de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Ahmad, Bilal: Crash simulation of woven fabric thermoplastic composites. 2021
Inhalt
Title page
Acknowledgment
Abstract
Kurzzusammenfassung
Contents
Abbreviations
Symbols
1 Introduction
1.1 Potential of continuous fiber thermoplastic composites
1.2 Motivation
1.3 Objective
1.4 Procedure
2 Theoretical background
2.1 Fiber composite materials
2.1.1 Fibers
2.1.2 Matrix
2.2 Energy absorption characteristics of fiber composites
2.2.1 Flat specimens
2.2.2 Self-supporting specimens
2.3 Size effect
2.4 Lamina stress-strain law
2.5 Failure of composite materials
2.5.1 Failure surface testing
2.5.2 Failure criteria
2.6 Explicit finite element method
2.7 User-defined material modeling (VUMAT)
2.8 Elasto-plasticity
3 Experimental material testing
3.1 Material
3.2 Tensile test
3.2.1 Test specimen
3.2.2 Test procedure
3.2.3 Results
3.3 Compression test
3.3.1 Test specimen
3.3.2 Test procedure
3.3.3 Results
3.4 Shear test
3.4.1 Test results
3.4.2 Cyclic shear test
3.5 Intra-laminar fracture energy
3.5.1 Tensile fracture energy
3.5.2 Compression fracture energy
3.6 Axial crushing behavior
4 Continuum damage mechanics
4.1 Basics of CDM
4.2 Ls-Dyna CDM model MAT_Laminated_Composite_Fabric
4.2.1 Fiber response
4.2.2 In-plane shear response
4.3 Abaqus CDM model ABQ_PLY_FABRIC
4.3.1 Fiber response
4.3.2 In-plane shear response
4.4 Validation
4.4.1 Three-point bending of rectangular specimen
4.4.2 U-profile
4.5 Conclusion
5 Shear modeling
5.1 Testing
5.1.1 Frame shear test
5.1.2 Rail shear test
5.1.3 Compression shear
5.1.4 Results and comparison
5.2 Improved shear modelling
5.2.1 Results
5.3 Validation
5.4 Conclusion
6 Strain-rate modelling
6.1 Test
6.1.1 Tensile strain-rate dependency
6.1.2 Shear strain-rate dependency
6.2 Strain rate-dependent modeling
6.2.1 Strain rate dependency in the fiber direction
6.2.2 Strain rate dependency along in-plane shear
6.2.3 Implementation as user-defined material subroutine
6.3 Validation
6.3.1 FEM model setup
6.3.2 Results
6.3.3 Discussion
6.4 Conclusion
7 Failure surface
7.1 Testing
7.2 Conclusion
8 Size effect
8.1 Size effect in tension
8.2 Size effect in bending
8.2.1 Pin-end buckling test
8.3 Proposed method for scaling strength in user-material subroutine
8.4 Conclusion
9 Axial crush simulation
9.1 Inter-laminar fracture energy measurement
9.1.1 DCB test
9.1.2 ENF test
9.2 Delamination modeling
9.2.1 Constitutive model of cohesive elements
9.2.2 Parameter calibration
9.2.3 Single-element simulation
9.2.4 Influence of cohesive modeling on composite response
9.3 Validation
9.3.1 DCB simulation
9.3.2 ENF simulation
9.4 Axial crush simulation
9.4.1 Conclusion
10 Summary and Outlook
10.1 Summary
10.2 Outlook
11 Bibliography
12 Annex
12.1 Test results data
12.1.1 Frame shear
12.1.2 Rail shear
12.1.3 Compression shear
12.1.4 High-speed tensile test
12.1.5 High-speed shear test
12.1.6 Off-axis tests
12.1.7 DCB test
12.1.8 ENF test
12.2 Specimen photos
12.2.1 Tensile test specimens
12.2.2 Compression tests specimens
12.2.3 Tensile-shear test specimens
12.2.4 Intralaminar fracture energy specimens
12.2.5 Axial crash of corrugated specimens
12.2.6 Rail shear tests specimens
12.2.7 Tensile shear specimens
12.2.8 Compression shear specimen
12.2.9 High speed tensile test specimens
12.2.10 High-speed shear specimen
12.2.11 Off-axis tensile test specimen
12.3 CAD drawings
12.3.1 CLC fixture
12.3.2 Clevis design for intra-laminar fracture energy
12.3.3 Frame shear fixture
12.3.4 Rail shear fixture
12.3.5 Pin-end buckling fixture