Einleitung und Vorwort
Abstract
Danksagung
Inhaltsangabe
1 Einführung
2 Sensorik
3 Agentenparadigma-Systemtopologie
4 Agentenbasierte Detektion, Lokalisation und Klassifikation von Objekten
5 Objekt- und Personenverfolgung
6 Schlussbetrachtung
A Lokales Objektmanagement
B Globales Objektmanagement
C Bayes'sche Estimation
D CONDENSATION-Algorithmus
E Quaternionen
F Tabellen
G Literaturverzeichnis
[1] A. Weibel, R. Stiefelhagen: CHIL - Computers in the Human Interaction Loop. Springer Verlag, 2009. ISBN 978-1-84882-053-1.
[2] AMI - Augmented Multiparty Interaction, http://www.amiproject.org
[3] SUBITO - Surveillance of Unattended Baggage and the Identifikation and Tracking of the Owner, http://www.subito-project.eu
[4] PROMETHEUS - Prediction and Interpretation of Human Behaviour Based on Probabilistic Structures and Heterogeneous Sensors, https://www.informationsystems.foi.se/~ prometheus-fp7
[5] SAMURAI - Suspicious and Abnormal Behaviour Monitoring Using a Network of Cameras & Sensors for Situation Awareness Enhancement, http://www.samurai-eu.org
[6] PASCAL2 - Pattern Analysis, Statistical Modelling and Computational Learning http://www.pascal-network.org
[7] SAFROS - Patient Safety in Robotic Surgery, http://www.safros.eu
[8] M. Valera, S. A. Velastin: Intelligent Distributed Surveillance Systems: A Review. IEE Proc-Vis. Image Signal Process. Vol 152, No. 2, April 2005.
[9] J. Zhu, L. Wang, R. Yang, J Davis: Fusion of Time-of-Flight Depth and Stereo for High Accuracy Maps. Computer Vision and Pattern Recognition (CVPR), 2008.
[10] U. Hahne, M. Alexa: Combining Time-of-Flight Depth ans Stereo Images without Accurate Extrinsic Calibration. Dynamic 3D Workshop in Conjunction with DAGM, 2007.
[11] K. D. Kuhnert, M. Stommel: Fusion of stereo-camera and pmd-camera data for real-time suited precise 3D environment reconstruction. International Conference on Intelligent Robots and Systems, 2006.
[12] L. Romero, A. Nunez, S. Bravo, L. E. Gamboa: Fusing a Laser Range Finder and a Stereo Vision System to Detect Obstacles in 3D. LNAI, IBERAMIA 2004.
[13] Q. Mühlbauer, K. Kühnlenz, M. Buss: Fusing Laser and Vision Data with a Genetic ICP Algorithm. 10th Int. Conf. on Control, Automation, Robotics and Vision (ICARCV), 2008.
[14] M. Perollaz, R. Labayrade, C. Royere, N. Hautiere, D. Aubert: Long Range Obstacle Detection Using Laser Scanner and Stereovision. Intelligent Vehicles Symposium, Tokio, Japan, 2006.
[15] D. C. Ghiglia, M. D. Pritt: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley & Sons, ISBN 978-0471249351.
[16] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, S. Shafer: Multi-Camera Multi-Person Tracking for EasyLiving. Third IEEE International Workshop on Visual Surveillance, Dublin, Ireland, 2000.
[17] J. P. Batista: Tracking Pedestrians under Occlusion using Multiple Cameras. International Conference on Image Analysis and Recognition, Lecture Notes in Computer Science 3212, 2004.
[18] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, S. Pankanti, A. Senior, C. Shu, Y. L. Tan: Smart Video Surveillance. IEEE Signal Processing Magazine, March 2005.
[19] M. Harville, D, Li: Fast, Integrated Person Tracking and Activity Recognition with Plan-View Templates from a Single Stereo Camera. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004.
[20] R. Eshel, Y. Moses: Homography based multiple camera detection and tracking of people in a dense crowd. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.
[21] A. Tyagi, G. Potamianos, J. W. Davis, S M. Chu: Fusion of Multiple Camera Views for Kernel-Based 3D Tracking. IEEE Workshop on Motion and Video Computing, Austin TX, 2007.
[22] A. Mittal, L. S. Davis: M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene. International Journal of Computer Vision 51, 2003.
[23] K. Bernardin, T. Gehrig, R. Stiefelhagen: Multi- and Singleview Multiperson Tracking for Smart Room Environments. Lecture Notes in Computer Science, Vol. 4122, 2007.
[24] T. Mori, T. Matsumoto, M. Shimosaka, H. Noguchi, T. Sato: Multiple Persons Tracking with Data Fusion of Multiple Cameras and Floor Sensors Using Particle Filter. Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications M2SFA2, Marseille, 2008.
[25] M. K. Bhuyan, B. C. Lovell, A. Bigdeli: Tracking with Multiple Cameras for Video Surveillance. 9th Biennal Conference of the Australian Pattern Recognition Society, Glenelg, Australia, 2007.
