de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Cormann, Ulf: Statistical models for exceedances with applications to finance and environmental statisticsStatistische Modelle für Exzedenten mit Anwendungen in der Finanzwirtschaft und Umweltstatistik. 2010
Inhalt
Abstract
Kurzzusammenfassung
Danksagung
Contents
List of Special Symbols
Introduction
Subject and Background
Organization
Limiting Distributions of Exceedances Under Monotone Transformations
The Traditional POT--Approach
A Basic Result Concerning Limiting Distributions
Continuous g--POT--Stable Distributions
Some Remarks on Discrete POT-Stable Dfs
Relations to the Limit Theory of Maxima
Some Remarks on Limiting Dfs of Maxima
Domains of Attraction
Deriving the Result of Balkema and de Haan
The Multivariate Case
Limiting Distributions Under Special Monotone Transformations
P--POT Stable Distributions
Limiting Distributions
Derivation from Traditional EVT
Derivation Using the General Result
Relations to P--Max Stable Laws
Domains of Attraction of P--POT Stable Distributions
A General Result
Special Conditions in the Log-Pareto Case
Mixtures of Regularly Varying Distribution Functions
The Iterated Case
Exponential Normalization
The Log--Pareto Distribution
The Log--Pareto Model as an Extension of the Pareto Model
Generalized Log--Pareto Families
Statistical Inference Within the Log--Pareto Model
Quick Estimators and MLEs
Visual Tools for Data Analysis
Testing GLPDs versus GPDs
Simulations
Applications to Real Data
Conditional Exceedance Point Processes under Covariate Information
A Short Introduction to Point Processes
Poisson Processes
Estimating Upper Tails Using a Point Process Approach
The Basic Point Process Model
Two Important Examples
Conditional Distributions in the Poisson Process Case
Extensions to Dependent Covariates
Auxiliary Results
Statistical Inference
Modeling Upper Tails of Conditional Distributions
Estimation Using Unconditional Likelihoods
Conditional Maximum--Likelihood Estimation
Model Checking
Likelihood Based Methods in the Literature
Applications and Simulations
Some Remarks on the Basic Condition
Simulations and Real Data Analysis
Moving Thresholds and Multivariate Extensions
Moving Thresholds
Multivariate Extensions
Retrospective, Outlook and Conclusions
Auxiliary Results
Documentation of R--Programs
Bibliography
Index