de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Granzhan, Anton: Synthesis and studies of annelated quinolizinium derivatives as versatile constructs for fluorescent probes and ligands for triple-helical and abasic DNA [...]. 2006
Inhalt
ACKNOWLEDGEMENTS
LIST OF PUBLICATIONS
GENERAL REMARKS
List of Abbreviations
Reagents and Solvents
DNA Structures
Proteins
Physical Variables and their Units
SUMMARY
ZUSAMMENFASSUNG
1 INTRODUCTION AND LITERATURE SURVEY
1.1 Annelated Quinolizinium Derivatives as DNA Binders
1.2 Fluorescence Probes for Detection of Biomacromolecules
1.3 Triplex-DNA Binders
1.4 Ligands Associating with DNA Abasic Sites
1.5 Methods for Study of DNA–Ligand Interactions
1.5.1 UV/Vis Absorption Spectroscopy
1.5.2 Fluorescence Spectroscopy
1.5.3 Thermal Denaturation of DNA–Ligand Complexes
1.5.4 Linear Dichroism Spectroscopy
1.5.5 Competition Dialysis
2 9-SUBSTITUTED ACRIDIZINIUM SALTS AS FLUORESCENT PROBES
2.1 Objective
2.2 Results
2.2.1 Synthesis of 9-Substituted Acridizinium Salts
2.2.1.1 Synthesis of 9-Amino-Substituted Acridizinium Salts
2.2.1.2 Synthesis of 9-(Methylthio)acridizinium
2.2.2 Photophysical Properties of 9-Substituted Acridizinium Derivatives
2.2.2.1 Absorption and Fluorescence Properties of 9-Amino-substitued Acridizinium Salts
2.2.2.2 Absorption and Fluorescence Properties of 9 (Methylthio)acridizinium
2.2.2.3 Viscosity Dependence of the Fluorescence of N-Aryl-9-aminoacridizinium Derivatives
2.2.3 Interaction of 9-Substituted Acridizinium Derivatives with DNA
2.2.3.1 Spectrophotometric Titrations
2.2.3.2 Spectrofluorimetric Titrations
2.2.3.3 Linear Dichroism Spectroscopy
2.2.4 Interaction of N-Aryl-9-aminoacridizinium Derivatives with Proteins
2.3 Discussion
2.3.1 Photophysical Properties of 9-Substituted Acridizinium Derivatives
2.3.2 Interaction of 9-Substituted Acridizinium Derivatives with DNA
2.3.3 Interaction of N-Aryl-9-aminoacridizinium Derivatives with Proteins
3 TARGETING TRIPLE-HELICAL DNA WITH DIAZONIAPOLYCYCLIC INTERCALATORS
3.1 Objective
3.2 Results
3.2.1 Synthesis of Diazoniapolycyclic Salts
3.2.1.1 Synthesis of Unsubstituted Diazoniapentaphenes
3.2.1.2 Synthesis of Substituted Diazoniapentaphenes
3.2.1.3 Synthesis of Hexacyclic Diazoniaarenes
3.2.2 X-Ray Structure Analysis of Diazoniapolycyclic Salts
3.2.2.1 Structure of 42a in the Solid State
3.2.2.2 Structure of 44 in the Solid State
3.2.2.3 Structure of 38c in the Solid State
3.2.3 Photophysical Properties of Diazoniapolycyclic Salts
3.2.4 Binding of Diazoniapolycyclic Salts to Double-Stranded DNA
3.2.4.1 DNA Thermal Denaturation Studies
3.2.4.2 Linear Dichroism Spectroscopy
3.2.5 Binding of Diazoniapolycyclic Salts to Triple-Helical DNA
3.2.5.1 DNA Thermal Denaturation Studies
3.2.5.2 Competition Dialysis Assay
3.3 Discussion
3.3.1 Rearrangement-Mediated Synthesis of Diazoniapentaphenes