[26] T. Zhao, M. Aggarwal, R. Kumar, H. Sawhney: Real-time Wide Area Multi-Camera Stereo Tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
[27] J. F. Martinez, S. Bravo, A. B. Garcia, I. Corredor, M. S. Familiar, L. Lopez, V. Hernandez, A. Da Silva: Pervasive surveillance-agent system based on wireless sensor networks: design and deployment. IOP Publishing in Measurement Science and Technology 21, 2010.
[28] M. A. Patricio, J. Carbo, O. Perez, J. Garcia, J. M. Molina: Multi-agent Framework in Visual Sensor Networks. EURASIP Journal on Advances in Signal Processing, Vol. 2007.
[29] J. Orwell, S. Massey, P. Remagnino, D. Greenhill, G. A. Jones: A Multi-agent Framework for Visual Surveillance. Proceedings of the 10th International Conference on Image Analysis and Processing (ICIAP), 1999.
[30] T. Matsuyama, N. Ukita: Real-Time Multitarget Tracking by a Cooperative Distributed Vision System. Proceedings of the IEEE, Vol. 90, No. 7, July 2002.
[31] F. Castaneda, M. A. Patricio, J. Garcia, J. M. Molina: Extending Surveillance Systems Capabilities Using BDI Cooperative Sensor Agents. Proceedings of the 4th ACM International Workshop on Video Surveillance ans Sensor Networks (VSSN), 2006.
[32] M. H. Cohen: Building Brains for Rooms: Designing Distributed Software Agents. Proceedings of the 9th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI), 1997.
[33] D. R. Karrupiah, Z. Zhu, P. Shenoy, E. Riseman: A Fault-Tolerant Distributed Vision System Architecture for Object Tracking in a Smart Room. International Workshop on Computer Vision Systems (ICCV), 2001.
[34] F. Castaneda, J. Garcia, M. A. Patricio, J. M. Molina: A Multi-Agent Architecture to Support Active Fusion in a Visual Sensor Network. AMC/IEEE International Conference on Distributed Smart Cameras (ICDSC), 2008.
[35] L. Marchesotti, L. Piva, C. Regazzoni: An agent-based approach for tracking people in indoor complex environments. Proceedings of the 12th International Conference on Image Analysis and Processing (ICIAP), 2003.
[36] B. Schneider: Der Photomischdetektor zur schnellen 3D-Vermessung für Sicherheits-systeme und zur Informationsübertragung im Automobil. Dissertation, Universität Siegen, 2003.
[37] S. Hußmann: Schnelle 3-D Objektvermessung mittels PMD/CMOS-Kombizeilensensor und Signalkompressions-Hardware. Dissertation, Universität Siegen, 2000.
[38] T. P. U. Krieger: Innovatives Sensorkonzept und Signalverarbeitungsstrategien zur Bewegungserkennung und Präsenzkontrolle von Personen. Dissertation, Universität Siegen, 2002.
[39] M. Zacher: Integration eines optischen 3D-Sensors in ein Koordinatenmessgerät für die Digitalisierung komplexer Oberflächen. Dissertation, RWTH Aachen, 2003.
[40] R. Lange: 3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS / CCD-Technology. Dissertation, Universität Siegen, 2000.
[41] R. Langenbach: Methoden der Farbbildverarbeitung für die automatische Oberflächen-inspektion. Dissertation, Universität Siegen, 2002.
[42] X. Luan: Experimental Investigation of Photonic Mixer Device and Development of ToF 3D Ranging Systems Based on PMD Technology. Dissertation, Universität Siegen, 2001.
[43] M. Albrecht: Untersuchung von Photogate-PMD-Sensoren hinsichtlich qualifizierender Charakterisierungsparameter und -methoden. Dissertation, Universität Siegen, 2007.
[44] D. Justen: Untersuchung eines neuartigen 2D-gestützten 3D-PMD-Bildverarbeitungs-systems. Dissertation, Universität Siegen, 2000.
[45] K. Engelhardt: Methoden und Systeme der optischen 3-D Messtechnik. XI. Internationaler Kurs für Ingenieurvermessung Zürich. Dümmler Verlag, Bonn, 1992.
[46] M. Bernfeld, C. E. Cook: Radar signals: An introduction to theory and application. Artech House, Boston, 1993. ISBN 0-89006-733-3.
[47] A. Ludloff: Praxiswissen Radar und Radarsignalverarbeitung. Vieweg, Braunschweig, 2002. ISBN 3-528-26568-X.
[48] M. Zollner, E. Zwicker: Elektroakustik. Springer, 1993.
[49] E. Stadler: Modulationsverfahren. Vogel, 2000. ISBN 3802318404.
[50] H. Weidenfeller, A. Vlcek: Digitale Modulationsverfahren mit Sinusträger. Springer, 1996. ISBN 354060622X.
