de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Etienne, Roland Jean: On the asymptotic distribution of the Dirichlet eigenvalues of fractal chainsÜber die asymptotische Verteilung der Dirichlet-Eigenwerte fraktaler Ketten. 2014
Inhalt
Abstract
Contents
Overview
1 Introduction
2 Fractal Strings
2.1 Preliminaries
2.2 Spectral asymptotics of fractal strings
3 Fractal chains
3.1 Monoatomic chains
3.2 Fractal chains
3.2.1 The dynamic matrix of a fractal chain and its traces
3.2.2 The moments of the eigenvalue distribution of a fractal chain
3.2.2.1 Example 1: Generalised Cantor chains
3.2.2.2 Example 2: The a-chain
3.2.3 The moments of the eigenvalue distribution of a fractal chain with cut-off
3.2.3.1 Example 1: Generalised Cantor chains
3.2.3.2 Example 2: The a-chain
3.2.3.3 Minkowski-measurable chains
4 Interlude
5 Measure geometric fractal chains
5.1 Preliminaries
5.2 A physical interpretation
5.3 A physical model
5.4 Numerical spectral asymptotics for measure geometric chains
5.4.1 Example 1: The measure geometric Cantor chain
5.4.2 Example 2: A measure geometric chain with two different scaling ratios
5.5 The traces of powers of the dynamic matrix of measure geometric chains
5.5.1 Application: Dirichlet eigenvalues of measure geometric strings as zeroes of a generalised trigonometric function
5.5.1.1 Example 1: The measure geometric triadic Cantor string
5.5.1.2 Example 2: A measure geometric string with two different scaling ratios
6 Conclusion and Outlook
Appendix A: A different approach for the traces of the measure geometric Cantor chain
Appendix B: The moments of the triadic Cantor chain with and without cut-off: a comparison
References
List of Figures
List of Tables