de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Zhou, Junchuan: Low-cost MEMS-INS/GPS integration using nonlinear filtering approaches. 2013
Inhalt
Acknowledgments
Contents
List of Figures
List of Tables
Acronyms
Abstract
Kurzfassung
Outline
Motivation
1. INS/GPS Integration Principles
1.1 Introduction
1.2 GPS data processing
1.3 INS principle
1.4 INS/GPS integration
1.5 Field experiment
1.6 Summary
2. Nonlinear Filtering Methods
2.1 Introduction
2.2 Basics in probability theory
2.3 Recursive Bayesian state estimator
2.4 Recursive Bayesian state estimator with Gaussian assumptions
2.5 Unscented Kalman filter
2.6 Particle filter
2.7 Unscented particle filter
2.8 Simulation test
2.9 Summary
3. INS/GPS using Quaternion-based Nonlinear Filtering Methods
3.1 Introduction
3.2 Quaternion-based INS/GPS using Extended Kalman filter
3.3 Quaternion-based INS/GPS using Unscented Kalman filter
3.4 Quaternion-based INS/GPS using Unscented Particle filter
3.5 Summary
4. INS/GPS Tightly-coupled Integration using Sequential Processing
4.1 Introduction
4.2 Velocity determination
4.3 Augmentation of system state vector (1st Method)
4.4 Backward prediction of delay states by current states (2nd method)
4.5 Comparisons of two approaches
4.6 Simulation setup
4.7 Numerical result
4.8 Summary
5. Summary and Conclusions
5.1 Summary
5.2 Conclusions
Appendix A: Basics on Quaternions
Appendix B: Transformation of Quaternion Covariance to Euler Angle Covariance
Appendix C: Calculation of Matrix Inversion using Gauss-Jordan Elimination Method
Appendix D: Sequential Measurement Update using Joseph Covariance Update Formula
Bibliography