Heute gibt es eine breite Palette von Industriesystemen, die auf föderierten
Architekturen basieren, was bedeutet, dass jeder Rechenknoten im System ausschließlich
einer Funktion zugeordnet ist. Aufgrund der zunehmenden Rechenleistung
eines einzelnen Prozessors und der zunehmenden Anzahl von Rechenprozessoren
auf einer einzigen Plattform wurde umfangreiche Forschung zur Integration
mehrerer Funktionen mit unterschiedlichen Kritikalitätsstufen auf einer gemeinsamen
Plattform durchgeführt. So hat sich beispielsweise im Bereich der Avionik
der Entwicklungstrend von föderierten zu integrierten Architekturen verlagert. Der
ARINC 653 Standard wurde veröffentlicht, der die Ausführungsumgebung für das
Hosting mehrerer Avionik-Softwarefunktionen in einem einzigen Rechenknoten
definiert. ARINC 653 wurde erfolgreich implementiert (z.B. Airbus A380) und erreichte
seine primären Ziele (Kosten- und Gewichtsreduzierung, modulare Zertifizierung
möglich).
Die bestehenden Ausführungsumgebungen auf Basis einer integrierten Architektur
unterstützen jedoch nur statische Systemkonfigurationen. In bestimmten Bereichen
wie der Bahnindustrie ist eine dynamische Systemanpassung zur Laufzeit erforderlich,
die sowohl die Anwendungsausführungsumgebung als auch die Datenkommunikationsmechanismen
betrifft. In dieser Dissertation liegt unser Fokus auf einer
Ausführungsumgebung, die auf einer integrierten Architektur basiert, die die sichere
Integration von mixed-criticality-Anwendungen garantiert und auch das Problem
der Systemrekonfiguration angeht.
Um die Forschungslücke zu schließen, stellen wir eine Ausführungsumgebung
für integrierte Echtzeitanwendungen vor, indem wir das Paradigma des Software-
Defined Networking (SDN) nutzen. Wir erweitern die zeitlichen und räumlichen
Isolations-mechanismen von der Anwendungsschicht auf die Ausführungsumgebung,
so dass sich die integrierten Anwendungen den Rechenknoten störungsfrei
teilen. Für die Datenkommunikation der integrierten Anwendungen schlagen wir
einen virtuellen Switch vor, der die zeitliche und räumliche Isolation zwischen den
Datenflüssen unterstützt und das SDN-Paradigma nutzt, um die Rekonfigurationsanforderungen
der Datenflüsse zu erfüllen. Darüber hinaus befassen wir uns auch mit
dem kontrollierten Import und Export von Nachrichten zwischen Datenflüssen im
vorgeschlagenen virtuellen Switch. Für die deterministischen Kommunikationsanforderungen
von harten Echtzeitanwendungen schlagen wir einen virtuellen Switch
vor, der IEEE 802.1Qbv und IEEE 802.1Qci nach dem Time Sensitive Networking
(TSN)-Standard ist, um die Forschungslücke des virtuellen Switchings zu schließen,
das eine begrenzte Verzögerung mit geringem Jitter in einer integrierten Architektur
garantiert.
In den Proof-of-Concept-Implementierungen zeigen wir die Nicht-Interferenz
zwischen Anwendungen in der Ausführungsumgebung durch Fehlerinjektion. In
unseren Virtual-Switch-Demonstratoren bewerten wir die grundlegenden Isolationsmechanismen
und den Determinismus des Message-Switching, während wir den
verursachten Overhead für die Nachrichtenübertragung sowie den kontrollierten
Datenaustausch messen, wobei der gemessene Overhead im vorgeschlagenen Virtual-
Switch weniger als 10 μs beträgt.