[51] J. Zheng: Optical Frequency-modulated Continuous-wave Interferometry. Springer, 2005. ISBN 038723002.
[52] M. Meyer: Kommunikationstechnik. Vieweg und Teubner, 2002. ISBN 3528138653.
[53] B. Jähne, H. Haußecker: Computer Vision and Applications. Academic Press. London, San Diego 2000 ISBN 0-12-379777-2.
[54] F. Pedrotti : Optik für Ingenieure. Springer, ISBN 978-3-540-22813-4.
[55] P. Hariharan: Optical Interferometry. Springer, ISBN 978-3-540-22813-4.
[56] K. Hartmann et al.: Klassifizierungsaspekte bei der 3D-Szenenexploration mit einer neuen 2D/3D Multichip-Kamera. ASM 2005, pp. 74-80, Springer Verlag.
[57] E. Hecht: Optik. Oldenbourg Wissenschaftsverlag 2005 ISBN 3486273590.
[58] O. Schreer: Grundlagen der projektiven Geometrie. Springer, Berlin, Heidelberg 2005.
[59] T. Spirig, P. Seitz: The Lock-In CCD. Two-Dimensional Synchronous Detection of Light. IEEE Journal of Quantum Electronics, Vol. 31, No. 9, S. 1705-1708, September 1995.
[60] J. Olk: Untersuchung von Laufzeitentfernungsmesssystemen unter besonderer Berücksichtigung des Referenzproblems. Dissertation, Universität Siegen, 1997.
[61] B. Möller: Full frame 3D snapshot. Possibilities and limitations of 3D image acquisition without scanning. Examensarbeit, Universität Linköping, 2005.
[62] O. Lottner: Investigations of Optical 2D/3D-Imaging with Different Sensors and Illumination Configurations. Dissertation, Universität Siegen, 2011.
[63] N. Santrac, G. Friedland, R. Rojas: High Resolution Segmentation with a ToF 3D-Camera using the Example of a Lecture Scene. Fakultät für Informatik, Universität Berlin, 2006.
[64] M. J. Valls, G. Dissanayake: Robotic 3D visual mapping for augmented situational awareness in unstructured environments. International Workshop on Robotics for Risky Interventions and Surveillance of the Environment (RISE), 2008.
[65] B. Huhle, S. Fleck, A. Schilling: Integrating 3D ToF Camera Data and High Resolution Images for 3DTV Applications. 3DTC CON – The True Vision, 2007.
[66] R. Reulke: Combination of Distance Data with High Resolution Images. ISPRS, Commission V Symposium, Image Engineering and Vision Metrology, 2006.
[67] PMD Technologies GmbH: „PMD PhotonICs: 3k-S, 41k-S“ http://www.pmdtec.com
[68] T. Kahlmann: Range imaging metrology – Investigation, Calibration and Developement. Dissertation, ETH Zürich, 2007.
[69] M. Lindner, A. Kolb: Lateral and Depth Calibration of PMD-Distance Sensors. Advances in Visual Computing, Springer, 2/2006.
[70] B. Jähne: Digitale Bildverarbeitung. 6. Ausgabe, Springer Verlag, 2005. ISBN: 978-3-540-27384-4.
[71] B. Büttgen, T. Oggier, M.Lehmann: CCD/CMOS Lock-In Pixel for Range Imaging: Challenges, Limitations and State-of-the-Art, Mesa Imaging, 1st Range Imaging Research Day, 2005.
[72] T. Ringbeck, T. Möller, B. Hagebeuker: Multidimensional measurement by using 3-D PMD sensors, Advances in Radio Science 5, 2007.
[73] Micron Technology, Inc, Boise, USA: Data sheet for the 1/2-inch VGA Digital Image Sensor MT9V403.
[74] S. E. Ghobadi, O. E. Loepprich, K. Hartmann, O. Loffeld: Hand Segmentation Using 2D/3D Images. IVCNZ 2007, Hamilton, New Zealand, 2007.
[75] O. Lottner, A. Sluiter, K. Hartmann, W. Weihs: Movement Artefacts in Range Images of Time-of-Flight Cameras. EOS DOI: 10.1109/ISSCS.2007.4292665, Romania, 2007.
[76] J. A. Parian, A. Gruen: Integrated Laser Scanner and Intensity Image Calibration and Accuracy Assessment. ISPRS Workshop "Laser Scanning", Enschede, September 2005.
[77] H. Baltsakis, A. Argyros, P. Trahanias: Fusion of range and visual data for the extraction of scene structure information. Intl. Conference on Pattern Recognition (ICPR), 2002.
[78] MESA Imaging: „Swissranger SR4000“ http://www.mesa-imaging.ch
[79] Micron MT9V403C12: http://pdf1.alldatasheet.com/datasheet-pdf/view/97421/MICRON/ MT9V403.html
[80] S. Gould, P. Baumstarck, M. Quigley, A. N. Ng, D. Koller: Integrating Visual and Range Data for Robotic Object Detection. Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications (M2SFA2), France, 2008.
