de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Chaaban, Rannam: Frequency-domain fatigue analysis of wind turbine structures and fatigue damage detection: performance evaluation of spectral-based methods against the [...]. 2021
Inhalt
Abstract
Contents
Nomenclature
1 Introduction
1.1 Problem Formulation / Motivation
1.2 Research Objective and Scope
1.3 Thesis Outline
2 Random Response Fatigue Analysis
2.1 Preliminary Concepts and Definitions
2.1.1 Stationarity and Ergodicity
2.1.2 Probability Distribution and Probability Density Function
2.1.3 Histogram
2.1.4 Gaussian Probability Distribution
2.2 Fundamental Properties of Stationary Ergodic Stochastic Process
2.2.1 Correlation Function and Power Spectral Density
2.2.2 Random Response of Linear Systems
2.2.3 Spectral Moments, Rice Formula, and Band-Width Parameters
2.3 Stress Estimation
2.3.1 Stress Estimation from State Vector
2.3.2 Stress Calculation from Strain Measurement
2.4 General Fatigue Nomenclature
2.4.1 Material Properties (The S-N Curve)
2.4.2 Effect of Mean Stress
2.5 Linear Accumulation Hypothesis (Miner's Rule)
2.6 Time-Domain Approach
2.7 Frequency-Domain Approach
2.7.1 Spectral Fatigue Damage Estimation of Gaussian Loading
2.7.1.1 Narrow-Band Approximation
2.7.1.2 Single-Moment Method
2.7.1.3 Wirsching-Light Method
2.7.1.4 Ortiz-Chen Method
2.7.1.5 Tovo-Benasciutti Methods
2.7.1.6 The 0.75 Method
2.7.1.7 Dirlik Method
2.7.1.8 Zhao-Baker Method
2.7.1.9 Petrucci-Zuccarello Method
2.7.1.10 Bands-Method
2.7.1.11 Bimodal Methods
2.7.2 Spectral Fatigue Damage Estimation of Non-Gaussian Loading
2.7.2.1 Corrected Gaussian Approach
2.7.2.2 Transformed Gaussian Model Approach
2.8 Non-Stationary Loading
2.8.1 Signal Decomposition Using Moving Average Trend Estimation
2.8.2 Projection-by-Projection Criterion
2.9 Fatigue Damage Estimation Procedure
2.10 SHM Using Comparative Sensor Data Approach
2.10.1 Theoretical Concept
2.10.2 Illustrative Example
2.11 Chapter Summary
3 Modelling, Simulation and Analysis Tools
3.1 Wind Turbine Modelling and Simulation Tools
3.2 FAST Design Code
3.3 Reference Wind Turbine Model
3.3.1 Regions of Operation
3.3.2 Structural Dynamics
3.3.3 Floating Platforms
3.3.3.1 Barge Platform
3.3.3.2 Spar-Buoy Platform
3.3.3.3 Tension Leg Platform
3.4 Baseline Control System
3.4.1 Blade Pitch Actuator Model
3.4.2 Gain-Scheduled PI Controller
3.4.3 Generator Torque Control
3.5 Wind and Wave Loading
3.6 The IEC 61400 Norm
3.7 Fatigue Analysis Tools
3.8 Performance Metrics of Fatigue Damage Analysis
3.8.1 Characteristics of the Loading Time-Series
3.8.2 Fatigue Damage Analysis in Time-Domain
3.8.3 Fatigue Damage Analysis in Frequency-Domain
3.8.4 Comparison of Fatigue Damage Analysis in Time and Frequency Domains
3.8.5 Measured Loading
3.9 Weibull Scaling
3.10 Chapter Summary
4 Applications of Fatigue Damage Analysis
4.1 Fatigue Analysis Using Simulation Data-Set
4.1.1 Simulation Data-Set
4.1.1.1 Simulation Setup
4.1.1.2 Stochastic Characteristics of the Simulated Design Load Cases
4.1.1.3 Fatigue Damage Analysis
4.1.2 Onshore Wind Turbine
4.1.2.1 Tower Bending Moment Characteristics
4.1.2.2 Fatigue Analysis of Tower-Base Bending Moment in Fore-Aft Direction
4.1.2.3 Fatigue Analysis of Tower-Base Bending Moment in Side-Side Direction
4.1.2.4 Development of Fatigue Damage Estimation with Wind Speed
4.1.3 Floating Wind Turbines
4.1.3.1 Barge Platform
4.1.3.2 Spar-Buoy Platform
4.1.3.3 Tension Leg Platform
4.1.4 Conclusion Obtained from Simulation Data-Set
4.2 Fatigue Analysis of Small Wind Turbine
4.2.1 Small Wind Turbine of University of Siegen
4.2.1.1 Wind Turbine System and Installation Site
4.2.1.2 Structural and Operational Data Acquisition System
4.2.1.3 Wind Characteristics
4.2.2 Structural Loading Characteristics
4.2.3 Fatigue Analysis
4.2.3.1 Fatigue Damage Estimation Using Measured Loading
4.2.3.2 Deterministic and Stochastic Loading Components
4.2.3.3 Fatigue Damage Caused by Deterministic Component
4.2.3.4 Fatigue Damage Resulting from the Stochastic Component
4.2.3.5 Fatigue Damage Estimation Using ``De-trending&PbP''
4.2.3.6 Accumulative Fatigue Damage
4.2.4 Structural Health Monitoring Using Comparative Sensor Data Approach
4.2.5 Discussion and Conclusion
4.3 Fatigue Analysis of Utility Scale Wind Turbine
4.3.1 Research Wind Turbine
4.3.2 Wind Characteristics and Operating Conditions
4.3.3 Tower Loading Measurements
4.3.4 Tower Loading Characteristics
4.3.5 Fatigue Analysis
4.3.6 A New Approach for Structural Health Monitoring
4.3.7 Discussion and Conclusion
4.4 Proof of Concept of Using Comparative Sensor Data Approach for SHM
4.4.1 Experimental Design
4.4.2 Accumulated Fatigue Damage
4.4.3 Comparative Sensor Data Approach as SHM System
4.4.3.1 Fatigue Damage Detection Using Monitoring and Reference Strain Measurements
4.4.3.2 Fatigue Damage Detection Using Monitoring Strain Measurement and Input Loading as Reference
4.4.4 Summary of Results
4.4.5 Conclusion
4.5 Chapter Summary
5 Conclusions and Recommendations
5.1 Conclusions
5.2 Recommendations
Bibliography