de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Nasir, Ahmad Kamal: Cooperative simultaneous localization and mapping framework. 2014
Inhalt
Abstract
Zusammenfassung
Acknowledgement
Table of Contents
List of Figures
List of Tables
Notations
Chapter 1. Introduction
1.1. Motivation
1.2. Problem Statement
1.3. Research Work Scope
1.4. Related Works
1.5. Methodology
1.6. Applications
1.7. Thesis Overview
Chapter 2. Theory and Background
2.1. Probabilistic Motion Model
2.1.1. Robot Motion Model Using Wheel Odometry
2.2. Probabilistic Observation Model
2.2.1. Observation Model Using Range Sensors
2.3. Estimation
2.3.1. Extended Kalman Filter
2.3.2. Particle Filter
2.4. Localization
2.4.1. Pose Estimation
2.5. Mapping
2.5.1. Grid Based Mapping
2.5.2. Feature Based Mapping
1
2
2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.2.1 Plane Extraction and Map Building Using a Kinect Equipped Mobile Robot
2.6. Navigation
2.6.1. Implementation
2.7. Summary
Chapter 3. Simultaneous Localization and Mapping
3.1. SLAM
3.2. Prediction
3.3. Correction
3.3.1. Clustering or Segmentation
3.3.2. Feature Extraction
3
3.1
3.2
3.3
3.3.1
3.3.2
3.3.2.1 Probabilistic Line Extraction
3.3.2.2 Probabilistic Plane Extraction
3.3.3. Feature prediction from map
3.3.3
3.3.3.1 Mahalanobis Distance
3.3.3.2 KD Tree
3.3.4. Map Update
3.3.5. New Features
3.4. Summary
Chapter 4. Cooperative SLAM (CSLAM)
4.1. SLAM for Heterogeneous features
4.1.1. Prediction
4.1.2. Update
4.1.3. New Plane Features
4.2. SLAM for Multiple robot with known initial poses
4.3. Summary
Chapter 5. Framework and Hardware Development
5.1. Overview of the system
5.1.1. Control Center
5.1.2. Coordinator
5.1.3. Agents
5.2. Firmware and Hardware
5.2.1. Firmware
5.2.2. Hardware
5.3. Simulation Environment
5.4. Summary
Chapter 6. Experiment and Results
6.1. Setup
6.2. Map Management and Feature Fusion
6.3. Cooperative SLAM
6.4. Resultant Map
6.5. Summary
Chapter 7. Discussion
7.1. Outlook
7.2. Contributions
7.3. Future Works
Appendix A
Encoder Velocity Error Model
Accelerometer Velocity Error Model
Gyroscope Error Model
Compass Angle Error Model
Appendix B
Least Square Estimation
Appendix C
Appendix D
Create an C# based TCP/IP Client to communicate with a simulated robot in USARSim
Setting up a Simulation Environment
Running Simulation Environment
Communication with game engine
Client Application
ProcessRxData
DisplayData
Important Commands and Messages Format
Messages
STA
SEN
Range Sensor
Laser Sensor
Odometry sensor
GPS Sensor
INS Sensor
Encoder sensor
Touch sensor
RFID sensor
Commands
INIT
DRIVE
Appendix E
Simulation of Map Building in ROS with Mobile Robots Equipped with Odometry and Laser Range Scanner
Bibliography