de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Perdomo Arvizu, Maria del Carmen: Time domain identification of the mechanical system of a drive for the purpose of diagnosticsIdentifikation des mechanischen Systems eines Antriebs zur Diagnostik im Zeitbereich. 2015
Inhalt
Index of contents
Acknowledgements
Nomenclature
Abstract
Zusammenfassung
1. Introduction
1.1 Motivation of the work
1.2 Objectives
1.3 State of the art
1.4 Outline of the chapters
2. Theoretic fundamentals
2.1 Modelling and identification of electromechanical drives
2.2 Cascade control structure
2.3 Sensorless speed control techniques.
2.4 Summary of the chapter
3. Stochastic identification in time domain
3.1 Stochastic identification: extended Kalman filter
3.2 Causes of divergence by utilizing Kalman filters
3.3 PRBS as additional excitation to the system
3.4 Non-linear system model
3.5 Structure of identification
3.6 EKF identification of a variable reduced moment of inertia
3.7 Simulation of EKF identification of a crankshaft slider
3.8 Summary of the chapter
4. Deterministic Identification in time domain
4.1 Fourier series for signal representation
4.2 Identification of a periodical drive torque
4.3 Working hypothesis for the deterministic identification of a periodical load
4.4 Mechanical load as function of the angular position of the motor
4.5 Sliding window for discrete integration
4.6 Structure of identification
4.7 Summary of the chapter
5. Feed-forward control for a variable inertia system
5.1 Feed-forward control structure
5.2 Model of disturbances and variable reduced inertia effect
5.3 Summary of the chapter
6. Diagnostics
6.1 Rolling bearing failure detection
6.2 Causes and classification of failures in rolling bearings
6.3 Diagnostic of failures ball rolling bearings on machines with cyclical process
6.4 Effect of the friction in rolling bearings on the load torque to the drive
6.5 Fault bearings effects on the drive torque of a composed mechanism
6.6 Summary of the chapter
7. Experimental results
7.1 Identification with the extended Kalman filter
7.2 Identification of the torque by means of a deterministic procedure
7.3 Feed-forward compensation
7.4 Diagnostics
7.5 Summary of the chapter
8. Conclusions
9. Appendix
9.1 Characterization of the crank slider mechanism for the mass particles model
9.2 Experimental Platform I
9.3 Experimental Platform II
9.4 Kinetic energy analysis
List of Figures
10. References