de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Brüggemann, Marc: Determination of an arrival time cut for the separation of electrons and muons in extensive air showersBestimmung eines Ankunftszeitschnitts zur Trennung von Elektronen und Myonen in ausgedehnten Luftschauern. 2006
Inhalt
Abstract
Contents
1 Introduction
2 Cosmic rays and extensive air showers
2.1 Energy spectrum
2.2 Composition of cosmic rays
2.3 Acceleration and propagation
2.4 Origin of the knee
2.5 Extensive air showers
3 The KASCADE-Grande experiment
3.1 The KASCADE experiment
3.1.1 The central detector
3.1.2 The muon tracking detector
3.1.3 The KASCADE array
3.2 The Grande array
3.3 The Piccolo array
4 The KASCADE Flash-ADC system
4.1 The electronics of the KASCADE FADC system
4.2 The KASCADE FADC data acquisition
4.3 Offline signal processing
5 Reconstruction and simulation of extensive air showers
5.1 Reconstruction of air showers
5.2 Simulation of extensive air showers for KASCADE-Grande
6 Synchronization of the KASCADE and the Grande array
6.1 Origin of the time mismatch
6.2 Determination of the time offset
6.3 Measurement of the Grande Time Label
6.4 Assignment of the correct offset
6.5 Summary
7 Unfolding particle arrival times from FADC signals
7.1 The unfolding algorithm
7.2 Determination of the average minimum ionizing particle detector response
7.2.1 Selection of the FADC signal pulses used for the determination of the average MIP detector response
7.2.2 Calibration with the mean most probable energy deposit
7.3 Generation of the response matrix
7.4 Determination of the number of iterations for the unfolding algorithm
7.5 Performance of the unfolding algorithm
7.6 Summary
8 Extraction of particle arrival time distributions
8.1 Alignment of unfolded particle arrival times relative to the shower plane
8.1.1 Determination of the discriminator threshold transition within the FADC signal pulses
8.1.2 Accuracy of the reconstructed shower core arrival time
8.1.3 Application of corrections
8.2 Data selection
8.2.1 Signal selection
8.3 Subtraction of the muon content in the electron arrival time distributions
8.4 Summary
9 Analysis of the particle arrival time distributions
9.1 Determination of the particle arrival time cut
9.1.1 Separation cut values determined from the mean values of the distributions
9.1.2 Separation cut values determined from various quantiles of the distributions
9.1.3 Separation cut values determined from results of a -function fit to the distributions
9.1.4 Separation cut values determined from results of a Log-normal-function fit to the distributions
9.1.5 Dependence on the zenith angle
9.1.6 Dependence on the primary energy
9.2 Study of systematic uncertainties
9.2.1 Influence of the precision of the reconstructed core position
9.2.2 Influence of a variation of the average MIP detector response
9.2.3 Influence of the correction to the shower core arrival time
9.2.4 Influence of the correction to the reconstructed position of the discriminator threshold transition
9.2.5 Overall systematic error
9.3 Summary
10 Summary
A Extraction of the offset values from the offset distributions
B Determination of the number of iterations for the unfolding algorithm
C Arrival time distributions of the electromagnetic and muonic shower components
D Results for the separation cut values, muon purities and systematic studies
D.1 Separation cut values determined with the mean values
D.2 Separation cut values determined with the quantiles
D.3 Separation cut values determined with results from the -function fit
D.4 Separation cut values determined with results from the Log-normal-fit
D.5 Influence of the precision of the shower core position
D.6 Influence of the size of the average MIP detector response
D.7 Separation cut values and muon purities with systematics
List of Figures
List of Tables
Bibliography
Danksagung