de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Gómez Muñoz, Inés María: Concepts elaboration and system architectures for mining very large image archivesKonzeptanfertigung und Systemarchitekturen für Mining sehr grosser Bilddateien. 2009
Inhalt
Abstract
Zusammenfassung
Resumen
Contents
List of Figures
List of Tables
Introduction
Motivation
Positioning this Dissertation
Contributions
Signal Processing Perspective Contributions
System Architecture Perspective Contributions
Outline of the Dissertation
Overview of Existing Mining Systems
Image Information Mining System Architecture
Feature Extraction
Multidimensional Indexing
Content-Based Image Retrieval
Semantic Learning for Content-based Image Retrieval
Relevance Feedback
Existing Image Information Mining Systems
The Knowledge-driven Information Mining System: Concept and Overview
Knowledge-driven Information Mining
Knowledge Enabled Services
Knowledge-centered Earth Observation
Basics of Inference and Stochastic Image Analysis
Stochastic Image Analysis
Probability
Random Variable
Stochastic Processes
Markov Random Fields
Gibbs Random Fields
Bayesian Inference
Image Understanding
Parameter Estimation
Bayesian Two-Level Information Extraction
Elements of Information Theory
Shannon / Differential Entropy
Kullback Leibler divergence or distance
Mutual Information
Cramr-Rao Lower Bound and Fisher Information
Rate Distortion Theory
Conclusions
Earth Observation Image Feature Extraction
Multi Temporal Analysis of High Resolution Images
Problem Statement
State of the art in Multi Temporal Analysis
Feature Extraction Methods for Target Detection
Temporal Spectral Angular Distance
Normalized Difference Vegetation Index
Color Normalization
Texture Analysis
Gray Level Co-Occurrence Matrices
Gibbs Random Fields Texture Models
Linear Feature Extraction
Discrete Cosine Transform Based Dimension Reduction
Conclusions
Clustering
Clustering Phase in Information Hierarchy
K-means: Generalized Lloyd Algorithm
Dyadic k-means
Conclusions
Optimization of Feature Extraction based on Rate Distortion Theory
Rate Distortion Theory
Evaluation Protocol
Method Assessment
Conclusions
Interactive Learning
Interactive Learning
Quality of the Stochastic Link
Probabilistic Retrieval
Multiple Classifier
Human Machine Communication and Relevance Feedback
Conclusions
Optimal System Design Approach
Web Service Technology
Concept and Design of a Knowledge Centered Earth Observation System
KEO System Architecture
KEO Subsystems
Use Cases and User Scenarios
Data Ingestion
Creation of Feature Labels
Creation of a Service Workflow
Conclusions
Application Domains
Multi Temporal Analysis for Target Detection
Unsupervised Change Detection
Supervised Change Detection
Approach Assessment
Validation of KIM Classification by User-defined Labels
Meris Data Product
Approach Assessment
Evaluation Results
Conclusions
Conclusions
The Value of the Contributions
Data Characterization
Theorems
Rate Distortion Theorem.
de Bruijn's identity
Acronyms
Bibliography
Acknowledgments