de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Bratasanu, Dragos: Interactive models for latent information discovery in satellite images. 2014
Inhalt
Abstract
Table of Contents
1. Introduction
1.1 Motivation
1.2 Positioning this Dissertation
1.3 Contributions
2. Information Spaces in Earth Observation Data
2.1 Introduction
2.2 Resolution
2.3 Data Analysis Methods
2.4 Remote sensing satellite systems
2.5 Spectral dimensions in satellite images
2.6 Semantic dimensions in satellite image-based cartography
3 Image Information Mining: State-of-the-Art
3.1 Introduction
3.2 Image Information Mining System Design
3.3 Content-based Information Retrieval: State-of-the-Art in Multimedia
3.4 Image Information Mining Systems for Earth Observation - A Brief Review
4. Basics of Inference and Stochastic Image Analysis
4.1 Stochastic Image Analysis
4.2 Transformation-Based Analysis
4.3 Bayesian Inference
4.4 Information Theory
5. Bridging the Gap for Semantic Annotation ofSatellite Images
5.1 Introduction
5.2 Spectral Signatures And Semantic Content Extraction
5.3 Map Label Learning Using Latent Dirichlet Allocation Model
5.4 Composition Rules For Bridging The Semantic Gap
5.5 Case Studies: Rules For Bridging Machine And Human Languages
6. Spectral Band Discovery for AdvancingMultispectral Satellite Image Analysis and Photo-Interpretation
6.1 Exploratory Visual Analysis of Satellite Images
6.2 Contextual Information Integration For Spectral Feature Selection
6.3 Minimum-Redundancy-Maximum-Relevance Criterion For Feature Selection
6.4 Objective Evaluation Of Subjective Visual Information
6.5 Experiments And Results
6.6 Discussion
7. Conclusions
7.1 The Value of the Contributions
APPENDIX
1. Color Science
2. Principal Component Analysis
3. Independent Component Analysis
4. Information Theory
4.1 Relationship Between Entropy and Mutual Information
4.2 Chain Rules for Entropy, Relative Entropy and Mutual Information
4.3 Jensen’s Inequality and Its Consequences
5. Estimation Theory
5.1 The Naïve Bayes Model for Classification
5.2 Maximum Likelihood Estimation for the Naïve Bayes Model
5.3 Maximum Likelihood Estimates
5.4 Expectation-Maximization (EM)
6. Latent Dirichlet Allocation
6.1 Gibbs Sampling
Acronym List
Acknowledgements
Bibliography