[81] G. Monteiro, C. Premebida, P. Peixoto, U. Nunes: Tracking and Classifikation of Dynamic Obstacles Using Laser Range Finder and Vision. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006.
[82] S. E. Ghobadi, O. E. Loepprich, O. Lottner, K. Hartmann, O. Loffeld: 2D/3D Image Data Analysis for Object Tracking and Classification. Advances in Machine Learning and Data Analysis, Lecture Notes in Electrical Engineering, Vol. 48, 2010. ISBN 978-90-481-3176-1.
[83] S. E. Ghobadi, O. E. Loepprich, F. Ahmadov, J. Bernshausen, K. Hartmann, O. Loffeld: Real Time Hand Based Robot Control Using 2D/3D Images. Advances in Visual Computing, Lecture Notes in Computer Science, Vol. 5359, 2008. ISBN 978-3-540-89646-3.
[84] M. Wooldridge: An Introduction to Multi Agent Systems. John Wiley & Sons, Chichester,H. F. Duran-Whyte: Integration, Coordination and Control of Multi-Sensor Robot Systems. England 2002. ISBN 0-471-49691-X.
[85] L. Padgham, M. Winikoff: Developing Intelligent Agent Systems. John Wiley & Sons, Chichester, England 2004. ISBN 0-470-46120-7.
[86] R. H. Bordini, J. F. Hübner, M. Wooldridge: Programming Multi-Agent Systems in AgentSpeak using Jason. J. Wiley & Sons, Chichester England, 2007. ISBN 978-0-470-02900-8.
[87] D. L. Hall, S. A. H. McMullen: Mathematical Techniques in Multisensor Data Fusion. Second Edition. Artech House, Boston 2004. ISBN 978-1580533355.
[88] E. L. Waltz: Data Fusion for C3I in Command, Control, Communications Intelligence Handbook. Palo Alto, CA: EW Communications Inc., 1986.
[89] D. L. Hall, A. Steinberg: Dirty Secrets in Multisensor Data Fusion. National Symposium on Sensor Data Fusion, San Antonio, TX 2000.
[90] D. L. Hall, J. Llinas, M. E. Liggins: Handbook of Multisensor Data Fusion Theory and Practice, 2nd Edition. Boca Raton, CRC Press 2009. ISBN 978-1-4200-5308-1.
[91] H. F. Durant-Whyte: Integration, Coordination and Control of Multi-Sensor Robot Systems. Kluwert Academic Publishers, Norwell, Massachusetts 1988.
[92] E. L. Waltz, J. Llinas: Multisensor Data Fusion. Artech House, Boston MA 1990.
[93] P. K. Varshney: Distributed Detection and Data Fusion. Springer, New York 1996.
[94] M. D. McNeese, E. Salas, M. Endsley: New Trends in Cooperative Activities: System Dynamics in Complex Environments. Santa Monica, CA: Human Factors and Ergonomics Society 2001.
[95] D. L. Hall, R. J. Linn, J. Llinas: Survey of Data Fusion Systems in SPIE Conference on Data Structure and Target Classification. Orlando FL, 1991.
[96] A. N. Steinberg: Threat Management System for Combat Aircraft in Tri-Service Data Fusion Symposium. Johns Hopkins University, Baltimore, MD, 1987.
[97] R. Sessler: Eine modulare Architektur für dienstbasierte Interaktionen zwischen Agenten. Dissertation, Technische Universität Berlin, 2002.
[98] M. Fathi-Torbaghan, A. Höffmann: Fuzzy Logik und Blackboard-Modelle in der technischen Anwendung. Oldenbourg Verlag 1994. ISBN 3-486-22650-9.
[99] M. J. Wooldridge, N. R, Jennings: Intelligent Agents: Theory and Practice. Knowledge Engineering Review, 10, 1995.
[100] M. d'Inverno, D. Kinny, M. Luck, M. J. Wooldridge: A Formal Specification of dMARS. Proceedings of ATAL'97, 1997.
[101] SOAP Spezifikation: http://www.w3.org/TR/soap
[102] Object Management Group: http://www.omg.org
[103] CORBA Spezifikation: http://www.omg.org/technology/documents/spec_catalog.htm
[104] M. d'Inverno, M. Luck: Understanding Agent Systems. Springer Verlag 2001. ISBN 3-540-41975-6.
[105] N. R. Jennings, P. Faratin, M. J. Johnson, P. O'Brien, M. E. Wiegand: Agent-based business process management. International Journal of Cooperative Information Systems, 5(2&3), 1996.
[106] D. Kinny, M. Georgeff. A. Rao: A methodology and modelling technique for systems of BDI agents. Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Lecture Notes in Artificial Intelligence, Vol. 1038, Springer-Verlag, 1996.
