de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Ritz, Christina: Characterizing the structure of multiparticle entanglement in high-dimensional systemsCharakterisierung von Vielteilchenverschränkung in hochdimensionalen Systemen. 2018
Inhalt
Abstract
Zusammenfassung
Contents
List of Figures
List of Tables
1 Introduction
2 Preliminaries
2.1 Mathematical framework
2.1.1 Hilbert space
2.1.2 Quantum states in Hilbert space
Pure quantum states
The coefficient matrix of pure quantum states
Schmidt decomposition
Mixed quantum states
Reduced quantum states
2.1.3 Quantum operations
Global and local quantum operations on multipartite systems
Measurements
Local Unitary operations
LOCC-Operations
SLOCC-operations
2.2 Entanglement
2.2.1 Bipartite entanglement
2.2.2 Multipartite entanglement
Pure states
Mixed states
2.2.3 Applications of entanglement
Quantum key distribution
Quantum metrology
2.3 Entanglement classification and quantification
2.3.1 Classification
2.3.2 Quantification
2.3.3 Classification of bipartite entanglement
LU and LOCC classification of bipartite qubit states
2.3.4 Classification of multipartite entanglement
2.4 Entanglement detection
2.4.1 PnCP-maps
PPT-criterion
Reduction criterion
Majorization criterion
Range criterion
Matrix realignement criterion
2.4.2 Entanglement witnesses
Construction of entanglement witnesses
SLOCC witnesses
2.5 Graph states, Hypergraph states and the Stabilizer formalism
2.5.1 Graph states
Graph states as stabilizer states
Local complementation of qubit graph states
2.5.2 Hypergraph states
2.5.3 One way quantum computer - a graph state application
3 Tensor witness
3.1 SDP - introduction
3.2 Tensor witness
3.2.1 Introduction
3.2.2 Preliminaries
SLOCC classes
Entanglement witnesses
SLOCC witnesses
3.2.3 One-to-one correspondence between SLOCC- and entanglement witness
PPT-relaxation
3.2.4 Numerical values for 2 x 3 x 3
3.2.5 Conclusions
3.2.6 Appendix
Example
4 Hypergraph states in arbitrary, finite dimension
4.1 Phase space representation of quantum systems in finite Hilbert spaces
4.2 Qudit hypergraph states
4.2.1 Introduction
4.2.2 Background and basic definitions
The Pauli group and its normalizer
Qudit graph states
4.2.3 Qudit hypergraph states
4.2.4 Properties of hypergraph states and the stabilizer formalism
Local action of Pauli and Clifford groups
Stabilizer formalism
Local measurements in Z basis and ranks of the reduced states
4.2.5 SLOCC and LU classes of hypergraphs
SLOCC and LU transformations
Tools for SLOCC classification
Tools for LU-classification
4.2.6 Classification of qudit hypergraphs under SLOCC and LU
Elementary hypergraphs
Hypergraphs LU-equivalent to elementary hypergraphs
4.2.7 Classification of 3 x 3 x 3
4.2.8 Classification of 4 x 4 x 4
Class 1
Class 1'
Class 2
Class 3
Class 4
SLOCC-inequivalence of Classes 1-4,1'
4.2.9 Conclusions
4.2.10 Appendix
Phase-space picture
Local complementation of qudit graphs in prime dimension
Proofs of Proposition 4.1
4.3 Local complementation of qudit graph states in arbitrary dimension
4.4 Weighted hypergraphs
4.4.1 Elementary weighted hypergraphs
4.4.2 SLOCC equivalence of weighted hypergraphs
SLOCC equivalence of elementary weighted hypergraphs with different weights
SLOCC-equivalence via basis mapping
5 Characterizing genuine multilevel entanglement
5.1 Genuine multilevel entanglement
5.1.1 Introduction
5.1.2 The scenario
5.1.3 General theory for bipartite systems
5.1.4 Multiparticle systems
5.1.5 Conclusion
5.1.6 Appendix
A: Proof of Observation 1
B: Witnesses for the bipartite case
C: Connection to the theory of Young tableaux
D: Examples
Example 1. GHZ States
Example 2: Graph states
The maximally entangled state of six qubits
E: Algorithm for testing full decomposability
5.2 Distinguishing MME from DEC
5.3 Lower dimensional representation of qudit graph states
5.4 Network configuration
5.4.1 Triangular network configuration
Examples: GHZ-states and the network configuration
6 Summary and Outlook
Acknowledgements
Appendix A - SLOCC classification of 233 systems
Bibliography