de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Hofmann, Martin: Characterizing quantum correlations: the genuine multiparticle negativity as entanglement monotoneCharakterisierung von Quantenkorrelationen: Die echte Mehrteilchennegativität als Verschränkungsmaß. 2014
Inhalt
Abstract
Zusammenfassung
Contents
Introduction
Basic concepts
Bipartite entanglement
Pure state
Statistical local operations and classical communication
Mixed states
Positive partial transpose
Entanglement witnesses
Negativity
Genuine multiparticle entanglement
The three-particle case
Partial separability
Three-qubit SLOCC-equivalence
PPT mixtures and witnesses
Entanglement monotones
Axioms
Bipartite convex roof measures
Genuine multiparticle convex roof measures
Genuine multiparticle negativity (GMN)
Stabiliser formalism
Stabiliser states and graph states
Local Clifford equivalence
Analytical characterisation of the genuine multiparticle negativity
The GMN as a convex roof measure
Modifying the definition of the GMN
Comparison with the original definition of the GMN
Analytic computation of the GMN
Graph-diagonal states
n-qubit GHZ-diagonal states
Four-qubit cluster-diagonal states
Conclusions
Genuine multiparticle entanglement in spin chains
The model
Diagonalizing the XY-model
Expectation values of Pauli operators
Genuine multiparticle entanglement in reduced states
Separability verification
Entanglement in three-qubit and four-qubit states
Finite-size scaling
Scaling for three and four particles
Discussion of numerical precision
Conclusions
Generalised stabiliser formalism
Stabilised states
Stabilised states of stabiliser subgroups
Efficient generation of subgroups
LC-equivalent subgroups
LC-classification of subgroups
Conclusions
Semidefinite programming
Semidefinite program
Central path following algorithm
Implementing the renormalised genuine multiparticle negativity using CVXOPT
Exploiting symmetries
Conclusions
Conclusions
Characterizing the GMN
Proof of Theorem 2.1
Proof of Theorem 2.6
Expectation values of four-site operator basis in the XY-model
LC-classification of stabiliser subgroups
Two qubits
Three qubits
Four qubits
Five qubits
Six qubits
Semidefinite programming with Python and MATLAB
Optimisation frameworks
CVXOPT / CONELP & DSDP5.8
YALMIP / SeDuMi & SDPT3
GMN implementation using CVXOPT
Bibliography
List of publications