3.3.2 DNA-Binding Properties of Diazoniapolycyclic Salts
3.3.2.1 Binding to Double-Stranded DNA
3.3.2.2 Salt Dependence of Binding
3.3.2.3 Binding to Triple-Helical DNA
4 TARGETING DNA ABASIC SITES WITH ACRIDIZINIUM–NUCLEIC BASE CONJUGATES
4.1 Objective
4.2 Results
4.2.1 Synthesis of the Model Compounds and Acridizinium–Adenine Conjugates
4.2.1.1 Synthesis of Acridizinium-9-carboxamides
4.2.1.2 Synthesis of Acridizinium-3-carboxylic Acid
4.2.1.3 Synthesis of the Acridizinium–Adenine Conjugates
4.2.2 Photophysical Properties of Acridizinium-9-carboxamides and Acridizinium–Adenine Conjugates
4.2.3 DNA-Binding Properties of Acridizinium-9-carboxamides and Acridizinium–Adenine Conjugates
4.2.3.1 Binding to Regular and Abasic Oligonucleotides
4.2.3.2 Binding to Double-Stranded Polynucleotides
4.2.4 Photoinduced DNA Cleavage by Acridizinium-9-carboxamides and Acridizinium–Adenine Conjugates
4.3 Discussion
4.3.1 Photophysical Properties
4.3.2 DNA-Binding and DNA-Photocleaving Properties
4.3.2.1 Binding to Regular and Abasic DNA Structures
4.3.2.2 Photoinduced DNA Damage
5 EXPERIMENTAL PART
5.1 General Remarks
5.1.1 Instruments and Methods
5.1.2 Reagents and Solvents
5.2 Syntheses
5.2.1 Synthesis of 9-Substituted Acridizinium Derivatives
5.2.2 Synthesis of Diazoniapolycyclic Salts
5.2.3 Synthesis of Acridizinium-9-carboxamides and Acridizinium–Nucleic Base Conjugates
5.3 Single Crystal X-Ray Diffraction Analysis
5.4 Investigations of the Photophysical Properties
5.4.1 UV/Visible Absorption and Fluorescence Spectroscopy
5.4.2 Acid–Base Spectrophotometric Titrations of Compound 27d
5.4.3 Viscosity Dependence of Fluorescence
5.4.3.1 Fluorescence Spectroscopy using Water–Glycerol Mixtures
5.4.3.2 Fluorescence Spectroscopy at Different Temperatures
5.4.4 Photodegradation of Diazoniapolycyclic Salts 38c and 51 in Solution
5.5 Nucleic Acids Binding Studies
5.5.1 Buffer Solutions
5.5.2 Nucleic Acids
5.5.3 Spectrophotometric and Spectrofluorimetric Titrations
5.5.3.1 Sample Preparation and Experimental Conditions
5.5.3.2 Data Evaluation and Determination of Binding Constants
5.5.4 DNA Thermal Denaturation Studies
5.5.4.1 Sample Preparation
5.5.4.2 Experimental Conditions
5.5.4.3 Data Evaluation and Determination of Melting Temperatures
5.5.4.4 Salt Dependence of Melting Temperatures
5.5.4.5 Thermal Denaturation of Oligonucleotide–Ligand Complexes
5.5.5 Competition Dialysis Assay
5.5.5.1 Sample Preparation and Experimental Conditions
5.5.5.2 Calibration Curves
5.5.6 Linear Dichroism Spectroscopy[ ]
5.6 Protein Binding Studies
5.6.1.1 Proteins
5.6.1.2 Fluorimetric Titrations of Proteins
5.7 Photocleavage of Plasmid DNA
5.7.1 Preparation of Abasic Plasmid DNA
5.7.2 Sample Preparation and Irradiation
5.7.3 Gel Electrophoresis and Data Evaluation
5.8 Quantum Chemical Calculations
6 REFERENCES
APPENDIX A STRUCTURE CHART
CURRICULUM VITÆ