de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Zhang, Miao: Data fusion for ground target tracking in GSM networks. 2010
Inhalt
Acknowledgments
Kurzfassung
Abstract
Contents
List of Figures
List of Tables
Nomenclatures
1 Introduction
1.1 Motivation
1.2 Previous Research
1.3 Research Area and Main Assumptions of the Thesis
1.3.1 Research Area
1.3.2 Main Assumptions of the Thesis
1.4 Thesis Contributions
1.5 Structure of the Thesis
2 Mobile Station Positioning Using GSM Networks
2.1 Overview of GSM Networks
2.2 Radio Propagation
2.3 Positioning Techniques and Measurements from GSM Networks
2.3.1 Time of Arrival
2.3.2 Time Difference of Arrival
2.3.3 Angle of Arrival
2.3.4 Received Signal Strength
2.3.5 Multipath Propagation
2.3.6 None-line-of-sight Propagation
2.3.7 Hearability Problem
2.4 Position Estimation
2.4.1 Static Estimation
2.4.2 Dynamic Estimation
2.5 Accuracy Criteria
2.5.1 Root Mean Square Error
2.5.2 FCC Requirements for E911
2.5.3 Geometric Dilution of Precision
2.6 Summary
3 A Data Fusion Solution for Ground Target Tracking
3.1 Target Dynamic Models
3.1.1 Nearly Constant Velocity Model
3.1.2 Nearly Constant Acceleration Model
3.1.3 Singer Model
3.1.4 Coordinated Turn Model
3.1.5 Curvilinear Model
3.2 State Estimation Using EKF
3.3 Posterior CRLB for Target Tracking
3.4 A Data Fusion Solution
3.4.1 Data Fusion Structure
3.4.2 Dynamic Model and Measurement Model for EKF
3.5 Simulation Results
3.5.1 Simulation Scenario
3.5.2 EKF Design
3.5.3 Performance Comparisons
3.6 PCRLB for the Data Fusion Solution
3.6.1 Derivation
3.6.2 Simulation Results
3.7 Summary
4 Road-Constrained Target Tracking
4.1 Road Information
4.2 Constrained State Estimation
4.2.1 Pseudomeasurement Approach
4.2.2 Projection Approach
4.2.3 Comparison of Pseudomeasurement and Projection Approach
4.3 Road Constraint as Pseudomeasurement: Linear Case
4.3.1 Position Estimation without Constraints
4.3.2 Road Constraints as Pseudomeasurements
4.3.3 EKF for Road-Constrained Tracking
4.3.4 Simulation Results
4.4 Road Constraint as Pseudomeasurement: Nonlinear Case
4.4.1 Formulation
4.4.2 EKF for Road-Constrained Tracking
4.4.3 Simulation Results
4.5 Summary
5 An Adaptive Road-Constrained IMM Estimator
5.1 Maneuvering Target Tracking
5.2 Interacting Multiple Model Estimator
5.2.1 Algorithm
5.2.2 Extended Kalman Filter in Subfilters
5.2.3 Simulation Results
5.3 An Adaptive Road-Constrained IMM Estimator
5.3.1 Ground Target Tracking on the Road
5.3.2 ARC-IMM Algorithm
5.3.3 Simulation Results
5.4 Summary
6 Conclusions and Outlook
6.1 Conclusions
6.2 Outlook
A Some Useful Formulae for Vectors and Matrices
A.1 Derivatives of Vectors and Matrices
A.1.1 The Gradient of a Scalar Function f(x)
A.1.2 The Gradient of a Vector-Valued Function f(x)
A.1.3 The Hessian of a Scalar Function f(x)
A.2 The Inversion of a Partitioned Matrix
A.3 Matrix Inversion Lemma
B Posterior Cramér-Rao Lower Bound for Nonlinear Filtering with Additive Gaussian Noise
C Derivations for Constrained State Estimation
C.1 Maximum Conditional Probability Method for Projection Approach
C.2 Mean Square Method for Projection Approach
C.3 Constrained Estimate in Terms of the Unconstrained Estimate Using Pseudomeasurement Approach
Bibliography