[107] C. Toomey, W. Mark: Satellite image dissemination via software agents. IEEE Expert, 10(5), 1995.
[108] R. H. Guttman, A. G. Moukas, P. Maes: Agent-mediated electronic commerce: a survey. Knowledge Engineering Review, 13(2), 1998.
[109] S. Grand, D. Cliff: Entertainment software agents with artificial life. Autonomous Agents and Multi-Agent Systems, 1(1), 1998.
[110] S. Franklin, A. Graesser: Is it an Agent, or just a Program? A Taxonomy for Autonomous Agents. Proceedings of the Third International Workshop on Agent Theories, Architectures and Languages, Springer-Verlag, 1996.
[111] FIPA Agent Management, 2003. http://www.fipa.org/specs/fipa00023
[112] M. E. Bratman: Intention, Plans and Practical Reason. Harvard University Press, Cambridge MA, 1987.
[113] M. E. Bratman, D. J. Israel, M. E. Pollack: Plans and resource bounded practical reasoning. Computational Intelligence 4, 1998.
[114] V. Mascardi, D. Demergasso, D. Ancona: Languages for Programming BDI-style Agents. WOA 2005 - Workshop: From Objects to Agents, 2005.
[115] M. E. Bratman: Intentions in Communication. Harvard University Press, Cambridge MA, 1990.
[116] D. Nau, M. Ghallab, P. Traverso: Automated Planning: Theory & Practice. Morgan Kaufman Publ. Inc., 2004. ISBN 1558608567.
[117] M. P. Georgeff, A. L. Lansky: Reactive reasoning and planning. In Proceedings of Advancement of Artificial Intelligence (AAAI), 1987.
[118] J. R. Searle: Speech Acts. Cambridge University Press, 1969.
[119] J. L. Austin: How to Do Things With Words. Oxford University Press, 1962.
[120] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, J. McGuire, R. Pelavin, S. Shapiro, C. Beck: Specification of the KQML agent communication language. DARPA Knowledge Sharing Initiative, External Interfaces Working Group, 1993.
[121] P. R. Cohen, C. R. Perrault: Elements of a plan based theory of speech acts. Cognitive Science, Vol. 3, 1979.
[122] University of Michigan Procedural Reasoning System UM-PRS: http://www.marcush. net/IRS/irs_downloads.html
[123] L. Lamontagne, M. Belanger, J. Berger, P. Pelletier: EVALUATION D'UN SYSTEME A RAISONNEMENT PROCEDURAL (UM-PRS). Research and Developement Branch, Department of National Defence, Canana, 1998.
[124] J. Lee, M. J. Huber, E. H. Durfee, P. G. Kenny: UM-PRS: An Implementation Of The Procedural Reasoning System For Multirobot Applications System. In Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS), 1994.
[125] University of Michigan Procedural Reasoning System UM-PRS: Programmer and User Guide. ftp://ftp.eecs.umich.edu/people/durfee/umprs3.0-man.ps
[126] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang: A Line in the Sand: A Wireless Sensor Network for Target Detection, Classification, and Tracking. Computer Networks (Elsevier) Vol. 46, 2004.
[127] C. Meesookho , S. Narayanan, C. S. Raghavendra: Collaborative Classification Applications In Sensor Networks. IEEE Sensor Array and Multichannel Signal Processing Workshop, 2002.
[128] P. Perconti, M. Loew, J. Hilger: Overview of Sensor Fusion Research at RDECOM NVESD & Recent Results on Vehicle Detection Using Multiple Sensor Nodes. Proceedings of the Sixth International Conference of Information Fusion, 2003.
[129] P. Chen, S. Oh, M. Manzo: Experiments in Instrumenting Wireless Sensor Networks for Real-Time Surveillance. In International Conference on Robotics and Automation, 2005.
[130] T. He, P. Vicaire, A. Yang, T. Yan: Achieving Real-Time Target Tracking Using WSN. In 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2006.
[131] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, D. Culler: Design of a Wireless Sensor Network Platform for Detecting Rare, Random, and Ephemeral Events. In Proc. of the 4th Intl. Conf. on Information Processing in Sensor Networks (IPSN’05), Los Angeles, CA, 2005.
[132] G. Wittenburg, K. Terfloth, F. Villafuerte: Fence Monitoring – Experimental Evaluation of a Use Case for Wireless Sensor Networks. In Proceedings of the 4th European Conference on Wireless Sensor Networks (EWSN'07), Delft, The Netherlands, January 2007.
[133] N. L. Carter, J. M. Ferryman: The SAFEE On-Board Threat Detection System. ICVS 2008.
[134] T. Bokareva, W. Hu, S. Kanhere: Wireless Sensor Networks for Battlefield Surveillance. Land Warfare Conference, Brisbane Australia. October 2006.
