de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Arzt, Peter: Eigenvalues of measure theoretic Laplacians on Cantor-like setsEigenwerte von maßtheoretischen Laplace-Operatoren auf Cantor-artigen Mengen. 2014
Inhalt
Abstract / Zusammenfassung
Contents
1. Introduction
1.1. Statement of the problem
1.2. Physical motivation for the Laplacian
1.3. The Cantor set and generalizations
1.4. Outline of the thesis
2. Preliminaries
2.1. Derivatives and the Laplacian with respect to ameasure
2.2. Dirichlet forms related to the Laplacian
2.3. A Poincaré inequality
3. Spectral Asymptotics for General Homogeneous Cantor Measures
3.1. Construction of general homogeneous Cantormeasures
3.2. Scaling of the eigenvalue counting functions
3.3. Spectral asymptotics
3.4. Deterministic examples
3.5. Application to random homogeneous measures
4. Eigenvalues of the Laplacian as Zeros of Generalized Sine Functions
4.1. Generalized trigonometric functions
4.2. Calculation of L2-norms
4.3. A trigonometric identity
4.4. Symmetric measures
4.5. Self-similar measures
4.6. Self-similar measures with r1m1=r2m2
4.7. Self-similar measures with r1m1=r2m2 and r1+r2=1
4.8. Figures and numbers
4.9. Remarks and outlook
A. Plots of Eigenfunctions
B. Mathematical Foundations
B.1. L2 spaces
B.2. Self-similar sets and measures
B.3. The Vitali-Hahn-Saks theorem
B.4. The Arzelà-Ascoli theorem
B.5. The law of the iterated logarithm
B.6. Regularly varying functions
B.7. Dirichlet forms
Bibliography