de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Mallak, Ahlam: Comprehensive machine and deep learning fault detection and classification approaches of industry 4.0 mechanical machineries: with application to a hydraulic [...]. 2021
Inhalt
Acknowledgments
Abstract
Zusammenfassung
Table of Contents
List of Figures
List of Tables
List of Acronyms
Chapter 1: Introduction
1. Motivation
2. Problem Statement
3. Research Questions
4. Our Contribution
5. Our Publications
6. Structure of the Dissertation
Chapter 2: Conceptual and Theoretical Foundation
1. The Fourth Industrial Revolution
2. Hydraulic Systems Overview
3. Fault Types and Classifications
4. Fault Detection and Diagnosis (FDD)
5. Machine Learning Algorithms Taxonomy
6. Feature Selection Literature
7. k-means Clustering Literature
8. Relevant ML Classification Algorithms
9. Relevant DL Literature
10. Other Relevant Literature
11. Data Collection and Generation
Chapter 3: Relevant Related Work
1. Supervised ML Approaches for FDD in Mechanical Machinery
2. Autoencoder Approaches for FDD in Mechanical Machinery
3. k-means for Feature Selection Related Work
Chapter 4: Unsupervised Feature Selection Using Recursive k-Means Silhouette Elimination (RkSE): A Two-Scenario Case Study for Fault Classification of High-Dimensional Sensor Data
1. Chapter Overview
2. Recursive k-means Silhouette Elimination (RkSE): Method Overview
3. Analysis and Experimental Results
Chapter 5: Sensor and Component FDD for Hydraulic Systems using Combined LSTM Autoencoder Detector and Diagnosis Classifiers
1. Chapter Overview
2. Hydraulic System FDD Overview
3. Analysis and Experimental Results
Chapter 6: A Hybrid Approach: Dynamic Diagnostic Rules for Hydraulic Systems in Industry 4.0 Generated by Online Hyperparameter Tuned Random Forest
1. Chapter Overview
2. System Model Overview
3. Experimental Results
Chapter 7: Conclusions and Future Work
References
Appendix A: Ontology and Ontology Design
Appendix B: Active Diagnosis and Repair Automotive (ADRA) Ontology
Appendix C: SenGen: A Two-Phase Dynamic Simulation and Toolbox for Sensor Datasets and Case-Study Generation in Mobile Wireless Sensor Networks (MWSN)
Appendix D: A Model-Based Approach: A Graph-Based FDD for IoT Systems Extracted from A Semantic Ontology