[135] Meinberg Funkuhren GmbH & Co. KG: http://www.meinberg.de/german/sw/ntp.htm
[136] SPTimeSync: http://www.softpedia.com/get/Desktop-Enhancements/Clocks-Time-Management/SP-TimeSync.shtml
[137] D. D. Corkill: Collaborating Software. Blackboard and Multi-Agent Systems & the Future. In Proceedings of the International Lisp Conference, New York 2003.
[138] Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, C. Rosenberger: Review and Evaluation of Commonly Implemented Background Subtraction Algorithms. IEEE International Conference on Pattern Recognition, 2008.
[139] S. Herrero, J. Bescos: Background Subtraction Techniques: Systematic Evaluation and Comparative Analysis. Advanced Concepts for Intelligent Vision Systems, Springer Berlin/Heidelberg, 2009. ISBN 978-3-642-04696-4.
[140] R. Ewerth, B. Freisleben: Frame difference normalization: an approach to reduce error rates of cut detection algorithms for MPEG videos. International Conference on Image Processing ICIP, 2003.
[141] S. C. Cheung, C. Kamath: Robust Techniques for background subtraction in urban traffic video. Visual Communications and Image Processing, Proceedings of the SPIE, Vol. 5308, 2004.
[142] Q. Zhou, J. Aggarval: Tracking and classifying moving objects from video. IEEE Proc. PETS Workshop, 2001.
[143] A. Wren, A. Azarbayejani, P. Darrell, A. Pentland: Real-time tracking of human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, 1997.
[144] C. Stauffer, W. E. L. Grimson: Adaptive background mixture models for real-time tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999.
[145] C. Stauffer, W. E. L. Grimson: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000.
[146] P. KaewTraKulPong, R. Bowden: An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection. Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems (AVBS), September 2001.
[147] A. M. Elgammal, L. Harwood, L. S. Davis: Non-parametric model for background subtraction. Computer Vision-ECCV 2000, Springer Berlin/Heidelberg. ISBN 978-3-540-67686-7.
[148] J. Han, M. Kamber, A. K. H. Tung: Spatial Clustering Methods in Data Mining: A Survey. Geographic Data Mining and Knowledge Discovery, Taylor and Francis, 2001.
[149] P. Berkhin: Survey of Clustering Data Mining Techniques. Technical report, Accrue Software, San Jose, CA, 2002.
[150] G. McLachlan, K. Basford: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York, 1988.
[151] G. McLachlan, T. Krishnan: The EM Algorithm and Extensions. Wiley & Sons, New York, 1997.
[152] D. W. Scott: Multivariate Density Estimation. Wiley & Sons, New York, 1992.
[153] http://www.inf.ethz.ch/personal/befische/ml1/demos/index.html
[154] J. B. Macqueen: Some Methods for Classification and Analysis of Multivariate Observations. Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, 1967.
[155] E. Forgy: Cluster analysis of multivariate data: Efficiency versus interpretability of classification. Biometrics, Vol. 21, 1965.
[156] P. Viola, M. Jones: Robust real-time Object Detection. Second International Workshop on Statistical and Computational Theories of Vision-Modeling, Learning, Computing and Sampling, Vancouver Canada, 2001.
[157] P. Viola, M. Jones: Rapid object detection using a boosted cascade of simple features. Proceedings of the Conference on Computer Vision and Pattern Recognition Vol. 1, Hawaii, USA, 2001.
[158] P. Viola, M. Jones: Robust real-time face detection. International Journal of Computer Vision, 2004. ISSN 0920-5691.
[159] R. Lienhart, J. Maydt: An Extended Set of Haar-like Features for Rapid Object Detection. IEEE ICIP, Vol. I, 2002.
[160] C. Papageorgiou, M. Oren, T. Poggio: A general framework for object detection. International Conference on Computer Vision, 1998.
[161] R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee: Boosting the margin: a new explanation for the effectiveness of voting methods. Proceedings of the 14th International Conference on Machine Learning, 1997.
[162] R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee: Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, Vol. 26, Number 5, 1998.
[163] R. E. Schapire: A Brief Introduction to Boosting. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.
[164] M. Kearns: Thoughts on Hypothesis Boosting. Unpublished manuscript, 1988. Zu finden unter: http://www.cis.upenn.edu/~mkearns/papers/boostnote.pdf
[165] M. Kearns, L. G. Valiant: Learning Boolean formulae or finite automata is as hard as factoring. Technical Report TR-14-88, Harvard University, Aiken Computation Laboratory, August 1988.
[166] M. Kearns, L. G. Valiant L: Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computer Machinery, January 1994.
[167] R. E. Schapire, Y. Freund: Experiments With a New Boosting Algorithm. Proceedings of the Thirteenth International Conference on Machine Learning, San Francisco, 1996.
[168] J. Schochman, J. Matas: AdaBoost Talk. http://www.comp.leeds.ac.uk/scsjso/adaboost_ talk.pdf
[169] M. Warmuth, S. V. N. Vishwanathan: Survey of Boosting from an Optimization Perspective. Tutorial at the International Conference of Machine Learning, ICML, 2009.
