Oxidverfestigte Stähle (ODS) sind als Hüllmaterial für Brennstäbe in Generation IV Kernreaktoren und als Strukturmaterial in Fusionsreaktoren vorgesehen. Die Bruchzähigkeit ist ein wesentlicher Parameter für die Bewertung der strukturellen Integrität und die Bearbeitbarkeit. Ungeachtet einer guten Festigkeit bei hohen Temperaturen und einer guten Beständigkeit gegenüber bestrahlungsinduziertem Schwellen haben ODS-Stähle im Vergleich zu konventionellen martensitisch-ferritischen Cr-Stählen eine niedrige Bruchzähigkeit. Sowohl gewalzte als auch warm stranggepresste ODS-Stähle zeigen ein anisotropes Bruchverhalten. Zusätzlich treten Sekundärrisse auf, welche zu einem Versagen der Struktur führen können.
In der vorliegenden Arbeit werden die mikrostrukturellen Merkmale, welche für die niedrige Bruchzähigkeit verantwortlich sind, das anisotrope Bruchverhalten und das Auftreten von Sekundärrissen untersucht. Diese Informationen sind zur Verbesserung der Brucheigenschaften für Hersteller von ODS-Stählen von großer Bedeutung. Von drei ODS-Stählen wurden mit Miniatur-Kompaktzugproben Risswiderstandskurven mit dem Teilentlastungsverfahren gemessen und daraus Bruchzähigkeiten nach ASTM E1820 ermittelt. Die Mikrostruktur, die Bruchflächen und die Rissausbreitung wurden mit dem Raster- und Transmissionselektronenmikroskop und Elektronenrückstreubeugung untersucht und das Bruchverhalten charakterisiert. Eine quantitative Bewertung der die Bruchzähigkeit beeinflussenden mikrostrukturellen Parameter wird mit einer auf der kritischen Dehnung basierenden Beziehung der Bruchzähigkeit vorgenommen.
Es wurde beobachtet, dass die niedrige Bruchzähigkeit in erster Linie durch die Haftfestigkeit zwischen porenbildenden Teilchen und der Matrix bestimmt wird. Die Größe und der Abstand der
porenbildenden Teilchen haben zusammen mit der Fließfestigkeit keinen dominanten Einfluss auf die Bruchzähigkeit. Es wurde festgestellt, dass das anisotrope Bruchverhalten der ODS-Stähle in erster Linie durch die anisotrope Struktur der Körner hervorgerufen wird. Kristallographische Anisotropie und Ausrichtung der Poren bildenden Teilchen haben keinen wesentlichen Einfluss auf das Bruchverhalten. Sekundärrisse treten durch den hohen Grad der Anisotropie bevorzugt bei warmgewalzten Material auf. Sie können das Wachsen des Hauptrisses und das Auftreten von Spaltbruch beeinflussen. Sekundärrisse entstehen vor der Ausbreitung des Hauptrisses bei geringerer Belastung.