satellite images. 2017
Inhalt
Acknowledgements
Zusammenfassung
Abstract
Contents
List of Figures
1 Introduction
1.1 Motivation
1.2 Main Goals of This Work
1.3 Contributions of the Dissertation
1.4 Outline of the Dissertation
2 Data Characteristics and Basic Mathematics
2.1 Data Characteristics
2.1.1 Introduction to Remote Sensing
2.1.2 Synthetic Aperture Radar
2.1.2.1 Radar Principle
2.1.3 SAR Statistical Properties
2.1.3.1 Speckle Effect
2.1.3.2 Statistical Properties of the Backscattered Signal
2.1.4 Speckle Reduction
2.1.4.1 Multi-Look Processing
2.2 Basic Mathematics
2.2.1 Probability Distributions
2.2.1.1 Copula-based Joint Probability Modeling
2.2.1.2 Gaussian Mixture Models (GMM)
2.2.1.3 Bayes' Rule
2.2.2 Parameter Estimation Methods
2.2.2.1 Method of Moments (MoM)
2.2.2.2 Method of Maximum Likelihood Estimation (MLE)
2.2.2.3 Method of Maximum A Posterior Estimation (MAP)
2.2.2.4 Method of Log-Cumulants (MoLC)
2.2.2.5 Expectation Maximization (EM)
2.2.3 Numerical Optimization Methods
2.2.3.1 Gradient Descent
2.2.3.2 Newton's Method
2.2.3.3 Stochastic Gradient Descent
2.2.4 Sampling Methods
2.2.4.1 Markov Chain Monte Carlo (MCMC)
3 State of the Art
3.1 Earth Observation Meets Computer Vision
3.2 Hierarchical Representation
3.2.1 Feature Hierarchy
3.2.2 Semantic Hierarchy
3.3 Description of Images
3.3.1 Feature Extraction
3.3.1.1 Multi-Spectral Information
3.3.1.2 Textural Information
3.3.1.3 Geometric Information
3.3.2 Feature Encoding
3.3.3 The Curse of Dimensionality
3.3.4 Distance Metrics
3.3.4.1 Fractional and Minkowski Distances
3.3.4.2 Distance Metric Learning
3.4 Machine Learning
3.4.1 Classic Machine Learning Methods
3.4.2 New Trends in Semi-supervised Learning
3.4.3 Object Extraction-based Semantic Exploration
3.5 Conclusions and Proposed Concepts
3.5.1 Applied Dataset
3.5.2 Semi-supervised Learning
4 Application and Evaluation of a Hierarchical Patch Clustering Method for Image Patches
4.1 Approach
4.2 Methodology
4.2.1 Feature Extraction
4.2.2 Hierarchical Clustering
4.2.3 Modified G-means Algorithm
4.2.3.1 Gaussian Hypothesis Testing
4.2.3.2 Anderson-Darling Test
4.2.3.3 Feature Vector Projection
4.2.4 Comparative Similarity Measures
4.2.4.1 Fractional Distance Metric
4.2.4.2 Minkowski Distance Metric
4.2.5 Evaluation
4.2.5.1 Visual Evaluation
4.2.5.2 Internal Evaluation
4.2.5.3 External Evaluation
4.2.6 Comparative Clustering Methods
4.3 Results
4.3.1 Datasets
4.3.2 Experimental Settings
4.3.3 Parameter Settings
4.3.4 Visual Evaluation
4.3.5 Internal Evaluation
4.3.6 External Evaluation
4.3.6.1 Analysis of Absolute Homogeneity
4.3.6.2 Analysis of Relative Homogeneity
4.3.6.3 Analysis of Cluster Numbers
4.3.7 Comparative Experiments
4.3.7.1 Different Clustering Methods
4.3.7.2 Different Features
4.4 Conclusions
5 Semi-supervised Semantic Image Patch Annotation
5.1 Methodology
5.1.1 Creation of a Reference Dataset
5.1.2 Semi-supervised Learning
5.1.2.1 Cluster-then-Label
5.1.2.2 Supervised Learning Within Clusters
5.1.3 K-Medoids Algorithm Implementation
5.1.4 Evaluation
5.1.4.1 Quantitative Evaluation
5.1.4.2 Visual Evaluation
5.2 Results
5.2.1 Image Data Selection and Subsampling
5.2.1.1 Data Selection
5.2.1.2 Data Pre-Processing
5.2.2 Parameter Settings
5.2.3 Quantitative Evaluations
5.2.3.1 Internal Evaluation
5.2.3.2 External Evaluation
5.2.3.3 Additional Evaluations
5.2.4 Visual Evaluations
5.2.4.1 Tree Structure
5.2.4.2 Feature Space Visualization
5.2.4.3 Cluster Centroid Patches
5.2.4.4 Cluster Homogeneity
5.3 Conclusions
5.3.1 Clustering
5.3.2 Classifiers
5.3.3 Semi-supervised Learning and Manually Annotated Reference Data
5.3.4 Semi-Annotation/Labeling
6 Pixel-Level Bayesian Classification and Active Learning Based Object Extraction
6.1 Pixel-Level Bayesian Classification
6.1.1 Modeling of Speckle Statistics Feature
6.1.2 Image Intensity Modeling
6.1.3 Combined Intensity - Speckle Statistics Feature Model
6.1.4 Bayesian Classification
6.1.5 Experiments
6.1.5.1 Brief Dataset Description
6.1.5.2 Evaluation
6.2 Active Learning Based Object Extraction
6.2.1 Definition of Non-Locality
6.2.2 SVM-based Active Learning
6.2.2.1 Version Space
6.2.2.2 Sample Selection Strategies
6.2.2.3 Prototype Implementation
6.2.2.4 Evaluation and Discussion
6.3 Summary
7 Conclusions
7.1 Summary
7.2 Future Works
Appendix A
A.1 Summary of Machine Learning Algorithms
A.2 Support Vector Machines (SVMs)
A.2.1 Linearly Separable Binary Classifications
A.2.2 Non-Linearly Separable Classifications
A.2.3 Application
Appendix B
B.1 Extraction of Common Objects
B.2 Extraction of Specific Objects
References