[170] J. Friedman, T. Hastie, R. Tibshirani: A Statistical View of Boosting. The Annals of Statistics, 2000.
[171] O. H. Jensen: Implementing the Viola-Jones Face Detection Algorithm. Project at the Technical University of Denmark, 2008. ISBN 87-643-0008-0.
[172] http://www.meinberg.de/german/sw/ntp.htm
[173] http://www.spdialer.com/timesync
[174] D. L. Mills: Network Time Protocol Version 4 Reference and Implementation Guide. NTP Working Group, Technical Report 06-6-1, University of Delaware, 2006.
[175] N. Dalal: Finding People in Images and Videos. Dissertation, Institut National Polytechnique de Grenoble, 2006.
[176] N. Dalal, B. Triggs, C. Schmid: Human Detection using Oriented Histograms of Flow and Appearance. European Conference on Computer Vision, 2006.
[177] D. G. Lowe: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004.
[178] The OpenCV Machine-Vision-Library: http://opencv.willowgarage.com/wiki
[179] S. E. Ghobadi, O. E. Loepprich, K. Hartmann, O. Loffeld: Real Time Person Tracking and Localization Using Multimodal Visual Data. Workshop on Pattern Recognition and Artificial Intelligence for Human Behaviour Analysis (PRAI*HBA), Reggio Emilia, Italien, 2009.
[180] O. Loffeld: Estimationstheorie I, Grundlagen und stochastische Konzepte. Oldenbourg Verlag GmbH München. ISBN 3-486-21616-3.
[181] O. Loffeld: Estimationstheorie II, Anwendungen: Kalman-Filter. Oldenbourg Verlag GmbH München. ISBN 3-486-21616-3.
[182] P. Zarchan, H. Musoff: Fundamentals of Kalman Filtering: A Practical Approach. American Institute of Aeronautics & Ast (AIAA); 2nd dition, 2005. ISBN 978-1563476945.
[183] B. Ristic, S. Arulampalam, N. Gordon: Beyond the Kalman Filter. Artech House, London 2004. ISBN 1-58053-631-x.
[184] A. Doucet, N. deFreitas, N. Gordon: Sequential Monte Carlo Methods in Practice. Springer Verlag, 2001. ISBN 0-387-95146-6.
[185] Y. Bar-Shalom: Multitarget-Multisensor Tracking: Advanced Applications. Artech House, Norwood 1990. ISBN 0-89006-377-x.
[186] Y. Bar-Shalom, X. Li: Estimation and Tracking: Principles, Techniques and Software. Artech House, Norwood MA, 1993. ISBN 0-89006-643-4.
[187] A. Yilmaz, O. Javed, M. Shah: Object Tracking: A Survey. ACM Computing Surveys, Vol 38, 2006.
[188] S. E. Ghobadi: Real-Time Object Recognition and Tracking Using 2D/3D Images, Dissertation, Universität Siegen, 2010.
[189] F. Aherne, N. Thacker, P. Rockett: The Bhattacharyya Metric as an Absolute Similarity Measure for Frequency Coded Data. Kybernetika 32(4), 1997.
[190] A. Bhattacharyya: On a measure of dicergence between two statistical populations defined by their probability distribution. Bulletin of the Calcutta Mathematical Society, Vol. 35, 1943.
[191] J. L. Cassidis, A. Junkins: Optimal Estimation of Dynamic Systems. Chapman & Hall, 2004. ISBN 1-58488-391-X.
[192] M. Isard, A. Blake: Contour Tracking by Stochastik Propagation of Conditional Density. 4th European Conference on Computer Vision, Vol. 1, 1996.
[193] M. Isard, A. Blake: A Mixed-State Condensation Tracker with Automatic Model-Switching. In 6th International Conference on Computer Vision 29, 1998.
[194] M. Isard, A. Blake: CONDENSATION - Conditional Density Propagation for Visual Tracking. International Journal on Computer Vision 29(1), 1998.
[195] M. Isard: Visual Motion Analysis by Probabilistic Propagation of Conditional Density. Dissertation, Universität Oxford, 1998.
[196] U. Grenader, Y. Chow, D. M. Keenan: HANDS, A Pattern Theoretic Study of Biological Shapes. Springer-Verlag, 1991.
[197] N. Gordon, D. Salmond, A. Smith: Novel approach to nonlinear/non-gaussian bayesian state estimation. IEE Proc. F, 140, 2.
[198] G. Kitagawa: Monte-carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, Vol. 5, 1996.
[199] A. Papoulis: Probability, Random-Variables and Stochastic Processes. McGraw-Hill 2. ed., New York, 1984. ISBN 0070484686.
[200] http://www.khronos.org/opencl
[201] http://www.nvidia.com/object/cuda_home_new.html
[202] http://channel9.msdn.com/tags/DirectCompute-Lecture-Series
[203] http://www.seeingmachines.com/product/faceapi
[204] http://www.softkinetic.net/index.php
[205] http://www.omekinteraktive.com
[206] http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
[207] L. Byung-Uk: Stereo Matching of Skull Landmarks. Dissertation, Universität Stanford, CA, 1991.
[208] L. Vicci: Quaternions and Rotations in 3-Space: The Algebra and it's Geometric Interpretation, Technical Report TR01-014, Universität North Carolina, Chapel Hill, 2001.
[209] http://code.google.com/p/coloradocollegegame/wiki/Quaternions
[210] E. B. Dam, M. Koch, M. Lillholm: Quaternions, Interpolations and Animation. Technical Report DIKU-TR-98/5, Fakultät für Informatik, Universität Kopenhagen, Dänemark, 1998.
[211] E. Bradski, A. Kaehler: Learning OpenCV. O'Reilly Media Inc., 2008. ISBN: 978-0-596-51613-0.
[212] T. Kahlmann, F. Remondino, H. Ingensand: Calibration for increased accuracy of the range imaging camera SwissRangerTM. Image Engineering and Vision Metrology (IEVM), 2006.
[213] M. Lindner, A. Kolb: Calibration of intensity-related distance error of the PMD ToF-Camera. Intelligent Robots and Computer Vision XXV, 6764, 2007.
[214] R. Schwarte: Dynamic3D-Vision. IEEE Int. Symp. on Electron Devices for Microwave and Opto-electronic Applications. EDMO 2001, Wien.
[215] H. Heinol: Untersuchung und Entwicklung von modulationslaufzeitbasierten 3D-Sicht-systemen. Dissertation, Universität Siegen, 2001.
[216] B. Buxbaum, R. Schwarte, Z. Xu, T. Ringbeck, H. Heinol, J. Schulte, W. Tai, Z. Zhang, X. Luan, J. Fricke: Charge Transfer Simulation in PMD-Structures. Sensor 99, 1999.
[217] ZF-Projekt Nr. 666c – Cluster 7: POmSe (Personen- und Objektdetektion mit mobilen Sensoren). IT-Sicherheitsforschungsprogramm des BSI (Bundesamt für Sicherheit in der Informationstechnik). Unterstützt mit Mitteln aus dem Zukunftsfonds der Bundesregierung (2006-2010). http://www.bsi.bund.de/
[218] Abschlussbericht Projekt POmSe, Arbeitspaket 1. August 2009. Anfragen diesbezüglich an: info@zess.uni-siegen.de
[219] Abschlussbericht Projekt POmSe, Arbeitspaket 2, Teil A. Juli 2010. Anfragen dies-bezüglich an: info@zess.uni-siegen.de
[220] M. Zubair, O. Loepprich, S. Ghobadi, K. Hartmann, M. Koch: Object Detection and Classification in MultiChannel Seismic Network. SPPRA, 11th IASTED International Conference on Signal Processing, Pattern Recognition and Applications. Innsbruck, Austria, 17-19.02.2010.
[221] H. Ruser, K. Wenzl, Ch. Kargel: Detection and tracking of humans with a sparse network of LIDAR sensors. Defense, Security, and Sensing - SPIE 2009, 13.-17.April 2009, Orlando, Florida, USA.
[222] T. Ringbeck, T. Möller, B. Hagebeuker: Multidimensional measurement by using 3-D PMD sensors. Advances in Radio Science, 5, 135–146, 2007. www.adv-radio-sci.net/5/135/2007/
[223] Z. Xu: Investigation of 3D-Imaging Systems Based on Modulated Light and Optical RF-Interferometry (ORFI). ZESS Forschungsberichte (1999).
[224] M. Plaue: Technical Report:Analysis of the PMD Imaging System. Interdisciplinary Center for Scientific Computing, Univ. of Heidelberg. December 2006.
[225] H. Rapp: Experimental and theoretical investigation of correlating ToF-camera systems. Master thesis, University of Heidelberg, September 2007.
[226] S. Foix, G. Alenya, C. Torras: Lock-in Time-of-Flight (ToF) Cameras: A Survey. IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011.
[227] M. Lindner: Calibration and Realtime Processing of Time-of-Flight Range Data. Dissertation, Universität Siegen, 2010.
[228] C. M. Bishop: Pattern Recognition and Machine Learning. Springer Verlag, 2006. ISBN-10: 0-387-31073-8.
[229] MOVEDETECT (Sichere Detektion und Lokalisation in kritischen Arealen durch klassifizierende drahtlose Sensornetze). BSI Projekt 684/2010. https://www.fim.uni-passau.de/en /fim/faculty/chairs/computer-networks-and-communications/research/projects/bsi-movedetect.html
[230] http://www.timedomain.com/p400.php
[231] https://www.pololu.com/catalog/product/1255
[232] Hella People Counter: https://www.hella.com/hella-com/319.html
[233] Brickstream SeeMore 3D: http://www.brickstream.com/products/seemore